WorldWideScience

Sample records for steel arc welding

  1. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  2. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  3. Welding procedure specification for arc welding of St 52-3N steel plates with covered electrodes

    International Nuclear Information System (INIS)

    Cvetkovski, S.; Slavkov, D.; Magdeski, J.

    2003-01-01

    In this paper the results of approval welding technology for arc welding of plates made of St 52-3N steel are presented. Metal arc welding with covered electrode is used welding process. Test specimens are butt welded in different welding positions P A , P F , P C and P D . Before start welding preliminary welding procedure was prepared. After welding of test specimens non destructive and destructive testing was performed. Obtained results were compared with standard DIN 17100 which concerns to chemical composition and mechanical properties of base material. It was confirmed that in all cases mechanical properties of welded joint are higher than those of base material, so preliminary welding procedure (pWTS) can be accepted as welding procedure specification WPS for metal arc welding of St52-3N steel. (Original)

  4. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    OpenAIRE

    Yurtisik,Koray; Tirkes,Suha; Dykhno,Igor; Gur,C. Hakan; Gurbuz,Riza

    2013-01-01

    Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex mi...

  5. Occupational asthma due to manual metal-arc welding of special stainless steels.

    Science.gov (United States)

    Hannu, T; Piipari, R; Kasurinen, H; Keskinen, H; Tuppurainen, M; Tuomi, T

    2005-10-01

    Occupational asthma (OA) can be induced by fumes of manual metal-arc welding on stainless steel. In recent years, the use of special stainless steels (SSS) with high chromium content has increased. This study presents two cases of OA caused by manual metal-arc welding on SSS. In both cases, the diagnosis of OA was based on respiratory symptoms, occupational exposure and positive findings in the specific challenge tests. In the first case, a 46-yr-old welder had experienced severe dyspnoea while welding SSS (SMO steel), but not in other situations. Challenge tests with both mild steel and stainless steel using a common electrode were negative. Welding SSS with a special electrode caused a delayed 37% drop in forced expiratory volume in one second (FEV1). In the second case, a 34-yr-old male had started to experience dyspnoea during the past few years, while welding especially SSS (Duplex steel). The workplace peak expiratory flow monitoring was suggestive of OA. Challenge tests with both mild steel and stainless steel using a common electrode did not cause bronchial obstruction. Welding SSS with a special electrode caused a delayed 31% drop in FEV1. In conclusion, exposure to manual metal-arc welding fumes of special stainless steel should be considered as a new cause of occupational asthma.

  6. Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel

    Science.gov (United States)

    Son, Seungwoo; Lee, Young Ho; Choi, Dong-Won; Cho, Kuk-Rae; Shin, Seung Man; Lee, Youngseog; Kang, Seong-Hoon; Lee, Zonghoon

    2018-05-01

    The microstructure of boron steel for automotive driving shaft manufacturing after laser-arc hybrid welding was investigated. Laser-arc hybrid welding technology was applied to 3-mm-thick plates of boron steel, ST35MnB. The temperature distribution of the welding pool was analyzed using the finite element method, and the microstructure of the welded boron steel was characterized using optical microscopy and scanning and transmission electron microscopies. The microstructure of the weld joint was classified into the fusion zone, the heat-affected zone (HAZ), and the base material. At the fusion zone, the bainite grains exist in the martensite matrix and show directionality because of heat input from the welding. The HAZ is composed of smaller grains, and the hardness of the HAZ is greater than that of the fusion zone. We discuss that the measured grain size and the hardness of the HAZ originate from undissolved precipitates that retard the grain growth of austenite.

  7. Process stability during fiber laser-arc hybrid welding of thick steel plates

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F. H.

    2018-03-01

    Thick steel plates are frequently used in shipbuilding, pipelines and other related heavy industries, and are usually joined by arc welding. Deep penetration laser-arc hybrid welding could increase productivity but has not been thoroughly investigated, and is therefore usually limited to applications with medium thickness (5-15 mm) sections. A major concern is process stability, especially when using modern welding consumables such as metal-cored wire and advanced welding equipment. High speed imaging allows direct observation of the process so that process behavior and phenomena can be studied. In this paper, 45 mm thick high strength steel was welded (butt joint double-sided) using the fiber laser-MAG hybrid process utilizing a metal-cored wire without pre-heating. Process stability was monitored under a wide range of welding parameters. It was found that the technique can be used successfully to weld thick sections with appropriate quality when the parameters are optimized. When comparing conventional pulsed and the more advanced cold metal transfer pulse (CMT+P) arc modes, it was found that both can provide high quality welds. CMT+P arc mode can provide more stable droplet transfer over a limited range of travel speeds. At higher travel speeds, an unstable metal transfer mechanism was observed. Comparing leading arc and trailing arc arrangements, the leading arc configuration can provide higher quality welds and more stable processing at longer inter-distances between the heat sources.

  8. Investigation of the Weld Properties of Dissimilar S32205 Duplex Stainless Steel with AISI 304 Steel Joints Produced by Arc Stud Welding

    Directory of Open Access Journals (Sweden)

    Aziz Barış Başyiğit

    2017-03-01

    Full Text Available UNS S32205 duplex stainless steel plates with a thickness of 3 mm are arc stud welded by M8 × 40 mm AISI 304 austenitic stainless steel studs with constant stud lifts in order to investigate the effects of welding arc voltages on mechanical and microstructural behaviors of the joints. As the welding arc voltage increases starting from 140 V, the tensile strength of the weldment also increases but the higher arc values results in more spatters around the weld seam up to 180 V. Conversely, the lower arc voltages causes poor tensile strength values to weldments. Tensile tests proved that all of the samples are split from each other in the welding zone but deformation occurs in duplex plates during the tensile testing of weldments so that the elongation values are not practically notable. The satisfactory tensile strength and bending values are determined by applying 180 volts of welding arc voltage according to ISO 14555 standard. Peak values of micro hardness occurred in weld metal most probably as a consequence of increasing heat input decreasing the delta ferrite ratios. As the arc voltage increases, the width of the heat affected zone increases. Coarsening of delta-ferrite and austenite grains was observed in the weld metal peak temperature zone but it especially becomes visible closer to the duplex side in all samples. The large voids and unwelded zones up to approximately 1 mm by length are observed by macro-structure inspections. Besides visual tests and micro-structural surveys; bending and microhardness tests with radiographic inspection were applied to samples for maintaining the correct welding parameters in obtaining well-qualified weldments of these two distinct groups of stainless steel materials.

  9. Experimental Development of Dual Phase Steel Laser-arc Hybrid Welding and its Comparison to Laser and Gas Metal Arc Welding

    Directory of Open Access Journals (Sweden)

    Wagner Duarte Antunes

    Full Text Available Abstract Dual phase DP600 steels have been used in many automobile structures and laser welding has been the standard method for the joining of different sections. This work proposed a comparison between laser welding with arc welding (GMAW and with hybrid laser-arc welding in order to access the microstructures and the mechanical behavior. The laser and hybrid welds are competitive in terms of microstructure and mechanical behavior, presenting both acceptable and tough welds. The maximum ductility of the laser and hybrid welds are very similar, around 14%, and near to the values observed in the base material. The GMAW presents low ductility due to the softening caused by tampering of the martensite, and thus is unacceptable as the welding procedure.

  10. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Chen, Y. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Nguyen, T. [Mechanical Systems Engineering, Conestoga College, Kitchener (Canada); Galloway, J. [Welding Engineering Technology, Conestoga College, Kitchener (Canada); Gerlich, A.P. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  11. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  12. Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding

    Science.gov (United States)

    2013-05-01

    H.K.D.H. Bhadeshia, A Model for the Microstruc- ture of Some Advanced Bainitic Steels , Mater. Trans., 1991, 32, p 689–696 19. G.J. Davies and J.G. Garland...REPORT Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding 14. ABSTRACT 16. SECURITY...Computational Modeling of Microstructural-Evolution in AISI 1005 Steel During Gas Metal Arc Butt Welding Report Title ABSTRACT A fully coupled (two-way

  13. Numerical modelling of steel arc welding

    International Nuclear Information System (INIS)

    Hamide, M.

    2008-07-01

    Welding is a highly used assembly technique. Welding simulation software would give access to residual stresses and information about the weld's microstructure, in order to evaluate the mechanical resistance of a weld. It would also permit to evaluate the process feasibility when complex geometrical components are to be made, and to optimize the welding sequences in order to minimize defects. This work deals with the numerical modelling of arc welding process of steels. After describing the industrial context and the state of art, the models implemented in TransWeld (software developed at CEMEF) are presented. The set of macroscopic equations is followed by a discussion on their numerical implementation. Then, the theory of re-meshing and our adaptive anisotropic re-meshing strategy are explained. Two welding metal addition techniques are investigated and are compared in terms of the joint size and transient temperature and stresses. The accuracy of the finite element model is evaluated based on experimental results and the results of the analytical solution. Comparative analysis between experimental and numerical results allows the assessment of the ability of the numerical code to predict the thermomechanical and metallurgical response of the welded structure. The models limitations and the phenomena identified during this study are finally discussed and permit to define interesting orientations for future developments. (author)

  14. Double Fillet Welding of Carbon Steel T-Joint by Double Channel Shielding Gas Metal Arc Welding Method Using Metal Cored Wire

    Directory of Open Access Journals (Sweden)

    Mert T.

    2017-06-01

    Full Text Available Low carbon steel material and T-joints are frequently used in ship building and steel constructions. Advantages such as high deposition rates, high quality and smooth weld metals and easy automation make cored wires preferable in these industries. In this study, low carbon steel materials with web and flange thicknesses of 6 mm, 8 mm and 10 mm were welded with conventional GMAW and double channel shielding gas metal arc welding (DMAG method to form double fillet T-joints using metal cored wire. The difference between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, weld bead and HAZ geometry of the joints and thermal camera temperature measurements. When weld bead and HAZ geometries are focused, it was seen filler metal molten area increased and base metal molten area decreased in DMAG of low carbon steel. When compared with traditional GMAW, finer and acicular structures in weld metal and more homogenous and smaller grains in HAZ are obtained with double channel shielding gas metal arc welding.

  15. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  16. Specification for corrosion-resisting chromium and chromium-nickel steel bare and composite metal cored and stranded arc welding electrodes and welding rods

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for corrosion or heat resisting chromium and chromium-nickel steel electrodes and welding rods. These electrodes and welding rods are normally used for arc welding and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  17. Microstructure and corrosion behavior of shielded metal arc-welded dissimilar joints comprising duplex stainless steel and low alloy steel

    Science.gov (United States)

    Srinivasan, P. Bala; Muthupandi, V.; Sivan, V.; Srinivasan, P. Bala; Dietzel, W.

    2006-12-01

    This work describes the results of an investigation on a dissimilar weld joint comprising a boiler-grade low alloy steel and duplex stainless steel (DSS). Welds produced by shielded metal arc-welding with two different electrodes (an austenitic and a duplex grade) were examined for their microstructural features and properties. The welds were found to have overmatching mechanical properties. Although the general corrosion resistance of the weld metals was good, their pitting resistance was found to be inferior when compared with the DSS base material.

  18. A comparative study of the microstructure and mechanical properties of HTLA steel welds obtained by the tungsten arc welding and resistance spot welding

    International Nuclear Information System (INIS)

    Ghazanfari, H.; Naderi, M.; Iranmanesh, M.; Seydi, M.; Poshteban, A.

    2012-01-01

    Highlights: ► Hardness mapping is a novel method to identify different phases. ► Surface hardness mapping, tabulates the hardness of a large area of weld. ► Hardness maps can be used to depict the strength map through the specimen. ► Hardness mapping is an easy way to identify the phase fractions within the specimen. - Abstract: Hardness tests are routinely employed as simple and efficient methods to investigate the microstructure and mechanical properties of steels. Each microstructural phase in steel has its own hardness level. Therefore, using surface hardness mapping data over a large area of weld zone would be a reasonable method to identify the present phases in steel. The microstructure distribution and mechanical properties variation through welded structures is inhomogeneous and not suitable for certain applications. So, studying the microstructure of weld zone has a significant importance. 4130 steel is classified in HTLA steels and it is widely used in marine industry due to its superior hardenability, good corrosion resistance and high strength. Gas tungsten arc and resistance spot welding are the most usable processes in joining of 4130 sheets. In this work a series of welds have been fabricated in 4130 steel tube by gas tungsten arc and resistance spot welding. The tube was subjected to quench-tempered heat treatment. Slices from the welds before and after heat treatment were polished and etched and the macrostructure and microstructure were observed. Hardness maps were then determined over the large area of weld zone, including the heat affected zone and base plate. Results show good relations between the various microstructures, strength and hardness values. It is also proved that this method is precise and applicable to estimate phase fraction of each phase in various regions of weld. In the current study some equations were proposed to calculate the ultimate tensile stress and yield stress from the weld. The calculated data were compared

  19. Studies on the Parametric Effects of Plasma Arc Welding of 2205 Duplex Stainless Steel

    Science.gov (United States)

    Selva Bharathi, R.; Siva Shanmugam, N.; Murali Kannan, R.; Arungalai Vendan, S.

    2018-03-01

    This research study attempts to create an optimized parametric window by employing Taguchi algorithm for Plasma Arc Welding (PAW) of 2 mm thick 2205 duplex stainless steel. The parameters considered for experimentation and optimization are the welding current, welding speed and pilot arc length respectively. The experimentation involves the parameters variation and subsequently recording the depth of penetration and bead width. Welding current of 60-70 A, welding speed of 250-300 mm/min and pilot arc length of 1-2 mm are the range between which the parameters are varied. Design of experiments is used for the experimental trials. Back propagation neural network, Genetic algorithm and Taguchi techniques are used for predicting the bead width, depth of penetration and validated with experimentally achieved results which were in good agreement. Additionally, micro-structural characterizations are carried out to examine the weld quality. The extrapolation of these optimized parametric values yield enhanced weld strength with cost and time reduction.

  20. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    Science.gov (United States)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  1. Characterization of gas metal arc welded hot rolled DP600 steel

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.; Ramazani, A.; Yang, L.; Prahl, U.; Bleck, W. [RWTH Aachen University, Institute for Ferrous Metallurgy (IEHK) (Germany); Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University, Welding and Joining Institute (ISF) (Germany)

    2011-12-15

    Dual-phase (DP) steels are suitable candidates for automotive applications due to their high strength and ductility. These advanced mechanical properties result from the special microstructure of the DP steel with 5{proportional_to}20% martensite phase in a soft ferrite matrix. However, during welding, which is an important process in automotive industry, this special microstructure is destroyed. In this research the characterization of Gas Metal Arc (GMA) welded joining zones was performed by optical microscopy and hardness mapping. Tensile tests were also performed keeping the welded portion in the gauge length. Scanning Electron Microscopy (SEM) was used for the fracture investigation. From the characterization and tensile tests, the soften zones were found, which are caused by the tempered martensite and larger ferrite grain size than that in base metal. Furthermore, GMA welding make a large Heat Affected Zone (HAZ). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Effect of Cut Quality on Hybrid Laser Arc Welding of Thick Section Steels

    Science.gov (United States)

    Farrokhi, F.; Nielsen, S. E.; Schmidt, R. H.; Pedersen, S. S.; Kristiansen, M.

    From an industrial point of view, in a laser cutting-welding production chain, it is of great importance to know the influence of the attainable laser cut quality on the subsequent hybrid laser arc welding process. Many studies have been carried out in the literature to obtain lower surface roughness values on the laser cut edge. However, in practice, the cost and reliability of the cutting process is crucial and it does not always comply with obtaining the highest surface quality. In this study, a number of experiments on 25 mm steel plates were carried out to evaluate the influence of cut surface quality on the final quality of the subsequent hybrid laser welded joints. The different cut surfaces were obtained by different industrial cutting methods including laser cutting, abrasive water cutting, plasma cutting, and milling. It was found that the mentioned cutting methods could be used as preparation processes for the subsequent hybrid laser arc welding. However, cut quality could determine the choice of process parameters of the following hybrid laser arc welding.

  3. A comparative study of the microstructure and mechanical properties of HTLA steel welds obtained by the tungsten arc welding and resistance spot welding

    Energy Technology Data Exchange (ETDEWEB)

    Ghazanfari, H., E-mail: ghazanfari@aut.ac.ir [AmirKabir University of Technology, Department of Mining and Metallurgy, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Naderi, M., E-mail: mnaderi@aut.ac.ir [AmirKabir University of Technology, Department of Mining and Metallurgy, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Iranmanesh, M., E-mail: imehdi@aut.ac.ir [AmirKabir University of Technology, Department of Maritime Engineering, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Seydi, M., E-mail: afsan_sy@yahoo.com [Zarin Joosh Aria Co., Tehran (Iran, Islamic Republic of); Poshteban, A., E-mail: ali_poshtiban@yahoo.com [Hamyar Sanat Eghbal Co., Tehran (Iran, Islamic Republic of)

    2012-02-01

    Highlights: Black-Right-Pointing-Pointer Hardness mapping is a novel method to identify different phases. Black-Right-Pointing-Pointer Surface hardness mapping, tabulates the hardness of a large area of weld. Black-Right-Pointing-Pointer Hardness maps can be used to depict the strength map through the specimen. Black-Right-Pointing-Pointer Hardness mapping is an easy way to identify the phase fractions within the specimen. - Abstract: Hardness tests are routinely employed as simple and efficient methods to investigate the microstructure and mechanical properties of steels. Each microstructural phase in steel has its own hardness level. Therefore, using surface hardness mapping data over a large area of weld zone would be a reasonable method to identify the present phases in steel. The microstructure distribution and mechanical properties variation through welded structures is inhomogeneous and not suitable for certain applications. So, studying the microstructure of weld zone has a significant importance. 4130 steel is classified in HTLA steels and it is widely used in marine industry due to its superior hardenability, good corrosion resistance and high strength. Gas tungsten arc and resistance spot welding are the most usable processes in joining of 4130 sheets. In this work a series of welds have been fabricated in 4130 steel tube by gas tungsten arc and resistance spot welding. The tube was subjected to quench-tempered heat treatment. Slices from the welds before and after heat treatment were polished and etched and the macrostructure and microstructure were observed. Hardness maps were then determined over the large area of weld zone, including the heat affected zone and base plate. Results show good relations between the various microstructures, strength and hardness values. It is also proved that this method is precise and applicable to estimate phase fraction of each phase in various regions of weld. In the current study some equations were proposed to

  4. Optimization of hybrid laser arc welding of 42CrMo steel to suppress pore formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan [Hunan University, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha (China); Hunan Institute of Science and Technology, College of Mechanical Engineering, Yueyang (China); Chen, Genyu; Mao, Shuai; Zhou, Cong; Chen, Fei [Hunan University, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha (China)

    2017-06-15

    The hybrid laser arc welding (HLAW) of 42CrMo quenched and tempered steel was conducted. The effect of the processing parameters, such as the relative positions of the laser and the arc, the shielding gas flow rate, the defocusing distance, the laser power, the wire feed rate and the welding speed, on the pore formation was analyzed, the morphological characteristics of the pores were analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results showed that the majority of the pores were invasive. The pores formed at the leading a laser (LA) welding process were fewer than those at the leading a arc (AL) welding process. Increasing the shielding gas flow rate could also facilitate the reduction of pores. The laser power and the welding speed were two key process parameters to reduce the pores. The flow of the molten pool, the weld cooling rate and the pore escaping rate as a result of different parameters could all affect pore formation. An ideal pore-free weld was obtained for the optimal welding process parameters. (orig.)

  5. Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel

    Science.gov (United States)

    Yang, Z.; Debroy, T.

    1999-06-01

    Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence, thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of the calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, “finger” penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstätten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.

  6. Thermocapillary and arc phenomena in stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Stanley W. [Colorado School of Mines, Golden, CO (United States)

    1993-01-01

    Goal was to study effect of power level and distribution on thermocapiilary-induced weld shape and of arc factors on weld shape. Thermocapillarity was apparent in both conduction mode EB welds and GTA welds, particularly in the former. A non-Gaussian arc distribution is suggested for accounting for the differences between the twoss processes. At higher current levels (200--300 A), plasma shear force also contributes to weld shape development. Evidence suggests that thermocapillary flow reversal is not a factor in normal GTA welds; EDB flow reversal occurs only at high power density levels where the keyhole mode is present.

  7. Emissions of chromium (VI) from arc welding.

    Science.gov (United States)

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris

    2007-02-01

    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used.

  8. Submerged arc narrow gap welding of the steel DIN 20MnMoNi55

    International Nuclear Information System (INIS)

    Moraes, M.M.

    1987-01-01

    The methodology for submerged arc narrow gap welding for high thickness rolled steel DIN 20MnMoNi55 was developed, using din S3NiMo1 04 mm and 05 mm wires, and DIN 8B435 flux. For this purpose, submerged arc narrow gap welded joints with 50 mm and 120 mm thickness were made aiming the welding parameters optimization and the study of the influence of welding voltage, wire diameter and wire to groove face distance on the operational performance and on the welded joint quality, specially on the ISO-V impact toughness. These welded joints were checked by non-destructive mechanical and metallographic tests. Results were compared with those obtained by one 120 mm thickness submerged arc conventional gap welded joint, using the same base metal and consumables (05 mm wire). The analysis of the results shows that the increasing of the wire to groove face distance and the welding voltage increases the hardness and the ISO-V impact toughness of the weld metal. It shows that the reduction of the gap angle is the main cause for the obtained of a heat affected zone free from coarse grains, the reduction of the welding voltage, the increasing of the wire to groove face distance, and the grounding optimization also contribute for that. It was also concluded that the quality and the execution complexity level of a narrow gap welded joint are identical to a conventional gap welded joint. (author) [pt

  9. Studies on microstructure, mechanical and pitting corrosion behaviour of similar and dissimilar stainless steel gas tungsten arc welds

    Science.gov (United States)

    Mohammed, Raffi; Dilkush; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    In the present study, an attempt has been made to weld dissimilar alloys of 5mm thick plates i.e., austenitic stainless steel (316L) and duplex stainless steel (2205) and compared with that of similar welds. Welds are made with conventional gas tungsten arc welding (GTAW) process with two different filler wires namely i.e., 309L and 2209. Welds were characterized using optical microscopy to observe the microstructural changes and correlate with mechanical properties using hardness, tensile and impact testing. Potentio-dynamic polarization studies were carried out to observe the pitting corrosion behaviour in different regions of the welds. Results of the present study established that change in filler wire composition resulted in microstructural variation in all the welds with different morphology of ferrite and austenite. Welds made with 2209 filler showed plate like widmanstatten austenite (WA) nucleated at grain boundaries. Compared to similar stainless steel welds inferior mechanical properties was observed in dissimilar stainless steel welds. Pitting corrosion resistance is observed to be low for dissimilar stainless steel welds when compared to similar stainless steel welds. Overall study showed that similar duplex stainless steel welds having favorable microstructure and resulted in better mechanical properties and corrosion resistance. Relatively dissimilar stainless steel welds made with 309L filler obtained optimum combination of mechanical properties and pitting corrosion resistance when compared to 2209 filler and is recommended for industrial practice.

  10. Dissimilar Joining of Stainless Steel and 5083 Aluminum Alloy Sheets by Gas Tungsten Arc Welding-Brazing Process

    Science.gov (United States)

    Cheepu, Muralimohan; Srinivas, B.; Abhishek, Nalluri; Ramachandraiah, T.; Karna, Sivaji; Venkateswarlu, D.; Alapati, Suresh; Che, Woo Seong

    2018-03-01

    The dissimilar joining using gas tungsten arc welding - brazing of 304 stainless steel to 5083 Al alloy had been conducted with the addition of Al-Cu eutectic filler metal. The interface microstructure formation between filler metal and substrates, and spreading of the filler metal were studied. The interface microstructure between filler metal and aluminum alloy characterized that the formation of pores and elongated grains with the initiation of micro cracks. The spreading of the liquid braze filler on stainless steel side packed the edges and appeared as convex shape, whereas a concave shape has been formed on aluminum side. The major compounds formed at the fusion zone interface were determined by using X-ray diffraction techniques and energy-dispersive X-ray spectroscopy analysis. The micro hardness at the weld interfaces found to be higher than the substrates owing to the presence of Fe2Al5 and CuAl2 intermetallic compounds. The maximum tensile strength of the weld joints was about 95 MPa, and the tensile fracture occurred at heat affected zone on weak material of the aluminum side and/or at stainless steel/weld seam interface along intermetallic layer. The interface formation and its effect on mechanical properties of the welds during gas tungsten arc welding-brazing has been discussed.

  11. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    International Nuclear Information System (INIS)

    Ghomashchi, Reza; Costin, Walter; Kurji, Rahim

    2015-01-01

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies

  12. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim

    2015-09-15

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.

  13. Welding of Nb micro-alloyed steel by the submerged arc process using Brazilian consumables

    International Nuclear Information System (INIS)

    Scotti, A.; Quites, A.M.

    1982-01-01

    A set of procedures was established for welding of Nb micro-alloyed steel by the submerged arc process, using national consumables, in order to simultaneously achieve a more economic welding and better mechanical properties. From all the wire-flux combinations the better were the correspondent to AWS F84ED1, F74EM12K and F84EH14, the last being the best. (Author) [pt

  14. Fatigue Crack Growth Behavior of Gas Metal Arc Welded AISI 409 Grade Ferritic Stainless Steel Joints

    Science.gov (United States)

    Lakshminarayanan, A. K.; Shanmugam, K.; Balasubramanian, V.

    2009-10-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel, and duplex stainless steel on fatigue crack growth behavior of the gas metal arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single ‘V’ butt welded joints. Center cracked tensile specimens were prepared to evaluate fatigue crack growth behavior. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN was used to evaluate the fatigue crack growth behavior of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  15. Phase analysis of fume during arc weld brazing of steel sheets with protective coatings

    Directory of Open Access Journals (Sweden)

    J. Matusiak

    2016-04-01

    Full Text Available The article presents the results of research of the phase identification and of the quantitative phase analysis of fume generated during Cold Metal Transfer (CMT, ColdArc and Metal Inert Gas / Metal Active Gas (MIG / MAG weld brazing. Investigations were conducted for hot - dip coated steel sheets with zinc (Zn and zinc-iron (Zn - Fe alloy coatings. Arc shielding gases applied during the research-related tests were Ar + O2, Ar + CO2, Ar + H2 and Ar + CO2 + H2 gas mixtures. The analysis of the results covers the influence of the chemical composition of shielding gas on the chemical composition of welding fume.

  16. Welding of heat-resistant 20% Cr-5% Al steels

    International Nuclear Information System (INIS)

    Tusek, J.; Arbi, D.; Kosmac, A.; Nartnik, U.

    2002-01-01

    The paper treats welding of heat-resistant ferritic stainless steels alloyed with approximately 20% Cr and 5% Al. The major part of the paper is dedicated to welding of 20% Cr-5% Al steel with 3 mm in thickness. Welding was carried out with five different welding processes, i. e., manual metal-arc, MIG, TIG, plasma arc, and laser beam welding processes, using a filler material and using no filler material, respectively. The welded joints obtained were subjected to mechanical tests and the analysis of microstructure in the weld metal and the transition zone. The investigations conducted showed that heat-resistant ferritic stainless 20% Cr-5% Al steel can be welded with fusion welding processes using a Ni-based filler material. (orig.)

  17. Effect of weld metal properties on fatigue crack growth behaviour of gas tungsten arc welded AISI 409M grade ferritic stainless steel joints

    International Nuclear Information System (INIS)

    Shanmugam, K.; Lakshminarayanan, A.K.; Balasubramanian, V.

    2009-01-01

    The effect of filler metals such as austenitic stainless steel, ferritic stainless steel and duplex stainless steel on fatigue crack growth behaviour of the gas tungsten arc welded ferritic stainless steel joints was investigated. Rolled plates of 4 mm thickness were used as the base material for preparing single 'V' butt welded joints. Centre cracked tensile (CCT) specimens were prepared to evaluate fatigue crack growth behaviour. Servo hydraulic controlled fatigue testing machine was used to evaluate the fatigue crack growth behaviour of the welded joints. From this investigation, it was found that the joints fabricated by duplex stainless steel filler metal showed superior fatigue crack growth resistance compared to the joints fabricated by austenitic and ferritic stainless steel filler metals. Higher yield strength, hardness and relatively higher toughness may be the reasons for superior fatigue performance of the joints fabricated by duplex stainless steel filler metal.

  18. Use of pulsed arc welding for butt joint fabrication

    International Nuclear Information System (INIS)

    Merkulov, B.A.

    1977-01-01

    A technology of pulsed-arc butt welding with periodic wire feed to the welding zone has been developed. The pulsed arc is suitable both for submerged and gas-shielded weldings. The technology proposed has some advantages over the stationary-arc welding. Control of the amplitude-frequency characteristics of the process enables one to affect melting and crystallization conditions of the welding crater, weld shape, relation between melting and deposited metal section areas, etc., as well as to reduce heat contribution to the base metal. The new process is shown to be applicable in power engineering. Automatic submerged welding conditions are given for low-carbon and pearlitic heat-resistant steels

  19. The Effect of Constant and Pulsed Current Gas Tungsten Arc Welding on Joint Properties of 2205 Duplex Stainless Steel to 316L Austenitic Stainless Steel

    Science.gov (United States)

    Neissi, R.; Shamanian, M.; Hajihashemi, M.

    2016-05-01

    In this study, dissimilar 316L austenitic stainless steel/2205 duplex stainless steel (DSS) joints were fabricated by constant and pulsed current gas tungsten arc welding process using ER2209 DSS as a filler metal. Microstructures and joint properties were characterized using optical and electron scanning microscopy, tensile, Charpy V-notch impact and micro-hardness tests, and cyclic polarization measurements. Microstructural observations confirmed the presence of chromium nitride and delta ferrite in the heat-affected zone of DSS and 316L, respectively. In addition, there was some deviation in the austenite/ferrite ratio of the surface welding pass in comparison to the root welding pass. Besides having lower pitting potential, welded joints produced by constant current gas tungsten arc welding process, consisted of some brittle sigma phase precipitates, which resulted in some impact energy reduction. The tensile tests showed high tensile strength for the weld joints in which all the specimens were broken in 316L base metal.

  20. Mathematical Modeling of Metal Active Gas (MAG) Arc Welding

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the present paper, a numerical model for MAG (metal active gas) arc welding of thin plate has been developed. In MAG arc welding, the electrode wire is melted and supplied into the molten pool intermittently. Accordingly, it is assumed on the modeling that the thermal energy enters the base-plates through two following mechanisms, i.e., direct heating from arc plasma and “indirect” heating from the deposited metal. In the second part of the paper, MAG arc welding process is numerically analyzed by using the model, and the calculated weld bead dimension and surface profile have been compared with the experimental MAG welds on steel plate. As the result, it is made clear that the model is capable of predicting the bead profile of thin-plate MAG arc welding , including weld bead with undercutting.

  1. Twin-Wire Pulsed Tandem Gas Metal Arc Welding of API X80 Steel Linepipe

    Directory of Open Access Journals (Sweden)

    Wenhao Wu

    2018-01-01

    Full Text Available Twin-Wire Pulsed Tandem Gas Metal Arc Welding process with high welding production efficiency was used to join the girth weld seam of API X80 steel linepipe of 18.4 mm wall thickness and 1422 mm diameter. The macrostructure, microstructure, hardness, and electrochemical corrosion behavior of welded joints were studied. Effects of temperature and Cl− concentration on the corrosion behavior of base metal and weld metal were investigated. Results show that the welded joint has good morphology, mechanical properties, and corrosion resistance. The corrosion resistance of both the base metal and the weld metal decreases with increasing temperature or Cl− concentration. In the solution with high Cl− concentration, the base metal and weld metal are more susceptible to pitting. The corrosion resistance of the weld metal is slightly lower than that of the base metal.

  2. Welding wires for high-tensile steels

    International Nuclear Information System (INIS)

    Laz'ko, V.E.; Starova, L.L.; Koval'chuk, V.G.; Maksimovich, T.L.; Labzina, I.E.; Yadrov, V.M.

    1993-01-01

    Strength of welded joints in arc welding of high-tensile steels of mean and high thickness by welding wires is equal to approximately 1300 MPa in thermohardened state and approximately 600 MPa without heat treatment. Sv-15Kh2NMTsRA-VI (EhK44-VI) -Sv-30Kh2NMTsRA-VI (EkK47-VI) welding wires are suggested for welding of medium-carbon alloyed steels. These wires provide monotonous growth of ultimate strength of weld metal in 1250-1900 MPa range with increase of C content in heat-treated state

  3. The influence of plate thickness on the welding residual stresses from submerged arc welding in offshore steel structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2017-01-01

    Welding-induced residual tensile stresses and distortion have become a major concern in relation to the structural integrity of welded structures within the offshore wind industry. The stresses have a negative impact on the integrity of the welded joint, as they promote distortion, reduce fatigue...... leading to a better understanding of the distribution and development of the welding residual stresses. This can later be used to optimize the fatigue design, providing a more efficient and improved design. In this context, the current research is expected to benefit the offshore industry by leading...... to an improved design, which consequently may be included in future norms and standards. Submerged Arc Welding (SAW) was used to make a fully penetrated butt weld in 10 mm and 40 mm thick steel plates with the same welding parameters as used in the production procedures. The base material is thermomechanical hot...

  4. Stainless steel submerged arc weld fusion line toughness

    International Nuclear Information System (INIS)

    Rosenfield, A.R.; Held, P.R.; Wilkowski, G.M.

    1995-04-01

    This effort evaluated the fracture toughness of austenitic steel submerged-arc weld (SAW) fusion lines. The incentive was to explain why cracks grow into the fusion line in many pipe tests conducted with cracks initially centered in SAWS. The concern was that the fusion line may have a lower toughness than the SAW. It was found that the fusion line, Ji. was greater than the SAW toughness but much less than the base metal. Of greater importance may be that the crack growth resistance (JD-R) of the fusion line appeared to reach a steady-state value, while the SAW had a continually increasing JD-R curve. This explains why the cracks eventually turn to the fusion line in the pipe experiments. A method of incorporating these results would be to use the weld metal J-R curve up to the fusion-line steady-state J value. These results may be more important to LBB analyses than the ASME flaw evaluation procedures, since there is more crack growth with through-wall cracks in LBB analyses than for surface cracks in pipe flaw evaluations

  5. Effect of Gas Tungsten Arc Welding Parameters on Hydrogen-Assisted Cracking of Type 321 Stainless Steel

    Science.gov (United States)

    Rozenak, Paul; Unigovski, Yaakov; Shneck, Roni

    2016-05-01

    The susceptibility of AISI type 321 stainless steel welded by the gas tungsten arc welding (GTAW) process to hydrogen-assisted cracking (HAC) was studied in a tensile test combined with in situ cathodic charging. Specimen charging causes a decrease in ductility of both the as-received and welded specimens. The mechanical properties of welds depend on welding parameters. For example, the ultimate tensile strength and ductility increase with growing shielding gas (argon) rate. More severe decrease in the ductility was obtained after post-weld heat treatment (PWHT). In welded steels, in addition to discontinuous grain boundary carbides (M23C6) and dense distribution of metal carbides MC ((Ti, Nb)C) precipitated in the matrix, the appearance of delta-ferrite phase was observed. The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited mainly transgranular regions. High-dislocation density regions and stacking faults were found in delta-ferrite formed after welding. Besides, thin stacking fault plates and epsilon-martensite were found in the austenitic matrix after the cathodic charging.

  6. Hydrogen Cracking in Gas Tungsten Arc Welding of an AISI Type 321 Stainless Steel

    Science.gov (United States)

    Rozenak, P.; Unigovski, Ya.; Shneck, R.

    The effects of in situ cathodic charging on the tensile properties and susceptibility to cracking of an AISI type 321 stainless steel, welded by the gas tungsten arc welding (GTAW) process, was studied by various treatments. Appearance of delta-ferrite phase in the as-welded steels in our tested conditions was observed with discontinuous grain boundaries (M23C6) and a dense distribution of metal carbides MC ((Ti, Nb)C), which precipitated in the matrix. Shielding gas rates changes the mechanical properties of the welds. Ultimate tensile strength and ductility are increases with the resistance to the environments related the increase of the supplied shielding inert gas rates. Charged specimens, caused mainly in decreases in the ductility of welded specimens. However, more severe decrease in ductility was obtained after post weld heat treatment (PWHT). The fracture of sensitized specimens was predominantly intergranular, whereas the as-welded specimens exhibited massive transgranular regions. Both types of specimen demonstrated narrow brittle zones at the sides of the fracture surface and ductile micro-void coalescences in the middle. Ferrite δ was form after welding with high density of dislocation structures and stacking faults formation and the thin stacking fault plates with e-martensite phase were typically found in the austenitic matrix after the cathodical charging process.

  7. Plasma Arc Augmented CO2 laser welding

    DEFF Research Database (Denmark)

    Bagger, Claus; Andersen, Mikkel; Frederiksen, Niels

    2001-01-01

    In order to reduce the hardness of laser beam welded 2.13 mm medium strength steel CMn 250, a plasma arc has been used simultaneously with a 2.6 kW CO2 laser source. In a number of systematic laboratory tests, the plasma arc current, plasma gas flow and distance to the laser source were varied...... with all laser parameters fixed. The welds were quality assessed and hardness measured transversely to the welding direction in the top, middle and root of the seam. In the seams welded by laser alone, hardness values between 275 and 304 HV1 were measured, about the double of the base material, 150 HV1...

  8. Optimization of welding variables for duplex stainless steel by GTAW and SMAW

    International Nuclear Information System (INIS)

    Ajmal, M.; Anwar, M.Y.; Nawaz, A.

    2006-01-01

    The main problems faced during the welding of duplex stainless steels are cleanliness and slag inclusions. In the present work the methods to eliminate these problems were studied during the welding of duplex stainless steel by Gas Tungsten Arc Welding (GTAW) and Shielded Metal Arc Welding (SMAW). Since the duplex stainless steel is an expensive material, the initial experiments for optimization of welding variables were. carried out on low carbon steel (CS) plates with duplex consumables. Welding of butt groove joints on CS plates was carried with various sets of welding variables i.e. current, voltage and arc energy using duplex consumables. The. radiographic inspection, micro-structural observations and hardness testing of the welds suggested the welding variables that will produce a sound weld on CS plate. These optimized variables were then used for the welding of edge groove joint and T -joint on duplex stainless steel by GTAW and SMAW processes. The hardness and micro-structural study of the joints produced on duplex stainless steel by GTAW and SMAW with duplex consumables were also studied. No slag inclusions and porosity were observed in the microstructure of these weldments and their properties were found similar to the parent metal. (author)

  9. Method to reduce arc blow during DC arc welding of pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Espina-Hernandez, J. H.; Rueda-Morales, G.L.; Caleyo, F.; Hallen, J. M. [Instituto Politecnico Nacional, Mexico, (Mexico); Lopez-Montenegro, A.; Perz-Baruch, E. [Pemex Exploracion y Produccion, Tabasco, (Mexico)

    2010-07-01

    Steel pipelines are huge ferromagnetic structures and can be easily subjected to arc blow during the DC arc welding process. The development of methods to avoid arc blow during pipeline DC arc welding is a major objective in the pipeline industry. This study developed a simple procedure to compensate the residual magnetic field in the groove during DC arc welding. A Gaussmeter was used to perform magnetic flux density measurements in pipelines in southern Mexico. These data were used to perform magnetic finite element simulations using FEMM. Different variables were studied such as the residual magnetic field in the groove or the position of the coil with respect to the groove. An empirical predictive equation was developed from these trials to compensate for the residual magnetic field. A new method of compensating for the residual magnetic field in the groove by selecting the number of coil turns and the position of the coil with respect to the groove was established.

  10. Hybrid Laser Welding of Large Steel Structures

    DEFF Research Database (Denmark)

    Farrokhi, Farhang

    Manufacturing of large steel structures requires the processing of thick-section steels. Welding is one of the main processes during the manufacturing of such structures and includes a significant part of the production costs. One of the ways to reduce the production costs is to use the hybrid...... laser welding technology instead of the conventional arc welding methods. However, hybrid laser welding is a complicated process that involves several complex physical phenomena that are highly coupled. Understanding of the process is very important for obtaining quality welds in an efficient way....... This thesis investigates two different challenges related to the hybrid laser welding of thick-section steel plates. Employing empirical and analytical approaches, this thesis attempts to provide further knowledge towards obtaining quality welds in the manufacturing of large steel structures....

  11. Increasing the brittle fracture resistance in manual arc welding and heat treatment of type 12KhM steels

    International Nuclear Information System (INIS)

    Tikhonov, V.P.; Bychenkova, G.A.; Gordeev, Y.V.; Ilyuhov, C.V.

    1984-01-01

    The extensive application of heat-resisting steels is delayed by their poor weldability. Optimum technology has been developed for manual arc welding and heat treatment of structures of type 12KhM steels resulting in high cracking resistance. Trials were conducted to evaluate the efficiency of removing the structural stresses in tempering the structures. On the basis of the experimental results, it may be assumed that the toughness properties of the welded joints produced by manual arc welding can be improved by optimizing the alloying system of the weld metal, with the parent metal treated in the optimum heat treatment conditions. The aim of subsequent investigations was to assess the properties of the weld metal made with vanadium-free electrodes. It was found that the impact toughness increased two to three times; the mean hardness and the maximum hardness were both less than 220. The reduction in hardness and increase of the toughness properties of the metal are caused by the lower degree of hardening of the bulk of the grain and, consequently, by the lower concentration of plastic strain at the grain boundaries

  12. Effect of Heat Input on Geometry of Austenitic Stainless Steel Weld Bead on Low Carbon Steel

    Science.gov (United States)

    Saha, Manas Kumar; Hazra, Ritesh; Mondal, Ajit; Das, Santanu

    2018-05-01

    Among different weld cladding processes, gas metal arc welding (GMAW) cladding becomes a cost effective, user friendly, versatile method for protecting the surface of relatively lower grade structural steels from corrosion and/or erosion wear by depositing high grade stainless steels onto them. The quality of cladding largely depends upon the bead geometry of the weldment deposited. Weld bead geometry parameters, like bead width, reinforcement height, depth of penetration, and ratios like reinforcement form factor (RFF) and penetration shape factor (PSF) determine the quality of the weld bead geometry. Various process parameters of gas metal arc welding like heat input, current, voltage, arc travel speed, mode of metal transfer, etc. influence formation of bead geometry. In the current experimental investigation, austenite stainless steel (316) weld beads are formed on low alloy structural steel (E350) by GMAW using 100% CO2 as the shielding gas. Different combinations of current, voltage and arc travel speed are chosen so that heat input increases from 0.35 to 0.75 kJ/mm. Nine number of weld beads are deposited and replicated twice. The observations show that weld bead width increases linearly with increase in heat input, whereas reinforcement height and depth of penetration do not increase with increase in heat input. Regression analysis is done to establish the relationship between heat input and different geometrical parameters of weld bead. The regression models developed agrees well with the experimental data. Within the domain of the present experiment, it is observed that at higher heat input, the weld bead gets wider having little change in penetration and reinforcement; therefore, higher heat input may be recommended for austenitic stainless steel cladding on low alloy steel.

  13. Specification for corrosion-resisting chromium and chromium-nickel steel welding rods and bare electrodes - approved 1969

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    This specification covers corrosion-resisting chromium and chromium-nickel steel welding rods for use with the atomic hydrogen and gas-tungsten-arc welding processes and bare electrodes for use with the submerged arc and gas metal-arc welding processes. These welding rods and electrodes include those alloy steels designated as corrosion- or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4% and nickel does not exceed 50%

  14. Performance of high molybdenum superaustenitic stainless steel welds in harsh chloride environments

    International Nuclear Information System (INIS)

    Stenvall, P.; Liljas, M.; Wallen, B.

    1996-01-01

    Superaustenitic steels are normally welded with nickel-based alloys as filler materials. To clarify the understanding of weld behavior in superaustenitic stainless steels this paper presents the development history of 6Mo and 7Mo steels, and results of laboratory tests and field tests on welds of UNS S31254 (6Mo) and UNS S32654 (7 Mo) in different types of chloride containing environments. The laboratory tests consisted of the well known ferric chloride test (ASTM G 48 Method A). Shielded metal arc welds, gas tungsten arc welds and submerged arc welds in both grades were tested. The critical pitting temperatures were determined and the locations of the attack were noted. Some specimens were sectioned at the position of the attack followed by studies using light optical microscopy. The critical pitting temperatures of the welds in S31254 and S32654 were at normal levels for both grades, i.e., 40--50 C for S31254 and 60--75 C for S32654. The locations of the attack differed depending on the welding process. In shielded metal arc welds the attack was mostly located in the weld metal. In gas tungsten arc welds the attack was predominantly located next to the fusion line. The field tests showed that the behavior of welds and parent metal of superaustenitic stainless steels, as well as of nickel-based alloys, is much dependent on the corrosive environment. In oxidizing chloride solutions, similar results to those of the ferric chloride test, are observed. However, crevice corrosion in the parent material is at a greater risk than pitting corrosion in the welds. In very oxidizing solutions of low chloride concentrations, welds made of nickel-based fillers may corrode faster than the stainless steel base metal due to transpassive uniform corrosion. The opposite situation exists when active uniform corrosion prevails, i.e., welds made of nickel-based fillers corrode less than the stainless steel parent material

  15. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  16. Characterization and modelling techniques for gas metal arc welding of DP 600 sheet steels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.; Prahl, U.; Bleck, W. [RWTH Aachen University, Department of Ferrous Metallurgy (IEHK) (Germany); Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University, Welding and Joining Institute (ISF) (Germany)

    2010-11-15

    The objectives of the present work are to characterize the Gas Metal Arc Welding process of DP 600 sheet steel and to summarize the modelling techniques. The time-temperature evolution during the welding cycle was measured experimentally and modelled with the softwaretool SimWeld. To model the phase transformations during the welding cycle dilatometer tests were done to quantify the parameters for phase field modelling by MICRESS {sup registered}. The important input parameters are interface mobility, nucleation density, etc. A contribution was made to include austenite to bainite transformation in MICRESS {sup registered}. This is useful to predict the microstructure in the fast cooling segments. The phase transformation model is capable to predict the microstructure along the heating and cooling cycles of welding. Tensile tests have shown the evidence of failure at the heat affected zone, which has the ferrite-tempered martensite microstructure. (orig.)

  17. The effects of laser welding parameters on the microstructure of ferritic and duplex stainless steels welds

    Science.gov (United States)

    Pekkarinen, J.; Kujanpää, V.

    This study is focused to determine empirically, which microstructural changes occur in ferritic and duplex stainless steels when heat input is controlled by welding parameters. Test welds were done autogenously bead-on-plate without shielding gas using 5 kW fiber laser. For comparison, some gas tungsten arc welds were made. Used test material were 1.4016 (AISI 430) and 1.4003 (low-carbon ferritic) type steels in ferritic steels group and 1.4162 (low-alloyed duplex, LDX2101) and 1.4462 (AISI 2205) type steels in duplex steels group. Microstructural changes in welds were identified and examined using optical metallographic methods.

  18. Gas metal arc weldability of 1.5 GPa grade martensitic steels

    Science.gov (United States)

    Hwang, Insung; Yun, Hyeonsang; Kim, Dongcheol; Kang, Munjin; Kim, Young-Min

    2018-01-01

    The gas metal arc weldability of 1.5 GPa grade martensitic (MART) steel was evaluated using both inverter direct current (DC) and DC pulse power type welders, under conditions of different welding currents, welding speeds, and shielding gasses. By investigating the bead appearance, tensile strength, and arc stability, it was determined that DC pulse power is better than inverter DC power for arc welding of 1.3 mm thick 1.5 GPa grade MART steel. Further, from the results of the weldability for various shielding gases, it was determined that mixed shielding gas is more effective for welding 1.5 GPa grade MART steel than is pure inert gas (Ar) or active (CO2) gas. In the case of pure shielding gas, no sound bead was formed under any conditions. However, when the mixed shielding gas was used, sound and fine beads were obtained.

  19. Effect of Microstructure on Stress Corrosion Cracking Behaviour of High Nitrogen Stainless Steel Gas Tungsten Arc Welds

    Science.gov (United States)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    Present work is aimed to improve stress corrosion cracking resistance of high nitrogen steel and its welds. An attempt to weld high nitrogen steel of 5 mm thick plate using gas tungsten arc welding (GTAW) with three high strength age hardenable fillers i.e., 11-10 PH filler, PH 13- 8Mo and maraging grade of MDN 250 filler is made. Welds were characterized by optical microscopy and scanning electron microscopy. Vickers hardness testing of the welds was carried out to study the mechanical behaviour of welds. Potentio-dynamic polarization studies were done to determine pitting corrosion resistance in aerated 3.5% NaCl solution. Stress corrosion cracking (SCC) testing was carried out using constant load type machine with applied stress of 50% yield strength and in 45% MgCl2 solution boiling at 155°C. The results of the present investigation established that improvement in resistance to stress corrosion cracking was observed for PH 13- 8Mo GTA welds when compared to 11-10 PH and MDN 250 GTA welds. However, All GTA welds failed in the weld interface region. This may be attributed to relatively lower pitting potential in weld interface which acts as active site and the initiation source of pitting.

  20. Investigation of method for Stainless Steel Welding Wire as a Replacement for Arc Wire Comsumables

    Directory of Open Access Journals (Sweden)

    Koiprasert, H.

    2005-01-01

    Full Text Available Arc spraying as a coating method is being employed in various industrial applications as a part of maintenance service, and also as a surface engineering technique for many machine parts and components. The major cost in producing the arc spray coating is, however, based on the cost of the arc wire comsumables. This project was carried out to investigate the use of the commercially-available gas metal arc welding wire (GMAW wire as a cheaper alternative to the special-purpose arc wire comsumables. The wire material chosen for this early study is the 316L stainless steel, due to its popularity in many applications as a built-up coating for worn parts. The physical properties of the coatings produced from the two sets of 316L stainless steel wire were determined to be different in the percentage of porosity and the oxide content. The mechanical properties, including the tensile bond strength and the wear rate of the coatings produced from the two types of sprayed wire, were also different. This will, in turn, result in a slight difference in the performance of thecoatings.

  1. Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, A., E-mail: ali.ramazani@iehk.rwth-aachen.de [Department of Ferrous Metallurgy, RWTH Aachen University, D-52072 Aachen (Germany); Mukherjee, K. [Department of Ferrous Metallurgy, RWTH Aachen University, D-52072 Aachen (Germany); Abdurakhmanov, A. [Welding and Joining Institute, RWTH Aachen University, D-52072 Aachen (Germany); Prahl, U. [Department of Ferrous Metallurgy, RWTH Aachen University, D-52072 Aachen (Germany); Schleser, M.; Reisgen, U. [Welding and Joining Institute, RWTH Aachen University, D-52072 Aachen (Germany); Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, D-52072 Aachen (Germany)

    2014-01-01

    Dual-phase (DP) steels show combined high strength and adequate formability. However, during welding, their microstructural feature of dispersion of hard martensite islands in the soft ferrite matrix is lost and the properties deteriorate. The current research aims to study the mechanical properties of the welded joint, taking into account the effect of features of all regions, such as microstructure, chemical composition and the area fraction, on the macroscopic mechanical properties of the welded joint. Hot rolled DP 600 steel was gas metal arc welded (GMAW) and tensile specimens were made with a welded joint. In the heat-affected zone (HAZ), the microstructure varied from bainite to coarse grained ferrite and tempered martensite. Chemical composition of every quantified region in the welded specimen was also identified using electron probe microanalysis (EPMA). Macromechanical FE modelling was employed to simulate the mechanical properties of the welded tensile specimen. 2D representative volume elements (RVE) for different parts of the welded region were constructed from real microstructure. 2D simulated flow curves were corrected to 3Ds using a developed correlation factor. Finally, the tensile test of welded material with inhomogeneous morphology was simulated and good agreement between experimental and predicted flow curve was achieved.

  2. Micro–macro-characterisation and modelling of mechanical properties of gas metal arc welded (GMAW) DP600 steel

    International Nuclear Information System (INIS)

    Ramazani, A.; Mukherjee, K.; Abdurakhmanov, A.; Prahl, U.; Schleser, M.; Reisgen, U.; Bleck, W.

    2014-01-01

    Dual-phase (DP) steels show combined high strength and adequate formability. However, during welding, their microstructural feature of dispersion of hard martensite islands in the soft ferrite matrix is lost and the properties deteriorate. The current research aims to study the mechanical properties of the welded joint, taking into account the effect of features of all regions, such as microstructure, chemical composition and the area fraction, on the macroscopic mechanical properties of the welded joint. Hot rolled DP 600 steel was gas metal arc welded (GMAW) and tensile specimens were made with a welded joint. In the heat-affected zone (HAZ), the microstructure varied from bainite to coarse grained ferrite and tempered martensite. Chemical composition of every quantified region in the welded specimen was also identified using electron probe microanalysis (EPMA). Macromechanical FE modelling was employed to simulate the mechanical properties of the welded tensile specimen. 2D representative volume elements (RVE) for different parts of the welded region were constructed from real microstructure. 2D simulated flow curves were corrected to 3Ds using a developed correlation factor. Finally, the tensile test of welded material with inhomogeneous morphology was simulated and good agreement between experimental and predicted flow curve was achieved

  3. Study and development of solid fluxes for gas tungsten arc welding applied to titanium and its alloys and stainless steels

    International Nuclear Information System (INIS)

    Perry, N.

    2000-06-01

    Gas Tungsten Arc Welding uses an electric arc between the refractory tungsten electrode and the plates to be welded under an argon shielding gas. As a result, the joint quality is excellent, no pollution nor defects are to be feared, consequently this process is used in nuclear, aeronautic, chemical and food industries. Despite of this good qualities, GTAW is limited because of, on the one side, a poor penetrating weld pool and, on the other side, a week productivity rate. Indeed, up to 3 mm thick plates, machining and filler metal is needed. Multiple runs increase the defect's risks, the manufactory time and increase the deformations and the heat affected zone. The goal of this study is to break through this limits without any device investment. Active GTA welding (or ATIG) is a new technique with GTA device and an activating flux to be spread on the upper plate before welding. The arc, by plasma electrochemical equilibrium modifications, and the pool with the inner connective flows inversion, allow 7 mm thick joints in one run without edges machining or filler metal for both stainless steel and titanium alloys. This manuscript describes the development of these fluxes, highlights the several phenomena and presents the possibilities of this new process. This work, in collaboration with B.S.L. industries, leads to two flux formulations (stainless steel and titanium alloys) now in a commercial phase with CASTOLIN S.A. Moreover, B.S.L.industries produces a pressure device (nitrate column) with the ATIG process using more than 2800 ATIG welds. (author)

  4. Effect of Welding Processes on the Microstructure, Mechanical Properties and Residual Stresses of Plain 9Cr-1Mo Steel Weld Joints

    Science.gov (United States)

    Nagaraju, S.; Vasantharaja, P.; Brahadees, G.; Vasudevan, M.; Mahadevan, S.

    2017-12-01

    9Cr-1Mo steel designated as P9 is widely used in the construction of power plants and high-temperature applications. It is chosen for fabricating hexcan fuel subassembly wrapper components of fast breeder reactors. Arc welding processes are generally used for fabricating 9Cr-1Mo steel weld joints. A-TIG welding process is increasingly being adopted by the industries. In the present study, shielded metal arc (SMA), tungsten inert gas (TIG) and A-TIG welding processes are used for fabricating the 9Cr-1Mo steel weld joints of 10 mm thickness. Effect of the above welding processes on the microstructure evolution, mechanical properties and residual stresses of the weld joints has been studied in detail. All the three weld joints exhibited comparable strength and ductility values. 9Cr-1Mo steel weld joint fabricated by SMAW process exhibited lower impact toughness values caused by coarser grain size and inclusions. 9Cr-1Mo steel weld joint fabricated by TIG welding exhibited higher toughness due to finer grain size, while the weld joint fabricated by A-TIG welding process exhibited adequate toughness values. SMA steel weld joint exhibited compressive residual stresses in the weld metal and HAZ, while TIG and A-TIG weld joint exhibited tensile residual stresses in the weld metal and HAZ.

  5. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Science.gov (United States)

    Takeuchi, T.; Kameda, J.; Nagai, Y.; Toyama, T.; Matsukawa, Y.; Nishiyama, Y.; Onizawa, K.

    2012-06-01

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the δ-ferrite phase but not in the austenitic phase. Thermal aging at 400 °C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the δ-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the γ-austenite and δ-ferrite interface. There were no Cr depleted zones around the carbide.

  6. Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Takeuchi, T., E-mail: takeuchi.tomoaki@jaea.go.jp [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Kameda, J. [National Institute for Materials Science, Sengen, Tsukuba 305-0047 (Japan); Nagai, Y.; Toyama, T.; Matsukawa, Y. [Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Nishiyama, Y.; Onizawa, K. [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan)

    2012-06-15

    The effect of thermal aging on microstructural changes in stainless steel submerged arc weld-overlay cladding of reactor pressure vessels was investigated using atom probe tomography (APT). In as-received materials subjected to post-welding heat treatments (PWHTs), with a subsequent furnace cooling, a slight fluctuation of the Cr concentration was observed due to spinodal decomposition in the {delta}-ferrite phase but not in the austenitic phase. Thermal aging at 400 Degree-Sign C for 10,000 h caused not only an increase in the amplitude of spinodal decomposition but also the precipitation of G phases with composition ratios of Ni:Si:Mn = 16:7:6 in the {delta}-ferrite phase. The degree of the spinodal decomposition in the submerged arc weld sample was similar to that in the electroslag weld one reported previously. We also observed a carbide on the {gamma}-austenite and {delta}-ferrite interface. There were no Cr depleted zones around the carbide.

  7. Fracture toughness of stainless steel welds

    International Nuclear Information System (INIS)

    Mills, W.J.

    1985-11-01

    The effects of temperature, composition and weld-process variations on the fracture toughness behavior for Types 308 and 16-8-2 stainless steel (SS) welds were examined using the multiple-specimen J/sub R/-curve procedure. Fracture characteristics were found to be dependent on temperature and weld process but not on filler material. Gas-tungsten-arc (GTA) welds exhibited the highest fracture toughness, a shielded metal-arc (SMA) weld exhibited an intermediate toughness and submerged-arc (SA) welds yielded the lowest toughness. Minimum-expected fracture properties were defined from lower-bound J/sub c/ and tearing modulus values generated here and in previous studies. Fractographic examination revealed that microvoid coalescence was the operative fracture mechanism for all welds. Second phase particles of manganese silicide were found to be detrimental to the ductile fracture behavior because they separated from the matrix during the initial stages of plastic straining. In SA welds, the high density of inclusions resulting from silicon pickup from the flux promoted premature dimple rupture. The weld produced by the SMA process contained substantially less manganese silicide, while GTA welds contained no silicide inclusions. Delta ferrite particles present in all welds were substantially more resistant to local failure than the silicide phase. In welds containing little or no manganese silicide, delta ferrite particles initiated microvoid coalescence but only after extensive plastic straining

  8. Arc-weld pool interactions

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-08-01

    The mechanisms involved in arc-weld pool interactions are extremely complex and no complete theory is presently available to describe much of the phenomena observed during welding. For the past several years, experimental and analytical studies have been undertaken at the Bettis Atomic Power Laboratory to increase basic understanding of the gas tungsten arc welding process. These studies have included experimental spectral analysis of the arc in order to determine arc temperature and analytical modeling of the arc and weld puddle. The investigations have been directed toward determining the cause and effects of variations in the energy distribution incident upon the weldment. In addition, the effect of weld puddle distortion on weld penetration was investigated, and experimental and analytical studies of weld process variables have been undertaken to determine the effects of the variables upon weld penetration and configuration. A review of the results and analysis of these studies are presented

  9. Structure and properties of Hardox 450 steel with arc welded coatings

    Science.gov (United States)

    Ivanov, Yu. F.; Konovalov, S. V.; Kormyshev, V. E.; Gromov, V. E.; Teresov, A. D.; Semina, O. A.

    2017-12-01

    The paper reports on a study of the surface structure, phase composition, and microhardness of Hardox 450 steel with coatings deposited by arc welding of powder wires differing in chemical composition. The study shows that to a depth of 6-8 mm, the microhardness of the thus formed coatings is more than two times the microhardness of the base metal and that their higher mechanical properties are provided by martensite structure containing Nb2C and NbC carbides and Fe2B borides as eutectic lamellae with a transverse size of 30-70 nm; their volume reveals a net-like dislocation substructure with a scalar dislocation density of 1011 cm-2. The highest surface hardness is found for the steel coated with boron-containing wire material. Some ideas are suggested on possible mechanisms and temperature for the formation of Nb and B carbides during the process.

  10. Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding

    Science.gov (United States)

    Naito, Yasuaki; Katayama, Seiji; Matsunawa, Akira

    2003-03-01

    Hybrid welding was carried out on Type 304 stainless steel plate under various conditions using YAG laser combined with TIG arc. During arc and laser-arc hybrid welding, arc voltage variation was measured, and arc plasma, laser-induced plume and evaporation spots as well as keyhole behavior and liquid flow in the molten pool were observed through CCD camera and X-ray real-time transmission apparatus. It was consequently found that hybrid welding possessed many features in comparison with YAG laser welding. The deepest weld bead could be produced when the YAG laser beam of high power density was shot on the molten pool made beforehand stably with TIG arc. A keyhole was long and narrow, and its behavior was rather stable inside the molten pool. It was also confirmed that porosity was reduced by the suppression of bubble formation in hybrid welding utilizing a laser of a moderate power density.

  11. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding.

    Science.gov (United States)

    Deng, Dewei; Chen, Rui; Sun, Qi; Li, Xiaona

    2015-01-29

    The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW) process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ) and base metal were characterized by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr₇C₃ phase with a width of about one hundred nanometres and a length of hundreds of nanometres) grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr₇C₃ after PTAW. The above means that welding can obviously improve the surface qualities.

  12. Underwater cladding with laser beam and plasma arc welding

    International Nuclear Information System (INIS)

    White, R.A.; Fusaro, R.; Jones, M.G.; Solomon, H.D.; Milian-Rodriguez, R.R.

    1997-01-01

    Two welding processes, plasma arc (transferred arc) (PTA) and laser beam, were investigated to apply cladding to austenitic stainless steels and Inconel 600. These processes have long been used to apply cladding layers , but the novel feature being reported here is that these cladding layers were applied underwater, with a water pressure equivalent to 24 m (80 ft). Being able to apply the cladding underwater is very important for many applications, including the construction of off-shore oil platforms and the repair of nuclear reactors. In the latter case, being able to weld underwater eliminates the need for draining the reactor and removing the fuel. Welding underwater in reactors presents numerous challenges, but the ability to weld without having to drain the reactor and remove the fuel provides a huge cost savings. Welding underwater in reactors must be done remotely, but because of the radioactive corrosion products and neutron activation of the steels, remote welding would also be required even if the reactor is drained and the fuel removed. In fact, without the shielding of the water, the remote welding required if the reactor is drained might be even more difficult than that required with underwater welds. Furthermore, as shall be shown, the underwater welds that the authors have made were of high quality and exhibit compressive rather than tensile residual stresses

  13. Mechanical and Microstructural Evaluation of DMAG Welding of Structural Steel

    Directory of Open Access Journals (Sweden)

    Tolga Mert

    2015-01-01

    Full Text Available Double channel torch, which allows concentric flow of two different shielding gases, was designed and manufactured in order to pursue double channel torch gas metal arc welding of unalloyed structural steel S235JR (EN 10025-2 with fourteen passes. Tensile and Charpy V-notch tests were realized and the results were compared with those of conventional gas metal arc welding. In order to evaluate mechanical testing results, microstructural analyses were conducted. It was found that the increase with double channel gas metal arc welding process in yield and tensile strengths as well as in toughness tests, especially in subzero temperatures, compared with conventional gas metal arc welding was due to longer columnar grains and finer tempered zone grain structure between passes and due to solidification and less dendritic structure formation in all-weld metal in double channel gas metal arc welding.

  14. Universal gas metal arc welding - a cost-effective and low dilution surfacing process

    International Nuclear Information System (INIS)

    Shahi, AS.; Pandey, Sunil

    2006-01-01

    This paper describes the use of a new variant of the gas metal arc welding (GMAW) process, termed u niversal gas metal arc welding (UGMAW), for the weld cladding of low carbon steels with stainless steel. The experimental work included single layer cladding of 12 mm thick low carbon steel with austenitic stainless steel 316L solid filler wire of 1.14 mm diameter. Low dilution conditions were employed using both mechanised GMAW and UGMAW processes. Metallurgical aspects of the as welded overlays were studied to evaluate the suitability of these processes for service conditions. It was found that UGMAW claddings contained higher ferrite content; higher concentrations of chromium, nickel and molybdenum; and lower carbon content compared to GMAW claddings. As a result, the UGMAW overlays exhibited superior mechanical and corrosion resistance properties. The findings of this study establish that the new process is technically superior and results in higher productivity, justifying its use for low cost surfacing applications

  15. Gas tungsten arc welding assisted hybrid friction stir welding of dissimilar materials Al6061-T6 aluminum alloy and STS304 stainless steel

    International Nuclear Information System (INIS)

    Bang, HanSur; Bang, HeeSeon; Jeon, GeunHong; Oh, IkHyun; Ro, ChanSeung

    2012-01-01

    Highlights: ► GTAW assisted hybrid friction stir welding (HFSW) has been carried out for dissimilar butt joint. ► Mechanical strength of dissimilar butt joint by HFSW and FSW has been investigated and compared. ► Microstructure of dissimilar butt joint by HFSW and FSW has been investigated and compared. -- Abstract: The aim of this research is to evaluate the potential for using the gas tungsten arc welding (GTAW) assisted hybrid friction stir welding (HFSW) process to join a stainless steel alloy (STS304) to an aluminum alloy (Al6061) in order to improve the weld strength. The difference in mechanical and microstructural characteristics of dissimilar joint by friction stir welding (FSW) and HFSW has been investigated and compared. Transverse tensile strength of approximately 93% of the aluminum alloy (Al6061) base metal tensile strength is obtained with HFSW, which is higher than the tensile strength of FSW welds. This may be due to the enhanced material plastic flow and partial annealing effect in dissimilar materials due to preheating of stainless steel surface by GTAW, resulting in significantly increased elongation of welds. The results indicate that HFSW that integrates GTAW preheating to FSW is advantageous in joining dissimilar combinations compared to conventional FSW.

  16. Helium-induced weld degradation of HT-9 steel

    International Nuclear Information System (INIS)

    Wang, Chin-An; Chin, B.A.; Lin, Hua T.; Grossbeck, M.L.

    1992-01-01

    Helium-bearing Sandvik HT-9 ferritic steel was tested for weldability to simulate the welding of structural components of a fusion reactor after irradiation. Helium was introduced into HT-9 steel to 0.3 and 1 atomic parts per million (appm) by tritium doping and decay. Autogenous single pass full penetration welds were produced using the gas tungsten arc (GTA) welding process under laterally constrained conditions. Macroscopic examination showed no sign of any weld defect in HT-9 steel containing 0.3 appm helium. However, intergranular micro cracks were observed in the HAZ of HT-9 steel containing 1 appm helium. The microcracking was attributed to helium bubble growth at grain boundaries under the influence of high stresses and temperatures that were present during welding. Mechanical test results showed that both yield strength (YS) and ultimate tensile strength (UTS) decreased with increasing temperature, while the total elongation increased with increasing temperature for all control and helium-bearing HT-9 steels

  17. Finite-Element Thermal Analysis and Grain Growth Behavior of HAZ on Argon Tungsten-Arc Welding of 443 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2016-03-01

    Full Text Available This paper presents a numerical and infrared experimental study of thermal and grain growth behavior during argon tungsten arc welding of 443 stainless steel. A 3D finite element model was proposed to simulate the welding process. The simulations were carried out via the Ansys Parametric Design Language (APDL available in the finite-element code, ANSYS. To validate the simulation accuracy, a series of experiments using a fully-automated welding process was conducted. The results of the numerical analysis show that the simulation weld bead size and the experiment results have good agreement. The grain growth in the heat-affected zone of 443 stainless steel is influenced via three factors: (1 the thermal cycle experienced; (2 grain boundary migration; and (3 particle precipitation. Grain boundary migration is the main factor. The modified coefficient k of the grain growth index is calculated. The value is 1.16. Moreover, the microhardness of the weld bead softened slightly compared to the base metal.

  18. Metal Droplet Formation in Gas Metal Arc Welding

    International Nuclear Information System (INIS)

    Haidar, J.

    2000-01-01

    A two-dimensional dynamic treatment has been developed for description of arc and electrode properties in gas metal arc welding (GMAW). The theory is a unified treatment of the arc the welding wire anode and the cathode, and includes a detailed account of sheath effects near the anode. The wire anode is included as a dynamic entity and the volume of fluid method is used to handle the movement of the free surface of the molten metal at the tip of the wire, accounting for effects of surface tension, inertia, gravity, arc pressure, viscous drag force of the plasma, magnetic forces and Marangoni effect, and also for the effects of wire feed rate in GMAW. Results of calculations made for a mild steel wire of diameter 0.16 cm are in good agreement with experimental measurements of droplet diameter and droplet detachment frequency at currents between 150 and 330 A, which includes the transition between ''globular'' and ''spray'' transfer. Quantitative predictions are also made of the amount of metal vapour that is generated from the welding droplets at the tip of the welding wire. (author)

  19. A study on laser welding deformation of 304 stainless steel

    International Nuclear Information System (INIS)

    Kitagawa, Akikazu; Maehara, Kenji; Takeda, Shinnosuke; Matsunawa, Akira

    2002-01-01

    In heavy industries, 304 austenitic stainless steel is the most popular material which is used for nuclear equipment, chemical vessels, vacuum vessels and so on. On the fabrication, not only a joint quality but also severe dimensional accuracy is required. To keep dimensional accuracy, considerable cost and efforts are requested, because the welding deformation of austenitic stainless steel is deeply depended on the physical properties of material itself. To decrease welding deformation, big jigs or water cooling method are commonly used which lead to the high cost. In general, the fusion welding by high energy density heat source results in less distortion. Today, laser welding technology has grown up to the stage that enables to weld thick plate with small deformation. The researches of welding deformation have been conducted intensively, but they are mainly concerned for arc welding, and studies for laser welding are very few. In this report, the authors will show the test results of deformation behavior in laser welding of 304 stainless steel. Also, they will discuss the deformation behavior comparing to that in arc welding. The main results of this study are as follows. 1. The angular distortion of laser welding can be unified by heat input parameter (Hp) which is used for arc welding deformation. 2. The angular distortion are same under the condition of Hp 3 in spite of different welding method, however under the condition of Hp>6-9 J/mm 3 the angular distortion is quite different depending on the power density of welding method. 3. Pure angular distortion seemed to complete just after welding, but following longitudinal distortion took place for long period. 4. The critical value of longitudinal distortion can be estimated from heat input parameter. The transverse deformation can be also estimated by heat input parameter. (author)

  20. Welding by submerged arc of steel with addition of iron powder; Soldagem por arco submerso de aco microligado com adicao de po de ferro

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Samuel I.N.; Spinelli, Dirceu [Sao Paulo Univ., Sao Carlos, SP (Brazil). Escola de Engenharia; Souza, Paulo C.R. D. de [SICOM Compressores Ltda., Sao Carlos, SP (Brazil); Magalhaes Bento Goncalves, Gilberto de [Bauru Univ., SP (Brazil)

    1993-12-31

    Welding metals with and without iron powder addition were produced in steel plates ASTM A 242 by submerged arc process. as a conclusion, the mechanical properties of hardness and toughness of weld metal and heat affect zone were more affected when the welding were done with lower heat input. (author). 16 refs., 3 figs., 9 tabs.

  1. Effect of heat input on the microstructure and mechanical properties of gas tungsten arc welded AISI 304 stainless steel joints

    International Nuclear Information System (INIS)

    Kumar, Subodh; Shahi, A.S.

    2011-01-01

    Highlights: → Welding procedure is established for welding 6 mm thick AISI 304 using GTAW process. → Mechanical properties of the weld joints are influenced strongly by the heat input. → Highest tensile strength of 657.32 MPa is achieved by joints using low heat input. → Welding parameters affect heat input and hence microstructure of weld joints. → Extent of grain coarsening in the HAZ increases with increase in the heat input. -- Abstract: Influence of heat input on the microstructure and mechanical properties of gas tungsten arc welded 304 stainless steel (SS) joints was studied. Three heat input combinations designated as low heat (2.563 kJ/mm), medium heat (2.784 kJ/mm) and high heat (3.017 kJ/mm) were selected from the operating window of the gas tungsten arc welding process (GTAW) and weld joints made using these combinations were subjected to microstructural evaluations and tensile testing so as to analyze the effect of thermal arc energy on the microstructure and mechanical properties of these joints. The results of this investigation indicate that the joints made using low heat input exhibited higher ultimate tensile strength (UTS) than those welded with medium and high heat input. Significant grain coarsening was observed in the heat affected zone (HAZ) of all the joints and it was found that the extent of grain coarsening in the heat affected zone increased with increase in the heat input. For the joints investigated in this study it was also found that average dendrite length and inter-dendritic spacing in the weld zone increases with increase in the heat input which is the main reason for the observable changes in the tensile properties of the weld joints welded with different arc energy inputs.

  2. The fracture toughness of Type 316 steel and weld metal

    International Nuclear Information System (INIS)

    Picker, C.

    This paper describes the results of fracture toughness tests on Type 316 steel and Manual Metal Arc (MMA) weld metal over a range of temperatures from 20 deg. C to 550 deg. C, and includes the effects on toughness of specimen size, post weld heat treatment and thermal ageing. The conclusions reached are that Type 316 steel possesses a superior toughness to the weld metal in the as-welded or stress relieved conditions but the toughness of the steel is degraded to a level similar to that of the weld metal following thermal ageing at temperatures over 600 deg. C. Relatively short term thermal ageing in the temperature range 370 deg. C to 450 deg. C does not appear to affect the toughness of either Type 316 steel or weld metal. (author)

  3. Effect of Welding Process on Microstructure, Mechanical and Pitting Corrosion Behaviour of 2205 Duplex Stainless Steel Welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    An attempt has been made to weld 2205 Duplex stainless steel of 6mm thick plate using conventional gas tungsten arc welding (GTAW) and activated gas tungsten arc welding (A- GTAW) process using silica powder as activated flux. Present work is aimed at studying the effect of welding process on depth of penetration, width of weld zone of 2205 duplex stainless steel. It also aims to observe the microstructural changes and its effect on mechanical properties and pitting corrosion resistance of 2205 duplex stainless steel welds. Metallography is done to observe the microstructural changes of the welds using image analyzer attached to the optical microscopy. Hardness studies, tensile and ductility bend tests were evaluated for mechanical properties. Potentio-dynamic polarization studies were carried out using a basic GillAC electro-chemical system in 3.5% NaCl solution to observe the pitting corrosion behaviour. Results of the present investigation established that increased depth of penetration and reduction of weld width in a single pass by activated GTAW with the application of SiO2 flux was observed when compared with conventional GTAW process. It may be attributed to the arc constriction effect. Microstructure of the weld zones for both the welds is observed to be having combination of austenite and delta ferrite. Grain boundary austenite (GBA) with Widmanstatten-type austenite (WA) of plate-like feature was nucleated from the grain boundaries in the weld zone of A-GTAW process. Mechanical properties are relatively low in activated GTAW process and are attributed to changes in microstructural morphology of austenite. Improved pitting corrosion resistance was observed for the welds made with A-GTAW process.

  4. THE INFLUENCE OF POSTHEAT TREATMENT ON FERRITE REDISTRIBUTION IN DUPLEX STEELS ELECTRON BEAM WELDS

    OpenAIRE

    Zita Iždinská; František Kolenič

    2009-01-01

    The duplex stainless steel is two-phase steel with the structure composed of austenite and ferrite with optimum austenite/ferrite proportion 50%. At present, classical arc processes for welding duplex steels are generally regarded as acceptable. On the other hand electron and laser beam welding is up to now considered less suitable for welding duplex steels. The submitted work presents the results of testing various thermal conditions at welding duplex stainless steel with electron beam. It w...

  5. Tensile properties of four types of austenitic stainless steel welded joints

    International Nuclear Information System (INIS)

    Balladon, P.

    1990-01-01

    In the field of an LMFBR research programme on austenitic stainless steel welds in a Shared Cost Action Safety, Research Area 8, coordinated by JRC-Ispra, four cooperating laboratories (ECN, IKE/MPA, the Welding Institute and UNIREC) have been involved in the fabrication and extensive characterization of welded joints made from one plate of ICL 167 stainless steel. The materials included parent metal, four vacuum electron beam welds, one non vacuum electron beam weld, one submerged arc weld, one gas metal arc weld and one manual metal arc weld. This report summarizes the 106 tensile tests performed at room temperature and 550 0 C, including the influence of strain rate, specimen orientation and welding procedure. Main results are that electron beam welds have tensile properties close to those of parent metal with higher values of yield strength in longitudinal orientation and lower values of total elongation in transverse orientation but with a similar reduction of area, that filler metal welds own the highest values of yield strength and lowest values of ductility. Most of the welds properties are higher than the minimum specified for parent metal, except for some values of total elongation, mainly in transverse orientation. In view of using electron beam welding for production of components used in LMFBR, results obtained show that tensile properties of electron beam welds compare well to those of classical welds. (author)

  6. Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires

    International Nuclear Information System (INIS)

    Villaret, V.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Chovet, C.; Petit, B.; Faivre, L.

    2013-01-01

    Highlights: • New metal cored filler wires for welding 444 grade stainless steel are manufactured. • The effect of Nb and Ti minor elements on the fusion zone properties is investigated. • The relation between composition of fusion zone and grain structure is investigated. • Oxidation rates of fusion zones and base metal are compared. • High temperature behavior of the welded samples are studied. - Abstract: Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel dedicated to automotive exhaust manifold applications. The patented grade is know under APERAM trade name K44X and has been developed to present improved high temperature fatigue properties. All filler wires investigated contained 19% Cr and 1.8% Mo, equivalent to the base metal K44X chemistry, but various titanium and niobium contents. Chemical analyses and microstructural observations of fusion zones revealed the need of a minimum Ti content of 0.15% to obtain a completely equiaxed grain structure. This structure conferred on the fusion zone a good ductility even in the as-welded state at room temperature. Unfortunately, titanium additions decreased the oxidation resistance at 950 °C if no significant Nb complementary alloying was made. The combined high Ti and Nb additions made it possible to obtain for the welded structure, after optimized heat treatment, high temperature tensile strengths and ductility for the fusion zones and assemblies, rather close to those of the base metal. 950 °C aging heat treatment was necessary to restore significantly the ductility of the as welded structure. Both fusion zone and base metal presented rather homogenized properties. Finally, with the optimized composition of the cored filler wire – 0.3 Ti minimum (i.e. 0.15% in the fusion zone) and high Nb complementary additions, the properties

  7. Submerged Arc Stainless Steel Strip Cladding—Effect of Post-Weld Heat Treatment on Thermal Fatigue Resistance

    Science.gov (United States)

    Kuo, I. C.; Chou, C. P.; Tseng, C. F.; Lee, I. K.

    2009-03-01

    Two types of martensitic stainless steel strips, PFB-132 and PFB-131S, were deposited on SS41 carbon steel substrate by a three-pass submerged arc cladding process. The effects of post-weld heat treatment (PWHT) on thermal fatigue resistance and hardness were evaluated by thermal fatigue and hardness testing, respectively. The weld metal microstructure was investigated by utilizing optical microscopy, scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and transmission electron microscopy (TEM). Results showed that, by increasing the PWHT temperature, hardness decreased but there was a simultaneous improvement in weldment thermal fatigue resistance. During tempering, carbide, such as (Fe, Cr)23C6, precipitated in the weld metals and molybdenum appeared to promote (Fe, Cr, Mo)23C6 formation. The precipitates of (Fe, Cr, Mo)23C6 revealed a face-centered cubic (FCC) structure with fine grains distributed in the microstructure, thereby effectively increasing thermal fatigue resistance. However, by adding nickel, the AC1 temperature decreased, causing a negative effect on thermal fatigue resistance.

  8. The effect of plasma arc process parameters on the properties of dissimilar AISI 1040/AISI 304 steel plate welds

    Energy Technology Data Exchange (ETDEWEB)

    Kilic, Musa; Kirik, Ihsan; Orhan, Nuri [Firat Univ., Elazig (Turkey); Celik, Ferkan [Science Industry and Technology Ministry of Turkey (Turkey)

    2012-11-01

    In this study, 10 mm thick AISI 1040 and AISI 304 steel plates were welded in the butt position without pretreatment by plasma transferred arc (PTA) welding technique. Therefore, mechanical behaviour, microstructure, penetration depth and length were investigated. After welding, microstructural changes in the interface regions of the welded specimens were examined by scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Micro-hardness as well as V-notch Charpy tests were performed to determine the mechanical properties of the welds. The influence of the welding parameters on the dimension and shape of the joints has been found out. From the results, it was derived that with the parameters used, a partly keyhole weld bead formed with a penetration depth of 10 mm and a width of 11 mm in butt position. (orig.)

  9. Human biomonitoring of chromium and nickel from an experimental exposure to manual metal arc welding fumes of low and high alloyed steel.

    Science.gov (United States)

    Bertram, Jens; Brand, Peter; Schettgen, Thomas; Lenz, Klaus; Purrio, Ellwyn; Reisgen, Uwe; Kraus, Thomas

    2015-05-01

    The uptake and elimination of metals from welding fumes is currently not fully understood. In the Aachen Workplace Simulation Laboratory (AWSL) it is possible to investigate the impact of welding fumes on human subjects under controlled exposure conditions. In this study, the uptake and elimination of chromium or chromium (VI) respectively as well as nickel was studied in subjects after exposure to the emissions of a manual metal arc welding process using low or high alloyed steel. In this present study 12 healthy male non-smokers, who never worked as welders before, were exposed for 6h to welding fumes of a manual metal arc welding process. In a three-fold crossover study design, subjects were exposed in randomized order to either clean air, emissions from welding low alloyed steel, and emissions from welding high alloyed steel. Particle mass concentration of the exposure aerosol was 2.5mg m(-3). The content of chromium and nickel in the air was determined by analysing air filter samples on a high emission scenario. Urine analysis for chromium and nickel was performed before and after exposure using methods of human biomonitoring. There were significantly elevated chromium levels after exposure to welding fumes from high alloyed steel compared to urinary chromium levels before exposure to high alloyed welding fumes, as well as compared to the other exposure scenarios. The mean values increased from 0.27 µg l(-1) to 18.62 µg l(-1). The results were in good agreement with already existing correlations between external and internal exposure (German exposure equivalent for carcinogenic working materials EKA). The variability of urinary chromium levels was high. For urinary nickel no significant changes could be detected at all. Six-hour exposure to 2.5mg m(-3) high alloyed manual metal arc welding fumes lead to elevated urinary chromium levels far higher (7.11-34.16 µg l(-1)) than the German biological exposure reference value (BAR) of 0.6 µg l(-1) directly after

  10. Metallurgical and mechanical characterization of a submerged arc welded joint in a 316 type stainless steel

    International Nuclear Information System (INIS)

    Piatti, G.; Vedani, M.

    1990-01-01

    The tensile (deformation and fracture) behaviour of a multipass submerged arc welded joint Type 316 stainless steel is investigated by tests at room temperature and at 400 0 C on all-weld metal and transverse to weld (composite) specimens as well as by microstructural and compositional analyses (optical, scanning electron and transmission electron microscopy). The as-deposited metal is characterised by a systematic variation in the tensile properties across the thickness with the higher strength and the lower ductility in the weld centre. These variations are related to material variability (mainly in dislocation density) because of local dissimilarities in thermal and mechanical histories occurring during the welding process. However, the material variability in the fusion zone, although important is not so large in the present weld and it does not influence the tensile properties of the weld as a whole. Moreover, the tensile behaviour concerning the transverse to weld specimens is characterized by a supporting effect from the higher yield strength material zone (fusion zone) to the lower yield strength material zone (parent metal) justified by the different contribution of the parent metal and of the weld-deposit metal to the integral plastic strain of the specimens. (author)

  11. Phase structures and morphologies of tempered CA6NM stainless steel welded by hybrid laser-arc process

    Energy Technology Data Exchange (ETDEWEB)

    Mirakhorli, F., E-mail: Fatemeh.mirakhorli.1@ens.etsmtl.ca [École de Technologie Supérieure, Montréal, Québec H3C 1K3 (Canada); National Research Council Canada – Aerospace, Montréal, Québec H3T 2B2 (Canada); Cao, X., E-mail: Xinjin.cao@cnrc-nrc.gc.ca [National Research Council Canada – Aerospace, Montréal, Québec H3T 2B2 (Canada); Pham, X-T., E-mail: Tan.pham@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec H3C 1K3 (Canada); Wanjara, P., E-mail: Priti.wanjara@cnrc-nrc.gc.ca [National Research Council Canada – Aerospace, Montréal, Québec H3T 2B2 (Canada); Fihey, J.L., E-mail: jean-luc.fihey@etsmtl.ca [École de Technologie Supérieure, Montréal, Québec H3C 1K3 (Canada)

    2017-01-15

    The post-weld tempered microstructure of hybrid laser-arc welded CA6NM, a cast low carbon martensitic stainless steel, was investigated. The microstructural evolutions from the fusion zone to the base metal were characterized in detail using optical microscopy, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), X-ray diffraction (XRD) and microhardness techniques. The fusion zone, in its post-weld tempered condition, consisted of tempered lath martensite, residual delta-ferrite with various morphologies, reversed austenite and chromium carbides. The reversed austenite, which can be detected through both EBSD and XRD techniques, was found to be finely dispersed along the martensite lath boundaries, particularly at triple junctions. Based on the EBSD analysis, the orientation relationship between the reversed austenite and the adjacent martensite laths seemed to follow the Kurdjumov-Sachs (K-S) model. The results also revealed the presence of the reversed austenite in the different regions of the heat affected zone after post-weld tempering. The microindentation hardness distribution was measured, and correlated to the evolution of the corresponding microstructure across the welds. - Highlights: •The EBSD analysis was performed on hybrid laser-arc welded CA6NM. •The FZ consisted of tempered lath martensite, reversed austenite, carbides and δ ferrite after tempering. •The reversed γ was formed along the α′ lath boundaries, particularly at triple junctions.

  12. Microstructural Study of 17-4PH Stainless Steel after Plasma-Transferred Arc Welding

    Directory of Open Access Journals (Sweden)

    Dewei Deng

    2015-01-01

    Full Text Available The improvement of the surface qualities and surface hardening of precipitation hardened martensitic stainless steel 17-4PH was achieved by the plasma-transferred arc welding (PTAW process deposited with Co-based alloy. The microstructure of the heat affected zone (HAZ and base metal were characterized by optical microscope (OM, scanning electron microscope (SEM and transmission electron microscope (TEM. The results show that there are obvious microstructural differences between the base metal and HAZ. For example, base material is transformed from lath martensite to austenite due to the heateffect of the welding process. On the other hand, the precipitate in the matrix (bar-like shape Cr7C3 phase with a width of about one hundred nanometres and a length of hundreds of nanometres grows to a rectangular appearance with a width of about two hundred nanometres and a length of about one micron. Stacking fault could also be observed in the Cr7C3 after PTAW. The above means that welding can obviously improve the surface qualities.

  13. Microstructure and pitting corrosion of shielded metal arc welded high nitrogen stainless steel

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2015-09-01

    Full Text Available The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy (OM and field emission scanning electron microscopy (FESEM. Energy back scattered diffraction (EBSD method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr–Mn–N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.

  14. Evaluating mechanical properties of hybrid laser arc girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Pussegoda, L. N.; Begg, D.; Holdstock, R.; Jodoin, A. [BMT Fleet Technology Ltd Techonology, Kanata, ON, (Canada); Ligh, K.; Rondeau, D. [Appliead Thermal Sciences Inc., Sanford, ME, (United States); Hansen, E. [ESAB, Florence, SC, (United States)

    2010-07-01

    Hybrid laser arc welding (HLAW) is a promising new process for making girth welds on steel pipelines. This study investigated the mechanical properties of overmatched X80 and X100 pipeline steel girth welds made using the HLAW process. The testing of this process was conducted on NPS36 pipes of 10.4 mm and 14.3 mm thickness, respectively. Various weld positions were produced on X80 and X100 pipes. Laser inspection data were collected during the whole welding process. Also standard tests for girth welds, Charpy V-notch impact tests, CTOD tests, all weld metal (AWM) tension tests, were carried out. The results showed that the fracture transition temperature is higher at the 3 and 9 o'clock positions than at the 9 and 12 o'clock positions. The effect of clock position on fracture toughness is currently being explored; a modified CTOD has been developed to reduce the possibility of crack deviation.

  15. Characterization of magnetically impelled arc butt welded T11 tubes for high pressure applications

    Directory of Open Access Journals (Sweden)

    R. Sivasankari

    2015-09-01

    Full Text Available Magnetically impelled arc butt (MIAB welding is a pressure welding process used for joining of pipes and tubes with an external magnetic field affecting arc rotation along the tube circumference. In this work, MIAB welding of low alloy steel (T11 tubes were carried out to study the microstructural changes occurring in thermo-mechanically affected zone (TMAZ. To qualify the process for the welding applications where pressure could be up to 300 bar, the MIAB welds are studied with variations of arc current and arc rotation time. It is found that TMAZ shows higher hardness than that in base metal and displays higher weld tensile strength and ductility due to bainitic transformation. The effect of arc current on the weld interface is also detailed and is found to be defect free at higher values of arc currents. The results reveal that MIAB welded samples exhibits good structural property correlation for high pressure applications with an added benefit of enhanced productivity at lower cost. The study will enable the use of MIAB welding for high pressure applications in power and defence sectors.

  16. Butt Weldability for SS400 Using Laser-Arc Hybrid Welding

    International Nuclear Information System (INIS)

    Kim, Jong Do; Myoung, Gi Hoon; Park, Duck; Myoung, Gi Hoon; Park, In Duck

    2016-01-01

    This study presents results of an experimental investigation of the laser-arc, hybrid, butt welding process of SS400 structural steel. Welding parameters including laser power, welding current and speed were varied in order to obtain one-pass, full-penetration welds without defects. The conditions that resulted in optimal beads were identified. After welding, hardness measurements and microstructure observations were carried out in order to study weld properties. The mechanical properties of both the base material and welded specimen were compared based on the results of tensile strength measurements. The yield and tensile strengths were found to be similar

  17. Butt Weldability for SS400 Using Laser-Arc Hybrid Welding

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Do; Myoung, Gi Hoon; Park, Duck [Korea Maritime and Ocean Univ., Busan (Korea, Republic of); Myoung, Gi Hoon; Park, In Duck [Korea Institute of Machinery and Materials, Busan (Korea, Republic of)

    2016-07-15

    This study presents results of an experimental investigation of the laser-arc, hybrid, butt welding process of SS400 structural steel. Welding parameters including laser power, welding current and speed were varied in order to obtain one-pass, full-penetration welds without defects. The conditions that resulted in optimal beads were identified. After welding, hardness measurements and microstructure observations were carried out in order to study weld properties. The mechanical properties of both the base material and welded specimen were compared based on the results of tensile strength measurements. The yield and tensile strengths were found to be similar.

  18. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Jabbari, H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of)

    2015-11-15

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties of the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the welding

  19. Mechanical properties of API X80 steel pipe joints welded by Flux Core Arc Weld Process; Propriedades mecanicas de juntas de tubos de aco API X80 soldadas com arame tubulares

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, Robert E. Cooper; Silva, Jose Hilton F.; Trevisan, Roseana E. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Engenharia de Fabricacao

    2003-07-01

    Flux Core Arc Welding processes (FCAW) are beginning to be applied in pipeline welds, however, very limited experimental data regarding mechanical properties of pipeline weld joints with these processes are available in the literature. In this paper, the effects of preheat temperature and type of FCAW on mechanical properties (microhardness and tensile strength) of API X80 weld joint steel are presented. FCAW processes with gas protection and self-shielded were used. Multipasses welding were applied in 30'' diameter and 0,625'' thickness tubes. Influence factors were: FCAW type and preheat temperature. Acceptance criteria of welded joints were evaluated by API 1104 standard for tensile strength test and ASTM E384-99 for microhardness test. The results obtained showed that FCAW type and preheat temperature have no influence on mechanical properties of API X80 joint steel. (author)

  20. THE INFLUENCE OF POSTHEAT TREATMENT ON FERRITE REDISTRIBUTION IN DUPLEX STEELS ELECTRON BEAM WELDS

    Directory of Open Access Journals (Sweden)

    Zita Iždinská

    2009-04-01

    Full Text Available The duplex stainless steel is two-phase steel with the structure composed of austenite and ferrite with optimum austenite/ferrite proportion 50%. At present, classical arc processes for welding duplex steels are generally regarded as acceptable. On the other hand electron and laser beam welding is up to now considered less suitable for welding duplex steels. The submitted work presents the results of testing various thermal conditions at welding duplex stainless steel with electron beam. It was shown, that application of suitable postheat made possible to reduce the ferrite content in weld metal.

  1. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  2. Effects of irradiation on the fracture properties of stainless steel weld overlay cladding

    International Nuclear Information System (INIS)

    Haggag, F.M.; Corwin, W.R.; Nanstad, R.K.

    1989-01-01

    Stainless steel weld overlay cladding was fabricated using the submerged arc, single-wire, oscillating-electrode, and the three-wire, series-arc methods. Three layers of cladding were applied to a pressure vessel plate to provide adequate thickness for fabrication of test specimens, and irradiations were conducted at temperatures and to fluences relevant to power reactor operation. For the first single-wire method, the first layer was type 309, and the upper two layers were type 308 stainless steel. The type 309 was diluted considerably by excessive melting of the base plate. The three-wire method used various combinations of types 308, 309, and 304 stainless steel weld wires, and produced a highly controlled weld chemistry, microstructure, and fracture properties in all three layers of the weld. 14 refs., 15 figs., 4 tabs

  3. Steels and welding nuclear

    International Nuclear Information System (INIS)

    Sessa, M.; Milella, P.P.

    1987-01-01

    This ENEA Data-Base regards mechanical properties, chemical composition and heat treatments of nuclear pressure vessel materials: type A533-B, A302-B, A508 steel plates and forgings, submerged arc welds and HAZ before and after nuclear irradiation. Irradiation experiments were generally performed in high flux material test reactors. Data were collected from international available literature about water nuclear reactors pressure vessel materials embrittlement

  4. Fatigue crack propagation behavior of stainless steel welds

    Science.gov (United States)

    Kusko, Chad S.

    The fatigue crack propagation behavior of austenitic and duplex stainless steel base and weld metals has been investigated using various fatigue crack growth test procedures, ferrite measurement techniques, light optical microscopy, stereomicroscopy, scanning electron microscopy, and optical profilometry. The compliance offset method has been incorporated to measure crack closure during testing in order to determine a stress ratio at which such closure is overcome. Based on this method, an empirically determined stress ratio of 0.60 has been shown to be very successful in overcoming crack closure for all da/dN for gas metal arc and laser welds. This empirically-determined stress ratio of 0.60 has been applied to testing of stainless steel base metal and weld metal to understand the influence of microstructure. Regarding the base metal investigation, for 316L and AL6XN base metals, grain size and grain plus twin size have been shown to influence resulting crack growth behavior. The cyclic plastic zone size model has been applied to accurately model crack growth behavior for austenitic stainless steels when the average grain plus twin size is considered. Additionally, the effect of the tortuous crack paths observed for the larger grain size base metals can be explained by a literature model for crack deflection. Constant Delta K testing has been used to characterize the crack growth behavior across various regions of the gas metal arc and laser welds at the empirically determined stress ratio of 0.60. Despite an extensive range of stainless steel weld metal FN and delta-ferrite morphologies, neither delta-ferrite morphology significantly influence the room temperature crack growth behavior. However, variations in weld metal da/dN can be explained by local surface roughness resulting from large columnar grains and tortuous crack paths in the weld metal.

  5. Studies on microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc welds

    Science.gov (United States)

    Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    The present work is aimed at studying the microstructure, mechanical and corrosion properties of high nitrogen stainless steel shielded metal arc (SMA) welds made with Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microstructures of the welds were characterized using optical microscopy (OM), field emission scanning electron microscopy (FESEM) and electron back scattered diffraction (EBSD) mainly to determine the morphology, phase analysis, grain size and orientation image mapping. Hardness, tensile and ductility bend tests were carried out to determine mechanical properties. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance using a GillAC basic electrochemical system. Constant load type testing was carried out to study stress corrosion cracking (SCC) behaviour of welds. The investigation results shown that the selected Cr–Mn–N type electrode resulted in favourable microstructure and completely solidified as single phase coarse austenite. Mechanical properties of SMA welds are found to be inferior when compared to that of base metal and is due to coarse and dendritic structure.

  6. Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel

    Science.gov (United States)

    Kutsuna, Muneharu; Chen, Liang

    2003-03-01

    Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).

  7. Welded joint properties of steel 2.25Cr1MoNiNb

    International Nuclear Information System (INIS)

    Gladis, R.; Ivanek, J.; Gottwald, M.

    1981-01-01

    Welded joints of steel 08Cr2.25Mo1NiNb for fast reactor steam generators made using manual arc welding with electrodes of identical compositions attain short-term mechanical properties and times to fracture when creep tested that match those of the base material. The reduction of the carbidic phase content in the steel and the welded joint metal did not adversely affect the tensile properties of the welded joint while increasing notch toughness of the heat-affected zone. Reduced carbon and niobium contents in the steel and the welded joint resulted in significant reduction in the proportion of carbidic eutectic particles in both the heat-affected zone and the weld metal. (Ha)

  8. INFLUENCE OF STRUCTURAL PARAMETERS OF LOW-CARBON STEEL ON ELECTRIC ARC BURNING

    Directory of Open Access Journals (Sweden)

    I. O. Vakulenko

    2017-10-01

    Full Text Available Purpose. The article is aimed to evaluate the influence of structural parameters of low-carbon steel on arcing process. Methodology. The values of the micro- and substructure characteristics of the electrode wire metal were changed by varying the parameters of heat treatment and cold deformation by drawing. The degree of plastic deformation was obtained by drawing blanks from different initial diameter to final dimension of 1 mm. The thermal treatment was carried out in electric chamber furnace of the SNOL-1,6.2,5.1/11-IZ type. The temperature was measured by chromel-alumel thermocouple and the electromotive force was determined using the DC potentiometer. In order to obtain the substructure of different dispersion degree the steel (after quenching from temperatures and tempering at 650°C for 1 hour was subjected to cold drawing to reduction 17 – 80%. To form structure with different ferrite grain size the steel after drawing was annealed at 680°C for 1 hour. The microstructure was examined under a light and electron transmission microscope UEMV-100K at the accelerating voltage 100 kV. The grain and subgrain sizes were evaluated using the methodologies of quantitative metallography. A welding converter of the PSG-500 type was used to study the arc welding process of direct and reverse polarities. Findings. The experimentally detected value of the welding current, which depends on the degree of deformation during wire drawing, under conditions of stable arc burning of direct polarity is about an order of magnitude lower than the calculated value. Similar difference was found for the arc of reverse polarity: the experimental value of the welding current is 5...6 times less than the calculated value. Dependence analysis shows that, regardless of the polarity of the welding arc, a good enough agreement between the calculated and experimental values of the welding current is limited to deformations of 60%. For deformation degrees of more than 60

  9. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Dong-Yoon; Kang, Moon-Jin [Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2017-06-15

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  10. Numerical analysis of weld pool for galvanized steel with lap joint in GTAW

    International Nuclear Information System (INIS)

    Jeong, Hunchul; Park, Kyungbae; Kim, Yougjun; Cho, Jungho; Kim, Dong-Yoon; Kang, Moon-Jin

    2017-01-01

    Galvanized steel is widely used and its demand is growing in automotive industry due to high quality requirement for corrosion resistance. Although there are a lot of demands on using galvanized steel as automotive parts especially for outer body, it has a grave flaw in its welding process. The difficulty is low weldability due to various defects such as porosities and blow holes in weldment, which occurred during welding. A solution to prevent these defects is using hybrid welding process, with two more welding processes. One of the hybrid solutions is using Gas tungsten arc welding (GTAW) as leading position in order to remove the zinc (Zn) coating on the surface before the followed practical fusion welding process. In this research, a numerical analysis model which can predict the eliminated Zn coated layers and the area of Fusion zone (FZ). Developed numerical analysis model was validated through comparing experiment to simulation. Basically, arc heat flux, arc pressure, electromagnetic force and Marangoni flow were employed as the boundary conditions and body force terms. Governing equations such as the continuity, momentum, Volume of fluid (VOF) and energy equations were adopted as usual. In addition to previous model, concentrated arc heat flux and contact thermal conductance models are newly suggested and showed successful result. They are adopted to realize edge concentrated arc and interfacial thermal conductance in lap joint fillet arc welding. Developed numerical analysis model successfully simulated the weld pool and temperature profile therefore the predicted Zn removed area considerably coincided with experimental result.

  11. Contribution to the metallurgy of welding processes in stainless ferritic-austenitic (duplex) steels

    International Nuclear Information System (INIS)

    Perteneder, E.; Toesch, J.; Rabensteiner, G.

    1989-01-01

    Duplex steels have a ferritic austenitic structure. Therefore, to obtain a successful welding, special metallurgical regulations must be observed. The effect of energy per unit length and plate thickness onto the heat influence zone in case of manual arc welding is examined. Practice-oriented instructions for the welding technique to be applied are deduced from the results. Finally, the effect of the alloy composition onto the welding capacity of duplex steels is examined. (orig.) [de

  12. Multi Objective Optimization of Weld Parameters of Boiler Steel Using Fuzzy Based Desirability Function

    Directory of Open Access Journals (Sweden)

    M. Satheesh

    2014-01-01

    Full Text Available The high pressure differential across the wall of pressure vessels is potentially dangerous and has caused many fatal accidents in the history of their development and operation. For this reason the structural integrity of weldments is critical to the performance of pressure vessels. In recent years much research has been conducted to the study of variations in welding parameters and consumables on the mechanical properties of pressure vessel steel weldments to optimize weld integrity and ensure pressure vessels are safe. The quality of weld is a very important working aspect for the manufacturing and construction industries. Because of high quality and reliability, Submerged Arc Welding (SAW is one of the chief metal joining processes employed in industry. This paper addresses the application of desirability function approach combined with fuzzy logic analysis to optimize the multiple quality characteristics (bead reinforcement, bead width, bead penetration and dilution of submerged arc welding process parameters of SA 516 Grade 70 steels(boiler steel. Experiments were conducted using Taguchi’s L27 orthogonal array with varying the weld parameters of welding current, arc voltage, welding speed and electrode stickout. By analyzing the response table and response graph of the fuzzy reasoning grade, optimal parameters were obtained. Solutions from this method can be useful for pressure vessel manufacturers and operators to search an optimal solution of welding condition.

  13. Ductile fracture of two-phase welds under 77K. [Steel-EhP810, steel-EhP666, steel-08Kh18N10T, steel-EhP659-VI, steel-chP810

    Energy Technology Data Exchange (ETDEWEB)

    Yushchenko, K.A.; Voronin, S.A.; Pustovit, A.I.; Shavel' , A.V.

    The effect of the type of welding and fillers on crack resistance of welded joints high-strength steel EhP810 and its various compounds with steels EhP666, 08Kh18N10T has been studied. For the welding of steel EhP810 with steels EhP810, EhP666, 08Kh18N10T electron-beam, automatic, argon tungsten arc with non-consumable electrode with various fillers, as well as argon metal-arc welding with consumable electrode, were used. It is shown, that for a joint, made by electron-beam welding, parameters sigmasub(u), Ksub(IcJ), KCV are higher than for a joint of a similar phase structure made using filler wire EhP659-VI. It is explained by the fact, that during electron-beam welding joint metal refining takes place, which removes gases. In welded joints of chP810 steel, having joints with austenitic structure, characteristic of crack resistance Ssub(c) increases by more than 0.2 mm in contrast to two-phase joints, which conventional yield strength at 77 K exceeds 1000 MPa. It is worth mentioning, that for other classes of steels formation of two-phase structure of joint increases welded joint resistance to brittle fracture. It is possible to obtain the required structure of joint with assigned level of resistance to brittle fracture by means of the use of different fillers, optimum and welding procedure, regulating the part of the basic metal in joint content.

  14. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  15. Arc modeling for welding analysis

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-04-01

    A one-dimensional model of the welding arc that considers heat generation by the Joule effect and heat losses by radiation and conduction has been used to study the effects of various gases and gas mixtures currently employed for welding applications. Minor additions of low ionization potential impurities to these gases are shown to significantly perturb the electrical properties of the parent gas causing gross changes in the radial temperature distribution of the arc discharge. Such changes are reflected in the current density distribution and ultimately in the input energy distribution to the weldment. The result is observed as a variation in weld penetration. Recently published experiments and analyses of welding arcs are also evaluated and shown to contain erroneous data and results. Contrary to previous beliefs, the inclusion of a radiation loss term in the basic energy balance equation is important and cannot be considered as negligible in an argon arc at temperatures as low as 10,000 0 K. The one-dimensional analysis of the welding arc as well as the evaluation of these earlier published reports helps to explain the effects of various gases used for welding, improves our understanding of the physics of the welding arc, and provides a stepping stone for a more elaborate model which can be applied to help optimize welding parameters

  16. Approximate entropy—a new statistic to quantify arc and welding process stability in short-circuiting gas metal arc welding

    International Nuclear Information System (INIS)

    Cao Biao; Xiang Yuanpeng; Lü Xiaoqing; Zeng Min; Huang Shisheng

    2008-01-01

    Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding

  17. Designing of CK45 carbon steel and AISI 304 stainless steel dissimilar welds

    OpenAIRE

    Pouraliakbar,Hesam; Hamedi,Mohsen; Kokabi,Amir Hossein; Nazari,Ali

    2014-01-01

    Gas tungsten arc welding of CK45 and AISI304 stainless steel was performed through preparation of different types of samples using ER308L and ERNi-1 wires. Welded samples were studied by different techniques including optical metallography, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction, hardness measurements and impact test. It was observed that in the buttered specimen, the structure of the weld metal was completely austenitic wh...

  18. STUDY AND ANALYSIS OF THE EFFECT OF WELDING PROCESS ON DISTORTION WITH 304L STAINLESS STEEL WELD JOINTS

    OpenAIRE

    Dhananjay Kumar*, Dharamvir mangal

    2017-01-01

    The effect of welding process on the distortion with 304L stainless steel 12thk weld joints made by TIG (tungsten inert gas) and SMAW (Shielded metal arc welding) welding process involving different type joint configuration have been studied. The joint configurations employed were double V-groove edge preparation for double side SMAW welding and square – butt preparation for double side TIG welding. All weld joints passed by radiographic. Distortion measurements were carried out using height ...

  19. Optimisation of welding procedures for duplex and superduplex stainless steels

    International Nuclear Information System (INIS)

    Westin, Elin M.

    2014-01-01

    Austenitic stainless steels are increasingly being replaced by duplex grades that can offer similar corrosion resistance with far higher strength. This increased strength makes it possible to reduce material consumption whilst also decreasing transport and construction costs. Although established welding methods used for austenitic steels can be used for duplex steels, modification of the procedures can lead to improved results. This paper reviews the welding of duplex stainless steel and examines precautions that may be required. The advantages and disadvantages of different welding methods are highlighted and some high productivity solutions are presented. The application of a more efficient process with a high deposition rate (e.g. flux- cored arc welding) can decrease labour costs. Further close control of heat input and interpass temperature can result in more favourable microstructures and final properties. Although welding adversely affects the corrosion resistance of austenitic and duplex stainless steels, particularly the pitting resistance, relative to the parent material, this problem can be minimised by proper backing gas protection and subsequent pickling.

  20. A comparative study of the microstructure and properties of 800 MPa microalloyed C-Mn steel welded joints by laser and gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qian [The State Key Laboratory of Rolling and Automation of Northeastern University, Shenyang 110819 (China); Di, Hong-Shuang, E-mail: hongshuangdi_ral@126.com [The State Key Laboratory of Rolling and Automation of Northeastern University, Shenyang 110819 (China); Li, Jun-Chen [The State Key Laboratory of Rolling and Automation of Northeastern University, Shenyang 110819 (China); Wu, Bao-Qiang [National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001 (China); Misra, R.D.K. [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Material and Biomedical Engineering, University of Texas at El Paso, TX 79968 (United States)

    2016-07-04

    The differences in microstructure and mechanical properties of laser beam welded (LBW) and gas metal arc welded (GMAW) joints of 800 MPa grade Nb-Ti-Mo microalloyed C-Mn steel of 5 mm thickness were studied. The study suggested that the microstructure in welded seam (WS) of GMAW was acicular ferrite and fine grained ferrite, whereas lath martensite (LM) was obtained in WS of LBW, where inclusions were finer and did not act as nucleation sites for acicular ferrite. The microstructure of coarse-grained HAZ (CGHAZ) obtained using the two welding methods was LM and granular bainite (GB), respectively. The original austenite grain size in CGHAZ of LBW was 1/3 of GMAW. The microstructure of fine-grained HAZ and mixed-grained HAZ using the two welding methods was ferrite and M-A constituents, while that of LBW was significantly fine. The hardness of LBW welded joints was higher than the base metal (BM), which was the initiation site for tensile fracture. The tensile fracture location of GMAW welded joints was in WS. The impact toughness of LBW welded joints was excellent and the impact absorption energy was similar to BM.

  1. Investigation on AISI 304 austenitic stainless steel to AISI 4140 low alloy steel dissimilar joints by gas tungsten arc, electron beam and friction welding

    International Nuclear Information System (INIS)

    Arivazhagan, N.; Singh, Surendra; Prakash, Satya; Reddy, G.M.

    2011-01-01

    Research highlights: → Beneficial effects of FRW, GTAW and EBW joints of dissimilar AISI 304 and AISI 4140 materials. → Comparative study of FRW, GTAW and EBW joints on mechanical properties. → SEM/EDAX, XRD analysis on dissimilar AISI 304 and AISI 4140 materials. -- Abstract: This paper presents the investigations carried out to study the microstructure and mechanical properties of AISI 304 stainless steel and AISI 4140 low alloy steel joints by Gas Tungsten Arc Welding (GTAW), Electron Beam Welding (EBW) and Friction Welding (FRW). For each of the weldments, detailed analysis was conducted on the phase composition, microstructure characteristics and mechanical properties. The results of the analysis shows that the joint made by EBW has the highest tensile strength (681 MPa) than the joint made by GTAW (635 Mpa) and FRW (494 Mpa). From the fractographs, it could be observed that the ductility of the EBW and GTA weldment were higher with an elongation of 32% and 25% respectively when compared with friction weldment (19%). Moreover, the impact strength of weldment made by GTAW is higher compared to EBW and FRW.

  2. Advanced characterization techniques in understanding the roles of nickel in enhancing strength and toughness of submerged arc welding high strength low alloy steel multiple pass welds in the as-welded condition

    Science.gov (United States)

    Sham, Kin-Ling

    Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was

  3. Weld characterization of RAFM steel. EBP structural materials milestone 3

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, A. [Service de Recherches Metallurgiques Appliquees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Fontes, A. [Service de Techniques Avancees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Schaefer, L. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Gauthier, A.; Tavassoli, A.A. [CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Van Osch, E.V.; Van der Schaaf [ed.] [ECN Netherlands Energy Research Foundation, Petten (Netherlands)

    1999-07-01

    In the long term part of the European Fusion technology programme welding of reduced activation ferritic martensitic (RAFM)steels takes a prominent place. The blanket structures are complex and welding is an important element in manufacturing procedures. In the 95-98 program several Structural Materials tasks of the European Blanket Project are devoted to welding of RAFM steels. In the milestone 3 defined for the program a review of the weld characterization was foreseen in 1998. The present report gives the status of tasks and the major conclusions and recommendations of the welding milestone meeting. The major conclusion is that defect free GTAW (Gas Tungsten Arc Welding), EBW (Electron Beam Welding) and diffusion welds can be accomplished, but further work is needed to assure quantitatively the service boundary conditions. Also for irradiated steel additional work is recommended for the 99-02 period. Development of filler wire material for the European reference RAFM: EUROFER97 is necessary. Establishment of weldability tests must be settled in the next period also. 14 refs.

  4. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    International Nuclear Information System (INIS)

    Sathiya, P.; Ajith, P. M.; Soundararajan, R.

    2013-01-01

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  5. Genetic algorithm based optimization of the process parameters for gas metal arc welding of AISI 904 L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Sathiya, P. [National Institute of Technology Tiruchirappalli (India); Ajith, P. M. [Department of Mechanical Engineering Rajiv Gandhi Institute of Technology, Kottayam (India); Soundararajan, R. [Sri Krishna College of Engineering and Technology, Coimbatore (India)

    2013-08-15

    The present study is focused on welding of super austenitic stainless steel sheet using gas metal arc welding process with AISI 904 L super austenitic stainless steel with solid wire of 1.2 mm diameter. Based on the Box - Behnken design technique, the experiments are carried out. The input parameters (gas flow rate, voltage, travel speed and wire feed rate) ranges are selected based on the filler wire thickness and base material thickness and the corresponding output variables such as bead width (BW), bead height (BH) and depth of penetration (DP) are measured using optical microscopy. Based on the experimental data, the mathematical models are developed as per regression analysis using Design Expert 7.1 software. An attempt is made to minimize the bead width and bead height and maximize the depth of penetration using genetic algorithm.

  6. Hybrid Welding of 45 mm High Strength Steel Sections

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.

    Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.

  7. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    Science.gov (United States)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  8. Automatic Control Of Length Of Welding Arc

    Science.gov (United States)

    Iceland, William F.

    1991-01-01

    Nonlinear relationships among current, voltage, and length stored in electronic memory. Conceptual microprocessor-based control subsystem maintains constant length of welding arc in gas/tungsten arc-welding system, even when welding current varied. Uses feedback of current and voltage from welding arc. Directs motor to set position of torch according to previously measured relationships among current, voltage, and length of arc. Signal paths marked "calibration" or "welding" used during those processes only. Other signal paths used during both processes. Control subsystem added to existing manual or automatic welding system equipped with automatic voltage control.

  9. Effect of welding processes and consumables on fatigue crack growth behaviour of armour grade quenched and tempered steel joints

    Directory of Open Access Journals (Sweden)

    G. Magudeeswaran

    2014-03-01

    Full Text Available Quenched and Tempered (Q&T steels are widely used in the construction of military vehicles due to its high strength to weight ratio and high hardness. These steels are prone to hydrogen induced cracking (HIC in the heat affected zone (HAZ after welding. The use of austenitic stainless steel (ASS consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q&T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic steel (LHF consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. The use of ASS and LHF consumables will lead to distinct microstructures in their respective welds. This microstructural heterogeneity will have a drastic influence in the fatigue crack growth resistance of armour grade Q&T steel welds. Hence, in this investigation an attempt has been made to study the influence of welding consumables and welding processes on fatigue crack growth behaviour of armour grade Q&T Steel joints. Shielded metal arc welding (SMAW and Flux cored arc welding (FCAW were used for fabrication of joints using ASS and LHF consumables. The joints fabricated by SMAW process using LHF consumable exhibited superior fatigue crack growth resistance than all other joints.

  10. Study of the Performance of Stainless Steel A-TIG Welds

    Science.gov (United States)

    Shyu, S. W.; Huang, H. Y.; Tseng, K. H.; Chou, C. P.

    2008-04-01

    The purpose of the present work was to investigate the effect of oxide fluxes on weld morphology, arc voltage, mechanical properties, angular distortion and hot cracking susceptibility obtained with TIG welding, which applied to the welding of 5 mm thick austenitic stainless steel plates. A novel variant of the autogenous TIG welding process, oxide powders (Al2O3, Cr2O3, TiO2, SiO2 and CaO) was applied on a type 304 stainless steel through a thin layer of the flux to produce a bead on plate welds. The experimental results indicated that the increase in the penetration is significant with the use of Cr2O3, TiO2, and SiO2. A-TIG welding can increase the weld depth to bead-width ratio, and tends to reduce the angular distortion of the weldment. It was also found that A-TIG welding can increase the retained delta-ferrite content of stainless steel 304 welds and, in consequence, the hot-cracking susceptibility of as-welded is reduced. Physically constricting the plasma column and reducing the anode spot are the possible mechanism for the effect of certain flux on A-TIG penetration.

  11. Technique to eliminate helium induced weld cracking in stainless steels

    International Nuclear Information System (INIS)

    Chin-An Wang; Chin, B.A.

    1992-01-01

    Experiments have shown that Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 Mpa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials

  12. Dissimilar steel welding and overlay covering with nickel based alloys using SWAM (Shielded Metal Arc Welding) and GTAW (Gas Tungsten Arc Welding) processes in the nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Arce Chilque, Angel Rafael [Centro Tecnico de Engenharia e Inovacao Empresarial Ltda., Belo Horizonte, MG (Brazil); Bracarense, Alexander Queiroz; Lima, Luciana Iglesias Lourenco [Federal University of Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Quinan, Marco Antonio Dutra; Schvartzman, Monica Maria de Abreu Mendonca [Nuclear Technology Development Centre (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Marconi, Guilherme [Federal Center of Technological Education (CEFET-MG), Belo Horizonte, MG (Brazil)

    2009-07-01

    This work presents the welding of dissimilar ferritic steel type A508 class 3 and austenitic stainless steel type AISI 316 L using Inconel{sup R} 600 (A182 and A82) and overlay covering with Inconel{sup R} 690 (A52) as filler metal. Dissimilar welds with these materials without defects and weldability problems such as hot, cold, reheat cracking and Ductility Dip Crack were obtained. Comparables mechanical properties to those of the base metal were found and signalized the efficiency of the welding procedure and thermal treatment selected and used. This study evidences the importance of meeting compromised properties between heat affected zone of the ferritic steel and the others regions presents in the dissimilar joint, to elaborate the dissimilar metal welding procedure specification and weld overlay. Metallographic studies with optical microscopy and Vickers microhardness were carried out to justified and support the results, showing the efficiency of the technique of elaboration of dissimilar metal welding procedure and overlay. The results are comparables and coherent with the results found by others. Some alternatives of welding procedures are proposed to attain the efficacy. Further studies are proposed like as metallographic studies of the fine microstructure, making use, for example, of scanning electron microscope (SEM adapted with an EDS) to explain looking to increase the resistance to primary water stress corrosion (PWSCC) in nuclear equipment. (author)

  13. Effect of A-TIG Welding Process on the Weld Attributes of Type 304LN and 316LN Stainless Steels

    Science.gov (United States)

    Vasudevan, M.

    2017-03-01

    The specific activated flux has been developed for enhancing the penetration performance of TIG welding process for autogenous welding of type 304LN and 316LN stainless steels through systematic study. Initially single-component fluxes were used to study their effect on depth of penetration and tensile properties. Then multi-component activated flux was developed which was found to produce a significant increase in penetration of 10-12 mm in single-pass TIG welding of type 304LN and 316LN stainless steels. The significant improvement in penetration achieved using the activated flux developed in the present work has been attributed to the constriction of the arc and as well as reversal of Marangoni flow in the molten weld pool. The use of activated flux has been found to overcome the variable weld penetration observed in 316LN stainless steel with TIG welds compared to that of the welds produced by conventional TIG welding on the contrary the transverse strength properties of the 304LN and 316LN stainless steel welds produced by A-TIG welding exceeded the minimum specified strength values of the base metals. Improvement in toughness values were observed in 316LN stainless steel produced by A-TIG welding due to refinement in the weld microstructure in the region close to the weld center. Thus, activated flux developed in the present work has greater potential for use during the TIG welding of structural components made of type 304LN and 316LN stainless steels.

  14. Comparative estimation of weld-ability of medium-alloy steels

    International Nuclear Information System (INIS)

    Makarov, Eh.L.; Laz'ko, V.E.

    1977-01-01

    Weldability of various industrial steels has been investigated as affected by mutual presence of carbon and alloying elements in a wide range of concentrations. Mechanical properties and technological strength of medium alloyed steel welded joints have been compared. Technological strength parameters have been found to sharply decrease with increasing carbon content, the decrease depending on the alloying system. Resistance to hot and cold cracking is somewhat decreased by nickel and increased by molibdenum and tungsten. The best mechanical properties are displayed by steels of the Kh2GSNVM type. Industrial evidence on argon arc welding of different constructions made of steels 1.5-20 mm thick is compared to laboratory results. Accordingly, the high strength steels are divided into three groups, i.e. those manifesting good, satisfactory and poor weldability

  15. Numerical microstructural analysis of automotive-grade steels when joined with an array of welding processes

    International Nuclear Information System (INIS)

    Gould, J.E.; Khurana, S.P.; Li, T.

    2004-01-01

    Weld strength, formability, and impact resistance for joints on automotive steels is dependent on the underlying microstructure. A martensitic weld area is often a precursor to reduced mechanical performance. In this paper, efforts are made to predict underlying joint microstructures for a range of processing approaches, steel types, and gauges. This was done first by calculating cooling rates for some typical automotive processes [resistance spot welding (RSW), resistance mash seam welding (RMSEW), laser beam welding (LBW), and gas metal arc welding (GMAW)]. Then, critical cooling rates for martensite formation were calculated for a range of automotive steels using an available thermodynamically based phase transformation model. These were then used to define combinations of process type, steel type, and gauge where welds could be formed avoiding martensite in the weld area microstructure

  16. Electric arc welding gun

    Science.gov (United States)

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  17. Residual stresses associated with welds in austenitic steel

    International Nuclear Information System (INIS)

    Fidler, R.

    1978-01-01

    Two exploratory welds have been made with AISI 316 austenitic steel and Armex GT electrodes by the manual metal-arc process, and residual stress measurements made in the as-welded condition and after various periods of stress relief. The results show that substantial stress relief occurs at temperatures of 850 0 and 750 0 C after 1 hr, but is not complete. The stress distributions are compared with those obtained from ferritic welds and the effect of differences in thermal expansion coefficients is examined using finite element analysis. (author)

  18. Arc Interference Behavior during Twin Wire Gas Metal Arc Welding Process

    Directory of Open Access Journals (Sweden)

    Dingjian Ye

    2013-01-01

    Full Text Available In order to study arc interference behavior during twin wire gas metal arc welding process, the synchronous acquisition system has been established to acquire instantaneous information of arc profile including dynamic arc length variation as well as relative voltage and current signals. The results show that after trailing arc (T-arc is added to the middle arc (M-arc in a stable welding process, the current of M arc remains unchanged while the agitation increases; the voltage of M arc has an obvious increase; the shape of M arc changes, with increasing width, length, and area; the transfer frequency of M arc droplet increases and the droplet itself becomes smaller. The wire extension length of twin arc turns out to be shorter than that of single arc welding.

  19. Improving the ballistic immunity of armour steel weldments by plasma transferred arc (PTA) hardfacing

    International Nuclear Information System (INIS)

    Babu, S.; Balasubramanian, V.; Madhusudhan Reddy, G.; Balasubramanian, T.S.

    2010-01-01

    This investigation describes about improving the ballistic immunity of armour steel joints which are fabricated by sandwiching of plasma transferred arc (PTA) hardfaced interlayers in between soft austenitic stainless steel (ASS) welds. From the results, the welds with sandwiched interlayer stopped all the projectiles successfully, irrespective of processes used, whereas welds without sandwiched interlayer were failed. In order to know the cause of failure, a detailed metallographic examination was carried out. The variation in microstructure and hardness at various zones of the weld are discussed. For the first time, it was found that the armour steel could be hardfaced by the PTA process with tungsten carbide powder.

  20. Comparative Studies on microstructure, mechanical and corrosion behaviour of DMR 249A Steel and its welds

    Science.gov (United States)

    Mohammed, Raffi; Dilkush; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    DMR249A Medium strength (low carbon) Low-alloy steels are used as structural components in naval applications due to its low cost and high availability. An attempt has been made to weld the DMR 249A steel plates of 8mm thickness using shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW). Welds were characterized for metallography to carry out the microstructural changes, mechanical properties were evaluated using vickers hardness tester and universal testing machine. Potentio-dynamic polarization tests were carried out to determine the pitting corrosion behaviour. Constant load type Stress corrosion cracking (SCC) testing was done to observe the cracking tendency of the joints in a 3.5%NaCl solution. Results of the present study established that SMA welds resulted in formation of relatively higher amount of martensite in ferrite matrix when compared to gas tungsten arc welding (GTAW). It is attributed to faster cooling rates achieved due to high thermal efficiency. Improved mechanical properties were observed for the SMA welds and are due to higher amount of martensite. Pitting corrosion and stress corrosion cracking resistance of SMA welds were poor when compared to GTA welds.

  1. Fracture toughness of welded joints of a high strength low alloy steel

    International Nuclear Information System (INIS)

    Veiga, S.M.B. da; Bastian, F.L.; Pope, A.M.

    1985-10-01

    The fracture toughness of the different regions of welded joints of a high strength low alloy steel, Niocor 2, was evaluated at different temperatures and compared with the toughness of the base metal. The studied regions were: the weld metal, fusion boundary and heat affected zone. The welding process used was the manual metal arc. It is shown that the weld metal region has the highest toughness values. (Author) [pt

  2. Pulmonary fibrosis and exposure to steel welding fume.

    Science.gov (United States)

    Cosgrove, M P

    2015-12-01

    Arc welders who have been exposed to high concentrations of steel welding fume for prolonged periods of time may develop pulmonary fibrosis but the nature of the fibrotic changes has been debated over the last 80 years without any clear international consensus. To characterize the nature of the pulmonary fibrosis that develops in response to steel welding fume exposure and to provide a working hypothesis that would explain the findings of the existing research, to provide a platform for future research and to inform future occupational and clinical management of welders with pulmonary effects from welding fume. Review of the world literature on pulmonary fibrosis and welding of steel in all languages using PubMed, with further secondary search of references in the articles found in the primary search. Google and Reference Manager were used as further confirmatory search tools. Only case series and case reports were found but these provided consistent evidence that the consequence of exposure to steel welding fume at high levels for a prolonged period of time is a type of pulmonary fibrosis similar to, and possibly the same as, respiratory bronchiolitis which eventually develops into desquamative interstitial pneumonia with ongoing exposure. Steel welding fume may cause an occupational respiratory bronchiolitis which may develop into de squamative interstitial pneumonia with ongoing exposure. This concept may explain the difficulties in interpreting the wider literature on welding fume and lung function at lower exposures and may also explain the increased risk of lung cancer in welders. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Use of the gapped bead-on-plate test to investigate hydrogen induced cracking of flux cored arc welds of a quenched and tempered steel

    International Nuclear Information System (INIS)

    Chen, Liang; Dunne, Druce; Davidson, Len

    2014-01-01

    Gapped bead-on-plate (G-BOP) testing of flux cored arc welds was conducted to assess the susceptibility to hydrogen induced cold cracking (HICC) of weld metal deposited on a high strength quenched and tempered steel. For preheat temperatures higher than 40°C, no weld metal cracking was observed using a shielding gas consisting of argon with 20% carbon dioxide. In contrast, the no-crack condition was not achieved for a shielding gas consisting of argon-5% carbon dioxide for preheat temperatures lower than 100°C. This extraordinary difference in weld metal HICC resistance indicates that, in general, the shielding gas mixture can exert a major influence on weld metal transverse cold cracking behaviour

  4. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes normally are used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium-nickel steels in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  5. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0% and nickel does not exceed 50.0%

  6. STUDY OF THE INFLUENCE OF THE HEAT INPUT ON MECHANICAL PROPERTIES OF C-Mn STEEL WELD METALS OBTAINED BY SUBMERGED ARC PROCESS

    Directory of Open Access Journals (Sweden)

    Erick de Sousa Marouço

    2013-06-01

    Full Text Available The present work is part of a research program that aims to evaluate the technical feasibility of increasing productivity in the manufacturing of tubular components for offshore oil industry, which are fully welded by automatic submerged arc welding process, with high heat input, but with no impairment on the impact toughness of the weld metal. Multipass welds were produced by the submerged arc welding process, with a combination of F7A4-EM12K (wire/flux, by using a 3.2 mm-diameter wire, preheating at 80°C, with direct current, in flat position, with heat input varying from 3.5 kJ/mm to 12 kJ/mm. After welding, tensile tests and Charpy-V impact tests at –60°C, –40°C, –20°C, 0°C and 20°C were carried out, as well as metallographic examination by both optical (OM and scanning electron microscopy (SEM, of specimens obtained entirely from the weld metal, allowing the discussion over the toughness X microstructure relationship. The weld metals have shown higher toughness levels in relation to the minimum required for use with low-alloy C-Mn steels welding with requirements of impact toughness of 27 J at 0°C for heat input up to 12 kJ/mm allowing an increase in productivity of 58% on the effective manufacturing time.

  7. Specification for corrosion-resisting chromium and chromium-nickel steel covered welding electrodes

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This specification prescribes requirements for covered corrosion-resisting chromium and chromium-nickel steel electrodes. These electrodes are normally used for shielded metal arc welding, and include those alloy steels designated as corrosion or heat-resisting chromium and chromium-nickel steels, in which chromium exceeds 4.0 percent and nickel does not exceed 50.0 percent

  8. PC-based arc ignition and arc length control system for gas tungsten arc welding

    International Nuclear Information System (INIS)

    Liu, Y.; Cook, G.E.; Barnett, R.J.; Springfield, J.F.

    1992-01-01

    In this paper, a PC-based digital control system for gas tungsten arc welding (GTAW) is presented. This system controls the arc ignition process, the arc length, and the process of welding termination. A DT2818 made by Data Translation is used for interface and A/D and D/A conversions. The digital I/O ports of the DT2818 are used for control of wirefeed, shield gas, cooling water, welding power supply, etc. The DT2818 is housed in a PC. The welding signals and status are displayed on the screen for in-process monitoring. A user can control the welding process by the keyboard

  9. Hybrid laser-gas metal arc welding (GMAW) of high strength steel gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ian D.; Norfolk, Mark I. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Hybrid Laser/arc welding process (HLAW) can complete 5G welds, assure weld soundness, material properties, and an acceptable geometric profile. Combining new lasers and pulsed gas metal arc welding (GMAW-P) has led to important innovations in the HLAW process, increasing travel speed for successful root pass welding. High power Yb fiber lasers allow a 10 kW laser to be built the size of a refrigerator, allowing portability for use on the pipeline right-of-way. The objective was to develop and apply an innovative HLAW system for mechanized welding of high strength, high integrity, pipelines and develop 5G welding procedures for X80 and X100 pipe, including mechanical testing to API 1104. A cost-matched JIP developed a prototype HLAW head based on a commercially available bug and band system (CRC-Evans P450). Under the US Department of Transportation (DOT) project, the subject of this paper, the system was used to advance pipeline girth welding productivity. External hybrid root pass welding achieved full penetration welds with a 4-mm root at a travel speed of 2.3-m/min. Welds were made 'double down' using laser powers up to 10 kW and travel speeds up to 3-m/min. The final objective of the project was to demonstrate the hybrid LBW/GMAW system under simulated field conditions. (author)

  10. Assessment of the Biological Effects of Welding Fumes Emitted From Metal Active Gas and Manual Metal Arc Welding in Humans.

    Science.gov (United States)

    Dewald, Eva; Gube, Monika; Baumann, Ralf; Bertram, Jens; Kossack, Veronika; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas; Brand, Peter

    2015-08-01

    Emissions from a particular welding process, metal inert gas brazing of zinc-coated steel, induce an increase in C-reactive protein. In this study, it was investigated whether inflammatory effects could also be observed for other welding procedures. Twelve male subjects were separately exposed to (1) manual metal arc welding fumes, (2) filtered air, and (3) metal active gas welding fumes for 6 hours. Inflammatory markers were measured in serum before, and directly, 1 and 7 days after exposure. Although C-reactive protein concentrations remained unchanged, neutrophil concentrations increased directly after exposure to manual metal arc welding fumes, and endothelin-1 concentrations increased directly and 24 hours after exposure. After exposure to metal active gas and filtered air, endothelin-1 concentrations decreased. The increase in the concentrations of neutrophils and endothelin-1 may characterize a subclinical inflammatory reaction, whereas the decrease of endothelin-1 may indicate stress reduction.

  11. Arc Shape Characteristics with Ultra-High-Frequency Pulsed Arc Welding

    Directory of Open Access Journals (Sweden)

    Mingxuan Yang

    2017-01-01

    Full Text Available Arc plasma possesses a constriction phenomenon with a pulsed current. The constriction is created by the Lorentz force, the radial electromagnetic force during arc welding, which determines the energy distribution of the arc plasma. Welding experiments were carried out with ultra-high-frequency pulsed arc welding (UHFP-AW. Ultra-high-speed camera observations were produced for arc surveillance. Hue-saturation-intensity (HSI image analysis was used to distinguish the regions of the arc plasma that represented the heat energy distribution. The measurement of arc regions indicated that, with an ultra-high-frequency pulsed arc, the constriction was not only within the decreased arc geometry, but also within the constricted arc core region. This can be checked by the ratio of the core region to the total area. The arc core region expanded significantly at 40 kHz at 60 A. A current level of 80 A caused a decrease in the total region of the arc. Meanwhile, the ratio of the core region to the total increased. It can be concluded that arc constriction depends on the increased area of the core region with the pulsed current (>20 kHz.

  12. The Effect of Welding Current and Composition of Stainless steel on the Panetration in GTAW

    Directory of Open Access Journals (Sweden)

    Ramazan Yılmaz

    2012-06-01

    Full Text Available In this study, welding was performed on the plates of two different types of AISI 316 and AISI 316Ti austenitic stainless steels by GTAW (Gas Tungsten Arc Welding without using welding consumable in flat position. Automatic GTAW welding machine was used to control and obtain the exact values. The effects of welding currents used in welding process and the compositions of the stainless steels materials on the penetration were investigated. Weld bead size and shape such as bead width and dept were important considerations for penetration. Welding process was performed using various welding current values. The study showed that both welding parameters and composition of the stainless steels has influence on the penetration and It is increased with increasing of welding current. Besides, P/W rate of the weldments were influenced by the current and hardness values of the weld metal decrease with increasing welding current. The microstructure of the weld metal was also changed by variation of welding current.

  13. 29 CFR 1910.254 - Arc welding and cutting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Arc welding and cutting. 1910.254 Section 1910.254 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Welding, Cutting and Brazing § 1910.254 Arc welding and cutting. (a... following limits shall not be exceeded: (i) Alternating-current machines (A) Manual arc welding and cutting...

  14. Physical characteristics of welding arc ignition process

    Science.gov (United States)

    Shi, Linan; Song, Yonglun; Xiao, Tianjiao; Ran, Guowei

    2012-07-01

    The existing research of welding arc mainly focuses on the stable combustion state and the research on the mechanism of welding arc ignition process is quite lack. The tungsten inert gas(TIG) touch arc ignition process is observed via a high speed camera and the high time resolution spectral diagnosis system. The changing phenomenon of main ionized element provided the electrons in the arc ignition is found. The metallic element is the main contributor to provide the electrons at the beginning of the discharging, and then the excitated shielding gas element replaces the function of the metallic element. The electron density during the period of the arc ignition is calculated by the Stark-broadened lines of Hα. Through the discussion with the repeatability in relaxation phenomenon, the statistical regularity in the arc ignition process is analyzed. The similar rules as above are observed through the comparison with the laser-assisted arc ignition experiments and the metal inert gas(MIG) arc ignition experiments. This research is helpful to further understanding on the generation mechanism of welding arc ignition and also has a certain academic and practical significance on enriching the welding physical theoretical foundation and improving the precise monitoring on automatic arc welding process.

  15. Numerical evaluation of multipass welding temperature field in API 5L X80 steel welded joints

    Directory of Open Access Journals (Sweden)

    J Nóbrega

    2016-10-01

    Full Text Available Many are the metallurgical changes suffered by materials when subjected to welding thermal cycle, promoting a considerable influence on the welded structures thermo mechanical properties. In project phase, one alternative for evaluating the welding cycle variable, would be the employment of computational methods through simulation. So, this paper presents an evaluation of the temperature field in a multipass welding of API 5L X80 steel used for oil and gas transportation, using the ABAQUS ® software, based on Finite Elements Method (FEM. During the simulation complex phenomena are considerable including: Variation in physical and mechanical properties of materials as a function of temperature, welding speed and the different mechanisms of heat exchange with the environment (convection and radiation were used. These considerations allow a more robust mathematical modeling for the welding process. An analytical heat source proposed by Goldak, to model the heat input in order to characterize the multipass welding through the GTAW (Gas Tungsten Arc Welding process on root and the SMAW (Shielded Metal Arc Welding process for the filling passes were used. So, it was possible to evaluate the effect of each welding pass on the welded joint temperature field, through the temperature peaks and cooling rates values during the welding process.

  16. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    Science.gov (United States)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  17. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    Science.gov (United States)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  18. 49 CFR 195.226 - Welding: Arc burns.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn may...

  19. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  20. An analysis of the joints’ properties of thick-grained steel welded by the SAW and ESW methods

    Directory of Open Access Journals (Sweden)

    Krawczyk R.

    2017-03-01

    Full Text Available The article presents an analysis of properties of welded joints of thick-grained steel of P460NH type used more and more often in the modern constructions. A process of examining a technology of welding has been carried out on the thick-walled butt joints of sheet metal by two methods of welding namely submerged arc welding (SAW - 121 and electroslag (ESW - 722. The article deals with a topic of optimizing a process of welding thick-walled welded joints of fine-grained steel due to their mechanical properties and efficiency.

  1. Prediction of deformations during gas-tungsten-arc stationary welds

    International Nuclear Information System (INIS)

    Duncan, D.B.; Giedt, W.H.

    1980-10-01

    Local temperature measurements on the heated and unheated surfaces, and strain measurements on the unheated surfaces of unrestrained circular weld specimens of annealed and cold-rolled Nitronic 40 stainless steel during stationary welding, are compared with values predicted from finite-element programs for temperature and strain variations. Experimental and predicted temperature histories agree within 10%. Predicted and measured hoop strain profiles (using a moire fringe technique), for the unheated surface are compared, showing significant deviations near the central region. Transient deflection measurements of the unheated specimen surfaces show good agreement with theory during the period the arc is operating. Close agreement in deflection behavior was observed during the cooling portion of the weld cycle for the annealed specimen, whereas substantial deviations occurred for the cold-rolled specimens

  2. Hybrid laser arc welding: State-of-art review

    Science.gov (United States)

    Acherjee, Bappa

    2018-02-01

    Hybrid laser arc welding simultaneously utilizes the arc welding and the laser welding, in a common interaction zone. The synergic effects of laser beam and eclectic arc in the same weld pool results in an increase of welding speed and penetration depth along with the enhancement of gap bridging capability and process stability. This paper presents the current status of this hybrid technique in terms of research, developments and applications. Effort is made to present a comprehensive technical know-how about this process through a systematic review of research articles, industrial catalogues, technical notes, etc. In the introductory part of the review, an overview of the hybrid laser arc welding is presented, including operation principle, process requirements, historical developments, benefits and drawbacks of the process. This is followed by a detailed discussion on control parameters those govern the performance of hybrid laser arc welding process. Thereafter, a report of improvements of performance and weld qualities achieved by using hybrid welding process is presented based on review of several research papers. The succeeding sections furnish the examples of industrial applications and the concluding remarks.

  3. Weld oxide formation on lean duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Westin, E.M. [Outokumpu Stainless, Avesta Research Centre, P.O. Box 74, SE-774 22 Avesta (Sweden)], E-mail: elin.westin@outokumpu.com; Olsson, C.-O.A. [Outokumpu Stainless, Avesta Research Centre, P.O. Box 74, SE-774 22 Avesta (Sweden); Hertzman, S. [Outokumpu Stainless Research Foundation, Brinellvaegen 23, SE-100 44 Stockholm (Sweden)

    2008-09-15

    Weld oxides have a strong influence on corrosion resistance, but have hitherto only been studied to a limited extent for duplex stainless steels. X-ray photoelectron spectroscopy (XPS) has here been used to study heat tint formed on gas tungsten arc (GTA) welds on the commercial duplex grades LDX 2101 (EN 1.4162/UNS S32101) and 2304 (EN 1.4362/UNS S32304) welded with and without nitrogen additions to the shielding gas. The process of heat tint formation is discussed in terms of transport phenomena to explain the effect of atmosphere, temperature and composition. The oxides formed were found to be enriched in manganese and corrosion testing shows that nitrogen has a strong influence on the weld oxide. A mechanism is proposed including evaporation from the weld pool and subsequent redeposition.

  4. Weld oxide formation on lean duplex stainless steel

    International Nuclear Information System (INIS)

    Westin, E.M.; Olsson, C.-O.A.; Hertzman, S.

    2008-01-01

    Weld oxides have a strong influence on corrosion resistance, but have hitherto only been studied to a limited extent for duplex stainless steels. X-ray photoelectron spectroscopy (XPS) has here been used to study heat tint formed on gas tungsten arc (GTA) welds on the commercial duplex grades LDX 2101 (EN 1.4162/UNS S32101) and 2304 (EN 1.4362/UNS S32304) welded with and without nitrogen additions to the shielding gas. The process of heat tint formation is discussed in terms of transport phenomena to explain the effect of atmosphere, temperature and composition. The oxides formed were found to be enriched in manganese and corrosion testing shows that nitrogen has a strong influence on the weld oxide. A mechanism is proposed including evaporation from the weld pool and subsequent redeposition

  5. Globalization of Japanese steel industry. Part 2. Welding materials; Tekkogyo no kokusaika. 2. Yozai

    Energy Technology Data Exchange (ETDEWEB)

    Aida, I. [Kobe Steel, Ltd., Kobe (Japan)

    1995-01-01

    This paper mainly discusses the current status and problems of arc welding materials. The domestic production of welding materials has decreased. The recent trend of demand is characterized by the change of form make-up of welding materials. Various technologies for welding materials and their operation in Japan have developed with the progress of steel materials. The high quality and high-grade welding technologies, highly efficient production processes, laborsaving, and robotization have been promoted in various fields. In response to the rapid strong yen, quality and cost have to be further pursued, and amenity and cleanliness of welding have to be realized. The welding technologies have to be developed for large structures, such as ultra high-rise buildings, energy and chemical plants, ships, marine structures, etc. For the welding materials which are applied to robots and robot systems, obstruction factors for the operation have to be removed, which include the unsteady arc, re-arc badness, spattering, wear of chip, slag formation, etc. These measures promote the globalization of welding materials. 17 refs., 4 figs.

  6. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Science.gov (United States)

    García-Rentería, M. A.; López-Morelos, V. H.; García-Hernández, R.; Dzib-Pérez, L.; García-Ochoa, E. M.; González-Sánchez, J.

    2014-12-01

    The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O2 (M1) and 97% Ar + 3% N2 (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  7. Interactions between laser and arc plasma during laser-arc hybrid welding of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Chen, Minghua

    2011-09-01

    This paper presents the results of the investigation on the interactions between laser and arc plasma during laser-arc hybrid welding on magnesium alloy AZ31B using the spectral diagnose technique. By comparably analyzing the variation in plasma information (the shape, the electron temperature and density) of single tungsten inert gas (TIG) welding with the laser-arc hybrid welding, it is found that the laser affects the arc plasma through the keyhole forming on the workpiece. Depending on the welding parameters there are three kinds of interactions taking place between laser and arc plasma.

  8. MAGNETIC ARC WELDING STABILIZATION USING NON-CONSUMABLE ELECTRODE

    Directory of Open Access Journals (Sweden)

    Павло Юрійович Сидоренко

    2017-06-01

    Full Text Available Results of development torch to magnetically operated   welding arc are defined. Changing the design of the electrode unit is provided the ability to create within the area of the arc magnetic field and induction given configuration without additional equipment. The features of the arc in an axial magnetic field which make it possible to avoid the welding process of unsteady abnormalities resulted in the inappropriate formation of defects in welds. Significant increase in the depth of  weld penetration is connected with the more concentrated magnetically operated   welding arc transmission energy to the product. It is concluded about the feasibility of using a designed torch for the implementation of modern technological processes non-consumable electrode welding.

  9. [Study on the arc spectral information for welding quality diagnosis].

    Science.gov (United States)

    Li, Zhi-Yong; Gu, Xiao-Yan; Li, Huan; Yang, Li-Jun

    2009-03-01

    Through collecting the spectral signals of TIG and MIG welding arc with spectrometer, the arc light radiations were analyzed based on the basic theory of plasma physics. The radiation of welding arc distributes over a broad range of frequency, from infrared to ultraviolet. The arc spectrum is composed of line spectra and continuous spectra. Due to the variation of metal density in the welding arc, there is great difference between the welding arc spectra of TIG and MIG in both their intensity and distribution. The MIG welding arc provides more line spectra of metal and the intensity of radiation is greater than TIG. The arc spectrum of TIG welding is stable during the welding process, disturbance factors that cause the spectral variations can be reflected by the spectral line related to the corresponding element entering the welding arc. The arc spectrum of MIG welding will fluctuate severely due to droplet transfer, which produces "noise" in the line spectrum aggregation zone. So for MIG welding, the spectral zone lacking spectral line is suitable for welding quality diagnosis. According to the characteristic of TIG and MIG, special spectral zones were selected for welding quality diagnosis. For TIG welding, the selected zone is in ultraviolet zone (230-300 nm). For MIG welding, the selected zone is in visible zone (570-590 nm). With the basic theory provided for welding quality diagnosis, the integral intensity of spectral signal in the selected zone of welding process with disturbing factor was studied to prove the theory. The results show that the welding quality and disturbance factors can be diagnosed with good signal to noise ratio in the selected spectral zone compared with signal in other spectral zone. The spectral signal can be used for real-time diagnosis of the welding quality.

  10. Repair welding of cracked steam turbine blades using austenitic and martensitic stainless-steel consumables

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    2001-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER 316L austenitic and ER 410 martensitic stainless-steel filler wire. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post-weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microsturctural examination. After various trials using different procedures, the procedure of local PWHT (and preheating when using martensitic stainless-steel filler wire) using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld was found to give the most satisfactory results. These procedures have been developed and/or applied for repair welding of cracked blades in steam turbines

  11. Soudage hybride Laser-MAG d'un acier Hardox® Hybrid Laser Arc Welding of a Hardox® steel

    Directory of Open Access Journals (Sweden)

    Chaussé Fabrice

    2013-11-01

    Full Text Available Le soudage hybride laser-MAG est un procédé fortement compétitif par rapport aux procédés conventionnels notamment pour le soudage de fortes épaisseurs et les grandes longueurs de soudure. Il connait de ce fait un développement important dans l'industrie. La présente étude s'est portée sur la soudabilité de l'acier Hardox® par ce procédé. Un large panel de techniques de caractérisation a été employé (mesures thermiques, radiographie X, duretés Vickers, macrographie…. L'objectif étant de déterminer l'influence des paramètres du procédé sur la qualité de la soudure et d'étendre notre compréhension des phénomènes se déroulant lors de ce type de soudage. Hybrid Laser Arc Welding (HLAW technology is a highly competitive metal joining process especially when high productivity is needed and for the welding of thick plates. It is a really new technology but its implementation in industry accelerates thanks to recent improvements of high power laser equipment and development of integrated hybrid welding heads. This study focuses on weldability of Hardox® 450 steel by HLAW. Welding tests were conducted by making critical process parameters vary. Then a large panel of characterization techniques (X-Ray radiography, macroscopic examination and hardness mapping was used to determine process parameters influence on weldability of Hardox 450® Steel.

  12. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    Science.gov (United States)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  13. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    International Nuclear Information System (INIS)

    Toropchin, A; Frolov, V; Pipa, A V; Kozakov, R; Uhrlandt, D

    2014-01-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results

  14. Effects of multi-pass arc welding on mechanical properties of carbon steel C25 plate

    International Nuclear Information System (INIS)

    Adedayo, S.M.; Babatunde, A.S.

    2013-01-01

    The effects of multi-pass welding on mechanical properties of C25 carbon steel plate were examined. Mild steel plate workpieces of 90 x 55 mm 2 area and 10 mm thickness with a 30 degrees vee weld-grooves were subjected to single and multi-pass welding. Toughness, hardness and tensile tests of single and multi-pass welds were conducted. Toughness values of the welds under double pass welds were higher than both single pass and unwelded alloy, at respective maximum values of 2464, 2342 and 2170 kN/m. Hardness values were reduced under double pass relative to single pass welding with both being lower than the value for unwelded alloy; the values were 40.5, 43.2 and 48.5 Rs respectively at 12 mm from the weld line. The tensile strength of 347 N/mm 2 under multi-pass weld was higher than single pass weld with value of 314 N/mm 2 . Therefore, the temperature distribution and apparent pre-heating during multi-pass welding increased the toughness and tensile strength of the weldments, but reduced the hardness. (au)

  15. Study of electric arc welding of castings for nuclear power machine-building

    International Nuclear Information System (INIS)

    Rymkevich, A.I.; Korsunov, P.M.

    1977-01-01

    Mechanical and corrosion-resistance properties are studied of the welded joints of cast billets from steel 00Kh12N3DL by automatic submerged arc welding. It is shown by testing the joints made with preheating up to 100 deg C and subsequent tempering (620 deg C for 25 h + 640 deg C for 16 h) that in the temperature range of 20-350 deg C they possess fairly good strength, ductility, impact viscosity, and corrosion-resistance properties approximating the corresponding characteristics of the base metal. The welding technology developed can be used to make pump casings for atomic power equipment

  16. Studies on Fusion Welding of High Nitrogen Stainless Steel: Microstructure, Mechanical and corrosion Behaviour

    Science.gov (United States)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    An attempt has been made in the present investigation to weld high nitrogen steel of 5mm thick plates using various process i.e., shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and autogenous electron beam welding (EBW) process. Present work is aimed at studying the microstructural changes and its effects on mechanical properties and corrosion resistance. Microstructure is characterized by optical, scanning electron microscopy and electron back scattered diffraction technique. Vickers hardness, tensile properties, impact toughness and face bend ductility testing of the welds was carried out. Pitting corrosion resistance of welds was determined using potentio-dynamic polarization testing in 3.5%NaCl solution. Results of the present investigation established that SMA welds made using Cr-Mn-N electrode were observed to have a austenite dendritic grain structure in the weld metal and is having poor mechanical properties but good corrosion resistance. GTA welds made using 18Ni (MDN 250) filler wire were observed to have a reverted austenite in martensite matrix of the weld metal and formation of unmixed zone at the fusion boundary which resulted in better mechanical properties and poor corrosion resistance. Fine grains and uniform distribution of delta ferrite in the austenite matrix and narrow width of weld zone are observed in autogeneous electron beam welds. A good combination of mechanical properties and corrosion resistance was achieved for electron beam welds of high nitrogen steel when compared to SMA and GTA welds.

  17. Microstructure and mechanical characteristics of a laser welded joint in SA508 nuclear pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Wei, E-mail: wei.guo-2@manchester.ac.uk [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom); Dong, Shiyun [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom); Institute of Laser Engineering, Beijing University of Technology, Beijing 100124 (China); Guo, Wei; Francis, John A.; Li, Lin [Laser Processing Research Centre, School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester, M13 9 PL (United Kingdom)

    2015-02-11

    SA508 steels are typically used in civil nuclear reactors for critical components such as the reactor pressure vessel. Nuclear components are commonly joined using arc welding processes, but with design lives for prospective new build projects exceeding 60 years, new welding technologies are being sought. In this exploratory study, for the first time, autogenous laser welding was carried out on 6 mm thick SA508 Cl.3 steel sheets using a 16 kW fiber laser system operating at a power of 4 kW. The microstructure and mechanical properties (including microhardness, tensile strength, elongation, and Charpy impact toughness) were characterized and the microstructures were compared with those produced through arc welding. A three-dimensional transient model based on a moving volumetric heat source model was also developed to simulate the laser welding thermal cycles in order to estimate the cooling rates included by the process. Preliminary results suggest that the laser welding process can produce welds that are free of macroscopic defects, while the strength and toughness of the laser welded joint in this study matched the values that were obtained for the parent material in the as-welded condition.

  18. Effect of beam oscillation on borated stainless steel electron beam welds

    Energy Technology Data Exchange (ETDEWEB)

    RajaKumar, Guttikonda [Tagore Engineering College, Chennai (India). Dept. of Mechanical Engineering; Ram, G.D. Janaki [Indian Institute of Technology (IIT), Chennai (India). Dept. of Metallurgical and Materials Engineering; Rao, S.R. Koteswara [SSN College of Engineering, Chennai (India). Mechanical Engineering

    2015-07-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  19. Effect of beam oscillation on borated stainless steel electron beam welds

    International Nuclear Information System (INIS)

    RajaKumar, Guttikonda; Ram, G.D. Janaki; Rao, S.R. Koteswara

    2015-01-01

    Borated stainless steels are used in nuclear power plants to control neutron criticality in reactors as control rods, shielding material, spent fuel storage racks and transportation casks. In this study, bead on plate welds were made using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Electron beam welds made using beam oscillation technique exhibited higher tensile strength values compared to that of GTA welds. Electron beam welds were found to show fine dendritic microstructure while GTA welds exhibited larger dendrites. While both processes produced defect free welds, GTA welds are marked by partially melted zone (PMZ) where the hardness is low. EBW obviate the PMZ failure due to low heat input and in case of high heat input GTA welding process failure occurs in the PMZ.

  20. Optical Arc-Length Sensor For TIG Welding

    Science.gov (United States)

    Smith, Matthew A.

    1990-01-01

    Proposed subsystem of tungsten/inert-gas (TIG) welding system measures length of welding arc optically. Viewed by video camera, in one of three alternative optical configurations. Length of arc measured instead of inferred from voltage.

  1. X-Ray diffraction technique applied to study of residual stresses after welding of duplex stainless steel plates

    International Nuclear Information System (INIS)

    Monin, Vladimir Ivanovitch; Assis, Joaquim Teixeira de; Lopes, Ricardo Tadeu; Turibus, Sergio Noleto; Payao Filho, Joao C.

    2014-01-01

    Duplex stainless steel is an example of composite material with approximately equal amounts of austenite and ferrite phases. Difference of physical and mechanical properties of component is additional factor that contributes appearance of residual stresses after welding of duplex steel plates. Measurements of stress distributions in weld region were made by X-ray diffraction method both in ferrite and austenite phases. Duplex Steel plates were joined by GTAW (Gas Tungsten Arc Welding) technology. There were studied longitudinal and transverse stress components in welded butt joint, in heat affected zone (HAZ) and in points of base metal 10 mm from the weld. Residual stresses measured in duplex steel plates jointed by welding are caused by temperature gradients between weld zone and base metal and by difference of thermal expansion coefficients of ferrite and austenite phases. Proposed analytical model allows evaluating of residual stress distribution over the cross section in the weld region. (author)

  2. Prediction of Weld Penetration in FCAW of HSLA steel using Artificial Neural Networks

    International Nuclear Information System (INIS)

    Asl, Y. Dadgar; Mostafa, N. B.; Panahizadeh, V. R.; Seyedkashi, S. M. H.

    2011-01-01

    Flux-cored arc welding (FCAW) is a semiautomatic or automatic arc welding process that requires a continuously-fed consumable tubular electrode containing a flux. The main FCAW process parameters affecting the depth of penetration are welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed. Shallow depth of penetration may contribute to failure of a welded structure since penetration determines the stress-carrying capacity of a welded joint. To avoid such occurrences; the welding process parameters influencing the weld penetration must be properly selected to obtain an acceptable weld penetration and hence a high quality joint. Artificial neural networks (ANN), also called neural networks (NN), are computational models used to express complex non-linear relationships between input and output data. In this paper, artificial neural network (ANN) method is used to predict the effects of welding current, arc voltage, nozzle-to-work distance, torch angle and welding speed on weld penetration depth in gas shielded FCAW of a grade of high strength low alloy steel. 32 experimental runs were carried out using the bead-on-plate welding technique. Weld penetrations were measured and on the basis of these 32 sets of experimental data, a feed-forward back-propagation neural network was created. 28 sets of the experiments were used as the training data and the remaining 4 sets were used for the testing phase of the network. The ANN has one hidden layer with eight neurons and is trained after 840 iterations. The comparison between the experimental results and ANN results showed that the trained network could predict the effects of the FCAW process parameters on weld penetration adequately.

  3. Metallurgy and mechanical properties variation with heat input,during dissimilar metal welding between stainless and carbon steel

    Science.gov (United States)

    Ramdan, RD; Koswara, AL; Surasno; Wirawan, R.; Faturohman, F.; Widyanto, B.; Suratman, R.

    2018-02-01

    The present research focus on the metallurgy and mechanical aspect of dissimilar metal welding.One of the common parameters that significantly contribute to the metallurgical aspect on the metal during welding is heat input. Regarding this point, in the present research, voltage, current and the welding speed has been varied in order to observe the effect of heat input on the metallurgical and mechanical aspect of both welded metals. Welding was conducted by Gas Metal Arc Welding (GMAW) on stainless and carbon steel with filler metal of ER 309. After welding, hardness test (micro-Vickers), tensile test, macro and micro-structure characterization and Energy Dispersive Spectroscopy (EDS) characterization were performed. It was observed no brittle martensite observed at HAZ of carbon steel, whereas sensitization was observed at the HAZ of stainless steel for all heat input variation at the present research. Generally, both HAZ at carbon steel and stainless steel did not affect tensile test result, however the formation of chromium carbide at the grain boundary of HAZ structure (sensitization) of stainless steel, indicate that better process and control of welding is required for dissimilar metal welding, especially to overcome this issue.

  4. Microstructural Characterization of the Heat-Affected Zones in Grade 92 Steel Welds: Double-Pass and Multipass Welds

    Science.gov (United States)

    Xu, X.; West, G. D.; Siefert, J. A.; Parker, J. D.; Thomson, R. C.

    2018-04-01

    The microstructure in the heat-affected zone (HAZ) of multipass welds typical of those used in power plants and made from 9 wt pct chromium martensitic Grade 92 steel is complex. Therefore, there is a need for systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds manufactured using the traditional arc welding processes in order to understand possible failure mechanisms after long-term service. In this study, the microstructure in the HAZ of an as-fabricated two-pass bead-on-plate weld on a parent metal of Grade 92 steel has been systematically investigated and compared to a complex, multipass thick section weldment using an extensive range of electron and ion-microscopy-based techniques. A dilatometer has been used to apply controlled thermal cycles to simulate the microstructures in distinctly different regions in a multipass HAZ using sequential thermal cycles. A wide range of microstructural properties in the simulated materials were characterized and compared with the experimental observations from the weld HAZ. It has been found that the microstructure in the HAZ can be categorized by a combination of sequential thermal cycles experienced by the different zones within the complex weld metal, using the terminology developed for these regions based on a simpler, single-pass bead-on-plate weld, categorized as complete transformation, partial transformation, and overtempered.

  5. Analysis of weld-cracking and improvement of the weld-repair process of superplastic forming tools

    International Nuclear Information System (INIS)

    Duchosal, A.; Deschaux-Beaume, F.; Lours, P.; Haro, S.; Fras, G.

    2013-01-01

    Highlights: ► Characterisation of the microstructure of a heat-resistant austenitic cast steel. ► Failure analysis using in situ tensile tests and isothermal fatigue tests. ► Analyses of weld cracking mechanism during shielded metal arc welding process. ► Improvement of weld-repair method by re-melting of the base material surface with GTAW process. - Abstract: Superplastic forming (SPF) dies are generally made of using heat resistant cast steels, which are very sensitive to weld cracking. In order to improve the weld-repair process of such dies to prevent weld-cracking, the microstructure and the mechanical behaviour of a typical heat-resistant cast steel was first studied, using isothermal low-cycle fatigue tests and in situ tensile tests. The welding behaviour of such steel was also investigated, using a shielded metal arc welding (SMAW) process and welding conditions similar to those employed for weld repair industrial dies. The comparison of the aspect of weld-cracking with the fracture mechanisms observed at room temperature or during isothermal low-cycle fatigue tests suggests a similar brittle failure mechanism, due to the presence of large interdendritic carbides in the cast steel. The melting of the cast steel surface using a gas tungsten arc welding (GTAW) process allowed to refine the primary carbides, and then to reduce the weld-cracking sensitivity. The refining method with GTAW before welding has been successfully tested to weld-repair a sample representative of SPF dies, and is recommended for subsequent repairs of such dies

  6. Analysis and application of GEWI sleeve weld-ability (Material: C45)

    International Nuclear Information System (INIS)

    Zhang Weiming; Zhang Hongliu

    2010-01-01

    Welding may use two kinds of welding process of shielded metal arc welding and CO 2 shielded arc welding between inner ring in nuclear island steel lining (material: P265GH) and GEWI sleeve (material:C45).CO 2 shielded arc welding is often used because of higher welding efficiency, in particular, in condition of plan press, but quality can come into being some problems if we lack strict measures, for example welding procedure. Shielded metal arc welding control easier quality, but welding efficiency is lower. Comparing and analyzing Weld-ability of C45(Medium carbon Quenched and Tempered Steel.) between of shielded metal arc welding and CO 2 shielded arc welding, suggest to use shielded metal arc welding in project practice, and control strict welding procedure measure of pre-heating treatment and Post-heating. (authors)

  7. Fracture toughness and crack growth resistance of pressure vessel plate and weld metal steels

    International Nuclear Information System (INIS)

    Moskovic, R.

    1988-01-01

    Compact tension specimens were used to measure the initiation fracture toughness and crack growth resistance of pressure vessel steel plates and submerged arc weld metal. Plate test specimens were manufactured from four different casts of steel comprising: aluminium killed C-Mn-Mo-Cu and C-Mn steel and two silicon killed C-Mn steels. Unionmelt No. 2 weld metal test specimens were extracted from welds of double V butt geometry having either the C-Mn-Mo-Cu steel (three weld joints) or one particular silicon killed C-Mn steel (two weld joints) as parent plate. A multiple specimen test technique was used to obtain crack growth data which were analysed by simple linear regression to determine the crack growth resistance lines and to derive the initiation fracture toughness values for each test temperature. These regression lines were highly scattered with respect to temperature and it was very difficult to determine precisely the temperature dependence of the initiation fracture toughness and crack growth resistance. The data were re-analysed, using a multiple linear regression method, to obtain a relationship between the materials' crack growth resistance and toughness, and the principal independent variables (temperature, crack growth, weld joint code and strain ageing). (author)

  8. Grain refinement control in TIG arc welding

    Science.gov (United States)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  9. Influence of nitrogen in the shielding gas on corrosion resistance of duplex stainless steel welds

    Science.gov (United States)

    Bhatt, R. B.; Kamat, H. S.; Ghosal, S. K.; de, P. K.

    1999-10-01

    The influence of nitrogen in shielding gas on the corrosion resistance of welds of a duplex stainless steel (grade U-50), obtained by gas tungsten arc (GTA) with filler wire, autogenous GTA (bead-on-plate), electron beam welding (EBW), and microplasma techniques, has been evaluated in chloride solutions at 30 °C. Pitting attack has been observed in GTA, electron beam welding, and microplasma welds when welding has been carried out using pure argon as the shielding gas. Gas tungsten arc welding with 5 to 10% nitrogen and 90 to 95% argon, as the shielding gas, has been found to result in an improved pitting corrosion resistance of the weldments of this steel. However, the resistance to pitting of autogenous welds (bead-on-plate) obtained in pure argon as the shielding gas has been observed to remain unaffected. Microscopic examination, electron probe microanalysis (EPMA), and x-ray diffraction studies have revealed that the presence of nitrogen in the shielding gas in the GTA welds not only modifies the microstructure and the austenite to ferrite ratio but also results in a nearly uniform distribution of the various alloying elements, for example, chromium, nickel, and molybdenum among the constitutent phases, which are responsible for improved resistance to pitting corrosion.

  10. A comparative evaluation of microstructural and mechanical behavior of fiber laser beam and tungsten inert gas dissimilar ultra high strength steel welds

    Directory of Open Access Journals (Sweden)

    Jaiteerth R. Joshi

    2016-12-01

    Full Text Available The influence of different welding processes on the mechanical properties and the corresponding variation in the microstructural features have been investigated for the dissimilar weldments of 18% Ni maraging steel 250 and AISI 4130 steel. The weld joints are realized through two different fusion welding processes, tungsten inert arc welding (TIG and laser beam welding (LBW, in this study. The dissimilar steel welds were characterized through optical microstructures, microhardness survey across the weldment and evaluation of tensile properties. The fiber laser beam welds have demonstrated superior mechanical properties and reduced heat affected zone as compared to the TIG weldments.

  11. Microstructure-property relationship in microalloyed high-strength steel welds

    International Nuclear Information System (INIS)

    Zhang, Lei

    2017-01-01

    was joined by using the same filler material. The fused weld metal was influenced by the high dilution of microalloyed elements in the base metal, this was significantly pronounced during the modified spray arc welding technique. As a result, the Nb-containing steel exhibited sufficient amounts of alloy pick-up to transition the microstructure in the weld metal from acicular ferrite to bainite as cooling rate was increased, leading to reduced toughness. This was not observed with the other two steels. A second focus was made on the microstructure Evolution and toughness properties of the coarse and fine grained HAZ as welding parameters changed. In order to characterise the microstructure and austenite grain growth behaviour, physical simulations were conducted. The microalloy precipitates were found to be a dominant factor restricting the austenite grain coarsening. The extent of Austenite coarsening in the HAZ is closely related to the type and volume fraction of each microalloy precipitate. Among the three steels, the Ti-containing HAZ exhibited the smallest extent of grain growth due to the sufficient amount of stable Ti-rich precipitates. Microalloy Addition also markedly influenced the subsequent phase transformation in the HAZ. The formation of intragranular acicular ferrite was promoted by Ti-rich precipitate, acting as favourable nucleation sites of ferrite. This structure enhanced the HAZ toughness owing to fine, high-angle boundaries of ferrite plates. The synergistic effect of Nb and Mo elements was beneficial to improve the HAZ toughness at fast cooling rates by promoting fine lower bainite formation. At high heat input, large upper bainite was formed which caused reduced toughness. The final set of experimental work was concentrated on understanding the HAZ softening mechanisms that influenced variations in the tensile properties of the welded joints. The tensile failure in the softened HAZ or base material depended on the welding parameters and the type

  12. Microstructure-property relationship in microalloyed high-strength steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei

    2017-04-01

    was joined by using the same filler material. The fused weld metal was influenced by the high dilution of microalloyed elements in the base metal, this was significantly pronounced during the modified spray arc welding technique. As a result, the Nb-containing steel exhibited sufficient amounts of alloy pick-up to transition the microstructure in the weld metal from acicular ferrite to bainite as cooling rate was increased, leading to reduced toughness. This was not observed with the other two steels. A second focus was made on the microstructure Evolution and toughness properties of the coarse and fine grained HAZ as welding parameters changed. In order to characterise the microstructure and austenite grain growth behaviour, physical simulations were conducted. The microalloy precipitates were found to be a dominant factor restricting the austenite grain coarsening. The extent of Austenite coarsening in the HAZ is closely related to the type and volume fraction of each microalloy precipitate. Among the three steels, the Ti-containing HAZ exhibited the smallest extent of grain growth due to the sufficient amount of stable Ti-rich precipitates. Microalloy Addition also markedly influenced the subsequent phase transformation in the HAZ. The formation of intragranular acicular ferrite was promoted by Ti-rich precipitate, acting as favourable nucleation sites of ferrite. This structure enhanced the HAZ toughness owing to fine, high-angle boundaries of ferrite plates. The synergistic effect of Nb and Mo elements was beneficial to improve the HAZ toughness at fast cooling rates by promoting fine lower bainite formation. At high heat input, large upper bainite was formed which caused reduced toughness. The final set of experimental work was concentrated on understanding the HAZ softening mechanisms that influenced variations in the tensile properties of the welded joints. The tensile failure in the softened HAZ or base material depended on the welding parameters and the type

  13. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Sam, Shiju, E-mail: shiju@ipr.res.in [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India); Das, C.R.; Ramasubbu, V.; Albert, S.K.; Bhaduri, A.K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Rajendra Kumar, E. [Institute for Plasma Research, Gandhinagar, Gujarat 382 428 (India)

    2014-12-15

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  14. Evaluation of weld defects in stainless steel 316L pipe using guided wave

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Hyun [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of); Lee, Jin Kyung [Dept. of Mechanical Engineering, Dongeui University, Busan (Korea, Republic of)

    2015-02-15

    Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

  15. Generation rate of carbon monoxide from CO2 arc welding.

    Science.gov (United States)

    Ojima, Jun

    2013-01-01

    CO poisoning has been a serious industrial hazard in Japanese workplaces. Although incomplete combustion is the major cause of CO generation, there is a risk of CO poisoning during some welding operations. The aim of the present study was to evaluate the generation rate of CO from CO2 arc welding under controlled laboratory conditions and estimate the ventilation requirements for the prevention of CO poisoning. Bead on plate welding was carried out with an automatic welding robot on a rolled steel base metal under several conditions. The concentration of emitted CO from the welding was measured by a real-time CO monitor in a well-ventilated laboratory that was free from ambient CO contamination. The generation rate of CO was obtained from the three measurements-the flow rate of the welding exhaust gas, CO concentration in the exhaust gas and the arcing time. Then the ventilation requirement to prevent CO poisoning was calculated. The generation rate of CO was found to be 386-883 ml/min with a solid wire and 331-1,293 ml/min with a flux cored wire respectively. It was found that the CO concentration in a room would be maintained theoretically below the OSHA PEL (50 ppm) providing the ventilation rate in the room was 6.6-25.9 m3/min. The actual ventilation requirement was then estimated to be 6.6-259 m3/min considering incomplete mixing. In order to prevent CO poisoning, some countermeasures against gaseous emission as well as welding fumes should be taken eagerly.

  16. Improvement of localised corrosion resistance of AISI 2205 Duplex Stainless Steel joints made by gas metal arc welding under electromagnetic interaction of low intensity

    Energy Technology Data Exchange (ETDEWEB)

    García-Rentería, M.A., E-mail: crazyfim@gmail.com [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); López-Morelos, V.H., E-mail: vhlopez@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); García-Hernández, R., E-mail: rgarcia@umich.mx [Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, A.P. 888, CP 58000, Morelia, Michoacán (Mexico); Dzib-Pérez, L., E-mail: luirdzib@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); García-Ochoa, E.M., E-mail: emgarcia@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico); González-Sánchez, J., E-mail: jagonzal@uacam.mx [Centre for Corrosion Research, Autonomous University of Campeche, Av. Agustín Melgar s/n, Col. Buenavista, CP 24039, Campeche, Cam (Mexico)

    2014-12-01

    Highlights: • Electromagnetic interaction in welding improved localised corrosion resistance. • Electromagnetic interaction in welding enhanced γ/δ phase balance of DuplexSS. • Welding under Electromagnetic interaction repress formation and growth of detrimental phases. • Welds made with gas protection (2% O{sub 2} + 98% Ar) have better microstructural evolution during welding. - Abstract: The resistance to localised corrosion of AISI 2205 duplex stainless steel plates joined by Gas Metal Arc Welding (GMAW) under the effect of electromagnetic interaction of low intensity (EMILI) was evaluated with sensitive electrochemical methods. Welds were made using two shielding gas mixtures: 98% Ar + 2% O{sub 2} (M1) and 97% Ar + 3% N{sub 2} (M2). Plates were welded under EMILI using the M1 gas with constant welding parameters. The modified microstructural evolution in the high temperature heat affected zone and at the fusion zone induced by application of EMILI during welding is associated with the increase of resistance to localised corrosion of the welded joints. Joints made by GMAW using the shielding gas M2 without the application of magnetic field presented high resistance to general corrosion but high susceptibility to undergo localised attack.

  17. Alloying system for cold-resisting high-tensile welds of maraging steels

    International Nuclear Information System (INIS)

    Yushchenko, K.A.; Pustovit, A.I.; Taver, E.I.; Piskarev, M.N.

    1978-01-01

    Studied was the effect of molybdenum (2.2-5%) and chromium (11.3-13.5%) on the structure and properties of welds in steel of the Cr-Ni-Mo-Co-Ti system at heat strengthened condition (hardening, cold treatment, ageing). The welds were made by argon-arc welding process involving a nonconsumable electrode without additives. The welds were tested at temperatures of 20 and -196 deg C. It is pointed out that the welds with a pure martensite structure at -196 deg C have a low ductility and impact strength. To obtain welds having a satisfactory value of impact strength more than 120 kGf/mm 2 at 20 deg C, it is necessary that the metal contains 20...60 % of residual austenite

  18. Effect of welding processes on corrosion resistance of UNS S31803 duplex stainless steel

    International Nuclear Information System (INIS)

    Chiu, Liu Ho; Hsieh, Wen Chin

    2003-01-01

    An attractive combination of corrosion resistance and mechanical properties in the temperature range -50 to 250 .deg. C is offered by duplex stainless steel. However, undesirable secondary precipitation phase such as σ, γ 2 and Cr 2 N may taken place at the cooling stage from the welding processes. Therefore, this paper describes the influence of different welding procedures such as manual metal arc welding (MMA), tungsten inert gas welding (TIG) and vacuum brazing on corrosion resistance of the welded joint for UNS S31803 duplex stainless steel. Microstructure and chemical compositions of the welded joint were examined. The weight loss of specimens immersed in 6% FeCl 3 solution at 47.5 .deg. C for 24-hours was determined and used to evaluate the pitting resistance of duplex stainless steel and their welds. The region of heat-affected zone of specimen obtained by the MMA is much wider than that resulted from TIG, therefore, the weight loss of welds by MMA was larger than that of weld by TIG. The weight loss of brazed specimens cooled from slow cooling rate was larger than those of specimens cooled from high cooling rate, because the precipitation of σ phase. Beside that, the weight loss of brazed specimen is greater than those of the welded specimens. The galvanic corrosion was observed in brazed duplex stainless steel joints in the chloride solution

  19. Estimation of work capacity of welded mounting joints of pipelines of heat resisting steel

    International Nuclear Information System (INIS)

    Gorynin, I.V.; Ignatov, V.A.; Timofeev, B.T.; Blyumin, A.A.

    1982-01-01

    The analysis of a work capacity of circular welds made for the Dsub(y)850 pipeline connection with high pressure vessels of heat resisting steel of the 15Kh1NMFA type has been carried out on the base of test results with small samples and real units. Welds were performed using the manual electric arc welding without the following heat treatment. It has been shown that residual stresses in such welds do not produce an essential effect on the resistance of weld metal and heat affected zone on the formation and developments of cracks

  20. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  1. 29 CFR 1915.56 - Arc welding and cutting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Arc welding and cutting. 1915.56 Section 1915.56 Labor... (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Welding, Cutting and Heating § 1915.56 Arc welding and cutting. The provisions of this section shall apply to ship repairing...

  2. 29 CFR 1926.351 - Arc welding and cutting.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Arc welding and cutting. 1926.351 Section 1926.351 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Welding and Cutting § 1926.351 Arc welding and cutting. (a) Manual electrode holders. (1) Only manual electrode holders which are specifically designed...

  3. Boosting Active Contours for Weld Pool Visual Tracking in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor

    2015-01-01

    Detecting the shape of the non-rigid molten metal during welding, so-called weld pool visual sensing, is one of the central tasks for automating arc welding processes. It is challenging due to the strong interference of the high-intensity arc light and spatters as well as the lack of robust...... approaches to detect and represent the shape of the nonrigid weld pool. We propose a solution using active contours including an prior for the weld pool boundary composition. Also, we apply Adaboost to select a small set of features that captures the relevant information. The proposed method is applied...... to weld pool tracking and the presented results verified its feasibility....

  4. Characterization of Mechanical Properties and Residual Stress in API 5L X80 Steel Welded Joints

    Science.gov (United States)

    de Sousa Lins, Amilton; de Souza, Luís Felipe Guimarães; Fonseca, Maria Cindra

    2018-01-01

    The use of high-strength and low-alloy steels, high design factors and increasingly stringent safety requirements have increased the operating pressure levels and, consequently, the need for further studies to avoid and prevent premature pipe failure. To evaluate the possibility of improving productivity in manual arc welding of this type of steel, this work characterizes the mechanical properties and residual stresses in API 5L X80 steel welded joints using the SMAW and FCAW processes. The residual stresses were analyzed using x-ray diffraction with the sin2 ψ method at the top and root of the welded joints in the longitudinal and transverse directions of the weld bead. The mechanical properties of the welded joints by both processes were characterized in terms of tensile strength, impact toughness and Vickers microhardness in the welded and shot peening conditions. A predominantly compressive residual stress was found, and shot peening increased the tensile strength and impact toughness in both welded joints.

  5. Weld solidification cracking in 304 to 304L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Martinez, Raymond J [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-01-01

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found. This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GT A W showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  6. Weld solidification cracking in 304 to 204L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, Patrick W [Los Alamos National Laboratory; Lienert, Thomas J [Los Alamos National Laboratory; Martinez, Jesse N [Los Alamos National Laboratory; Johnson, Matthew Q [Los Alamos National Laboratory

    2010-09-15

    A series of annulus welds were made between 304 and 304L stainless steel coaxial tubes using both pulsed laser beam welding (LBW) and pulsed gas tungsten arc welding (GTAW). In this application, a change in process from pulsed LBW to pulsed gas tungsten arc welding was proposed to limit the possibility of weld solidification cracking since weldability diagrams developed for GTAW display a greater range of compositions that are not crack susceptible relative to those developed for pulsed LBW. Contrary to the predictions of the GTAW weldability diagram, cracking was found.This result was rationalized in terms of the more rapid solidification rate of the pulsed gas tungsten arc welds. In addition, for the pulsed LBW conditions, the material compositions were predicted to be, by themselves, 'weldable' according to the pulsed LBW weldability diagram. However, the composition range along the tie line connecting the two compositions passed through the crack susceptible range. Microstructurally, the primary solidification mode (PSM) of the material processed with higher power LBW was determined to be austenite (A), while solidification mode of the materials processed with lower power LBW apparently exhibited a dual PSM of both austenite (A) and ferrite-austenite (FA) within the same weld. The materials processed by pulsed GTAW showed mostly primary austenite solidification, with some regions of either primary austenite-second phase ferrite (AF) solidification or primary ferrite-second phase austenite (FA) solidification. This work demonstrates that variations in crack susceptibility may be realized when welding different heats of 'weldable' materials together, and that slight variations in processing can also contribute to crack susceptibility.

  7. Arc pressure control in GTA welding

    International Nuclear Information System (INIS)

    Cook, G.E.; Wells, F.M.; Levick, P.C.

    1986-01-01

    Relationships are established between the peak current of a pulsed, rectangular current waveform and the pulse current duty cycle under conditions of constant arc power. By appropriate choice of these interrelated parameters, it is shown that the arc pressure may be varied over a wide range even though the arc power is held constant. The methodology is suggested as a means of countering the effect of gravity in 5-G welding, while maintaining constant heat input to the weld. Combined with appropriate penetration sensors, the methodology is additionally suggested as a means of controlling penetration

  8. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    International Nuclear Information System (INIS)

    Tusek, J.

    2001-01-01

    The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and high-alloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-of-depends mainly on the type of shielding gas used and the arc length,i. e., from the arc voltage. The manganese burn-off increases with an increase of the content of active gases, i.e., CO 2 and O 2 in the neutral gas i. e., argon. It also increases with an increase in arc voltage. The longer the welding arc, the longer exposition of the filler materials to the welding arc and the wider the penetration, Which allows manganese vapours to evaporate from the weld pool. The most important finding is that manganese burn-off from the 18/8/6 wire during welding of austenitic stainless steel with low-alloy ferritic steel is considerably strong, i.e., from 20% to 30%; nevertheless the wire concerned is perfectly suitable for welding of different types of steel. (Author) 23 refs

  9. Microstructures and mechanical properties of welded joints of novel 3Cr pipeline steel using an inhouse and two commercial welding wires

    International Nuclear Information System (INIS)

    Zhu, Jinyang; Xu, Lining; Chang, Wei; Hu, Lihua; Lu, Minxu

    2014-01-01

    Highlights: • Weldability of novel 3Cr pipeline steel was investigated using two commercial and an inhouse welding wires. • Mechanical properties were measured and microstructure characteristics were observed. • Fracture positions of tensile test just corresponded to the minimum hardness region of the joints. • The inhouse wire R01 can provide the highest cost-performance ratio. - Abstract: The welded joints of the novel 3Cr pipeline steel were fabricated via the gas tungsten arc welding (GTAW) technique using an inhouse welding wire labeled as R01 and two kinds of commercial wires (H08Cr3MoMnA and TGS-2CML). Microhardness, impact toughness and tensile properties of the joints were measured, and microstructure characteristics were observed by scanning electron microscopy (SEM). The results show that under selected welding procedure, the joints of R01 can achieve quite good mechanical properties without preheating and post weld heat treatment (PWHT). After thermal refining, elongation (15.2%) doubled and met the DNV-OS-F101 standard. For low carbon or super low carbon pipeline steels such as 3Cr steel, the revised formula with the carbon applicable coefficient (A(c)) was quite good for predicting the maximum hardness in heat affected zone (HAZ). Compared with these two selected commercial wires, the inhouse welding wire R01 can provide the highest cost-performance ratio

  10. Resistance Spot Welding of dissimilar Steels

    Directory of Open Access Journals (Sweden)

    Ladislav Kolařík

    2012-01-01

    Full Text Available This paper presents an analysis of the properties of resistance spot welds between low carbon steel and austenitic CrNi stainless steel. The thickness of the welded dissimilar materials was 2 mm. A DeltaSpot welding gun with a process tape was used for welding the dissimilar steels. Resistance spot welds were produced with various welding parameters (welding currents ranging from 7 to 8 kA. Light microscopy, microhardness measurements across the welded joints, and EDX analysis were used to evaluate the quality of the resistance spot welds. The results confirm the applicability of DeltaSpot welding for this combination of materials.

  11. Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750

    International Nuclear Information System (INIS)

    Tavares, S.S.M.; Pardal, J.M.; Lima, L.D.; Bastos, I.N.; Nascimento, A.M.; Souza, J.A. de

    2007-01-01

    The superduplex stainless steels have an austeno-ferritic microstructure with an average fraction of each phase of approximately 50%. This duplex microstructure improves simultaneously the mechanical properties and corrosion resistance. Welding of these steels is often a critical operation. In this paper we focus on characterization and analysis of a multipass weld joint of UNS S32750 steel prepared using welding conditions equal to industrial standards. The toughness and corrosion resistance properties of the base metal, root pass welded with gas tungsten arc welding, as well as the filler passes, welded with shielded metal arc welding, were evaluated. The microstructure and chemical composition of the selected areas were also determined and correlated to the corrosion and mechanical properties. The root pass was welded with low nickel filler metal and, as a consequence, presented low austenite content and significant precipitation. This precipitation is reflected in the corrosion and mechanical properties. The filler passes presented an adequate ferrite:austenite proportion but, due to their high oxygen content, the toughness was lower than that of the root pass. Corrosion properties were evaluated by cyclic polarization tests in 3.5% NaCl and H 2 SO 4 media

  12. Influence of heat input on weld bead geometry using duplex stainless steel wire electrode on low alloy steel specimens

    Directory of Open Access Journals (Sweden)

    Ajit Mondal

    2016-12-01

    Full Text Available Gas metal arc welding cladding becomes a popular surfacing technique in many modern industries as it enhances effectively corrosion resistance property and wear resistance property of structural members. Quality of weld cladding may be enhanced by controlling process parameters. If bead formation is found acceptable, cladding is also expected to be good. Weld bead characteristics are often assessed by bead geometry, and it is mainly influenced by heat input. In this paper, duplex stainless steel E2209 T01 is deposited on E250 low alloy steel specimens with 100% CO2 gas as shielding medium with different heats. Weld bead width, height of reinforcement and depth of penetration are measured. Regression analysis is done on the basis of experimental data. Results reveal that within the range of bead-on-plate welding experiments done, parameters of welding geometry are on the whole linearly related with heat input. A condition corresponding to 0.744 kJ/mm heat input is recommended to be used for weld cladding in practice.

  13. Evaluation of Distortion in Welding Unions of 304 Stainless Steel with Elliptic Trajectory Using a Welding Robot

    Science.gov (United States)

    Carrasco-González, L. A.; Hurtado-Delgado, E.; Reyes-Valdés, F. A.

    The aim of this investigation is to evaluate the distortions generated in welding unions of stainless steel 304 by effect of the welding temperature and the microestructural changes. The joint design is a 100 × 100 mm steel plate of 3 mm thickness. The plate was joined to a tube of 50 mm diameter and 2 mm thickness, which has a defined angular cut; therefore, the trajectory followed by the seam has an elliptic form. Temperature data acquisition was developed by type K thermocouples, placed in pairs at 0°, 90°, 180° and 270° along the welding trajectory and connected to a data acquisition device yo obtain the measures to generate time-temperature plots. The welding process was executed by a KUKA ®; KR16 welding robot with an integrated GMAW (Gas metal arc welding) process where the input parameters of voltage, wire feed and travel speed are set to constant. The distortion of the work piece was measured using a laser scanning technique that generates a point cloud with the VXelements TM software for comparison between the pre and post-weld condition. Microstructural evaluation was performed on transversal sections of the seam, at the mentioned angles for correlation.

  14. Electromagnetic characteristic of twin-wire indirect arc welding

    Science.gov (United States)

    Shi, Chuanwei; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires: one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 μN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

  15. The influence of electric ARC activation on the speed of heating and the structure of metal in welds

    Directory of Open Access Journals (Sweden)

    Savytsky Oleksandr M.

    2016-01-01

    Full Text Available This paper presents the results of a research related to the impact of electric arc activation onto drive welding energy and metal weld heating speed. It is confirmed that ATIG and AMIG methods, depending on metal thickness, single pass weldability and chemical composition of activating flux, enable the reduction of welding energy by 2-6 times when compared to conventional welding methods. Additionally, these procedures create conditions to increase metal weld heating speed up to 1,500-5,500°C/s-1. Steel which can be rapidly heated, allows for a hardened structure to form (with carbon content up to 0.4%, together with a released martensitic structure or a mixture of bainitic-martensitic structures. Results of the research of effectiveness of ATIG and AMIG welding showed that increase in the penetration capability of electric arc, which increases welding productivity, is the visible side of ATIG and AMIG welding capabilities.

  16. Corrosion of carbon steel welds

    International Nuclear Information System (INIS)

    Daniel, B.

    1988-09-01

    This report assesses the factors which cause preferential attack to occur in carbon steel fusion welds. It was concluded that the main factors were: the inclusion content of the weld metal, the potential of the weld metal being less noble than that of the parent, and the presence of low-temperature transformation products in the heat-affected zone of the weld. These factors should be minimized or eliminated as appropriate so that the corrosion allowances determined for carbon steel waste drums is also adequate for the welds. An experimental/theoretical approach is recommended to evaluate the relative corrosion resistance of welds prepared from BS 4360 grade 43A steel to that of the parent material. (author)

  17. Multi-objective Optimization of Pulsed Gas Metal Arc Welding Process Using Neuro NSGA-II

    Science.gov (United States)

    Pal, Kamal; Pal, Surjya K.

    2018-05-01

    Weld quality is a critical issue in fabrication industries where products are custom-designed. Multi-objective optimization results number of solutions in the pareto-optimal front. Mathematical regression model based optimization methods are often found to be inadequate for highly non-linear arc welding processes. Thus, various global evolutionary approaches like artificial neural network, genetic algorithm (GA) have been developed. The present work attempts with elitist non-dominated sorting GA (NSGA-II) for optimization of pulsed gas metal arc welding process using back propagation neural network (BPNN) based weld quality feature models. The primary objective to maintain butt joint weld quality is the maximization of tensile strength with minimum plate distortion. BPNN has been used to compute the fitness of each solution after adequate training, whereas NSGA-II algorithm generates the optimum solutions for two conflicting objectives. Welding experiments have been conducted on low carbon steel using response surface methodology. The pareto-optimal front with three ranked solutions after 20th generations was considered as the best without further improvement. The joint strength as well as transverse shrinkage was found to be drastically improved over the design of experimental results as per validated pareto-optimal solutions obtained.

  18. Effects of microplasma arc AISI 316L welds on the corrosion behaviour of pipelines in LiBr cooling systems

    International Nuclear Information System (INIS)

    Sánchez-Tovar, R.; Montañés, M.T.; García-Antón, J.

    2013-01-01

    Highlights: •SECM tests reveal differences in electrochemical activity of base and welded alloys. •The highest electrochemical activity is obtained for the welded alloy. •Microplasma arc welding process hinders passivation in lithium bromide. •Microplasma arc welding increases corrosion rate and susceptibility to pitting. •The galvanic pair between base and welded alloys in LiBr is weak. -- Abstract: The effect of microplasma arc welding (MPAW) on the electrochemical and corrosion behaviour of AISI 316L stainless steel tubes has been studied. Scanning electrochemical measurements were performed in sodium chloride to evaluate the difference in the electrochemical activity of base (non-welded) and welded samples. Oxygen reduction rates increase in AISI 316L due to the heat treatment effect induced by welding, indicating a higher electrochemical activity in the welded samples. Additionally, the use of MPA weldments in lithium bromide (LiBr) absorption machines was also analysed at typical operating temperatures and Reynolds numbers. The welding process increases corrosion rates, hinders passivation and increases the susceptibility to pitting attack in LiBr. However, zero-resistance ammeter and localization index measurements show that the galvanic pair generated between the base and welded alloys is weak, both electrodes being in their passive state. Temperature greatly affects the corrosion process

  19. Shielding Gas and Heat Input Effects on the Mechanical and Metallurgical Characterization of Gas Metal Arc Welding of Super Martensitic Stainless Steel (12Cr5Ni2Mo) Joints

    Science.gov (United States)

    Prabakaran, T.; Prabhakar, M.; Sathiya, P.

    This paper deals with the effects of shielding gas mixtures (100% CO2, 100% Ar and 80 % Ar + 20% CO2) and heat input (3.00, 3.65 and 4.33kJ/mm) on the mechanical and metallurgical characteristics of AISI 410S (American Iron and Steel Institute) super martensitic stainless steel (SMSS) by gas metal arc welding (GMAW) process. AISI 410S SMSS with 1.2mm diameter of a 410 filler wire was used in this study. A detailed microstructural analysis of the weld region as well as the mechanical properties (impact, microhardness and tensile tests at room temperature and 800∘C) was carried out. The tensile and impact fracture surfaces were further analyzed through scanning electron microscope (SEM). 100% Ar shielded welds have a higher amount of δ ferrite content and due to this fact the tensile strength of the joints is superior to the other two shielded welds.

  20. Mathematical Modeling of Optical Radiation Emission as a Function of Welding Power during Gas Shielded Metal Arc Welding.

    Science.gov (United States)

    Bauer, Stefan; Janßen, Marco; Schmitz, Martin; Ott, Günter

    2017-11-01

    Arc welding is accompanied by intense optical radiation emission that can be detrimental not only for the welder himself but also for people working nearby or for passersby. Technological progress advances continuously in the field of joining, so an up-to-date radiation database is necessary. Additionally, many literature irradiance data have been measured for a few welding currents or for parts of the optical spectral region only. Within this paper, a comprehensive study of contemporary metal active gas, metal inert gas, and cold metal transfer welding is presented covering optical radiation emission from 200 up to 2,700 nm by means of (spectro-) radiometric measurements. The investigated welding currents range from 70 to 350 A, reflecting values usually applied in industry. Based upon these new irradiance data, three mathematical models were derived in order to describe optical radiation emission as a function of welding power. The linear, exponential, and sigmoidal emission models depend on the process variant (standard or pulsed) as well as on the welding material (mild and stainless steel, aluminum). In conjunction with the corresponding exposure limit values for incoherent optical radiation maximum permissible exposure durations were calculated as a function of welding power. Typical times are shorter than 1 s for the ultraviolet spectral region and range from 1 to 10 s for visible radiation. For the infrared regime, exposure durations are of the order of minutes to hours. Finally, a validation of the metal active gas emission models was carried out with manual arc welding.

  1. Analytical model of stress field in submerged arc welding butt joint with thorough penetration

    Directory of Open Access Journals (Sweden)

    Winczek Jerzy

    2018-01-01

    Full Text Available Analytical model of temporary and residual stresses for butt welding with thorough penetration was described assuming planar section hypothesis and using integral equations of stress equilibrium of the bar and simple Hooke’s law. In solution the effect of phase transformations (structure changes and structural strains has been taken into account. Phase transformations during heating are limited by temperature values at the beginning and at the end of austenitic transformation, depending on chemical composition of steel while the progress of phase transformations during cooling is determined on the basis of TTT-welding diagram. Temperature values at the beginning and at the end of transformation are conditioned by the speed of heating. Kinetics of diffusional transformation is described basing on Johnson-Mehl-Avrami-Kolmogorov equation, while martensitic transformation, basing on Koistinen-Marburger equation. Stresses in elasto-plastic state are determined by iteration, using elastic solutions method with changeable longitudinal modulus of elasticity, conditioned by stress-strain curve. Computations of stress field have been conducted for one-side butt welded of two steel flats made from S235 steel. It has enabled a clear interpretation of influence of temperature field and phase transformation on stresses caused by welding using Submerged Arc Welding (SAW method.

  2. Survey of welding processes for field fabrication of 2 1/4 Cr-1 Mo steel pressure vessels. [128 references

    Energy Technology Data Exchange (ETDEWEB)

    Grotke, G.E.

    1980-04-01

    Any evaluation of fabrication methods for massive pressure vessels must consider several welding processes with potential for heavy-section applications. These include submerged-arc and shielded metal-arc, narrow-joint modifications of inert-gas metal-arc and inert-gas tungsten-arc processes, electroslag, and electron beam. The advantage and disadvantages of each are discussed. Electroslag welding can be dropped from consideration for joining of 2 1/4 Cr-1 Mo steel because welds made with this method do not provide the required mechanical properties in the welded and stress relieved condition. The extension of electron-beam welding to sections as thick as 4 or 8 inches (100 or 200 mm) is too recent a development to permit full evaluation. The manual shielded metal-arc and submerged-arc welding processes have both been employed, often together, for field fabrication of large vessels. They have the historical advantage of successful application but present other disadvantages that make them otherwise less attractive. The manual shielded metal-arc process can be used for all-position welding. It is however, a slow and expensive technique for joining heavy sections, requires large amounts of skilled labor that is in critically short supply, and introduces a high incidence of weld repairs. Automatic submerged-arc welding has been employed in many critical applications and for welding in the flat position is free of most of the criticism that can be leveled at the shielded metal-arc process. Specialized techniques have been developed for horizontal and vertical position welding but, used in this manner, the applications are limited and the cost advantage of the process is lost.

  3. Effect of plasma arc welding variables on fusion zone grain size and hardness of AISI 321 austenitic stainless steel

    Science.gov (United States)

    Kondapalli, S. P.

    2017-12-01

    In the present work, pulsed current microplasma arc welding is carried out on AISI 321 austenitic stainless steel of 0.3 mm thickness. Peak current, Base current, Pulse rate and Pulse width are chosen as the input variables, whereas grain size and hardness are considered as output responses. Response surface method is adopted by using Box-Behnken Design, and in total 27 experiments are performed. Empirical relation between input and output response is developed using statistical software and analysis of variance (ANOVA) at 95% confidence level to check the adequacy. The main effect and interaction effect of input variables on output response are also studied.

  4. Characterization of weld strength and impact toughness in the multi-pass welding of super-duplex stainless steel UNS 32750

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Thiruvengatam, G.; Sudharsan, S.P.; Mishra, Debidutta; Arivazhagan, N.; Sridhar, R.

    2014-01-01

    Highlights: • Effect of filler metals on the weldability of super-duplex stainless steel plates. • Contemplative explanations on the metallurgical and mechanical properties of the weldments. • Enhanced mechanical properties of the welds at ambient room temperature. - Abstract: This paper investigates the weldability, metallurgical and mechanical properties of the UNS 32750 super-duplex stainless steels joints by Gas Tungsten Arc Welding (GTAW) employing ER2553 and ERNiCrMo-4 filler metals. Impact and tensile studies envisaged that the weldments employing ER2553 exhibited superior mechanical properties compared to ERNiCrMo-4 weldments. Microstructure studies performed using optical and SEM analysis clearly exhibited the different forms of austenite including widmanstatten austenite on the weld zone employing ER2553 filler. Also the presented results clearly reported the effect of filler metals on strength and toughness during the multi-pass welding. This research article addressed the improvement of tensile and impact strength using appropriate filler wire without obtaining any deleterious phases

  5. Application of gas shielded arc welding and submerged arc welding for fabrication of nuclear reactor vessels

    International Nuclear Information System (INIS)

    Gehani, M.L.; Rodrigues, W.D.

    1976-01-01

    The remarkable progress made in the development of knowhow and expertise in the manufacture of equipment for nuclear power plants in India is outlined. Some of the specific advances made in the application of higher efficiency weld processes for fabrication of nuclear reactor vessels and the higher level of quality attained are discussed in detail. Modifications and developments in submerged arc, gas tungsten arc and gas metal arc processes for welding of Calandria which have been a highly challenging and rewarding experience are discussed. Future scope for making the gas metal arc process more economical by using various gas-mixes like Agron + Oxygen, Argon + Carbon Dioxide, Argon + Nitrogen (for Copper Alloys) etc., in various proportions are outlined. Quality and dimensional control exercised in these jobs of high precision are highlighted. (K.B.)

  6. Low-temperature cyclic cracking resistance of Fe-Cr-Ni and Fe-Cr-Mn steels welded joints

    International Nuclear Information System (INIS)

    Ostash, O.P.; Zhmur-Klimenko, V.T.; Yarema, S.Ya.; Yushchenko, K.A.; Strok, L.P.; Belotserkovets, V.I.

    1983-01-01

    Results of further investigations into regularities of development of low-temperature fatigue fracture of welded oints in 07Kh13G20AN4 steel are presented, they are compared with analogous data traditional cryogenic 0Kh18N10T and 03Kh13AG19 steels. Welded joints have been prepared by means of automatic V-like level arc Welding of plates; 0Kh18N10T and 07Kh13G20AN4 steels have been welded by means of sv-04Kh19N9 wire, 03Kh13AG19 steel-by means of sv-07Kh13AG19 wire. Tests at almost zero (asymmetry coefficient R=0.05) cycle of extension at 15-20 Hz frequency have been conducted on 5 mm thick disk samples at 20 deg C and - 160 deg C according to the given methods. It is shown that by cyclic crack resistance of welded joint zones of 0Kh18N10T steel and chromium-manganese steels at normal temperature the 07Kh13G20AN4 steel exceeds 0Kh18N10T steel, at low temperature it yields to 0Kh18N10T only by fracture toughness of heat affected zones HAZ and weld metal (ne). 07Kh13G20AN4 steel and its welded joints as most hardened and cheap may be a good substituent for 0Kh18N10T steel. Optimization of WM alloying for increase of its cyclic fracture toughness at cryogenic temperatures is necessary

  7. INFLUENCE OF CHEMICAL COMPOUNDS ON THE FORMING OF WELDING ARC

    Directory of Open Access Journals (Sweden)

    I. О. Vakulenko

    2014-10-01

    Full Text Available Purpose. The purpose of work is a comparative analysis of chemical compounds influence on the process of forming arc welding and condition of its burning. Methodology. A wire with diameter 3 mm of low carbon steel with contain of carbon 0.15% was material for electrode. As chemical compounds, which determine the terms of arc welding forming the following compounds were used: kaolin; CaCO3 with admixtures of gypsum up to 60%; SiO2 and Fe − Si with the iron concentration up to 50%. Researches were conducted using the direct electric current and arc of reverse polarity. As a source of electric current a welding transformer of type PSO-500n was used. On the special stand initial gap between the electrode and metal plate was 1-1.5 mm. The inter electrode space was filled with the probed chemical compound and the electric arc was formed. At the moment of arc forming the values of electric current and arc voltage were determined. After the natural break of electric arc, the final gap value between electrodes was accepted as a maximal value of arc length. Findings. Experimentally the transfer of metal in interelectrode space corresponded to the tiny drop mechanism. According to external signs the relation between maximal arc length and the power of electric current has the form of exponential dependence. Specific power of electric arc at the moment of arc forming per unit of its length characterizes the environment in the interelectrode space. Originality. 1 Based on the analysis of influence of the studied chemical compounds on the formation processes of electric arc the inversely proportional relationship between the power of the electric current and the maximum arc length until the moment of its natural break is defined. 2 Ratio between the maximal arc length and the power of electric current, with the sufficiently high coefficient of correlation is submitted to the exponential dependence. Influence of the compounds under study on the process of

  8. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    Science.gov (United States)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  9. Hot cracking of welded joints of the 7CrMoVTiB 10-10 (T/P24) steel

    Energy Technology Data Exchange (ETDEWEB)

    Adamiec, J, E-mail: janusz.adamiec@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    Bainitic steel 7CrMoVTiB10-10 is one the newest steels for waterwalls of modern industrial boilers. In Europe, attempts have been made to make butt welded joints of pipes made of this steel of the diameter up to 51 mm and thickness up to 8 mm. Many cracks have been observed in the welded joint, both during welding and transport and storage. The reasons of cracking and the prevention methods have not been investigated. No comprehensive research is carried out in Europe in order to automate the welding process of the industrial boiler elements made of modern bainitic steel, such as 7CrMoVTiB10-10. There is no information about its overall, operative and local weldability, influence of heat treatment, as well as about resistance of the joints to cracking during welding and use. The paper presents experience of Energoinstal SA from development of technology and production of waterwalls of boilers made of the 7CrMoVTiB 10-10 steel on a multi-head automatic welder for submerged arc welding.

  10. An approach for optimizing arc welding applications

    International Nuclear Information System (INIS)

    Chapuis, Julien

    2011-01-01

    The dynamic and transport mechanisms involved in the arc plasma and the weld pool of arc welding operations are numerous and strongly coupled. They produce a medium the magnitudes of which exhibit rapid time variations and very marked gradients which make any experimental analysis complex in this disrupted environment. In this work, we study the TIG and MIG processes. An experimental platform was developed to allow synchronized measurement of various physical quantities associated with welding (process parameters, temperatures, clamping forces, metal transfer, etc.). Numerical libraries dedicated to applied studies in arc welding are developed. They enable the treatment of a large flow of data (signals, images) with a systematic and global method. The advantages of this approach for the enrichment of numerical simulation and arc process control are shown in different situations. Finally, this experimental approach is used in the context of the chosen application to obtain rich measurements to describe the dynamic behavior of the weld pool in P-GMAW. Dimensional analysis of these experimental measurements allows to identify the predominant mechanisms involved and to determine experimentally the characteristic times associated. This type of approach includes better description of the behavior of a macro-drop of molten metal or the phenomena occurring in the humping instabilities. (author)

  11. Normalizing effect on fatigue crack propagation at the heat-affected zone of AISI 4140 steel shielded metal arc weldings

    Directory of Open Access Journals (Sweden)

    B. Vargas-Arista

    2013-01-01

    Full Text Available The fractography and mechanical behaviour of fatigue crack propagation in the heat-affected zone (HAZ of AISI 4140 steel welded using the shielded metal arc process was analysed. Different austenitic grain size was obtained by normalizing performed at 1200 °C for 5 and 10 hours after welding. Three point bending fatigue tests on pre-cracked specimens along the HAZ revealed that coarse grains promoted an increase in fatigue crack growth rate, hence causing a reduction in both fracture toughness and critical crack length, and a transgranular brittle final fracture with an area fraction of dimple zones connecting cleavage facets. A fractographic analysis proved that as the normalizing time increased the crack length decreased. The increase in the river patterns on the fatigue crack propagation in zone II was also evidenced and final brittle fracture because of transgranular quasicleavage was observed. Larger grains induced a deterioration of the fatigue resistance of the HAZ.

  12. Inhalation of gas metal arc-stainless steel welding fume promotes lung tumorigenesis in A/J mice.

    Science.gov (United States)

    Falcone, Lauryn M; Erdely, Aaron; Meighan, Terence G; Battelli, Lori A; Salmen, Rebecca; McKinney, Walter; Stone, Samuel; Cumpston, Amy; Cumpston, Jared; Andrews, Ronnee N; Kashon, Michael; Antonini, James M; Zeidler-Erdely, Patti C

    2017-08-01

    Epidemiologic studies suggest an increased risk of lung cancer with exposure to welding fumes, but controlled animal studies are needed to support this association. Oropharyngeal aspiration of collected "aged" gas metal arc-stainless steel (GMA-SS) welding fume has been shown by our laboratory to promote lung tumor formation in vivo using a two-stage initiation-promotion model. Our objective in this study was to determine whether inhalation of freshly generated GMA-SS welding fume also acts as a lung tumor promoter in lung tumor-susceptible mice. Male A/J mice received intraperitoneal (IP) injections of corn oil or the chemical initiator 3-methylcholanthrene (MCA; 10 µg/g) and 1 week later were exposed by whole-body inhalation to air or GMA-SS welding aerosols for 4 h/d × 4 d/w × 9 w at a target concentration of 40 mg/m 3 . Lung nodules were enumerated at 30 weeks post-initiation. GMA-SS fume significantly promoted lung tumor multiplicity in A/J mice initiated with MCA (16.11 ± 1.18) compared to MCA/air-exposed mice (7.93 ± 0.82). Histopathological analysis found that the increased number of lung nodules in the MCA/GMA-SS group were hyperplasias and adenomas, which was consistent with developing lung tumorigenesis. Metal deposition analysis in the lung revealed a lower deposited dose, approximately fivefold compared to our previous aspiration study, still elicited a significant lung tumorigenic response. In conclusion, this study demonstrates that inhaling GMA-SS welding fume promotes lung tumorigenesis in vivo which is consistent with the epidemiologic studies that show welders may be at an increased risk for lung cancer.

  13. Studies on the welding of heavy-section ASTM A542 Cl. 1 steel for large-sized pressure vessels

    International Nuclear Information System (INIS)

    Shimizu, Shigeki; Aota, Toshiichi; Kasahara, Masayuki

    1977-01-01

    ASTM A 542, Cl. 1 steel was developed and standardized recently, and is excellent in the high temperature strength and toughness as compared with conventionally used A 387, Grade 22 steel, accordingly the application to large pressure vessels is planned. This steel is a low alloy steel, and in case of large thickness, the possibility of cracking in the welded part is large. Also many times of annealing are required for the prevention of welding cracking, the relieving of residual stress, and the softening of hardened portion, but the possibility of cracking during stress-relieving annealing is large. In this study, Tekken type cracking test was carried out by coated electrode welding, and restricted cracking test was carried out by submerged arc welding of the A 542, Cl. 1 steel and A 387, Grade 22 steel, thus the welding cracking property was investigated, and the optimal welding conditions were selected. Also the test of cracking during the stress-relieving annealing of both steels was carried out, and the method of preventing the cracking was studied. The optimal conditions of stress-relieving annealing were selected, and the mechanism of the cracking was clarified. The mechanical properties of the joints welded and stress-relieved under the selected conditions were confirmed. (Kako, I.)

  14. Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Muthupandi, V.; Bala Srinivasan, P.; Seshadri, S.K.; Sundaresan, S

    2003-10-15

    The excellent combination of strength and corrosion resistance in duplex stainless steels (DSS) is due to their strict composition control and microstructural balance. The ferrite-austenite ratio is often upset in DSS weld metals owing to the rapid cooling rates associated with welding. To achieve the desired ferrite-austenite balance and hence properties, either the weld metal composition and/or the heat input is controlled. In the current work, a low heat input process viz., EBW and another commonly employed process, gas tungsten-arc welding have been employed for welding of DSS with and without nickel enhancement. Results show that (i) chemical composition has got a greater influence on the ferrite-austenite ratio than the cooling rate, (ii) and even EBW which is considered an immature process in welding of DSS, can be employed provided means of filler addition could be devised.

  15. Inertia and friction welding of aluminum alloy 1100 to type 316 stainless steel

    International Nuclear Information System (INIS)

    Perkins, M.A.

    1979-01-01

    The inertia and friction-welding processes were evaluated for joining aluminum alloy 1100-H14 and Type 316 vacuum-induction melted, vacuum-arc remelted (VIM VAR) stainless steel. While both processes consistently produced joints in which the strength exceeded the strength of the aluminum base metal, 100 percent bonding was not reliably achieved with inertia welding. The deficiency points out the need for development of nondestructive testing techniques for this type of joint. Additionally, solid-state volume diffusion did not appear to be a satisfactory explanation for the inertia and friction-welding bonding mechanism

  16. Narrow groove gas metal-arc welding of aluminum

    International Nuclear Information System (INIS)

    Armstrong, R.E.

    1975-01-01

    The Gas Metal-Arc (GMA) welding process is explained and the equipment used described with an analysis of power supply function and the action of the arc, followed by discussion of general applications and problems. GMA braze welding of beryllium is then described, as is the development of a special high purity filler wire and a narrow deep groove joint design for improved weld strength in beryllium. This joint design and the special wire are applied in making high strength welds in high strength aluminum for special applications. High speed motion pictures of the welding operation are shown to illustrate the talk. (auth)

  17. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique

    International Nuclear Information System (INIS)

    Nagaraju, S.; GaneshKumar, J.; Vasantharaja, P.; Vasudevan, M.; Laha, K.

    2017-01-01

    The variations of strength properties across 9Cr-1Mo steel weld joints fabricated by different arc welding processes such as shielded metal arc welding (SMAW), tungsten inert gas (TIG) and activated tungsten inert gas (A-TIG) have been evaluated employing automatic ball indentation (ABI) technique. ABI tests were conducted at 298 K across various zones of the weld joints comprising of base metal, weld metal, heat affected zone (HAZ) and intercritical HAZ (ICHAZ) regions. The flow curves obtained from ABI tests were correlated with corresponding conventional tensile test results. In general, the tensile strength decreased systematically across the weld joint from weld metal to base metal. Inter critical HAZ exhibited the least strength implying that it is the weakest zone. The incomplete phase transformation in the ICHAZ during weld thermal cycle caused the softening. The A-TIG weld metal exhibited higher UTS and strain hardening values due to higher carbon in the martensite. The strain hardening exponent exhibited only slight variation across the various regions of the weld joints. A-TIG weld joint exhibited higher weld metal and HAZ strength, marginally higher UTS to YS ratio in the weld metal and HAZ compared to that of the other two processes. Hence, among the three welding processes chosen, A-TIG welding process is found to be superior in producing a 9Cr-1Mo steel weld joint with better strength properties.

  18. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, S. [Nuclear Recycle Board, BARCF, Kalpakkam (India); GaneshKumar, J.; Vasantharaja, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Vasudevan, M., E-mail: dev@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2017-05-17

    The variations of strength properties across 9Cr-1Mo steel weld joints fabricated by different arc welding processes such as shielded metal arc welding (SMAW), tungsten inert gas (TIG) and activated tungsten inert gas (A-TIG) have been evaluated employing automatic ball indentation (ABI) technique. ABI tests were conducted at 298 K across various zones of the weld joints comprising of base metal, weld metal, heat affected zone (HAZ) and intercritical HAZ (ICHAZ) regions. The flow curves obtained from ABI tests were correlated with corresponding conventional tensile test results. In general, the tensile strength decreased systematically across the weld joint from weld metal to base metal. Inter critical HAZ exhibited the least strength implying that it is the weakest zone. The incomplete phase transformation in the ICHAZ during weld thermal cycle caused the softening. The A-TIG weld metal exhibited higher UTS and strain hardening values due to higher carbon in the martensite. The strain hardening exponent exhibited only slight variation across the various regions of the weld joints. A-TIG weld joint exhibited higher weld metal and HAZ strength, marginally higher UTS to YS ratio in the weld metal and HAZ compared to that of the other two processes. Hence, among the three welding processes chosen, A-TIG welding process is found to be superior in producing a 9Cr-1Mo steel weld joint with better strength properties.

  19. Effect of joint design on ballistic performance of quenched and tempered steel welded joints

    International Nuclear Information System (INIS)

    Balakrishnan, M.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2014-01-01

    Highlights: • Traditional usage of austenitic stainless steel filler for armour steel welding shows poor ballistic performance. • Earlier efforts show dubious success on ballistic resistance of armour steel joints. • Comparative evaluation of equal/unequal joint design on ballistic performance. • Effect of joint design covers the main aspects of successful bullet stoppage. - Abstract: A study was carried out to evaluate the effect of joint design on ballistic performance of armour grade quenched and tempered steel welded joints. Equal double Vee and unequal double Vee joint configuration were considered in this study. Targets were fabricated using 4 mm thick tungsten carbide hardfaced middle layer; above and below which austenitic stainless steel layers were deposited on both sides of the hardfaced interlayer in both joint configurations. Shielded metal arc welding process was used to deposit for all layers. The fabricated targets were evaluated for its ballistic performance and the results were compared in terms of depth of penetration on weld metal. From the ballistic test results, it was observed that both the targets successfully stopped the bullet penetration at weld center line. Of the two targets, the target made with unequal double Vee joint configuration offered maximum resistance to the bullet penetration at weld metal location without any bulge at the rear side. The higher volume of austenitic stainless steel front layer and the presence of hardfaced interlayer after some depth of soft austenitic stainless steel front layer is the primary reason for the superior ballistic performance of this joint

  20. Modélisation du procédé de soudage hybride Arc / Laser par une approche level set application aux toles d'aciers de fortes épaisseurs A level-set approach for the modelling of hybrid arc/laser welding process application for high thickness steel sheets joining

    Directory of Open Access Journals (Sweden)

    Desmaison Olivier

    2013-11-01

    Full Text Available Le procédé de soudage hybride Arc/Laser est une solution aux assemblages difficiles de tôles de fortes épaisseurs. Ce procédé innovant associe deux sources de chaleur : un arc électrique produit par une torche MIG et une source laser placée en amont. Ce couplage améliore le rendement du procédé, la qualité du cordon et les déformations finales. La modélisation de ce procédé par une approche Level Set permet une prédiction du développement du cordon et du champ de température associé. La simulation du soudage multi-passes d'une nuance d'acier 18MnNiMo5 est présentée ici et les résultats sont comparés aux observations expérimentales. The hybrid arc/laser welding process has been developed in order to overcome the difficulties encountered for joining high thickness steel sheets. This innovative process gathers two heat sources: an arc source developed by a MIG torch and a pre-located laser source. This coupling improves the efficiency of the process, the weld bead quality and the final deformations. The Level-Set approach for the modelling of this process enables the prediction of the weld bead development and the temperature field evolution. The simulation of the multi-passes welding of a 18MnNiMo5 steel grade is detailed and the results are compared to the experimental observations.

  1. Development of filler wires for welding of reduced activation ferritic martensitic steel for India's test blanket module of ITER

    International Nuclear Information System (INIS)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K.

    2010-01-01

    Indigenous development of reduced activation ferritic-martensitic (RAFM) steel has become necessary for India as a participant in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFM steel is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFM steel filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFM steel. The purpose of this study is to develop filler wires that can be directly used for both gas tungsten arc welding (GTAW) and for narrow-gap gas tungsten arc welding (NG-GTAW) that reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser-MIG welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using GTAW process at various heat inputs with a preheat temperature of 250 C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some amount of delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimized to qualify the filler wires without the presence of delta-ferrite in the weld metal and with optimized mechanical properties. Results showed that the weld metals are free from delta-ferrite. Tensile properties at ambient temperature and at 500 C are well above the specified values, and are much higher than the base metal values. Ductile Brittle Transition Temperature (DBTT) has been evaluated as -81 C based on the 68 J criteria. The present study highlights the basis and methodology

  2. Welding robot package; Arc yosetsu robot package

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S. [Yaskawa Electric Corp., Kitakyushu (Japan)

    1998-09-01

    For the conventional high-speed welding robot, the welding current was controlled mainly for reducing the spatters during short circuits and for stabilizing the beads by the periodic short circuits. However, an increase of deposition amount in response to the speed is required for the high-speed welding. Large-current low-spatter welding current region control was added. Units were integrated into a package by which the arc length is kept in short without dispersion of arc length for welding without defects such as undercut and unequal beads. In automobile industry, use of aluminum parts is extended for the light weight. The welding is very difficult, and automation is not so progressing in spite of the poor environment. Buckling of welding wire is easy to occur, and supply of wire is obstructed by the deposition of chipped powders on the torch cable, which stay within the contact chip resulting in the deposition. Dislocation of locus is easy to occur at the corner of rectangular pipe during the welding. By improving these troubles, an aluminum MIG welding robot package has been developed. 13 figs.

  3. production of manual arc welding electrodes with local raw materials

    African Journals Online (AJOL)

    CHUKSSUCCESS 4 LOVE

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between ... major objectives: to form fusible slags, to stabilize the arc and to produce an inert gas shielding ... Current fusion welding techniques rely.

  4. Stud arc welding in a magnetic field – Investigation of the influences on the arc motion

    International Nuclear Information System (INIS)

    Hartz-Behrend, K; Forster, G; Schein, J; Marqués, J L; Jenicek, A; Müller, M; Cramer, H; Jilg, A; Soyer, H

    2014-01-01

    Stud arc welding is widely used in the construction industry. For welding of studs with a diameter larger than 14 mm a ceramic ferrule is usually necessary in order to protect the weld pool. Disadvantages of using such a ferrule are that more metal is molten than necessary for a high quality welded joint and that the ferrule is a consumable generally thrown away after the welding operation. Investigations show that the ferrule can be omitted when the welding is carried out in a radially symmetric magnetic field within a shielding gas atmosphere. Due to the Lorentz force the arc is laterally shifted so that a very uniform and controlled melting of the stud contact surface as well as of the work piece can be achieved. In this paper a simplified physical model is presented describing how the parameters welding current, flux density of the magnetic field, radius of the arc and mass density of the shielding gas influence the velocity of the arc motion. The resulting equation is subsequently verified by comparing it to optical measurements of the arc motion. The proposed model can be used to optimize the required field distribution for the magnetic field stud welding process

  5. High-power laser and arc welding of thorium-doped iridium alloys

    International Nuclear Information System (INIS)

    David, S.A.; Liu, C.T.

    1980-05-01

    The arc and laser weldabilities of two Ir-0.3% W alloys containing 60 and 200 wt ppM Th have been investigated. The Ir-.03% W alloy containing 200 wt ppM Th is severely prone to hot cracking during gas tungsten-arc welding. Weld metal cracking results from the combined effects of heat-affected zone liquation cracking and solidification cracking. Scanning electron microscopic analysis of the fractured surface revealed patches of low-melting eutectic. The cracking is influenced to a great extent by the fusion zone microstructure and thorium content. The alloy has been welded with a continuous-wave high-power CO 2 laser system with beam power ranging from 5 to 10 kW and welding speeds of 8 to 25 mm/s. Successful laser welds without hot cracking have been obtained in this particular alloy. This is attributable to the highly concentrated heat source available in the laser beam and the refinement in fusion zone microstructure obtained during laser welding. Efforts to refine the fusion zone structure during gas tungsten-arc welding of Ir-0.3 % W alloy containing 60 wt ppM Th were partially successful. Here transverse arc oscillation during gas tungsten-arc welding refines the fusion zone structure to a certain extent. However, microstructural analysis of this alloy's laser welds indicates further refinement in the fusion zone microstructure than in that from the gas tungsten-arc process using arc oscillations. The fusion zone structure of the laser weld is a strong function of welding speed

  6. Electron-beam welding of 21-6-9 (Cr--Ni--Mn) stainless steel: effect of machine parameters on weldability

    International Nuclear Information System (INIS)

    Casey, H.

    1975-04-01

    The high-manganese, nitrogen-strengthened 21-6-9 (Cr--Ni--Mn) austenitic stainless steel has a weldability rating similar to that of more common austenitic stainless steels in terms of cracking, porosity, etc. However, weld pool disruption problems may occur with this alloy that can be related to instability within the molten weld pool. Selection of machine parameters is critical to achieving weld pool quiescence as this report confirms from recent tests. Test samples came from heats of air-melted, vacuum-arc remelted, and electroslag remelted material. Low- and high-voltage machine parameters are discussed, and effects of parameter variation on weld pool behavior are given. Data relate weld pool behavior to weld fusion-zone geometry. Various weld parameters are recommended for the 21-6-9 alloy, regardless of its source or chemistry. (auth)

  7. Helium-induced weld cracking in austenitic and martensitic steels

    International Nuclear Information System (INIS)

    Lin, H.T.; Chin, B.A.

    1991-01-01

    Helium was uniformly implanted into type 316 stainless steel and Sandvik HT-9 (12Cr-1MoVW) to levels of 0.18 to 256 and 0.3 to 1 a.p.p.m., respectively, using the ''tritium trick'' technique. Autogenous bead-on-plate, full penetration, welds were then produced under fully constrained conditions using the gas tungsten arc welding (GTAW) process. The control and hydrogen-charged plates of both alloys were sound and free of any weld defects. For the 316 stainless steel, catastrophic intergranular fracture occurred in the heat-affected zone (HAZ) of welds with helium levels ≥ 2.5 a.p.p.m. In addition to the HAZ cracking, brittle fracture along the centreline of the fusion zone was also observed for the welds containing greater than 100 a.p.p.m. He. For HT-9, intergranular cracking occurred in the HAZ along prior-austenite grain boundaries of welds containing 1 a.p.p.m. He. Electron microscopy observations showed that the cracking in the HAZ originated from the growth and coalescence of grain-boundary helium bubbles and that the fusion-zone cracking resulted from the growth of helium bubbles at dendrite boundaries. The bubble growth kinetics in the HAZ is dominated by stress-induced diffusion of vacancies into bubbles. Results of this study indicate that the use of conventional GTAW techniques to repair irradiation-degraded materials containing even small amounts of helium may be difficult. (author)

  8. Operator Bias in the Estimation of Arc Efficiency in Gas Tungsten Arc Welding

    Directory of Open Access Journals (Sweden)

    Fredrik Sikström

    2015-03-01

    Full Text Available In this paper the operator bias in the measurement process of arc efficiency in stationary direct current electrode negative gas tungsten arc welding is discussed. An experimental study involving 15 operators (enough to reach statistical significance has been carried out with the purpose to estimate the arc efficiency from a specific procedure for calorimetric experiments. The measurement procedure consists of three manual operations which introduces operator bias in the measurement process. An additional relevant experiment highlights the consequences of estimating the arc voltage by measuring the potential between the terminals of the welding power source instead of measuring the potential between the electrode contact tube and the workpiece. The result of the study is a statistical evaluation of the operator bias influence on the estimate, showing that operator bias is negligible in the estimate considered here. On the contrary the consequences of neglecting welding leads voltage drop results in a significant under estimation of the arc efficiency.

  9. Gas Metal Arc Welding. Welding Module 5. Instructor's Guide.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…

  10. Experimental study on variations in Charpy impact energies of low carbon steel, depending on welding and specimen cutting method

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhaorui; Kang, Hansaem; Lee, Young Seog [Chung-Ang University, Seoul (Korea, Republic of)

    2016-05-15

    This paper presents an experimental study that examines variations of Charpy impact energy of a welded steel plate, depending upon the welding method and the method for obtaining the Charpy specimens. Flux cored arc welding (FCAW) and Gas tungsten arc welding (GTAW) were employed to weld an SA516 Gr. 70 steel plate. The methods of wire cutting and water-jet cutting were adopted to take samples from the welded plate. The samples were machined according to the recommendations of ASTM SEC. II SA370, in order to fit the specimen dimension that the Charpy impact test requires. An X-ray diffraction (XRD) method was used to measure the as-weld residual stress and its redistribution after the samples were cut. The Charpy impact energy of specimens was considerably dependent on the cutting methods and locations in the welded plate where the specimens were taken. The specimens that were cut by water jet followed by FCAW have the greatest resistance-to-fracture (Charpy impact energy). Regardless of which welding method was used, redistributed transverse residual stress becomes compressive when the specimens are prepared using water-jet cutting. Meanwhile, redistributed transverse residual stress becomes tensile when the specimens are prepared using wire cutting.

  11. Liquid Metal Oscillation and Arc Behaviour during Welding

    NARCIS (Netherlands)

    Yudodibroto, B.Y.B.

    2010-01-01

    The purpose of this research is to obtain insight into the oscillation behaviour of the liquid metal and the arc behaviour during GMA welding. Observations of the weld pool and the arc were undertaken by visual means using a high-speed video and by analysis of the voltage. To deal with the complex

  12. Corrosion resistance of «tube – tubesheet» weld joint obtained by friction welding

    Directory of Open Access Journals (Sweden)

    RIZVANOV Rif Garifovich

    2017-08-01

    Full Text Available Shell-and-tube heat exchangers are widely applied for implementation of various processes at ventures of fuel and energy complex. Cost of production and reliability of heat exchangers of this type is to a wide extent determined by corresponding characteristics of tube bundle, «tube – tubesheet» is its typical joint in particular when welding operations are used in order to attach tubes to tubesheet in addition to expansion. When manufacturing such equipment of heat-resistant chrome-bearing or chromium-molybdenum steels including steel 15H5M, the process of fixed joint manufacturing gets significantly more complicated and costly due to the necessity to use thermal treatment before, during and after welding (this problem is particularly applicable for manufacturing of large-size equipment. One of the options to exclude thermal treatment from manufacturing process is to use «non-arc» welding methods – laser welding, explosion welding as well as friction welding. Use of each of the welding methods mentioned above during production of heat-exchange equipment has its process challenges and peculiarities. This article gives a comparative analysis of weld structure and distribution of electrode potentials of welded joints and parent metal of the joints simulating welding of tube to tubesheet of steel 15H5M using the following welding methods: shielded manual arc welding, tungsten-arc inert-gas welding and friction welding. Comparative analysis of macro- and microstructures of specific zones of the studied welded joints showed that the joints produced by arc welding methods do not exhibit evident inhomogeneity of the structure after application of thermal treatment which is explained by the correctness of thermal treatment. Joints obtained via friction welding are characterized by structural inhomogeneity of the welded joint zone metal microstructure. The ultra-fine-grained structure obtained as a result of friction welding makes it possible to

  13. Passive Visual Sensing in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao

    For decades much work has been devoted to the research and development of automatic arc welding systems. However, it has remained a challenging problem. Besides the very complex arc welding process itself, the lack of ability to precisely sense the welding process, including the seam geometry...... and the weld pool, has also prevented the realization of a closed-loop control system for many years, even though a variety of sensors have been developed. Among all the sensor systems, visual sensors have the advantage of receiving visual information and have been drawn more and more attentions. Typical...... industrial solutions for seam detection such as using laser scanners suer from several limitations. For instance, it must be positioned some distance ahead to the molten pool and may cause problem when dealing with shiny surfaces. Existing techniques for weld pool sensing mostly rely on auxiliary light...

  14. Influence of weld discontinuities on strain controlled fatigue behavior of 308 stainless steel weld metal

    International Nuclear Information System (INIS)

    Bhanu Sankara Rao, K.; Valsan, M.; Sandhya, R.; Mannan, S.L.; Rodriguez, P.

    1994-01-01

    Detailed investigations have been performed for assessing the importance of weld discontinuities in strain controlled low cycle fatigue (LCF) behavior of 308 stainless steel (SS) welds. The LCF behavior of 308 SS welds containing defects was compared with that of type 304 SS base material and 308 SS sound weld metal. Weld pads were prepared by shielded metal arc welding process. Porosity and slag inclusions were introduced deliberately into the weld metal by grossly exaggerating the conditions normally causing such defects. Total axial strain controlled LCF tests have been conducted in air at 823 K on type 304 SS base and 308 SS sound weld metal employing strain amplitudes in the range from ±0.25 to ±0.8 percent. A single strain amplitude of ±0.25 percent was used for all the tests conducted on weld samples containing defects. The results indicated that the base material undergoes cyclic hardening whereas sound and defective welds experience cyclic softening. Base metal showed higher fatigue life than sound weld metal at all strain amplitudes. The presence of porosity and slag inclusions in the weld metal led to significant reduction in life. Porosity on the specimen surface has been found to be particularly harmful and caused a reduction in life by a factor of seven relative to sound weld metal

  15. Hardness analysis of welded joints of austenitic and duplex stainless steels

    Science.gov (United States)

    Topolska, S.

    2016-08-01

    Stainless steels are widely used in the modern world. The continuous increase in the use of stainless steels is caused by getting greater requirements relating the corrosion resistance of all types of devices. The main property of these steels is the ability to overlap a passive layer of an oxide on their surface. This layer causes that they become resistant to oxidation. One of types of corrosion-resistant steels is ferritic-austenitic steel of the duplex type, which has good strength properties. It is easily formable and weldable as well as resistant to erosion and abrasive wear. It has a low susceptibility to stress-corrosion cracking, to stress corrosion, to intercrystalline one, to pitting one and to crevice one. For these reasons they are used, among others, in the construction of devices and facilities designed for chemicals transportation and for petroleum and natural gas extraction. The paper presents the results which shows that the particular specimens of the ][joint representing both heat affected zones (from the side of the 2205 steel and the 316L one) and the weld are characterized by higher hardness values than in the case of the same specimens for the 2Y joint. Probably this is caused by machining of edges of the sections of metal sheets before the welding process, which came to better mixing of native materials and the filler metal. After submerged arc welding the 2205 steel still retains the diphase, austenitic-ferritic structure and the 316L steel retains the austenitic structure with sparse bands of ferrite σ.

  16. Fracture toughness of a welded super duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Pilhagen, Johan, E-mail: pilhagen@kth.se [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden); Sieurin, Henrik [Scania CV AB, Södertälje (Sweden); Sandström, Rolf [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden)

    2014-06-01

    Fracture toughness testing was conducted on standard single-edge notched bend bar specimens of base and weld metal. The material was the SAF 2906 super duplex stainless steel. The aim was to evaluate the susceptibility for brittle failure at sub-zero temperatures for the base and weld metal. The base metal was tested between −103 and −60 °C and was evaluated according to the crack-tip opening displacement method. The fracture event at and below −80 °C can be described as ductile until critical cleavage initiation occurs, which caused unstable failure of the specimen. The welding method used was submerged arc welding with a 7 wt% nickel filler metal. The welded specimens were post-weld heat treated (PWHT) at 1100 °C for 20 min and then quenched. Energy-dispersive X-ray spectroscopy analysis showed that during PWHT substitutional element partitioning occurred which resulted in decreased nickel content in the ferrite. The PWHT weld metal specimens were tested at −72 °C. The fracture sequence was critical cleavage fracture initiation after minor crack-tip blunting and ductile fracture.

  17. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  18. Numerical simulation on temperature field of TIG welding for 0Cr18Ni10Ti steel cladding and experimental verification

    International Nuclear Information System (INIS)

    Luo Hongyi; Tang Xian; Luo Zhifu

    2015-01-01

    Aiming at tungsten inert gas (TIG) for 0Cr18Ni10Ti stainless steel cladding for radioactive source, the numerical calculation of welding pool temperature field was carried out through adopting ANSYS software. The numerical model of non-steady TIG welding pool shape was established, the heat enthalpy and Gaussian electric arc heat source model of surface distribution were introduced, and the effects of welding current and welding speed to temperature field distribution were calculated. Comparing the experimental data and the calculation results under different welding currents and speeds, the reliability and correctness of the model were proved. The welding technological parameters of 0Cr18Ni10Ti stainless steel were optimized based on the calculation results and the welding procedure was established. (authors)

  19. Weldability Characteristics of Sintered Hot-Forged AISI 4135 Steel Produced through P/M Route by Using Pulsed Current Gas Tungsten Arc Welding

    Science.gov (United States)

    Joseph, Joby; Muthukumaran, S.; Pandey, K. S.

    2016-01-01

    Present investigation is an attempt to study the weldability characteristics of sintered hot-forged plates of AISI 4135 steel produced through powder metallurgy (P/M) route using matching filler materials of ER80S B2. Compacts of homogeneously blended elemental powders corresponding to the above steel were prepared on a universal testing machine (UTM) by taking pre-weighed powder blend with a suitable die, punch and bottom insert assembly. Indigenously developed ceramic coating was applied on the entire surface of the compacts in order to protect them from oxidation during sintering. Sintered preforms were hot forged to flat, approximately rectangular plates, welded by pulsed current gas tungsten arc welding (PCGTAW) processes with aforementioned filler materials. Microstructural, tensile and hardness evaluations revealed that PCGTAW process with low heat input could produce weldments of good quality with almost nil defects. It was established that PCGTAW joints possess improved tensile properties compared to the base metal and it was mainly attributed to lower heat input, resulting in finer fusion zone grains and higher fusion zone hardness. Thus, the present investigation opens a new and demanding field in research.

  20. The characteristic investigation on narrow-gap TIG weld joint of heavy wall austenitic stainless steel pipe

    International Nuclear Information System (INIS)

    Shim, Deog Nam; Jung, In Cheol

    2003-01-01

    Although Gas Tungsten Arc Welding (GTAW or TIG welding) is considered as high quality and precision welding process, it also has demerit of low melting rate. Narrow-gap TIG welding which has narrow joint width reduces the groove volume remarkably, so it could be shorten the welding time and decrease the overall shrinkage in heavy wall pipe welding. Generally narrow-gap TIG welding is used as orbital welding process, it is important to select the optimum conditions for the automatic control welding. This paper looks at the application and metallurgical properties on narrow-gap TIG welding joint of heavy wall large austenitic stainless steel pipe to determine the deposition efficiency, the resultant shrinkage and fracture toughness. The fracture toughness depends slightly on the welding heat input

  1. Development of filler wires for welding of reduced activation ferritic martensitic steel for India's test blanket module of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G.; Arivazhagan, B.; Albert, S.K.; Bhaduri, A.K. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2010-07-01

    Indigenous development of reduced activation ferritic-martensitic (RAFM) steel has become necessary for India as a participant in the International Thermo-nuclear Experimental Reactor (ITER) programme. Optimisation of RAFM steel is in an advanced stage for the fabrication of test blanket module (TBM) components. Simultaneously, development of RAFM steel filler wires has been undertaken since there is no commercial filler wires are available for fabrication of components using RAFM steel. The purpose of this study is to develop filler wires that can be directly used for both gas tungsten arc welding (GTAW) and for narrow-gap gas tungsten arc welding (NG-GTAW) that reduces the deposited weld metal volume and heat affected zone (HAZ) width. Further, the filler wires would also be used for hybrid laser-MIG welding for thick section joints. In view of meeting all the requirements, a detailed specification was prepared for the development of filler wires for welding of RAFM steel. Meanwhile, welding trials have been carried out on 2.5 mm thick plates of the RAFM steel using GTAW process at various heat inputs with a preheat temperature of 250 C followed by various post weld heat treatments (PWHT). The microstructure of the weld metal in most of the cases showed the presence of some amount of delta-ferrite. Filler wires as per specifications have also been developed with minor variations on the chemistry against the specified values. Welding parameters and PWHT parameters were optimized to qualify the filler wires without the presence of delta-ferrite in the weld metal and with optimized mechanical properties. Results showed that the weld metals are free from delta-ferrite. Tensile properties at ambient temperature and at 500 C are well above the specified values, and are much higher than the base metal values. Ductile Brittle Transition Temperature (DBTT) has been evaluated as -81 C based on the 68 J criteria. The present study highlights the basis and methodology

  2. Calculation of t8/5 by response surface methodology for electric arc welding applications

    Directory of Open Access Journals (Sweden)

    Meseguer-Valdenebro José Luis

    2014-01-01

    Full Text Available One of the greatest difficulties traditionally found in stainless steel constructions has been the execution of welding parts in them. At the present time, the available technology allows us to use arc welding processes for that application without any disadvantage. Response surface methodology is used to optimise a process in which the variables that take part in it are not related to each other by a mathematical law. Therefore, an empiric model must be formulated. With this methodology the optimisation of one selected variable may be done. In this work, the cooling time that takes place from 800 to 500ºC, t8/5, after TIG welding operation, is modelled by the response surface method. The arc power, the welding velocity and the thermal efficiency factor are considered as the variables that have influence on the t8/5 value. Different cooling times,t8/5, for different combinations of values for the variables are previously determined by a numerical method. The input values for the variables have been experimentally established. The results indicate that response surface methodology may be considered as a valid technique for these purposes.

  3. Evaluating the Properties of Dissimilar Metal Welding Between Inconel 625 and 316L Stainless Steel by Applying Different Welding Methods and Consumables

    Science.gov (United States)

    Kourdani, Ahmad; Derakhshandeh-Haghighi, Reza

    2018-04-01

    The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.

  4. Microstructural characterisation of Inconel 718 gas tungsten arc welds

    International Nuclear Information System (INIS)

    Ram, G.D.J.; Reddy, A.V.; Rao, K.P.

    2005-01-01

    The presence of Nb-rich, brittle, intermetallic Laves phase in Inconel 718 weld fusion zones is detrimental to weld mechanical properties. In the current work, autogenous bead-on-plate gas tungsten-arc welds were deposited in 2 mm thick IN 718 sheets. The welds were subjected to the following heat treatments: i) direct aging, ii) solution treatment at 980 C followed by aging, and iii) solution treatment at 1080 C followed by aging. Detailed microstructural characterisation was carried out using optical, scanning electron and transmission electron microscopes and electron probe microanalysis. The microstructural features in as-welded and post-weld heat treated conditions are discussed. The results show that post-weld heat treatments alone cannot provide satisfactory solution to the Laves problem in Inconel 718 gas tungsten-arc welds

  5. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    Science.gov (United States)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  6. Welding of stainless steel clad fuel rods for nuclear reactors

    International Nuclear Information System (INIS)

    Neves, Mauricio David Martins das

    1986-01-01

    This work describes the obtainment of austenitic stainless steel clad fuel rods for nuclear reactors. Two aspects have been emphasized: (a) obtainment and qualification of AISI 304 and 304 L stainless steel tubes; b) the circumferential welding of pipe ends to end plugs of the same alloy followed by qualification of the welds. Tubes with special and characteristic dimensions were obtained by set mandrel drawing. Both, seamed and seamless tubes of 304 and 304 L were obtained.The dimensional accuracy, surface roughness, mechanical properties and microstructural characteristics of the tubes were found to be adequate. The differences in the properties of the tubes with and without seams were found to be insignificant. The TIG process of welding was used. The influence of various welding parameters were studied: shielding gas (argon and helium), welding current, tube rotation speed, arc length, electrode position and gas flow. An inert gas welding chamber was developed and constructed with the aim of reducing surface oxidation and the heat affected zone. The welds were evaluated with the aid of destructive tests (burst-test, microhardness profile determination and metallographic analysis) and non destructive tests (visual inspection, dimensional examination, radiography and helium leak detection). As a function of the results obtained, two different welding cycles have been suggested; one for argon and another for helium. The changes in the microstructure caused by welding have been studied in greater detail. The utilization of work hardened tubes, permitted the identification by optical microscopy and microhardness measurements, of the different zones: weld zone; heat affected zone (region of grain growth, region of total and partial recrystallization) and finally, the zone not affected by heat. Some correlations between the welding parameters and metallurgical phenomena such as: solidification, recovery, recrystallization, grain growth and precipitation that occurred

  7. Transition temperature of embrittlement of steel 11 474.1 welded joint

    International Nuclear Information System (INIS)

    Petrikova, A.; Cocher, M.

    1987-01-01

    The results are presented of tests of notch toughness in dependence on temperature for steel 11 474.1 used for the manufacture of steam separators, in the area of a joint welded using an automatic submerged-arc welding machine with pre-heating at 200 to 250 degC. After welding, the welded joints were annealed for reduced stress for 160 minutes at a temperature of 600 to 650 degC and left to cool off in the furnace. The obtained results show that: (1) critical embrittlement temperature for the welded joint and the given welding technology ranges within -20 and -13 degC; (2) critical embrittlement temperature following heat ageing is shifted to positive temperature values; (3) pressure tests of the steam separator jacket made of steel 11 474.1 may in the process of production be carried out at a minimal wall temperature of 17 degC; (4) in case a pressure test has to be made after the equipment has been in operation for a certain period of time the test will probably have to be made at temperatures higher than 20 degC; (5) further tests will have to be made at temperatures higher than 20 degC in order to determine critical embrittlement temperatures after ageing. (J.B.). 7 figs., 2 tabs., 5 refs

  8. Underwater welding of steel

    International Nuclear Information System (INIS)

    Ibarra, S.; Olson, D.L.

    1992-01-01

    A fundamental basis to understand the behavior of wet underwater welding of steel is introduced. Both the pyrometallurgical and physical metallurgy concepts are discussed. Modifications of welding consumables and practice are suggested. This chapter promotes further contributions of meatllurgical research to improve and promote wet underwater welding. (orig.)

  9. The Microstructure and Pitting Resistance of Weld Joints of 2205 Duplex Stainless Steel

    Science.gov (United States)

    Wu, Mingfang; Liu, Fei; Pu, Juan; Anderson, Neil E.; Li, Leijun; Liu, Dashuang

    2017-11-01

    2205 duplex stainless steel (DSS) was welded by submerged arc welding. The effects of both heat input and groove type on the ferrite/austenite ratio and elemental diffusion of weld joints were investigated. The relationships among welding joint preparation, ferrite/austenite ratio, elemental diffusion, and pitting corrosion resistance of weld joints were analyzed. When the Ni content of the weld wire deposit was at minimum 2-4% higher than that of 2205 DSS base metal, the desired ratio of ferrite/austenite and elemental partitioning between the austenite and ferrite phases were obtained. While the pitting sensitivity of weld metal was higher than that of base metal, the self-healing capability of the passive film of weld metal was better than that of the base metal when a single V-type groove was used. Furthermore, the heat input should be carefully controlled since pitting corrosion occurred readily in the coarse-grained heat-affected zone near the fusion line of welded joints.

  10. The effect of different rutile electrodes on mechanical properties of underwater wet welded AH-36 steel plates

    Science.gov (United States)

    Winarto, Winarto; Purnama, Dewin; Churniawan, Iwan

    2018-04-01

    Underwater welding is an important role in the rescue of ships and underwater structures, in case of emergency. In this study, the marine steel plates used are AH-36 steel as parent material. This type of steel is included in the High Strength Low Alloy (HSLA). Electrodes used for welding AH-36 steel plates are commonly the E6013 and E 7024 which are the type of based rutile electrodes. Those electrodes are widely available on the market and they would be compared with the original electrode for underwater which is the type of E7014 with the trade name of Broco UW-CS-1. Welding method used is Shielding Metal Arc Welding (SMAW) with the variation of 5 m and 10 m underwater depth and also varied with the electric current of 120A, 140A and 250A. It was found that hardness value of increased in the area of weld metal and HAZ. HAZ also tends to have the highest hardness compared to both of weld metal and base metal. Non destructive test by radiographed test (RT) on welds showed that there are found welding defects in the form of incomplete penetration on all variations of welding parameters, but there is no porosity defect detected. The results of the hardness tests of underwater wet welded steel plates show that the hardness value of both rutile electrodes (E6013 and E 7024) is apparently similar hardness value compared with the existing commercial electrode (E7014 of Broco UW-CS- 1). The tensile test results of underwater wet welded steel plates show that the use of rutile electrode of E6013 gives a better tensile properties than other rutile electrodes.

  11. Welding fumes from stainless steel gas metal arc processes contain multiple manganese chemical species.

    Science.gov (United States)

    Keane, Michael; Stone, Samuel; Chen, Bean

    2010-05-01

    Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (welding process. Mn generation rates for the fractions were tabulated, and the influence of ozone is discussed. The conclusions are that exposures to welding fumes include multiple Mn species, both

  12. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals.

    Science.gov (United States)

    Cena, L G; Chisholm, W P; Keane, M J; Chen, B T

    2015-01-01

    A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8-199 μg/m3; Ni concentrations ranged 10-51 μg/m3; and Cr concentrations ranged 40-105 μg/m3. Cr(VI) concentrations ranged between 0.5-1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm.

  13. Research of Technological Properties of Steel X6CRNITI18-10 Welded Joints Exploited in Nitric Acid Medium

    Directory of Open Access Journals (Sweden)

    Gediminas Mikalauskas

    2016-04-01

    Full Text Available The repair of chemical industry equipments often requires to replace long time operated pipes or welded inserts with the simi-lar chemical composition. During the study the joints from corro-sion resistant steel X6CrNiTi18-10 were welded by manual metal arc welding with covered electrodes (MMA process 111 and tungsten inert gas welding (TIG process 141 at different welding parameters. The visual, radiographic, penetrant control and ferrite content analysis were carried out. The transverse tensile and bending samples were produced from welded samples; also the macroscopic and microscopic analyse were carried out.

  14. Strengthening Hadfield steel welds by nitrogen alloying

    International Nuclear Information System (INIS)

    Efstathiou, C.; Sehitoglu, H.

    2009-01-01

    Strengthening Hadfield steel weld repairs by introducing nitrogen into the weld region was proven to be feasible via two welding techniques. The first technique required a pure Hadfield steel filler material to be diffusion treated in a high pressure nitrogen gas environment, and subsequently used during tungsten inert gas welding with a pure argon shielding gas. The second technique used a Hadfield steel filler material, and a 10% nitrogen containing argon shielding gas during tungsten inert gas welding. Both techniques increased the yield strength, the hardening rate, and the ultimate strength of the weld region. Using optical microscopy, scanning electron microscopy, and Auger spectroscopy, we determined that the increased strength of the weld region resulted from a combination of nitrogen alloying and microstructural refinement

  15. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  16. Comparative estimation of the properties of heat resisting nickel alloy welded joints made by electron-beam and arc welding

    International Nuclear Information System (INIS)

    Morochko, V.P.; Sorokin, L.I.; Yakushin, B.F.; Moryakov, V.F.

    1977-01-01

    As compared to argon arc welding of refractory nickel alloys at 15 m/hour rate, electron beam welding decreases energy consumption per unit length (from 4300 to 2070 cal/cm), the weld area (from 108 to 24 mm 2 ), and the length of the thermal effect zone (from 0.9-1.8 to 0.4-0.8 mm). Electron beam welding also provides for better resistance to hot cracking in the weld metal and in the near-weld zone, as compared to automatic argon arc welding and manual welding with addition of the basic metal. However, this advantage is observed only at welding rates less than 45 m/hour. Electron beam welded joints of refractory nickel alloys with intermetallide reinforcement have higher strength, plasticity and impact strength, and lower scattering of these properties than arc welded joints

  17. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    Science.gov (United States)

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Additional materials for welding of the EP99 heat resisting alloy with the EI868 alloy and 12Kh18N9T steel

    International Nuclear Information System (INIS)

    Sorokin, L.I.; Filippova, S.P.; Petrova, L.A.

    1978-01-01

    Presented are the results of the studies aimed at selecting an additive material for argon-arc welding process involving heat-resistant nickel EP99 alloy to be welded to the EI868 alloy and 12Kh18N9T steel. As the additive material use was made of wire made of nickel-chromium alloys and covered electrodes made of the EP367 alloy with additions of tungsten. It has been established that in order to improve the resistance of metal to hot-crack formation during argon arc welding of the EP99 alloy with the EI868 alloy, it is advisable to use an additive material of the EP533 alloy, and while welding the same alloy with the 12Kh18N9T steel, filler wire of the EP367 alloy is recommended

  19. Kinetics of manganese in MAG/MIG welding with a 18/8/6 wire

    OpenAIRE

    Tušek, Janez

    2001-01-01

    The paper deals with a study of MAG/MIG welding of low-alloy ferritic steel and highalloy austenitic steel with a 18/8/6 wire. Manganese burn-off from the wire in welding a single-V butt weld was studied. It was found that manganese burns off in the arc during melting of a droplet at the wire end, and from the weld pool during weld formation. The range of manganese burn-off depends mainly on the type of shielding gas used and the arc length, i.e., from the arc voltage. The manganese burn-off ...

  20. Infrared sensing techniques for adaptive robotic welding

    International Nuclear Information System (INIS)

    Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

    1986-01-01

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process

  1. On arc efficiency in gas tungsten arc welding

    Directory of Open Access Journals (Sweden)

    Nils Stenbacka

    2013-12-01

    Full Text Available The aim of this study was to review the literature on published arc efficiency values for GTAW and, if possible, propose a narrower band. Articles between the years 1955 - 2011 have been found. Published arc efficiency values for GTAW DCEN show to lie on a wide range, between 0.36 to 0.90. Only a few studies covered DCEP - direct current electrode positive and AC current. Specific information about the reproducibility in calorimetric studies as well as in modeling and simulation studies (considering that both random and systematic errors are small was scarce. An estimate of the average arc efficiency value for GTAW DCEN indicates that it should be about 0.77. It indicates anyway that the GTAW process with DCEN is an efficient welding method. The arc efficiency is reduced when the arc length is increased. On the other hand, there are conflicting results in the literature as to the influence of arc current and travel speed.

  2. Spinodal Decomposition in Functionally Graded Super Duplex Stainless Steel and Weld Metal

    Science.gov (United States)

    Hosseini, Vahid A.; Thuvander, Mattias; Wessman, Sten; Karlsson, Leif

    2018-04-01

    Low-temperature phase separations (T duplex stainless steel (SDSS) base and weld metals were investigated for short heat treatment times (0.5 to 600 minutes). A novel heat treatment technique, where a stationary arc produces a steady state temperature gradient for selected times, was employed to fabricate functionally graded materials. Three different initial material conditions including 2507 SDSS, remelted 2507 SDSS, and 2509 SDSS weld metal were investigated. Selective etching of ferrite significantly decreased in regions heat treated at 435 °C to 480 °C already after 3 minutes due to rapid phase separations. Atom probe tomography results revealed spinodal decomposition of ferrite and precipitation of Cu particles. Microhardness mapping showed that as-welded microstructure and/or higher Ni content accelerated decomposition. The arc heat treatment technique combined with microhardness mapping and electrolytical etching was found to be a successful approach to evaluate kinetics of low-temperature phase separations in SDSS, particularly at its earlier stages. A time-temperature transformation diagram was proposed showing the kinetics of 475 °C-embrittlement in 2507 SDSS.

  3. Welding Current Distribution in the Work-piece and Pool in Arc Welding

    Directory of Open Access Journals (Sweden)

    A. M. Rybachuk

    2015-01-01

    Full Text Available In order to select the optimal configuration of controlling magnetic fields and build rational construction of magnetic systems, we need to know the distribution of welding current in the molten metal of the weld pool. So the objective of the work is to establish the calculated methods for determining current density in the weld pool during arc welding. The distribution of welding current in the pool depends on the field of the electrical resistance, which is determined by the deformed temperature field while arc moves with the welding speed. The previous works have shown experimentally and by simulation on the conductive paper that deformation of temperature field defines deformation of electric field. On the basis thereof, under certain boundary conditions the problem has been solved to give a general solution of differential equation, which relates the potential distribution to the temperature in the product during arc welding. This solution is obtained under the following boundary conditions: 1 metal is homogeneous; 2 input and output surfaces of heat flux and electric current coincide; 3 input and output surfaces of heat flux and electric current are insulated and equipotential; 4 other (lateral surfaces are adiabatic boundaries. Therefore, this paper pays basic attention to obtaining the analytical solution of a general differential equation, which relates distribution of potential to the temperature in the product. It considers the temperature field of the heat source, which moves at a welding speed with normal-circular distribution of the heat flow at a certain concentration factor. The distribution of current density is calculated on the assumption that the welding current is introduced through the same surface as the heat flux and the distribution of current density corresponds to the normally circular at a certain concentration factor. As a result, we get an expression that allows us to calculate the current density from the known

  4. Mechanism and Microstructure of Oxide Fluxes for Gas Tungsten Arc Welding of Magnesium Alloy

    Science.gov (United States)

    Liu, L. M.; Zhang, Z. D.; Song, G.; Wang, L.

    2007-03-01

    Five single oxide fluxes—MgO, CaO, TiO2, MnO2, and Cr2O3—were used to investigate the effect of active flux on the depth/width ratio in AZ31B magnesium alloy. The microstructure and mechanical property of the tungsten inert gas (TIG) welding seam were studied. The oxygen content in the weld seam and the arc images during the TIG welding process were analyzed. A series of emission spectroscopy of weld arc for TIG welding for magnesium with and without flux were developed. The results showed that for the five single oxide fluxes, all can increase the weld penetration effectively and grain size in the weld seam of alternating current tungsten inert gas (ACTIG) welding of the Mg alloy. The oxygen content of the welds made without flux is not very different from those produced with oxide fluxes not considering trapped oxide. However, welds that have the best penetration have a relatively higher oxygen content among those produced with flux. It was found that the arc images with the oxide fluxes were only the enlarged form of the arc images without flux; the arc constriction was not observed. The detection of arc spectroscopy showed that the metal elements in the oxides exist as the neutral atom or the first cation in the weld arc. This finding would influence the arc properties. When TIG simulation was carried out on a plate with flux applied only on one side, the arc image video showed an asymmetric arc, which deviated toward the flux free side. The thermal stability, the dissociation energy, and the electrical conductivity of oxide should be considered when studying the mechanism for increased TIG flux weld penetration.

  5. Initial Testing for the Recommendation of Improved Gas Metal Arc Welding Procedures for HY-80 Steel Plate Butt Joints at Norfolk Naval Shipyard

    Science.gov (United States)

    2015-12-01

    17  Figure 11.  IRMS versus VRMS Comparison with Different Ar/CO2 Gas Mixtures Using GMAW-P...21  Figure 13.  IRMS versus VRMS Comparison with Miller and Lincoln Welding Machines in the Horizontal and Vertical Positions Using GMAW-P...Gas Metal Arc Welding Pulsed Spray Transfer GMAW-S Gas Metal Arc Welding Spray Transfer HAZ Heat Affected Zone HC#1 Hull Cut #1 IRMS Current Root

  6. Arc brazing of austenitic stainless steel to similar and dissimilar metals

    Science.gov (United States)

    Moschini, Jamie Ian

    There is a desire within both the stainless steel and automotive industries to introduce stainless steel into safety critical areas such as the crumple zone of modem cars as a replacement for low carbon mild steel. The two main reasons for this are stainless steel's corrosion resistance and its higher strength compared with mild steel. It has been anticipated that the easiest way to introduce stainless steel into the automotive industry would be to incorporate it into the existing design. The main obstacle to be overcome before this can take place is therefore how to join the stainless steel to the rest of the car body. In recent times arc brazil g has been suggested as a joining technique which will eliminate many of the problems associated with fusion welding of zinc coated mild steel to stainless steel.Similar and dissimilar parent material arc brazed joints were manufactured using three copper based filler materials and three shielding gases. The joints were tested in terms of tensile strength, impact toughness and fatigue properties. It was found that similar parent material stainless steel joints could be produced with a 0.2% proof stress in excess of the parent material and associated problems such as Liquid Metal Embrittlement were not experienced. Dissimilar parent material joints were manufactured with an ultimate tensile strength in excess of that of mild steel although during fatigue testing evidence of Liquid Metal Embrittlement was seen lowering the mean fatigue load.At the interface of the braze and stainless steel in the similar material butt joints manufactured using short circuit transfer, copper appeared to penetrate the grain boundaries of the stainless steel without embrittling the parent material. Further microscopic investigation of the interface showed that the penetration could be described by the model proposed by Mullins. However, when dissimilar metal butt joints were manufactured using spray arc transfer, penetration of copper into the

  7. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    Science.gov (United States)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  8. 30 CFR 77.1112 - Welding, cutting, or soldering with arc or flame; safeguards.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... WORK AREAS OF UNDERGROUND COAL MINES Fire Protection § 77.1112 Welding, cutting, or soldering with arc or flame; safeguards. (a) When welding, cutting, or soldering with arc or flame near combustible...

  9. Welding technologies for nuclear machinery and equipment

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro; Yokono, Tomomi.

    1991-01-01

    The main welding methods applied to nuclear machinery and equipment are shielded metal arc welding, submerged arc welding, MAG welding and TIG welding. But in the last 10 years, in order to improve the reliability required for the welding of nuclear machinery and equipment, the welding technologies aiming at the reduction of heat input, the decrease of the number of welding pass and the automatic control of welding factors have been applied for the main purpose of bettering the quality and excluding human errors. The merits and the technology of narrow gap, pulsed MAG welding and melt-through welding are explained. As the automation of TIG welding, image processing type narrow gap, hot wire TIG welding and remote control type automatic TIG welding are described. For the longitudinal welding of active metal sheet products, plasma key-hole welding is applied. Since the concentration of its arc is good, high speed welding with low heat input can be done. For the stainless steel cladding by welding, electroslag welding has become to be employed in place of conventional submerged arc welding. Arc is not generated in the electroslag welding, and the penetration into base metal is small. (K.I.)

  10. Heat transfer modeling of double-side arc welding

    International Nuclear Information System (INIS)

    Sun Junsheng; Wu Chuansong

    2002-01-01

    If a plasma arc and a TIG arc are connected in serial and with the plasma arc placed on the obverse side and the TIG arc on the opposite side of the workpiece, a special double-side arc welding (DSAW) system will be formed, in which the PAW current is forced to flow through the keyhole along the thickness direction so as to compensate the energy consumed for melting the workpiece and improve the penetration capacity of the PAW arc. By considering the mechanics factors which influence the DSAW pool geometric shape, the control equations of the pool surface deformation are derived, and the mathematics mode for DSAW heat transfer is established by using boundary-fitted non-orthogonal coordinate systems. With this model, the difference between DSAW and PAW heat transfer is analyzed and the reason for the increase of DSAW penetration is explained from the point of heat transfer. The welding process experiments show that calculated results are in good agreement with measured ones

  11. The effect of flux on properties of weld in submerged arc welding with filler metal

    International Nuclear Information System (INIS)

    Fattahpour, Iran.

    1984-01-01

    In the submerged-arc welding, the electrode wire is shielded by a blanket of granular fusible material called a flux. This granular material, flux, must ensure the deposition of weld metal of given chemical composition and specified mechanical properties. The flux must also ensure stable burning of the welding arc and contribute to the formation of a dense weld of required shape and size, and free from pores, cracks and slag inclusions. As the deposited molten metal solidifies, the flux must form a slag crust, easily separable from the surface of the weld. This material must be of a certain chemical composition and possess definite physical properties, such as melting point, viscosity, bulk weight. The chemical composition of the flux is chosen, depending on the composition of the welded metal and electrode wire used. (Author)

  12. 30 CFR 75.1106 - Welding, cutting, or soldering with arc or flame underground.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Welding, cutting, or soldering with arc or... Protection § 75.1106 Welding, cutting, or soldering with arc or flame underground. [Statutory Provisions] All welding, cutting, or soldering with arc or flame in all underground areas of a coal mine shall, whenever...

  13. More About Arc-Welding Process for Making Carbon Nanotubes

    Science.gov (United States)

    Benavides, Jeanette M.; Leidecker, Henning

    2005-01-01

    High-quality batches of carbon nanotubes are produced at relatively low cost in a modified atmospheric-pressure electric-arc welding process that does not include the use of metal catalysts. What would normally be a welding rod and a weldment are replaced by an amorphous carbon anode rod and a wider, hollow graphite cathode rod. Both electrodes are water-cooled. The cathode is immersed in ice water to about 0.5 cm from the surface. The system is shielded from air by flowing helium during arcing. As the anode is consumed during arcing at 20 to 25 A, it is lowered to maintain it at an approximately constant distance above the cathode. The process causes carbon nanotubes to form on the lowest 5 cm of the anode. The arcing process is continued until the anode has been lowered to a specified height. The nanotube-containing material is then harvested. The additional information contained in the instant report consists mostly of illustrations of carbon nanotubes and a schematic diagram of the arc-welding setup, as modified for the production of carbon nanotubes.

  14. Caracterização microestrutural de soldas dissimilares dos aços ASTM A-508 e AISI 316L Characterization of dissimilar metal weld between low alloy steel ASTM A-508 and 316L stainless steel

    Directory of Open Access Journals (Sweden)

    Luciana Iglésias Lourenço Lima

    2010-06-01

    Full Text Available As soldas dissimilares (dissimilar metal welds - DMWs são utilizadas em diversos segmentos da indústria. No caso específico de usinas nucleares, tais soldas são necessárias para conectar tubulações de aço inoxidável com componentes fabricados em aços baixa liga. Os materiais de adição mais utilizados neste tipo de solda são as ligas de níquel 82 e 182. Este trabalho consistiu na soldagem de uma junta dissimilar de aço baixa liga ASTM A-508 G3 e aço inoxidável austenítico AISI 316L utilizando as ligas de níquel 82 e 182 como metais de adição. A soldagem foi realizada manualmente empregando os processos de soldagem ao arco SMAW (Shielded Metal Arc Welding e GTAW (Gas Tungsten Arc Welding. Os corpos de prova foram caracterizados microestruturalmente utilizando-se microscópio óptico e microscópio eletrônico de varredura com microanálise por dispersão de energia de raios X (EDS e ensaios de microdureza Vickers. Observou-se uma microestrutura constituída de dendritas de austenita com a presença de precipitados com formas e dimensões definidas pelo aporte térmico e pela direção de soldagem. Não houve variação significativa da dureza ao longo da junta soldada, demonstrando a adequação dos parâmetros de soldagem utilizados.The dissimilar metal welds (DMWs are used in several areas of the industries. In the nuclear power plant, this weld using nickel alloy welding wires is used to connect stainless steel pipes to low alloy steel components on the reactor pressured vessels. The filler materials commonly used in this type of weld are nickel alloys 82 and 182.. In this study, dissimilar metal welds composed of low alloy steel ASTM A-508 G3, nickel alloys 82 e 182 as weld metals, and austenitic stainless steel AISI 316L were prepared by manual shielded metal arc welding (SMAW and gas tungsten arc welding techniques (GTAW. Samples were microstructural characterized by optical microscopy and scanning electron microscopy

  15. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    Science.gov (United States)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-05-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural

  16. Comparison of stainless and mild steel welding fumes in generation of reactive oxygen species

    Directory of Open Access Journals (Sweden)

    Frazer David

    2010-11-01

    Full Text Available Abstract Background Welding fumes consist of a wide range of complex metal oxide particles which can be deposited in all regions of the respiratory tract. The welding aerosol is not homogeneous and is generated mostly from the electrode/wire. Over 390,000 welders were reported in the U.S. in 2008 while over 1 million full-time welders were working worldwide. Many health effects are presently under investigation from exposure to welding fumes. Welding fume pulmonary effects have been associated with bronchitis, metal fume fever, cancer and functional changes in the lung. Our investigation focused on the generation of free radicals and reactive oxygen species from stainless and mild steel welding fumes generated by a gas metal arc robotic welder. An inhalation exposure chamber located at NIOSH was used to collect the welding fume particles. Results Our results show that hydroxyl radicals (.OH were generated from reactions with H2O2 and after exposure to cells. Catalase reduced the generation of .OH from exposed cells indicating the involvement of H2O2. The welding fume suspension also showed the ability to cause lipid peroxidation, effect O2 consumption, induce H2O2 generation in cells, and cause DNA damage. Conclusion Increase in oxidative damage observed in the cellular exposures correlated well with .OH generation in size and type of welding fumes, indicating the influence of metal type and transition state on radical production as well as associated damage. Our results demonstrate that both types of welding fumes are able to generate ROS and ROS-related damage over a range of particle sizes; however, the stainless steel fumes consistently showed a significantly higher reactivity and radical generation capacity. The chemical composition of the steel had a significant impact on the ROS generation capacity with the stainless steel containing Cr and Ni causing more damage than the mild steel. Our results suggest that welding fumes may cause acute

  17. Friction Welding of Titanium and Carbon Steel

    OpenAIRE

    Atsushi, HASUI; Yoichi, KIRA; Faculty of Science and Technology, Keio University; Ishikawajima-Harima Heavy Industries, Co., Ltd.

    1985-01-01

    Titanium-steel is a combination of dissimilar materials, which are difficult to weld in general, owing to inevitable formation of brittle intermetallic compounds. A prominent feature of friction welding process is ability to weld dissimilar materials in many kinds of combinations. This report deals with friction weldabilily of pure titanium and S25C steel, which are 12 mm in diameter. Main results are summarized as follows; (1) Suitable welding conditions to obtain a sound weld, which has a j...

  18. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    Science.gov (United States)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  19. Welding stainless steels for structures operating at liquid helium temperature

    International Nuclear Information System (INIS)

    Witherell, C.E.

    1980-01-01

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2 0 K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2 0 K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness

  20. Advanced Gas Tungsten Arc Weld Surfacing Current Status and Application

    Directory of Open Access Journals (Sweden)

    Stephan Egerland

    2015-09-01

    Full Text Available Abstract Gas Shielded Tungsten Arc Welding (GTAW – a process well-known providing highest quality weld results joined though by lower performance. Gas Metal Arc Welding (GMAW is frequently chosen to increase productivity along with broadly accepted quality. Those industry segments, especially required to produce high quality corrosion resistant weld surfacing e.g. applying nickel base filler materials, are regularly in consistent demand to comply with "zero defect" criteria. In this conjunction weld performance limitations are overcome employing advanced 'hot-wire' GTAW systems. This paper, from a Welding Automation perspective, describes the technology of such devices and deals with the current status is this field – namely the application of dual-cathode hot-wire electrode GTAW cladding; considerably broadening achievable limits.

  1. Features of argon-arc welding of aluminium alloy AD1 to stainless steel 12Kh18N10T

    International Nuclear Information System (INIS)

    Sadov, I.I.

    1982-01-01

    Welding of pipes made of the 12Kh18N10T stainless steel and the AD1 aluminium alloy is proposed to perform using one-sided aluminizing. It is recommended to use shields in order to protect internal and external surfaces of pipes, aluminizing of which is impossible. It is shown that developed technological process for welded joints made of aluminium and stainless steel for cryogenic apparatus permits to create light-duty cryostat assembly using aluminium alloys instead of copper alloys, to increase reliability of apparatus (usage of welded joints instead of soldered ones), and to improve labour conditions

  2. Corrosion Resistance Evaluation of Welded AISI 316 Stainless Steel by Electrochemical Method

    International Nuclear Information System (INIS)

    Baik, Shin Young; Kim, Kwan Hyu

    1990-01-01

    Electrochemical potentiokinetic polarization technique is known as quantitative, non-destructive and a rapid method for detecting sensitization and is essentially suitable for use in industrial fields and as laboratory research tools. In this study, electrochemical method was tested as a convenient means of the corrosion resistance evaluation for AISI 316L and 316 stainless steel(SS) and their welded sections. The sections were welded by TIG, MIG, CO 2 and ARC in 0.5N HCl as well as 1N H 2 SO 4 electrolyte with or without 0.01N KSCN. The results confirmed that electrochemical method could be used conveniently for corrosion resistance evaluation except reactivation aspect

  3. Production of Manual Metal Arc Welding Electrodes with Local Raw ...

    African Journals Online (AJOL)

    Manual arc welding using flux coated electrodes is carried out by producing an electric arc between the base metal and a flux covered metal electrode with electric current that depends on the type of electrode, material, welding position and the desired strength. The composition of flux coated electrodes is complex and a ...

  4. Characterization of electromagnetic pulse welding joints for advanced steels (ODS) welding applications

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, P.M.; Sarkar, B.

    2015-01-01

    Advanced fusion reactors structural materials (like in case of TBM and, first wall components) have several operation challenges due to the demanding high temperature exposure conditions (∼800°C) and low neutron radiation effects. The present paper reports the preliminary case studies carried out on steel and copper EMP joints and their properties characterization towards establishing this technology for ODS alloys. The EMP joints in form of tubes are fabricated and tested (typical process parameters ∼ Voltage 25 kV, Current ∼600-800 kA, Max. energy ∼ 50 kJ, and 50 sec duty cycle as major process parameters). The weld joints are further characterized by X-ray radiography and found that there were no measureable defects/discontinuities across the weld interface. This indicates the good process of joining and acceptable. Characterization studies like microstructure, interface grain orientation features, deformation, hardness has been carried out. SEM studies also carried to check the interface status and some interesting features of discontinuities are observed which are not exclusively revealed by radiography tests. Hardness survey also revealed that there is no much variation in the both parent materials as well at weld zone indicating the no hardening affects like in arc/beam weld process. EMP joining has potential features for the joining requirements of ODS kind typical metallurgical requirements

  5. Mechanical behaviour of Astm A 297 grade Hp joints welded using different processes

    International Nuclear Information System (INIS)

    Emygdio, Paulo Roberto Oliveira; Zeemann, Annelise; Almeida, Luiz Henrique de

    1996-01-01

    The influence of different arc welding processes on mechanical behaviour was studied for cast heat resistant stainless steel welded joints, in the as welded conditions. ASTM A 297 grade HP with niobium and niobium/titanium additions were welded following three different welding procedures, using shielded metal arc welding gas tungsten arc welding and plasma arc welding, in six welded joints. The welded joint mechanical behaviour was evaluated by ambient temperature and 870 deg C tensile tests; and creep tests at 900 deg C and 50 MPa. Mechanical test results showed that the welding procedure qualification following welding codes is not suitable for high temperature service applications. (author)

  6. The application of imperialist competitive algorithm for optimization of deposition rate in submerged arc welding process using TiO2 nano particle

    International Nuclear Information System (INIS)

    Ghaderi, Mohammad Reza; Eslampanah, Amirhossein; Ghaderi, Kianoosh; Aghakhani, Masood

    2015-01-01

    We used a novel optimization algorithm based on the imperialist competitive algorithm (ICA) to optimize the deposition rate in the submerged arc welding (SAW) process. This algorithm offers some advantages such as simplicity, accuracy and time saving. Experiments were conducted based on a five factor, five level rotatable central composite design (RCCD) to collect welding data for deposition rate as a function of welding current, arc voltage, contact tip to plate distance, welding speed and thickness of TiO 2 nanoparticles coated on the plates of mild steel. Furthermore, regression equation for deposition rate was obtained using least squares method. The regression equation as the cost function was optimized using ICA. Ultimately, the levels of input variables to achieve maximum deposition rate were obtained using ICA. Computational results indicate that the proposed algorithm is quite effective and powerful in optimizing the cost function.

  7. [Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG].

    Science.gov (United States)

    Huang, Yong; Wang, Yan-Lei; Zhang, Zhi-Guo

    2014-05-01

    In the present paper, Boltzmann plot method was applied to analyze the temperature distributions of the are plasma when the gas pool coupled activating TIG welding was at different coupling degrees with the outer gas being O2. Based on this study of temperature distributions, the changing regularities of are voltage and are appearance were studied. The result shows that compared with traditional TIG welding, the introduction of O2 makes the welding arc constricted slightly, the temperature of the are center build up, and the are voltage increase. When argon being the inner gas, oxygen serving as the outer gas instead of argon makes the are constricted more obviously. When the coupling degree increases from 0 to 2, the temperature of the are center and the are voltage both increase slightly. In the gas pool coupled activating TIG welding the are is constricted not obviously, and the reason why the weld penetration is improved dramatically in the welding of stainless steel is not are constriction.

  8. Optimization of the A-TIG welding for stainless steels

    Science.gov (United States)

    Jurica, M.; Kožuh, Z.; Garašić, I.; Bušić, M.

    2018-03-01

    The paper presents the influence of the activation flux and shielding gas on tungsten inert gas (A-TIG) welding of the stainless steel. In introduction part, duplex stainless steel was analysed. The A-TIG process was explained and the possibility of welding stainless steels using the A-TIG process to maximize productivity and the cost-effectiveness of welded structures was presented. In the experimental part duplex, 7 mm thick stainless steel has been welded in butt joint. The influence of activation flux chemical composition upon the weld penetration has been investigated prior the welding. The welding process was performed by a robot with TIG equipment. With selected A-TIG welding technology preparation of plates and consumption of filler material (containing Cr, Ni and Mn) have been avoided. Specimens sectioned from the produced welds have been subjected to tensile strength test, macrostructure analysis and corrosion resistance analysis. The results have confirmed that this type of stainless steel can be welded without edge preparation and addition of filler material containing critical raw materials as Cr, Ni and Mn when the following welding parameters are set: current 200 A, welding speed 9,1 cm/min, heat input 1,2 kJ/mm and specific activation flux is used.

  9. Effect of Dynamic Reheating Induced by Weaving on the Microstructure of GTAW Weld Metal of 25% Cr Super Duplex Stainless Steel Weld Metal

    Directory of Open Access Journals (Sweden)

    Hee-Joon Sung

    2017-11-01

    Full Text Available The importance of the additional growth and/or transformation of the austenite phase that occurs in weld metals of super duplex stainless steel upon reheating is known. However, the effects have not been fully investigated, especially with respect to reheating induced by weaving during single-pass welding. In this work, bead-on-pipe gas tungsten arc welding (GTAW was conducted on super duplex stainless steel to understand the effect of weaving on the microstructure of weld metal. Microstructural analysis, electron backscatter diffraction (EBSD, and focused ion beam transmission electron microscopy (FIB-TEM were carried out to investigate the relationship between weaving and microstructural change. The weaving of GTAW produced a dynamic reheated area just before the weld bead during welding. It was revealed that extensive reheated weld existed even after one welding pass, and that the content of the austenite phase in the reheated area was higher than that in the non-reheated area, indicating the existence of a large quantity of intragranular austenite phase. In addition, the Cr2N content in the reheated area was lower than that in the non-reheated area. This reduction of Cr2N was closely related to the reheating resulting from weaving. TEM analysis revealed that Cr2N in the non-reheated area was dispersed following heating and transformed to secondary austenite.

  10. Three-Sheet Spot Welding of Advanced High-Strength Steels

    DEFF Research Database (Denmark)

    Nielsen, Chris Valentin; Friis, Kasper Storgaard; Zhang, W.

    2011-01-01

    The automotive industry has introduced the three-layer weld configuration, which represents new challenges compared to normal two-sheet lap welds. The process is further complicated by introducing high-strength steels in the joint. The present article investigates the weldability of thin, low....... The weld mechanisms are analyzed numerically and compared with metallographic analyses showing how the primary bonding mechanism between the thin, low-carbon steel sheet and the thicker sheet of high-strength steel is solid-state bonding, whereas the two high-strength steels are joined by melting, forming...... a weld nugget at their mutual interface. Despite the absence of the typical fusion nugget through the interface between the low-carbon steel and high-strength steel, the weld strengths obtained are acceptable. The failure mechanism in destructive testing is ductile fracture with plug failure....

  11. Study of the temperature distribution on welded thin plates of duplex steel to be used for the external clad of a cask for transportation of radiopharmaceuticals products

    International Nuclear Information System (INIS)

    Betini, Evandro G.; Ceoni, Francisco C.; Mucsi, Cristiano S.; Politano, Rodolfo; Rossi, Jesualdo L.; Orlando, Marcos T.D.

    2015-01-01

    The clad material for a proprietary transport device for radiopharmaceutical products is the main focus of the present work. The production of 99 Mo- 99m Tc transport cask requires a receptacle or cask where the UNS S32304 duplex steel sheet has shown that it meets high demands as the required mechanical strength and the spread of impact or shock waves mitigation. This work reports the experimental efforts in recording the thermal distribution on autogenous thin plates of UNS S32304 steel during welding. The UNS S32304 duplex steel is the most probable candidate for the external clad of the containment package for the transport of radioactive substances so it is highly relevant the understanding of all its physical parameters and its behavior under the thermal cycle imposed by a welding process. For the welding of the UNS S32304 autogenous plates the GTAW (gas tungsten arc welding) process was used with a pure argon arc protection atmosphere in order to simulate a butt joint weld on a thin duplex steel plate without filler metal. The thermal cycles were recorded by means of K-type thermocouples embedded by electrical spot welding near the weld region and connected to a multi-channel data acquisition system. The obtained results validate the reliability of the experimental apparatus for the future complete analysis of the welding experiment and further comparison to numerical analysis. (author)

  12. A control system for uniform bead in fillet arc welding on tack welds

    International Nuclear Information System (INIS)

    Kim, Jae Woong; Lee, Jun Young

    2008-01-01

    Positioning a workpiece accurately and preventing weld distortion, tack welding is often adopted before main welding in the construction of welded structures. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually performed for a uniform weld bead profile. In this study, a control system for uniform weld bead is proposed for the fillet arc welding on tack welds. The system consists of GMA welding machine, torch manipulator, laser vision sensor for measuring the tack weld size and the database for optimal welding conditions. Experiments have been performed for constructing the database and for evaluating the control capability of the system. It has been shown that the system has the capability to smooth the bead at the high level of quality

  13. Mechanical properties of CO2/MIG welded structural rolled steel and stainless steel

    International Nuclear Information System (INIS)

    Lim, Jong Young; Yoon, Myong Jin; Kim, Sang Youn; Kim, Tae Gyu; Shin, Hyeon Seung

    2015-01-01

    To accomplish long-term use of specific parts of steel, welding technology is widely applied. In this study, to compare the efficiency in improving mechanical properties, rolled steel (SS400) was welded with stainless steel (STS304) by both CO 2 welding method and MIG (metal inert gas) welding method, respectively. Multi-tests were conducted on the welded specimen, such as X-ray irradiation, Vickers' Hardness, tensile test, fatigue test and fatigue crack growth test. Based on the fatigue crack growth test performed by two different methods, the relationship of da/dN was analyzed. Although the hardness by the two methods was similar, tensile test and fatigue properties of MIG welded specimen are superior to CO 2 welded one.

  14. Determination of the sensitization of two coatings by steel welding 308l by the EPR-Dl and Astm A-262 practice A techniques

    International Nuclear Information System (INIS)

    Arganis J, C. R.; Zenteno S, J. C.; Robles F, J. L.; Rodriguez M, E.; Vazquez P, A.

    2014-10-01

    A stainless steel 308l coating was deposited by the shielded metal arc welding (SMAW) on steel A36 with a thickness of 4.726 mm in three layers. The sensitization was measured with the technique of Electrochemical Potentiodynamic Reactivation of Double-loop (EPR-Dl), using a portable cell and other of conventional window. The standard Astm A-262, practice A was used to verify the sensitization values. Two samples were used, a welding on a plate of 323 x 172 x 76.2 mm and the second welding on the end of a plate of 12.7 mm of thickness and 280 mm of longitude, with a post-welding process with gas tungsten arc welding (GTAW) with electrode ERNiCr 3 and a process SMAW with electrode ENICRFe 3 . The coating on the plate showed low values of sensitization grade (DOS) in all the points, indicating a very quick heat extraction and an inter dendritic structure type step. The second sample presented DOS values that are related with a structure of low sensitization and the influence of the heat of the post-welding process and a structure of recrystallized grains. (Author)

  15. Risk of lung cancer according to mild steel and stainless steel welding

    DEFF Research Database (Denmark)

    Sørensen, Anita Rath; Thulstrup, Ane Marie; Hansen, Johnni

    2007-01-01

    OBJECTIVES: Whether the elevated risk of lung cancer observed among welders is caused by welding emissions or by confounding from smoking or asbestos exposure is still not resolved. This question was addressed in a cohort with a long follow-up and quantified estimates of individual exposure.......06-1.70)]. Among the stainless steel welders, the risk increased significantly with increasing accumulative welding particulate exposure, while no exposure-response relation was found for mild steel welders, even after adjustment for tobacco smoking and asbestos exposure. CONCLUSIONS: The study corroborates...... earlier findings that welders have an increased risk of lung cancer. While exposure-response relations indicate carcinogenic effects related to stainless steel welding, it is still unresolved whether the mild steel welding process carries a carcinogenic risk....

  16. Study on Fatigue Characteristics of High-Strength Steel Welds

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong Suk; Yoo, Seung Won; Park, Jong Chan [Hyundai Motor Group, Seoul (Korea, Republic of)

    2015-03-15

    High-strength steel has replaced mild steel as the material of choice for truck decks or frames, owing to the growing demand for lightweight vehicles. Although studies on the weld fatigue characteristics of mild steel are available, studies on high-strength steels have been seldom conducted. In this study, firstly, we surveyed a chosen number of approaches and selected the Radaj method, which uses the notch factor approach, as the one suitable for evaluating the fatigue life of commercial vehicles. Secondly, we obtained the S-N curves of HARDOX and ATOS60 steel welds, and the F-N curves of the T-weld and overlapped-weld structures. Thirdly, we acquired a general S-N curve of welded structures made of high-strength steel from the F-N curve, using the notch factor approach. Fourthly, we extracted the weld fatigue characteristics of high-strength steel and incorporated the results in the database of a commercial fatigue program. Finally, we compared the results of the fatigue test and the CAE prediction of the example case, which demonstrated sufficiently good agreement.

  17. The First Assembly Line of Large-longitudinally-welded Steel Pipe in China Went into Operation

    Institute of Scientific and Technical Information of China (English)

    Li Bing

    2002-01-01

    @@ On July 27, the first assembly line to produce JCOE large diameter Longitudinally-submerged-arc-welded steel pipe in China, Which is the key homemade equipment project of "West-East Gas Transmission"project, was put into production. Chen Gen, vice general manager of CNPC; Xie Zhiqiang and Liu Haisheng, assistant chief manager of CNPC; Shi Xingquan, vice president of PetroChina; and the president of Itochu-Marubeni Steel & iron Co., Ltd.of Japan; attended the opening ceremony and cut the ribbon.

  18. Prediction of the weld pool geometry of TIG arc welding by using ...

    African Journals Online (AJOL)

    Prediction of the weld pool geometry of TIG arc welding by using fuzzy logic controller. ... The experimental data were then used for building a fuzzy logic model to predict the effects of control factors on the responses. A graphical mapping scheme was employed for the graphical representation of the macrostructure zones' ...

  19. Friction Welding For Cladding Applications: Processing, Microstructure and Mechanical Properties of Inertia Friction Welds of Stainless Steel to Low Carbon Steel and Evaluation of Wrought and Welded Austenitic Stainless Steels for Cladding Applications in Acidchloride Service

    Science.gov (United States)

    Switzner, Nathan

    Friction welding, a solid-state joining method, is presented as a novel alternative process step for lining mild steel pipe and forged components internally with a corrosion resistant (CR) metal alloy for petrochemical applications. Currently, fusion welding is commonly used for stainless steel overlay cladding, but this method is costly, time-consuming, and can lead to disbonding in service due to a hard martensite layer that forms at the interface due to partial mixing at the interface between the stainless steel CR metal and the mild steel base. Firstly, the process parameter space was explored for inertia friction butt welding using AISI type 304L stainless steel and AISI 1018 steel to determine the microstructure and mechanical properties effects. A conceptual model for heat flux density versus radial location at the faying surface was developed with consideration for non-uniform pressure distribution due to frictional forces. An existing 1 D analytical model for longitudinal transient temperature distribution was modified for the dissimilar metals case and to account for material lost to the flash. Microstructural results from the experimental dissimilar friction welds of 304L stainless steel to 1018 steel were used to discuss model validity. Secondly, the microstructure and mechanical property implications were considered for replacing the current fusion weld cladding processes with friction welding. The nominal friction weld exhibited a smaller heat softened zone in the 1018 steel than the fusion cladding. As determined by longitudinal tensile tests across the bond line, the nominal friction weld had higher strength, but lower apparent ductility, than the fusion welds due to the geometric requirements for neck formation adjacent to a rigid interface. Martensite was identified at the dissimilar friction weld interface, but the thickness was smaller than that of the fusion welds, and the morphology was discontinuous due to formation by a mechanism of solid

  20. Corrosion Behavior of Arc Weld and Friction Stir Weld in Al 6061-T6 Alloys

    International Nuclear Information System (INIS)

    Yoon, Byoung Hyun; Kim, Heung Ju; Chang, Woong Seong; Kweon, Young Gak

    2006-01-01

    For the evaluation of corrosion resistance of Al 6061-T6 Alloy, Tafel method and immersion test was performed with Friction Stir Weld(FSW) and Gas Metal Arc Weld(GMAW). The Tafel and immersion test results indicated that GMA weld was severely attacked compared with those of friction stir weld. It may be mainly due to the galvanic corrosion mechanism act on the GMA weld

  1. Advanced Control Methods for Optimization of Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, J. S.

    Gas Metal Arc Welding (GMAW) is a proces used for joining pieces of metal. Probably, the GMAW process is the most successful and widely used welding method in the industry today. A key issue in welding is the quality of the welds produced. The quality of a weld is influenced by several factors...... in the overall welding process; one of these factors are the ability of the welding machine to control the process. The internal control algorithms in GMAW machines are the topic of this PhD project. Basically, the internal control includes an algorithm which is able to keep the electrode at a given distance...

  2. Mars Atmosphere Effects on Arc Welds: Phase 1

    Science.gov (United States)

    Courtright, Z. S.

    2016-01-01

    NASA has been unprecedented in achieving its goals related to space exploration and furthering the understanding of our solar system. In keeping with this trend, NASA's current mission is to land a team of astronauts on Mars and return them safely to Earth. In addition to comprising much of the structure and life support systems that will be brought to Mars for the habitat and vehicle, titanium and aluminum can be found and mined on Mars and may be used when building structures.Where metals are present, there will be a need for welding capabilities. For welds that need to be made quickly and are located far from heavy resistance or solid state welding machinery, there will be a need for basic arc welding. Arc welding has been a major cornerstone of manufacturing throughout the 20th century, and the portability and capability of gas tungsten arc welding (GTAW) will be necessary for repair, manufacturing, and survival on Mars. The two primary concerns for welding on Mars are that the Martian atmosphere contains high levels of carbon dioxide (CO2), and the atmospheric pressure is much lower than it is on Earth. The high levels of CO2 in the Martian atmosphere may dissociate and produce oxygen in the arc and therefore increase the risk of oxidation. For simplification, atmospheric pressure will not be taken into account for this experiment. For survival on Mars during this mission, the life support and water filtration systems must be kept operational at all times. In order to ensure that water filtration systems can be repaired in the event of an emergency, it is very important to have the capability to weld. The Orion capsule and Mars lander must also remain operational throughout the duration of the mission to ensure the safe return of the astronauts on the mission to Mars. A better understanding of welding in a Mars environment is important to ensure that repair welds are possible if the Orion capsule/Mars lander or water filtration system is damaged at any point

  3. Visualizing the influence of the process parameters on the keyhole dimensions in plasma arc welding

    International Nuclear Information System (INIS)

    Liu, Z M; Wu, C S; Chen, M A

    2012-01-01

    The keyhole status and its dimensions are critical information determining both the process quality and weld quality in plasma arc welding (PAW). It is of great significance to measure the keyhole shape and size and to correlate them with the main process parameters. In this study, a low-cost vision system is developed to visualize the keyhole at the backside of the test-pieces in PAW. Three stages of keyhole evolution, i.e. initial blind stage (non-penetrated keyhole), unstable stage with momentarily disappeared keyhole and quasi-steady open keyhole stage (fully-penetrated keyhole), are measured in real-time during the PAW tests on stainless steel test-pieces of thickness 8 mm. Based on the captured images of keyhole under different welding conditions, the correlations of the main welding process parameters (welding current, welding speed, plasma gas flow rate) with the keyhole length, width and area are visualized through vision measurement. It lays a solid foundation for implementing keyhole stability control and process optimization in keyhole PAW. (paper)

  4. Sensing the gas metal arc welding process

    Science.gov (United States)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  5. Study and development of solid fluxes for gas tungsten arc welding applied to titanium and its alloys and stainless steels; Etude et developpement des flux solides en vue d'application en soudage ATIG applique au titane et ses alliages ainsi qu'aux aciers inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Perry, N

    2000-06-15

    Gas Tungsten Arc Welding uses an electric arc between the refractory tungsten electrode and the plates to be welded under an argon shielding gas. As a result, the joint quality is excellent, no pollution nor defects are to be feared, consequently this process is used in nuclear, aeronautic, chemical and food industries. Despite of this good qualities, GTAW is limited because of, on the one side, a poor penetrating weld pool and, on the other side, a week productivity rate. Indeed, up to 3 mm thick plates, machining and filler metal is needed. Multiple runs increase the defect's risks, the manufactory time and increase the deformations and the heat affected zone. The goal of this study is to break through this limits without any device investment. Active GTA welding (or ATIG) is a new technique with GTA device and an activating flux to be spread on the upper plate before welding. The arc, by plasma electrochemical equilibrium modifications, and the pool with the inner connective flows inversion, allow 7 mm thick joints in one run without edges machining or filler metal for both stainless steel and titanium alloys. This manuscript describes the development of these fluxes, highlights the several phenomena and presents the possibilities of this new process. This work, in collaboration with B.S.L. industries, leads to two flux formulations (stainless steel and titanium alloys) now in a commercial phase with CASTOLIN S.A. Moreover, B.S.L.industries produces a pressure device (nitrate column) with the ATIG process using more than 2800 ATIG welds. (author)

  6. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    International Nuclear Information System (INIS)

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-01-01

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: ► FSW produced sound welds between st37 low carbon steel and 304 stainless steel. ► The SZ of the st37 steel contained some products of allotropic transformation. ► The material in the SZ of the 304 steel showed features of dynamic recrystallization. ► The finer microstructure in the SZ increased the hardness and tensile strength.

  7. Manual gas tungsten arc (dc) and semiautomatic gas metal arc welding of 6XXX aluminum. Welding procedure specification

    International Nuclear Information System (INIS)

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-1009 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for manual gas tungsten arc (DC) and semiautomatic gas metal arc (DC) welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.187 to 2 in.; filler metal is ER4043 (F-23); shielding gases are helium (GTAW) and argon (GMAW)

  8. Plasma spot welding of ferritic stainless steels

    International Nuclear Information System (INIS)

    Lesnjak, A.; Tusek, J.

    2002-01-01

    Plasma spot wedding of ferritic stainless steels studied. The study was focused on welding parameters, plasma and shieldings and the optimum welding equipment. Plasma-spot welded overlap joints on a 0.8 mm thick ferritic stainless steel sheet were subjected to a visual examination and mechanical testing in terms of tension-shear strength. Several macro specimens were prepared Plasma spot welding is suitable to use the same gas as shielding gas and as plasma gas , i. e. a 98% Ar/2% H 2 gas mixture. Tension-shear strength of plasma-spot welded joint was compared to that of resistance sport welded joints. It was found that the resistance welded joints withstand a somewhat stronger load than the plasma welded joints due to a large weld sport diameter of the former. Strength of both types of welded joints is approximately the same. (Author) 32 refs

  9. Ultrasonic testing of austenitic stainless steel welds

    International Nuclear Information System (INIS)

    Nishino, Shunichi; Hida, Yoshio; Yamamoto, Michio; Ando, Tomozumi; Shirai, Tasuku.

    1982-05-01

    Ultrasonic testing of austenitic stainless steel welds has been considered difficult because of the high noise level and remarkable attenuation of ultrasonic waves. To improve flaw detectability in this kind of steel, various inspection techniques have been studied. A series of tests indicated: (1) The longitudinal angle beam transducers newly developed during this study can detect 4.8 mm dia. side drilled holes in dissimilar metal welds (refraction angle: 55 0 from SUS side, 45 0 from CS side) and in cast stainless steel welds (refraction angle: 45 0 , inspection frequency: 1 MHz). (2) Cracks more than 5% t in depth in the heat affected zones of fine-grain stainless steel pipe welds can be detected by the 45 0 shear wave angle beam method (inspection frequency: 2 MHz). (3) The pattern recognition method using frequency analysis technology was presumed useful for discriminating crack signals from spurious echoes. (author)

  10. Creep damage behaviour of modified 9Cr-1Mo steel weld joints

    International Nuclear Information System (INIS)

    Sakthivel, T.; Laha, K.; Vasudevan, M.; Panneer Selvi, S.

    2016-01-01

    Creep deformation and rupture behaviour of modified 9Cr-1Mo steel weld joints fabricated by single-pass activated TIG (A-TIG) and shielded metal arc welding (SMAW) processes have been investigated at 923 K over a stress range of 50 to 110 MPa after post weld heat treatment (PWHT). The weld joints exhibited significantly lower creep rupture lives than the base metal at lower applied stresses. Creep rupture location of the weld joints were found to occur in the ICHAZ. An extensive localized creep deformation, coarsening of M 23 C 6 precipitates in the ICHAZ with creep exposure led to the premature type IV failure of the joints. The coarsening of M 23 C 6 precipitates was extensive in the mid-section of the ICHAZ than the sub-surface of the joints, and was more predominant in the SMAW joint. While A-TIG weld joint exhibited reduced creep cavitation and coarsening of M 23 C 6 precipitates due to lower deformation constraints by adjacent regions in the ICHAZ. Hence, A-TIG weld joint exhibited higher creep rupture life than the SMAW joint. (author)

  11. Investigation of Y2O3 distribution in the welded joints of the fast reactor fuel claddings made of oxide dispersion strengthened steel

    International Nuclear Information System (INIS)

    Tabakin, E.M.; Kuz'min, S.V.; Ivanovich, Yu.V.; Ukai, Sh.; Kaito, T.; Seki, M.

    2007-01-01

    The study results of Y 2 O 3 distribution in welded joints of claddings from oxide dispersion strengthened steel produced by the technique of powder metallurgy are given in this paper. Change of content and distribution uniformity of yttrium oxide in welds in comparison with metal shell is the result of using flash welding of thin-walled fuel claddings. It is shown that concentration and yttrium oxide distribution uniformity in the cross section of weld, made by pulse laser welding is more high as compared with argon-arc welding [ru

  12. Welding stainless steels for structures operating at liquid helium temperature

    Energy Technology Data Exchange (ETDEWEB)

    Witherell, C.E.

    1980-04-18

    Superconducting magnets for fusion energy reactors require massive monolithic stainless steel weldments which must operate at extremely low temperatures under stresses approaching 100 ksi (700 MPa). A three-year study was conducted to determine the feasibility of producing heavy-section welds having usable levels of strength and toughness at 4.2/sup 0/K for fabrication of these structures in Type 304LN plate. Seven welding processes were evaluated. Test weldments in full-thickness plate were made under severe restraint to simulate that of actual structures. Type 316L filler metal was used for most welds. Welds deposited under some conditions and which solidify as primary austenite have exhibited intergranular embrittlement at 4.2/sup 0/K. This is believed to be associated with grain boundary metal carbides or carbonitrides precipitated during reheating of already deposited beads by subsequent passes. Weld deposits which solidify as primary delta ferrite appear immune. Through use of fully austenitic filler metals of low nitrogen content under controlled shielded metal arc welding conditions, and through use of filler metals solidifying as primary delta ferrite where only minimum residuals remain to room temperature, welds of Type 316L composition have been made with 4.2K yield strength matching that of Type 304LN plate and acceptable levels of soundness, ductility and toughness.

  13. Narrow gap mechanised arc welding in nuclear components manufactured by AREVA NP

    International Nuclear Information System (INIS)

    Peigney, A.

    2007-01-01

    Nuclear components require welds of irreproachable and reproducible quality. Moreover, for a given welding process, productivity requirements lead to reduce the volume of deposited metal and thus to use narrow gap design. In the shop, narrow gap Submerged Arc Welding process (SAW) is currently used on rotating parts in flat position for thicknesses up to 300 mm. Welding is performed with one or two wires in two passes per layer. In Gas Tungsten Arc Welding process (GTAW), multiple applications can be found because this process presents the advantage of allowing welding in all positions. Welding is performed in one or two passes per layer. The process is used in factory and on the nuclear sites for assembling new components but also for replacing components and for repairs. Presently, an increase of productivity of the process is sought through the use of hot wire and/or two wires. Concerning Gas Metal Arc Welding process (GMAW), its use is growing for nuclear components, including narrow gap applications. This process, limited in its applications in the past on account of the defects it generated, draws benefit from the progress of the welding generators. Then it is possible to use this efficient process for high security components such as those of nuclear systems. It is to be noted that the process is applicable in the various welding positions as it is the case for GTAW, while being more efficient than the latter. This paper presents the state of the art in the use of narrow gap mechanised arc welding processes by AREVA NP units. (author) [fr

  14. Numerical and experimental study of heat transfers in an arc plasma. Application to TIG arc welding

    International Nuclear Information System (INIS)

    Borel, Damien

    2013-01-01

    The arc welding is used for many industrial applications, especially GTA welding. Given the excellent quality of the produced welds, GTA welding is used for the majority of the interventions (repairs, joined sealing) on the French nuclear park. This work is part of a project carried out by EDF R and D which aims to simulate the whole process and builds a tool able to predict the welds quality. In this study, we focus on the development of a predictive model of the exchanged heat flux at the arc - work piece interface, responsible of the work piece fusion. The modeling of the arc plasma using the electric module of the hydrodynamics software Code Saturne R developed by EDF R and D is required. Two types of experimental tests are jointly carried out to validate this numerical model: i) on density and temperature measurements of plasma by atomic emission spectroscopy and ii) on the evaluation of the heat transfers on the work piece surface. This work also aims at demonstrate that the usual method of using an equivalent thermal source to model the welding process, can be replaced by our plasma model, without the numerous trials inherent to the usual method. (author)

  15. Austenitic stainless steel weld inspection

    International Nuclear Information System (INIS)

    Mech, S.J.; Emmons, J.S.; Michaels, T.E.

    1978-01-01

    Analytical techniques applied to ultrasonic waveforms obtained from inspection of austenitic stainless steel welds are described. Experimental results obtained from a variety of geometric and defect reflectors are presented. Specifically, frequency analyses parameters, such as simple moments of the power spectrum, cross-correlation techniques, and adaptive learning network analysis, all represent improvements over conventional time domain analysis of ultrasonic waveforms. Results for each of these methods are presented, and the overall inspection difficulties of austenitic stainless steel welds are discussed

  16. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    Science.gov (United States)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  17. Hydrogen induced cold cracking studies on armour grade high strength, quenched and tempered steel weldments

    Energy Technology Data Exchange (ETDEWEB)

    Magudeeswaran, G.; Balasubramanian, V. [Centre for Materials Joining Research (CEMAJOR), Department of Manufacturing Engineering, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu (India); Madhusudhan Reddy, G. [Metal Joining Section, Defence Metallurgical Research Laboratory (DMRL), Kanchanbagh (P.O.) Hyderabad 560 058 Andhra Pradesh (India)

    2008-04-15

    Quenched and tempered (Q and T) steels are prone to hydrogen induced cracking (HIC) in the heat affected zone after welding. The use of austenitic stainless steel (ASS) consumables to weld the above steel was the only available remedy because of higher solubility for hydrogen in austenitic phase. The use of stainless steel consumables for a non-stainless steel base metal is not economical. Hence, alternate consumables for welding Q and T steels and their vulnerability to HIC need to be explored. Recent studies proved that low hydrogen ferritic (LHF) steel consumables can be used to weld Q and T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on hydrogen induced cold cracking of armour grade Q and T steel welds by implant testing. Shielded metal arc welding (SMAW) and flux cored arc welding (FCAW) processes were used for making welds using ASS and LHF welding consumables. ASS welds made using FCAW process offered a higher resistance to HIC than all other welds considered in this investigation. (author)

  18. Microstructure Evolution and Selective Corrosion Resistance in Underwater Multi-pass 2101 Duplex Stainless Steel Welding Joints

    Science.gov (United States)

    Hu, Yu; Shi, Yonghua; Shen, Xiaoqin; Wang, Zhongmin

    2018-05-01

    A recently developed promising material, 2101 lean duplex stainless steel, represents an alternative to 304 austenite stainless steel. In this work, multi-pass 2101 weld joints were fabricated using the flux-cored arc welding method in a hyperbaric chamber. The pressure varied from 0 to 0.75 MPa. The evolution of the welding process and microstructure was investigated. γ 2 formation in the reheated zones of the WM and HAZ was not uniform. The closer the reheated zone is to the subsequent heat source, the greater the γ 2 formation in the reheated zone. Sufficient primary austenite transformation inhibited Cr2N precipitation and the subsequent intragranular γ 2 formation in the reheated weld passes of the 0.45 MPa weld metal. The localized corrosion resistance of each zone of the 0.45 MPa DSS joint was measured using non-destructive double-loop electrochemical potentiokinetic reactivation tests. The localized corrosion was induced by γ 2 and Cr2N. The root region of the 0.45 MPa weld metal underwent two subsequent welding thermal cycles, which induced increased γ 2 formation and lower resistance to corrosion because of the decreased pitting resistance value of γ 2. The correlation between microstructure evolution and the distribution of selective corrosion was determined.

  19. Development of a process model for intelligent control of gas metal arc welding

    International Nuclear Information System (INIS)

    Smartt, H.B.; Johnson, J.A.; Einerson, C.J.; Watkins, A.D.; Carlson, N.M.

    1991-01-01

    This paper discusses work in progress on the development of an intelligent control scheme for arc welding. A set of four sensors is used to detect weld bead cooling rate, droplet transfer mode, weld pool and joint location and configuration, and weld defects during welding. A neural network is being developed as the bridge between the multiple sensor set a conventional proportional-integral controller that provides independent control of process variables. This approach is being developed for the gas metal arc welding process. 20 refs., 8 figs

  20. Fatigue behaviour of friction welded medium carbon steel and austenitic stainless steel dissimilar joints

    International Nuclear Information System (INIS)

    Paventhan, R.; Lakshminarayanan, P.R.; Balasubramanian, V.

    2011-01-01

    Research highlights: → Fusion welding of dissimilar metals is a problem due to difference in properties. → Solid state welding process such as friction welding is a solution for the above problem. → Fatigue life of friction welded carbon steel and stainless steel joints are evaluated. → Effect of notch on the fatigue life of friction welded dissimilar joints is reported. → Formation of intermetallic is responsible for reduction in fatigue life of dissimilar joints. -- Abstract: This paper reports the fatigue behaviour of friction welded medium carbon steel-austenitic stainless steel (MCS-ASS) dissimilar joints. Commercial grade medium carbon steel rods of 12 mm diameter and AISI 304 grade austenitic stainless steel rods of 12 mm diameter were used to fabricate the joints. A constant speed, continuous drive friction welding machine was used to fabricate the joints. Fatigue life of the joints was evaluated conducting the experiments using rotary bending fatigue testing machine (R = -1). Applied stress vs. number of cycles to failure (S-N) curve was plotted for unnotched and notched specimens. Basquin constants, fatigue strength, fatigue notch factor and notch sensitivity factor were evaluated for the dissimilar joints. Fatigue strength of the joints is correlated with microstructure, microhardness and tensile properties of the joints.

  1. Mechanical properties and fatigue strength of high manganese non-magnetic steel/carbon steel welded joints

    International Nuclear Information System (INIS)

    Nakaji, Eiji; Ikeda, Soichi; Kim, You-Chul; Nakatsuji, Yoshihiro; Horikawa, Kosuke.

    1997-01-01

    The dissimilar materials welded joints of high manganese non-magnetic steel/carbon steel (hereafter referred to as DMW joints), in which weld defects such as hot crack or blowhole are not found, were the good quality. Tensile strength of DMW joints was 10% higher than that of the base metal of carbon steel. In the bend tests, the DMW joints showed the good ductility without crack. Charpy absorbed energy at 0(degC) of the DMW joints was over 120(J) in the bond where it seems to be the lowest. Large hardening or softening was not detected in the heat affected zone. Fatigue strength of the DMW joints is almost the same with that of the welded joints of carbon steel/carbon steel. As the fatigue strength of the DMW joints exceeds the fatigue design standard curve of JSSC for carbon steel welded joints, the DMW joints can be treated the same as the welded joints of carbon steel/carbon steel of which strength is lower than that of high manganese non-magnetic steel, from the viewpoint of the fatigue design. (author)

  2. Profiling mild steel welding processes to reduce fume emissions and costs in the workplace.

    Science.gov (United States)

    Keane, Michael J; Siert, Arlen; Chen, Bean T; Stone, Samuel G

    2014-05-01

    To provide quantitative information to choose the best welding processes for minimizing workplace emissions, nine gas metal arc welding (GMAW) processes for mild steel were assessed for fume generation rates, normalized fume generation rates (milligram fume per gram of electrode consumed), and normalized generation rates for elemental manganese, nickel, and iron. Shielded metal arc welding (SMAW) and flux-cored arc-welding (FCAW) processes were also profiled. The fumes were collected quantitatively in an American Welding Society-type fume chamber and weighed, recovered, homogenized, and analyzed by inductively coupled atomic emission spectroscopy for total metals. The processes included GMAW with short circuit, globular transfer, axial spray, pulsed spray, Surface Tension Transfer™, Regulated Metal Deposition™, and Cold Metal Transfer™ (CMT) modes. Flux-cored welding was gas shielded, and SMAW was a single rod type. Results indicate a wide range of fume emission factors for the process variations studied. Fume emission rates per gram of electrode consumed were highest for SMAW (~13 mg fume g(-1) electrode) and lowest for GMAW processes such as pulsed spray (~1.5mg g(-1)) and CMT (~1mg g(-1)). Manganese emission rates per gram of electrode consumed ranged from 0.45 mg g(-1) (SMAW) to 0.08 mg g(-1) (CMT). Nickel emission rates were generally low and ranged from ~0.09 (GMAW short circuit) to 0.004 mg g(-1) (CMT). Iron emission rates ranged from 3.7 (spray-mode GMAW) to 0.49 mg g(-1) (CMT). The processes studied have significantly different costs, and cost factors are presented based on a case study to allow comparisons between processes in specific cost categories. Costs per linear meter of weld were $31.07 (SMAW), $12.37 (GMAW short circuit), and $10.89 (FCAW). Although no single process is the best for minimizing fume emissions and costs while satisfying the weld requirements, there are several processes that can minimize emissions. This study provides

  3. Reflection of illumination laser from gas metal arc weld pool surface

    International Nuclear Information System (INIS)

    Ma, Xiaoji; Zhang, YuMing

    2009-01-01

    The weld pool is the core of the welding process where complex welding phenomena originate. Skilled welders acquire their process feedback primarily from the weld pool. Observation and measurement of the three-dimensional weld pool surface thus play a fundamental role in understanding and future control of complex welding processes. To this end, a laser line is projected onto the weld pool surface in pulsed gas metal arc welding (GMAW) and an imaging plane is used to intercept its reflection from the weld pool surface. Resultant images of the reflected laser are analyzed and it is found that the weld pool surface in GMAW does specularly reflect the projected laser as in gas tungsten arc welding (GTAW). Hence, the weld pool surface in GMAW is also specular and it is in principle possible that it may be observed and measured by projecting a laser pattern and then intercepting and imaging the reflection from it. Due to high frequencies of surface fluctuations, GMAW requires a relatively short time to image the reflected laser

  4. Advantages of MAG-STT Welding Process for Root Pass Welding in the Oil and Gas Industry

    Directory of Open Access Journals (Sweden)

    Pandzic Adi

    2016-02-01

    Full Text Available This paper describesthe basics of modern MAG-STT welding process and its advantages for root pass welding of construction steels in oil and gas industry. MAG-STT welding process was compared with competitive arc welding processes (SMAW and TIG, which are also used for root pass welding on pipes and plates. After experimental tests, the obtained results are analyzed and presented in this paper

  5. In situ laser-induced breakdown spectroscopy measurements of chemical compositions in stainless steels during tungsten inert gas welding

    Science.gov (United States)

    Taparli, Ugur Alp; Jacobsen, Lars; Griesche, Axel; Michalik, Katarzyna; Mory, David; Kannengiesser, Thomas

    2018-01-01

    A laser-induced breakdown spectroscopy (LIBS) system was combined with a bead-on-plate Tungsten Inert Gas (TIG) welding process for the in situ measurement of chemical compositions in austenitic stainless steels during welding. Monitoring the weld pool's chemical composition allows governing the weld pool solidification behavior, and thus enables the reduction of susceptibility to weld defects. Conventional inspection methods for weld seams (e.g. ultrasonic inspection) cannot be performed during the welding process. The analysis system also allows in situ study of the correlation between the occurrence of weld defects and changes in the chemical composition in the weld pool or in the two-phase region where solid and liquid phase coexist. First experiments showed that both the shielding Ar gas and the welding arc plasma have a significant effect on the selected Cr II, Ni II and Mn II characteristic emissions, namely an artificial increase of intensity values via unspecific emission in the spectra. In situ investigations showed that this artificial intensity increase reached a maximum in presence of weld plume. Moreover, an explicit decay has been observed with the termination of the welding plume due to infrared radiation during sample cooling. Furthermore, LIBS can be used after welding to map element distribution. For austenitic stainless steels, Mn accumulations on both sides of the weld could be detected between the heat affected zone (HAZ) and the base material.

  6. The Effects of Shielded Metal Arc Welding (Smaw) Welding On The Mechanical Characteristics With Heating Treatment inn S45c Steel

    Science.gov (United States)

    Munawar; Abbas, Hammada; Yusran Aminy, Ahmad

    2018-02-01

    Steel material has been used mainly for making tooling, automotive components, other household needs, power generators to frame buildings and bridges. This study aimed (1) to analyze the mechanical Characteristics of S45C steel with and without heating treatments, and (2) to analyze the temperature of heating treatment which could result in the maximal strength of S45C steel after the welding process. The research was conducted in the laboratory of mechanical engineering study program, Departement of mechanical Engineering, Christian university of indonesia paulus, makassar. The method used materials, instruments, and the dimensions determination of specimen based on the proposed testing standard, Next, was to determine the mechanical caracteristics of the S45C steel wich had been welded and heated.The tensile specimens, the hardness specimen, the impact specimen, and microstructures of which,each of the 3 specimens was the specimens was the specimen without treatment, the spesimen with the welding wthout heating and the specimen of 150°C, 250° C, 300° C. The research results indicated that the treatment process of 150°C, 250°C and 300°C produced the changes of mechanic charateristics with the tensile strength of 42 kgf/mm2 when the temperature had reached 300°C, but at the temperature 300°C, the its toughness would decrease to Hi = 0.836 j/m2 and its hardness would increase to 40.83 at the temperature of 300°C. The value of the maximum strengs was reached at the heating temperature of 300°C for the tensile strength and the hardness, while at the temperature of 300°C its impact value would decrease.

  7. The mutual effects of hydrogen and microstructure on hardness and impact energy of SMA welds in X65 steel

    Energy Technology Data Exchange (ETDEWEB)

    Latifi, V. Amin; Miresmaeili, Reza, E-mail: miresmaeili@modares.ac.ir; Abdollah-Zadeh, Amir

    2017-01-02

    Micro-alloy steels are broadly used in gas and petroleum transportation industries. However, application of these steels in pipelines is challenged by hydrogen embrittlement due to presence of hydrogen sulfide in the medium. The present work deals with the interaction of hydrogen with plasticity of X65 steel. Two weld joints produced by common E7010-G and E7018 electrodes via shielded metal arc welding (SMAW) method were also investigated. It was revealed in microhardness test that direct charge of hydrogen to the surface did not lead to meaningful variations due to lamination as well as surface and sub-surface porosities. In fact, the effect of hydrogen on material plasticity was influenced by lamination and porosities. On the other hand, indirect charge on the tested surface led to increase in hardness by 12%, 9% and 6% in base metal as well as in weld metals obtained from E7010-G and E7018 electrodes, respectively. Therefore, hydrogen atoms affected plasticity of X65 steel more harshly than that of weld metals; thus, the base metal is more sensitive to hydrogen embrittlement. Due to high strain rate, impact test does not provide sufficient time for hydrogen diffusion through notch during the test. No observation of any variations in impact energies of charged samples may hence be explained by uniform hydrogen concentration throughout the samples. The base steel was seen to be much more sensitive to hydrogen defects rather than weld metals of both electrodes due to possessing pearlite/ferrite interfaces. According to hydrogen concentration studies, E710-G weld metal had more hydrogen diffusivity than X65 steel and E7018 weld metal by four time and 25%, respectively. This was due to acicular ferritic microstructure of E710-G weld metal and its dislocation tangles that provided many reversible traps for hydrogen.

  8. Heat input effect on the microstructural transformation and mechanical properties in GTAW welds of a 409L ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, J. A.; Ambriz, R. R.; Cuenca-Alvarez, R.; Alatorre, N.; Curiel, F. F.

    2016-10-01

    Welds without filler metal and welds using a conventional austenitic stainless steel filler metal (ER308L) were performed to join a ferritic stainless steel with Gas Tungsten Arc Welding process (GTAW). Welding parameters were adjusted to obtain three different heat input values. Microstructure reveals the presence of coarse ferritic matrix and martensite laths in the Heat Affected Zone (HAZ). Dilution between filler and base metal was correlated with the presence of austenite, martensite and ferrite in the weld metal. Weld thermal cycles were measured to correlate the microstructural transformation in the HAZ. Microhardness measurements (maps and profiles) allow to identify the different zones of the welded joints (weld metal, HAZ, and base metal). Comparing the base metal with the weld metal and the HAZ, a hardness increment (∼172 HV{sub 0}.5 to ∼350 HV{sub 0}.5 and ∼310 HV{sub 0}.5, respectively) was observed, which has been attributed to the martensite formation. Tensile strength of the welded joints without filler metal increased moderately with respect to base metal. In contrast, ductility was approximately 25% higher than base metal, which provided a toughness improvement of the welded joints. (Author)

  9. Mechanical properties of welded joints of duplex steels

    International Nuclear Information System (INIS)

    Kawiak, M.; Nowacki, J.

    2003-01-01

    The paper presents the study results of mechanical properties of duplex steels UNS S31803 welded joints as well as duplex and NV A36 steels welded joints. They have ben welded by FCAW method in CO 2 using FCW 2205-H flux-cored wire. The joints have been subjected: tensile tests, impact tests, bending tests, hardness tests and metallographic investigations. The influence of welding parameters and mechanical properties of the joints was appreciated. The welding method assured high tensile strength of the joints (approximately 770 MPa) and high impact strength of the welds (approximately 770 J). All samples were broken outside of welds. (author)

  10. Remote automatic plasma arc-closure welding of a dry-storage canister for spent nuclear fuel and high-level radioactive waste

    International Nuclear Information System (INIS)

    Sprecace, R.P.; Blankenship, W.P.

    1982-01-01

    A carbon steel storage canister has been designed for the dry encapsulation of spent nuclear fuel assemblies or of logs of vitrified high level radioactive waste. The canister design is in conformance with the requirements of the ASME Code, Section III, Division 1 for a Class 3 vessel. The canisters will be loaded and sealed as part of a completely remote process sequence to be performed in the hot bay of an experimental encapsulation facility at the Nevada Test Site. The final closure to be made is a full penetration butt weld between the canister body, a 12.75-in O.D. x 0.25-in wall pipe, and a mating semiellipsoidal closure lid. Due to a combination of design, application and facility constraints, the closure weld must be made in the 2G position (canister vertical). The plasma arc welding system is described, and the final welding procedure is described and discussed in detail. Several aspects and results of the procedure development activity, which are of both specific and general interest, are highlighted; these include: The critical welding torch features which must be exactly controlled to permit reproducible energy input to, and gas stream interaction with, the weld puddle. A comparison of results using automatic arc voltage control with those obtained using a mechanically fixed initial arc gap. The optimization of a keyhole initiation procedure. A comparison of results using an autogenous keyhole closure procedure with those obtained using a filler metal addition. The sensitivity of the welding process and procedure to variations in joint configuration and dimensions and to variations in base metal chemistry. Finally, the advantages and disadvantages of the plasma arc process for this application are summarized from the current viewpoint, and the applicability of this process to other similar applications is briefly indicated

  11. Monitoring of martensite formation during welding by means of acoustic emission

    International Nuclear Information System (INIS)

    Bohemen, S.M.C. van; Hermans, M.J.M.; Ouden, G. den

    2001-01-01

    The martensitic transformation during gas tungsten arc (GTA) welding of steel 42CrMo4 has been studied using the acoustic emission (AE) monitoring technique. Welds were produced under static conditions (spot welding) and under stationary conditions (travelling arc welding). After spot welding, the root mean square (RMS) value of the continuous acoustic emission was measured, revealing a peak that reflects the evolution of martensite formation during cooling of the spot weld. The RMS value was also measured during travelling arc welding at different heat inputs and corrected for the noise of the welding process to obtain the RMS value due to martensite formation. After welding, optical metallography was carried out to quantify the amount of martensite formed during cooling of the weld. An analysis of the results shows that the squared RMS value is proportional to the volume rate of martensite formation during welding, which is consistent with theory and in good agreement with the results obtained in the case of spot welding. The obtained results suggest that AE can be applied as a real time monitoring technique for the detection of martensite formation during steel welding. (author)

  12. Material property evaluations of bimetallic welds, stainless steel saw fusion lines, and materials affected by dynamic strain aging

    Energy Technology Data Exchange (ETDEWEB)

    Rudland, D.; Scott, P.; Marschall, C.; Wilkowski, G. [Battelle Memorial Institute, Columbus, OH (United States)

    1997-04-01

    Pipe fracture analyses can often reasonably predict the behavior of flawed piping. However, there are material applications with uncertainties in fracture behavior. This paper summarizes work on three such cases. First, the fracture behavior of bimetallic welds are discussed. The purpose of the study was to determine if current fracture analyses can predict the response of pipe with flaws in bimetallic welds. The weld joined sections of A516 Grade 70 carbon steel to F316 stainless steel. The crack was along the carbon steel base metal to Inconel 182 weld metal fusion line. Material properties from tensile and C(T) specimens were used to predict large pipe response. The major conclusion from the work is that fracture behavior of the weld could be evaluated with reasonable accuracy using properties of the carbon steel pipe and conventional J-estimation analyses. However, results may not be generally true for all bimetallic welds. Second, the toughness of austenitic steel submerged-arc weld (SAW) fusion lines is discussed. During large-scale pipe tests with flaws in the center of the SAW, the crack tended to grow into the fusion line. The fracture toughness of the base metal, the SAW, and the fusion line were determined and compared. The major conclusion reached is that although the fusion line had a higher initiation toughness than the weld metal, the fusion-line J-R curve reached a steady-state value while the SAW J-R curve increased. Last, carbon steel fracture experiments containing circumferential flaws with periods of unstable crack jumps during steady ductile tearing are discussed. These instabilities are believed to be due to dynamic strain aging (DSA). The paper discusses DSA, a screening criteria developed to predict DSA, and the ability of the current J-based methodologies to assess the effect of these crack instabilities. The effect of loading rate on the strength and toughness of several different carbon steel pipes at LWR temperatures is also discussed.

  13. Study and development of solid fluxes for gas tungsten arc welding applied to titanium and its alloys and stainless steels; Etude et developpement des flux solides en vue d'application en soudage ATIG applique au titane et ses alliages ainsi qu'aux aciers inoxydables

    Energy Technology Data Exchange (ETDEWEB)

    Perry, N

    2000-06-15

    Gas Tungsten Arc Welding uses an electric arc between the refractory tungsten electrode and the plates to be welded under an argon shielding gas. As a result, the joint quality is excellent, no pollution nor defects are to be feared, consequently this process is used in nuclear, aeronautic, chemical and food industries. Despite of this good qualities, GTAW is limited because of, on the one side, a poor penetrating weld pool and, on the other side, a week productivity rate. Indeed, up to 3 mm thick plates, machining and filler metal is needed. Multiple runs increase the defect's risks, the manufactory time and increase the deformations and the heat affected zone. The goal of this study is to break through this limits without any device investment. Active GTA welding (or ATIG) is a new technique with GTA device and an activating flux to be spread on the upper plate before welding. The arc, by plasma electrochemical equilibrium modifications, and the pool with the inner connective flows inversion, allow 7 mm thick joints in one run without edges machining or filler metal for both stainless steel and titanium alloys. This manuscript describes the development of these fluxes, highlights the several phenomena and presents the possibilities of this new process. This work, in collaboration with B.S.L. industries, leads to two flux formulations (stainless steel and titanium alloys) now in a commercial phase with CASTOLIN S.A. Moreover, B.S.L.industries produces a pressure device (nitrate column) with the ATIG process using more than 2800 ATIG welds. (author)

  14. The application of imperialist competitive algorithm for optimization of deposition rate in submerged arc welding process using TiO{sub 2} nano particle

    Energy Technology Data Exchange (ETDEWEB)

    Ghaderi, Mohammad Reza; Eslampanah, Amirhossein; Ghaderi, Kianoosh [Islamic Azad University, Sanandaj (Iran, Islamic Republic of); Aghakhani, Masood [Razi University, Kermanshah (Iran, Islamic Republic of)

    2015-01-15

    We used a novel optimization algorithm based on the imperialist competitive algorithm (ICA) to optimize the deposition rate in the submerged arc welding (SAW) process. This algorithm offers some advantages such as simplicity, accuracy and time saving. Experiments were conducted based on a five factor, five level rotatable central composite design (RCCD) to collect welding data for deposition rate as a function of welding current, arc voltage, contact tip to plate distance, welding speed and thickness of TiO{sub 2} nanoparticles coated on the plates of mild steel. Furthermore, regression equation for deposition rate was obtained using least squares method. The regression equation as the cost function was optimized using ICA. Ultimately, the levels of input variables to achieve maximum deposition rate were obtained using ICA. Computational results indicate that the proposed algorithm is quite effective and powerful in optimizing the cost function.

  15. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  16. Optimal welding technology of high strength steel S690QL

    Directory of Open Access Journals (Sweden)

    Dusan Arsic

    2015-02-01

    Full Text Available In this paper is presented the detailed procedure for defining the optimal technology for welding the structures made of the high strength steel S690QL. That steel belongs into a group of steels with exceptional mechanical properties. The most prominent properties are the high tensile strength and impact toughness, at room and at elevated temperatures, as well. However, this steel has a negative characteristic - proneness to appearance of cold cracks.  That impedes welding and makes as an imperative to study different aspects of this steel's properties as well as those of eventual filler metal. Selection and defining of the optimal welding technology of this high strength steel is done for the purpose of preserving the favorable mechanical properties once the welded joint is realized; properties of the welded metal and the melting zone, as well as in the heat affected zone, which is the most critical zone of the welded joint.

  17. Microstructure and mechanical performance of depositing CuSi3 Cu alloy onto 30CrMnSi steel plate by the novel consumable and non-consumable electrodes indirect arc welding

    International Nuclear Information System (INIS)

    Wang, Jun; Cao, Jian; Feng, Jicai

    2010-01-01

    A novel consumable and non-consumable electrodes indirect arc welding (CNC-IAW) with low heat input was successfully applied in depositing CuSi 3 Cu alloy onto 30CrMnSi steel plate. The indirect arc was generated between the consumable and non-consumable welding torch. The microstructure of the deposited weld was analyzed by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and optical microscopy (OM). The results showed that the dilution ratio of the bead-on-plate weld was controlled no higher than 5% and the deleterious iron picking up was effectively restrained. The deposited metal mainly consisted of ε-Cu solid solution and a small amount of Fe 2 Si phase. In the interfacial zone between the deposited metal and base metal, the thickness of the zone changed from thick to thin and the microstructure changed from complex to simple from the middle to both sides. In the middle of the interfacial zone, the microstructure presented three sub-layers consisting of Fe 3 Si (L)/Fe 3 Si (S) + ε-Cu/α-Fe. In the both sides of the interfacial zone, the microstructure presented single α-Fe layer. The formation mechanism of the interfacial zone could be successfully explained by the formation of the Fe liquid-solid phase zone adjacent to the Fe base metal and the interfusion between Fe and Si. The average compressive shear strength reached 321 MPa and its fracture morphology mainly belonged to ductile fracture.

  18. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    Science.gov (United States)

    2013-08-01

    Sterling, R.J. Steel, C.-O. Pettersson. “Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel.” Mater...MICROSTRUCTURAL CHARACTERIZATION OF FRICTION STIR WELDED ALUMINUM-STEEL JOINTS By ERIN ELIZABETH PATTERSON A thesis submitted in...for his work producing the dissimilar weld samples used in this study. Without his work, this project would not have been possible. I would also

  19. Distribution of Argon Arc Contaminated with Nitrogen as Function of Frequency in Pulsed TIG Welding

    Science.gov (United States)

    Takahashi, Hiroki; Tanaka, Tatsuro; Yamamoto, Shinji; Iwao, Toru

    2016-09-01

    TIG arc welding is the high-quality and much applicable material joining technology. However, the current has to be small because the cathode melting should be prevented. In this case, the heat input to the welding pool becomes low, then, the welding defect sometimes occurs. The pulsed TIG arc welding is used to improve this disadvantage This welding can be controlled by some current parameters such as frequency However, few report has reported the distribution of argon arc contaminated with nitrogen It is important to prevent the contamination of nitrogen because the melting depth increases in order to prevent the welding defects. In this paper, the distribution of argon arc contaminated as function of frequency with nitrogen in pulsed TIG welding is elucidated. The nitrogen concentration, the radial flow velocity, the arc temperature were calculated using the EMTF simulation when the time reached at the base current. As a result, the nitrogen concentration into the arc became low with increasing the frequency The diffusion coefficient decreased because of the decrement of temperature over 4000 K. In this case, the nitrogen concentration became low near the anode. Therefore, the nitrogen concentration became low because the frequency is high.

  20. Microstructure and fatigue properties of Mg-to-steel dissimilar resistance spot welds

    International Nuclear Information System (INIS)

    Liu, L.; Xiao, L.; Chen, D.L.; Feng, J.C.; Kim, S.; Zhou, Y.

    2013-01-01

    Highlights: ► Mg/steel dissimilar spot weld had the same fatigue strength as Mg/Mg similar weld. ► Crack propagation path of Mg/Mg and Mg/steel welds was the same. ► Penetration of Zn into the Mg base metal led to crack initiation of Mg/steel weld. ► HAZ weakening and stress concentration led to crack initiation of Mg/Mg weld. -- Abstract: The structural application of lightweight magnesium alloys in the automotive industry inevitably involves dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change and fatigue resistance of Mg/steel resistance spot welds, in comparison with Mg/Mg welds. The microstructure of Mg/Mg spot welds can be divided into: base metal, heat affected zone and fusion zone (nugget). However, the microstructure of Mg/steel dissimilar spot welds had three different regions along the joined interface: weld brazing, solid-state joining and soldering. The horizontal and vertical Mg hardness profiles of Mg/steel and Mg/Mg welds were similar. Both Mg/steel and Mg/Mg welds were observed to have an equivalent fatigue resistance due to similar crack propagation characteristics and failure mode. Both Mg/steel and Mg/Mg welds failed through thickness in the magnesium sheet under stress-controlled cyclic loading, but fatigue crack initiation of the two types of welds was different. The crack initiation of Mg/Mg welds was occurred due to a combined effect of stress concentration, grain growth in the heat affected zone (HAZ), and the presence of Al-rich phases at HAZ grain boundaries, while the penetration of small amounts of Zn coating into the Mg base metal stemming from the liquid metal induced embrittlement led to crack initiation in the Mg/steel welds.

  1. Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally,a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.

  2. Welding Metallurgy and Weldability of Stainless Steels

    Science.gov (United States)

    Lippold, John C.; Kotecki, Damian J.

    2005-03-01

    Welding Metallurgy and Weldability of Stainless Steels, the first book in over twenty years to address welding metallurgy and weldability issues associated with stainless steel, offers the most up-to-date and comprehensive treatment of these topics currently available. The authors emphasize fundamental metallurgical principles governing microstructure evolution and property development of stainless steels, including martensistic, ferric, austenitic, duplex, and precipitation hardening grades. They present a logical and well-organized look at the history, evolution, and primary uses of each stainless steel, including detailed descriptions of the associated weldability issues.

  3. Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper

    Science.gov (United States)

    Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan

    2018-06-01

    Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.

  4. Ductile fracture of two-phase welds under 77K

    International Nuclear Information System (INIS)

    Yushchenko, K.A.; Voronin, S.A.; Pustovit, A.I.; Shavel', A.V.

    1984-01-01

    The effect of the type of welding and fillers on crack resistance of welded joints high-strength steel EhP810 and its various compounds with steels EhP666, 08Kh18N10T has been studied. For the welding of steel EhP810 with steels EhP810, EhP666, 08Kh18N10T electron-beam, automatic, argon tungsten arc with non-consumable electrode with various fillers, as well as argon metal-arc welding with consumable electrode, were used. It is shown, that for a joint, made by electron-beam welding, parameters σsub(u), Ksub(IcJ), KCV are higher than for a joint of a similar phase structure made using filler wire EhP659-VI. It is explained by the fact, that during electron-beam welding joint metal refining takes place, which removes gases. In welded joints of chP810 steel, having joints with austenitic structure, characteristic of crack resistance Ssub(c) increases by more than 0.2 mm in contrast to two-phase joints, which conventional yield strength at 77 K exceeds 1000 MPa. It is worth mentioning, that for other classes of steels formation of two-phase structure of joint increases welded joint resistance to brittle fracture. It is possible to obtain the required structure of joint with assigned level of resistance to brittle fracture by means of the use of different fillers, optimum and welding procedure, regulaing the part of the basic metal in joint content

  5. Weld repair of creep damaged steels

    International Nuclear Information System (INIS)

    Croker, A.B.L.; Harrison, R.P.; Moss, C.J.

    1995-01-01

    A cooperative research centre project 'Welding of Thermally Modified Structures' was commenced in June 1993 with support from ANSTO, CSIRO, BHP, University of Wollongong and the CRC for Materials, Welding and Joining. The main aims of the project are to quantify the effects of performing repair welds on materials which have operated for extended periods at elevated temperature. Welding is an increasingly used method for performing repairs, replacements, retrofits and modifications to elevated temperature plant, however, the effects of these repairs on the ultimate life of a component are poorly understood. This paper presents details of the three ex-service materials chosen for the project, a carbon steel and two alloy steels. Work is also presented on development of new methods of assessing materials and components both destructively, along with new methods of modelling welded components in high temperature service. 6 figs, 3 tabs

  6. Characterization of the dissimilar welding - austenitic stainless steel with filler metal of the nickel alloy

    International Nuclear Information System (INIS)

    Soares, Bruno Amorim; Schvartzman, Monica Maria de Abreu Mendonca; Campos, Wagner Reis da Costa

    2007-01-01

    In elevated temperature environments, austenitic stainless steel and nickel alloy has a superior corrosion resistance due to its high Cr content. Consequently, this alloys is widely used in nuclear reactors components and others plants of energy generation that burn fossil fuel or gas, chemical and petrochemical industries. The object of the present work was to research the welding of AISI 304 austenitic stainless steel using the nickel alloy filler metals, Inconel 625. Gas tungsten arc welding, mechanical and metallographic tests, and compositional analysis of the joint were used. A fundamental investigation was undertaken to characterize fusion boundary microstructure and to better understand the nature and character of boundaries that are associated with cracking in dissimilar welds. The results indicate that the microstructure of the fusion zone has a dendritic structure, inclusions, and precipitated phases containing Ti and Nb are present in the inter-dendritic region. In some parts near to the fusion line it can be seen a band in the weld, probably a eutectic phase with lower melting point than the AISI 304, were the cracking may be beginning by stress corrosion. (author)

  7. Evaluation of plasma arc welding capabilities and applications

    International Nuclear Information System (INIS)

    Mills, G.S.

    1978-01-01

    Unique capabilities of plasma arc welding in the keyhole mode are described, and the potential applicability of these capabilities to Rocky Flats production needs are evaluated. For the areas of potential benefits studied, the benefits of this welding technique either did not materialize or the complication of implementing the process in production was not warranted by the demonstrated benefits

  8. Microchemical Analysis of Non-Metallic Inclusions in C-Mn Steel Shielded Metal Arc Welds by Analytical Transmission Electron Microscopy.

    Science.gov (United States)

    1998-06-01

    transformation ( CCT ) diagram Figure 2.2. The microstructures that develop are determined by the cooling rate, alloying element and oxygen content of the weld...TIME Figure 2.2 CCT Diagram for the weld metal of low-carbon, low-alloy steels [From Ref. 2] To assist material scientists in microstructure

  9. ROLE OF FCA WELDING PROCESS PARAMETERS ON BEAD PROFILE, ANGULAR AND BOWING DISTORTION OF FERRITIC STAINLESS STEEL SHEETS

    Directory of Open Access Journals (Sweden)

    VENKATESAN M. V.

    2014-02-01

    Full Text Available This paper discusses the influence of flux cored arc welding (FCAW process parameters such as welding current, travel speed, voltage and CO2 shielding gas flow rate on bead profile, bowing distortion and angular distortion of 409 M ferritic stainless steel sheets of 2 mm thickness. The bowing and angular distortions of the welded plates were measured using a simple device called profile tracer and Vernier bevel protractor respectively. The study revealed that the FCAW process parameters have significant effect on bead profile, and distortion. The relationship between bead profile and distortions were analyzed. Most favorable process parameters that give uniform bead profile and minimum distortion for the weld are recommended for fabrication.

  10. Corrosion behaviour of dissimilar welds between martensitic stainless steel and carbon steel from secondary circuit of candu npp

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2015-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. It is not unusual to find that, although the base metal or alloy is resistant to corrosion in a particular environment, the welded counterpart is not resistant. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. Our experiments were performed in chloride environmental on two types of samples: non-welded (420 martensitic steel and 52.2k carbon steel) and dissimilar welds (dissimilar metal welds: joints beetween 420 martensitic steel and 52.2k carbon steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and metallography microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and carbon steel in solutions containing chloride ions. We have been evaluated the corrosion rates of samples (welded and non-welded) by electrochemically. (authors)

  11. Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites

    Science.gov (United States)

    Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou

    2017-11-01

    Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.

  12. Welding metallurgy of austenitic stainless steels

    International Nuclear Information System (INIS)

    Ibrahim, A.N.

    1983-01-01

    Austenitic stainless steels welds are commonly found in nuclear reactor systems. The macrostructure and the transformation of delta -phase into γ - phase which occur during rapid solidification of such welds are discussed. Finally, several types of defects which are derived from the welding operation, particularly defects of crack type, are also discussed in brief. (author)

  13. Ultrasonic evaluation of friction stud welded AA 6063/AISI 1030 steel joints

    International Nuclear Information System (INIS)

    Hynes, N. Rajesh Jesudoss; Nagaraj, P.; Sujana, J. Angela Jennifa

    2014-01-01

    Highlights: • Friction stud welding of AA 6063 and AISI 1030 was done successfully. • Ultrasonic evaluation of interfacial properties. • EDX analysis confirms intermetallic compound (FeAl) in the interfacial region. - Abstract: Friction stud welding is a promising technique in many applications related to oil and gas industries. It is used to attach grating to offshore oil platforms in areas where arc welding is not permitted because of the risk of causing a fire or explosion. Attachment of anodes inside seawater discharge pipelines in a gas processing plant is performed by this process. This solid state joining process permits metal combinations such as welding of aluminum studs to steel which would be problematic with arc welding because of the formation of thick and brittle inter-metallic compounds. In the present work, AA 6063 is joined to AISI 1030 steel using friction stud welding machine. Properties that are of interest to manufacturing applications such as Young’s modulus, longitudinal velocity, bulk modulus and shear modulus are evaluated by means of an ultrasonic flaw detector. At the interface of the joint, there is an increase of 4.4%, 1.8%, 1.15% and 4.42% is observed for the properties Young’s modulus, longitudinal velocity, bulk modulus and shear modulus respectively. This is due to the formation of intermetallic compound and increase in hardness at the interfacial region. Energy Dispersive X-ray analysis confirms the presence of FeAl as the intermetallic compound. Scanning Electron Microscope evaluation shows the presence of an unbound zone at the center of the inner region which is due to the minimum rotational speed and low axial load experienced at that point. In the unbound zone, there is an incomplete bond between dissimilar metals and it is detrimental to joint strength. Optimum value of friction time and usage of pure aluminum interlayer during the friction stud welding process hinders the formation of unbound zone and enhances the

  14. Microstructure characterization of Friction Stir Spot Welded TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Adachi, Yoshitaka; Peterson, Jeremy

    2012-01-01

    Transformation Induced Plasticity (TRIP) steels have not yet been successfully joined by any welding technique. It is desirable to search for a suitable welding technique that opens up for full usability of TRIP steels. In this study, the potential of joining TRIP steel with Friction Stir Spot...

  15. Features of residual stresses in duplex stainless steel butt welds

    Science.gov (United States)

    Um, Tae-Hwan; Lee, Chin-Hyung; Chang, Kyong-Ho; Nguyen Van Do, Vuong

    2018-04-01

    Duplex stainless steel finds increasing use as an alternative to austenitic stainless steel, particularly where chloride or sulphide stress corrosion cracking is of primary concern, due to the excellent combination of strength and corrosion resistance. During welding, duplex stainless steel does not create the same magnitude or distribution of weld-induced residual stresses as those in welded austenitic stainless steel due to the different physical and mechanical properties between them. In this work, an experimental study on the residual stresses in butt-welded duplex stainless steel is performed utilizing the layering technique to investigate the characteristics of residual stresses in the weldment. Three-dimensional thermos-mechanical-metallurgical finite element analysis is also performed to confirm the residual stress measurements.

  16. Microstructure and mechanical properties of weld-bonded and resistance spot welded magnesium-to-steel dissimilar joints

    International Nuclear Information System (INIS)

    Xu, W.; Chen, D.L.; Liu, L.; Mori, H.; Zhou, Y.

    2012-01-01

    Highlights: ► Adhesive reduces shrinkage porosity and stress concentration around the weld nugget. ► Adhesive promotes the formation of intermetallic compounds during weld bonding. ► In Mg/steel joints fusion zone appears only at the Mg side with dendritic structures. ► Weld-bonded Mg/steel joints are considerably stronger than RSW Mg/steel joints. ► Fatigue strength is three-fold higher for weld-bonded joints than for RSW joints. - Abstract: The aim of this study was to evaluate microstructures, tensile and fatigue properties of weld-bonded (WB) magnesium-to-magnesium (Mg/Mg) similar joints and magnesium-to-steel (Mg/steel) dissimilar joints, in comparison with resistance spot welded (RSW) Mg/steel dissimilar joints. In the WB Mg/Mg joints, equiaxed dendritic and divorced eutectic structures formed in the fusion zone (FZ). In the dissimilar joints of RSW and WB Mg/steel, FZ appeared only at Mg side with equiaxed and columnar dendrites. At steel side no microstructure changed in the WB Mg/steel joints, while the microstructure in the RSW Mg/steel joints consisted of lath martensite, bainite, pearlite and retained austenite leading to an increased microhardness. The relatively low cooling rate suppressed the formation of shrinkage porosity but promoted the formation of MgZn 2 and Mg 7 Zn 3 in the WB Mg/steel joints. The added adhesive layer diminished stress concentration around the weld nugget. Both WB Mg/Mg and Mg/steel joints were significantly stronger than RSW Mg/steel joints in terms of the maximum tensile shear load and energy absorption, which also increased with increasing strain rate. Fatigue strength was three-fold higher for WB Mg/Mg and Mg/steel joints than for RSW Mg/steel joints. Fatigue failure in the RSW Mg/steel joints occurred from the heat-affected zone near the notch root at lower load levels, and in the mode of interfacial fracture at higher load levels, while it occurred in the Mg base metal at a maximum cyclic load up to ∼10 kN in

  17. Circumferential welding applied for inox steel super duplex UNS S32750 using the process MIG using CMT® control

    International Nuclear Information System (INIS)

    Invernizzi, Bruno Pizol

    2017-01-01

    This study carried out circumferential welding experiments in UNS S32750 Super Duplex Stainless Steel tubes using diameters of 19,05 mm and 48,20 mm. Welds were performed using various welding parameters on a MIG machine with Cold Metal Transfer® CMT control. The weld joints were evaluated by visual and dimensional inspection in addition to the Vickers microhardness and traction tests, as well as the microstructural analysis in conjunction with phase precipitation analysis, which was performed according to practice A of ASTM A923, and corrosion test in accordance with practice A of ASTM G48 in conjunction with ASTM A923. The results indicated that welds performed in pipes with a diameter of 19.05 mm showed a weld joint with unacceptable dimensions according to the standard, this condition being attributed the use of a high wire diameter for the welding conditions used. Welding performed for pipes with a diameter of 48.20 mm showed a lack of penetration under the conditions employed when welded by the conventional CMT® process. In the case of the use of CMT® combined with pulsed arc, under conditions that generated greater heat input during welding, this resulted in total penetration of the joint and adequate surface finish. The results indicated that welding using the CMT® process combined with pulsed arc, under the conditions (parameters) employed generated good surface finish, combined mechanical properties, meeting standards requirements, as well as a balanced microstructure and high resistance to corrosion. (author)

  18. Fatique Resistant, Energy Efficient Welding Program, Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Egland, Keith; Ludewig, Howard

    2006-05-25

    The program scope was to affect the heat input and the resultant weld bead geometry by synchronizing robotic weave cycles with desired pulsed waveform shapes to develop process parameters relationships and optimized pulsed gas metal arc welding processes for welding fatique-critical structures of steel, high strength steel, and aluminum. Quality would be addressed by developing intelligent methods of weld measurement that accurately predict weld bead geometry from process information. This program was severely underfunded, and eventually terminated. The scope was redirected to investigate tandem narrow groove welding of steel butt joints during the one year of partial funding. A torch was designed and configured to perform a design of experiments of steel butt weld joints that validated the feasability of the process. An initial cost model estimated a 60% cost savings over conventional groove welding by eliminating the joint preparation and reducing the weld volume needed.

  19. Soldadura de aceros dual phase en chapa fina: GMAW, PAW y RSW Welding of dual phase steel sheet: GMAW, PAW and RSW

    Directory of Open Access Journals (Sweden)

    Hernán Svoboda

    2011-06-01

    Full Text Available Los aceros Dual Phase (DP han encontrado recientemente una fuerte aplicación en elementos estructurales en la industria automotriz, debido a la necesidad de disminuir peso. La soldadura de estos materiales cobra particular importancia considerando su aplicación estructural y los procesos relacionados en su fabricación. En particular la soldadura de resistencia por punto (RSW y semiautomática con alambre macizo y protección gaseosa (GMAW son ampliamente utilizados en la industria automotriz. El proceso de soldadura por plasma (PAW se caracteriza, entre los procesos de soldadura por arco, por ser el de mayor densidad de energía, presentando particular interés en aplicaciones de la industria automotriz (tailor welded blanks. El objetivo del presente trabajo fue estudiar la evolución microestructural y las propiedades de aceros DP soldados mediante los procesos RSW, GMAW y PAW. A este fin, se soldaron cuatro grados de aceros DP con resistencias mecánicas de 550, 700 y 850 MPa en espesores de 1 y 1,3 mm mediante los mencionados procesos. Se caracterizaron las microestructuras y se determinaron las propiedades mecánicas de las uniones soldadas para cada caso. Para los tres procesos se obtuvieron uniones soldadas de calidad satisfactoria. Se observó para todas las soldaduras, que en la ZAC se produce una disminución de la dureza por debajo del valor del material base, relacionada a la descomposición de la fase martensítica. Las soladuras por arco fueron las más afectadas.Dual Phase steels (DP have been used recently as an interesting option for structural elements, specialy in automotive industry, due to weight reduce requirements. Welding of these materials becomes particularly important considering their application as structural elements and the related manufacturing methods. In particular resistance spot welding (RSW and gas metal arc welding (GMAW are widely used in the automotive manufacturing. The plasma arc welding (PAW has the

  20. Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    This paper presents a comparison of three post-weld treatments for fatigue life improvement of welded joints. The objective is to determine the most suitable post-weld treatment for implementation in mass production of certain crane components manufactured from very high-strength steel...... the stress range can exceed the yield-strength of ordinary structural steel, especially when considering positive stress ratios (R > 0). Fatigue experiments and qualitative evaluation of the different post-weld treatments leads to the selection of TIG dressing. The process of implementing TIG dressing...... in mass production and some inherent initial problems are discussed. The treatment of a few critical welds leads to a significant increase in fatigue performance of the entire structure and the possibility for better utilization of very high-strength steel....

  1. Laser beam welding of new ultra-high strength and supra-ductile steels

    Science.gov (United States)

    Dahmen, Martin

    2015-03-01

    Ultra-high strength and supra-ductile are entering fields of new applications. Those materials are excellent candidates for modern light-weight construction and functional integration. As ultra-high strength steels the stainless martensitic grade 1.4034 and the bainitic steel UNS 53835 are investigated. For the supra-ductile steels stand two high austenitic steels with 18 and 28 % manganese. As there are no processing windows an approach from the metallurgical base on is required. Adjusting the weld microstructure the Q+P and the QT steels require weld heat treatment. The HSD steel is weldable without. Due to their applications the ultra-high strength steels are welded in as-rolled and strengthened condition. Also the reaction of the weld on hot stamping is reflected for the martensitic grades. The supra-ductile steels are welded as solution annealed and work hardened by 50%. The results show the general suitability for laser beam welding.

  2. TIG-dressing of High Strength Steel Butt Welded Connections. Part 1 : Weld Toe Geometry and Local Hardness

    NARCIS (Netherlands)

    Van Es, S.H.J.; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2014-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  3. TIG-dressing of high strength steel butt welded connections - Part 1: weld toe geometry and local hardness

    NARCIS (Netherlands)

    Es, S.H.J. van; Kolstein, M.H.; Pijpers, R.J.M.; Bijlaard, F.S.K.

    2013-01-01

    This paper presents the results of extensive measurements on weld toe geometry of as-welded and TIG-dressed butt welded connections in high strength steels S460, S690 and very high strength steels S890 and S1100. Descriptions of the measurement techniques and data analysis are presented. Four weld

  4. Ultrasonic scanner for stainless steel weld inspections. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kupperman, D. S.; Reimann, K. J.

    1978-09-01

    The large grain size and anisotropic nature of stainless steel weld metal make conventional ultrasonic testing very difficult. A technique is evaluated for minimizing the coherent ultrasonic noise in stainless steel weld metal. The method involves digitizing conventional ''A-scan'' traces and averaging them with a minicomputer. Results are presented for an ultrasonic scanner which interrogates a small volume of the weld metal while averaging the coherent ultrasonic noise.

  5. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.

    2012-01-01

    Low Activation Ferritic–Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  6. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    Science.gov (United States)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  7. Microarray-based analysis of the lung recovery process after stainless-steel welding fume exposure in Sprague-Dawley rats.

    Science.gov (United States)

    Oh, Jung-Hwa; Yang, Mi-jin; Yang, Young-Su; Park, Han-Jin; Heo, Sun Hee; Lee, Eun-Hee; Song, Chang-Woo; Yoon, Seokjoo

    2009-02-01

    Repeated exposure to welding fumes promotes a reversible increase in pulmonary disease risk, but the molecular mechanisms by which welding fumes induce lung injury and how the lung recovers from such insults are unclear. In the present study, pulmonary function and gene-expression profiles in the lung were analyzed by Affymetrix GeneChip microarray after 30 days of consecutive exposure to manual metal arc welding combined with stainless-steel (MMA-SS) welding fumes, and again after 30 days of recovery from MMA-SS fume exposure. In total, 577 genes were identified as being either up-regulated or down-regulated (over twofold changes, p process of the lung were up-regulated exclusively in the recovery group. Collectively, these data may help elucidate the molecular mechanism of the recovery process of the lung after welding fume exposure.

  8. Manufacture and characterization of austenitic steel welded joints

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-01-01

    This paper describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the welding. Five different welding methods have been tested and characterized in comparison to the parent material. The reference material was an AISI 316 L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in separate papers of the same session. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material. (author)

  9. Application of YAG Laser TIG Arc Hybrid Welding to Thin AZ31B Magnesium Alloy Sheet

    Science.gov (United States)

    Kim, Taewon; Kim, Jongcheol; Hasegawa, Yu; Suga, Yasuo

    A magnesium alloy is said to be an ecological material with high ability of recycling and lightweight property. Especially, magnesium alloys are in great demand on account of outstanding material property as a structural material. Under these circumstances, research and development of welding process to join magnesium alloy plates are of great significance for wide industrial application of magnesium. In order to use it as a structure material, the welding technology is very important. TIG arc welding process is the most ordinary process to weld magnesium alloy plates. However, since the heat source by the arc welding process affects the magnesium alloy plates, HAZ of welded joint becomes wide and large distortion often occurs. On the other hand, a laser welding process that has small diameter of heat source seems to be one of the possible means to weld magnesium alloy in view of the qualitative improvement. However, the low boiling point of magnesium generates some weld defects, including porosity and solidification cracking. Furthermore, precise edge preparation is very important in butt-welding by the laser welding process, due to the small laser beam diameter. Laser/arc hybrid welding process that combines the laser beam and the arc is an effective welding process in which these two heat sources influence and assist each other. Using the hybrid welding, a synegistic effect is achievable and the disadvantages of the respective processes can be compensated. In this study, YAG laser/TIG arc hybrid welding of thin magnesium alloy (AZ31B) sheets was investigated. First of all, the effect of the irradiation point and the focal position of laser beam on the quality of a weld were discussed in hybrid welding. Then, it was confirmed that a sound weld bead with sufficient penetration is obtained using appropriate welding conditions. Furthermore, it was made clear that the heat absorption efficiency is improved with the hybrid welding process. Finally, the tensile tests

  10. A Study to Increase Weld Penetration in P91 Steel During TIG Welding by using Activating Fluxes

    Science.gov (United States)

    Singh, Akhilesh Kumar; Kumar, Mayank; Dey, Vidyut; Naresh Rai, Ram

    2017-08-01

    Activated Flux TIG (ATIG) welding is a unique joining process, invented at Paton Institute of electric welding in 1960. ATIG welding process is also known as flux zoned TIG (FZTIG). In this process, a thin layer of activating flux is applied along the line on the surface of the material where the welding is to be carries out. The ATIG process aids to increase the weld penetration in thick materials. Activating fluxes used in the literature show the use of oxides like TiO2, SiO2, Cr2O3, ZnO, CaO, Fe2O3, and MnO2 during welding of steels. In the present study, ATIG was carried out on P-91 steel. Though, Tungsten Inert Gas welding gives excellent quality welds, but the penetration obtained in such welding is still demanding. P91 steel which is ferritic steel is used in high temperature applications. As this steel is, generally, used in thick sections, fabrication of such structures with TIG welding is limited, due to its low depth of penetration. To increase the depth of penetration in P91while welding with ATIG, the role of various oxides were investigated. Apart from the oxides mentioned above, in the present study the role of B2O3, V2O5 and MgO, during ATIG welding of P91 was investigated. It was seen that, compared to TIG welding, there was phenomenal increase in weld penetration during ATIG welding. Amongst all the oxides used in this study, maximum penetration was achieved in case of B2O3. The measurements of weld penetration, bead width and heat affected zone of the weldings were carried out using an image analysis technique.

  11. Internal-bore-welding of 2 1/4 Cr--1 Mo steel tube-to-tubesheet joints

    International Nuclear Information System (INIS)

    Moorhead, A.J.; Slaughter, G.M.

    1976-01-01

    In order to avoid the disadvantages of the conventional face-side tube-to-tubesheet weld, the steam generators for the Clinch River Breeder Reactor Plant (a power-producing demonstration LMFBR) will be built using a relatively new technique known as internal-bore-welding (IBW). In IBW the tube does not pass through the tubesheet but rather is welded to a short stub machined on the tube side of the tubesheet. This joint has the important advantages of being inspectable by radiography and eliminating the crevice; however, it is much more difficult to weld than is the face-side design. Because of the close proximity of the tubes, there is not room for an orbiting-arc welding head on the outside of the tube. Consequently, this weld must be made by welding from the inside- or bore-side of the tube. The results are presented of the initial phases of a program undertaken at ORNL to develop improved bore-side welding equipment, to gain further understanding of this technique, and to develop mechanical property data for autogeneous welds in 2 1/4 Cr-1 Mo steel tube and tubesheet materials

  12. Determination of welding parameters for execution of weld overlayer on PWR nuclear reactor nozzles

    International Nuclear Information System (INIS)

    Ribeiro, Gabriela M.; Lima, Luciana I.; Quinan, Marco A.; Schvartzman, Monica M.

    2009-01-01

    In the PWR reactors, nickel based dissimilar welds have been presented susceptibilities the stress corrosion (S C). For the mitigation the problem a deposition of weld layers on the external surface of the nozzle is an alternative, viewing to provoke the compression of the region subjected to S C. This paper presents a preliminary study on the determination of welding parameters to obtain these welding overlayers. Welding depositions were performed on a test piece welded with nickel 182 alloy, simulating the conditions of a nozzle used in a PWR nuclear power plant. The welding process was the GTAW (Gas Tungsten Arc Welding), and a nickel 52 alloy as addition material. The overlayers were performed on the base metals, carbon steel an stainless steel, changing the welding parameters and verifying the the time of each weld filet. After that, the samples were micro structurally characterized. The macro structures and the microstructures obtained through optical microscopy and Vickers microhardness are presented. The preliminary results make evident the good weld quality. However, a small weld parameters influence used in the base material microstructure (carbon steel and stainless steel). The obtained results in this study will be used as reference in the construction of a mock up which will simulate all the conditions of a pressurizer nozzle of PWR reactor

  13. Metallurgical and mechanical examinations of steel–copper joints arc welded using bronze and nickel-base superalloy filler materials

    International Nuclear Information System (INIS)

    Velu, M.; Bhat, Sunil

    2013-01-01

    Highlights: ► Optical and scanning electron microscopy show defect free weld interfaces. ► Energy dispersive spectroscopy shows low dilution level of the weld by Fe. ► XRD studies show no brittle intermetallic phases in the weld interfaces. ► Weld interfaces did not fail during tensile, transverse bending and impact tests. ► The joint exhibits superior strength properties than that of bronze filler. - Abstract: The paper presents metallurgical and mechanical examinations of joints between dissimilar metals viz. copper (UNSC11000) and alloy steel (En31) obtained by Shielded Metal Arc Welding (SMAW) using two different filler materials, bronze and nickel-base super alloy. The weld bead of the joint with bronze-filler displayed porosity, while that with nickel-filler did not. In tension tests, the weldments with bronze-filler fractured in the centre of the weld, while those with nickel-filler fractured in the heat affected zone (HAZ) of copper. Since the latter exhibited higher strength than the former, all the major tests were undertaken over the joints with nickel-filler alone. Scanning Electron Microscopy (SEM) coupled with Energy Dispersive Spectroscopy (EDS) indicated corrugated weld interfaces and favorable elemental diffusions across them. X-ray diffraction (XRD) studies around the weld interfaces did not reveal any detrimental intermetallic compounds. Transverse bending tests showed that flexural strengths of the weldments were higher than the tensile strengths. Transverse side bend tests confirmed good ductility of the joints. Shear strength of the weld-interface (Cu–Ni or Ni–steel) was higher than the yield strength of weaker metal. Microhardness and Charpy impact values were measured at all the important zones across the weldment

  14. Effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded high strength aluminium alloy

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Ravisankar, V.; Reddy, G. Madhusudhan

    2007-01-01

    This paper reveals the effect of pulsed current and post weld aging treatment on tensile properties of argon arc welded AA7075 aluminium alloy. This alloy has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to-weight ratio, such as transportable bridge girders, military vehicles, road tankers and railway transport systems. The preferred welding processes of high strength aluminium alloy are frequently gas tungsten arc welding (GTAW) process and gas metal arc welding (GMAW) process due to their comparatively easier applicability and better economy. Weld fusion zones typically exhibit coarse columnar grains because of the prevailing thermal conditions during weld metal solidification. This often results inferior weld mechanical properties and poor resistance to hot cracking. In this investigation, an attempt has been made to refine the fusion zone grains by applying pulsed current welding technique. Four different welding techniques have been used to fabricate the joints and they are: (i) continuous current GTAW (CCGTAW), (ii) pulsed current GTAW (PCGTAW), (iii) continuous current GMAW (CCGMAW) and (iv) pulsed current GMAW (PCGMAW) processes. As welded joint strength is much lower than the base metal strength and hence, a simple aging treatment has been given to improve the tensile strength of the joints. Current pulsing leads to relatively finer and more equi-axed grain structure in GTA and GMA welds. In contrast, conventional continuous current welding resulted in predominantly columnar grain structures. Post weld aging treatment is accompanied by an increase in tensile strength and tensile ductility

  15. Filler metal selection for welding a high nitrogen stainless steel

    Science.gov (United States)

    Du Toit, Madeleine

    2002-06-01

    Cromanite is a high-strength austenitic stainless steel that contains approximately 19% chromium, 10% manganese, and 0.5% nitrogen. It can be welded successfully, but due to the high nitrogen content of the base metal, precautions have to be taken to ensure sound welds with the desired combination of properties. Although no matching filler metals are currently available, Cromanite can be welded using a range of commercially available stainless steel welding consumables. E307 stainless steel, the filler metal currently recommended for joining Cromanite, produces welds with mechanical properties that are generally inferior to those of the base metal. In wear applications, these lower strength welds would probably be acceptable, but in applications where full use is made of the high strength of Cromanite, welds with matching strength levels would be required. In this investigation, two welding consumables, ER2209 (a duplex austenitic-ferritic stainless steel) and 15CrMn (an austenitic-manganese hardfacing wire), were evaluated as substitutes for E307. When used to join Cromanite, 15CrMn produced welds displaying severe nitrogen-induced porosity, and this consumable is therefore not recommended. ER2209, however, outperformed E307, producing sound porosity-free welds with excellent mechanical properties, including high ductility and strength levels exceeding the minimum limits specified for Cromanite.

  16. Residual stress relief in MAG welded joints of dissimilar steels

    International Nuclear Information System (INIS)

    Seodek, P.; Brozda, J.; Wang, L.; Withers, P.J.

    2003-01-01

    This paper addresses the relief of residual stress in welded joints between austenitic and non-alloyed ferritic-pearlitic steels. A series of similar and dissimilar steel joints based on the 18G2A (ferritic-pearlitic) and 1H18N10T (austenitic) steels were produced, some of which were stress relieved by annealing and some by mechanical prestressing. For the as-welded and stress relieved test joints the residual stresses were measured by trepanning. To aid the interpretation of these results, 2D plane stress finite element analysis has been performed to simulate the residual stress relieving methods. Analysis of the results has shown that thermal stress relieving of welded joints between dissimilar steels is not effective and may even increase residual stresses, due to the considerable difference in thermal expansion of the joined steels. It was found that, for the loads imposed, the effectiveness of the mechanical stress relieving of dissimilar steel welded joints was much lower than that of similar steel joints

  17. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  18. Microstructure and abrasive wear properties of M(Cr,Fe7C3 carbides reinforced high-chromium carbon coating produced by gas tungsten arc welding (GTAW process

    Directory of Open Access Journals (Sweden)

    Soner BUYTOZ

    2010-01-01

    Full Text Available In the present study, high-chromium ferrochromium carbon hypereutectic alloy powder was coated on AISI 4340 steel by the gas tungsten arc welding (GTAW process. The coating layers were analyzed by optical microscopy, X-ray diffraction (XRD, field-emission scanning electron microscopy (FE-SEM, X-ray energy-dispersive spectroscopy (EDS. Depending on the gas tungsten arc welding pa-rameters, either hypoeutectic or hypereutectic microstructures were produced. Wear tests of the coatings were carried out on a pin-on-disc apparatus as function of contact load. Wear rates of the all coating layers were decreased as a function of the loading. The improvement of abrasive wear resistance of the coating layer could be attributed to the high hardness of the hypereutectic M7C3 carbides in the microstruc-ture. As a result, the microstructure of surface layers, hardness and abrasive wear behaviours showed different characteristics due to the gas tungsten arc welding parameters.

  19. Feedback Linearization Based Arc Length Control for Gas Metal Arc Welding

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg

    2005-01-01

    a linear system to be controlled by linear state feedback control. The advantage of using a nonlinear approach as feedback linearization is the ability of this method to cope with nonlinearities and different operating points. However, the model describing the GMAW process is not exact, and therefore......In this paper a feedback linearization based arc length controller for gas metal arc welding (GMAW) is described. A nonlinear model describing the dynamic arc length is transformed into a system where nonlinearities can be cancelled by a nonlinear state feedback control part, and thus, leaving only......, the cancellation of nonlinear terms might give rise to problems with respect to robustness. Robustness of the closed loop system is therefore nvestigated by simulation....

  20. The filler powders laser welding of ODS ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Shenyong, E-mail: s_y_liang@126.com; Lei, Yucheng; Zhu, Qiang

    2015-01-15

    Laser welding was performed on Oxide Dispersion Strengthened (ODS) ferritic steel with the self-designed filler powders. The filler powders were added to weld metal to produce nano-particles (Y–M–O and TiC), submicron particles (Y–M–O) and dislocation rings. The generated particles were evenly distributed in the weld metal and their forming mechanism and behavior were analyzed. The results of the tests showed that the nano-particles, submicron particles and dislocation rings were able to improve the micro-hardness and tensile strength of welded joint, and the filler powders laser welding was an effective welding method of ODS ferritic steel.

  1. Retinal injury from a welding arc

    International Nuclear Information System (INIS)

    Naidoff, M.A.; Sliney, D.H.

    1974-01-01

    An 18-year-old man stared at a welding arc for approximately ten minutes, sustaining moderate facial erythema, keratoconjunctivitis, marked visual loss, a pupillary abnormality, and a retinal injury accompanied by a dense central scotoma and peripheral field constriction. A residual, partially pigmented foveal lesion remained after 16 months, with normal visual acuity. Since the degree of keratoconjunctivitis and facial erythema was known, we substantiated the duration of exposure to the arc by weighting the known action spectrum of moderate ultraviolet erythema with the ultraviolet spectral irradiance measurements of the arc. From the radiometric measurements of the visible brightness and visible and near infrared spectrum of the arc and from knowledge of pupil size, we calculated the retinal exposure dose rate, which was less than normally considered necessary to produce a chorioretinal burn. This case may provide a clinical example of photic maculopathy recently reported in experimental investigations

  2. Hybrid laser arc welding of a used fuel container

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, C., E-mail: cboyle@nwmo.ca [Nuclear Waste Management Organization, Toronto, ON (Canada); Martel, P. [Novika Solutions, La Pocatiere, QC (Canada)

    2015-07-01

    The Nuclear Waste Management Organization (NWMO) has designed a novel Used Fuel Container (UFC) optimized for CANDU used nuclear fuel. The Mark II container is constructed of nuclear grade pipe for the body and capped with hemi-spherical heads. The head-to-shell joint fit-up features an integral backing designed for external pressure, eliminating the need for a full penetration closure weld. The NWMO and Novika Solutions have developed a partial penetration, single pass Hybrid Laser Arc Weld (HLAW) closure welding process requiring no post-weld heat treatment. This paper will discuss the joint design, HLAW process, associated welding equipment, and prototype container fabrication. (author)

  3. A study on influence of heat input variation on microstructure of reduced activation ferritic martensitic steel weld metal produced by GTAW process

    International Nuclear Information System (INIS)

    Arivazhagan, B.; Srinivasan, G.; Albert, S.K.; Bhaduri, A.K.

    2011-01-01

    Reduced activation ferritic martensitic (RAFM) steel is a major structural material for test blanket module (TBM) to be incorporated in International Thermonuclear Experimental Reactor (ITER) programme to study the breeding of tritium in fusion reactors. This material has been mainly developed to achieve significant reduction in the induced radioactivity from the structural material used. Fabrication of TBM involves extensive welding, and gas tungsten arc welding (GTAW) process is one of the welding processes being considered for this purpose. In the present work, the effect of heat input on microstructure of indigenously developed RAFM steel weld metal produced by GTAW process has been studied. Autogenous bead-on-plate welding, autogenous butt-welding, butt-welding with filler wire addition, and pulsed welding on RAFMS have been carried out using GTAW process respectively. The weld metal is found to contain δ-ferrite and its volume fraction increased with increase in heat input. This fact suggests that δ-ferrite content in the weld metal is influenced by the cooling rate during welding. It was also observed that the hardness of the weld metal decreased with increase in δ-ferrite content. This paper highlights the effect of heat input and PWHT duration on microstructure and hardness of welds.

  4. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding

    International Nuclear Information System (INIS)

    Liu Yao; Wang Wenjing; Xie Jijia; Sun Shouguang; Wang Liang; Qian Ye; Meng Yuan; Wei Yujie

    2012-01-01

    Highlights: ► Welding zones by GTAW and GMAW are softer than the parent material Al5083. ► GTAW for Al5083 are mechanically more reliable than that welded by GMAW. ► GTAW welds fail by shear, but GMAW welds show mixed shear and normal failure. - Abstract: The mechanical properties and microstructural features of aluminum 5083 (Al5083) weldments processed by gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) are investigated. Weldments processed by both methods are mechanically softer than the parent material Al5083, and could be potential sites for plastic localization. It is revealed that Al5083 weldments processed by GTAW are mechanical more reliable than those by GMAW. The former bears higher strength, more ductility, and no apparent microstructure defects. Perceivable porosity in weldments by GMAW is found, which could account for the distinct mechanical properties between weldments processed by GTAW and GMAW. It is suggested that caution should be exercised when using GMAW for Al5083 in the high-speed-train industry where such light weight metal is broadly used.

  5. Metal arc welding and the risk of skin cancer

    DEFF Research Database (Denmark)

    Heltoft, K N; Slagor, R M; Agner, T

    2017-01-01

    OBJECTIVES: Arc welding produces the full spectrum of ultraviolet radiation and may be a contributory cause of skin cancer; however, there has been little research into this occupational hazard. The aim of this study is to explore if metal arc welding increases the risk of malignant melanoma and....../or basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) on skin areas which may possibly be exposed (neck, head, and upper extremities). METHOD: A Danish national company-based historic cohort of 4333 male metal arc welders was followed from 1987 through 2012 to identify the risk of skin cancer....... An external reference group was established including all Danish skilled and unskilled male workers with similar age distribution. Occupational histories were gathered by questionnaires in 1986 and information about skin cancer diagnoses [BCC, SCC, cutaneous malignant melanoma (CMM), and precancerous...

  6. Tests of arc-welding-related EMI effects on startup instrumentation

    International Nuclear Information System (INIS)

    Qian, T.; Kalechstein, W.; Cosgrove, D.

    1996-01-01

    The tests described in this paper were conducted to characterize the effects that electromagnetic interference (EMI), from arc welding, has on startup instrumentation (SUI). This paper reviews the results of a literature search on EMI resulting from arc welding and gives the objective and scope of the tests conducted and describes the test equipment and setting, and test procedure and results. Are-welding-related EMI levels in an SUI system were measured to determine the dominant source of interference, the coupling path and the susceptible part of the SUI system. The effectiveness of easily implemented improvements in reducing the level of EMI in the SUI system were also tested. Recommendations are provided on how to eliminate or reduce the EMI effects on sensitive nuclear instruments. (author)

  7. Corrosion Properties of Laser Welded Stainless Steel

    DEFF Research Database (Denmark)

    Weldingh, Jakob; Olsen, Flemmming Ove

    1997-01-01

    In this paper the corrosion properties of laser welded AISI 316L stainless steel are examined. A number of different welds has been performed to test the influence of the weld parameters of the resulting corrosion properties. It has been chosen to use the potential independent critical pitting...... temperature (CPT) test as corrosion test. The following welding parameters are varied: Welding speed, lsser power, focus point position and laser operation mode (CW or pulsed)....

  8. Fibre Laser Welding of HY-80 Steel: Procedure Development and Testing

    Science.gov (United States)

    2010-09-01

    2 Welding The material used in this study was quenched and tempered martensitic HY80 steel which conforms to MIL-S-1621 [2]. The testing...Journal, 1977. [4] AWS, D1.6 in Structural Welding Code Stainless Steel . 2007, American Welding Society: Miami Florida. [5] DefStan, 02-770 Part 2...Canada Fibre Laser Welding of HY-80 Steel Proceedure Development and Testing Christopher Bayley DLP Neil Aucoin DLP Xinjin Cao NRC IAR AMTC Technical

  9. Artificial defects detection and location during welding

    International Nuclear Information System (INIS)

    Asty, M.

    1978-01-01

    Welding control by acoustic emission allows defects detection as soon as they are created. Acoustic testing saves time and gives better quality assurance in the case of multiple pass welding of plates. A welded joint was performed on A533B steel plates 250 mm thick by submerged arc welding. Artificial defects were implanted to determine significative parameters of acoustic reception. In operating conditions a significant acoustic activity takes place only during welding as shown by preliminary tests. At the same time an important noise is created by the arc, scories cooling and metal solidification and cooling. These problems are solved by an original processing in time-space detecting and locating defects with a good approximation [fr

  10. The behavior of welded joint in steel pipe members under monotonic and cyclic loading

    International Nuclear Information System (INIS)

    Chang, Kyong-Ho; Jang, Gab-Chul; Shin, Young-Eui; Han, Jung-Guen; Kim, Jong-Min

    2006-01-01

    Most steel pipe members are joined by welding. The residual stress and weld metal in a welded joint have the influence on the behavior of steel pipes. Therefore, to accurately predict the behavior of steel pipes with a welded joint, the influence of welding residual stress and weld metal on the behavior of steel pipe must be investigated. In this paper, the residual stress of steel pipes with a welded joint was investigated by using a three-dimensional non-steady heat conduction analysis and a three-dimensional thermal elastic-plastic analysis. Based on the results of monotonic and cyclic loading tests, a hysteresis model for weld metal was formulated. The hysteresis model was proposed by the authors and applied to a three-dimensional finite elements analysis. To investigate the influence of a welded joint in steel pipes under monotonic and cyclic loading, three-dimensional finite elements analysis considering the proposed model and residual stress was carried out. The influence of a welded joint on the behavior of steel pipe members was investigated by comparing the analytical result both steel pipe with a welded joint and that without a welded joint

  11. Welding zinc coated steel with a CO/sub 2/ laser

    International Nuclear Information System (INIS)

    Akhter, R.; Steen, W.M.

    1993-01-01

    Welding of zinc coated steel has been studied using a high power CO/sub 2/ laser. This process is of great interest to the manufactures of car, washing machines and other components made from sheet steel and subject to corrosion. The problem associated with the welding of zinc coated steel is the low boiling point of zinc (906C) relative to the high melting point of steel (1500C). The problem is particularly important in lap welding where the zinc layer is between the lapped sheets. Under these conditions the laser 'keyhole' will generate very high vapour pressure in the zinc layer with a consequent severe risk of vapour eruption destroying the continuity of the weld bead. Several techniques are presented for the removal of zinc vapours from the interface between the two sheets. It is shown that this problem solved by suitable gap between the sheets during lap welding. Hence full penetration welds without deterioration of the weld bead can be obtained. A theory has been presented which predicted an exact gap size needed to exhaust the zinc vapour. The gap depends upon the welding speed, zinc coating thickness and thickness of the sheet. The theory predicts the weld quality satisfactorily. (author)

  12. Effect of controlled atmosphere on the mig-mag arc weldment properties

    International Nuclear Information System (INIS)

    Kacar, Ramazan; Koekemli, Koray

    2005-01-01

    Due to their higher welding speed, automation and weld pool protection against to the atmosphere gases, gas metal arc welding (GMAW) process is widely used in industry. Due to the less stable arc associated with the use of consumable electrodes, GMAW process is not clean as good as gas tungsten arc welding process. Furthermore, the greater arc length in GMAW process also reduces the protective effect of the shielding gas. Due to electrochemical and thermochemical reactions between weld pool and arc atmosphere, it is quite important, especially weld metal toughness and joining of reactive materials to entirely create inert atmosphere for GMAW process. Therefore, a controlled atmosphere cabinet was developed for GMAW process. Low carbon steel combinations were welded with classical GMAW process in argon atmosphere as well as controlled atmosphere cabinet by using similar welding parameters. The mechanical and metallurgical properties of both weldments were evaluated. Result shows that toughness of the weld metal that was obtained in the controlled atmosphere cabinet much higher than that of classical GMAW process. The metallographic examination also clarified that there was not any gas porosity and inclusion in the weld metal compared with classical process

  13. Mechanical properties of 5083 aluminium welds after manual and automatic pulsed gas metal arc welding using E5356 filler

    CSIR Research Space (South Africa)

    Mutombo, K

    2010-01-01

    Full Text Available Semi-automatic and automatic pulsed gas metal arc welding (GMAW) of aluminium alloy 5083 with ER5356 filler wire causes considerable softening in the weld. The tensile strength of dressed automatic welds approaches that of the base metal...

  14. Automatic welding of stainless steel tubing

    Science.gov (United States)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  15. Mechanical properties of dissimilar friction welded steel bars in relation to post weld heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Yu Sik; Kim, Seon Jin [Pukyong National University, Busan (Korea, Republic of)

    2006-04-15

    Dissimilar friction welding were produced using 15(mm) diameter solid bar in chrome molybedenum steel(KS SCM440) to carbon steel(KS S45C) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Vickers hardness surveys of the bond of area and H.A.Z and microstructure investigations. The specimens were tested as-welded and Post-Weld Heat Treated(PWHT). The tensile strength of the friction welded steel bars was increased up to 100% of the S45C base metal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), P{sub 1}=60(MPa), P{sub 2}=100(MPa), t{sub 1}=4(s), t{sub 2}=5(s) when the total upset length is 5.4 and 5.7(mm), respectively. The peak of hardness distribution of the friction welded joints can be eliminated by PWHT. Two different kinds of materials are strongly mixed to show a well-combined structure of macro-particles without any molten material and particle growth or any defects.

  16. The effect of heat treatment on phosphorus segregation in a submerged-arc weld metal

    International Nuclear Information System (INIS)

    Beere, W.B.; Buswell, J.T.

    1999-01-01

    Intergranular fracture (IGF) has been observed in carbon-manganese steels after irradiation or high temperature exposure for prolonged periods. The effect is associated with an increase in the ductile-brittle transition temperature and has been related to phosphorus diffusion to grain boundaries. Phosphorus also diffuses thermally at the temperatures used for post-weld heat treatments such that in principle, the slightly different heat treatments given to different parts of a large vessel could lead to differing grain boundary phosphorus coverage and hence susceptibility to IGF. The effect of typical heat treatments on phosphorus coverage has been investigated using a finite difference model based on a theory that has been fitted to a wide range of constant temperature data. Regardless of previous history, the grain boundary coverage of phosphorus was predicted to depend on the final anneal and cooling rate. These differed insufficiently in the typical heat treatments to produce significant differences in segregation. It was concluded that the ductile-brittle transition temperature in submerged-arc welds would be unaffected in vessels that had seen typical post-weld heat treatments

  17. Low-Cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3D Printing

    Directory of Open Access Journals (Sweden)

    A. Pinar

    2015-01-01

    Full Text Available Arduino open-source microcontrollers are well known in sensor applications for scientific equipment and for controlling RepRap 3D printers. Recently low-cost open-source gas metal arc weld (GMAW RepRap 3D printers have been developed. The entry-level welders used have minimal controls and therefore lack any real-time measurement of welder voltage or current. The preliminary work on process optimization of GMAW 3D printers requires a low-cost sensor and data logger system to measure welder current and voltage. This paper reports on the development of a low-cost open-source power measurement sensor system based on Arduino architecture. The sensor system was designed, built, and tested with two entry-level MIG welders. The full bill of materials and open source designs are provided. Voltage and current were measured while making stepwise adjustments to the manual voltage setting on the welder. Three conditions were tested while welding with steel and aluminum wire on steel substrates to assess the role of electrode material, shield gas, and welding velocity. The results showed that the open source sensor circuit performed as designed and could be constructed for <$100 in components representing a significant potential value through lateral scaling and replication in the 3D printing community.

  18. X-ray radiography of Ti6Al4V welded by plasma tungsten arc (PTA) welding

    Energy Technology Data Exchange (ETDEWEB)

    Dikbas, Halil; Caligulu, Ugur; Taskin, Mustafa; Turkmen, Mustafa [Firat Univ., Elazig (Turkey). Metallurgy Dept.

    2013-03-01

    In this study, X-ray radiographic tests of Ti6Al4V alloys welded by plasma tungsten arc welding (PTA) were investigated. PTA welding experiments were carried out under argon shielding gas atmosphere, at 1400-1600 W and 1800 W welding powers as well as 1 m/min, 0.75 m/min, and 0.50 m/min welding speeds. After this process, radiography of the welded joints was performed by X-ray diffraction. The result of the radiographic tests indicated that by increasing welding power the widths of deep penetration increased in all specimens. On the contrary, increasing welding speeds decreases the widths deep penetration. The best properties of Ti6Al4V joints were observed for specimens welded at 1800 W welding power and at 0.50 m/min welding speed. (orig.)

  19. Fracture toughness of austenitic stainless steel weld metal at 4 K

    International Nuclear Information System (INIS)

    Goodwin, G.M.

    1984-08-01

    Selection of the welding processess and weld filler metals for fabrication of a large toroidal superconducting magnet is described. Data available in the literature are collected and compared with data generated in this study for three welding processes, shielded metal arc (SMA), gas tungsten arc (GTA), and flux cored arc (FCA) welds had the highest fracture toughness as measured by K/sub Ic/ estimated from J/sub Ic/. The SMA and FCA welds had about the same toughness, below the GTA values but above the average from the literature. The fracture mode for all three processes was typified by ductile dimples. The fracture morphology of the FCA weld specimens was influenced by the solidification substructure, and small particles were found to be nucleation sites for void formation, especially for the GTA welds. All three welding processes were deemed adequate for the intended service and were used to fabricate the large magnet. A trunnion-type turning fixture eliminated the need for welding in the vertical and overhead positions. The GTA process was used for all root passes, and the horizontal welds were filled by the SMA process. Over 80% of the welds were done in the flat position with the FCA process, and its high deposition rate and ease of operation are credited with contributing greatly to the success of the effort

  20. Recent progress on gas tungsten arc welding of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; King, J.F.; Alexander, D.J. [Oak Ridge National Lab., TN (United States)] [and others

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  1. In process acoustic emission in multirun submerged arc welding

    International Nuclear Information System (INIS)

    Asty, M.; Birac, C.

    1980-01-01

    In order to avoid the formation of deep grooves when repairing defects in welded joints in heavy plates, an investigation was made aiming to detect and locate the defects by in-process acoustic emission in multirun submerged arc welding. Twelve defects (lack of penetration, cracks, inclusions, lack of fusion together with inclusions, blowholes) were intentionally introduced when the first plate was welded. A space-time method for processing the acoustic activity during welding allowed the detection and the location of the intentional defects as well as of the most important accidental defects evidenced by ultrasonic testing [fr

  2. Significance of the Resonance Condition for Controlling the Seam Position in Laser-assisted TIG Welding

    Science.gov (United States)

    Emde, B.; Huse, M.; Hermsdorf, J.; Kaierle, S.; Wesling, V.; Overmeyer, L.; Kozakov, R.; Uhrlandt, D.

    As an energy-preserving variant of laser hybrid welding, laser-assisted arc welding uses laser powers of less than 1 kW. Recent studies have shown that the electrical conductivity of a TIG welding arc changes within the arc in case of a resonant interaction between laser radiation and argon atoms. This paper presents investigations on how to control the position of the arc root on the workpiece by means of the resonant interaction. Furthermore, the influence on the welding result is demonstrated. The welding tests were carried out on a cooled copper plate and steel samples with resonant and non-resonant laser radiation. Moreover, an analysis of the weld seam is presented.

  3. FineLine{sup TM} welding process for power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Offer, H.; Chapman, T.; Grycko, L.; Mahoney, P. [GE Nuclear Energy, San Jose, CA (United States)

    1996-12-31

    This paper discusses the technical development and current applications of the FineLine{sup TM} Welding (FLW) process. FineLine Welding is a modified Gas Tungsten-Arc Welding mechanized process recently developed by GE Nuclear Energy for a thin-wall piping application. Based on its unique combination of high thermal and volumetric efficiencies, the FLW process offers significant technical and productivity improvements over both standard orbital V-groove and narrow-gap welding procedures. The FLW process is suitable for many common structural materials, and has been successfully applied to unstabilized and stabilized grades of austenitic stainless steels, martensitic stainless steels, nickel-base (Inconel) alloys, carbon steels, as well as ferritic higher alloy steels. (orig./MM)

  4. Electroslag welding of rotor steels produced with vacuum-carbon reduction

    International Nuclear Information System (INIS)

    Roshchin, M.B.; Modzhuk, M.D.; Izvekov, B.V.

    1985-01-01

    Metallurgical processes of electroslag welding of rotor steels, melted with vacuum-carbon deoxidation, have been considered. It is established, that during electroslag welding of steels with carbon content 0.20...0.30%, suppression of welding bath boiling and production of dense weld metal with a high impact strength can be ensured at oxygen concentration in soldered on metal not exceeding 0.01% and silicon content 0.06...0.10%

  5. Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.

    Science.gov (United States)

    Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu

    In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.

  6. Corrosion behaviour of dissimilar welds between ferritic-martensitic stainless steel and austenitic stainless steel from secondary circuit of CANDU NPP

    International Nuclear Information System (INIS)

    Popa, L.; Fulger, M.; Tunaru, M.; Velciu, L.; Lazar, M.

    2016-01-01

    Corrosion damages of welds occur in spite of the fact that the proper base metal and filler metal have been correctly selected, industry codes and standards have been followed and welds have been realized with full weld penetration and have proper shape and contour. In secondary circuit of a Nuclear Power Station there are some components which have dissimilar welds. The principal criteria for selecting a stainless steel usually is resistance to corrosion, and white most consideration is given to the corrosion resistance of the base metal, additional consideration should be given to the weld metal and to the base metal immediately adjacent to the weld zone. Our experiments were performed in chloride environmental on two types of samples: non-welded (410 or W 1.4006 ferritic-martensitic steel and 304L or W 1.4307 austenitic stainless steel) and dissimilar welds (dissimilar metal welds: joints between 410 ferritic-martensitic and 304L austenitic stainless steel). To evaluate corrosion susceptibility of dissimilar welds was used electrochemical method (potentiodynamic method) and optic microscopy (microstructural analysis). The present paper follows the localized corrosion behaviour of dissimilar welds between austenitic stainless steel and ferritic-martensitic steel in solutions containing chloride ions. It was evaluated the corrosion rates of samples (welded and non-welded) by electrochemical methods. (authors)

  7. Heat affected zone structure in welded joints of 15Kh1M1FL, 25Kh2NMFA and 20KhN2MFA steels

    International Nuclear Information System (INIS)

    Levenberg, N.E.; German, S.I.; Fomina, O.P.; Netesa, E.M.; Tsaryuk, A.K.; Kornienko, T.A.

    1983-01-01

    Heat affected zone (HAZ) structure of thick-walled, nature joints of 15Kh1M1FL steel for block structure of power reactors and 25Kh2NMFA and 20KhN2MFA steels for rotors - is investigated. Multi-layer arc welding is performed under conditions being created for standard components of turbines. Thermokinetics diagrams of austenite decomposition are built, phase composition and character of the structure forming at HAZ in the process of welding with preheating are studied. It is shown that at HAZ in joints of the steels under consideration in the process of welding with preheating is formed a structure of a grained bainite which is uniform in its structure and phase composition. Small volumes of round and elongated forms consisting of martensite and residual austenite are distributed in α-solid solution of the bainite. The bainite of the HAZ in welded joints possesses high hardness and great stability in the process of tempering

  8. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Science.gov (United States)

    2013-10-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0231] Control of Ferrite Content in Stainless Steel Weld... Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the...

  9. Friction welding of steel to ceramic

    OpenAIRE

    Rombaut, Pieter; De Waele, Wim; Faes, Koenraad

    2011-01-01

    The goal of this paper is to give a clear summary of the literature review performed during the master thesis on friction welding on dissimilar materials. Of main interest for this work is the welding of steel to a ceramic material such as alumina (Al2O3). Because of the difficulties involved in producing a sound weld for this material combination, not a lot of literature is available on this topic. This paper starts with a discussion on the basics of friction welding and typical problems enc...

  10. Characterization of the electrochemical behavior of coating by steel welding 308l and in presence of noble metals deposits

    International Nuclear Information System (INIS)

    Piedras, P.; Arganis J, C. R.

    2014-10-01

    In this work the oxide deposits and noble metals deposit were characterized (Ag and Pt) on a coating of stainless steel 308l that were deposited by the shield metal arc welding (SMAW) on steel A36 by means of scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. The extrapolation of Tafel technique was also used to obtain the corrosion potential (Ec) for the pre-rusty steel and for the samples with deposits of Pt and Ag under conditions of hydrogen water chemistry (HWC), demonstrating that this parameter diminishes with the presence of this deposits. (Author)

  11. Investigation on Mechanical Properties of Austenitic Stainless-Steel Pipes Welded by TIG Method

    Directory of Open Access Journals (Sweden)

    Mushtaq Albdiry

    2017-11-01

    Full Text Available This paper investigates the mechanical properties of austenitic stainless steel (type 204 pipes welded by Tungsten Inert Gas (TIG welding process. Testing of hardness (HRC, tensile strength and bending strength was performed for the steel pipes welded at two different welding temperatures (700 °C and 900 °C with and without using the weld filler wire. The microstructure of the welding regions was examined by using an optical microscopy. The properties showed that the steel pipes welded by 900 °C with using the weld filler obtained the highest tensile strength and bending strength versus these welded by 700 °C without the use of the weld filler. This is attributed to the weld filler heated and melt at sufficient temperature (900 °C and compensate losing in the Ni metal occurred in the base steel metal during the welding process.

  12. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  13. Weld bonding of stainless steel

    DEFF Research Database (Denmark)

    Santos, I. O.; Zhang, Wenqi; Goncalves, V.M.

    2004-01-01

    . The overall assessment of the weld bonding process is made using several commercial adhesives with varying working times under different surface conditions. The quality of the resulting joints is evaluated by means of macroetching observations, tension-shear tests and peel tests. The theoretical investigation......This paper presents a comprehensive theoretical and experimental investigation of the weld bonding process with the purpose of evaluating its relative performance in case of joining stainless steel parts, against alternative solutions based on structural adhesives or conventional spot-welding...... of the process consists of numerical predictions based on the commercial finite element program SORPAS with the purpose of establishing the most favourable parameters that allow spot-welding through the adhesives....

  14. Laser welding of maraging steel rocket motor casing

    CSIR Research Space (South Africa)

    Van Rooyen, C

    2009-11-01

    Full Text Available This presentation looks at the experimental procedure and results of laser welding of maraging steel rocker motor casing. It concludes that a fracture occurred in weld metal of autogenous welding and that a fracture occurred in base material when...

  15. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    Science.gov (United States)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-11-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  16. Microstructure and mechanical properties of aluminum 5083 weldments by gas tungsten arc and gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yao [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wang Wenjing [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Xie Jijia [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Sun Shouguang [School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044 (China); Wang Liang [College of Metallurgy and Material Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Qian Ye; Meng Yuan [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Wei Yujie, E-mail: yujie_wei@lnm.imech.ac.cn [State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China)

    2012-07-15

    Highlights: Black-Right-Pointing-Pointer Welding zones by GTAW and GMAW are softer than the parent material Al5083. Black-Right-Pointing-Pointer GTAW for Al5083 are mechanically more reliable than that welded by GMAW. Black-Right-Pointing-Pointer GTAW welds fail by shear, but GMAW welds show mixed shear and normal failure. - Abstract: The mechanical properties and microstructural features of aluminum 5083 (Al5083) weldments processed by gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW) are investigated. Weldments processed by both methods are mechanically softer than the parent material Al5083, and could be potential sites for plastic localization. It is revealed that Al5083 weldments processed by GTAW are mechanical more reliable than those by GMAW. The former bears higher strength, more ductility, and no apparent microstructure defects. Perceivable porosity in weldments by GMAW is found, which could account for the distinct mechanical properties between weldments processed by GTAW and GMAW. It is suggested that caution should be exercised when using GMAW for Al5083 in the high-speed-train industry where such light weight metal is broadly used.

  17. Effect of different electrode tip angles with tilted torch in stationary gas tungsten arc welding: A 3D simulation

    International Nuclear Information System (INIS)

    Abid, M.; Parvez, S.; Nash, D.H.

    2013-01-01

    In this study, the effect of different tip angles (30°, 60°, 90° and 120°) on the arc and weld pool behavior is analyzed in 2 mm and 5 mm arc lengths with tilted (70°) torch. Arc temperature, velocity, current density, heat flux and gas shear are investigated in the arc region and pool convection and puddle shapes are studied in the weld pool region. The arc temperature at the tungsten electrode is found the maximum with sharp tip and decreases as the tip angle increases. The arc temperature on the anode (workpiece) surface becomes concentrated with increase in tip angle. The arc velocity and gas shear stress are observed large with sharp tip and decreasing as the tip angle increases. Current density on the anode surface does not change with tip angle and observed almost the same in all the tip angles in both 2 mm and 5 mm arc lengths. Heat flux due to conduction and convection is observed more sensitive to the tip angle and decreases as the tip angle increases. The electromagnetic force is slightly observed increasing and the buoyancy force is observed slightly decreasing with increase in tip angle. Analyzing each driving force in the weld pool individually shows that the gas drag and Marangoni forces are much stronger than the electromagnetic and buoyancy forces. The weld pool shape is observed wide and shallow in sharp and narrow and deep in large tip angle. Increasing the arc length does not change the weld pool width; however, the weld pool depth significantly changes with arc length and is observed deep in short arc length. The arc properties and weld pool shapes are observed wide ahead of the electrode tip in the weld direction due to 70° torch angle. Good agreement is observed between the numerical and experimental weld pool shapes

  18. The stress rupture properties of austenitic steel weld metals

    International Nuclear Information System (INIS)

    Wood, D.S.

    Elevated temperature stress rupture data on Mo containing and Mo free austenitic weld metals have been collected from French, Dutch, German and UK sources and the results analysed. The stress rupture strength of Mo containing weld metal is significantly higher than that of Mo free weld metal. At 10,000h the rupture strength of Mo containing weld metal is higher than that of Type 316 steel whereas the Mo free weld metal is about 20% lower than that of Type 304 steel. Austenitic weld metal can give low stress rupture ductility values. It is concluded that there are insufficient data to permit reliable extrapolations to long times and it is recommended that long term tests are performed to overcome this situation

  19. Laser Welding of Coated Press-hardened Steel 22MnB5

    Science.gov (United States)

    Siltanen, Jukka; Minkkinen, Ari; Järn, Sanna

    The press-hardening process is widely used for steels that are used in the automotive industry. Using ultra-high-strength steels enables car manufacturers to build lighter, stronger, and safer vehicles at a reduced cost and generating lower CO2 emissions. In the study, laser welding properties of the coated hot stamped steel 22BMn5 were studied. A constant 900 °C temperature was used to heat the steel plates, and two different furnace times were used in the press-hardening, being 300 and 740 seconds. Some of the plates were shot blasted to see the influence of the partly removed oxide layer on the laser welding and quality. The welding set-up, welding, and testing of the weld specimens complied with the automotive testing code SEP 1220.

  20. Laser welded steel sandwich panel bridge deck development : finite element analysis and stake weld strength tests.

    Science.gov (United States)

    2009-09-01

    This report summarizes the analysis of laser welded steel sandwich panels for use in bridge structures and : static testing of laser stake welded lap shear coupons. Steel sandwich panels consist of two face sheets : connected by a relatively low-dens...

  1. An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel

    International Nuclear Information System (INIS)

    Mortezaie, A.; Shamanian, M.

    2014-01-01

    In the present study, dissimilar welding between Inconel 718 nickel-base superalloy and 310S austenitic stainless steel using gas tungsten arc welding process was performed to determine the relationship between the microstructure of the welds and the resultant mechanical and corrosion properties. For this purpose, three filler metals including Inconel 625, Inconel 82 and 310 stainless steel were used. Microstructural observations showed that weld microstructures for all filler metals were fully austenitic. In tension tests, welds produced by Inconel 625 and 310 filler metals displayed the highest and the lowest ultimate tensile strength, respectively. The results of Charpy impact tests indicated that the maximum fracture energy was related to Inconel 82 weld metal. According to the potentiodynamic polarization test results, Inconel 82 exhibited the highest corrosion resistance among all tested filler metals. Finally, it was concluded that for the dissimilar welding between Inconel 718 and 310S, Inconel 82 filler metal offers the optimum properties at room temperature. - Highlights: • Three filler metals including Inconel 625, Inconel 82 and 310 SS were used. • A columnar to equiaxed dendritic structure was seen for IN-625 weld metal. • A granular austenitic microstructure obtained for Inconel 82 weld metal. • Microstructure of 310 weld metal includes solidification cracks along SSGB. • IN-82 weld metal showed the highest corrosion potential

  2. Automatic welding and cladding in heavy fabrication

    International Nuclear Information System (INIS)

    Altamer, A. de

    1980-01-01

    A description is given of the automatic welding processes used by an Italian fabricator of pressure vessels for petrochemical and nuclear plant. The automatic submerged arc welding, submerged arc strip cladding, pulsed TIG, hot wire TIG and MIG welding processes have proved satisfactory in terms of process reliability, metal deposition rate, and cost effectiveness for low alloy and carbon steels. An example shows sequences required during automatic butt welding, including heat treatments. Factors which govern satisfactory automatic welding include automatic anti-drift rotator device, electrode guidance and bead programming system, the capability of single and dual head operation, flux recovery and slag removal systems, operator environment and controls, maintaining continuity of welding and automatic reverse side grinding. Automatic welding is used for: joining vessel sections; joining tubes to tubeplate; cladding of vessel rings and tubes, dished ends and extruded nozzles; nozzle to shell and butt welds, including narrow gap welding. (author)

  3. Creep performance of welded pipe material made of 7CrMoVTiB10-10 (T/P24) steel

    Energy Technology Data Exchange (ETDEWEB)

    Rantala, Juhani; Auerkari, Pertti; Salonen, Jorma; Holmstroem, Stefan; Nevasmaa, Pekka [VTT Technical Research Centre of Finland, Espoo (Finland); Haekkilae, Juha [Foster Wheeler Energia, Varkaus (Finland)

    2010-07-01

    The creep strength of welded low-alloy ferritic steels is typically somewhat lower than that for parent metal, but this is generally due to an inherent weakness of the heat affected zone and accounted for in the common design codes. However, the parent material strength is much higher in certain modern low alloy steels such as 7CrMoVTiB10-10 (P24), and then it can be a significant challenge to develop weld metals (welding consumables) to match this strength. Acceptable weld performance has been previously demonstrated for thin-wall tubes where sufficient mixing with the base material can occur. The objective of this work was to achieve satisfactory properties for a thick-wall welded pipe by using an Nb-modified consumable to avoid weld metal weakening due to arc losses of Ti of a consumable composition approximately matching the base material. A considerable improvement was indeed noted in comparison with earlier experience using matching electrode composition. All short term test results for weld qualification showed acceptable properties, the cross-weld creep strength remain very close to the -20% band from the parent metal creep strength. However, creep testing at lowest stress levels approaching those expected in service resulted in weld metal failure. Although a clear improvement is evident from the previous generation of weld metals, there appears to be some further scope of development of the welding consumables, to improve the long term creep ductility of the welded joints particularly when applying production-like welding parameters. (orig.)

  4. High Power Laser Beam Welding of Thick-walled Ferromagnetic Steels with Electromagnetic Weld Pool Support

    Science.gov (United States)

    Fritzsche, André; Avilov, Vjaceslav; Gumenyuk, Andrey; Hilgenberg, Kai; Rethmeier, Michael

    The development of modern high power laser systems allows single pass welding of thick-walled components with minimal distortion. Besides the high demands on the joint preparation, the hydrostatic pressure in the melt pool increases with higher plate thicknesses. Reaching or exceeding the Laplace pressure, drop-out or melt sagging are caused. A contactless electromagnetic weld support system was used for laser beam welding of thick ferromagnetic steel plates compensating these effects. An oscillating magnetic field induces eddy currents in the weld pool which generate Lorentz forces counteracting the gravity forces. Hysteresis effects of ferromagnetic steels are considered as well as the loss of magnetization in zones exceeding the Curie temperature. These phenomena reduce the effective Lorentz forces within the weld pool. The successful compensation of the hydrostatic pressure was demonstrated on up to 20 mm thick plates of duplex and mild steel by a variation of the electromagnetic power level and the oscillation frequency.

  5. Structure/property relationships in multipass GMA welding of beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  6. Interfacial Reaction Characteristics and Mechanical Properties of Welding-brazing Bonding Between AZ31B Magnesium Alloy and PRO500 Ultra-high Strength Steel

    Directory of Open Access Journals (Sweden)

    CHEN Jian-hua

    2017-11-01

    Full Text Available Experiments were carried out with TIG welding-brazing of AZ31B magnesium alloy to PRO500 steel using TIG arc as heat source. The interfacial reaction characteristics and mechanical properties of the welding-brazing bonding were investigated. The results show that an effective bonding is achieved between AZ31B magnesium alloy and PRO500 steel by using TIG welding-brazing method. Some spontaneous oxidation reactions result in the formation of a transition zone containing AlFe3 phase with rich oxide. The micro-hardness value of the interfacial transition zone is between that of the AZ31B and the PRO500. Temper softening zone appears due to the welding thermal cycle nearby the bonding position in the interface. A higher heat input makes an increase of the brittle phases and leads to an obvious decrease of the bonding strength.

  7. Electron beam welding of heavy section 3Cr-1.5Mo alloy

    International Nuclear Information System (INIS)

    King, J.F.; David, S.A.; Nasreldin, A.

    1986-01-01

    Welding of thick section steels is a common practice in the fabrication of pressure vessels for energy systems. The fabrication cost is strongly influenced by the speed at which these large components can be welded. Conventional welding processes such as shielded metal arc (SMA) and submerged arc (SA) are time-consuming and expensive. Hence there is a great need to reduce welding time and the tonnage of weld metal deposited. Electron beam welding (EBW) is a process that potentially could be used to achieve dramatic reduction in the welding time and costs. The penetrating ability of the beam produces welds with high depth-to-width ratios at relatively high travel speeds, making it possible to weld thick sections with one or two passes without filler metals and other consumables. The paper describes a study that was undertaken to investigate the feasibility of using a high power electron beam welding machine to weld heavy section steel. The main emphasis of this work was concentrated on determining the mechanical properties of the resulting weldment, characterizing the microstructure of the various weldment regions, and comparing these results with those from other processes. One of the steels selected for the heavy section electron beam welding study was a new 3 Cr-1.5 Mo-0.1 V alloy. The steel was developed at the AMAX Materials Research Center by Wada and co-workers for high temperature, high pressure hydrogen service as a possible improved replacement for 2-1/4 Cr-1 Mo steels. The excellent strength and toughness of this steel make it a promising candidate for future pressure vessels such as those for coal gasifiers. The work was conducted on 102 mm (4 in.) thick plates of this material in the normalized-and-tempered condition

  8. Laser heat treatment of welds for various stainless steels

    Science.gov (United States)

    Dontu, O.; Ganatsios, S.; Alexandrescu, N.; Predescu, C.

    2008-03-01

    The paper presents a study concerning the post - weld heat treatment of a duplex stainless steel. Welded joint samples were surface - treated using the same laser source adopted during welding in order to counterbalance the excess of ferrite formed in the welding process.

  9. 16-8-2 weld metal design data for 316L(N) steel

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A.-A.F. [Commissariat a l' Energie Atomique, CEA/Saclay, 91191 Gif sur Yvette (France)], E-mail: tavassoli@cea.fr

    2008-12-15

    ITER materials properties documentation is extended to weld metals used for welding Type 316L(N) steel, i.e. the structural material retained for manufacturing ITER major components, such as the vacuum vessel. The data presented here are mainly for the Type 16-8-2 and complete those already reported for the low temperature (Type 316L) and the high temperature (Type 19-12-2) filler metals. The weld metal properties data for Type 16-8-2 filler metal and its joints are collected, sorted and analysed according to the French design and construction rules for nuclear components (RCC-MR). Particular attention is paid to the type of weld metal (e.g. wire for TIG, covered electrode for manual arc, flux wire for automatic welding), as well as, to the weld geometry and welding position. Design allowables are derived from validated data for each category of weld and compared with those of the base metal. In most cases, the analyses performed are extended beyond the conventional analyses required for codes to cover specific needs of ITER. These include effects of exposures to high temperature cycles during component fabrication, e.g. HIPing and low dose neutron irradiation at low and medium temperatures. The ITER Materials Properties Handbook (MPH) is, here, enriched with files for physical and mechanical properties of Type 16-8-2 weld metal. These files, combined with the codification and inspection files, are part of the documentation required for ITER licensing needs. They show that all three weld-metals satisfy the code requirements, provided compositions and types of welds used correspond to those specified in RCC-MR.

  10. Sensoring fusion data from the optic and acoustic emissions of electric arcs in the GMAW-S process for welding quality assessment.

    Science.gov (United States)

    Alfaro, Sadek Crisóstomo Absi; Cayo, Eber Huanca

    2012-01-01

    The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  11. Sensoring Fusion Data from the Optic and Acoustic Emissions of Electric Arcs in the GMAW-S Process for Welding Quality Assessment

    Directory of Open Access Journals (Sweden)

    Eber Huanca Cayo

    2012-05-01

    Full Text Available The present study shows the relationship between welding quality and optical-acoustic emissions from electric arcs, during welding runs, in the GMAW-S process. Bead on plate welding tests was carried out with pre-set parameters chosen from manufacturing standards. During the welding runs interferences were induced on the welding path using paint, grease or gas faults. In each welding run arc voltage, welding current, infrared and acoustic emission values were acquired and parameters such as arc power, acoustic peaks rate and infrared radiation rate computed. Data fusion algorithms were developed by assessing known welding quality parameters from arc emissions. These algorithms have showed better responses when they are based on more than just one sensor. Finally, it was concluded that there is a close relation between arc emissions and quality in welding and it can be measured from arc emissions sensing and data fusion algorithms.

  12. Development of resistance welding process. 6. Evaluation test of welding properties of martensitic ODS steel)

    International Nuclear Information System (INIS)

    Kono, Shusaku; Seki, Masayuki; Ishibashi, Fujio

    2003-05-01

    The welding condition and the heat-treatment condition were optimized to evaluate welding properties of the martensitic ODS steel cladding tube. The test pieces for evaluation of strength properties of the welded zone were produced by the optimized welding condition. In order to evaluate the strength of the welded zone, the internal creep rapture test, the single axis creep rapture test, the burst test and the tensile test were conducted. Following results were obtained in these tests. (1) Weld ability: An excellent welding characteristic was observed. The micro cracks, etc. were not served at the joint starting point. The joint starting points were connected uniformly with errors less than 0.05 mm. It is considered that an excellent welding characteristic was result of homogeneous micro structure of cladding material. (2) End plug material: In case of the material of end plug was martensitic ODS steel as same as that of cladding tube, the micro structure and the precipitation state carbide near the welded zone were found to be almost same as that of cladding tube. (3) Optimization of heat-treatment condition: The heat treatments of normalizing (1050degC) and tempering (780degC) were performed after welding and the micro structure near the welded zone was the isometric structure with low dislocation density, the precipitation state of carbide was uniform as same as that of cladding tube. These heat treatments can relax the residual stress accumulated when welding; it is considered that these heat treatments after welding are indispensable. (4) Strength of welded zone: The strength of the welded zone was found to be equal to that of cladding tube in all the strength tests. Therefore, it is concluded that the welding technology for the martensitic ODS steel is completed. (author)

  13. Microstructure characterization in the weld joint of a high nickel austenitic alloy and Cr18-Ni8 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Na; Li, Yajiang; Wang, Juan [Shandong Univ., Jinan (CN). Key Lab. for Liquid - Solid Structural Evolution and Processing of Materials (Ministry of Education)

    2012-06-15

    High nickel austenitic alloy, 6 mm thick, and Cr18-Ni8 stainless steel with a thickness of 0.6 mm were joined by pulsed current tungsten inert gas arc welding without filler metal in this work. Metallographic examination, microhardness measurement and electron microprobe analysis were used to reveal microstructural characteristics in the joint. The results indicated that the weld metal consisted of {gamma}-austenite, {delta}-ferrite and carbides without the appearance of martensite. There were dendrite crystals at the edge of the weld metal near the high nickel austenitic alloy and isometric crystals in the center of the weld metal. The microhardness of the weld metal was the highest due to the existence of carbides and its finer structure. Graphite flakes were still embedded in the austenite matrix of the heat-affected zone without the formation of martensite. (orig.)

  14. Repair welding of fusion reactor components

    International Nuclear Information System (INIS)

    Chin, B.A.

    1993-01-01

    Experiments have shown that irradiated Type 316 stainless steel is susceptible to heat-affected-zone (HAZ) cracking upon cooling when welded using the gas tungsten arc (GTA) process under lateral constraint. The cracking has been hypothesized to be caused by stress-assisted helium bubble growth and rupture at grain boundaries. This study utilized an experimental welding setup which enabled different compressive stresses to be applied to the plates during welding. Autogenous GTA welds were produced in Type 316 stainless steel doped with 256 appm helium. The application of a compressive stress, 55 MPa, during welding suppressed the previously observed catastrophic cracking. Detailed examinations conducted after welding showed a dramatic change in helium bubble morphology. Grain boundary bubble growth along directions parallel to the weld was suppressed. Results suggest that stress-modified welding techniques may be used to suppress or eliminate helium-induced cracking during joining of irradiated materials

  15. Effect of Weld Bead Shape on the Fatigue Behavior of GMAW Lap Fillet Joint in GA 590 MPa Steel Sheets

    Directory of Open Access Journals (Sweden)

    Insung Hwang

    2017-09-01

    Full Text Available In this study, the effect of weld bead shape on the fatigue strength of lap fillet joints using the gas metal arc welding (GMAW process was investigated. The base material used in the experiment was 590 MPa grade galvanealed steel sheet with 2.3 mm and 2.6 mm thickness. In order to make the four types of weld beads with different shapes by factors such as length, angle, and area, the welding process, wire feeding speed, and joint shape were changed. The stress-number of cycles to failure (S–N curve and fatigue strength were obtained from the fatigue test for four types of weld bead, and the cause of the fatigue strength difference was clarified through the analysis of the geometrical factors, such as length, angle, and area of the weld bead. In addition, the relationship between weld bead shape and fatigue strength was discussed.

  16. Quality improvement of steel cast-welded constructions

    Directory of Open Access Journals (Sweden)

    Аркадій Васильович Лоза

    2017-06-01

    Full Text Available Among the various types of metallurgical equipment there are structures which are welded compounds of a cast base and additional elements produced by casting or any other means. Such structures are called cast-welded constructions. Besides new working properties such constructions appear to be more efficient and provide better durability as compared to the similar structures produced by other industrial means. Meanwhile the advantages of the technology are not used in full. One reason is low quality of the compound products caused by lack of proper preparation of the elements to be welded and poor quality of the welds themselves. In the article the methods of quality production and the maintenance of steel cast-welded constructions have been considered. A ladle of a blast-furnace slag car is used as the subject of investigation and further testing of the mentioned above technologies. The ladle is a cast product. Under operating conditions, the ladle undergoes mechanical and thermal load, which results in deformation of its sides that deflect inside. To prevent the deflection stiffening ribs are welded onto the outer surface of the ladle. However, there may be casting defects in the base metal that could reduce the durability of the welds. It has been proved that welds on the unprepared cast base of the steel product cannot guarantee the combination’s durability and reliability. To prevent the influence of the casting defects it has been recommended to cover the base metal with one more metal layer before welding the elements on. Two-layer surfacing provides best result as the first layer serves for the weld penetration of the casting defects since this layer has a significant share of base metal therefore it is less malleable; the second layer is necessary for making the layer viscous enough. The viscous layer ensures the absence of sharp transition from the deposited metal to the base metal and increases the crack resistance of the weld. In

  17. Weld metal microstructures of hardfacing deposits produced by self-shielded flux-cored arc welding

    International Nuclear Information System (INIS)

    Dumovic, M.; Monaghan, B.J.; Li, H.; Norrish, J.; Dunne, D.P.

    2015-01-01

    The molten pool weld produced during self-shielded flux-cored arc welding (SSFCAW) is protected from gas porosity arising from oxygen and nitrogen by reaction ('killing') of these gases by aluminium. However, residual Al can result in mixed micro-structures of δ-ferrite, martensite and bainite in hardfacing weld metals produced by SSFCAW and therefore, microstructural control can be an issue for hardfacing weld repair. The effect of the residual Al content on weld metal micro-structure has been examined using thermodynamic modeling and dilatometric analysis. It is concluded that the typical Al content of about 1 wt% promotes δ-ferrite formation at the expense of austenite and its martensitic/bainitic product phase(s), thereby compromising the wear resistance of the hardfacing deposit. This paper also demonstrates how the development of a Schaeffler-type diagram for predicting the weld metal micro-structure can provide guidance on weld filler metal design to produce the optimum microstructure for industrial hardfacing applications.

  18. Toughness of 2,25Cr-1Mo steel and weld metal

    Science.gov (United States)

    Acarer, Mustafa; Arici, Gökhan; Acar, Filiz Kumdali; Keskinkilic, Selcuk; Kabakci, Fikret

    2017-09-01

    2,25Cr-1Mo steel is extensively used at elevated temperature structural applications in fossil fire power plants for steam pipes, nozzle chambers and petrochemical industry for hydrocracking unit due to its excellent creep resistance and good redundant to oxidation. Also they should have acceptable weldability and toughness. The steels are supplied in quenched and tempered condition and their welded components are subjected to post-weld heat treatment (PWHT). Tempering process is carried out at 690-710°C to improve toughness properties. However they are sensitive to reheat cracking and temper embrittlement. To measure temper embrittlement of the steels and their weld metal, temper embrittlement factor and formula (J factor - Watanabe and X formula- Bruscato) are used. Step cooling heat treatment is also applied to determine temper embrittlement. In this study, toughness properties of Cr Mo (W) steels were reviewed. Also transition temperature curves of 2,25Cr-1Mo steel and its weld metal were constructed before and after step cool heat treatment as experimental study. While 2,25Cr-1Mo steel as base metal was supplied, all weld metal samples were produced in Gedik Welding Company. Hardness measurements and microstructure evaluation were also carried out.

  19. Evaluation of welding by MIG in martensitic stainless steel

    International Nuclear Information System (INIS)

    Fernandes, M.A.; Mariano, N.A.; Marinho, D.H.C. Marinho

    2010-01-01

    This work evaluated structure's characterization and mechanical properties after the welding process of the stainless steel CA6NM. The employed welding process was the metal active gas with tubular wire. The control of the thermal cycle in the welding process has fundamental importance regarding the properties of the welded joint, particularly in the thermally affected zone. The mechanical properties were appraised through impact resistance tests and the hardness and microstructure through metallographic characterization and Ray-X diffraction. The parameters and the process of welding used promoted the hardness and toughness appropriate to the applications of the steel. Welding energy's control becomes an essential factor that can affect the temperature of carbide precipitation and the nucleation of the retained austenite in the in the region of the in the thermally affected zone. (author)

  20. Mechanical properties of duplex steel welded joints in large-size constructions

    OpenAIRE

    J. Nowacki

    2012-01-01

    Purpose: On the basis of sources and own experiments, the analysis of mechanical properties, applications as well as material and technological problems of ferritic-austenitic steel welding were carried out. It was shown the area of welding applications, particularly welding of large-size structures, on the basis of example of the FCAW method of welding of the UNS S3 1803 duplex steel in construction of chemical cargo ships.Design/methodology/approach: Welding tests were carried out for duple...

  1. Single-purpose welding machines used in the manufacture of power equipment

    International Nuclear Information System (INIS)

    Bartak, J.

    1988-01-01

    A dedicated welding machine based on submerged arc welding with a wire electrode was developed for welding pipe sockets, spacers and other rotary parts to pressure vessel bodies. Two modifications of this apparatus were devised: one is designed for welding low-alloy carbon steels, where preheating is requisite, the other, for welding austenitic materials, requiring vigorous cooling. The single-purpose ADFS-1 device is designed for surfacing rings 200 to 1200 mm in diameter; it consists of a pillar with a drive, a rotary console, a collector, a horizontal support, a console with a vertical motor support, and a welding head with a feed equipment. Submerged arc welding using a 20x0.5 mm strip electrode is applied. Another dedicated welding machine employing submerged arc welding with a strip electrode was developed for the continuous welding of inner surfaces of pressure vessels in the sites of holes for flares. (Z.M.). 3 figs., 3 refs

  2. Effect of welding processes on the impression creep resistance of type 316 LN stainless steel weld joints

    International Nuclear Information System (INIS)

    Vasudevan, M.; Vasantharaja, P.; Sisira, P.; Divya, K.; Ganesh Sundara Raman, S.

    2016-01-01

    Type 316 LN stainless steel is the major structural material used in the construction of fast breeder reactors. Activated Tungsten Inert Gas (A-TIG) welding , a variant of the TIG welding process has been found to enhance the depth of penetration significantly during autogenous welding and also found to enhance the creep rupture life in stainless steels. The present study aims at comparing the effect of TIG and A-TIG welding processes on the impression creep resistance of type 316 LN stainless steel base metal, fusion zone and heat affected zone (HAZ) of weld joints. Optical and TEM have been used to correlate the microstructures with the observed creep rates of various zones of the weld joints. Finer microstructure and higher ferrite content was observed in the TIG weld joint fusion zone. Coarser grain structure was observed in the HAZ of the weld joints. Impression creep rate of A-TIG weld joint fusion zone was almost equal to that of the base metal and lower than that of the TIG weld joint fusion zone. A-TIG weld joint HAZ was found to have lower creep rate compared to that of conventional TIG weld joint HAZ due to higher grain size. HAZ of the both the weld joints exhibited lower creep rate than the base metal. (author)

  3. Mechanical characteristics of welded joints between different stainless steels grades

    Science.gov (United States)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Investigation of mechanical characteristics of welded joints is one of the most important tasks that allow determining their functional properties. Due to the very high, still rising, cost of some stainless steels it is justified, on economic grounds, welding austenitic stainless steel with steels that are corrosion-resistant like duplex ones. According to forecasts the price of corrosion resistant steels stil can increase by 26 ÷ 30%. For technical reasons welded joints require appropriate mechanical properties such as: tensile strength, bending, ductility, toughness, and resistance to aggressive media. Such joints are applied in the construction of chemical tankers, apparatus and chemical plants and power steam stations. Using the proper binder makes possible the welds directly between the elements of austenitic stainless steels and duplex ones. It causes that such joits behave satisfactorily in service in such areas like maritime constructions and steam and chemical plants. These steels have high mechanical properties such as: the yield strength, the tensile strength and the ductility as well as the resistance to general corrosion media. They are resistant to both pitting and stress corrosions. The relatively low cost of production of duplex steels, in comparison with standard austenitic steels, is inter alia, the result of a reduced amount of scarce and expensive Nickel, which is seen as a further advantage of these steels.

  4. Thermal-deformation effect of welding on A 1 reactor pressure vessel weld joints properties and state of stress

    International Nuclear Information System (INIS)

    Becka, J.; Kupka, I.

    1976-01-01

    The methods are compared of electroslag welding and of arc welding with a view to their possible application in welding the Bohunice A-1 reactor pressure vessel. Considered are the thermal deformation effects of welding on the physical properties and the stress present in welded joints. For testing, plates were used having the dimensions of 1100x2300x200 mm and rings with 4820 mm outer diameter, 1800 mm height and 170 mm thickness made of steel CSN 413O30 modified with Ni, Al+Ti. The deformation effect of welding on the residual surface and triaxial stress, the specific stored energy, the initiation temperature of brittle crack and the critical size of the initiation defect corresponding to the thermal deformation effect of welding were determined. It was found that for electroslag welding, there is a low probability of crack formation in the joints, a low level of residual stress and a low level of specific stored energy in a relatively wide joint zone. For arc welding there is a considerable probability of defect formation in the vicinity of the sharp boundary of the joint, a high level of the triaxial state of stress in the tensile region, and a high level of specific stored energy concentrated in the narrow zone of weld joints. The recommended thermal process is given for welding pressure vessels made of the CSN 413030 steel modified with Ni, Al+Ti, and 150 to 200 mm in thickness. (J.P.)

  5. Fusion welding of borated stainless steels

    International Nuclear Information System (INIS)

    Robino, C.V.; Cieslak, M.J.

    1993-01-01

    Borated austenitic stainless steels have been developed for use in the nuclear industry where storage, transport, and reprocessing of nuclear materials are required. The objective of this work is to develop appropriate joining technology for borated stainless steels based upon understanding the response of these materials to thermal processing involving melting. This understanding is being developed through the application of physical metallurgy techniques to determine the evolution of microstructure and mechanical properties within the various regions of the HAZ. Initial investigations include development of the kinetics of boride coarsening in the solid-state region of HAZ and the effect of boride coarsening on the impact properties of this region of the weld zone. Microstructures of the borated stainless steels, their response to high temperature isothermal heat treatments, and the implications of these heat treatments with respect to welding behavior will be presented

  6. Influence of deformation on structural-phase state of weld material in St3 steel

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, Alexander, E-mail: galvas.kem@gmail.ru; Ababkov, Nicolay, E-mail: n.ababkov@rambler.ru; Ozhiganov, Yevgeniy, E-mail: zhigan84@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); LLC “Kuzbass Center of Welding and Control”, 33/2, Lenin Str., 650055, Kemerovo (Russian Federation); Kozlov, Eduard, E-mail: kozlov@tsuab.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Popova, Natalya, E-mail: natalya-popova-44@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); Institute of Strength Physics and Materials Science, SB RAS, 2/4, Akademicheskii Ave., 634021, Tomsk (Russian Federation); Nikonenko, Elena, E-mail: vilatomsk@mail.ru [Kuzbass State Technical University, 25-54, Krasnaya Str., 650000, Kemerovo (Russian Federation); Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30, Lenin Str., 634050, Tomsk (Russian Federation); Zboykova, Nadezhda, E-mail: tezaurusn@gmail.com; Koneva, Nina, E-mail: koneva@tsuab.ru [Tomsk State University of Architecture and Building, 2, Solyanaya Sq., 634003, Tomsk (Russian Federation)

    2016-01-15

    The structural-phase condition of the weld material subjected to the plastic deformation was investigated using the translucent diffraction electron microscopy method. The investigations were carried out near the joint of the weld and the base metal. The seam was done by the method of manual arc welding without artificial defects. The St3 steel was taken as the welded material. Influence of the plastic deformation on morphology, phase composition, defect structure and its parameters of weld metal was revealed. All investigations were done at the distance of 0.5 mm from the joint of the weld and the base metal at the deformation degrees from 0 to 5% and after destruction of a sample. It was established that deformation of the sample did not lead to qualitative changes in the structure (the structure is still presented by ferrite-pearlite mixture) but changed the quantitative parameters of the structure, namely, with the increase of plastic deformation a part of the pearlite component becomes more and more imperfect. In the beginning it turns into the destroyed pearlite then into ferrite, the volume fraction of pearlite is decreased. The polarization of dislocation structure takes place but it doesn’t lead to the internal stresses that can destroy the sample.

  7. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  8. Movement of liquid metal in welding bath during welding in longitudinal magnetic field

    International Nuclear Information System (INIS)

    Kovalev, I.M.; Rybakov, A.S.

    1977-01-01

    The specific features are considered of liquid metal flow in a bath during welding of steel 12Kh18N10T plates with a non-consumable electrode in argon under interaction of the arc and bath with a longitudinal constant magnetic field. In controlling the velocity field of metal flow, the longitudinal magnetic field permits to form a seam at automatic welding of horizontal joints on a vertical plane

  9. The variable polarity plasma arc welding process: Characteristics and performance

    Science.gov (United States)

    Hung, R. J.; Zhu, G. J.

    1991-01-01

    Significant advantages of the Variable Polarity Plasma Arc (VPPA) Welding Process include faster welding, fewer repairs, less joint preparation, reduced weldment distortion, and absence of porosity. The power distribution was analyzed for an argon plasma gas flow constituting the fluid in the VPPA Welding Process. The major heat loss at the torch nozzle is convective heat transfer; in the space between the outlet of the nozzle and the workpiece; radiative heat transfer; and in the keyhole in the workpiece, convective heat transfer. The power absorbed at the workpiece produces the molten puddle that solidifies into the weld bead. Crown and root widths, and crown and root heights of the weld bead are predicted. The basis is provided for an algorithm for automatic control of VPPA welding machine parameters to obtain desired weld bead dimensions.

  10. Improvement of laser keyhole formation with the assistance of arc plasma in the hybrid welding process of magnesium alloy

    Science.gov (United States)

    Liu, Liming; Hao, Xinfeng

    2009-11-01

    In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×10 4 W/cm 2, and the average peak power density is 2.6×10 5 W/cm 2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.

  11. Peening as a stress relieving method for welded joints

    International Nuclear Information System (INIS)

    Ferreira, M.L.R.

    1984-01-01

    The efficacy of the process of stress relieving by hammer-peening, in heavy plates of low carbon steel is analysed. The effects of peening in the mechanical properties of welded metal deposited by shield metal arc welding, using the electrodes E-6010, E-7018 and E-8018C-2, and the weld metal deposited by submerged arc welding, using the filler metals ENil and EA3, are also analysed. X-ray diffraction was used in order to verify the efficacy of peening as a stress-relieving process. The obtained results and the literature reviewed show that, peening is effective in stress relieving. (author) [pt

  12. Effects of delta ferrite content on the mechanical properties of E308-16 stainless steel weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, D. P.; Vandergriff, D. M.; Gray, R. J.

    1978-01-01

    The effects of ferrite content on the properties of type 308 stainless steel shielded metal-arc (SMA) welds were investigated. Welds were made at four levels of ferrite content ranging from 2 to 15 FN (Ferrite Number). Creep and tensile tests were performed. Specimens were aged at 1100/sup 0/C (593/sup 0/C) for times up to 10,000 h (36 Ms) and Charpy V-notch impact tests were performed. Chemical analysis of the original deposits, Magne-gage evaluations, and metallographic evaluation of tested specimens were made. The E308-16 stainless steel electrodes were formulated to produce SMA welds with 2, 5, 9, and 15 FN. The ferrite number was made to vary by varying the nickel and chromium concentrations. Magne-gage determinations revealed that as-welded structures contained an average of 1.8, 4.2, 9.6, and 14.5 FN, respectively. Chemical anslysis of these deposits revealed no unusually high concentrations of tramp elements that would significantly affect mechanical properties. The extra low-ferrite electrodes were made with a different core wire, which produced deposits with slightly higher molybdenum concentrations. This variation in molybdenum should affect properties only minimally. From these chemical analyses and a constitutional diagram, ferrite concentrations were calculated, and the results correlated with the Magne-gage values

  13. Variant selection of martensites in steel welded joints with low transformation temperature weld metals

    International Nuclear Information System (INIS)

    Takahashi, Masaru; Yasuda, Hiroyuki Y.

    2013-01-01

    Highlights: ► We examined the variant selection of martensites in the weld metals. ► We also measured the residual stress developed in the butt and box welded joints. ► 24 martensite variants were randomly selected in the butt welded joint. ► High tensile residual stress in the box welded joint led to the strong variant selection. ► We discussed the rule of the variant selection focusing on the residual stress. -- Abstract: Martensitic transformation behavior in steel welded joints with low transformation temperature weld (LTTW) metal was examined focusing on the variant selection of martensites. The butt and box welded joints were prepared with LTTW metals and 980 MPa grade high strength steels. The residual stress of the welded joints, which was measured by a neutron diffraction technique, was effectively reduced by the expansion of the LTTW metals by the martensitic transformation during cooling after the welding process. In the LTTW metals, the retained austenite and martensite phases have the Kurdjumov–Sachs (K–S) orientation relationship. The variant selection of the martensites in the LTTW metals depended strongly on the type of welded joints. In the butt welded joint, 24 K–S variants were almost randomly selected while a few variants were preferentially chosen in the box welded joint. This suggests that the high residual stress developed in the box welded joint accelerated the formation of specific variants during the cooling process, in contrast to the butt welded joint with low residual stress

  14. Friction stir welding of F82H steel for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon, E-mail: shnoh@kaeri.re.kr [Fusion Structural Materials Division, Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Nuclear Materials Division, Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon (Korea, Republic of); Ando, Masami; Tanigawa, Hiroyasu [Fusion Structural Materials Division, Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Fujii, Hidetoshi [Joining and Welding Research Institute, Osaka University, Ibaraki, Osaka (Japan); Kimura, Akihiko [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan)

    2016-09-15

    In the present study, friction stir welding was employed to join F82H steels and develop a potential joining technique for a reduced activation ferritic/martensitic steel. The microstructures and mechanical properties on the joint region were investigated to evaluate the applicability of friction stir welding. F82H steel sheets were successfully butt-joined with various welding parameters. In welding conditions, 100 rpm and 100 mm/min, the stirred zone represented a comparable hardness distribution with a base metal. Stirred zone induced by 100 rpm reserved uniformly distributed precipitates and very fine ferritic grains, whereas the base metal showed a typical tempered martensite with precipitates on the prior austenite grain boundary and lath boundary. Although the tensile strength was decreased at 550 °C, the stirred zone treated at 100 rpm showed comparable tensile behavior with base metal up to 500 °C. Therefore, friction stir welding is considered a potential welding method to preserve the precipitates of F82H steel.

  15. Friction stir welding of F82H steel for fusion applications

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Ando, Masami; Tanigawa, Hiroyasu; Fujii, Hidetoshi; Kimura, Akihiko

    2016-01-01

    In the present study, friction stir welding was employed to join F82H steels and develop a potential joining technique for a reduced activation ferritic/martensitic steel. The microstructures and mechanical properties on the joint region were investigated to evaluate the applicability of friction stir welding. F82H steel sheets were successfully butt-joined with various welding parameters. In welding conditions, 100 rpm and 100 mm/min, the stirred zone represented a comparable hardness distribution with a base metal. Stirred zone induced by 100 rpm reserved uniformly distributed precipitates and very fine ferritic grains, whereas the base metal showed a typical tempered martensite with precipitates on the prior austenite grain boundary and lath boundary. Although the tensile strength was decreased at 550 °C, the stirred zone treated at 100 rpm showed comparable tensile behavior with base metal up to 500 °C. Therefore, friction stir welding is considered a potential welding method to preserve the precipitates of F82H steel.

  16. Failure of Stainless Steel Welds Due to Microstructural Damage Prevented by In Situ Metallography

    OpenAIRE

    Lopez,Juan Manuel Salgado; Alvarado,María Inés; Hernandez,Hector Vergara; Quiroz,José Trinidad Perez; Olmos,Luis

    2016-01-01

    Abstract In stainless steels, microstructural damage is caused by precipitation of chromium carbides or sigma phase. These microconstituents are detrimental in stainless steel welds because they lead to weld decay. Nevertheless, they are prone to appear in the heat affected zone (HAZ) microstructure of stainless steel welds. This is particularly important for repairs of industrial components made of austenitic stainless steel. Non-destructive metallography can be applied in welding repairs of...

  17. Vision of the Arc for Quality Documentation and for Closed Loop Control of the Welding Process

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Kristiansen, Ewa; Jensen, Casper Houmann

    2014-01-01

    For gas metal arc welding a vision system was developed, which was robust to monitor the position of the arc. The monitoring documents the welding quality indirectly and a closed loop fuzzy control was implemented to control an even excess penetration. For welding experiments on a butt......-joint with a V-groove with varying root gapthe system demonstrated increased welding quality compared to the system with no control. The system was implemented with a low cost vision system, which makes the system interesting to apply in industrial welding automation systems....

  18. Evaluating optical hazards from plasma arc cutting.

    Science.gov (United States)

    Glassford, Eric; Burr, Gregory

    2018-01-01

    The Health Hazard Evaluation Program of the National Institute for Occupational Safety and Health evaluated a steel building materials manufacturer. The employer requested the evaluation because of concerns about optical radiation hazards from a plasma arc cutting system and the need to clarify eye protection requirements for plasma operators, other employees, and visitors. The strength of the ultraviolet radiation, visible radiation (light), and infrared radiation generated by the plasma arc cutter was measured at various distances from the source and at different operating amperages. Investigators also observed employees performing the plasma arc cutting. Optical radiation above safe levels for the unprotected eyes in the ultraviolet-C, ultraviolet-B, and visible light ranges were found during plasma arc cutting. In contrast, infrared and ultraviolet-A radiation levels during plasma arc cutting were similar to background levels. The highest non-ionizing radiation exposures occurred when no welding curtains were used. A plasma arc welding curtain in place did not eliminate optical radiation hazards to the plasma arc operator or to nearby employees. In most instances, the measured intensities for visible light, UV-C, and UV-B resulted in welding shade lens numbers that were lower than those stipulated in the OSHA Filter Lenses for Protection Against Radiant Energy table in 29 CFR 1910.133(a)(5). [1] Investigators recommended using a welding curtain that enclosed the plasma arc, posting optical radiation warning signs in the plasma arc cutter area, installing audible or visual warning cues when the plasma arc cutter was operating, and using welding shades that covered the plasma arc cutter operator's face to protect skin from ultraviolet radiation hazards.

  19. Sub-arc narrow gap welding of Atucha 2 RPV closure head

    International Nuclear Information System (INIS)

    Hantsch, H.; Million, K.; Zimmermann, H.

    1982-01-01

    Narrow gap technology was used for reasons of design and fabrication when welding the closure-head dome to its flange. Preliminary tests had yielded the necessary improvements of the well-proven sub-arc practice. New facilities had to be developed for welding proper and for the accompanying machining work (finishing in the narrow gap). Special measures were adopted for monitoring the welding process and for recording the welding parameters. The new method was tried out on several large test coupons before welding of the final product was started. No difficulties were encountered during the welding job. Fabrication of the closure head is shown in a short film sequence. (orig.)

  20. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  1. Circumferential welding of API X80 steel pipes; Soldagem circunferencial em tubos de aco da classe API X80

    Energy Technology Data Exchange (ETDEWEB)

    Castello Branco, J.F.; Bott, Ivani de S. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia]. E-mails: joaofcb@uol.com.br; bott@dcmm.puc-rio.br; Fedele, R.A. [Boehler Thyssen Welding, Sao Paulo, SP (Brazil)]. E-mail: engenharia@btwbr.com.br; Souza, Luis Felipe G. de [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Industrial Mecanica]. E-mail: lfelipe@cefet-rj.br

    2003-07-01

    The present work is a part of an extensive program for the development of API 5L Gr.X80 grade steel , produced by the well-known UOE production process, for pipeline fabrication. The current stage of this program involves the characterization and performance evaluation/qualification of girth welds produced by Shield Metal Arc Weld (SMAW) under simulated field conditions, with tubes fixed in the horizontal position. Three types of electrodes were utilized for the basic tasks; the root pass, the hot pass and fill and cap passes. The root pass was carried out with an E-6010 electrode to avoid incomplete joint penetration. The hot pass, applied over the root pass, was performed with an E-9010-G electrode. The fill and cap passes were executed with E-10018-G electrodes. The welded joints produced were evaluated according to the API 1104 specification, which requires: side bend, nick- break and tensile tests. Additionally, non-destructive tests, Charpy-V impact tests and metallographic characterization were undertaken. It was verified that this welding procedure, based on three types of electrodes, could produce welded joints in accordance to the API 1104 specification. These results ensure the applicability of the API 5L Gr. X80 steel developed in this research project for use in pipeline construction. (author)

  2. CO2 laser welding of galvanized steel sheets using vent holes

    International Nuclear Information System (INIS)

    Chen Weichiat; Ackerson, Paul; Molian, Pal

    2009-01-01

    Joining of galvanized steels is a challenging issue in the automotive industry because of the vaporization of zinc at 906 deg. C during fusion welding of steel (>1530 deg. C). In this work, hot-dip galvanized steel sheets of 0.68 mm thick (24-gage) were pre-drilled using a pulsed Nd:YAG laser to form vent holes along the weld line and then seam welded in the lap-joint configuration using a continuous wave CO 2 laser. The welds were evaluated through optical and scanning electron microscopy and tensile/hardness tests. The vent holes allowed zinc vapors to escape through the weld zone without causing expulsion of molten metal, thereby eliminating the defects such as porosity, spatter, and loss of penetration. In addition, riveting of welds occurred so long as the weld width was greater than the hole diameter that in turn provided much higher strength over the traditional 'joint gap' method

  3. Analysis of welding distortion due to narrow-gap welding of upper port plug

    International Nuclear Information System (INIS)

    Biswas, Pankaj; Mandal, N.R.; Vasu, Parameswaran; Padasalag, Shrishail B.

    2010-01-01

    Narrow-gap welding is a low distortion welding process. This process allows very thick plates to be joined using fewer weld passes as compared to conventional V-groove or double V-groove welding. In case of narrow-gap arc welding as the heat input and weld volume is low, it reduces thermal stress leading to reduction of both residual stress and distortion. In this present study the effect of narrow-gap welding was studied on fabrication of a scaled down port plug in the form of a trapezoidal box made of 10 mm thick mild steel (MS) plates using gas tungsten arc welding (GTAW). Inherent strain method was used for numerical prediction of resulting distortions. The numerical results compared well with that of the experimentally measured distortion. The validated numerical scheme was used for prediction of weld induced distortion due to narrow-gap welding of full scale upper port plug made of 60 mm thick SS316LN material as is proposed for use in ITER project. It was observed that it is feasible to fabricate the said port plug keeping the distortions minimum within about 7 mm using GTAW for root pass welding followed by SMAW for filler runs.

  4. Microstructure–hardness relationship in the fusion zone of TRIP steel welds

    International Nuclear Information System (INIS)

    Nayak, S.S.; Baltazar Hernandez, V.H.; Okita, Y.; Zhou, Y.

    2012-01-01

    Highlights: ► Fusion zone of TRIP steels in resistance spot welding was analyzed. ► Transmission electron microscopy (TEM) was used for characterizing microstructure. ► Fusion zone microstructure was found to depend on the chemistry. ► Hardness values were in accordance with the microstructural constituents in the fusion zone. - Abstract: Fusion zone of three TRIP steels, categorized as AT: C–Mn–Al, AST: C–Mn–Al–Si and ST: C–Mn–Si, in resistance spot welding was characterized with respect to microstructure, phase analysis, and hardness. The fusion zone microstructure was found to depend on chemistry: (i) AT steel contained ferrite phase surrounded by bainite and martensite regions, (ii) AST steel showed a bainite structures along with martensite laths and interlath retained austenite, whereas (iii) ST steel constituted single phase martensite laths with interlath austenite. X-ray diffraction study indicated that retained austenite fraction in the fusion zone increases with increase in Si content in it. The AST fusion zone hardness lies between those of the AT and ST steels; the ST fusion zone hardness was higher than that of AT steel because of the single phase martensite microstructure. Comparison of fusion zone microstructure and hardness to earlier study on laser welding of the TRIP steels with similar chemistries revealed that higher cooling rate in resistance spot welding led to higher fusion zone hardness compared to laser welding; which was attributed either to decrease in softer ferrite phase (AT steel) in the microstructure or refinement of martensite laths (ST steel).

  5. An overview of the welding technologies of CLAM steels for fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xizhang, E-mail: kernel.chen@gmail.com [School of Materials Science and Engineering, Jiangsu University, ZhenJiang, Jiangsu 212013 (China); Huang Yuming [School of Materials Science and Engineering, Jiangsu University, ZhenJiang, Jiangsu 212013 (China); Madigan, Bruce [Montana Tech. of University of Montana, Butte, MT 59701 (United States); Zhou Jianzhong [School of Mechanical Engineering, Jiangsu University, ZhenJiang, Jiangsu 221013 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Welding technologies of China Low Activation Martensitic steel is overviewed. Black-Right-Pointing-Pointer Most welding technologies in use are discussed and suggestions are given. Black-Right-Pointing-Pointer Proper welding technologies could ensure weld properties but more detailed work are necessary. - Abstract: China Low Activation Martensitic steel (CLAMs), a kind of RAFM steel with Chinese intellectual property rights, is considered as the primary structural material for the China-designed ITER test blanket module (TBM). As one of the key issues in the fabrication of the fusion reactor, the welding technologies of CLAMs are reviewed. Emphasis is placed on the weldability of CLAMs by different welding methods, and on the properties of as-welded and post-weld heat-treated joints. Recent highlights in research and development for the welding of CLAMs show that proper welding procedure could provide welds with adequate tensile strength but the welds exhibit lower impact toughness compared with the base metal. Post-weld heat treatment (PWHT) and the application of ultrasonic energy during TIG welding could dramatically improve impact toughness. Research also shows that welds in CLAMs have sufficient resistance to swelling under irradiation as well as suitable compatibility with liquid LiPb. The microstructure, mechanical and other physical properties of welds are significantly different from those of the base metal due to the complicated welding thermal cycle. The weld joint is the area most likely to fail one or more of the design requirements within the fusion reactor. Therefore significant additional research is necessary to ensure safe application of welded CLAM steel for fusion reactor construction.

  6. Oxide induced corrosion on the welded stainless steels SS 2352 and 2353

    International Nuclear Information System (INIS)

    Stroem, S.; Li Huiqin.

    1991-01-01

    The pitting corrosion properties have been investigated in welded and unwelded condition by polarization tests in sodium chloride solutions. The two steels were TIG welded without adding welding material and as shielding on the bottom side argon gas containing 2, 26 or 99 ppm oxygen was used. In some tests low breakthrough potentials were received, without discovering any pitting corrosion in the specimen surfaces. The unwelded SS 2352 steel had a critical (lowest) pitting temperature (CPT) of 5 degrees C in the more concentrated solution. For the same steel with weld pitting corrosion was obtained at 5 degrees C, which was the lowest temperature for the tests. Thus the CPT value was lower than 5 degrees C, but by looking at the pitting corrosion potentials the following conclusion could be drawn: Welding with higher oxygen content in the shielding gas implied lower pitting corrosion resistance. For the SS 2353 steel the CPT values were 25 and 27.5 degrees C for material without weld, in contact with the more concentrated and the more dilute solution respectively. Welded material was all through more sensitive to pitting corrosion, and the CPT values were 15-17.5, 15 and 5-10 degrees C for welded areas which had been gas shielded with argon containing 2, 26 and 99 ppm oxygen respectively. The result thus showed that welding with shielding gas containing maximum about 30 ppm oxygen does not substantially affect the pitting corrosion properties. Post treatment of the welding areas increased the pitting corrosion resistance. Acid pickling implied the highest pitting corrosion resistance with 15 degrees C as CPT value for the 2353 steel in the more concentrated solution. Steel brushing implied an obvious increase to the pitting corrosion resistance compared to untreated weld areas and the same statement could be done for sand blasted surfaces. (10 refs., 16 tabs., 11 figs.)

  7. Processing and structure of in situ Fe-Al alloys produced by gas tungsten arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; DuPont, J.N.; Marder, A.R. [Lehigh Univ., Bethlehem, PA (United States). Energy Research Center

    1997-02-14

    Iron aluminide weld overlays are being investigated for corrosion and erosion protection of boiler tubes in low NOx burners. The primary objective of the research is to identify overlay compositions which can be deposited in a crack-free condition and provide corrosion protection in moderately reducing environments. In the current phase of work, Fe-Al alloy weld overlays were produced by depositing commercially pure aluminum wire on to low carbon steel substrates using Gas Tungsten Arc Welding. A systematic variation of the wire feed speed and current, two major factors affecting dilution, resulted in a variation in aluminum contents of the welds ranging from 3--42 wt% aluminum. The aluminum content was observed to increase with wire feed speed and a decrease in the current. The aluminum content was also found to affect the cracking susceptibility of the overlays. At 10wt% aluminum, few to no cracks were observed in the deposits. Above this value, cracking was prevalent throughout the weld. In addition, two types of microstructures were found correlating to different concentrations of aluminum. A homogeneous matrix with second phase particles consisting of coarse columnar grains was found for low aluminum concentrations. With higher aluminum contents, a two-phase constituent was observed to surround primary dendrites growing from the substrate. The transition of the microstructures occurred between 24 and 32 wt% Al.

  8. Optimization of process parameters in welding of dissimilar steels using robot TIG welding

    Science.gov (United States)

    Navaneeswar Reddy, G.; VenkataRamana, M.

    2018-03-01

    Robot TIG welding is a modern technique used for joining two work pieces with high precision. Design of Experiments is used to conduct experiments by varying weld parameters like current, wire feed and travelling speed. The welding parameters play important role in joining of dissimilar stainless steel SS 304L and SS430. In this work, influences of welding parameter on Robot TIG Welded specimens are investigated using Response Surface Methodology. The Micro Vickers hardness tests of the weldments are measured. The process parameters are optimized to maximize the hardness of the weldments.

  9. Boride Formation Induced by pcBN Tool Wear in Friction-Stir-Welded Stainless Steels

    Science.gov (United States)

    Park, Seung Hwan C.; Sato, Yutaka S.; Kokawa, Hiroyuki; Okamoto, Kazutaka; Hirano, Satoshi; Inagaki, Masahisa

    2009-03-01

    The wear of polycrystalline cubic boron nitride (pcBN) tool and its effect on second phase formation were investigated in stainless steel friction-stir (FS) welds. The nitrogen content and the flow stress were analyzed in these welds to examine pcBN tool wear. The nitrogen content in stir zone (SZ) was found to be higher in the austenitic stainless steel FS welds than in the ferritic and duplex stainless steel welds. The flow stress of austenitic stainless steels was almost 1.5 times larger than that of ferritic and duplex stainless steels. These results suggest that the higher flow stress causes the severe tool wear in austenitic stainless steels, which results in greater nitrogen pickup in austenitic stainless steel FS welds. From the microstructural observation, a possibility was suggested that Cr-rich borides with a crystallographic structure of Cr2B and Cr5B3 formed through the reaction between the increased boron and nitrogen and the matrix during FS welding (FSW).

  10. Investigation of the ductile fracture properties of Type 304 stainless steel plate, welds, and 4-inch pipe

    International Nuclear Information System (INIS)

    Vassilaros, M.G.; Hays, R.A.; Gudas, J.P.

    1985-01-01

    J-integral fracture toughness tests were performed on welded 304 stainless steel 2-inch plate and 4-inch diameter pipe. The 2-inch plate was welded using a hot-wire automatic gas tungsten arc process. The tests were performed at 550 0 F, 300 0 F and room temperature. The results of the J-integral tests indicate that the Jsub(Ic) of the base plate ranged from 4400 to 6100 in lbs/in 2 at 550 0 F. The Jsub(Ic) values for the tests performed at 300 0 F and room temperature were beyond the measurement capacity of the specimens and appear to indicate that Jsub(Ic) was greater than 8000 in lb/in 2 . The J-integral tests performed on the weld metal specimens indicate that the Jsub(Ic) values ranged from 930 to 2150 in lbs/in 2 at 550 0 F. The Jsub(Ic) values of the weld metal specimens tested at 300 0 F and room temperature were 2300 and 3000 in lbs/in 2 respectively. One HAZ specimen was tested at 550 0 F and found to have a Jsub(Ic) value of 2980 in lbs/in 2 which indicates that the HAZ is an average of the base metal and weld metal toughness. These test results indicate that there is a significant reduction in the initiation fracture toughness as a result of welding. The second phase of this task dealt with the fracture toughness testing of 4-inch diameter 304 stainless steel pipes containing a gas tungsten arc weld. The pipes were tested at 550 0 F in four point bending. Three tests were performed, two with a through wall flaw growing circumferentially and the third pipe had a part through radial flaw in combination with the circumferential flaw. These tests were performed using unloading compliance and d.c. potential drop crack length estimate methods. The results of these tests indicate that the presence of a complex crack (radial and circumferential) reduces in the initiation toughness and the tearing modulus of the pipe material compared to a pipe with only a circumferentially growing crack. (orig.)

  11. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  12. Stainless steel welding method with excellent nitric acid corrosion resistance

    International Nuclear Information System (INIS)

    Matsushita, Yukinobu; Inazumi, Toru; Hyakubo, Tamako; Masamura, Katsumi.

    1996-01-01

    The present invention concerns a welding method for a stainless steel used in a circumstance being in contact with a highly oxidizing nitric acid solution such as nuclear fuel reprocessing facilities, upon welding 316 type austenite steel containing Mo while giving excellent nitric acid resistance. A method of TIG welding using a filler metal having a composition of C, Si, Mn, P, S, Ni, Cr, Mo and Cu somewhat different from a stainless steel mother material in which C, Si, Mn, P, S, Ni, Cr and Mo are specified comprises a step of TIG-welding the surface of the mother material and a step of TIG-welding the rear face of the mother material, in which the welding conditions for the rear face of the mother material are such that the distance between the surface of the outermost welding metal layer on the side of the surface of the mother material and the bottom of the groove is not less than 5mm, and an amount of welding heat is made constant. As a result, even if the method is used in a circumstance being in contact with a highly corrosive solution such as nitric acid, corrosion resistance is not degraded. (N.H.)

  13. Welding of heterogeneous 12Kh2MFSR steels with the Mn-Cr-Si-Ni system

    International Nuclear Information System (INIS)

    Smirnov, A.N.; Belogolov, E.I.

    1978-01-01

    The process of welding pipes of the 12Kh2MFSR pearlitic steels and austenitic steels of the Mn-Cr-Si-Ni system was studied. The filler materials were selected, and the working capacity of welded joints was examined in ageing and cyclic heatings. The microhardness of steels was measured, and the ultimate strength of welded joints was determined. The following has been established: the composite joints of steels of the Mn-Cr-Si-Ni system and 12Kh2MFSR steel are advisable to be welded on a coating layer welded by the EhA395/9 electrodes on the surface of a pipe of the 12Kh2MFSR pearlitic steel; this guarantees the sufficient working capacity of welded joints

  14. To investigate the effect of heat treatment on fracture toughness of welded joints

    International Nuclear Information System (INIS)

    Hameed, A.; Pasha, R.A.; Shah, M.

    2013-01-01

    Annealing as a post weld heat treatment (PWHT), increases toughness in the welding joints of medium carbon steel in the same way as it increases toughness of the non-welded medium carbon steel. Measurement of increase in toughness through PWHT is focus of the present research work. Welded samples of commercially available steel AISI -1035 have been used for the proposed evaluation. The samples welded by two different techniques namely oxyacetylene gas welding and manual metal arc welding, passed through annealing process along with non-welded samples for comparison of increase in toughness. Toughness measured by impact tests revealed the improvement, which in the order of increasing effects is in gas welded, electric welded and non-welded samples. The aim of the present research was to measure the improvement in fracture toughness through post weld heat treatment (annealing). It has been shown that toughness increases as the structural flaws decrease. (author)

  15. MODEL PEMBELAJARAN PRAKTIK PENGELASAN SHIELED METAL ARC WELDING(SMAW POSISI 1G JURUSAN TEKNIK PENGELASAN

    Directory of Open Access Journals (Sweden)

    Masri Bin Ardin

    2016-08-01

    Full Text Available Penelitian ini bertujuan untuk: (1 mendeskripsikan model pembelajaran praktik yang berlangsung atau disebut model pembelajaran regular praktek pengelasan SMAW posisi 1G di SMK Negeri 2 Pengasih; (2 mengetahui efektifitas dan mendeskripsikan bahan yang digunakan dalam praktek pengelasan SMAW posisi 1G, misalnya: besi plat, mata gerinda, elektroda, dan waktu yang digunakan selama praktek pengelasan SMAW posisi 1G. Penelitian ini merupakan penelitian deskriptif dengan teknik pengumpulan data menggunakan wawancara, dokumentasi, angket dan penilaian skill pengelasan. Asessment skill pengelasan mengacu pada Acean Skill Welding Competition. Hasil penelitian yaitu: (1 model pembelajaran praktek pengelasan SMAW posisi 1G terdiri dari 4 pertemuan teori dan 13 pertemuan praktik; (2 model pembelajaran praktik pengelasan di SMKN 2 Pengasih sudah efektif tetapi untuk rutinitas pengelasan belum efektif untuk membentuk skill pengelasan SMAW posisi 1G dengan sistem assesment Asean Skill Welding Competition. Fasilitas utama dalam praktek pengelasan SMAW posisi 1G adalah mesin las. Sementara itu SMKN 2 pengasih memiliki 6 buah mesin las dengan rasio 1 mesin las untuk 5 orang siswa. Bahan habis pakai untuk 30 orang siswa per semester yang menggunakan model pembelajaran praktek pengelasan adalah besi plat ± 100-150 kg, mata gerinda total ± 5-6 keping, elektroda ± 9-10 box dan total waktunya aktif 77 jam selama satu semester. Kata kunci: pembelajaran Praktik Pengelasan SMAW, Skill Siswa untuk Posisi 1G LEARNING MODEL OF SHIELD METAL ARC WELDING (SMAW PRACTICE OF 1G POSITION AT THE WELDING ENGINEERING DEPARTMENT Abstract This research aimed to: (1 describe the learning model of shield metal arc welding (SMAW practice of 1G position at the Welding Engineering Department of State Vocational High School (SMKN 2 Pengasih; (2 find the effectiveness and describe materials needed in the learning model of shield metal arc welding (SMAW practice of 1G position, for examples

  16. Efecto del procedimiento de soldadura sobre las propiedades de uniones soldadas de aceros microaleados para cañería Welding procedure effect on the properties of microalloyed steel welded joints for metal fabrication

    Directory of Open Access Journals (Sweden)

    Mónica Zalazar

    2009-03-01

    Full Text Available El objetivo del trabajo fue, en esta primera etapa, comparar las propiedades mecánicas y la microestructura del acero HIC, aleado al Nb-Ti-Cu-Ni, resistente a la corrosión, con las del acero normal NOR, microaleado con Nb-V-Ti, ambos caracterizados mediante análisis químico, mediciones de dureza, estudios metalográficos y ensayos de tracción e impacto. Con el fin de establecer la temperatura de precalentamiento óptima se realizaron ensayos de soldabilidad Tekken a distintas temperaturas y de acuerdo con la Norma JIS Z 3158. Luego se llevaron a cabo soldaduras circunferenciales de cañerías fabricadas con ambos aceros diseñándose procedimientos para la utilización, por un lado, de electrodos revestidos (SMAW: shielded metal arc welding, electrodos de distintos proveedores para todas las pasadas y por el otro, la primera pasada usando soldadura automática con alambre macizo bajo CO2 (GMAW: gas metal arc welding y el resto de las mismas con alambre tubular autoprotegido (FCAW-S: flux cored arc welding-selfshielded. Las soldaduras fueron calificadas de acuerdo con el Código API 1104. Los resultados de los análisis metalográficos y los ensayos mecánicos de tracción, dureza e impacto de las juntas soldadas revelaron la influencia de los consumibles de soldadura y del metal base en las propiedades de las uniones. Se observaron diferencias en las propiedades de las uniones soldadas con consumibles de igual especificación y distintos proveedores. De las diferentes combinaciones ensayadas se definieron valores óptimos para la soldadura de estos aceros.The objective of this work was, in this first step, to compare mechanical property and microstructure of the steel HIC, alloyed with Nb-Ti-Cu-Ni, corrosion resistant, to those of a normal steel NOR, microlloyed with Nb-V-Ti, characterized through chemical analysis, hardness measurements, metallographic studies and tensile and Charpy-V properties. The preheating temperature was established

  17. Friction stir scribe welding technique for dissimilar joining of aluminium and galvanised steel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Tianhao [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Sidhar, Harpreet [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Mishra, Rajiv S. [Center for Friction Stir Processing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA; Hovanski, Yuri [Pacific Northwest National Laboratory, Energy Materials and Manufacturing, Richland, WA, USA; Upadhyay, Piyush [Pacific Northwest National Laboratory, Energy Materials and Manufacturing, Richland, WA, USA; Carlson, Blair [General Motors Technical Center, Warren, MI, USA

    2017-10-04

    Friction stir scribe technology, a derivative of friction stir welding, was applied for the dissimilar lap welding of an aluminum alloy and galvanized mild steel sheets. During the process, the rotating tool with a cobalt steel scribe first penetrated the top material — aluminum — and then the scribe cut the bottom material — steel. The steel was displaced into the upper material to produce a characteristic hook feature. Lap welds were shear tested, and their fracture paths were studied. Welding parameters affected the welding features including hook height, which turned out to be highly related to fracture position. Therefore, in this paper, the relationships among welding parameters, hook height, joint strength and fracture position are presented. In addition, influence of zinc coating on joint strength was also studied. Keywords: friction stir scribe technology; dissimilar material welding; zinc coating; hook height; joint strength; fracture position

  18. Microstructure development of welding joints in high Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kubushiro, Keiji; Takahashi, Satoshi; Morishima, Keiko [IHI Corporation (Japan). Research Lab.

    2010-07-01

    Creep failure in high Cr ferritic steels welding joints are Type IV failure. Type IV-failure was ruptured in fine grained region of heat affected zone, microstructure and phase transformation process at welding in fine grained region were very important to clarify. Microstructure difference of heat affected zone was investigated in Gr.91, Gr.92, Gr.122 welding joint. The fraction of 60 degree block boundary, packet boundary, random boundary (including prior gamma boundary) length was compared in three ferritic steels by EBSP(Electron Backscatter Diffraction Pattern) analysis. HAZ was almost fully martensite phase in Gr.122 weld joint. On the other hand, HAZ in Gr.91 welding joint were some equiaxial grain and martensite structure. (orig.)

  19. Dry hyperbaric gas metal arc welding of subsea pipelines: experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Azar, Amin S.

    2012-07-01

    Ambitions in exploration of oil and gas fields at deeper water depth require continuous investigation and maintenance. The transportation pipelines laid in deep waters are both subjected to corrosion and buckling due to environmental phenomena. They may also often undergo branching (namely hot tapping) to redirect (or add to) the transportation paths. Mechanical joints and welding are both considered as available alternatives when sectioning and replacement of the pipes at shallow waters is necessary, yet, welding is more promising for deep waters where remote operation is central. Fusion welding on the other hand comprises several technological detractions for sound operations under high ambient pressures disregarding its low cost and flexibility. The foremost detracting phenomenon in the arc welding is called 'arc root constriction', which is defined as arc geometry shrinkage under the increased pressure. Consequently, the power delivery to the weld pool at different pressure levels is a major worry. Effects of ionization and dissociation energies of different gases and mixtures, partial pressure of environmental gases including hydrogen and oxygen, gasification and degasification of the weld metal, inclusions that affect the phase transformation, absorption and desorption kinetics, oxidation and deoxidation reactions and many more are the phenomena that can possibly be altered by the gas type and ambient pressure level. Spattering and fume generation is a problematic issue since the arc is rather unstable under high pressure. Thus, seeking the effect of different chamber gas mixtures on welding parameters, final microstructure and mechanical properties is the main objective of this work.Statistical analysis of the collected voltage and current waveforms is carried out to identify the source of arc misbehavior and instability (discussed in Paper I). The stochastic parameters is related to the electrical stability and resolved into a number of varying

  20. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.

    Science.gov (United States)

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this