WorldWideScience

Sample records for steam-water relative permeability

  1. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  2. Effects of phase transformation of steam-water relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  3. Production-log base model for carbonate permeability distribution and steam flood optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ahamed, S.F.; Choudhry, M.A.; Abdulbaqi, J.B. [Kuwait Gulf Oil Co. (Kuwait)

    2008-10-15

    This paper presented a model for the effective management of primary and thermal oil recovery operations in the Wafra Field in Kuwait, where a small huff and puff project was carried out in 1998 to determine if steam injection was a feasible recovery option for the field. The Eocene heavy oil reservoirs of the Wafra Field are carbonate rock admixtures with gypsum and anhydrite. They are the shallowest of the field's productive horizons and exhibit a high degree of fluid flow heterogeneity. The assessment of vertical and lateral permeability variation is a key factor for success of the reservoir development plan. Steam injection began in 2006 in a small scale test (SST) to determine if the innovative technology could produce steam from effluent water and to test the viability of steam injection in carbonate reservoirs. Following the success of the SST, a large scale pilot (LSP) is schedule to start in 2009. It can be used for completion strategies of injectors and producers in steam injection. The model showed that the productivity of the Eocene wells could be correlated with common available logs to develop a log based-permeability model. A series of cross plots for the perforated intervals of high and low productivity wells were constructed to develop a relationship between well productivity and location of log parameters on the plots. A relationship between rock quality, productivity and conventional log parameters was established. It was concluded that the vertical permeability and interwell continuity in the Eocene wells can be used to optimize new well placement for horizontal and vertical infill drilling. The model is also an effective tool to predict the steam injectivity profile to understand the anomalies related to temperature-depth distribution. The model can be used to improve the efficiency of formation heating by optimizing the steam flood process and steam pattern well completion. 16 refs.

  4. Modeling Permeability Alteration in Diatomite Reservoirs During Steam Drive, SUPRI TR-113

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, Suniti Kumar; Kovscek, Anthony R.

    1999-08-09

    There is an estimated 10 billion barrels of original oil in place (OOIP) in diatomaceous reservoirs in Kern County, California. These reservoirs have low permeability ranging from 0.1 to 10 mD. Injection pressure controlled steam drive has been found to be an effective way to recover oil from these reservoir. However, steam drive in these reservoirs has its own complications. The rock matrix is primarily silica (SiO2). It is a known fact that silica is soluble in hot water and its solubility varies with temperature and pH. Due to this fact, the rock matrix in diatomite may dissolve into the aqueous phase as the temperature at a location increases or it may precipitate from the aqueous phase onto the rock grains as the temperature decreases. Thus, during steam drive silica redistribution will occur in the reservoir along with oil recovery. This silica redistribution causes the permeability and porosity of the reservoir to change. Understanding and quantifying these silica redistribution effects on the reservoir permeability might prove to be a key aspect of designing a steam drive project in these formations.

  5. Analytical Estimation of Water-Oil Relative Permeabilities through Fractures

    Directory of Open Access Journals (Sweden)

    Saboorian-Jooybari Hadi

    2016-05-01

    Full Text Available Modeling multiphase flow through fractures is a key issue for understanding flow mechanism and performance prediction of fractured petroleum reservoirs, geothermal reservoirs, underground aquifers and carbon-dioxide sequestration. One of the most challenging subjects in modeling of fractured petroleum reservoirs is quantifying fluids competition for flow in fracture network (relative permeability curves. Unfortunately, there is no standard technique for experimental measurement of relative permeabilities through fractures and the existing methods are very expensive, time consuming and erroneous. Although, several formulations were presented to calculate fracture relative permeability curves in the form of linear and power functions of flowing fluids saturation, it is still unclear what form of relative permeability curves must be used for proper modeling of flow through fractures and consequently accurate reservoir simulation. Basically, the classic linear relative permeability (X-type curves are used in almost all of reservoir simulators. In this work, basic fluid flow equations are combined to develop a new simple analytical model for water-oil two phase flow in a single fracture. The model gives rise to simple analytic formulations for fracture relative permeabilities. The model explicitly proves that water-oil relative permeabilities in fracture network are functions of fluids saturation, viscosity ratio, fluids density, inclination of fracture plane from horizon, pressure gradient along fracture and rock matrix wettability, however they were considered to be only functions of saturations in the classic X-type and power (Corey [35] and Honarpour et al. [28, 29] models. Eventually, validity of the proposed formulations is checked against literature experimental data. The proposed fracture relative permeability functions have several advantages over the existing ones. Firstly, they are explicit functions of the parameters which are known for

  6. Relative Permeability of Fractured Rock

    Energy Technology Data Exchange (ETDEWEB)

    Mark D. Habana

    2002-06-30

    Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

  7. A fractal model for predicting permeability and liquid water relative permeability in the gas diffusion layer (GDL) of PEMFCs

    Science.gov (United States)

    He, Guangli; Zhao, Zongchang; Ming, Pingwen; Abuliti, Abudula; Yin, Caoyong

    In this study, a fractal model is developed to predict the permeability and liquid water relative permeability of the GDL (TGP-H-120 carbon paper) in proton exchange membrane fuel cells (PEMFCs), based on the micrographs (by SEM, i.e. scanning electron microscope) of the TGP-H-120. Pore size distribution (PSD), maximum pore size, porosity, diameter of the carbon fiber, pore tortuosity, area dimension, hydrophilicity or hydrophobicity, the thickness of GDL and saturation are involved in this model. The model was validated by comparison between the predicted results and experimental data. The results indicate that the water relative permeability in the hydrophobicity case is much higher than in the hydrophilicity case. So, a hydrophobic carbon paper is preferred for efficient removal of liquid water from the cathode of PEMFCs.

  8. Water box for steam generator

    International Nuclear Information System (INIS)

    Lecomte, Robert; Viaud, Michel.

    1975-01-01

    This invention relates to a water box for connecting an assembly composed of a vertical steam generator and a vertical pump to the vessel of the nuclear reactor, the assembly forming the primary cooling system of a pressurised water reactor. This invention makes it easy to dismantle the pump on the water box without significant loss of water in the primary cooling system of the reactor and particularly without it being necessary to drain the water contained in the steam generator beforehand. It makes it possible to shorten the time required for dismantling the primary pump in order to service or repair it and makes dismantling safer in that the dismantling does not involve draining the steam generator and therefore the critical storage of a large amount of cooling water that has been in contact with the fuel assemblies of the nuclear reactor core [fr

  9. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    A two-stage steam-water separating device is introduced, where the second stage is made as a cyclone separator. The water separated here is collected in the first stage of the inner tube and is returned to the steam raising unit. (TK) [de

  10. Steam plant for pressurized water reactors

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This book discusses the research and development organisations and users to highlight those aspects of the steam turbine and associated plant which are particularly related to the PWR system. The contents include: Characteristics of the steam system (including feed train, dump system and safety aspects); overall design aspects of high and half speed turbines; design aspects of the steam generator and seismic considerations; moisture separators and reheaters; feed pumps and their drives; water treatment; safety related valves; operational experience; availability and performance

  11. Experimental study of heavy oil-water flow structure effects on relative permeabilities in a fracture filled with heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Shad, S.; Gates, I.D.; Maini, B.B. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2008-10-15

    An experimental apparatus was used to investigate the flow of water in the presence of heavy oil within a smooth-walled fracture. Different flow patterns were investigated under a variety of flow conditions. Results of the experiments were used to determine the accuracy of VC, Corey, and Shad and Gates models designed to represent the behaviour of oil wet systems. The relative permeability concept was used to describe the behaviour of multiple phases flowing through porous media. A smooth-walled plexiglass Hele-Shaw cell was used to visualize oil and water flow. Changes in flow rates led to different flow regimes. The experiment demonstrated that water flowed co-currently in the form of droplets or slugs. Decreases in the oil flow rate enlarged the size of the water droplets as well as the velocity, until eventually the droplets coalesced and became water slugs. Droplet appearance or disappearance directly impacted the oil and water saturation levels. Changes in fluid saturation altered the pressure gradient. Darcy's law for the 2 liquid phases were used to calculate relative permeability curves. The study showed that at low water saturation, oil relative permeability reached as high as 2.5, while water relative permeability was lower than unity. In the presence of a continuous water channel, water drops formed in oil, and the velocity of the drops was lower than their velocity under a discontinuous water flow regime. It was concluded that the Shad and Gates model overestimated oil relative permeability and underestimated water relative permeability. 38 refs., 2 tabs., 9 figs.

  12. Passive system with steam-water injector for emergency supply of NPP steam generators

    International Nuclear Information System (INIS)

    Il'chenko, A.G.; Strakhov, A.N.; Magnitskij, D.N.

    2009-01-01

    The calculation results of reliability indicators of emergency power supply system and emergency feed-water supply system of serial WWER-1000 unit are presented. To ensure safe water supply to steam generators during station blackout it was suggested using additional passive emergency feed-water system with a steam-water injector working on steam generators dump steam. Calculated analysis of steam-water injector operating capacity was conducted at variable parameters of steam at the entrance to injector, corresponding to various moments of time from the beginning of steam-and-water damping [ru

  13. Measurement of relative permeability of fuel cell diffusion media

    KAUST Repository

    Hussaini, I.S.

    2010-06-01

    Gas diffusion layer (GDL) in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented and new correlations for in-plane relative permeability of water and air are established. © 2010 Elsevier B.V. All rights reserved.

  14. Highly purified water production technology. The influence of water purity on steam quality

    International Nuclear Information System (INIS)

    Ganter, J.

    1975-01-01

    The fundamental question related to high-pressure steam generation, intended for powering steam turbines, concerns steam production conditions based on constant quality standards. The characteristics of water (salinity, silica concentration) are indicated for a given steam quality as a function of the pressure. Two processes for the purification of feedwater for high pressure boilers are described: a treatment using precoated cellulose or resin filters and a treatment using mixed-bed ion exchangers. When ultrapure water is required, the demineralized water is filtred using microfiltration and ultrafiltration processes [fr

  15. Sub-core permeability and relative permeability characterization with Positron Emission Tomography

    Science.gov (United States)

    Zahasky, C.; Benson, S. M.

    2017-12-01

    This study utilizes preclinical micro-Positron Emission Tomography (PET) to image and quantify the transport behavior of pulses of a conservative aqueous radiotracer injected during single and multiphase flow experiments in a Berea sandstone core with axial parallel bedding heterogeneity. The core is discretized into streamtubes, and using the micro-PET data, expressions are derived from spatial moment analysis for calculating sub-core scale tracer flux and pore water velocity. Using the flux and velocity data, it is then possible to calculate porosity and saturation from volumetric flux balance, and calculate permeability and water relative permeability from Darcy's law. Full 3D simulations are then constructed based on this core characterization. Simulation results are compared with experimental results in order to test the assumptions of the simple streamtube model. Errors and limitations of this analysis will be discussed. These new methods of imaging and sub-core permeability and relative permeability measurements enable experimental quantification of transport behavior across scales.

  16. Water regime of steam power plants

    International Nuclear Information System (INIS)

    Oesz, Janos

    2011-01-01

    The water regime of water-steam thermal power plants (secondary side of pressurized water reactors (PWR); fossil-fired thermal power plants - referred to as steam power plants) has changed in the past 30 years, due to a shift from water chemistry to water regime approach. The article summarizes measures (that have been realised by chemists of NPP Paks) on which the secondary side of NPP Paks has become a high purity water-steam power plant and by which the water chemistry stress corrosion risk of heat transfer tubes in the VVER-440 steam generators was minimized. The measures can also be applied to the water regime of fossil-fired thermal power plants with super- and subcritical steam pressure. Based on the reliability analogue of PWR steam generators, water regime can be defined as the harmony of construction, material(s) and water chemistry, which needs to be provided in not only the steam generators (boiler) but in each heat exchanger of steam power plant: - Construction determines the processes of flow, heat and mass transfer and their local inequalities; - Material(s) determines the minimal rate of general corrosion and the sensitivity for local corrosion damage; - Water chemistry influences the general corrosion of material(s) and the corrosion products transport, as well as the formation of local corrosion environment. (orig.)

  17. Gas and Water Permeability of Concrete

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Martin, P. L.; Romero, F. J.; Gutierrez-Rodirgo, V.; Barcala, J. M.

    2012-11-01

    The gas pressure of concrete samples was measured in an unsteady-state equipment working under low injection pressures and in a newly fine tuned steady-state setup working under different pressures. These measurements allowed the estimation of the intrinsic and relative gas permeability of the concrete and of the effect of boundary conditions on them. Permeability decreased with water content, but it was also greatly affected by the hydraulic history of concrete, i.e. if it had been previously dried or wetted. In particular, and for a given degree of saturation, the gas permeability of concrete previously saturated was lower than if the concrete had been just air dried or saturated after air drying. In any case, the gas permeability was about two orders of magnitude higher than the liquid water permeability (10-16 vs. 10-18 m2), probably due to the chemical reactions taking place during saturation (carbonation). The relative gas permeability of concrete increased sharply for water degrees of saturation smaller than 50%. The boundary conditions also affected the gas permeability, which seemed to be mostly conditioned by the back pressure and the confining pressure, increasing as the former increased and decreasing as the latter increased, i.e. decreasing as the effective pressure increased. Overall the increase of pressure head or injection pressure implied a decrease in gas permeability. External,microcracking during air-drying could not be ruled out as responsible for the decrease of permeability with confining pressure. The apparent permeability obtained applying the Klinkenberg method for a given effective pressure was only slightly smaller than the average of all the values measured for the same confining pressure range. For this reason it is considered that the Klinkenberg effect was not relevant in the range of pressures applied. (Author) 37 refs.

  18. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    The steam-water separator connected downstream of a steam generator consists of a vertical centrifugal separator with swirl blades between two concentric pipes and a cyclone separator located above. The water separated in the cyclone separator is collected in the inner tube of the centrifugal separator which is closed at the bottom. This design allows the overall height of the separator to be reduced. (DG) [de

  19. Facility to separate water and steam

    International Nuclear Information System (INIS)

    Loesel, G.

    1977-01-01

    The water/steam mixture from the pressure vessel e.g. of a BWR is separated by means of centrifugal separators untilizing the natural separation of steam. The steam is supplied to a steam drying vessel and the water to a water collecting tank. These vessels may be combined to a common vessel or connected through additional pipes. From the water collecting tank, arranged below the steam dryer, a feedwater pipe runs back to the pressure vessel. By construction out of individual components cleaning, decontamination, and operating control are essentially simplified. (RW) 891 RW [de

  20. The testing of a steam-water separating device used for vertical steam generators

    International Nuclear Information System (INIS)

    Ding Xunshen; Cui Baoyuan; Xue Yunkui; Liu Shixun

    1989-01-01

    The air-water screening tests of a steam-water separating device used for vertical steam generators at low pressure are introduced. The article puts emphasis on the qualification test of the steam-water separating device at hot conditions in a high temperature and pressure water test rig. The performance of the comprehensive test of the steam-water separating device indicates that the humidity of the steam at the drier exit is much less than the specified amount of 0.25%

  1. Steam generator water lancing

    International Nuclear Information System (INIS)

    Kamler, F.; Schneider, W.

    1992-01-01

    The tubesheet and tube support plate deposits in CANDU steam generators are notable for their hardness. Also notable is the wide variety of steam generator access situations. Because of the sludge hardness and the difficulty of the access, traditional water lancing processes which directed jets from the central tube free lane or from the periphery of the bundle have proven unsuitable. This has led to the need for some very unique inter tube water lancing devices which could direct powerful water jets directly onto the deposits. This type of process was applied to the upper broached plates of the Bruce A steam generators, which had become severely blocked. It has since been applied to various other steam generator situations. This paper describes the flexlance equipment development, qualification, and performance in the various CANDU applications. 4 refs., 2 tabs., 7 figs

  2. Steam turbine chemistry in light water reactor plants

    International Nuclear Information System (INIS)

    Svoboda, Robert; Haertel, Klaus

    2008-01-01

    Steam turbines in boiling water reactor (BWR) and pressurized water reactor (PWR) power plants of various manufacturers have been affected by corrosion fatigue and stress corrosion cracking. Steam chemistry has not been a prime focus for related research because the water in nuclear steam generating systems is considered to be of high purity. Steam turbine chemistry however addresses more the problems encountered in fossil fired power plants on all volatile treatment, where corrosive environments can be formed in zones where wet steam is re-evaporated and dries out, or in the phase transition zone, where superheated steam starts to condense in the low-pressure (LP) turbine. In BWR plants the situation is aggravated by the fact that no alkalizing agents are used in the cycle, thus making any anionic impurity immediately acidic. This is illustrated by case studies of pitting corrosion of a 12 % Cr steel gland seal and of flow-oriented corrosion attack on LP turbine blades in the phase transition zone. In PWR plants, volatile alkalizing agents are used that provide some buffering of acidic impurities, but they also produce anionic decomposition products. (orig.)

  3. Practical Suggestions for Calculating Supercritical Water-Steam Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-12-15

    A standard procedure for determining water-steam properties has been established through an international collaboration in addition to a domestic effort. The current accepted international standard for industrial application is based on the IAPWS-IF97 (International Association for the Properties of Water and Steam-Industrial Formation 97). Based on this standard, the ASME (American Society of Mechanical Engineers)/NIST (National Institute of Standard and Technology) developed the REPROP program in the USA, and the JSME (Japan Society of Mechanical Engineers) developed the steam table and calculation code. Upon applying this standard procedure, modified procedures were proposed for computational convenience, particularly in the supercritical pressure region where non-smooth variations of water-steam properties were distinctively observed. In this paper, the internationally adopted procedures and the progress of related activities are briefly summarized. Some practical considerations are presented for the efficient execution of computational code.

  4. Water jet behavior in center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.

    2005-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. Furthermore and effect of the non-condensable gas on the steam injector is investigated by measuring the radial temperature distributions in the water jet. From measuring results, it is supposed the more the air included in the steam, the more the temperature fluctuation of both steam and discharge water

  5. Steam Generator Owners Group PWR secondary water chemistry guidelines

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.; Green, S.J.

    1985-01-01

    In 1981 the Steam Generator Owners Group (SGOG), a group of domestic and foreign pressurized water reactor (PWR) owners, developed and issued the PWR secondary water chemistry guidelines. The guidelines were prepared in response to the growing recognition that a majority of the problems causing reduced steam generator reliability (e.g., denting, wasteage, pitting, etc.) were related to secondary (steam) side water purity. The guidelines were subsequently issued as an Electric Power Research Institute (EPRI) report. In 1984 they were revised to reflect industry experience in adopting the original issuance and to incorporate new information on causes of corrosion damage. The guidelines have been endorsed and their adoption recommended by the SGOG

  6. Energy balance and flow in steam generator part with sodium-water reaction

    International Nuclear Information System (INIS)

    Matal, O.

    1980-01-01

    Relations were derived for the calculation of heat liberated during the sodium water reaction in a tube failure in different parts of a steam generator. The results are graphically shown in i-T diagrams. Heat removal is described from the reaction zone to water and steam in undisturbed tubes and to the steam generator metal structure. (author)

  7. Feed water pre-heater with two steam spaces

    International Nuclear Information System (INIS)

    Tratz, H.; Kelp, F.; Netsch, E.

    1976-01-01

    A feed water pre-heater for the two stage heating of feed water by condensing steam, having a low installed height is described, which can be installed in the steam ducts of turbines of large output, as in LWRs in nuclear power stations. The inner steam space is closed on one side by the water vessel, while the tubes of the inner steam space go straight from the water vessel, and the tubes of the outer steam space are bent into a U shape and open out into the water vessel. The two-stage preheater is thus surrounded by feedwater in two ways. (UWI) [de

  8. Pressure drop, steam content and turbulent cross exchange in water/steam flows

    International Nuclear Information System (INIS)

    Teichel, H.

    1978-01-01

    For describing the behaviour of two-phase flows of water and steam with the help of calculating patterns, a number of empirical correlations are required. - In this article, correlations for the friction pressure drop in water/steam flows are compared, as well as for the steam mass and the volumetric steam content with each other and with the test results on simple geometries. As the mutual effect between cooling chanels plays an important part at the longitudinal flow through bar bundles, the appertaining equations are evaluated, in addition. (orig.) 891 HP [de

  9. Apparatus for the separation of water from water-steam mixtures

    International Nuclear Information System (INIS)

    Judith, H.; Schwerdtner, O. von.

    1975-01-01

    Steam flowing from the high-pressure part of a saturated-steam turbine of nuclear power stations to the preheater or steam directly passing off to the low-pressure part contains a high amount of moisture. This is removed by a separating device in the overflow pipe working as an axial cyclon. To this end a twist generator with radially mounted guide vanes forces a twisting movement on the water-steam mixture whereby the water component is thrown towards the wall of the overflow pipe. Behind the twist generator the overflow pipe is provided with ring slots or annular gaps through which the centrifuged water gets into water collecting chambers concentrically surrounding the overflow pipe. The main water seperation results from the first annular gap through centrifugal effects. The rest is removed by steam suction through the other gaps. For steam suction purposes, i.e. in order to produce an underpressure, the collecting chambers of these gaps are connected with the overflow pipe behind the twist generators by means of a suction pipe. In order to also remove small water droplets without increasing the twist, an agglomerator is installed in the overflow pipe before the twist generator. It consists of baffle or guide plates within an elliptic intermediate piece in a bend of the overflow pipe. Therefore the flanks of the guide plates run parallel to the flow direction of the steam. (DG/PB) [de

  10. Permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier

    International Nuclear Information System (INIS)

    Squier, C.A.; Hall, B.K.

    1985-01-01

    The permeability of porcine skin and keratinized and nonkeratinized oral mucosa to tritium-labeled water and horseradish peroxidase (HRPO) was determined using perfusion chambers. Small blocks from each tissue were also incubated with HRPO and the extent of penetration visualized microscopically; this enabled measurements to be made of the thickness of the permeability barrier to this water-soluble tracer. Results obtained after inverting the oral mucosa in the chambers or adding metabolic inhibitors indicated that both compounds diffuse across the tissue. The permeability constants derived directly in the study showed that skin was less permeable than oral mucosa and that the floor of the mouth was significantly more permeable than all other regions. When these constants were normalized in terms of a standard permeability barrier thickness and the different tissues compared, the values obtained for skin were again less than those of the oral regions but, of these, the buccal mucosa was significantly higher. The difference in permeability between epidermis and keratinized oral epithelium may be due to differences in the volume density of membrane-coating granules known to exist between the tissues; differences between the oral mucosal regions may reflect differences in the nature of the intercellular barrier material

  11. Water sorption and water permeability properties of edible film made from potato peel waste

    Directory of Open Access Journals (Sweden)

    Siti Hajar OTHMAN

    Full Text Available Abstract The water sorption and permeability properties of edible film produced from potato peel waste was investigated under different levels of relative humidity (23, 33, 43, 57, 75% RH and temperatures (5, 30, 50 °C. The water sorption behaviour and isotherms of the film were investigated by fitting water sorption data to the Peleg model and the Guggenheim, Anderson de Boer model (GAB model. The amount of moisture content, time required for the moisture content of the film to reach equilibrium, water sorption rate, and water sorption capacity increased when the relative humidity increased. The effect of temperature on moisture content, water sorption rate, water sorption capacity, and monolayer moisture content is complex and related to the water activity as well as the moisture content. Based on R2 and RMSE values, the Peleg and GAB models were respectively determined as excellent models to predict the water sorption properties of the films, thus supporting the reliability of water sorption behaviour prediction. The water vapour transmission rate and water vapour permeability increased with an increase in relative humidity and temperature. The sorption and permeability properties of the film are worth investigation since the final application of the film as food packaging is ultimately dependent on these behaviours.

  12. Chemistry of water and steam in power plants and related technologies. Glossary of terms and definitions English - German; German - English

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, H.P.; Teutenberg, U.

    2006-07-01

    This new edition of a technical dictionary is an evaluation of the technical terms found in the domestic and foreign literature and in information brochures of specialist firms, directives, guidelines, standards, etc. This dictionary contains more than 3,000 terms mainly with definitions with respect to the chemistry of water and steam in power plants along with the related types of water (untreated water, feedwater and boiler water, make-up water, waste water) and the water treatment processes (ion exchange, membrane process, etc.), water conditioning and chemical analysis, internal cleaning of steam generating plants (e.g. flushing, boiling-out, pre-operational and operational acid cleaning, steam blowing) as well as fundamentals of water chemistry. The technical knowledge of the authors, Heinz-Peter Schmitz, FDBR, with more than 25 years professional experience as translator/official in charge of documentation and Ulrich Teutenberg, Babcock/Hitachi with more than 30 years professional experience as senior consultant for water chemistry and commissioning is reflected in this dictionary. Part 1 contains the English-German version, Part 2 the German-English version. (orig.)

  13. Steam generator for pressurized-water reactors

    International Nuclear Information System (INIS)

    Michel, E.

    1971-01-01

    In the steam generator for a PWR the central fall space of a U-tube bundel heat exchanger is used as a preliminary cyclon separator. The steam escaping upwards, which is largely free of water, can flow through the residual heating surface, i.e. the U-tube turns. In this way substantial drying and less superheating by the heat still added becomes possible. In its upper part the central fall space for the water separated in the preliminary separator, enclosed by a cylindrical guide wall and the U-tube bundle, is provided with tangential inlet slots. Through these, the water-steam mixture steams out of the section of the vertical legs of the U-tube bundle into the fall space. Above the inlet slots the rising space is closed by means of a turn-round plate. At the lower end of the guide wall outlet, slots are provided for the water flowing downwards and radially outwards into the unfilled space. (DG/PB) [de

  14. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. This phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The ensuing structural damage, inspection and repairs are described. Finally, a list of design, maintenance and operational cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  15. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. THis phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The insuing structural damage, inspection and repairs are described. Finally, a list of design cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  16. Mathematical Model to Predict the Permeability of Water Transport in Concrete Structure

    OpenAIRE

    Solomon Ndubuisi Eluozo

    2013-01-01

    Mathematical model to predict the permeability of water transport in concrete has been established, the model is to monitor the rate of water transport in concrete structure. The process of this water transport is based on the constituent in the mixture of concrete. Permeability established a relation on the influence of the micropores on the constituent that made of concrete, the method of concrete placement determine the rate of permeability deposition in concrete structure, permeability es...

  17. Sodium-Water Reaction approach and mastering for ASTRID Steam Generator design

    International Nuclear Information System (INIS)

    Saez, Manuel; Allou, Alexandre; Beauchamp, François; Bertrand, Carole; Rodriguez, Gilles; Menou, Sylvain; Prele, Gérard

    2013-01-01

    Conclusions: • Modular Steam Generator concept selected for ASTRID: → Brings flexibility for the expertise of failed modules after their removal; → Intrinsically limit the mechanical consequences of a postulated large Sodium-Water Reaction. • Sodium-Water-Air Reaction studies include both prevention and mitigation aspects, with dedicated tools to be developed through R&D. • Regarding Safety analysis, the possibility to move from the scenario of instantaneous failure of the whole Steam Generator tube bundle toward a scenario with sequenced failure needs to be investigated. • The Steam Generator is one of the key components in the Sodium-cooled Fast Reactor system for it provides an interface between sodium and water. The design objective for the Steam Generator is related to the improvement of mastering of Sodium-Water Reaction. • Potential Sodium-Water Reactions can be eliminated by adopting a Gas based Power Conversion System

  18. The temperature control and water quality regulation for steam generator secondary side hydrostatic test

    International Nuclear Information System (INIS)

    Xiao Bo; Liu Dongyong

    2014-01-01

    The secondary side hydrostatic test for the steam generator of M310 unit is to verify the pressure tightness of steam generator secondary side tube sheet and related systems. As for the importance of the steam generator, the water temperature and water quality of hydrostatic test has strict requirements. The discussion on the water temperature control and water quality regulation for the secondary loop hydrostatic test of Fuqing Unit 1 contribute greatly to the guiding work for the preparation of the steam generator pressure test for M310 unit. (authors)

  19. Experimental Measurement of Relative Permeability Functions for Fuel Cell GDL Materials

    KAUST Repository

    Hussaini, Irfan; Wang, Chao-Yang

    2009-01-01

    Gas diffusion layer in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions. In the present work, air and water relative permeabilities are experimentally determined as functions of saturation for typical GDL materials such as Toray-060, -090, -120 carbon paper and E-Tek carbon cloth materials in their plain, untreated forms. Saturation is measured using an ex-situ gravimetric method. Absolute and relative permeability functions in the two directions of interest are presented. Significant departure from the generally assumed cubic function of saturation is observed. ©The Electrochemical Society.

  20. Online monitoring of steam/water chemistry of a fast breeder test reactor

    International Nuclear Information System (INIS)

    Subramanian, K.G.; Suriyanarayanan, A.; Thirunavukarasu, N.; Naganathan, V.R.; Panigrahi, B.S.; Jambunathan, D.

    2005-01-01

    Operating experience with the once-through steam generator of a fast breeder test reactor (FBTR) has shown that an efficient water chemistry control played a major role in minimizing corrosion related failures of steam generator tubes and ensuring steam generator tube integrity. In order to meet the stringent feedwater and steam quality specifications, use of fast and sensitive online monitors to detect impurity levels is highly desirable. Online monitoring techniques have helped in achieving feedwater of an exceptional degree of purity. Experience in operating the online monitors in the steam/water system of a FBTR is discussed in detail in this paper. In addition, the effect of excess hydrazine in the feedwater on the steam generator leak detection system and the need for a hydrazine online meter are also discussed. (orig.)

  1. Pressurized-water coolant nuclear reactor steam generator

    International Nuclear Information System (INIS)

    Mayer, H.; Schroder, H.J.

    1975-01-01

    A description is given of a pressurized-water coolant nuclear reactor steam generator having a vertical housing for the steam generating water and containing an upstanding heat exchanger to which the pressurized-water coolant passes and which is radially surrounded by a guide jacket supporting a water separator on its top. By thermosiphon action the steam generating water flows upward through and around the heat exchanger within the guide chamber to the latter's top from which it flows radially outwardly and downwardly through a down draft space formed between the outside of the jacket and the housing. The water separator discharges separated water downwardly. The housing has a feedwater inlet opening adjacent to the lower portion of the heat exchanger, providing preheating of the introduced feedwater. This preheated feedwater is conveyed by a duct upwardly to a location where it mixes with the water discharged from the water separator

  2. Steam Generator control in Nuclear Power Plants by water mass inventory

    Energy Technology Data Exchange (ETDEWEB)

    Dong Wei [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States); Doster, J. Michael [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)], E-mail: doster@eos.ncsu.edu; Mayo, Charles W. [North Carolina State University, Department of Nuclear Engineering, Box 7909, Raleigh, NC 27695-7909 (United States)

    2008-04-15

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators.

  3. Steam Generator control in Nuclear Power Plants by water mass inventory

    International Nuclear Information System (INIS)

    Dong Wei; Doster, J. Michael; Mayo, Charles W.

    2008-01-01

    Control of water mass inventory in Nuclear Steam Generators is important to insure sufficient cooling of the nuclear reactor. Since downcomer water level is measurable, and a reasonable indication of water mass inventory near steady-state, conventional feedwater control system designs attempt to maintain downcomer water level within a relatively narrow operational band. However, downcomer water level can temporarily react in a reverse manner to water mass inventory changes, commonly known as shrink and swell effects. These complications are accentuated during start-up or low power conditions. As a result, automatic or manual control of water level is difficult and can lead to high reactor trip rates. This paper introduces a new feedwater control strategy for Nuclear Steam Generators. The new method directly controls water mass inventory instead of downcomer water level, eliminating complications from shrink and swell all together. However, water mass inventory is not measurable, requiring an online estimator to provide a mass inventory signal based on measurable plant parameters. Since the thermal-hydraulic response of a Steam Generator is highly nonlinear, a linear state-observer is not feasible. In addition, difficulties in obtaining flow regime and density information within the Steam Generator make an estimator based on analytical methods impractical at this time. This work employs a water mass estimator based on feedforward neural networks. By properly choosing and training the neural network, mass signals can be obtained which are suitable for stable, closed-loop water mass inventory control. Theoretical analysis and simulation results show that water mass control can significantly improve the operation and safety of Nuclear Steam Generators

  4. Steam injection into water-saturated porous rock

    NARCIS (Netherlands)

    Bruining, J.; Marchesin, D.; Duijn, van C.J.

    2003-01-01

    We formulate conservation laws governing steam injection in a linear porous medium containing water. Heat losses to the outside are neglected. We find a complete and systematic description of all solutions of the Riemann problem for the injection of a mixture of steam and water into a

  5. Theoretical Insight Into the Empirical Tortuosity-Connectivity Factor in the Burdine-Brooks-Corey Water Relative Permeability Model

    Science.gov (United States)

    Ghanbarian, Behzad; Ioannidis, Marios A.; Hunt, Allen G.

    2017-12-01

    A model commonly applied to the estimation of water relative permeability krw in porous media is the Burdine-Brooks-Corey model, which relies on a simplified picture of pores as a bundle of noninterconnected capillary tubes. In this model, the empirical tortuosity-connectivity factor is assumed to be a power law function of effective saturation with an exponent (μ) commonly set equal to 2 in the literature. Invoking critical path analysis and using percolation theory, we relate the tortuosity-connectivity exponent μ to the critical scaling exponent t of percolation that characterizes the power law behavior of the saturation-dependent electrical conductivity of porous media. We also discuss the cause of the nonuniversality of μ in terms of the nonuniversality of t and compare model estimations with water relative permeability from experiments. The comparison supports determining μ from the electrical conductivity scaling exponent t, but also highlights limitations of the model.

  6. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  7. Review of steam jet condensation in a water pool

    International Nuclear Information System (INIS)

    Kim, Y. S.; Song, C. H.; Park, C. K.; Kang, H. S.; Jeon, H. G.; Yoon, Y. J.

    2002-01-01

    In the advanced nuclear power plants including APR1400, the SDVS is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW, the POSRV located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow

  8. Water chemistry and corrosion in water-steam circuits of nuclear power plants

    International Nuclear Information System (INIS)

    Gardent, R.; Menet, O.

    1981-01-01

    The water and steam circuits of steam generators in pressurized-water nuclear power plants are described together with the mechanism of denting, and the corrosion of spacer plates that leads to cracks in tubes by constriction. The different chemical specifications applicable to the water of the secondary circuit of the generators in normal operation and on first commissioning are listed. The results obtained and the measurements of chemical values taken in operation on the water in the secondary circuits of steam generators at Fessenheim and Bugey are presented [fr

  9. Method for steam generator water level measurement

    International Nuclear Information System (INIS)

    Srinivasan, J.S.

    1991-01-01

    This paper describes a nuclear power plant, a method of controlling the steam generator water level, wherein the steam generator has an upper level tap corresponding to an upper level, a lower level, a riser positioned between the lower and upper taps, and level sensor means for indicating water level between a first range limit and a second range limit, the sensor means being connected to at least the lower tap. It comprises: calculating a measure of velocity head at about the lower level tap; calculating a measure of full water level as the upper level less the measure of velocity head; calibrating the level sensor means to provide an output at the first limit corresponding to an input thereto representative of the measure of full level; calculating a high level setpoint equal to the level of the riser less a bias amount which is a function of the position of the riser relative to the span between the taps; and controlling the water level when the sensor means indicates that the high level setpoint has been reached

  10. METHODOLOGY FOR CALCULATION OF HORIZONTAL WATER PERMEABILITY COEFFICIENT IN SOIL CAPILLARY BORDER

    Directory of Open Access Journals (Sweden)

    E. I. Michnevich

    2011-01-01

    Full Text Available The paper shows that for overall estimation of soil water permeability it is necessary to know a horizontal water permeability value of a soil capillary border in addition to coefficients of filtration and permeability. Relations allowing to determine soil permeability in the area of incomplete saturation, are given in the paper. For a fully developed capillary border some calculation formulae have been obtained in the form of algebraic polynomial versus soil grading (grain composition. These formulae allow to make more accurate calculations while designing and operating  reclamation works.

  11. Measurement of relative permeability of fuel cell diffusion media

    KAUST Repository

    Hussaini, I.S.; Wang, C.Y.

    2010-01-01

    Gas diffusion layer (GDL) in PEM fuel cells plays a pivotal role in water management. Modeling of liquid water transport through the GDL relies on knowledge of relative permeability functions in the in-plane and through-plane directions

  12. Clinch river breeder reactor plant steam generator water quality

    Energy Technology Data Exchange (ETDEWEB)

    Van Hoesen, D; Lowe, P A

    1975-07-01

    The recent problems experienced by some LWR Steam Generators have drawn attention to the importance of system water quality and water/ steam side corrosion. Several of these reactor plants have encountered steam generator failures due to accelerated tube corrosion caused, in part, by poor water quality and corrosion control. The CRBRP management is aware of these problems, and the implications that they have for the Clinch River Breeder Reactor Plant (CPBRP) Steam Generator System (SGS). Consequently, programs are being implemented which will: (1) investigate the corrosion mechanisms which may be present in the CRBRP SGS; (2) assure steam generator integrity under design and anticipated off-normal water quality conditions; and (3) assure that the design water quality levels are maintained at all times. However, in order to understand the approach being used to examine this potential problem, it is first necessary to look at the CRBRP SGS and the corrosion mechanisms which may be present.

  13. Clinch river breeder reactor plant steam generator water quality

    International Nuclear Information System (INIS)

    Van Hoesen, D.; Lowe, P.A.

    1975-01-01

    The recent problems experienced by some LWR Steam Generators have drawn attention to the importance of system water quality and water/ steam side corrosion. Several of these reactor plants have encountered steam generator failures due to accelerated tube corrosion caused, in part, by poor water quality and corrosion control. The CRBRP management is aware of these problems, and the implications that they have for the Clinch River Breeder Reactor Plant (CPBRP) Steam Generator System (SGS). Consequently, programs are being implemented which will: 1) investigate the corrosion mechanisms which may be present in the CRBRP SGS; 2) assure steam generator integrity under design and anticipated off-normal water quality conditions; and 3) assure that the design water quality levels are maintained at all times. However, in order to understand the approach being used to examine this potential problem, it is first necessary to look at the CRBRP SGS and the corrosion mechanisms which may be present

  14. A new water permeability measurement method for unsaturated tight materials using saline solutions

    International Nuclear Information System (INIS)

    Malinsky, Laurent; Talandier, Jean

    2012-01-01

    Document available in extended abstract form only. Relative water permeability of material in a radioactive waste disposal is a key parameter to simulate and predict saturation state evolution. In this paper we present a new measurement method and the results obtained for Callovo-Oxfordian (Cox) clay-stone, host rock of the underground Andra laboratory at Bure (Meuse/Haute-Marne). Relative water permeability of such a low permeability rock as Cox clay-stone has been measured up to now by an indirect method. It consists in submitting a rock sample to successive relative humidity steps imposed by saline solutions. The transient mass variation during each step and the mass at hydric equilibrium are interpreted generally by using an inverse analysis method. The water relative permeability function of water saturation is derived from water diffusion coefficient evolution and water retention curve. The proposed new method consists in directly measuring the water flux across a flat cylindrical submitted to a relative humidity gradient. Two special cells have been developed. The tightness of the lateral sample surface is insured by crushing a polyurethane ring surrounding the sample set in an aluminium device placed over a Plexiglas vessel filled with a saline solution. One of the cells is designed to allow humidity measurement in the cell. These cells can also be used to measure the relative humidity produced by a saline solution or by an unsaturated material. During a permeability measurement, the cell with the sample to be tested is continuously weighted in a Plexiglas box in which a saline solution imposes a different relative humidity at the upper sample face. The experimental set-up is shown on Figure 1. The mean permeability of the sample is proportional to the rate of mass variation when steady state is reached. The result of one test is shown on Figure 2(a). Twenty four permeability measurements have been performed on four argillite samples of 15 mm in height and

  15. Local properties of countercurrent stratified steam-water flow

    International Nuclear Information System (INIS)

    Kim, H.J.

    1985-10-01

    A study of steam condensation in countercurrent stratified flow of steam and subcooled water has been carried out in a rectangular channel/flat plate geometry over a wide range of inclination angles (4 0 -87 0 ) at several aspect ratios. Variables were inlet water and steam flow rates, and inlet water temperature. Local condensation rates and pressure gradients were measured, and local condensation heat transfer coefficients and interfacial shear stress were calculated. Contact probe traverses of the surface waves were made, which allowed a statistical analysis of the wave properties. The local condensation Nusselt number was correlated in terms of local water and steam Reynolds or Froude numbers, as well as the liquid Prandtl number. A turbulence-centered model developed by Theofanous, et al. principally for gas absorption in several geometries, was modified. A correlation for the interfacial shear stress and the pressure gradient agreed with measured values. Mean water layer thicknesses were calculated. Interfacial wave parameters, such as the mean water layer thickness, liquid fraction probability distribution, wave amplitude and wave frequency, are analyzed

  16. Impact of drought on U.S. steam electric power plant cooling water intakes and related water resource management issues.

    Energy Technology Data Exchange (ETDEWEB)

    Kimmell, T. A.; Veil, J. A.; Environmental Science Division

    2009-04-03

    ) and type of plant (nuclear vs. fossil fuel). This is accomplished in Chapter 3. In Chapter 4, the nature of any compacts or agreements that give priority to users (i.e., which users must stop withdrawing water first) is examined. This is examined on a regional or watershed basis, specifically for western water rights, and also as a function of federal and state water management programs. Chapter 5 presents the findings and conclusions of this study. In addition to the above, a related intent of this study is to conduct preliminary modeling of how lowered surface water levels could affect generating capacity and other factors at different regional power plants. If utility managers are forced to take some units out of service or reduce plant outputs, the fuel mix at the remaining plants and the resulting carbon dioxide emissions may change. Electricity costs and other factors may also be impacted. Argonne has conducted some modeling based on the information presented in the database described in Chapter 2 of this report. A separate report of the modeling effort has been prepared (Poch et al. 2009). In addition to the U.S. steam electric power plant fleet, this modeling also includes an evaluation of power production of hydroelectric facilities. The focus of this modeling is on those power plants located in the western United States.

  17. Industrial steam systems and the energy-water nexus.

    Science.gov (United States)

    Walker, Michael E; Lv, Zhen; Masanet, Eric

    2013-11-19

    This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.

  18. Makeup water system performance and impact on PWR steam generator corrosion

    International Nuclear Information System (INIS)

    Bell, M.J.; Sawocha, S.G.; Smith, L.A.

    1984-01-01

    The object of this EPRI-funded project was to assess the possible relation of pressurized water reactor (PWR) steam generator corrosion at fresh water sites to makeup water impurity ingress. Makeup water system design, operation and performance reviews were based on site visits, plant design documents, performance records and grab sample analyses. Design features were assessed in terms of their effect on makeup system performance. Attempts were made to correlate the makeup plant source water, system design characteristics, and typical makeup water qualities to steam generator corrosion observations, particularly intergranular attack (IGA). Direct correlations were not made since many variables are involved in the corrosion process and in the case of IGA, the variables have not been clearly established. However, the study did demonstrate that makeup systems can be a significant source of contaminants that are suspected to lead to both IGA and denting. Additionally, it was noted that typical makeup system performance with respect to organic removal was not good. The role of organics in steam generator damage has not been quantified and may deserve further study

  19. Condensation of the steam in the horizontal steam line during cold water flooding

    International Nuclear Information System (INIS)

    Strubelj, L.; Tiselj, I.

    2006-01-01

    Direct contact condensation and condensation induced water-hammer in a horizontal pipe was experimentally investigated at PMK-2 test facility of the Hungarian Atomic Energy Research Institute KFKI. The experiment is preformed in the horizontal section of the steam line of the PMK-2 integral test facility. As liquid water floods the horizontal part of the pipeline, the counter current horizontally stratified flow is being observed. During the flooding of the steam line, the vapour-liquid interface area increases and therefore the vapour condensation rate and the vapour velocity also increase. Similar phenomena can occur in the cold/hot leg of the primary loop of PWR nuclear power plant during loss of coolant accident, when emergency core cooling system is activated. Water level at one cross-section and four local void fraction and temperature at the top of steam line was measured and compared with simulation. Condensed steam increases the water temperature that is why the local temperature measurements are the most important information, from which condensation rate can be estimated, since mass of condensed steam was not measured. Free surface simulation of the experiment with thermal phase change model is presented. Surface renewal concept with small eddies is used for calculation of heat transfer coefficient. With surface renewal theory we did not get results similar to experiment, that is why heat transfer coefficient was increased by factor 20. In simulation with heat transfer coefficient calculated with surface renewal concept bubble entrapment is due to reflection of the wave from the end of the pipe. When heat transfer coefficient is increased, condensation rate and steam velocity are also increased, bubble entrapment is due to Kelvin-Helmholtz instability of the free surface, and the results become similar to the measurements. (author)

  20. Analysis of the Sodium-Water Reaction Phenomena by Small Water/Steam Leaks

    International Nuclear Information System (INIS)

    Jeong, J-Y; Kim, T-J; Kim, J-M; Kim, B-H; Park, N-C

    2006-01-01

    One of the important problems to be solved in the design and construction of a sodium cooled fast reactor is to confirm the safety and reliability of the steam generator which transfers the heat from the sodium to the water. Sodium-water reaction events may occur when material faults such as a pinhole or cracks occur in the heat transfer tube wall. When such a leak occurs, evaporating water or superheated steam enters through a small leak into the sodium. The surface of this steam jet reacts with the surrounding sodium. Due to turbulence, sodium and particles of the reaction products are drawn at a high velocity into the jet. Impingement of these particles on an adjacent tube is followed by a combined process of a corrosion and erosion which results in a local weakening of the affected tube. If there is no reliable detection available in time, wastage will ultimately result in an additional leak in the adjacent tube. Therefore, it is very significant to predict these phenomena quantitatively from the view of designing a steam generator and its leak detection systems. The objective of this study is a basic investigating of the sodium-water reaction phenomena by small water/steam leaks

  1. Water treatment in the EBR-II steam system

    International Nuclear Information System (INIS)

    Klein, M.A.; Hurst, H.

    1975-01-01

    Boiler-water treatment in the EBR-II steam system consists of demineralizing makeup water and using hydrazine to remove traces of oxygen and morpholine to adjust pH to 8.8-9.2. This treatment is called a ''zero-solids'' method, because the chemical agents and reaction products are either volatile or form water and do not contribute solids to the boiler water. A continuous blowdown is cooled, filtered, and deionized to remove impurities and maintain high purity of the water. If a cooling-water leak occurs, phosphate is added to control scaling, and the ''zero-solids'' eatment is suspended until the leak is repaired. Water streams are sampled at six points to control water purity. Examination of the steam drum and an evaporator show the metal surfaces to be in excellent condition with minimal corrosion. The EBR-II steam-generating plant has accumulated over 85,000 hours of in-service operation and has operated successfully for over ten years with the ''zero-solids'' treatment. (auth)

  2. Wastage of Steam Generator Tubes by Sodium-Water Reaction

    International Nuclear Information System (INIS)

    Jeong, Ji Young; Kim, Jong Man; Kim, Tae Joon; Choi, Jong Hyeun; Kim, Byung Ho; Lee, Yong Bum; Park, Nam Cook

    2010-01-01

    The Korea Advanced LIquid MEtal Reactor (KALIMER) steam generator is a helical coil, vertically oriented, shell-and-tube type heat exchanger with fixed tube-sheet. The conceptual design and outline drawing of the steam generator are shown in Figure 1. Flow is counter-current, with sodium on the shell side and water/steam on the tube side. Sodium flow enters the steam generator through the upper inlet nozzles and then flows down through the tube bundle. Feedwater enters the steam generator through the feedwater nozzles at the bottom of steam generator. Therefore, if there is a hole or a crack in a heat transfer tube, a leakage of water/steam into the sodium may occur, resulting in a sodium-water reaction. When such a leak occurs, so-called 'wastage' is the result which may cause damage to or a failure of the adjacent tubes. If a steam generator is operated for some time in this condition, it is possible that it might create an intermediate leak state which would then give rise to the problems of a multi-target wastage in a very short time. Therefore, it is very important to predict these phenomena quantitatively from the view of designing a steam generator and its leak detection systems. For this, multi-target wastage tests for modified 9Cr-1Mo steel tube bundle by intermediate leaks are being prepared

  3. Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films.

    Science.gov (United States)

    Chinma, C E; Ariahu, C C; Alakali, J S

    2015-04-01

    The effect of temperature and relative humidity on the water vapour permeability (WVP) and mechanical properties of cassava starch and soy protein concentrate (SPC) based edible films containing 20 % glycerol level were studied. Tensile strength and elastic modulus of edible films increased with increase in temperature and decreased with increase in relative humidity, while elongation at break decreased. Water vapour permeability of the films increased (2.6-4.3 g.mm/m(2).day.kPa) with increase in temperature and relative humidity. The temperature dependence of water vapour permeation of cassava starch-soy protein concentrate films followed Arrhenius relationship. Activation energy (Ea) of water vapour permeation of cassava starch-soy protein concentrate edible films ranged from 1.9 to 5.3 kJ/mol (R (2)  ≥ 0.93) and increased with increase in SPC addition. The Ea values were lower for the bio-films than for polyvinylidene chloride, polypropylene and polyethylene which are an indication of low water vapour permeability of the developed biofilms compared to those synthetic films.

  4. Structure of steam water mixture spray

    International Nuclear Information System (INIS)

    Mitsuhashi, Yuki; Mizutani, Hiroya; Sanada, Toshiyuki; Saito, Takayuki

    2008-01-01

    The flow structure of steam and water mixture spray is studied both numerically and experimentally. The velocity and pressure profiles of the single phase flow are calculated using numerical methods. Using calculated flow fields, the droplet behavior is predicted by the one-way interaction model. This numerical analysis clarifies that the droplets are still accelerated after they are sprayed from the nozzle. In the experiments, the spray of the mixture is observed by using ultra high-speed video camera, and the velocity field is measured by using PIV technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, mixing process of steam and water, and atomization process of liquid film are observed through the transparent nozzle. The high-speed photography observation reveals that the flow inside the nozzle forms the annular flow and the most of the liquid film is atomized at the nozzle outlet. Finally, the optimum method of processing mixture of steam and water is proposed. (author)

  5. Acoustic Leak Detection under Micro and Small Water Steam Leaks into Sodium for a Protection of the SFR Steam Generator

    International Nuclear Information System (INIS)

    Kim, Tae-Joon; Jeong, Ji-Young; Kim, Jong-Man; Kim, Byung-Ho; Hahn, Do-Hee; Yugay, Valeriy S.

    2008-01-01

    The results of an experimental study of water in a sodium leak noise spectrum formation related with a leak noise attenuation and absorption, and at various rates of water into a sodium leak, smaller than 1.0 g/s, are presented. We focused on studying the micro leak dynamics with an increasing rate of water into sodium owing to a self-development from 0.005 till 0.27 g/s. Conditions and ranges for the existence of bubbling and jetting modes in a water steam outflow into circulating sodium through an injector device, for simulating a defect in a wall of a heat-transmitting tube of a sodium water steam generator were determined. On the basis of the experimental leak noise data the simple dependency of an acoustic signal level from the rate of a micro and small leak at different frequency bands is presented to understand the principal analysis for the development of an acoustic leak detection methodology used in a K- 600 steam generator, with the operational experiences for the noise analysis and measurements in BN-600

  6. Two-dimensional modeling of water spray cooling in superheated steam

    Directory of Open Access Journals (Sweden)

    Ebrahimian Vahid

    2008-01-01

    Full Text Available Spray cooling of the superheated steam occurs with the interaction of many complex physical processes, such as initial droplet formation, collision, coalescence, secondary break up, evaporation, turbulence generation, and modulation, as well as turbulent mixing, heat, mass and momentum transfer in a highly non-uniform two-phase environment. While it is extremely difficult to systematically study particular effects in this complex interaction in a well defined physical experiment, the interaction is well suited for numerical studies based on advanced detailed models of all the processes involved. This paper presents results of such a numerical experiment. Cooling of the superheated steam can be applied in order to decrease the temperature of superheated steam in power plants. By spraying the cooling water into the superheated steam, the temperature of the superheated steam can be controlled. In this work, water spray cooling was modeled to investigate the influences of the droplet size, injected velocity, the pressure and velocity of the superheated steam on the evaporation of the cooling water. The results show that by increasing the diameter of the droplets, the pressure and velocity of the superheated steam, the amount of evaporation of cooling water increases. .

  7. Rapid Generation of Superheated Steam Using a Water-containing Porous Material

    Science.gov (United States)

    Mori, Shoji; Okuyama, Kunito

    Heat treatment by superheated steam has been utilized in several industrial fields including sterilization, desiccation, and cooking. In particular, cooking by superheated steam is receiving increased attention because it has advantages of reducing the salt and fat contents in foods as well as suppressing the oxidation of vitamin C and fat. In this application, quick startup and cut-off responses are required. Most electrically energized steam generators require a relatively long time to generate superheated steam due to the large heat capacities of the water in container and of the heater. Zhao and Liao (2002) introduced a novel process for rapid vaporization of subcooled liquid, in which a low-thermal-conductivity porous wick containing water is heated by a downward-facing grooved heating block in contact with the upper surface of the wick structure. They showed that saturated steam is generated within approximately 30 seconds from room-temperature water at a heat flux 41.2 kW⁄m2. In order to quickly generate superheated steam of approximately 300°C, which is required for cooking, the heat capacity of the heater should be as small as possible and the imposed heat flux should be so high enough that the porous wick is able to dry out in the vicinity of the contact with the heater and that the resulting heater temperature becomes much higher than the saturation temperature. The present paper proposes a simple structured generator to quickly produce superheated steam. Only a fine wire heater is contacted spirally on the inside wall in a hollow porous material. The start-up, cut-off responses and the rate of energy conversion for input power are investigated experimentally. Superheated steam of 300°C is produced in approximately 19 seconds from room-temperature water for an input power of 300 W. The maximum rate of energy conversion in the steady state is approximately 0.9.

  8. Avoiding steam-bubble-collapse-induced water hammers in piping systems

    International Nuclear Information System (INIS)

    Chou, Y.; Griffith, P.

    1989-10-01

    In terms of the frequency of occurrence, steam bubble collapse in subcooled water is the dominant initiating mechanism for water hammer events in nuclear power plants. Water hammer due to steam bubble collapse occurs when water slug forms in stratified horizontal flow, or when steam bubble is trapped at the end of the pipe. These types of water hammer events have been studied experimentally and analytically in order to develop stability maps showing those combinations of filling velocities and liquid subcooling that cause water hammer and those which don't. In developing the stability maps, experiments with different piping orientations were performed in a low pressure laboratory apparatus. Details of these experiments are described, including piping arrangement, test procedures, and test results. Visual tests using a transparent Lexan pipe are also performed to study the flow regimes accompanying the water hammer events. All analytical models were tested by comparison with the corresponding experimental results. Based on these models, and step-by-step approach for each flow geometry is presented for plant designers and engineers to follow in avoiding water hammer induced by steam bubble collapse when admitting cold water into pipes filled with steam. 37 refs., 54 figs., 2 tabs

  9. Steam power plant

    International Nuclear Information System (INIS)

    Campbell, J.W.E.

    1981-01-01

    This invention relates to power plant forced flow boilers operating with water letdown. The letdown water is arranged to deliver heat to partly expanded steam passing through a steam reheater connected between two stages of the prime mover. (U.K.)

  10. Water level control for a nuclear steam generator

    International Nuclear Information System (INIS)

    Wen Tan

    2011-01-01

    Research highlights: → A water level control system for a nuclear steam generator (SG) is proposed. → The parameters of the control system are directly related to those of the plant model thus scheduling is easy to implement in practice. → The proposed gain-scheduled controller can achieve good performance at both low and high power levels. - Abstract: A water level control system for a nuclear steam generator (SG) is proposed. The control system consists of a feedback controller and a feedforward controller. The feedback controller is of first order, the feedforward controller is of second order, and parameters of the two controllers are directly related to the parameters of plant model thus scheduling is easy to implement in practice. Robustness and performance of the feedback and the feedforward controllers are analyzed in details and tuning of the two parameters of the controllers are discussed. Comparisons among a single robust controller, a multi-model controller and a gain-scheduled controller are studied. It is shown that the proposed gain-scheduled controller can achieve good performance at both low and high power levels.

  11. A relative permeability model to derive fractional-flow functions of water-alternating-gas and surfactant-alternating-gas foam core-floods

    International Nuclear Information System (INIS)

    Al-Mossawy, Mohammed Idrees; Demiral, Birol; Raja, D M Anwar

    2013-01-01

    Foam is used in enhanced oil recovery to improve the sweep efficiency by controlling the gas mobility. The surfactant-alternating-gas (SAG) foam process is used as an alternative to the water-alternating-gas (WAG) injection. In the WAG technique, the high mobility and the low density of the gas lead the gas to flow in channels through the high permeability zones of the reservoir and to rise to the top of the reservoir by gravity segregation. As a result, the sweep efficiency decreases and there will be more residual oil in the reservoir. The foam can trap the gas in liquid films and reduces the gas mobility. The fractional-flow method describes the physics of immiscible displacements in porous media. Finding the water fractional flow theoretically or experimentally as a function of the water saturation represents the heart of this method. The relative permeability function is the conventional way to derive the fractional-flow function. This study presents an improved relative permeability model to derive the fractional-flow functions for WAG and SAG foam core-floods. The SAG flow regimes are characterized into weak foam, strong foam without a shock front and strong foam with a shock front. (paper)

  12. Chemistry, materials and related problems in steam generators of power stations

    International Nuclear Information System (INIS)

    Mathur, P.K.

    2000-01-01

    The operational reliability and availability of power plants are considerably influenced by chemical factors. Researches all over the world indicate that several difficulties in power plants can be traced to off-normal or abnormal water chemistry conditions. Whatever the source of energy, be it fossil fuel or nuclear fuel, the ultimate aim is steam generation to drive a turbine. It is, therefore, natural that problems of water chemistry and material compatibility are similar in thermal and nuclear power stations. The present paper discusses various types of problems in the form of corrosion damages, taking place in the boiler-turbine cycles and describes different types of boiler feed water/boiler water treatments that have been in use both in nuclear and thermal power stations. Current positions in relation to requirements of boiler feed water, boiler water and steam quality have been described

  13. Urban evaporation rates for water-permeable pavements.

    Science.gov (United States)

    Starke, P; Göbel, P; Coldewey, W G

    2010-01-01

    In urban areas the natural water balance is disturbed. Infiltration and evaporation are reduced, resulting in a high surface runoff and a typical city climate, which can lead to floods and damages. Water-permeable pavements have a high infiltration rate that reduces surface runoff by increasing the groundwater recharge. The high water retention capacity of the street body of up to 51 l/m(2) and its connection via pores to the surface lead to higher evaporation rates than impermeable surfaces. A comparison of these two kinds of pavements shows a 16% increase in evaporation levels of water-permeable pavements. Furthermore, the evaporation from impermeable pavements is linked directly to rain events due to fast-drying surfaces. Water-permeable pavements show a more evenly distributed evaporation after a rain event. Cooling effects by evaporative heat loss can improve the city climate even several days after rain events. On a large scale use, uncomfortable weather like sultriness or dry heat can be prevented and the urban water balance can be attenuated towards the natural.

  14. Three Dimensional Visualization for the Steam Injection into Water Pool using Electrical Resistance Tomography

    International Nuclear Information System (INIS)

    Khambampati, Anil Kumar; Lee, Jeong Seong; Kim, Sin; Kim, Kyung Youn

    2010-01-01

    The direct injection of steam into a water pool is a method of heat transfer used in many process industries. The amount of research in this area however is limited to the nuclear industry, with applications relating to reactor cooling systems. Electrical resistance tomography (ERT), a low cost, non-invasive and which has high temporal resolution characteristics, can be used as a visualization tool for the resistivity distribution for the steam injection into water pool such as IRWST. In this paper, three dimensional resistivity distribution of the process is obtained through ERT using iterative Gauss-Newton method. Numerical experiments are performed by assuming different resistive objects in the water pool. Numerical results show that ERT is successful in estimating the resistivity distribution for the injection of steam in the water pool

  15. Effect of Flow Direction on Relative Permeability Curves in Water/Gas Reservoir System: Implications in Geological CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Abdulrauf Rasheed Adebayo

    2017-01-01

    Full Text Available The effect of gravity on vertical flow and fluids saturation, especially when flow is against gravity, is not often a subject of interest to researchers. This is because of the notion that flow in subsurface formations is usually in horizontal direction and that vertical flow is impossible or marginal because of the impermeable shales or silts overlying them. The density difference between two fluids (usually oil and water flowing in the porous media is also normally negligible; hence gravity influence is neglected. Capillarity is also often avoided in relative permeability measurements in order to satisfy some flow equations. These notions have guided most laboratory core flooding experiments to be conducted in horizontal flow orientation, and the data obtained are as good as what the experiments tend to mimic. However, gravity effect plays a major role in gas liquid systems such as CO2 sequestration and some types of enhanced oil recovery techniques, particularly those involving gases, where large density difference exists between the fluid pair. In such cases, laboratory experiments conducted to derive relative permeability curves should take into consideration gravity effects and capillarity. Previous studies attribute directional dependence of relative permeability and residual saturations to rock anisotropy. It is shown in this study that rock permeability, residual saturation, and relative permeability depend on the interplay between gravity, capillarity, and viscous forces and also the direction of fluid flow even when the rock is isotropic. Rock samples representing different lithology and wide range of permeabilities were investigated through unsteady-state experiments covering drainage and imbibition in both vertical and horizontal flow directions. The experiments were performed at very low flow rates to capture capillarity. The results obtained showed that, for each homogeneous rock and for the same flow path along the core length

  16. The Effect of Wettability Heterogeneity on Relative Permeability of Two-Phase Flow in Porous Media: A Lattice Boltzmann Study

    Science.gov (United States)

    Zhao, Jianlin; Kang, Qinjun; Yao, Jun; Viswanathan, Hari; Pawar, Rajesh; Zhang, Lei; Sun, Hai

    2018-02-01

    Relative permeability is a critical parameter characterizing multiphase flow in porous media and it is strongly dependent on the wettability. In many situations, the porous media are nonuniformly wet. To investigate the effect of wettability heterogeneity on relative permeability of two-phase flow in porous media, a multi-relaxation-time color-gradient lattice Boltzmann model is adopted to simulate oil/water two-phase flow in porous media with different oil-wet solid fractions. For the water phase, when the water saturation is high, the relative permeability of water increases with the increase of oil-wet solid fraction under a constant water saturation. However, as the water saturation decreases to an intermediate value (about 0.4-0.7), the relative permeability of water in fractionally wet porous media could be lower than that in purely water-wet porous media, meaning additional flow resistance exists in the fractionally wet porous media. For the oil phase, similar phenomenon is observed. This phenomenon is mainly caused by the wettability-related microscale fluid distribution. According to both our simulation results and theoretical analysis, it is found that the relative permeability of two-phase flow in porous media is strongly related to three parameters: the fluid saturation, the specific interfacial length of fluid, and the fluid tortuosity in the flow direction. The relationship between the relative permeability and these parameters under different capillary numbers is explored in this paper.

  17. Steam explosions in light water reactors

    International Nuclear Information System (INIS)

    1981-01-01

    The report deals with a postulated accident caused by molten fuel falling into the lower plenum of the containment of a reactor. The analysis which is presented in the report shows that the thermal energy released in the resulting steam explosion is not enough to destroy the pressure vessel or the containment. The report was prepared for the Swedish Governmental Committee on steam explosion in light water reactors. It includes statements issued by internationally well-known specialists. (G.B.)

  18. A double parameters measurement of steam-water two-phase flow with single orifice

    International Nuclear Information System (INIS)

    Zhong Shuoping; Tong Yunxian; Yu Meiying

    1992-08-01

    A double parameters measurement of steam-water two-phase flow with single orifice is described. An on-line measurement device based on micro-computer has been developed. The measured r.m.s error of steam quality is less than 6.5% and the measured relative r.m.s. error of mass flow rate is less than 9%

  19. Modelling of water permeability in cementitious materials

    DEFF Research Database (Denmark)

    Guang, Ye; Lura, Pietro; van Breugel, K.

    2006-01-01

    This paper presents a network model to predict the permeability of cement paste from a numerical simulation of its microstructure. Based on a linked list pore network structure, the effective hydraulic conductivity is estimated and the fluid flow is calculated according to the Hagen-Poiseuille law....... The pressure gradient at all nodes is calculated with the Gauss elimination method and the absolute permeability of the pore network is calculated directly from Darcy's law. Finally, the permeability model is validated by comparison with direct water permeability measurements. According to this model...

  20. Flow structure of steam-water mixed spray

    International Nuclear Information System (INIS)

    Sanada, Toshiyuki; Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki

    2010-01-01

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  1. Flow structure of steam-water mixed spray

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Toshiyuki, E-mail: ttsanad@ipc.shizuoka.ac.j [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan); Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan)

    2010-12-15

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  2. Improvement of chemical control in the water-steam cycle of thermal power plants

    International Nuclear Information System (INIS)

    Rajakovic-Ognjanovic, Vladana N.; Zivojinovic, Dragana Z.; Grgur, Branimir N.; Rajakovic, Ljubinka V.

    2011-01-01

    A more effective chemical control in the water-steam cycle (WSC) of thermal power plants (TPP) is proposed in this paper. Minimization of corrosion effects by the production of ultra pure water and its strict control is the basis of all the investigated processes. The research involved the analysis of water samples in the WSC through key water quality parameters and by the most convenient analytical tools. The necessity for the stricter chemical control is demonstrated through a concrete example of the TPP Nikola Tesla, Serbia. After a thorough analysis of the chemical control system of the WSC, diagnostic and control parameters were chosen for continuous systematic measurements. Sodium and chloride ions were recognized as the ions which indicate the corrosion potential of the water and give insight into the proper production and maintenance of water within the WSC. Chemical transformations of crucial corrosion elements, iron and silica, were considered and related to their quantitative values. - Research highlights: → The more effective chemical control in the water-steam cycle of thermal power plant Nikola Tesla, Serbia. → In chemical control the diagnostic and control parameters were optimized and introduced for the systematic measurements in the water-steam cycle. → Sodium and chloride ions were recognized as ions which indicate corrosion potential of water and give insight to proper function of production and maintenance of water within water-team cycle. → Chemical transformations of crucial corrosion elements, iron and silica are considered and related with their quantitative values.

  3. 3D seismic modeling in geothermal reservoirs with a distribution of steam patch sizes, permeabilities and saturations, including ductility of the rock frame

    Science.gov (United States)

    Carcione, José M.; Poletto, Flavio; Farina, Biancamaria; Bellezza, Cinzia

    2018-06-01

    method by the introduction of memory variables. The algorithm uses the Fourier pseudospectral method to compute the spatial derivatives. It is tested against an analytical solution obtained with the correspondence principle. We consider two main cases, namely the same rock frame (uniform porosity and permeability) saturated with water and a distribution of steam patches, and water-saturated background medium with thin layers of dissimilar permeability. Our model indicates how seismic properties change with the geothermal reservoir temperature and pressure, showing that both seismic velocity and attenuation can be used as a diagnostic tool to estimate the in situ conditions.

  4. Small leak detection by measuring surface oscillation during sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi; Hori, Masao

    1977-01-01

    Small leak sodium-water reaction tests were conducted to develop various kinds of leak detectors for the sodium-heated steam generator in FBR. The super-heated steam was injected into sodium in a reaction vessel having a sodium free surface, simulating the steam generator. The level gauge in the reaction vessel generated the most reliable signal among detectors, as long as the leak rates were relatively high. The level gauge signal was estimated to be the sodium surface oscillation caused by hydrogen bubbles produced in sodium-water reaction. Experimental correlation was derived, predicting the amplitude as a function of leak rate, hydrogen dissolution ratio, bubble rise velocity and other parameters concerned, assuming that the surface oscillation is in proportion to the gas hold-up. The noise amplitude under normal operation without water leak was increased with sodium flow rate and found to be well correlated with Froud number. These two correlations predict that a water leak in a ''MONJU'' class (300 MWe) steam generator could possibly be detected by level gauges at a leak rate above 2 g/sec. (auth.)

  5. Estimation of relative permeability and capillary pressure from mass imbibition experiments

    Science.gov (United States)

    Alyafei, Nayef; Blunt, Martin J.

    2018-05-01

    We perform spontaneous imbibition experiments on three carbonates - Estaillades, Ketton, and Portland - which are three quarry limestones that have very different pore structures and span wide range of permeability. We measure the mass of water imbibed in air saturated cores as a function of time under strongly water-wet conditions. Specifically, we perform co-current spontaneous experiments using a highly sensitive balance to measure the mass imbibed as a function of time for the three rocks. We use cores measuring 37 mm in diameter and three lengths of approximately 76 mm, 204 mm, and 290 mm. We show that the amount imbibed scales as the square root of time and find the parameter C, where the volume imbibed per unit cross-sectional area at time t is Ct1/2. We find higher C values for higher permeability rocks. Employing semi-analytical solutions for one-dimensional flow and using reasonable estimates of relative permeability and capillary pressure, we can match the experimental data. We finally discuss how, in combination with conventional measurements, we can use theoretical solutions and imbibition measurements to find or constrain relative permeability and capillary pressure.

  6. Polysulfone - CNT composite membrane with enhanced water permeability

    Science.gov (United States)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  7. Effect of condenser water in-leakage on steam generator water chemistry

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.

    1978-01-01

    Corrosive environments may be generated within steam genrators from condenser cooling water in-leakage. Theoretical as well as experimental evaluation of the aggressiveness of such environments is being carried out for the condenser-cooling waters used at CANDU-PHW nuclear power stations. Calculations have shown that highly concentrated chloride solutions - acidic in the case of sea-water in-leakage, and alkaline in the rest of the cases considered - would be produced within the steam generator. Experiments in a model boiler showed that sea-water in-leakage caused rapid corrosion of carbon steel components when only AVT (all volatile treatment) was used for water chemistry control. Use of a non-volatile reagent, as in the congruent phosphate treatment, avoided the rapid corrosion of carbon steel. On the basis of our studies, congruent phosphate treatment during sea water in-leakage appears desirable. (author)

  8. Operating experience with steam generator water chemistry in Japanese PWR plants

    International Nuclear Information System (INIS)

    Onimura, K.; Hattori, T.

    1991-01-01

    Since the first PWR plant in Japan started its commercial operation in 1970, seventeen plants are operating as of the end of 1990. First three units initially applied phosphate treatment as secondary water chemistry control and then changed to all volatile treatment (AVT) due to phosphate induced wastage of steam generator tubing. The other fourteen units operate exclusively under AVT. In Japan, several corrosion phenomena of steam generator tubing, resulted from secondary water chemistry, have been experienced, but occurrence of those phenomena has decreased by means of improvement on impurity management, boric acid treatment and high hydrazine operation. Recently secondary water chemistry in Japanese plants are well maintained in every stage of operation. This paper introduces brief summary of the present status of steam generators and secondary water chemistry in Japan and ongoing activities of investigation for future improvement of reliability of steam generator. History and present status of secondary water chemistry in Japanese PWRs were introduced. In order to get improved water chemistry, the integrity of secondary system equipments is essential and the improvement in water chemistry has been achieved with the improvement in equipments and their usage. As a result of those efforts, present status of secondary water is excellent. However, further development for crevice chemistry monitoring technique and an advanced water chemistry data management system is desired for the purpose of future improvement of reliability of steam generator

  9. Data on thermal conductivity, water vapour permeability and water absorption of a cementitious mortar containing end-of-waste plastic aggregates

    OpenAIRE

    Di Maio, Luciano; Coppola, Bartolomeo; Courard, Luc; Michel, Frédéric; Incarnato, Loredana; Scarfato, Paola

    2018-01-01

    The data presented in this article are related to the research article entitled “Hygro-thermal and durability properties of a lightweight mortar made with foamed plastic waste aggregates ” (Coppola et al., 2018). This article focuses the attention on thermal conductivity, water vapour permeability and water absorption of a lightweight cementitious mortar containing foamed end-of-waste plastic aggregates, produced via foam extrusion process. Thermal conductivity, water vapour permeability ...

  10. Countercurrent air/water and steam/water flow above a perforated plate. Report for October 1978-October 1979

    International Nuclear Information System (INIS)

    Hsieh, C.; Bankoff, S.G.; Tankin, R.S.; Yuen, M.C.

    1980-11-01

    The perforated plate weeping phenomena have been studied in both air/water and steam/cold water systems. The air/water experiment is designed to investigate the effect of geometric factors of the perforated plate on the rate of weeping. A new dimensionless flow rate in the form of H star is suggested. The data obtained are successfully correlated by this H star scaling in the conventional flooding equation. The steam/cold water experiment is concentrated on locating the boundary between weeping and no weeping. The effects of water subcooling, water inlet flow rate, and position of water spray are investigated. Depending on the combination of these factors, several types of weeping were observed. The data obtained at high water spray position can be related to the air/water flooding correlation by replacing the stream flow rate to an effective stream flow rate, which is determined by the mixing efficiency above the plate

  11. Study of air and steam leak rate through damaged concrete wall

    International Nuclear Information System (INIS)

    Abdeslam Laghcha; Gerard Debicki; Benoit Masson

    2005-01-01

    Full text of publication follows: The leak rate prediction of air and steam through a cracked concrete wall is an extremely important issue in assessing the safety of nuclear reactor containment building. Furthermore the relation between air leak rate and steam leak rate on the same wall could have some interest for safety prediction. This laboratory study investigates the transfer of fluids through a wall of 1.3 m of thickness, with a focus on two cases: one on a mechanically damaged concrete by compressive stress and another one on a crossing artificial flaw in a construction joint realized in the concrete specimen (cylindrical / section 0.1925 m 2 / length 1.3 m). The both specimens were made of ordinary concrete (compressive strength: 35 MPa). To initiate residual compressive cracks, the specimen (A) was loaded in compression under controlled strains until a level of 90% of the failure strain was reached. To create a crossing artificial flaw in a construction joint, the concrete was set in the mould in two times, the second time, a water saturated sand bed was placed on the surface of the hardened concrete to realize the flaw along a diameter of the specimen (B). The permeability of damaged concrete wall was studied comparatively under two conditions, but without appreciable stresses applied on. The first condition was at ambient temperature, a reference test of permeability, with dry air, gave the characteristics of permeability and the type of flow through the specimen. In this case, the used method consisted to proceed by stages. The imposed pressures on the exposed face were successively 0.1, 0.18, 0.23, 0.28, 0.34 and 0.42 MPa, the other face was at atmospheric pressure. The second condition was an accidental scenario with simultaneous effects of temperature and gas (a mix of air and steam) pressure applied on a face, the other one remaining at atmospheric pressure and temperature. During the test, the lateral face of the cylindrical specimen was thermally

  12. Effect Of Hot Water Injection On Sandstone Permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Fabricius, Ida Lykke

    2012-01-01

    of published results regarding the effect of temperature on sandstone permeability. These tests are performed with mineral oil, nitrogen gas, distilled water and solutions of NaCl, KCl, CaCl2 as well as brines that contain a mixture of salts. Thirteen sandstone formations, ranging from quartz arenites...... to formations with a significant fraction of fine particles including clay minerals are investigated. The porosities range from 0.10 to 0.30 and permeabilities span the range from 1 to 1000 md. To compare different rock types, specific surface is determined from permeability and porosity using Kozeny’s equation...... not account for all the permeability reductions observed. Permeablity reduction occurs both when distilled water is the saturating fluid as well as in tests with NaCl, KCl or CaCl2 solutions, however, this is not the case in tests with mineral oil or nitrogen gas. The formation of a filter cake or influx...

  13. Acoustic detection for water/steam leak from a tube of LMFBR steam generator

    International Nuclear Information System (INIS)

    Sonoda, Masataka; Shindo, Yoshihisa

    1989-01-01

    Acoustic leak detector is useful for detecting more quickly intermediate leak than the existing hydrogen detector and is available for identification of leak location on the accident of water/steam leak from a tube of LMFBR steam generator. This paper presents the overview of HALD (High frequency Acoustics Leak Detection) system, which is more sensitive for leak detection and lower cost of equipment for identification of leak location than a low frequency type detector. (author)

  14. Relative permeability of fractured wellbore cement: an experimental investigation using electrical resistivity monitoring for moisture content

    Science.gov (United States)

    Um, W.; Rod, K. A.; Strickland, C. E.

    2016-12-01

    Permeability is a critical parameter needed to understand flow in subsurface environments; it is particularly important in deep subsurface reservoirs where multiphase fluid flow is common, such as carbon sequestration and geothermal reservoirs. Cement is used in the annulus of wellbores due to its low permeable properties to seal aquifers, reducing leaks to adjacent strata. Extreme subsurface environments of CO2 storage and geothermal production conditions will eventually reduce the cement integrity, propagating fracture networks and increasing the permeability for air and/or water. To date, there have been no reproducible experimental investigations of relative permeability in fractured wellbore cement published. To address this gap, we conducted a series of experiments using fractured Portland cement monoliths with increasing fracture networks. The monolith cylinder sides were jacketed with heavy-duty moisture-seal heat-shrink tubing, then fractured using shear force applied via a hydraulic press. Fractures were generated with different severity for each of three monoliths. Stainless steel endcaps were fixed to the monoliths using the same shrink-wrapped jacket. Fracture characteristics were determined using X-ray microtomography and image analysis. Flow controllers were used to control flow of water and air to supply continuous water or water plus air, both of which were delivered through the influent end cap. Effluent air flow was monitored using a flow meter, and water flow was measured gravimetrically. To monitor the effective saturation of the fractures, a RCON2 concrete bulk electrical resistivity test device was attached across both endcaps and a 0.1M NaNO3 brine was used as the transport fluid to improve resistivity measurements. Water content correlated to resistivity measurements with a r2 > 0.96. Data from the experiments was evaluated using two relative permeability models, the Corey-curve, often used for modeling relative permeability in porous media

  15. Type GQS-1 high pressure steam manifold water level monitoring system

    International Nuclear Information System (INIS)

    Li Nianzu; Li Beicheng; Jia Shengming

    1993-10-01

    The GQS-1 high pressure steam manifold water level monitoring system is an advanced nuclear gauge that is suitable for on-line detecting and monitor in high pressure steam manifold water level. The physical variable of water level is transformed into electrical pulses by the nuclear sensor. A computer is equipped for data acquisition, analysis and processing and the results are displayed on a 14 inch color monitor. In addition, a 4 ∼ 20 mA output current is used for the recording and regulation of water level. The main application of this gauge is for on-line measurement of high pressure steam manifold water level in fossil-fired power plant and other industries

  16. Control-volume-based model of the steam-water injector flow

    Science.gov (United States)

    Kwidziński, Roman

    2010-03-01

    The paper presents equations of a mathematical model to calculate flow parameters in characteristic cross-sections in the steam-water injector. In the model, component parts of the injector (steam nozzle, water nozzle, mixing chamber, condensation wave region, diffuser) are treated as a series of connected control volumes. At first, equations for the steam nozzle and water nozzle are written and solved for known flow parameters at the injector inlet. Next, the flow properties in two-phase flow comprising mixing chamber and condensation wave region are determined from mass, momentum and energy balance equations. Then, water compression in diffuser is taken into account to evaluate the flow parameters at the injector outlet. Irreversible losses due to friction, condensation and shock wave formation are taken into account for the flow in the steam nozzle. In two-phase flow domain, thermal and mechanical nonequilibrium between vapour and liquid is modelled. For diffuser, frictional pressure loss is considered. Comparison of the model predictions with experimental data shows good agreement, with an error not exceeding 15% for discharge (outlet) pressure and 1 K for outlet temperature.

  17. Water hammer caused by rapid steam production in a severe accident in a light water reactor

    International Nuclear Information System (INIS)

    Inasaka, Fujio; Adachi, Masaki; Murata, Hiroyuki; Aya, Izuo

    2007-01-01

    We conducted the experimental studies on the water hammer caused by striking of a water mass pushed up by a rapidly growing steam bubble, using a cylindrical model containment vessel of 0.4286 m in diameter. In the experiments, a rapid gas growth was simulated by injecting high-pressure steam into a water pool. It was clarified that coherency of the water mass movement and its water hammer caused by the condensable gas production considerably decreased in comparison with the case of the non-condensable gas production because the rising velocity of the water mass was suppressed due to the steam bubble condensation. On the basis of the data, experimental correlations for estimating the water hammer on the structures in the containment vessel were proposed. (author)

  18. Units 3 and 4 steam generators new water level control system

    International Nuclear Information System (INIS)

    Dragoev, D.; Genov, St.

    2001-01-01

    The Steam Generator Water Level Control System is one of the most important for the normal operation systems, related to the safety and reliability of the units. The main upgrading objective for the SG level and SGWLC System modernization is to assure an automatic maintaining of the SG level within acceptable limits (below protections and interlocks) from 0% to 100% of the power in normal operation conditions and in case of transients followed by disturbances in the SG controlled parameters - level, steam flow, feedwater flow and/or pressure/temperature. To achieve this objective, the computerized controllers of new SG water level control system follows current computer control technology and is implemented together with replacement of the feedwater control valves and the needed I and C equipment. (author)

  19. On calculation of a steam-water flow in a geothermal well

    Science.gov (United States)

    Shulyupin, A. N.; Chermoshentseva, A. A.

    2013-08-01

    Approaches to calculation of a steam-water flow in a geothermal well are considered. For hydraulic applications, a WELL-4 model of a steam-water well is developed. Data obtained using this model are compared with experimental data and also with calculations by similar models including the well-known HOLA model. The capacity of the A-2 well in the Mutnovskoe flash-steam field (Kamchatka half-island, Russia) after planned reconstruction is predicted.

  20. Research on axial total pressure distributions of sonic steam jet in subcooled water

    International Nuclear Information System (INIS)

    Wu Xinzhuang; Li Wenjun; Yan Junjie

    2012-01-01

    The axial total pressure distributions of sonic steam jet in subcooled water were experimentally investigated for three different nozzle diameters (6.0 mm, 8.0 mm and 10.0 mm). The inlet steam pressure, and pool subcooling subcooled water temperature were in the range of 0.2-0.6 MPa and 420-860 ℃, respectively. The effect of steam pressure, subcooling water temperature and nozzle size on the axial pressure distributions were obtained, and also the characteristics of the maximum pressure and its position were studied. The results indicated that the characteristics of the maximum pressure were influenced by the nozzle size for low steam pressure, but the influence could be ignored for high steam pressure. Moreover, a correlation was given to correlate the position of the maximum pressure based on steam pressure and subcooling water temperature, and the discrepancies of predictions and experiments are within ±15%. (authors)

  1. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  2. Steam explosion - physical foundations and relation to nuclear reactor safety

    International Nuclear Information System (INIS)

    Schumann, U.

    1982-08-01

    'Steam explosion' means the sudden evaporation of a fluid by heat exchange with a hotter material. Other terms are 'vapour explosion', 'thermal explosion', and 'energetic fuel-coolant interaction (FCI)'. In such an event a large fraction of the thermal energy initially stored in the hot material may possibly be converted into mechanical work. For pressurized water reactors one discusses (e.g. in risk analysis studies) a core melt-down accident during which molten fuel comes into contact with water. In the analysis of the consequences one has to investigate steam explosions. In this report an overview over the state of the knowledge is given. The overview is based on an extensive literature review. The objective of the report is to provide the basic knowledge which is required for understanding of the most important theories on the process of steam explosions. Following topics are treated: overview on steam explosion incidents, work potential, spontaneous nucleation, concept of detonation, results of some typical experiments, hydrodynamic fragmentation of drops, bubbles and jets, coarse mixtures, film-boiling, scenario of a core melt-down accident with possible steam-explosion in a pressurized water reactor. (orig.) [de

  3. Entrainment and deposition studies in two-phase cross flow: comparison between air-water and steam-water in a square horizontal duct. Technical report (final)

    International Nuclear Information System (INIS)

    Berryman, R.J.; Ralph, J.C.; Wade, C.D.

    1981-03-01

    Air-water simulation studies of two phase steam water flow relevant to the upper plenum of a PWR during reflood situations have recently been undertaken at Harwell for the US Nuclear Regulatory Commission. In order to give confidence that the simulation fluids were capable of modelling the important features of the actual system, a relatively basic comparison experiment has been carried out. Water entrainment and deposition tests have been carried out on a pair of 2.5 cm diameter vertical rods mounted in a cross flow of steam or air in a 10.2 cm x 10.2 cm tunnel. The air and steam systems exhibited similar characteristics to one another. A 'critical' film flowrate was identified for the rods which, once reached, either by injection through the sinters or by entrainment from the main two phase stream, was not exceeded with further water addition. The 'critical' film flowrate decreased with increase of cross flow velocity and was lower for air than steam at the same velocity. The results from the air and steam tests were found to be reasonably well correlated on the basis of the cross flow momentum flux of the air or steam

  4. Prevention of serious impurity penetration into water-steam circuits

    International Nuclear Information System (INIS)

    Burgmann, F.; Bursik, A.; Flunkert, F.; Nieder, R.

    1977-01-01

    In consequence of reports from several power Plants concerning heavy damages due to penetrations of impurities into the water-steam circuit, the VGB Sub-Committee 'Water Chemistry in Thermal Power Plants' has established a working group to check-up how serious impurity penetration can be avoided. The lecture describes possible danger points. Suitable technical arrangements for the avoidance of penetrations, and possibilities for monitoring will be discussed. Penetration of impurities cannot be avoided with absolute reliability, even when the recommended arrangements and usual monitoring are realized. Additional measures for the protection of water steam circuits will be suggested. (orig.) [de

  5. Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

    Science.gov (United States)

    Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen

    2018-01-01

    Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.

  6. Determination of Three-Phase Relative Permeabilities under Reservoir Conditions by Hot Water and Steamflood Experiments Détermination de perméabilités relatives tri-phasiques en conditions de réservoir, à partir d'expériences de balayages à l'eau chaude et à la vapeur

    Directory of Open Access Journals (Sweden)

    Quettier L.

    2006-11-01

    Full Text Available In order to help the physical and numerical interpretation of Emeraude's steam pilot, two-phase waterfloods at four temperatures (between 30 and 240°C and a steamflood were performed in the laboratory using the same porous medium (compacted silt and under reservoir conditions. Dynamic isothermal displacements were interpreted with a thermal simulator taking into account capillary end effects. The corresponding oil-water relative permeability curves were obtained by matching observed pressure drop and oil production. Results show that temperature influences the end-point saturations but not the shape of the curves. The steamflood experiment was carried out in an adiabatic core holder. Oil stripping and production of a large amount of CO2 caused by dissolution of carbonates were pointed out. The numerical interpretation of this experiment, by making use of the oil-water relative permeabilities, provided the three-phase oil relative permeability which is an essential datum for numerical interpretation of a steam drive pilot. Then a parameter study was used to quantify the influence of the different mechanisms involved in hot water and steam floods. Dans le but de faciliter l'interprétation physique et numérique du pilote vapeur d' Emeraude, des balayages eau-huile à quatre températures (entre 30 et 240°C et un balayage à la vapeur ont été réalisés au laboratoire. Toutes ces expériences ont été effectuées sur le même milieu poreux (silt compacté et en conditions de réservoir. Les déplacements bi-phasiques isothermes, en écoulement transitoire, ont été interprétés avec un modèle numérique thermique qui prend en compte les effets capillaires aux extrémités de l'échantillon. Les courbes de perméabilités relatives dynamiques eau-huile sont déterminées par calage, sur les courbes expérimentales, de la différence de pression et de la production d'huile simulées. Les résultats montrent que la température influe sur les

  7. Steam generators in indirect-cycle water-cooled reactors

    International Nuclear Information System (INIS)

    Fajeau, M.

    1976-01-01

    In the indirect cycle water-cooled nuclear reactors, the steam generators are placed between the primary circuit and the turbine. They act both as an energy transmitter and as a leaktigh barrier against fission or corrosion products. Their study is thus very important from a performance and reliability point of view. Two main types are presented here: the U-tube and the once-through steam generators [fr

  8. Improvement of steam separator in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Jan Peter; Cremer, Ingo; Lorenz, Maik [AREVA GmbH, Erlangen (Germany)

    2013-07-01

    The potential to improve the function of the steam separator is identified and explored by scaled air-water tests and validated CFD calculations. It can be outlined that requirements on a modern steam separator for BWR plants will be fulfilled, combined with very good operational experience of the existing separator designs (e.g. material, layout). With the new steam separator design, modern high performance fuel assembly designs can be used for various core loading strategies (e.g. low leakage). This allows an increased thermal power of up to +50 % for the fuel element clusters in the center of the core with high radial peaking factors. In addition, any problems with unallowable high moisture at the turbine are solved with the new design, which have been identified for running BWR plants with the old steam separator design after applying new core loading patterns (e.g. after power uprates). A compatible steam separator design for all running BWRs is ready to launch. (orig.)

  9. QA practice for online analyzers in water steam cycles

    International Nuclear Information System (INIS)

    Staub, L.

    2010-01-01

    The liberalization of power markets throughout the world has resulted in more and more power stations being operated in cycling mode, with frequent load changes and multiple daily start-up and shut-down cycles. This more flexible operation also calls for better automation and poses new challenges to water chemistry in water steam cycles, to avoid subsequent damage to vital plant components such as turbines, boilers or condensers. But automation for the most important chemistry control tool, the sampling and online analyzer system, is only possible if chemists can rely on their online analysis equipment. Proof of plausibility as well as reliability and availability of online analysis results becomes a major focus. While SOP and standard QA procedures for laboratory equipment are well established and daily practice, such measures are widely neglected for online process analyzers. This paper is aiming to establish a roadmap for the implementation of SOP and QA/QC procedures for online instruments in water steam cycles, leading to reliable chemical information that is trustworthy for process automation and chemistry control in water steam cycles. (author)

  10. QA practice for online analyzers in water steam cycles

    International Nuclear Information System (INIS)

    Staub Lukas

    2009-01-01

    The liberalization of power markets throughout the world has resulted in more and more power stations being operated in cycling mode, with frequent load changes and multiple daily start-up and shut-down cycles. This more flexible operation also calls for better automation and poses new challenges to water chemistry in water steam cycles, to avoid subsequent damage to vital plant components such as turbines, boilers or condensers. But automation for the most important chemistry control tool, the sampling and online analyzer system, is only possible if chemists can rely on their online analysis equipment. Proof of plausibility as well as reliability and availability of online analysis results becomes a major focus. While SOP and standard QA procedures for laboratory equipment are well established and daily practice, such measures are widely neglected for online process analyzers. This paper is aiming to establish a roadmap for the implementation of SOP and QA/QC procedures for online instruments in water steam cycles, leading to reliable chemical information that is trustworthy for process automation and chemistry control in water steam cycles. (author)

  11. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors. (6) Operating characteristics of center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Yujiro; Abe, Yutaka; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2004-01-01

    One of the most interesting devices for next generation reactor systems aiming at simplified system and improvement of safety and credibility is the steam injector which is a passive pump without large motor or turbo-machinery. One of the applications of the steam injector is the passive water injection system to inject the coolant water into the core. The system can be started up merely by injecting the steam without any outer power supply. Since the steam injector is a simple, compact and passive device for water injection, if the steam injector is applied to the actual reactor, it is expected to make the system simple and to reduce the construction cost. Although non-condensable gases are well known for reducing heat transfer between water and steam, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper reports about the experimental apparatus, measurement instrument and experimental results of observing the phenomenon inside the test section supplying water and steam to the test by using both the high-speed camera and the video camera and measuring the temperature and the pressure distribution n the test section. (author)

  12. Research on the performance of sand-based environmental-friendly water permeable bricks

    Science.gov (United States)

    Cai, Runze; Mandula; Chai, Jinyi

    2018-02-01

    This paper examines the effects of the amount of admixture, the water cement ratio, the aggregate grading, and the cement aggregate ratio on the mechanical service properties and of porous concrete pavement bricks including strength, water permeability, frost resistance, and wear resistance. The admixture can enhance the performance of water permeable brick, and optimize the design mix. Experiments are conducted to determine the optimal mixing ratios which are given as; (1) the admixture (self-developed) within the content of 5% of the cement quality; (2) water-cement ratio equal to 0.34; (3) cement-aggregate ratio equal to 0.25; (4) fine aggregate of 70% (particle size 0.6-2.36mm); and coarse aggregate of 30% (particle size: 2.36-4.75mm). The experimental results that the sand-based permeable concrete pavement brick has a strength of 35.6MPa and that the water permeability coefficient is equal to 3.5×10-2cm/s. In addition, it was found that the concrete water permeable brick has good frost resistance and surface wear resistance, and that the its production costs are much lower than the similar sand-based water permeable bricks in China.

  13. Condensate induced water hammer in a steam distribution system results in fatality

    International Nuclear Information System (INIS)

    Debban, H.L.; Eyre, L.E.

    1996-02-01

    Water hammer event s in steam distribution piping interrupt service and have the potential to cause serious injury and property damage. Conditions of condensation induced water hammer are discussed and recommendations aimed to improve safety of steam systems are presented. Condensate induced water hammer events at Hanford, a DOE facility, are examined

  14. Water permeability is a measure of severity in acute appendicitis.

    Science.gov (United States)

    Pini, Nicola; Pfeifle, Viktoria A; Kym, Urs; Keck, Simone; Galati, Virginie; Holland-Cunz, Stefan; Gros, Stephanie J

    2017-12-01

    Acute appendicitis is the most common indication for pediatric abdominal emergency surgery. Determination of the severity of appendicitis on clinical grounds is challenging. Complicated appendicitis presenting with perforation, abscess or diffuse peritonitis is not uncommon. The question remains why and when acute appendicitis progresses to perforation. The aim of this study was to assess the impact of water permeability on the severity of appendicitis. We show that AQP1 expression and water permeability in appendicitis correlate with the stage of inflammation and systemic infection parameters, leading eventually to perforation of the appendix. AQP1 is also expressed within the ganglia of the enteric nervous system and ganglia count increases with inflammation. Severity of appendicitis can be correlated with water permeability measured by AQP1 protein expression and increase of ganglia count in a progressive manner. This introduces the question if regulation of water permeability can present novel curative or ameliorating therapeutic options.

  15. Permeability of volcanic rocks to gas and water

    Science.gov (United States)

    Heap, M. J.; Reuschlé, T.; Farquharson, J. I.; Baud, P.

    2018-04-01

    The phase (gas or liquid) of the fluids within a porous volcanic system varies in both time and space. Laboratory experiments have shown that gas and water permeabilities can differ for the same rock sample, but experiments are biased towards rocks that contain minerals that are expected react with the pore fluid (such as the reaction between liquid water and clay). We present here the first study that systematically compares the gas and water permeability of volcanic rocks. Our data show that permeabilities to argon gas and deionised water can differ by a factor between two and five in two volcanic rocks (basalt and andesite) over a confining pressure range from 2 to 50 MPa. We suggest here that the microstructural elements that offer the shortest route through the sample-estimated to have an average radius 0.1-0.5 μm using the Klinkenberg slip factor-are accessible to gas, but restricted or inaccessible to water. We speculate that water adsorption on the surface of these thin microstructural elements, assumed here to be tortuous/rough microcracks, reduces their effective radius and/or prevents access. These data have important implications for fluid flow and therefore the distribution and build-up of pore pressure within volcanic systems.

  16. Steam condensation behavior of high pressure water's blow down directly into water in containment under LOCA

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Ishida, Toshihisa; Yoritsune, Tsutomu; Kasahara, Y.

    1995-01-01

    JAERI has been conducting a design study of an advanced type Marine Reactor X (MRX) for merchant ships. By employing 'Integral type PWR', In-vessel type control rod drive systems', 'Water filled containment system' and 'Decay heat removal system by natural convection', MRX achieved a compact, light weight and highly safe plant. Experiments on steam condensation behavior of high pressure water's blow down into water have been conducted in order to investigate a major safety issue related to the design decision of 'Water filled containment system'. (author)

  17. Steam generation: fossil-fired systems: utility boilers; industrial boilers; boiler auxillaries; nuclear systems: boiling water; pressurized water; in-core fuel management; steam-cycle systems: condensate/feedwater; circulating water; water treatment

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A survey of development in steam generation is presented. First, fossil-fired systems are described. Progress in the design of utility and industrial boilers as well as in boiler auxiliaries is traced. Improvements in coal pulverizers, burners that cut pollution and improve efficiency, fans, air heaters and economisers are noted. Nuclear systems are then described, including the BWR and PWR reactors, in-core fuel management techniques are described. Finally, steam-cycle systems for fossil-fired and nuclear power plants are reviewed. Condensate/feedwater systems, circulating water systems, cooling towers, and water treatment systems are discussed

  18. Heat exchanging tube behaviour in steam generators of pressurized water reactors

    International Nuclear Information System (INIS)

    Pastor, D.; Oertel, K.

    1979-01-01

    Based on a comprehensive failure statistics, materials corrosion chemistry and thermohydraulics problems of the tubings of steam generators are considered. A historical review of failures in the tubings of steam generators in pressurized water reactors reflects the often successless measures by designers, manufacturers and operating organizations for preventing failures, especially with regard to materials selection and water regime. It is stated that laboratory tests could not give sufficient information about safe and stable operation of nuclear steam generators unless real constructive, hydrodynamic, thermodynamical and chemical conditions of operation had been taken into account. (author)

  19. Analytical model of impurity concentration during steam generation in permeable porous structures

    International Nuclear Information System (INIS)

    Polonskii, V.S.; Orlov, A.V.

    1993-01-01

    A model is proposed to describe the mass transfer of impurities during steam generation on a surface covered by porous deposits of corrosion products. The model is based on replacement of the actual structure of the deposits by a system of cylindrical fluid and vapor channels in which the flow of vapor and a liquid film is described by the Navier-Stokes equations. The driving force in the process is assumed to be the difference in the Laplacian pressures due to surface tension on the front and back sides of elongated vapor bubbles. Calculations performed for the operating conditions of the drums of the steam generators of nuclear power plants with water-moderated water-cooled reactors show that the mass transfer rate is extremely low in the gaps in cold drums and that the concentration of aggressive impurities deep within these channels may reach two or more orders of magnitude-thus leading to rapid corrosion. Almost complete vaporization occurs in the capillary channels of hot drums with deposits, which probably precludes corrosion in the channel depths. However, corrosion damage remains a possibility at the entrance to the channels (on the side of the second loop)

  20. Condensation induced water hammer in steam generators

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.; Saha, P.; Wu, B.J.C.; Ginsberg, T.

    1979-06-01

    The case of condensation induced water hammer in nuclear steam generators is summarized, including both feed ring-type and economizer-type geometries. A slug impact model is described and used to demonstrate the parametric dependence of the impact pressures on heat transfer rates, initial pressures, and relative initial slug and void lengths. The results of the parametric study are related also to the economizer geometry and a suggested alternative model is presented. The importance of concerns regarding attenuation of shocks in two-phase media is delineated, and a simple experiment is described which was used to determine negligible attenuation within the accuracy of the experiment for void fractions up to over 30% in bubbly and slug flows

  1. Development of a higher capacity, lower pressure drop steam/water separator with reduced primary-to-secondary spacing

    International Nuclear Information System (INIS)

    Pruster, W.P.; Kidwell, J.H.; Eaton, A.M.; Wall, J.R.

    1985-01-01

    The goal of this development effort was to double the steam flow capacity of an existing module steam/water separator design without significantly increasing the pressure drop while simultaneously minimizing the vertical distance (spacing) between the primary and secondary separation stages. The development work included extensive air/water and steam/water testing. The steam/water tests were performed at a common pressure of 300 psia (2.1 MPa) with comparable water and steam flows

  2. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  3. A new method for the experimental determination of three-phase relative permeabilities

    International Nuclear Information System (INIS)

    Perez Carrillo, Edgar Ricardo; Jose Francisco Zapata Arango; Santos Santos, Nicolas

    2008-01-01

    Petroleum reservoirs under primary, secondary or tertiary recovery processes usually experience simultaneous flow of three fluids phases (oil, water and gas). Reports on some mathematical models for calculating three-phase relative permeability are available in the Literature. Nevertheless, many of these models were designed based on certain experimental conditions and reservoir rocks and fluids. Therefore, special care has to be taken when applying them to specific reservoirs. At the laboratory level, three-phase relative permeability can be calculated using experimental unsteady-state or steady state methodologies. This paper proposes an unsteady-state methodology to evaluate three-phase relative permeability using the equipment available at the petrophysical analysis Laboratory of the Instituto Colombiano del Petroleo (ICP) of Ecopetrol S.A. Improvements to the equipment were effected in order to achieve accuracy in the unsteady-state measurement of three-phase relative permeability. The target of improvements was directed toward to the attainment of two objectives:1) the modification of the equipment to obtain more reliable experimental data and 2) the appropriate interpretation of the data obtained. Special attention was given to the differential pressure and uncertainty measurement in the determination of fluid saturation in the rock samples. Three experiments for three-phase relative permeability were conducted using a sample A and reservoir rock from the Colombian Foothills. Fluid tests included the utilization of synthetic brine, mineral oil, reservoir crude oil and nitrogen. Two runs were conducted at the laboratory conditions while one run was conducted at reservoir conditions. Experimental results of these tests were compared using 16 mathematical models of three-phase relative permeability. For the three-phase relative permeability to oil, the best correlations between experimental data and tests using Blunt, Hustad Hasen, and Baker's models were

  4. Estimation of water level and steam temperature using ensemble Kalman filter square root (EnKF-SR)

    Science.gov (United States)

    Herlambang, T.; Mufarrikoh, Z.; Karya, D. F.; Rahmalia, D.

    2018-04-01

    The equipment unit which has the most vital role in the steam-powered electric power plant is boiler. Steam drum boiler is a tank functioning to separate fluida into has phase and liquid phase. The existence in boiler system has a vital role. The controlled variables in the steam drum boiler are water level and the steam temperature. If the water level is higher than the determined level, then the gas phase resulted will contain steam endangering the following process and making the resulted steam going to turbine get less, and the by causing damages to pipes in the boiler. On the contrary, if less than the height of determined water level, the resulted height will result in dry steam likely to endanger steam drum. Thus an error was observed between the determined. This paper studied the implementation of the Ensemble Kalman Filter Square Root (EnKF-SR) method in nonlinear model of the steam drum boiler equation. The computation to estimate the height of water level and the temperature of steam was by simulation using Matlab software. Thus an error was observed between the determined water level and the steam temperature, and that of estimated water level and steam temperature. The result of simulation by Ensemble Kalman Filter Square Root (EnKF-SR) on the nonlinear model of steam drum boiler showed that the error was less than 2%. The implementation of EnKF-SR on the steam drum boiler r model comprises of three simulations, each of which generates 200, 300 and 400 ensembles. The best simulation exhibited the error between the real condition and the estimated result, by generating 400 ensemble. The simulation in water level in order of 0.00002145 m, whereas in the steam temperature was some 0.00002121 kelvin.

  5. Permeability of cork for water and ethanol.

    Science.gov (United States)

    Fonseca, Ana Luisa; Brazinha, Carla; Pereira, Helena; Crespo, Joao G; Teodoro, Orlando M N D

    2013-10-09

    Transport properties of natural (noncompressed) cork were evaluated for water and ethanol in both vapor and liquid phases. The permeability for these permeants has been measured, as well as the sorption and diffusion coefficients. This paper focuses on the differences between the transport of gases' relevant vapors and their liquids (water and ethanol) through cork. A transport mechanism of vapors and liquids is proposed. Experimental evidence shows that both vapors and liquids permeate not only through the small channels across the cells (plasmodesmata), as in the permeation of gases, but also through the walls of cork cells by sorption and diffusion as in dense membranes. The present study also shows that cork permeability for gases was irreversibly and drastically decreased after cork samples were exposed to ethanol or water in liquid phase.

  6. Numerical analysis of water hammer induced by injection of subcooled water into steam flow in a horizontal pipe

    International Nuclear Information System (INIS)

    Minato, Akihiko; Nagoyoshi, Takuji; Nakamura, Akira; Fujii, Yuzo; Aya, Izuo; Yamane, Kenji

    2004-01-01

    Subcooled water injection into steam flow in piping systems may generate a water column containing a large steam slug. The steam slug collapses due to rapid condensation and interfaces on both sides collides with each other. Water hammer takes place and sharp pressure pulse propagates through the pipe. The purpose of this study is to show capability of the present numerical simulation method for predictions of pressure transient and loads on a piping system following steam slug collapse. A three-dimensional computer code for transient gas-liquid two-phase flow was applied to simulate an experiment of steam-condensation-induced water hammer with a horizontal polycarbonate pipe. The code was based on the extended two-fluid model, which treated interface motion using the VOF (Volume of Fluid) technique. The Godunov scheme of highly compressible single-phase flow was modified for application to the Riemann problem solution of gas-liquid mixture. Analysis of local steam slug collapse resulted in comparable peak pressure and pulse width of pressure transients with the observation. The calculation of pressure pulse propagation and impact load on piping system showed the quasi-steady pressure load was imposed especially on elbow at 1/10 of water hammer peak pressure. (author)

  7. Steam generator for a pressurized-water coolant nuclear reactor

    International Nuclear Information System (INIS)

    Schroeder, H.J.; Berger, W.

    1975-01-01

    A description is given of a steam generator which has a vertical cylindrical housing having a steam output outlet, a horizontal tube sheet closing the lower end of this housing, and an inverted U-shaped tube bundle inside of the housing and having vertical inlet and outlet legs with their ends mounted in the tube sheet. Beneath the tube sheet there are inlet and outlet manifolds for the respective ends of the tube bundle so that pressurized-water coolant from a pressurized-water coolant nuclear reactor can be circulated through the tube bundle

  8. Procedure for generating steam and steam generator for operating said procedure

    International Nuclear Information System (INIS)

    Chlique, Bernard.

    1975-01-01

    This invention concerns the generation of steam by bringing the water to be vaporised into indirect thermal exchange relation with the heating steam which condenses when passing in series, along alternate routes, through bundles of tubes immersed in a vaporising chamber. A number of steam generators working on this principle already exist. The purpose of the invention is to modify the operating method of these steam generators by means of a special disposition making it possible to build a compact unit including an additional bundle of tubes heated by the condensates collected at the outlet of each bundle through which the heating steam passes [fr

  9. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (5) operating characteristics of center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Y.; Kawamoto, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2005-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. And from temperature measuring results, it is supposed that the steam temperature at the mixing nozzle is changed between about 80 degree centigrade and about 60 degree centigrade. Then from the pressure measuring results, it is confirmed that the pressure at the diffuser depends on each the throat diameter and

  10. Support vector regression model based predictive control of water level of U-tube steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Kavaklioglu, Kadir, E-mail: kadir.kavaklioglu@pau.edu.tr

    2014-10-15

    Highlights: • Water level of U-tube steam generators was controlled in a model predictive fashion. • Models for steam generator water level were built using support vector regression. • Cost function minimization for future optimal controls was performed by using the steepest descent method. • The results indicated the feasibility of the proposed method. - Abstract: A predictive control algorithm using support vector regression based models was proposed for controlling the water level of U-tube steam generators of pressurized water reactors. Steam generator data were obtained using a transfer function model of U-tube steam generators. Support vector regression based models were built using a time series type model structure for five different operating powers. Feedwater flow controls were calculated by minimizing a cost function that includes the level error, the feedwater change and the mismatch between feedwater and steam flow rates. Proposed algorithm was applied for a scenario consisting of a level setpoint change and a steam flow disturbance. The results showed that steam generator level can be controlled at all powers effectively by the proposed method.

  11. Water Permeability of Pervious Concrete Is Dependent on the Applied Pressure and Testing Methods

    Directory of Open Access Journals (Sweden)

    Yinghong Qin

    2015-01-01

    Full Text Available Falling head method (FHM and constant head method (CHM are, respectively, used to test the water permeability of permeable concrete, using different water heads on the testing samples. The results indicate the apparent permeability of pervious concrete decreasing with the applied water head. The results also demonstrate the permeability measured from the FHM is lower than that from the CHM. The fundamental difference between the CHM and FHM is examined from the theory of fluid flowing through porous media. The testing results suggest that the water permeability of permeable concrete should be reported with the applied pressure and the associated testing method.

  12. Determination of moisture content in steams and variation in moisture content with operating boiler level by analyzing sodium content in steam generator water and steam condensate of a nuclear power plant using ion chromatographic technique

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    Dry steam with moisture content less than <1% is the stringent requirements in a steam generator for good health of the turbine. In order to confirm the same, determination of sodium is done in steam generator water and steam condensate using Flame photometer in ppm level and ion chromatograph in ppb level. Depending on the carry over of sodium in steam along with the water droplet (moisture), the moisture content in steam was calculated and was found to be < 1% which is requirements of the system. The paper described the salient features of a PHWR, principle of Ion Chromatography, chemistry parameters of Steam Generators and calculation of moisture content in steam on the basis of sodium analysis. (author)

  13. Method and apparatus for enhanced heat recovery from steam generators and water heaters

    Science.gov (United States)

    Knight, Richard A.; Rabovitser, Iosif K.; Wang, Dexin

    2006-06-27

    A heating system having a steam generator or water heater, at least one economizer, at least one condenser and at least one oxidant heater arranged in a manner so as to reduce the temperature and humidity of the exhaust gas (flue gas) stream and recover a major portion of the associated sensible and latent heat. The recovered heat is returned to the steam generator or water heater so as to increase the quantity of steam generated or water heated per quantity of fuel consumed. In addition, a portion of the water vapor produced by combustion of fuel is reclaimed for use as feed water, thereby reducing the make-up water requirement for the system.

  14. Interfacial heat transfer in countercurrent flows of steam and water

    International Nuclear Information System (INIS)

    Megahed, M.M.

    1987-04-01

    A study was conducted to examine the departure from equilibrium conditions with respect to direct contact condensation. A simple analytical model, which used an equilibrium factor, K, was derived. The model was structured to represent the physical dimensions of a nuclear reactor downcomer annulus, water subcooling, wall temperature, and water flow rate. In a two step process the model was first used to isolate the average interfacial heat transfer coefficient from vertical countercurrent steam/water data of Cook et al., with the aid of a Stanton number correlation. In the second step the model was assessed by regeneration of measured steam flow rates in the experiments by Cook et al., and an additional experiment of Kim. This report documents the analytical model, the derived Stanton number correlation, and the comparison of the calculated and measured steam flow rates by which the accuracy of the model was assessed

  15. Flooding experiments with steam and water in a large diameter vertical tube

    International Nuclear Information System (INIS)

    Williams, S.N.; Solom, M.; Draznin, O.; Choutapalli, I.; Vierow, K.

    2009-01-01

    An experimental study on flooding in a large diameter tube is being conducted. In a countercurrent, two-phase flow system, flooding can be defined as the onset of flow reversal of the liquid component which results in cocurrent flow. Flooding can be perceived as a limit to two-phase countercurrent flow, meaning that pairs of liquid and gas flow rates exist that define the envelope for stable countercurrent flow for a given system. Flooding in the AP600 pressurizer surge line can affect the vessel refill rate following a small break LOCA. Analysis of hypothetical severe accidents with current simplified flooding models show that these models represent the largest uncertainty in steam generator tube creep rupture. During a hypothetical station blackout scenario without auxiliary feedwater recovery, should the hot leg become voided, the pressurizer liquid will drain to the hot leg and flooding may occur in the surge line. Experiments have been conducted in a 3-inch (76.2 mm) diameter tube with subcooled water and superheated steam as the working fluids at atmospheric pressure. Water flows down the inside of the tube as an annulus while the steam flows upward in the middle. Water flow rates vary from 3.5 to 12 GPM (0.00022 to 0.00076 m 3 /s) and the water inlet temperature is about 70degC. The steam inlet temperature is about 110degC. It was found that a larger steam flow rate was needed to achieve flooding for a lower water flow rate and for a higher water flow rate. This unique data for flooding in steam-water systems in large diameter tubes will reduce uncertainty in flooding models currently utilized in reactor safety codes. (author)

  16. Prevention and mitigation of steam generator water hammer events in PWRs

    International Nuclear Information System (INIS)

    Han, J.T.; Anderson, N.

    1983-01-01

    Water hammer in nuclear power plants is an unresolved safety issue under study by the Nuclear Regulatory Commission (NRC). This article summarizes (1) the causes of steam generator water hammer (SGWH) events in pressurized-water reactors (PWRs), (2) various methods used to prevent or mitigate SGWH events, and (3) modifications that have been made at each operating PWR. The NRC staff considers the issue of SGWH in top feedring designs to be technically resolved. This article does not address technical findings relevant to water hammer in preheat-type steam generators

  17. Methods for calculating the speed-up characteristics of steam-water turbines

    International Nuclear Information System (INIS)

    Golovach, E.A.

    1981-01-01

    The methods of approximate and specified calculations of speed- up characteristics of steam-water turbines are considered. The specified non-linear method takes into account change of thermal efficiency, heat drop and losses in the turbine as well as vacuum break-up the condenser. Speed-up characteristics of the K-1000-60-1500 turbine are presented. The calculational results obtained by the non-linear method are compared with the calculations conducted by the approximate linearized method. Differences in the frequency speed up of the turbine rotor rotation calculated by the two methods constitute only 0.5-2.0%. That is why it is necessary to take into account in the specified calculations first of all the most important factors following the rotor speed- up in the following consequence: valve shift of the high pressure cylinder (HPC); steam volume in front of the HPC; shift of the valves behind the separator-steam superheater (SSS); steam volumes and moisture boiling in the SSS; steam consumption for regenerating heating of feed water, steam volumes at the intermediate elements of the turbine, losses in the turbine, heat drop and thermal efficiency [ru

  18. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    Science.gov (United States)

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  19. Detection of steam generator tube leaks in pressurized water reactors

    International Nuclear Information System (INIS)

    Roach, W.H.

    1985-01-01

    This report addresses the early detection of small steam generator tube leaks in pressurized water reactors. It discusses the third, and final, year's work on an NRC-funded project examining diagnostic instrumentation in water reactors. The first two years were broad in coverage, concentrating on anticipatory measurements for detection of potential problems in both pressurized- and boiling-water reactors, with recommendations for areas of further study. One of these areas, the early detection of small steam tube leaks in PWRs, formed the basis of study for the last year of the project. Four tasks are addressed in this study of the detection of steam tube leaks. (1) Determination of which physical parameters indicate the onset of steam generator tube leaks. (2) Establishing performance goals for diagnostic instruments which could be used for early detection of steam generator tube leaks. (3) Defining the diagnostic instrumentation and their location which satisfy Items 1 and 2 above. (4) Assessing the need for diagnostic data processing and display. Parameters are identified, performance goals established, and sensor types and locations are specified in the report, with emphasis on the use of existing instrumentation with a minimum of retrofitting. A simple algorithm is developed which yields the leak rate as a function of known or measurable quantities. The conclusion is that leak rates of less than one-tenth gram per second should be detectable with existing instrumentation. (orig./HP)

  20. A detection of the coarse water droplets in steam turbines

    Directory of Open Access Journals (Sweden)

    Bartoš Ondřej

    2014-03-01

    Full Text Available The aim of this paper is to introduce a novel method for the detection of coarse water droplets in a low pressure part of steam turbines. The photogrammetry method has been applied for the measurement of coarse droplets in the low-pressure part of a steam turbine. A new probe based on this measurement technique was developed and tested in the laboratory and in a steam turbine in the Počerady power-plant. The probe was equipped with state-of-the-art instrumentation. The paper contains results from laboratory tests and the first preliminary measurements in a steam turbine. Possible applications of this method have been examined.

  1. Turbulence production by a steam-driven jet in a water vessel

    Energy Technology Data Exchange (ETDEWEB)

    Wissen, R.J.E. van; Schreel, K.R.A.M.; Geld, C.W.M. van der [Eindhoven Univ. of Technology (Netherlands). Dept. of Mechanical Engineering; Wieringa, J. [Unilever Research and Development, Vlaardingen (Netherlands)

    2004-04-01

    Direct steam injection is an efficient means of heating a volume of liquid. Usually the steam is injected via a nozzle, yielding a strong jet that condenses rapidly and transforms into a self-similar single phase jet. In the experiments reported in this paper, superheated steam is injected, centrally, at the bottom of a vertical, cylindrical water vessel. The resulting jet is turbulent (Re=7.9 x 10{sup 4}-18.1 x 10{sup 4} with the length scale based on the width of the jet, r{sub 1/2} and the velocity scale based on the centerline velocity, U{sub 0}). Using PIV in a vertical plane through the central axis, instantaneous velocity fields have been measured at a rate of 15 Hz. Near the inlet, the jet is mainly steam that rapidly condenses. Further downstream, the jet is essentially single phase, although some residual air is present as microscopically small bubbles. In the area directly downstream of the steam part, the ratio of r{sub 1/2} to the vessel radius R (32.5 cm) is about 1/14. The production of turbulent kinetic energy has been quantified for the main process conditions. Its dependencies on temperature, nozzle opening and inlet steam pressure have been determined. This production of energy is related to the stresses exerted on small particles in the mixture, and break-up of particles is discussed. (author)

  2. The secondary water chemistry and its quality specification of PWR steam generators

    International Nuclear Information System (INIS)

    Zhang Guiqin.

    1984-01-01

    Reasonably organizing the secondary water chemistry of a steam generator is of great importance for improving thermal-hydraulic characteristics and avoiding or alleviating probability of its internals failures by corrosion. In this paper emphasis is put on importance and task of the secondary water chemistry, the meaning and the control demand for feedwater and boiler water specification. At the same time, the current situation on the secondary water chemistry of PWR steam generators is reviewed generally. (Author)

  3. Evaluating the Influence of Pore Architecture and Initial Saturation on Wettability and Relative Permeability in Heterogeneous, Shallow-Shelf Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Alan P.; Bhattacharya, Saibal; Victorine, John; Stalder, Ken

    2007-09-30

    Thin (3-40 ft thick), heterogeneous, limestone and dolomite reservoirs, deposited in shallow-shelf environments, represent a significant fraction of the reservoirs in the U.S. midcontinent and worldwide. In Kansas, reservoirs of the Arbuckle, Mississippian, and Lansing-Kansas City formations account for over 73% of the 6.3 BBO cumulative oil produced over the last century. For these reservoirs basic petrophysical properties (e.g., porosity, absolute permeability, capillary pressure, residual oil saturation to waterflood, resistivity, and relative permeability) vary significantly horizontally, vertically, and with scale of measurement. Many of these reservoirs produce from structures of less than 30-60 ft, and being located in the capillary pressure transition zone, exhibit vertically variable initial saturations and relative permeability properties. Rather than being simpler to model because of their small size, these reservoirs challenge characterization and simulation methodology and illustrate issues that are less apparent in larger reservoirs where transition zone effects are minor and most of the reservoir is at saturations near S{sub wirr}. These issues are further augmented by the presence of variable moldic porosity and possible intermediate to mixed wettability and the influence of these on capillary pressure and relative permeability. Understanding how capillary-pressure properties change with rock lithology and, in turn, within transition zones, and how relative permeability and residual oil saturation to waterflood change through the transition zone is critical to successful reservoir management and as advanced waterflood and improved and enhanced recovery methods are planned and implemented. Major aspects of the proposed study involve a series of tasks to measure data to reveal the nature of how wettability and drainage and imbibition oil-water relative permeability change with pore architecture and initial water saturation. Focus is placed on

  4. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan

    2017-09-13

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  5. Polybenzimidazole-based mixed membranes with exceptional high water vapor permeability and selectivity

    KAUST Repository

    Akhtar, Faheem Hassan; Kumar, Mahendra; Villalobos, Luis Francisco; Shevate, Rahul; Vovusha, Hakkim; Schwingenschlö gl, Udo; Peinemann, Klaus-Viktor

    2017-01-01

    Polybenzimidazole (PBI), a thermal and chemically stable polymer, is commonly used to fabricate membranes for applications like hydrogen recovery at temperatures of more than 300 °C, fuel cells working in a highly acidic environment, and nanofiltration in aggressive solvents. This report shows for the first time use of PBI dense membranes for water vapor/gas separation applications. They showed an excellent selectivity and high water vapor permeability. Incorporation of inorganic hydrophilic titanium-based nano-fillers into the PBI matrix further increased the water vapor permeability and water vapor/N2 selectivity. The most selective mixed matrix membrane with 0.5 wt% loading of TiO2 nanotubes yielded a water vapor permeability of 6.8×104 Barrer and a H2O/N2 selectivity of 3.9×106. The most permeable membrane with 1 wt% loading of carboxylated TiO2 nanoparticles had a 7.1×104 Barrer water vapor permeability and a H2O/N2 selectivity of 3.1×106. The performance of these membranes in terms of water vapor transport and selectivity is among the highest reported ones. The remarkable ability of PBI to efficiently permeate water versus other gases opens the possibility to fabricate membranes for dehumidification of streams in harsh environments. This includes the removal of water from high temperature reaction mixtures to shift the equilibrium towards products.

  6. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Schurink, F

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.). 11 refs.; 10 figs.

  7. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    International Nuclear Information System (INIS)

    Hulshof, H.J.M.; Schurink, F.

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.)

  8. A Receding Horizon Controller for the Steam Generator Water Level

    International Nuclear Information System (INIS)

    Na, Man Gyun; Lee, Yoon Joon

    2003-01-01

    In this work, the receding horizon control method was used to control the water level of nuclear steam generators and applied to two linear models and also a nonlinear model of steam generators. A receding horizon control method is to solve an optimization problem for finite future steps at current time and to implement the first optimal control input as the current control input. The procedure is then repeated at each subsequent instant. The dynamics of steam generators is very different according to power levels. The receding horizon controller is designed by using a reduced linear steam generator model fixed over a certain power range and applied to a Westinghouse-type (U-tube recirculating type) nuclear steam generator. The proposed controller designed at a fixed power level shows good performance for any other power level within this power range. The steam generator shows actually nonlinear characteristics. Therefore, the proposed algorithm is implemented for a nonlinear model of the nuclear steam generator to verify its real performance and also shows good responses

  9. Water leak detection in steam generator of SUPER PHENIX

    International Nuclear Information System (INIS)

    Brunet, M.; Garnaud, P.; Ghaleb, D.; Kong, N.

    1988-01-01

    With the intent of detecting water leaks inside steam generators, we developed a third system, called acoustic detector, to complement hydrogen detectors and rupture disks (burst disks). The role of the acoustic system is to enable rapid intervention in the event of a leak growing rapidly which could rupture neighbouring tubes. In such a case, the detectable flow rate of the leak varies from a few tens of g/s to a few hundred g/s. At the SUPER PHENIX, three teams work in [20-100 kHz] and CEA/STA* [50-300 kHz]. The simulation of water leaks in the steam generator by the argon injections performed to date at 50% of the rated power has shown promising results. An anomaly in the evolution of the background noise at more than 50% loading of one of the two instrumented steam generators would make difficult any extrapolation to full power behaviour. (author)

  10. Graphite-water steam-generating reactor in the USSR

    Energy Technology Data Exchange (ETDEWEB)

    Dollezhal, N A [AN SSSR, Moscow

    1981-10-01

    One of the types of power reactor used in the USSR is the graphite-water steam-generating reactor RBMK. This produces saturated steam at a pressure of 7MPa. Reactors giving 1GWe each have been installed at the Leningrad, Kursk, Chernobyl and other power stations. Further stations using reactors of this type are being built. A description is given of the fuel element design, and of the layout of the plant. The main characteristics of RBMK reactors using fuel of rated and higher enrichment are listed.

  11. Water permeability in human airway epithelium

    DEFF Research Database (Denmark)

    Pedersen, Peter Steen; Procida, Kristina; Larsen, Per Leganger

    2005-01-01

    Osmotic water permeability (P(f)) was studied in spheroid-shaped human airway epithelia explants derived from nasal polyps by the use of a new improved tissue collection and isolation procedure. The fluid-filled spheroids were lined with a single cell layer with the ciliated apical cell membrane ...

  12. Water permeability of pigmented waterborne coatings

    NARCIS (Netherlands)

    Donkers, P.A.J.; Huinink, H.P.; Erich, S.J.F.; Reuvers, N.J.W.; Adan, O.C.G.

    2013-01-01

    Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible

  13. Steam generator materials and secondary side water chemistry in nuclear power stations

    International Nuclear Information System (INIS)

    Rudelli, M.D.

    1979-04-01

    The main purpose of this work is to summarize the European and North American experiences regarding the materials used for the construction of the steam generators and their relative corrosion resistance considering the water chemestry control method. Reasons underlying decision for the adoption of Incoloy 800 as the material for the secondary steam generator system for Atucha I Nuclear Power Plant (Atucha Reactor) and Embalse de Rio III Nuclear Power Plant (Cordoba Reactor) are pointed out. Backup information taken into consideration for the decision of utilizing the All Volatil Treatment for the water chemistry control of the Cordoba Reactor is detailed. Also all the reasonswhich justify to continue with the congruent fosfatic method for the Atucha Reactor are analyzed. Some investigation objectives which would eventually permit the revision of the decisions taken on these subjects are proposed. (E.A.C.) [es

  14. Steam generator tube failures: experience with water-cooled nuclear power reactors during 1976

    International Nuclear Information System (INIS)

    Tatone, O.S.; Pathania, R.S.

    1978-02-01

    A survey was conducted of experience with steam generator tubes at nuclear power stations during 1976. Failures were reported at 25 out of 68 water-cooled reactors. The causes of these failures and the repair and inspection procedures designed to cope with them are summarized. Examination of the data indicates that corrosion was the major cause of steam generator tube failures. Improvements are needed in steam generator design, condenser integrity and secondary water chemistry control. (author)

  15. 40 CFR 60.4335 - How do I demonstrate compliance for NOX if I use water or steam injection?

    Science.gov (United States)

    2010-07-01

    ... if I use water or steam injection? 60.4335 Section 60.4335 Protection of Environment ENVIRONMENTAL... compliance for NOX if I use water or steam injection? (a) If you are using water or steam injection to... monitor and record the fuel consumption and the ratio of water or steam to fuel being fired in the turbine...

  16. Condensation heat transfer coefficient in horizontal stratified cocurrent flow of steam and cold water

    International Nuclear Information System (INIS)

    Kim, Kap; Kim, Hho Jung

    1986-01-01

    Some studies on direct-contact condensation in cocurrent stratified flow of steam and subcooled water were reviewed. Several approaches have been performed to develop the condensation heat transfer coefficient relationship. The local Nusselt number is correlated in terms of the local water Reynolds and Prandtl numbers as well as the steam Froude number. In addition, a turbulence-centered model, developed principally for gas absorption in several geometries, is modified by using calculated interfacial parameters for the turbulent velocity and length scales. These approaches result in a fairly good agreement with the data, whereas, the turbulence-centered model is here recommended since it is based on the turbulent properties which may be closely related to the condensation phenomena. (Author)

  17. Effect of injection water quality on permeability of productive sands in Shaimsk group of oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, N I; Ivanov, V N; Lazarev, V N; Maksimov, V P

    1966-01-01

    Water from the Kond River is used to flood Shaimsk oil fields. Effect of raw and filtered waters on permeability of Shaimsk cores was experimentally determined. The raw river water contained 26 mg/liter of suspended solids, 10.7 mg/liter of total iron, 4.3 mg/liter of suspended iron oxide, and a pH of 6.4. The filtered river water was free of suspended solids and had a pH of 6.2. It was found that both raw and filtered water decreased core permeability. The unfiltered water decreased permeability 2 to 7 times more than the filtered water. Also, the decrease in permeability occurs much more slowly with the filtered than the unfiltered water. The effect of water on core permeability is essentially irreversible. Efforts to restore core permeability by reversing flow direction were not successful. Among the reasons for the permeability decrease were hydration and swelling of clays and evolution of gases from water in the cores. (10 refs.)

  18. Large-leak sodium-water reaction analysis for steam generators

    International Nuclear Information System (INIS)

    Sakano, K.; Shindo, Y.; Hori, M.

    1975-01-01

    The guillotine rupture of 4 tubes is assumed as a design basis regarding the large-leak sodium-water reaction in the system of the MONJU steam generator. Three kinds of analyses were performed with the view to showing the integrity of the steam generator system on the reaction. The first one is the analysis of the initial pressure spike, assuming the initial guillotine rupture of 1 tube. The analysis was performed by utilizing one-dimensional sphere-cylinder model code SWAC-7 and two-dimensional axisymmetric code PISCES 2DL. The second one is the analysis of the secondary peak pressure and its propagation in the system, assuming the instantaneous guillotine rupture of 4 tubes. The third one is the analysis of the dynamic deformation of the steam generator shell. The integrity of the steam generator system was shown by the analyses. (author)

  19. Large-leak sodium-water reaction analysis for steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakano, K; Shindo, Y; Hori, M

    1975-07-01

    The guillotine rupture of 4 tubes is assumed as a design basis regarding the large-leak sodium-water reaction in the system of the MONJU steam generator. Three kinds of analyses were performed with the view to showing the integrity of the steam generator system on the reaction. The first one is the analysis of the initial pressure spike, assuming the initial guillotine rupture of 1 tube. The analysis was performed by utilizing one-dimensional sphere-cylinder model code SWAC-7 and two-dimensional axisymmetric code PISCES 2DL. The second one is the analysis of the secondary peak pressure and its propagation in the system, assuming the instantaneous guillotine rupture of 4 tubes. The third one is the analysis of the dynamic deformation of the steam generator shell. The integrity of the steam generator system was shown by the analyses. (author)

  20. The fate of organics in the water-steam cycle

    International Nuclear Information System (INIS)

    Huebner, P.

    2006-01-01

    The behaviour of organic matter in power plants has been examined. The samples were taken from water treatment plants producing make-up water for boilers as well as from water-steam cycles and cooling cycles. The power plants examined were Czech power plants, both fossil and nuclear, and one Slovakian nuclear plant. The tests were performed by the liquid chromatography - organic carbon detection (LC-OCD) method at a subcontractor lab. This method enables distinguishing between different groups of organic matter and from experience the effectiveness of water treatment technologies and the possible influence on the water-steam cycle of the power plant can be estimated. It has been confirmed that by using appropriate flocculation the problems in water treatment plants diminish and the VGB limit for total organic carbon (TOC) concentration of 200 μg . L -1 in boiler feedwater may be reached. The lower limit following EPRI recommendations of 100 μg . L -1 is hardly achievable using existing water treatment technology. This provides an open field for reverse osmosis technology that is able to remove organics completely. (orig.)

  1. Scaled physical model studies of the steam drive process. First annual report, September 1977-September 1978

    Energy Technology Data Exchange (ETDEWEB)

    Doscher, T M

    1980-12-01

    Scaling laws of the heat transport mechanism in steam displacement processes are developed based upon an integral energy balance equation. Unlike the differential approach adopted by previous workers, the above scaling laws do not necessitate the use of any empirical correction factor as has been done in previous scaling calculations. The results provide a complete and consistent scale-down of the energy transport behavior, which is the critical mechanism for the success of a steam injection process. In the course of the study, the scaling problems associated with relative permeability and capillary pressure are also discussed. A method which has often been used in scaling nonthermal displacement processes is applied to reduce errors due to scaling in relative permeability. Both dimensional and inspectional analyses are applied to illustrate their use in steam processes. Scale-up laws appeared in the literature and those used in this study are compared and numerical examples are given.

  2. The measurement of water vapor permeability of glove materials using dilute tritiated water

    International Nuclear Information System (INIS)

    Doughty, D.H.

    1982-01-01

    As fusion technology progresses, there will be an increasing need to handle tritium and tritiated compounds. Protective clothing, especially drybox gloves, must be an effective barrier to minimize worker exposure. The water vapor permeability of glove materials and finished glove constructions is a crucial property of drybox gloves and is not sufficiently well characterized. We have built an apparatus that measures water vapor permeability of elastomers using dilute tritiated water. The technique is more sensitive than other methods currently available and allows us to make measurements on materials and under conditions previously inaccessible. In particular, we present results on laminated drybox gloves for which data is not currently available. (orig.)

  3. Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination

    Energy Technology Data Exchange (ETDEWEB)

    Cohen-Tanugi, David; Grossman, Jeffrey C. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-08-21

    Nanoporous graphene (NPG) shows tremendous promise as an ultra-permeable membrane for water desalination thanks to its atomic thickness and precise sieving properties. However, a significant gap exists in the literature between the ideal conditions assumed for NPG desalination and the physical environment inherent to reverse osmosis (RO) systems. In particular, the water permeability of NPG has been calculated previously based on very high pressures (1000–2000 bars). Does NPG maintain its ultrahigh water permeability under real-world RO pressures (<100 bars)? Here, we answer this question by drawing results from molecular dynamics simulations. Our results indicate that NPG maintains its ultrahigh permeability even at low pressures, allowing a permeate water flux of 6.0 l/h-bar per pore, or equivalently 1041 ± 20 l/m{sup 2}-h-bar assuming a nanopore density of 1.7 × 10{sup 13} cm{sup −2}.

  4. Effects of the air–steam mixture on the permeability of damaged concrete

    Energy Technology Data Exchange (ETDEWEB)

    Medjigbodo, Sonagnon [LUNAM Université, Institut de Recherche en Génie Civil et Mécanique (GeM UMR CNRS 6183), Centrale Nantes, 1 rue de la Noe, BP 92101, F-44321 CEDEX 3 Nantes (France); Darquennes, Aveline [LMT/ENS Cachan/CNRS UMR 8535/UPMC/PRES Université Sud Paris, Cachan (France); Aubernon, Corentin [LUNAM Université, Institut de Recherche en Génie Civil et Mécanique (GeM UMR CNRS 6183), Centrale Nantes, 1 rue de la Noe, BP 92101, F-44321 CEDEX 3 Nantes (France); Khelidj, Abdelhafid [LUNAM Université, Institut de Recherche en Génie Civil et Mécanique (GeM UMR CNRS 6183), IUT de Saint Nazaire, 58 rue Michel Ange, BP 420 Heinlex, F-44600 Saint-Nazaire (France); Loukili, Ahmed, E-mail: ahmed.loukili@ec-nantes.fr [LUNAM Université, Institut de Recherche en Génie Civil et Mécanique (GeM UMR CNRS 6183), Centrale Nantes, 1 rue de la Noe, BP 92101, F-44321 CEDEX 3 Nantes (France)

    2013-12-15

    Massive concrete structures such as the containments of nuclear power plant must maintain their tightness at any circumstances to prevent the escape of radioactive fission products into the environment. In the event of an accident like a Loss of Coolant Accident (LOCA), the concrete wall is submitted to both hydric and mechanical loadings. A new experimental device reproducing these extreme conditions (water vapor transfer, 140 °C and 5 bars) is developed in the GeM Laboratory to determine the effect of the saturation degree, the mechanical loading and the flowing fluid type on the concrete transfer properties. The experimental tests show that the previous parameters significantly affect the concrete permeability and the gas leakage rate. Their evolution as a function of the mechanical loading is characterized by two phases that are directly related to concrete microstructure and crack development.

  5. Thermal Inactivation of Listeria monocytogenes and Salmonella during Water and Steam Blanching of Vegetables.

    Science.gov (United States)

    Ceylan, Erdogan; McMahon, Wendy; Garren, Donna M

    2017-09-01

    Thermal inactivation of Listeria monocytogenes and Salmonella was evaluated on peas, spinach, broccoli, potatoes, and carrots that were treated with hot water and steam. One gram-positive bacterium, L. monocytogenes, and one gram-negative bacterium, Salmonella, were selected as pertinent human pathogens for evaluation. Samples were inoculated with a composite of five strains each of L. monocytogenes and Salmonella to achieve approximately 10 8 to 10 9 CFU/g. Inoculated samples were treated with hot water at 85 and 87.8°C and with steam at 85 and 96.7°C for up to 3.5 min. A greater than 5-log reduction of L. monocytogenes and Salmonella was achieved on all products within 0.5 min by hot water blanching at 85 and 87.8°C. Steam blanching at 85°C reduced Salmonella populations by greater than 5 log on spinach and peas within 2 min and on carrots and broccoli within 3.5 min. Populations of Salmonella were reduced by more than 5 log within 1 min on carrot, spinach, and broccoli and within 2 min on peas by steam blanching at 96.7°C. Steam blanching at 85°C reduced L. monocytogenes populations by more than 5 log on carrots and spinach within 2 min and on broccoli and peas within 3.5 min. L. monocytogenes populations were reduced more than 5 log within 1 min on carrot, spinach, peas and broccoli by steam blanching at 96.7°C. Longer treatment times and higher temperatures were required for steam-blanched samples than for samples blanched with hot water. Results suggest that hot water and steam blanching practices commonly used by the frozen vegetable industry will achieve the desired 5-log lethality of L. monocytogenes and Salmonella and will enhance microbiological safety prior to freezing.

  6. Water leak detection in steam generator of Super Phenix

    International Nuclear Information System (INIS)

    Kong, N.; Brunet, M.; Garnaud, P.; Ghaleb, D.

    1990-01-01

    With the intent of detecting water leaks inside steam generators, we developed a third system, called acoustic detector, to complement hydrogen detectors and rupture disks (burst disks). The role of the acoustic system is to enable rapid intervention in the event of a leak growing rapidly which could rupture neighbouring tubes. In such a case, the detectable flow rate of the leak varies from a few tens of g/s to a few hundred g/s. At the Super Phenix, three teams work in parallel in complementary frequency bands: EDF (0-20 kHz), CEA/SPCI (20-100 kHz) and CEA/STA (50-300 kHz). The simulation of water leaks in the steam generator by the argon injections performed to date at 50% of the rated power has shown promising results. An anomaly in the evolution of the background noise at more than 50% loading of one of the two instrumented steam generators would make difficult any extrapolation to full power behaviour. 5 refs, 6 figs, 1 tab

  7. Water and nonelectrolyte permeability of isolated rat hepatocytes

    International Nuclear Information System (INIS)

    Alpini, G.; Garrick, R.A.; Jones, M.J.; Nunes, R.; Tavoloni, N.

    1986-01-01

    We have measured the diffusive permeability coefficients of isolated rat hepatocytes to 3 H 2 O, [ 14 C]urea, [ 14 C]erythritol, [ 14 C]mannitol, [ 3 H]sucrose, and [ 3 H]inulin, employing a technique previously developed for erythrocytes (Redwood et al., J. Gen. Physiol 64:706-729, 1974). Diffusion coefficients for the tracer molecules were measured in packed hepatocytes, supernatant fluid, and intracellular medium (lysed hepatocytes) and were calculated assuming one-dimensional semi-infinite diffusion through a homogeneous medium. By applying the series-parallel pathway model, the following permeability coefficients (10(-5) cm/sec) for the hepatocyte plasma membrane were obtained. 3 H 2 O, 98.6 +/- 18.4; [ 14 C]urea, 18.2 +/- 5.3; [ 14 C]erythritol, 4.8 +/- 1.6; [ 14 C]mannitol, 3.1 +/- 1.4; [ 3 H]sucrose, 0; [ 3 H]inulin, 0. These results indicate that isolated rat hepatocytes are highly permeable to water and polar nonelectrolytes, when compared with other transporting epithelia. This relatively high cellular permeability is consistent with a model in which nonelectrolyte permeation is via an aqueous pathway of equivalent pore diameter of 8-12 A. The finding that [ 14 C]erythritol and [ 14 C]mannitol cross the hepatocyte plasma membrane indicates that these molecules enter the bile canaliculus through the transcellular route. Conversely, the failure of [ 3 H]sucrose and [ 3 H]inulin to permeate the hepatocyte in the isolated condition supports the concept that biliary entry of these large carbohydrates, at least that fraction which cannot be accounted for by a vesicular mechanism, must occur via the transjunctional shunt pathway

  8. Classification of cassava starch films by physicochemical properties and water vapor permeability quantification by FTIR and PLS.

    Science.gov (United States)

    Henrique, C M; Teófilo, R F; Sabino, L; Ferreira, M M C; Cereda, M P

    2007-05-01

    Cassava starches are widely used in the production of biodegradable films, but their resistance to humidity migration is very low. In this work, commercial cassava starch films were studied and classified according to their physicochemical properties. A nondestructive method for water vapor permeability determination, which combines with infrared spectroscopy and multivariate calibration, is also presented. The following commercial cassava starches were studied: pregelatinized (amidomax 3550), carboxymethylated starch (CMA) of low and high viscosities, and esterified starches. To make the films, 2 different starch concentrations were evaluated, consisting of water suspensions with 3% and 5% starch. The filmogenic solutions were dried and characterized for their thickness, grammage, water vapor permeability, water activity, tensile strength (deformation force), water solubility, and puncture strength (deformation). The minimum thicknesses were 0.5 to 0.6 mm in pregelatinized starch films. The results were treated by means of the following chemometric methods: principal component analysis (PCA) and partial least squares (PLS) regression. PCA analysis on the physicochemical properties of the films showed that the differences in concentration of the dried material (3% and 5% starch) and also in the type of starch modification were mainly related to the following properties: permeability, solubility, and thickness. IR spectra collected in the region of 4000 to 600 cm(-1) were used to build a PLS model with good predictive power for water vapor permeability determination, with mean relative errors of 10.0% for cross-validation and 7.8% for the prediction set.

  9. Safety Evaluation for IHTS Integrity due to the Steam Generator Sodium-Water Reaction Event in the PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang-Jun; Lee, Kwi Lim; Ha, Kwi-Seok; Lee, Seung Won; Jeong, Taekyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In this paper, the integrity of the IHTS and SG by the SWR event are evaluated using the SWAAMII code. A sodium has a chemical characteristics to rigorously react the water or steam and produce the high pressure waves and high temperature reaction heat. It has an excellent characteristics as a reactor coolant. But, there is an event to be considered in the sodium cooled fast reactor design. The Sodium-Water Reaction (SWR) event can be occurred by the water or steam leaks due to the break of the steam generator tubes. The propagated high pressure waves threathen the structural integrity of the affected Intermediate Heat Transport System (IHTS) and steam generator. If the IHTS pipes are failed, the sodium of the IHTS can be released to the containment building. To the peak pressure point of view, it is performed to evaluate the integrity of the major components due to the SWR event in the SG. The generated peak pressures due to the five SG tubes simultaneous break event are within the range of the design pressure for the SG, IHX and IHTS including the related pipes.

  10. Studying the processes of sodium-water interaction in the BOR-60 reactor micromodule steam generator

    International Nuclear Information System (INIS)

    Tsykanov, V.A.; Antipin, G.K.; Borisov, V.V.

    1981-01-01

    Main results of experimental studies of emergency regimes of micromodule steam generator (MSG) at small and big leaks of water into sodium, realized using the 30 MW MSG, operating in the BOR-o0 reactor, are considered. The aims of the study are as follows: the modelling of macroleak in ''Nadja'' steam generator for the BN-350 reactor; testing the conceptions of alarm signalling and MSG protection; testing under real conditions of new perspective systems of leak detection; gaining the experimence and development of the ways to eliminate the consequences of accident caused by big water leak into sodium; accumulation of knowledge on restoration of MSG operating ability after accident; experimental test of calculational techniques for big leak accidents to use them in future for calculational studies of similar situations at other reactors equipped with sodium-water steam generators; refinement of characteristics of hydrodynamic and thermal effects interaction zone for big leak in real circuit during the plant operation. A series of experiments with the imitation of water leak into sodium by means of argon and steam supply through injection devices, located before the steam superheater module of one of the sections and between evaporator module of the same section, is conducted. The range of steam flow rate is 0.02-0.45 g/s. Duration of steam supply is 100-400 s. A conclusion is made that the results obtained can be used for steam generator of the BN-350 reactor [ru

  11. Sodium/water reactions in steam generators of liquid metal fast breeder reactors

    International Nuclear Information System (INIS)

    Hori, M.

    1980-01-01

    The status of the research and development on sodium/water reactions resulting from the leakage of water into sodium in LMFBR steam generators is reviewed. The importance of sodium/water reaction phenomena in the design and operation of steam generators is discussed. The effects of sodium/water reactions are evaluated and methods of protection against these phenomena are surveyed. The products of chemical reactions between sodium and water under steam generator conditions are H 2 , NaOH, Na 2 O and NaH. Together with the temperature rise due to the associated exothermic reaction, these reaction products cause effects such as self-wastage, single- and multi-target wastage, and rapid pressure increase, depending on the size of the leak hole or the magnitude of leak rate. As for the wastage phenomena of small leaks, the effects of various factors have been studied and experimental correlations, as well as some theoretical work, have been performed. To investigate the pressure phenomena of a large leak, large-scale tests have been conducted by various organizations, and the computer codes to analyse these phenomena have been developed and verified by experiments. In the design of steam generators, an initial failure up to a hypothetical double-ended guillotine rupture of a single heat transfer tube is widely used as the design basis leak. Protection systems for LMFBR plants consist of leak detection devices, leak termination devices, and reaction pressure relief devices. From analyses based on research and development activities, as well as from experience with leaks in steam generator test loops and reactor plants, it has been confirmed that protection systems can satisfactorily be designed to accommodate leak incidents in LMFBR plants. (author)

  12. AGE RELATED DEGRADATION OF STEAM GENERATOR INTERNALS BASED ON INDUSTRY RESPONSES TO GENERIC LETTER 97-06

    International Nuclear Information System (INIS)

    SUBUDHI, M.; SULLIVAN, JR. E.J.

    2002-01-01

    THIS PAPER PRESENTS THE RESULTS OF AN AGING ASSESSMENT OF THE NUCLEAR POWER INDUSTRY RESPONSES TO NRC GENERIC LETTER 97-06 ON THE DEGRADATION OF STEAM GENERATOR INTERNALS EXPERIENCED AT ELECTRICITE DE FRANCE (EDF) PLANTS IN FRANCE AND AT A UNITED STATES PRESSURIZED WATER REACTOR (PWR). WESTINGHOUSE (W), COMBUSTION ENGINEERING (CE), AND BABCOCK AND WILCOX (BW) STEAM GENERATOR MODELS, CURRENTLY IN SERVICE AT U.S. NUCLEAR POWER PLANTS, POTENTIALLY COULD EXPERIENCE DEGRADATION SIMILAR TO THATFOUND AT EDF PLANTS AND THE U.S. PLANT. THE STEAM GENERATORS IN MANY OF THE U.S. PWRS HAVE BEEN REPLACED WITH STEAM GENERATORS WITH STEAM GENERATORS WITH IMPROVED DESIGNS AND MATERIALS. THESE REPLACEMENT STEAM GENERATORS HAVE BEEN MANUFACTURED IN THE U.S. AND ABROAD. DURING THIS ASSESSMENT, EACH OF THE THREE OWNERS GROUPS (W,CE, AND BW) IDENTIFIED FOR ITS STEAM GENERATOR, MODELS ALL THE POTENTIAL INTERNAL COMPONENTS THAT ARE VULNERABLE TO DEGRADATION WHILE IN SERVICE. EACH OWNERS GROUPDEVELOPED INSPEC TION AND MONITORING GUIDANCE AND RECOMMENDATIONS FOR ITS PARTICULAR STEAM GENERATOR MODELS. THE NUCLEAR ENERGY INSTITUTE INCORPORATED IN NEI 97-06 STEAM GENERATOR PROGRAM GUIDELINES, A REQUIREMENT TO MONITOR SECONDARY SIDE STEAM GENERATOR COMPONENTS IF THEIR FAILURE COULD PREVENT THE STEAM GENERATOR FROM FULFILLING ITS INTENDED SAFETY-RELATED FUNCTION. LICENSEES INDICATED THAT THEY IMPLEMENTED OR PLANNED TO IMPLEMENT, AS APPROPRIATE FOR THEIR STEAM GENERATORS, THEIR OWNERS GROUPRECOMMENDATIONS TO ADDRESS THE LONG-TERM EFFECTS OF THE POTENTIAL DEGRADATION MECHANISMS ASSOCIATED WITH THE STEAM GENERATOR INTERNALS

  13. Quantitative Raman microspectroscopy for water permeability parameters at a droplet interface bilayer.

    Science.gov (United States)

    Braziel, S; Sullivan, K; Lee, S

    2018-01-29

    Using confocal Raman microspectroscopy, we derive parameters for bilayer water transport across an isolated nanoliter aqueous droplet pair. For a bilayer formed with two osmotically imbalanced and adherent nanoliter aqueous droplets in a surrounding oil solvent, a droplet interface bilayer (DIB), the water permeability coefficient across the lipid bilayer was determined from monitoring the Raman scattering from the C[triple bond, length as m-dash]N stretching mode of K 3 Fe(CN) 6 as a measure of water uptake into the swelling droplet of a DIB pair. We also derive passive diffusional permeability coefficient for D 2 O transport across a droplet bilayer using O-D Raman signal. This method provides a significant methodological advance in determining water permeability coefficients in a convenient and reliable way.

  14. Forecast on Water Locking Damage of Low Permeable Reservoir with Quantum Neural Network

    Science.gov (United States)

    Zhao, Jingyuan; Sun, Yuxue; Feng, Fuping; Zhao, Fulei; Sui, Dianjie; Xu, Jianjun

    2018-01-01

    It is of great importance in oil-gas reservoir protection to timely and correctly forecast the water locking damage, the greatest damage for low permeable reservoir. An analysis is conducted on the production mechanism and various influence factors of water locking damage, based on which a quantum neuron is constructed based on the information processing manner of a biological neuron and the principle of quantum neural algorithm, besides, the quantum neural network model forecasting the water locking of the reservoir is established and related software is also made to forecast the water locking damage of the gas reservoir. This method has overcome the defects of grey correlation analysis that requires evaluation matrix analysis and complicated operation. According to the practice in Longxi Area of Daqing Oilfield, this method is characterized by fast operation, few system parameters and high accuracy rate (the general incidence rate may reach 90%), which can provide reliable support for the protection technique of low permeable reservoir.

  15. Steam drums

    International Nuclear Information System (INIS)

    Crowder, R.

    1978-01-01

    Steam drums are described that are suitable for use in steam generating heavy water reactor power stations. They receive a steam/water mixture via riser headers from the reactor core and provide by means of separators and driers steam with typically 0.5% moisture content for driving turbines. The drums are constructed as prestressed concrete pressure vessels in which the failure of one or a few of the prestressing elements does not significantly affect the overall strength of the structure. The concrete also acts as a radiation shield. (U.K.)

  16. Durable Suit Bladder with Improved Water Permeability for Pressure and Environment Suits

    Science.gov (United States)

    Bue, Grant C.; Kuznetz, Larry; Orndoff, Evelyne; Tang, Henry; Aitchison, Lindsay; Ross, Amy

    2009-01-01

    Water vapor permeability is shown to be useful in rejecting heat and managing moisture accumulation in launch-and-entry pressure suits. Currently this is accomplished through a porous Gortex layer in the Advanced Crew and Escape Suit (ACES) and in the baseline design of the Constellation Suit System Element (CSSE) Suit 1. Non-porous dense monolithic membranes (DMM) that are available offer potential improvements for water vapor permeability with reduced gas leak. Accordingly, three different pressure bladder materials were investigated for water vapor permeability and oxygen leak: ElasthaneTM 80A (thermoplastic polyether urethane) provided from stock polymer material and two custom thermoplastic polyether urethanes. Water vapor, carbon dioxide and oxygen permeability of the DMM's was measured in a 0.13 mm thick stand-alone layer, a 0.08 mm and 0.05 mm thick layer each bonded to two different nylon and polyester woven reinforcing materials. Additional water vapor permeability and mechanical compression measurements were made with the reinforced 0.05 mm thick layers, further bonded with a polyester wicking and overlaid with moistened polyester fleece thermal underwear .This simulated the pressure from a supine crew person. The 0.05 mm thick nylon reinforced sample with polyester wicking layer was further mechanically tested for wear and abrasion. Concepts for incorporating these materials in launch/entry and Extravehicular Activity pressure suits are presented.

  17. Analytical description of thermodynamic properties of steam, water and the phase interface for use in CFD

    Science.gov (United States)

    Hrubý, Jan; Duška, Michal

    2014-03-01

    We present a system of analytical equations for computation of all thermodynamic properties of dry steam and liquid water (undesaturated, saturated and metastable supersaturated) and properties of the liquid-vapor phase interface. The form of the equations is such that it enables computation of all thermodynamic properties for independent variables directly related to the balanced quantities - total mass, liquid mass, energy, momenta. This makes it suitable for the solvers of fluid dynamics equations in the conservative form. Thermodynamic properties of dry steam and liquid water are formulated in terms of special thermodynamic potentials and all properties are obtained as analytical derivatives. For the surface tension, the IAPWS formula is used. The interfacial internal energy is derived from the surface tension and it is used in the energy balance. Unlike common models, the present one provides real (contrary to perfect gas approximation) properties of steam and water and reflects the energetic effects due to the surface tension. The equations are based on re-fitting the reference formulation IAPWS-95 and selected experimental data. The mathematical structure of the equations is optimized for fast computation.

  18. Process for superheating the steam generated by a light water nuclear reactor

    International Nuclear Information System (INIS)

    Vakil, H.B.; Brown, D.H.

    1976-01-01

    A process is submitted for superheating the pressurised steam generated in a light water nuclear reactor in which the steam is brought to 340 0 C at least. This superheated steam is used to operate a turbo-generator unit. The characteristic of the process is that an exothermal chemical reaction is used to generate the heat utilised during the superheating stage. The chemical reaction is a mechanisation, oxidation-reduction or hydrogenation reaction [fr

  19. Dynamic study of steam generation from low-grade waste heat in a zeolite–water adsorption heat pump

    International Nuclear Information System (INIS)

    Xue, Bing; Meng, Xiangrui; Wei, Xinli; Nakaso, Koichi; Fukai, Jun

    2015-01-01

    A novel zeolite–water adsorption heat pump system based on a direct-contact heat exchange method to generate steam from low-grade waste gas and water has been proposed and examined experimentally. Superheated steam (200 °C, 0.1 MPa) is generated from hot water (70–80 °C) and dry air (100–130 °C). A dynamic model for steam generation process is developed to describe local mass and heat transfer. This model features a three-phase calculation and a moving water–gas interface. The calculations are carried out in the zeolite–water and zeolite–gas regions. Model outputs are compared with experimental results for validation. The thermal response inside the reactor and mass of steam generated is well predicted. Numerical results show that preheat process with low-temperature steam is an effective method to achieve local equilibrium quickly, thus generation process is enhanced by prolonging the time and increasing mass of the generated steam. Besides, high-pressure steam generation up to 0.5 MPa is possible from the validated dynamic model. Future work could be emphasized on enhancing high-pressure steam generation with preheat process or mass recovery operation

  20. Application of waterproof breathable fabric in thermal protective clothing exposed to hot water and steam

    Science.gov (United States)

    Su, Y.; Li, R.; Song, G.; Li, J.

    2017-10-01

    A hot water and steam tester was used to examine thermal protective performance of waterproof and breathable fabric against hot water and steam hazards. Time to cause skin burn and thermal energy absorbed by skin during exposure and cooling phases was employed to characterize the effect of configuration, placing order and properties of waterproof and breathable fabric on the thermal protective performance. The difference of thermal protective performance due to hot water and steam hazards was discussed. The result showed that the configuration of waterproof and breathable fabric presented a significant effect on the thermal protective performance of single- and double-layer fabric system, while the difference between different configurations in steam hazard was greater than that in hot water hazard. The waterproof and breathable fabric as outer layer provided better protection than that as inner layer. Increasing thickness and moisture regain improved the thermal protective performance of fabric system. Additionally, the thermal energy absorbed by skin during the cooling phase was affected by configuration, thickness and moisture regain of fabric. The findings will provide technical data to improve performance of thermal protective clothing in hot water and steam hazards.

  1. Steam turbine installations

    International Nuclear Information System (INIS)

    Bainbridge, A.

    1976-01-01

    The object of the arrangement described is to enable raising steam for driving steam turbines in a way suited to operating with liquid metals, such as Na, as heat transfer medium. A preheated water feed, in heat transfer relationship with the liquid metals, is passed through evaporator and superheater stages, and the superheated steam is supplied to the highest pressure stage of the steam turbine arrangement. Steam extracted intermediate the evaporator and superheater stages is employed to provide reheat for the lower pressure stage of the steam turbine. Only a major portion of the preheated water feed may be evaporated and this portion separated and supplied to the superheater stage. The feature of 'steam to steam' reheat avoids a second liquid metal heat transfer and hence represents a simplification. It also reduces the hazard associated with possible steam-liquid metal contact. (U.K.)

  2. Highly Flexible and Efficient Solar Steam Generation Device.

    Science.gov (United States)

    Chen, Chaoji; Li, Yiju; Song, Jianwei; Yang, Zhi; Kuang, Yudi; Hitz, Emily; Jia, Chao; Gong, Amy; Jiang, Feng; Zhu, J Y; Yang, Bao; Xie, Jia; Hu, Liangbing

    2017-08-01

    Solar steam generation with subsequent steam recondensation has been regarded as one of the most promising techniques to utilize the abundant solar energy and sea water or other unpurified water through water purification, desalination, and distillation. Although tremendous efforts have been dedicated to developing high-efficiency solar steam generation devices, challenges remain in terms of the relatively low efficiency, complicated fabrications, high cost, and inability to scale up. Here, inspired by the water transpiration behavior of trees, the use of carbon nanotube (CNT)-modified flexible wood membrane (F-Wood/CNTs) is demonstrated as a flexible, portable, recyclable, and efficient solar steam generation device for low-cost and scalable solar steam generation applications. Benefitting from the unique structural merits of the F-Wood/CNTs membrane-a black CNT-coated hair-like surface with excellent light absorbability, wood matrix with low thermal conductivity, hierarchical micro- and nanochannels for water pumping and escaping, solar steam generation device based on the F-Wood/CNTs membrane demonstrates a high efficiency of 81% at 10 kW cm -2 , representing one of the highest values ever-reported. The nature-inspired design concept in this study is straightforward and easily scalable, representing one of the most promising solutions for renewable and portable solar energy generation and other related phase-change applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Prevention and mitigation of steam-generator water-hammer events in PWR plants

    International Nuclear Information System (INIS)

    Han, J.T.; Anderson, N.

    1982-11-01

    Water hammer in nuclear power plants is an unresolved safety issue under study at the NRC (USI A-1). One of the identified safety concerns is steam generator water hammer (SGWH) in pressurized-water reactor (PWR) plants. This report presents a summary of: (1) the causes of SGWH; (2) various fixes employed to prevent or mitigate SGWH; and (3) the nature and status of modifications that have been made at each operating PWR plant. The NRC staff considers that the issue of SGWH in top feedring designs has been technically resolved. This report does not address technical findings relevant to water hammer in preheat type steam generators. 10 figures, 2 tables

  4. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    Science.gov (United States)

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  5. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles : Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle

  6. Steam Generator Tube Integrity Program: Surry Steam Generator Project, Hanford site, Richland, Benton County, Washington: Environmental assessment

    International Nuclear Information System (INIS)

    1980-03-01

    The US Nuclear Regulatory Commission (NRC) has placed a Nuclear Regulatory Research Order with the Richland Operations Office of the US Department of Energy (DOE) for expanded investigations at the DOE Pacific Northwest Laboratory (PNL) related to defective pressurized water reactor (PWR) steam generator tubing. This program, the Steam Generator Tube Integrity (SGTI) program, is sponsored by the Metallurgy and Materials Research Branch of the NRC Division of Reactor Safety Research. This research and testing program includes an additional task requiring extensive investigation of a degraded, out-of-service steam generator from a commercial nuclear power plant. This comprehensive testing program on an out-of-service generator will provide NRC with timely and valuable information related to pressurized water reactor primary system integrity and degradation with time. This report presents the environmental assessment of the removal, transport, and testing of the steam generator along with decontamination/decommissioning plans

  7. Estimation of bias shifts in a steam-generator water-level controller

    International Nuclear Information System (INIS)

    Tylee, J.L.

    1983-01-01

    A method for detecting and estimating the value of sudden bias shifts in a U-tube steam-generator water-level controller is described and evaluated. Generalized likelihood ratios (GLR) are used to perform both the bias detection and bias estimation. Simulation results using a seventh-order, linear, discrete steam-generator model demonstrate the capabilities of the GLR detection/estimation approach

  8. Implications of small water leak reactions on sodium heated steam generator design

    Energy Technology Data Exchange (ETDEWEB)

    Smedley, J A

    1975-07-01

    Various types of sodium water reactions have been looked on as possibly causing hazard conditions in sodium heated steam generator units ranging from the very improbable boiler tube double ended guillotine fracture to the almost certain occurrence of micro-leaks. Within this range small water leaks reactions have attracted particular interest and the present paper looks at the principles of associating the reactions with detection and protection systems for Commercial Fast Reactors. A method is developed for assessing whether adequate protection has been provided against the effects of small water leak reactions in a steam generator unit. (author)

  9. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    Energy Technology Data Exchange (ETDEWEB)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H. [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH{sub T} was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle.

  10. Effects of Chemistry Parameters of Primary Water affecting Leakage of Steam Generator Tube Cracks

    International Nuclear Information System (INIS)

    Shin, D. M.; Cho, N. C.; Kang, Y. S.; Lee, K. H.

    2016-01-01

    Degradation of steam generator (SG) tubes can affect pressure boundary tightness. As a defense-in-depth measure, primary to secondary leak monitoring program for steam generators is implemented, and operation is allowed under leakage limits in nuclear power plants. Chemistry parameters that affect steam generator tube leakage due to primary water stress corrosion cracking (PWSCC) are investigated in this study. Tube sleeves were installed to inhibit leakage and improve tube integrity as a part of maintenance methods. Steam generators occurred small leak during operation have been replaced with new steam generators according to plant maintenance strategies. The correlations between steam generator leakage and chemistry parameters are presented. Effects of primary water chemistry parameters on leakage from tube cracks were investigated for the steam generators experiencing small leak. Unit A experienced small leakage from steam generator tubes in the end of operation cycle. It was concluded that increased solubility of oxides due to high pHT could make leakage paths, and low boron concentration lead to less blockage in cracks. Increased dissolved hydrogen may retard crack propagations, but it did not reduce leak rate of the leaking steam generator. In order to inhibit and reduce leakage, pH_T was controlled by servicing cation bed operation. The test results of decreasing pHT indicate low pHT can reduce leak rate of PWSCC cracks in the end of cycle

  11. Steam cleaning device

    International Nuclear Information System (INIS)

    Karaki, Mikio; Muraoka, Shoichi.

    1985-01-01

    Purpose: To clean complicated and long objects to be cleaned having a structure like that of nuclear reactor fuel assembly. Constitution: Steams are blown from the bottom of a fuel assembly and soon condensated initially at the bottom of a vertical water tank due to water filled therein. Then, since water in the tank is warmed nearly to the saturation temperature, purified water is supplied from a injection device below to the injection device above the water tank on every device. In this way, since purified water is sprayed successively from below to above and steams are condensated in each of the places, the entire fuel assembly elongated in the vertical direction can be cleaned completely. Water in the reservoir goes upward like the steam flow and is drained together with the eliminated contaminations through an overflow pipe. After the cleaning has been completed, a main steam valve is closed and the drain valve is opened to drain water. (Kawakami, Y.)

  12. The Effect of Green Inhibitor on strength and water permeability of ...

    African Journals Online (AJOL)

    ... present in the concrete evident from inductively coupled plasma-mass spectrometry (ICPMS) result. KOH is adequate for passivation and reduction of permeability, which serve as a chemical water barriers or hydrophobic agents. Keywords: Concrete; Calcium-Silicate-Hydrate (C-S-H); Compressive strength; Permeability; ...

  13. Steam generator

    International Nuclear Information System (INIS)

    Fenet, J.-C.

    1980-01-01

    Steam generator particularly intended for use in the coolant system of a pressurized water reactor for vaporizing a secondary liquid, generally water, by the primary cooling liquid of the reactor and comprising special arrangements for drying the steam before it leaves the generator [fr

  14. SNR-steam generator design with respect to large sodium water reactions

    International Nuclear Information System (INIS)

    Jong, J.J. de; Kellner, A.; Florie, C.J.L.

    1984-01-01

    This paper deals with the experiences gained during the licensing procedure for the steam generators for the SNR 300 LMFBR regarding large sodium-water reactions. A description is given of the different calculations executed to investigate the effects of large leaks on the 85 MW helical coiled and straight tube steam generators. The investigations on the helical coiled steam generators are divided in the formulations of fluid behaviour, dynamic force calculations, dynamic response calculation and finally stress analyses. Several results are shown. The investigations on the straight tube steam generators are performed using models describing fluid-structure interaction, coupled with stress analyses. Several results are presented. A description is given of the problems and necessary construction changes during the licensing process. Advises are given for future analyses and design concepts for second generation commercial size LMFBR steam generators with respect to large leaks; based on the experience, gained with SNR 300, and using some new calculations for SNR 2. (author)

  15. Relative permeability of the endothelium and epithelium of rabbit lungs

    International Nuclear Information System (INIS)

    Effros, R.M.; Mason, G.R.; Silverman, P.; Hukkanen, J.

    1986-01-01

    Electron micrographic studies of lungs suggest that the epithelial cells are more tightly joined than the underlying endothelium, and macromolecules penetrate the endothelium more readily than the epithelium. Comparisons of epithelial and endothelial permeability to small molecules have been based upon the relative rates at which solutes traverse the alveolar-capillary barrier in fluid filled lungs and those at which they equilibrate across the capillaries in air-filled lungs. Because the former process is much slower than the latter, it has been concluded that the epithelium is less permeable to small solutes than the endothelium. However this difference may be related to inadequate access of solutes to airway surfaces. In this study, solute losses from the vascular space were compared to those from the airspace in perfused, fluid-filled rabbit lungs. 36 Cl - and 125 I - were lost from air-spaces almost twice as rapidly as 22 Na + . In contrast, the endothelium is equally permeable to 22 Na + and these anions. Loss of 3 H-mannitol from the perfusate resembled that of 22 Na + for about 30 minutes, after which diffusion of 3 H-mannitol into the tissue nearly ceased. These observations suggest that the epithelium is more permselective than the endothelium. By resisting solute and water transport, the epithelium tends to prevent alveolar flooding and confines edema to the interstitium, where it is less likely to interfere with gas exchange

  16. Modeling of soluble impurities distribution in the steam generator secondary water

    International Nuclear Information System (INIS)

    Matal, O.; Simo, T.; Kucak, L.; Urban, F.

    1997-01-01

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.)

  17. Cross-property relations and permeability estimation in model porous media

    International Nuclear Information System (INIS)

    Schwartz, L.M.; Martys, N.; Bentz, D.P.; Garboczi, E.J.; Torquato, S.

    1993-01-01

    Results from a numerical study examining cross-property relations linking fluid permeability to diffusive and electrical properties are presented. Numerical solutions of the Stokes equations in three-dimensional consolidated granular packings are employed to provide a basis of comparison between different permeability estimates. Estimates based on the Λ parameter (a length derived from electrical conduction) and on d c (a length derived from immiscible displacement) are found to be considerably more reliable than estimates based on rigorous permeability bounds related to pore space diffusion. We propose two hybrid relations based on diffusion which provide more accurate estimates than either of the rigorous permeability bounds

  18. Déplacements polyphasiques en milieu poreux. Injection de vapeur en conditions adiabatiques Multiphase Displacements in Porous Media. Steam Flooding under Adiabatic Conditions

    Directory of Open Access Journals (Sweden)

    Koci X.

    2006-11-01

    Full Text Available Dans un article antérieur [1], un dispositif expérimental permettant l'étude en milieu poreux des déplacements par fluides chauds, en conditions isothermes, a été présenté, ainsi que les résultats obtenus. Ce mode d'écoulement, qui ne fait pas intervenir A previous paper [1] described an experimental device designed for the study of multiphase displacements by hot fluids in porous media under isothermal conditions together with the results obtained. This type of flow, which does not take into account the progress of temperature fronts, is not representative of what actually happens in the field when a thermal enhanced oil recovery method is applied. In fact in this case, flows may be considered as quasiadiabatic. To gain a better understanding of the phenomena induced by such adiabatic displacements, new equipment was designed to reproduce conditions close to those in the field. Various experiments were modeled with a simulator developed at Institut Français du Pétrole (IFP, using results obtained under isothermal conditions (for instance, relative permeability curves. There is good agreement between experiments and computation. These experimental results were then compared to those obtained under isothermal conditions. Some hypotheses are put forward to explain the differences observed between the two types of flows. Experiments were carried out in unconsolidated cores made of packed sand. This sand mainly consisted of silica (over 99 weight %. Grain size was between 60 and 100 microns; the corresponding permeability was about 4. 10 to the power of (-12 m². The fluids consisted of distilled water and Albelf C-68 oil. New equipment was designed because of problems related to heat losses. For slow displacement rates at high temperatures, a small heat loss results in a decrease in temperature and therefore in steam condensation. Use of nonmetallic parts for the core-holder strongly reduces heat losses radially and longitudinally so

  19. Water-Permeable Dialysis Membranes for Multi-Layered Micro Dialysis System

    Directory of Open Access Journals (Sweden)

    Naoya eTo

    2015-06-01

    Full Text Available This paper presents the development of water-permeable dialysis membranes that are suitable for an implantable microdialysis system that does not use dialysis fluid. We developed a microdialysis system integrating microfluidic channels and nanoporous filtering membranes made of polyethersulfone (PES, aiming at a fully implantable system that drastically improves the quality of life of patients. Simplicity of the total system is crucial for the implantable dialysis system, where the pumps and storage tanks for the dialysis fluid pose problems. Hence, we focus on hemofiltration, which does not require the dialysis fluid but water-permeable membranes. We investigated the water-permeability of the PES membrane with respect to the concentrations of the PES, the additives, and the solvents in the casting solution. Sufficiently water-permeable membranes were found through in vitro experiments using whole bovine blood. The filtrate was verified to have the concentrations of low-molecular-weight molecules, such as sodium, potassium, urea, and creatinine, while proteins, such as albumin, were successfully blocked by the membrane. We conducted in vivo experiments using rats, where the system was connected to the femoral artery and jugular vein. The filtrate was successfully collected without any leakage of blood inside the system and it did not contain albumin but low-molecular-weight molecules whose concentrations were identical to those of the blood. The rat model with renal failure showed 100% increase of creatinine in 5 h, while rats connected to the system showed only a 7.4% increase, which verified the effectiveness of the proposed microdialysis system.

  20. Leak detection of steam or water into sodium in steam generators of liquid-metal fast breeder reactors

    International Nuclear Information System (INIS)

    Hans, R.; Dumm, K.

    1977-01-01

    The leakage of water or steam into sodium in LMFBR steam generators, including a study of how leaks are detected and located as well as the potential damage that could be caused by such leaks, is surveyed. The most interesting steam generator designs evolving in those countries that develop and construct LMFBRs are presented. The relevant protection measures are described. Fault conditions are defined and descriptions given of possible sequences of events leading to abnormal conditions in a steam generator. Taking into account theory, the potential of the hydrogen and oxygen detection systems is discussed. Different hydrogen and oxygen detection systems are fully described. In so far as interesting technical solutions are concerned, previously developed devices have also been taken into account. The way oxygen detection supplements hydrogen detection is described by listing the available oxygen measuring devices and the relevant theory. Only a few sonic and accelerometer measurements have been made on complete steam generator units so there is little system data available. Descriptions, however, have been included to give the state of the art achieved for the sensors and the achieved sensitivities or band widths. The potential of this monitoring method is made evident by adding the technical data of the sensors. Furthermore, the available systems for monitoring medium and large leakages are described. Finally, recommendations are made concerning steam generator development and the application of hydrogen and oxygen detection systems, as well as acoustic measuring methods for small-leakage detection

  1. Analytical description of thermodynamic properties of steam, water and the phase interface for use in CFD

    Directory of Open Access Journals (Sweden)

    Hrubý Jan

    2014-03-01

    Full Text Available We present a system of analytical equations for computation of all thermodynamic properties of dry steam and liquid water (undesaturated, saturated and metastable supersaturated and properties of the liquid-vapor phase interface. The form of the equations is such that it enables computation of all thermodynamic properties for independent variables directly related to the balanced quantities - total mass, liquid mass, energy, momenta. This makes it suitable for the solvers of fluid dynamics equations in the conservative form. Thermodynamic properties of dry steam and liquid water are formulated in terms of special thermodynamic potentials and all properties are obtained as analytical derivatives. For the surface tension, the IAPWS formula is used. The interfacial internal energy is derived from the surface tension and it is used in the energy balance. Unlike common models, the present one provides real (contrary to perfect gas approximation properties of steam and water and reflects the energetic effects due to the surface tension. The equations are based on re-fitting the reference formulation IAPWS-95 and selected experimental data. The mathematical structure of the equations is optimized for fast computation.

  2. Steam separator-superheater with drawing of a fraction of the dried steam

    International Nuclear Information System (INIS)

    Bessouat, Roger; Marjollet, Jacques.

    1976-01-01

    This invention concerns a vertical separator-superheater of the steam from a high pressure expansion turbine before it is admitted to an expansion turbine at a lower pressure, by heat exchange with steam under a greater pressure, and drawing of a fraction of the dried steam before it is superheated. Such drawing off is necessary in the heat exchange systems of light water nuclear reactors. Its purpose is to provide a separator-superheater that provides an even flow of non superheated steam and a regular distribution of the steam to be superheated to the various superheating bundles, with a significantly uniform temperature of the casing, thereby preventing thermal stresses and ensuring a minimal pressure drop. The vertical separator-superheater of the invention is divided into several vertical sections comprising as from the central area, a separation area of the steam entrained water and a superheater area and at least one other vertical section with only a separation area of the steam entrained water [fr

  3. Modeling of soluble impurities distribution in the steam generator secondary water

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Simo, T. [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L.; Urban, F. [Slovak Technical Univ., Bratislava (Slovakia)

    1997-12-31

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  4. Modeling of soluble impurities distribution in the steam generator secondary water

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Simo, T [Energovyzkum s.r.o., Brno (Switzerland); Kucak, L; Urban, F [Slovak Technical Univ., Bratislava (Slovakia)

    1998-12-31

    A model was developed to compute concentration of impurities in the WWER 440 steam generator (SG) secondary water along the tube bundle. Calculated values were verified by concentration values obtained from secondary water sample chemical analysis. (orig.). 2 refs.

  5. Identification and simulation for steam generator water level based on Kalman Filter

    International Nuclear Information System (INIS)

    Deng Chen; Zhang Qinshun

    2008-01-01

    In order to effectively control the water level of the steam generator (SG), this paper has set about the state-observer theory in modern control and put forward a method to detect the 'false water level' based on Kalman Filter. Kalman Filter is a efficient tool to estimate state-variable by measured value including noise. For heavy measurement noise of steam flow, constructing a 'false water level' observer by Kalman Filter could availably obtain state variable of 'false water level'. The simulation computing for the dynamics characteristic of nuclear SG water level process under several typically running power was implemented by employing the simulation model. The result shows that the simulation model accurately identifies the 'false water level' produced in the reverse thermal-dynamic effects of nuclear SG water level process. The simulation model can realize the precise analysis of dynamics characteristic for the nuclear SG water level process. It can provide a kind of new ideas for the 'false water level' detecting of SG. (authors)

  6. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (13) Study on Heat Transfer of Direct Condensation of Steam on Subcooled Water Jet

    International Nuclear Information System (INIS)

    Yuhki Takahashi; Yasuo Koizumi; Hiroyasu Ohtake; Tohru Miyashita; Michitsugu Mori

    2006-01-01

    Characteristics of thermal-hydraulic phenomena in the steam injector were examined. In experiments, a water jet from a nozzle of 5 mm diameter flowed into the condensing test section pipe concentrically. The inner diameter of the condensing section was 7, 10, or 20 mm and the length was 105 mm. Steam flowed into the peripheral space between the water jet and the inner wall of the test section and condensed on the ware jet surface. The radial and the axial distributions of velocity and temperature of the water jet were measured. Analyses by using the STAR-CD code were also performed. The temperature measured in the central portion of the water jet was higher than the predicted assuming the ordinary turbulent flow in a pipe. The temperature measured in the peripheral region was lower than the predicted. The radial temperature distribution measured was flatter than the predicted. When the steam condensation rate was large, the measured radial velocity distribution in the water jet was flatter than the predicted. In the case that the steam velocity was quite high, the velocity measured in the peripheral region was higher than that in the center portion. These results implied that the steam condensing on the water jet brought momentum in the water jet to result in more effective radial transport of heat and momentum. The STAR-CD code analyses to allow the interface between the wall that simulated the steam flow part and the water flow that stood for the water jet to move, i.e. creating momentum in-flux at the water jet interface, provided better results to support the experimental results. To increase the interfacial friction had a minor effect on the radial velocity distribution in the tested range. (authors)

  7. Evaluation of PWR steam generator water hammer. Final technical report, June 1, 1976--December 31, 1976

    International Nuclear Information System (INIS)

    Block, J.A.; Crowley, C.J.; Rothe, P.H.; Wallis, G.B.; Young, L.R.

    1977-05-01

    An investigation of waterhammer in the main feedwater piping of PWR steam generators due to water slugs formed in the steam generator feedring is reported. The relevant evidence from PWR operation and testing is compiled and summarized. The state-of-the-art of analysis of related phenomena is reviewed. Original exploratory modeling experiments at 1 / 10 and 1 / 4 scale are reported. Bounding analyses of the behavior are performed and several key phenomena have been identified for the first time. Recommendations to the Nuclear Regulatory Commission are made

  8. Water separator for a steam turbine for nuclear power stations

    International Nuclear Information System (INIS)

    Herzog, J.; Hubble, W.S.; Woods, K.K.

    1976-01-01

    The invention concerns a water separator for the condensation of humidity from steam of the inertia type, which has an improved flow distribution and can therefore be built for large dimensions. This is achieved by variation of the dimensions of the components of the liquid separator, particularly by the configuration of the drain trough, and by the fixing of suitable impact sheets, which produce turbulence and distribute the wet steam evenly over the separator elements. There is a detailed representation with drawings. (UW) [de

  9. Device indicating start of steam or water reaction with sodium and damage of steam generator heat exchange tube wall

    International Nuclear Information System (INIS)

    Jung, J.; Sobotka, J.

    1984-01-01

    Eddy currents induced by the alternating current of an exciting coil in the vicinity of steam or water leakage are used for indication. The coil is supplied from a power amplifier whose input is connected to an exciting generator by two measuring coils connected across each other. Their voltage is applied to a differential amplifier with an indicator. The equipment may be used for steam generators of nuclear power plants with sodium cooled reactors. (E.F.)

  10. Influence of infiltrated water on the change of formation water and oil permeability of crude oil bearing rocks

    Energy Technology Data Exchange (ETDEWEB)

    Cubric, S

    1970-09-01

    A brief desription is given of the causes of permeability reduction of oil-bearing rocks, due to well damage during the drilling and well completion or when working over wells. The physical properties of 2-phase flow (crude oil-water) and the possibility of increasing the existing permeability of the formation, because of the water infiltrated from the well into the crude oil layer, are described in detail. Field examples show that there are such cases, and that the artificially increased existing permeability of water-bearing rocks can be reduced and even brought to normal, if the adjacent formation zone layer is treated with surfactants (e.g., Hyflo dissolved in crude oil).

  11. Impact of Three-Phase Relative Permeability and Hysteresis Models on Forecasts of Storage Associated With CO2-EOR

    Science.gov (United States)

    Jia, Wei; McPherson, Brian; Pan, Feng; Dai, Zhenxue; Moodie, Nathan; Xiao, Ting

    2018-02-01

    Geological CO2 sequestration in conjunction with enhanced oil recovery (CO2-EOR) includes complex multiphase flow processes compared to CO2 storage in deep saline aquifers. Two of the most important factors affecting multiphase flow in CO2-EOR are three-phase relative permeability and associated hysteresis, both of which are difficult to measure and are usually represented by numerical interpolation models. The purpose of this study is to improve understanding of (1) the relative impacts of different three-phase relative permeability models and hysteresis models on CO2 trapping mechanisms, and (2) uncertainty associated with these two factors. Four different three-phase relative permeability models and three hysteresis models were applied to simulations of an active CO2-EOR site, the SACROC unit located in western Texas. To eliminate possible bias of deterministic parameters, we utilized a sequential Gaussian simulation technique to generate 50 realizations to describe heterogeneity of porosity and permeability, based on data obtained from well logs and seismic survey. Simulation results of forecasted CO2 storage suggested that (1) the choice of three-phase relative permeability model and hysteresis model led to noticeable impacts on forecasted CO2 sequestration capacity; (2) impacts of three-phase relative permeability models and hysteresis models on CO2 trapping are small during the CO2-EOR injection period, and increase during the post-EOR CO2 injection period; (3) the specific choice of hysteresis model is more important relative to the choice of three-phase relative permeability model; and (4) using the recommended three-phase WAG (Water-Alternating-Gas) hysteresis model may increase the impact of three-phase relative permeability models and uncertainty due to heterogeneity.

  12. What is geothermal steam worth?

    International Nuclear Information System (INIS)

    Thorhallsson, S.; Ragnarsson, A.

    1992-01-01

    Geothermal steam is obtained from high-temperature boreholes, either directly from the reservoir or by flashing. The value of geothermal steam is similar to that of steam produced in boilers and lies in its ability to do work in heat engines such as turbines and to supply heat for a wide range of uses. In isolated cases the steam can be used as a source of chemicals, for example the production of carbon dioxide. Once the saturated steam has been separated from the water, it can be transported without further treatment to the end user. There are several constraints on its use set by the temperature of the reservoir and the chemical composition of the reservoir fluid. These constraints are described (temperature of steam, scaling in water phase, gas content of steam, well output) as are the methods that have been adopted to utilize this source of energy successfully. Steam can only be transported over relatively short distances (a few km) and thus has to be used close to the source. Examples are given of the pressure drop and sizing of steam mains for pipelines. The path of the steam from the reservoir to the end user is traced and typical cost figures given for each part of the system. The production cost of geothermal steam is estimated and its sensitivity to site-specific conditions discussed. Optimum energy recovery and efficiency is important as is optimizing costs. The paper will treat the steam supply system as a whole, from the reservoir to the end user, and give examples of how the site-specific conditions and system design have an influence on what geothermal steam is worth from the technical and economic points of view

  13. Hydrothermal pretreatment of wood by mild steam explosion and hot water extraction.

    Science.gov (United States)

    Wojtasz-Mucha, Joanna; Hasani, Merima; Theliander, Hans

    2017-10-01

    The aim of this work was to compare the two most common hydrothermal pre-treatments for wood - mild steam explosion and hot water extraction - both with the prospect of enabling extraction of hemicelluloses and facilitating further processing. Although both involve autohydrolysis of the lignocellulosic tissue, they are performed under different conditions: the most prominent difference is the rapid, disintegrating, discharge employed in the steam explosion opening up the structure. In this comparative study, the emphasis was placed on local composition of the pre-treated wood chips (of industrially relevant size). The results show that short hot water extraction treatments lead to significant variations in the local composition within the wood chips, while steam explosion accomplishes a comparably more even removal of hemicelluloses due to the advective mass transport during the explosion step. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. PdZnAl Catalysts for the Reactions of Water-Gas-Shift, Methanol Steam Reforming, and Reverse-Water-Gas-Shift

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Platon, Alexandru; Datye, Abhaya K.; Vohs, John M.; Wang, Yong; Palo, Daniel R.

    2008-03-07

    Pd/ZnO/Al2O3 catalysts were studied for water-gas-shift (WGS), methanol steam reforming, and reverse-water-gas-shift (RWGS) reactions. WGS activity was found to be dependent on the Pd:Zn ratio with a maximum activity obtained at approximately 0.50, which was comparable to that of a commercial Pt-based catalyst. The catalyst stability was demonstrated for 100 hours time-on-stream at a temperature of 3600C without evidence of metal sintering. WGS reaction rates were approximately 1st order with respect to CO concentration, and kinetic parameters were determined to be Ea = 58.3 kJ mol-1 and k0 = 6.1x107 min-1. During methanol steam reforming, the CO selectivities were observed to be lower than the calculated equilibrium values over a range of temperatures and steam/carbon ratios studied while the reaction rate constants were approximately of the same magnitude for both WGS and methanol steam reforming. These results indicate that although Pd/ZnO/Al2O3 are active WGS catalysts, WGS is not involved in methanol steam reforming. RWGS rate constants are on the order of about 20 times lower than that of methanol steam reforming, suggesting that RWGS reaction could be one of the sources for small amount of CO formation in methanol steam reforming.

  15. Influence of the loop design of the feedwater- and steam quality in a power plant with pressurized water reactor

    International Nuclear Information System (INIS)

    Bennert, J.; Becher, L.

    1977-01-01

    At nuclear power plants with pressurized water reactors, condensate occurs on the high pressure part of the water-steam circuit, caused by the operation with low steam parameters. The behaviour of the electrolytes which entered into the circuit (solubility, distribution in water and/or steam) shows that these electrolytes (salts) are to be found mainly in the condensate. The insinuated electrolytes are reconcentrated during the common arrangements with 'Small Circuit' - consisting of steam generator, high pressure turbine, water separator, feedwater vessel, and have a negative influence on the feedwater - boiler water - and the steam quality. Remedy is possible by modified arrangements, during which these electrolyte-containing condensates will be treated and traced back into the main circuit. Nevertheless that the efficiency decrease is insignificant and additional efforts are necessary, a change over to these arrangements is recommendable, due to the fact that the feedwater quality, the boiler water quality, the steam quality in front of the turbine, and finally also the operational safety, as well as the availability will be improved. (orig.) [de

  16. Steam sterilization does not require saturated steam

    NARCIS (Netherlands)

    van Doornmalen Gomez Hoyos, J. P.C.M.; Paunovic, A.; Kopinga, K.

    2017-01-01

    The most commonly applied method to sterilize re-usable medical devices in hospitals is steam sterilization. The essential conditions for steam sterilization are derived from sterilization in water. Microbiological experiments in aqueous solutions have been used to calculate various time–temperature

  17. Some problems of leaks in sodium-water steam generator

    International Nuclear Information System (INIS)

    Kozlov, F.A.; Sergeev, G.V.; Sednev, A.R.; Makarov, V.M.

    1976-01-01

    The paper contains data on wastage of steam generator structural materials and high-nickel alloys in the zone of water leakage into sodium as well as investigation results for self-enlargement of water leaks into sodium through defects in these materials. It is shown that the rate of material damage in the zone of sodium-water reaction and in the channel with water leaking-out decreases with increasing nickel content in steels and strongly depends on sodium temperature. The paper presents experimentally obtained dependences of leakage self-enlargement rates on sodium temperature and leakage size

  18. Environmental codes of practice for steam electric power generation

    International Nuclear Information System (INIS)

    1985-03-01

    The Design Phase Code is one of a series of documents being developed for the steam electric power generation industry. This industry includes fossil-fuelled stations (gas, oil and coal-fired boilers), and nuclear-powered stations (CANDU heavy water reactors). In this document, environmental concerns associated with water-related and solid waste activities of steam electric plants are discussed. Design recommendations are presented that will minimize the detrimental environmental effects of once-through cooling water systems, of wastewaters discharged to surface waters and groundwaters, and of solid waste disposal sites. Recommendations are also presented for the design of water-related monitoring systems and programs. Cost estimates associated with the implementation of these recommendations are included. These technical guides for new or modified steam electric stations are the result to consultation with a federal-provincial-industry task force

  19. Steam content of the two-phase flow in the Vk-50 boiling water cooled reactor draught section

    International Nuclear Information System (INIS)

    Fedulin, V.N.; Shmelev, V.E.; Solodkij, V.A.; Bartolomej, G.G.

    1983-01-01

    Results are presented of experimental investigation of the two-phase steam-water coolant flow hydrodynamics within the VK-50 reactor draught section. On the basis of the analysis of the obtained data a two-phase coolant flow model in a large diameter channel is proposed. It is shown that the steam-content distribution in the volume of the draught section has a pronounced non-equilibrium character manifested in the steam migration from the periphery to the central region. A minimum value of the steam content at the periphery is attained at the 0.7-1.0 m height; it is followed by a partial steam content levelling over the section. However the total steam content levelling over the cross section of the draught section does not take place. The steam distribution in the water layer over the draught section (overflow zone) is also nonuniform over the reactor section. The non-uniform steam distribution enchances with reduction nn pressure

  20. Gas and water permeability of concrete for reactor buildings small specimens

    International Nuclear Information System (INIS)

    Mills, R.H.

    1986-03-01

    The effect on permeability of artifical aging by drying shrinkage and by freeze-thaw was determined by observing mass transfer of gas and water under a pressure gradient. It was found that damage due to freeze-thaw was negligible but that cracking around aggregate caused by drying shrinkage resulted in significantly increased permeability to both gas and water. The absence of freeze-thaw damage was attributed to self-dessication. Since the concrete was not exposed to an external source of water, the chemical reaction was sustained by consumption of mixing water. The resulting air voids were, apparently, sufficient to absorb expansive pressures due to ice formation. The response to lateral prestress was different for cracked and uncracked concrete. Although, in all cases, increased prestress resulted in reduced leakage, the effect was stronger in cracked concrete. Mean pore diameter as determined by gas diffusion was not, however, substantially affected because the leakage in cracked concrete remained very low. Reinforcing steel did not have a great influence on permeability of small specimens. Gas transmission through concrete was strongly influenced by moisture content. Free moisture constituted a barrier to gas flow, acting as a virtual solid. This is important since aging of concrete results in reduced free moisture. Ultrasonic pulse velocity appeared to vary with moisture content and porosity of concrete in the same way as gas permeability and gave promise of being effective for in-situ monitoring of concrete in reactor buildings

  1. Steam and sodium leak simulation in a fluidized-bed steam generator

    International Nuclear Information System (INIS)

    Vaux, W.G.; Keeton, A.R.; Keairns, D.L.

    1977-01-01

    A fluidized-bed steam generator for the liquid metal fast breeder reactor enhances plant availability and minimizes the probability of a water/sodium reaction. An experimental test program was conceived to assess design criteria and fluidized-bed operation under conditions of water, steam, and sodium leaks. Sodium, steam, and water were leaked into helium-fluidized beds of metal and ceramic particles at 900 F. Test results show the effects of leaks on the heat transfer coefficient, quality of fluidization, leak detection, and cleanup procedures

  2. Use of geophysical logs to estimate the quality of ground water and the permeability of aquifers

    Science.gov (United States)

    Hudson, J.D.

    1996-01-01

    The relation of formation factor to resistivity of formation water and intergranular permeability has often been investigated, and the general consensus is that this relation is closest when established in a clean-sand aquifer in which water quality does not vary substantially. When these restrictions are applied, the following standard equation is a useful tool in estimating the resistance of the formation water: F = Ro/Rw, where F is the formation factor, which is a function of the effective porosity; Ro is the resistivity of a formation that is 100 percent saturated with interstitial water; and Rw is the resistivity of the water in the saturated zone. However, arenaceous aquifers can have electrical resistivities that are not directly related to resistivity of water or porosity. Surface conductivity and ion exchange are significant factors when the sediments are clay bearing. The solid constituents are a major component of the parameters needed to solve the equation for formation-water resistivity and estimates of aquifer permeability. A correction process needs to be applied to adjust the variables, Ro and F, to the equivalent of clean sand. This report presents an empirical method of using the neutron log and the electrical-resistivity values from long- and short-normal resistivity logs to correct for fine-grained material and the subsequent effects of low impedance to electrical flow that are not related to the resistance of formation water.

  3. Interfacial condensation heat transfer for countercurrent steam-water wavy flow in a horizontal circular pipe

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Won; Chun, Moon Hyun [Korea Advanced Institute of Science and Technolgy, Taejon (Korea, Republic of); Chu, In Cheol [KAERI, Taejon (Korea, Republic of)

    2000-10-01

    An experimental study of interfacial condensation heat transfer has been performed for countercurrent steam-water wavy flow in a horizontal circular pipe. A total of 105 local interfacial condensation heat transfer coefficients have been obtained for various combinations of test parameters. Two empirical Nusselt number correlations were developed and parametric effects of steam and water flow rates and the degree of water subcooling on the condensation heat transfer were examined. For the wavy interface condition, the local Nusselt number is more strongly sensitive to the steam Reynolds number than water Reynolds number as opposed to the case of smooth interface condition. Comparisons of the present circular pipe data with existing correlations showed that existing correlations developed for rectangular channels are not directly applicable to a horizontal circular pipe flow.

  4. An investigation of an underwater steam plasma discharge as alternative to air plasmas for water purification

    International Nuclear Information System (INIS)

    Gucker, Sarah N; Foster, John E; Garcia, Maria C

    2015-01-01

    An underwater steam plasma discharge, in which water itself is the ionizing media, is investigated as a means to introduce advanced oxidation species into contaminated water for the purpose of water purification. The steam discharge avoids the acidification observed with air discharges and also avoids the need for a feed gas, simplifying the system. Steam discharge operation did not result in a pH changes in the processing of water or simulated wastewater, with the actual pH remaining roughly constant during processing. Simulated wastewater has been shown to continue to decompose significantly after steam treatment, suggesting the presence of long-lived plasma produced radicals. During steam discharge operation, nitrate production is limited, and nitrite production was found to be below the detection threshold of (roughly 0.2 mg L −1 ). The discharge was operated over a broad range of deposited power levels, ranging from approximately 30 W to 300 W. Hydrogen peroxide production was found to scale with increasing power. Additionally, the hydrogen peroxide production efficiency of the discharge was found to be higher than many of the rates reported in the literature to date. (paper)

  5. A condenser for very high power steam turbines

    International Nuclear Information System (INIS)

    Gardey, Robert.

    1973-01-01

    The invention relates to a condenser for very high power steam turbines under the masonry-block supporting the low-pressure stages of the turbine, that condenser comprises two horizontal aligned water-tube bundles passing through the steam-exhaust sleeves of the low-pressure stages, on both sides of a common inlet water box. The invention can be applied in particular to the 1000-2000 MW turbines of light water nuclear power stations [fr

  6. Steam purity in PWRs

    International Nuclear Information System (INIS)

    Hopkinson, J.

    1982-01-01

    Impurities enter the secondary loop of the PWR through both makeup water from lake or well and cooling-water leaks in the condenser. These impurities can be carried to the steam generator, where they cause corrosion deposits to form. Corrosion products in steam are swept further through the system and become concentrated at the point in the low-pressure turbine where steam begins to condense. Several plants have effectively reduced impurities, and therefore corrosion, by installing a demineralizer for the makeup water, a resin-bed system to clean condensed steam from the condenser, and a deaerator to remove oxygen from the water and so lower the risk of system metal oxidation. 5 references, 1 figure

  7. Numerical simulation of a 374 tons/h water-tube steam boiler following a feedwater line break

    International Nuclear Information System (INIS)

    Deghal Cheridi, Amina Lyria; Chaker, Abla; Loubar, Ahcène

    2016-01-01

    Highlights: • We simulate the behavior of a steam boiler during feed-water line break accident. • To perform accident analysis of the steam boiler, Relap5/Mod3.2 system code is used. • A Relap5 model of the boiler is developed and qualified at the steady state level. • A good agreement between Relap5 results and available experimental data. • The Relap5 model predicts well the main transient features of the boiler. - Abstract: To ensure the operational safety of an industrial water-tube steam boiler it is very important to assess various accident scenarios in real plant working conditions. One of the most challenging scenarios is the loss of feedwater to the steam boiler. In this paper, a simulation of the behavior of an industrial water-tube radiant steam boiler during feedwater line break accident is discussed. The simulation is carried out using the RELAP5 system code. The steam boiler is installed in an Algerian natural gas liquefaction complex. The simulation shows the capabilities of RELAP5 system code in predicting the behavior of the steam boiler at both steady state and transient working conditions. From another side, the behavior of the steam boiler following the accident shows how the control system can successfully mitigate the effects and consequences of such accident and how the evaporator tubes can undergo a severe damage due to an uncontrolled increase of the wall temperature in case of failure of this system.

  8. Specific features of emergency processes associated with water leacs into sodium in a reverse steam generator

    International Nuclear Information System (INIS)

    Sroelov, V.S.; Nikol'skij, R.V.; Chernobrovkin, Yu.V.; Privalov, Yu.V.; Bocharin, P.P.; Shtynda, Yu.E.

    1986-01-01

    Experimental and theoretical data characterizing the development of emergency processes arising in the course of water leaks into sodium in a reverse steam generator (sodium in tubes, water in intertube space) are considered. The results of calculations performed for BOR-60 reactor steam generator at initial leaks of 0.01 and 0.55 g/s are presented. It is shown that in the reverse steam generator the development of accident occurs much slower than in steam generators of traditional design. At same stage of accident sodium is displaced from the damaged tube and as a result the destruction of tube material discontinues. The conclusion is drawn that by the development of emergency protection systems for reverse steam generator the requirements for sensitivity and fast response of leak detectors could be reduced

  9. Digitization and simulation realization of full range control system for steam generator water level

    International Nuclear Information System (INIS)

    Qian Hong; Ye Jianhua; Qian Fei; Li Chao

    2010-01-01

    In this paper, a full range digital control system for the steam generator water level is designed by a control scheme of single element control and three-element cascade feed-forward control, and the method to use the software module configuration is proposed to realize the water level control strategy. This control strategy is then applied in the operation of the nuclear power simulation machine. The simulation result curves indicate that the steam generator water level maintains constant at the stable operation condition, and when the load changes, the water level changes but finally maintains the constant. (authors)

  10. Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger

    NARCIS (Netherlands)

    Cheng, L.; Geld, van der C.W.M.

    2005-01-01

    Experiments of heat transfer and pressure drop in a polymer compact heat exchanger made of PolyVinyliDene-Fluoride were conducted under various conditions for air/water heat exchange and air-steam/water heat exchange, respectively. The overall heat transfer coefficients of air-steam/water heat

  11. Design of the steam generator in an energy conversion system based on the aluminum combustion with water

    International Nuclear Information System (INIS)

    Mercati, Stefano; Milani, Massimo; Montorsi, Luca; Paltrinieri, Fabrizio

    2012-01-01

    Highlights: ► Development of a numerical approach for the analysis of a co-generation system based on the aluminum water reaction. ► Construction of system operating maps for estimating the system behavior. ► Comparison of two different designs of the steam generator for the system. ► Definition of the operating range where each configuration provides the best performance. -- Abstract: The paper shows the preliminary design of the superheated steam generator to be used in a novel hydrogen production and energy conversion system based on the combustion of aluminum particles with water. The system is aimed at producing hydrogen and pressurized superheated steam, using the heat released by the Al–H 2 O reaction. The interest on this type of technology arises because of the possibility of obtaining hydrogen with very low pollutant and greenhouse gas emissions, compared to the traditional hydrogen production systems, such as the steam reforming from methane. The analysis of the combustion chamber and the heat recovery system is carried out by means of a lumped and distributed parameter numerical approach. The multi phase and gas mixture theoretical principles are used both to characterize the mass flow rate and the heat release in the combustion chamber and within the heat exchangers in order to relate the steam generator performance to the system operating parameters. Finally, the influence of the steam generator performance on the whole energy conversion system behavior is addressed, with particular care to the evaluation of the total power and efficiency variation with the combustion parameters.

  12. Design and related R and D works of 'Monju' steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Y; Imanaka, N; Hoshi, Y; Tanaka, K; Hori, M; Yoshikawa, Y

    1975-07-01

    The steam generator is considered to be one of the key components in LMFBR plant. Helical coil type steam generator is selected as a reference for the first Japanese demonstration plant 'MONJU'. The paper gives the structural and functional features of 'MONJU' steam generator together with a brief description of secondary cooling system. The related R and D works are also illustrated. (author)

  13. Sampling practices and analytical techniques used in the monitoring of steam and water in CEGB nuclear boilers

    International Nuclear Information System (INIS)

    Goodfellow, G.I.

    1978-01-01

    The steam and water in CEGB Magnox and AGR nuclear boilers are continuously monitored, using both laboratory techniques and on-line instrumentation, in order to maintain the chemical quality within pre-determined limits. The sampling systems in use and some of the difficulties associated with sampling requirements are discussed. The relative merits of chemical instruments installed either locally in various parts of the plant or in centralized instrument rooms are reviewed. The quality of water in nuclear boilers, as with all high-pressure steam-raising plant, is extremely high; consequently very sensitive analytical procedures are required, particularly for monitoring the feed-water of 'once-through boiler' systems. Considerable progress has been made in this field and examples are given of some of the techniques developed for analyses at the 'μ/kg' level together with some of the current problems.(author)

  14. Air water loop - an experimental facility to study thermal hydraulics of AHWR steam drum

    International Nuclear Information System (INIS)

    Bagul, R.K.; Pilkhwal, D.S.; Jain, V.; Vijayan, P.K.

    2014-05-01

    In the proposed Indian Advanced Heavy Water Reactor (AHWR) the coolant recirculation in the primary system is achieved by two-phase natural circulation. The two-phase steam-water mixture from the reactor core is separated in steam drum by gravity. Gravity separation of phases may lead to undesirable phenomena - carryover and carryunder. Carryover is the entrainment of liquid droplets in the vapor phase.Carryover needs to be minimized to avoid erosion corrosion of turbine blades. Carryunder is the entrainment of vapor bubbles with liquid flowing back to reactor core. Significant carryunder may in turn lead to reduced flow resulting in reduced CHF margin and stability in the coolant channel. An Air-Water Loop (AWL) has been designed to carry out the experiments relevant to AHWR steam drum. The design features and scaling philosophy is described in this report. (author)

  15. Specific safety aspects of the water-steam cycle important to nuclear power plant project

    International Nuclear Information System (INIS)

    Lobo, C.G.

    1986-01-01

    The water-steam cycle in a nuclear power plant is similar to that used in conventional power plants. Some systems and components are required for the safe nuclear power plant operation and therefore are designed according to the safety criteria, rules and regulations applied in nuclear installations. The aim of this report is to present the safety characteristics of the water-steam cycle of a nuclear power plant with pressurized water reactor, as applied for the design of the nuclear power plants Angra 2 and Angra 3. (Author) [pt

  16. Steam versus hot-water scalding in reducing bacterial loads on the skin of commercially processed poultry.

    Science.gov (United States)

    Patrick, T E; Goodwin, T L; Collins, J A; Wyche, R C; Love, B E

    1972-04-01

    A comparison of two types of scalders was conducted to determine their effectiveness in reducing bacterial contamination of poultry carcasses. A conventional hot-water scalder and a prototype model of a steam scalder were tested under commercial conditions. Total plate counts from steam-scalded birds were significantly lower than the counts of water-scalded birds immediately after scalding and again after picking. No differences in the two methods could be found after chilling. Coliform counts from steam-scalded birds were significantly lower than the counts from water-scalded birds immediately after scalding. No significant differences in coliform counts were detected when the two scald methods were compared after defeathering and chilling.

  17. Advanced steam cycles for light water reactors. Final report

    International Nuclear Information System (INIS)

    Mitchell, R.C.

    1975-07-01

    An appraisal of the potential of adding superheat to improve the overall LWR plant cycle performance is presented. The study assesses the economic and technical problems associated with the addition of approximately 500 0 F of superheat to raise the steam temperature to 1000 0 F. The practicality of adding either nuclear or fossil superheat to LWR's is reviewed. The General Electric Company Boiling Water Reactor (BWR) model 238-732 (BWR/6) is chosen as the LWR starting point for this evaluation. The steam conditions of BWR/6 are representative of LWR's. The results of the fossil superheat portion of the evaluation are considered directly applicable to all LWR's. In spite of the potential of a nuclear superheater to provide a substantial boost to the LWR cycle efficiency, nuclear superheat offers little promise of development at this time. There are difficult technical problems to resolve in the areas of superheat fuel design and emergency core cooling. The absence of a developed high integrity, high temperature fuel for operation in the steam/water environment is fundamental to this conclusion. Fossil superheat offers the potential opportunity to utilize fossil fuel supplies more efficiently than in any other mode of central station power generation presently available. Fossil superheat topping cycles evaluated included atmospheric fluidized beds (AFB), pressurized fluidized beds, pressurized furnaces, conventional furnaces, and combined gas/steam turbine cycles. The use of an AFB is proposed as the preferred superheat furnace. Fossil superheat provides a cycle efficiency improvement for the LWR of two percentage points, reduces heat rejection by 15 percent per kWe generated, increases plant electrical output by 54 percent, and burns coal with an incremental net efficiency of approximately 40 percent. This compares with a net efficiency of 36--37 percent which might be achieved with an all-fluidized bed fossil superheat plant design

  18. Laboratory-scale measurements of effective relative permeability for layered sands

    Energy Technology Data Exchange (ETDEWEB)

    Butts, M.G.; Korsgaard, S.

    1996-12-31

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs.

  19. Laboratory-scale measurements of effective relative permeability for layered sands

    International Nuclear Information System (INIS)

    Butts, M.G.; Korsgaard, S.

    1996-01-01

    Predictions of the impact of remediation or the extent of contamination resulting from spills of gasoline, solvents and other petroleum products, must often be made in complex geological environments. Such problems can be treated by introducing the concept of effective parameters that incorporate the effects of soil layering or other heterogeneities into a large-scale flow description. Studies that derive effective multiphase parameters are few, and approximations are required to treat the non-linear multiphase flow equations. The purpose of this study is to measure effective relative permeabilities for well-defined multi-layered soils at the laboratory scale. Relative permeabilities were determined for homogeneous and layered, unconsolidated sands using the method of Jones and Roszelle (1978). The experimental data show that endpoint relative permeabilities are important in defining the shape of the relative permeability curves, but these cannot be predicted by estimation methods base on capillary pressure data. The most significant feature of the measured effective relative permeability curves is that the entrapped (residual) oil saturation is significantly larger than the residual saturation of the individual layers. This observation agrees with previous theoretical predictions of large-scale entrapment Butts, 1993 and (1995). Enhanced entrapment in heterogeneous soils has several important implications for spill remediation, for example, the reduced efficiency of direct recovery. (au) 17 refs

  20. Direct measurements of secondary water inventory of steam generator PGV-213 in operation

    Energy Technology Data Exchange (ETDEWEB)

    Tarankov, G.A.; Trunov, N.B.; Dranchenko, B.N.; Kamiagin, W.W. [OKB Gidropress (Russian Federation)

    1997-12-31

    Results of weight measurement of PGV-213 steam generator during filling in, heating-up and power increase are described. Special measurement system based on stress gauges has been developed. Method of derivation of secondary water inventory is described. Comparison of the data for two steam generators prove accuracy of the measurements. (orig.). 1 refs.

  1. Direct measurements of secondary water inventory of steam generator PGV-213 in operation

    Energy Technology Data Exchange (ETDEWEB)

    Tarankov, G A; Trunov, N B; Dranchenko, B N; Kamiagin, W W [OKB Gidropress (Russian Federation)

    1998-12-31

    Results of weight measurement of PGV-213 steam generator during filling in, heating-up and power increase are described. Special measurement system based on stress gauges has been developed. Method of derivation of secondary water inventory is described. Comparison of the data for two steam generators prove accuracy of the measurements. (orig.). 1 refs.

  2. Three-Dimensional Modeling of a Steam-Line Break in a Boiling Water Reactor

    International Nuclear Information System (INIS)

    Tinoco, Hernan

    2002-01-01

    Because of weld problems, the core grids of Units 1 and 2 at the Forsmark nuclear power plant have been replaced by grids of a new design, consisting of a single machined piece without welds. The qualifying structural analysis has been carried out considering dynamic loads, which implies that even loss-of-coolant accidents have to be included. Therefore, a detailed time description of the loads acting on the different internal parts of the reactor is needed. To achieve sufficient space and time resolution, a computational fluid dynamics (CFD) analysis was considered to be a viable alternative.A CFD analysis of a steam-line break in the boiling water reactor of Unit 2 is the subject of this work. The study is based on the assumption that the timescale of the transient analysis is smaller than the relaxation time of the water-steam system. Therefore, a simulation of only the upper, steam part of the reactor with no two-phase effects (flashing) is feasible.The results obtained display a rather complex behavior of the decompression process, forcing the analysis of the pressure field to be accomplished through animation. In contrast, the computed instantaneous forces over different internal parts oscillate regularly and are approximately twice the forces estimated in the past by simpler methods, with frequencies of 30 to 40 Hz; top amplitudes of ∼1.64 MN; and relatively low damping, ∼25% after 0.5 s.According to the present results, this type of modeling is physically meaningful for simulation timescales smaller than the water-steam relaxation time, i.e., ∼0.5 s at reactor conditions. At larger times, a two-phase model is necessary to describe the decompression process since two-phase effects are dominant. The results have not yet been validated with experiments, but validation computations will be run in the future for comparison with results of the Marviken tests

  3. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Stamps, D.W.

    1997-05-01

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs

  4. Steam-generator-tube-rupture transients for pressurized-water reactors

    International Nuclear Information System (INIS)

    Dobranich, D.; Henninger, R.J.; DeMuth, N.S.

    1982-01-01

    Steam generator tube ruptures with and without concurrent main-steam-line break are investigated for pressurized water reactors supplied by the major US vendors. The goal of these analyses is to provide thermodynamic and flow conditions for the determination of iodine transport to the environment and to provide an evaluation of the adequacy of the plant safety systems and operating procedures for controlling these transients. The automatic safety systems of the plant were found to be adequate for the mitigation of these transients. Emergency injection system flows equilibrated with the leakage flows and prevented core uncovery. Sufficient time was afforded by the plant safety systems for the operators to identify the problem and to take appropriate measures

  5. The nuclear physical method for high pressure steam manifold water level gauging and its error

    International Nuclear Information System (INIS)

    Li Nianzu; Li Beicheng; Jia Shengming

    1993-10-01

    A new method, which is non-contact on measured water level, for measuring high pressure steam manifold water level with nuclear detection technique is introduced. This method overcomes the inherent drawback of previous water level gauges based on other principles. This method can realize full range real time monitoring on the continuous water level of high pressure steam manifold from the start to full load of boiler, and the actual value of water level can be obtained. The measuring errors were analysed on site. Errors from practical operation in Tianjin Junliangcheng Power Plant and in laboratory are also presented

  6. The Invisibility of Steam

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  7. Imaging optical probe for pressurized steam-water environment

    International Nuclear Information System (INIS)

    Donaldson, M.R.; Pulfrey, R.E.

    1979-01-01

    An air-cooled imaging optical probe, with an outside diameter of 25.4 mm, has been developed to provide high resolution viewing of flow regimes in a steam-water environment at 343 0 C and 15.2 MPa. The design study considered a 3-m length probe. A 0.3-m length probe prototype was fabricated and tested. The optical probe consists of a 3.5-mm diameter optics train surrounded by two coaxial coolant flow channels and two coaxial insulating dead air spaces. With air flowing through the probe at 5.7 g/s, thermal analysis shows that no part of the optics train will exceed 93 0 C when a 3-m length probe is immersed in a 343 0 C environment. Computer stress analysis plus actual tests show that the probe can operate successfully with conservative safety factors. The imaging optical probe was tested five times in the design environment at the semiscale facility at the INEL. Two-phase flow regimes in the high temperature, high pressure, steam-water blowdown and reflood experiments were recorded on video tape for the first time with the imaging optical probe

  8. Innovated feed water distributing system of VVER steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Sousek, P.; Simo, T.; Lehota, M.; Lipka, J.; Slugen, V.

    2000-01-01

    Defects in feed water distributing system due to corrosion-erosion effects have been observed at many VVER 440 steam generators (SG). Therefore analysis of defects origin and consequently design development and testing of a new feed water distributing system were performed. System tests in-situ supported by calculations and comparison of measured and calculated data were focused on demonstration of long term reliable operation, definition of water flow and water chemical characteristics at the SG secondary side and their measurements and study of dynamic characteristics needed for the innovated feed water distributing system seismic features approval. The innovated feed water distributing system was installed in the SGs of two VVER units already. (author)

  9. Steam chugging in a boiling water reactor pressure-suppression system

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1980-01-01

    Results of a transient analysis predicting the general characteristics of steam chugging compare well with the results of two large scale experiments: GKM II, test 21 and GKSS, test 16. Predicted fundamental periods of chugging are within 5 and 16 per cent of the respective experimental values. The results of the analysis include effects of air in the drywell, momentum loss and heat transfer in the condensation pipe, direct contact condensation heat transfer at the gas-water interface and momentum and heat transfer in the wetwell water pool. Bubble shape is calculated in two-dimensional cylindrical coordinates. Required inputs to the analysis include the geometry, initial conditions and constants to determine both the steam inlet mass flowrate to the drywell as a function of time and conduction heat transfer through the wall of the condensation pipe. There are no arbitrary free parameters which must be specified to predict specific experiments. Rather, the analysis is based on fundamental physical phenomena, experimental coefficients documented for general heat transfer and fluid mechanics characteristics and standard analytical techniques. The random nature of steam chugging observed in some experiments is partially explained by predicted regimes of chugging and changes in the maximum extent of a bubble below the condensation pipe exit during each regime. (orig.)

  10. The supply of steam from Candu reactors for heavy water production

    International Nuclear Information System (INIS)

    Robertson, R.F.S.

    1975-09-01

    By 1980, Canada's energy needs for D 2 O production will be 420 MW of electrical energy and 3600 MW of thermal energy (as steam). The nature of the process demands that this energy supply be exceptionally stable. Today, production plants are located at or close to nuclear electricity generating sites where advantage can be taken of the low cost of both the electricity and steam produced by nuclear reactors. Reliability of energy supply is achieved by dividing the load between the multiple units which comprise the sites. The present and proposed means of energy supply to the production sites at the Bruce Heavy Water Plant in Ontario and the La Prade Heavy Water Plant in Quebec are described. (author)

  11. Maintenance and repair of LMFBR steam generators

    International Nuclear Information System (INIS)

    Verriere, P.; Alanche, J.; Minguet, J.L.

    1984-06-01

    After some general remarks on the French fast neutron system, this paper presents the state of the program for the construction of fast reactor in France. Then, the general design of Super Phenix 1 steam generator components is outlined and, the in-service monitoring systems and protective devices with which they are equiped are briefly described. The methods used, in the event of leakage, for leak location, steam generator inspection, steam generator repair and putting the affected loop back into service, are discussed. There are two main lines of research, relating respectively to the means of water leak detection in sodium and the inspection arrangements that will be used either periodically, or following a sodium-water reaction. Finally, after a brief description of the steam generator, this paper describes the four incidents (leaks) that occurred on the Phenix steam generator in the course of 1982 and 1983, and the subsequent repair operations

  12. Polyurethane Membranes Modified with Isopropyl Myristate as a Potential Candidate for Encapsulating Electronic Implants: A Study of Biocompatibility and Water Permeability

    Directory of Open Access Journals (Sweden)

    Deepen Paul

    2010-07-01

    Full Text Available Medical polyurethanes have shown good bio-stability and mechanical properties and have been used as coating for implantable medical devices. However, despite their excellent properties, they are relatively permeable to liquid water and water vapour which is a drawback for electronic implant encapsulation. In this study polyether polyurethanes with different soft segment molecular weights were modified by incorporating isopropyl myristate (IPM, as a hydrophobic modifying agent, and the effect of IPM on water resistant and biocompatibility of membranes were investigated. IPM changed the surface properties of the polyurethane film and reduced its surface energy. Polyurethane films were found to be stable with IPM concentrations of 1–5 wt% based upon their chemistry; however it leached out in BSA at higher concentrations. Though, low concentrations of IPM reduced both liquid water and water vapour permeability; at higher IPM content liquid permeability did not improved significantly. In general, the polyurethane materials showed much lower water permeability compared with currently used silicone packaging material for electronic implants. In addition, cytotoxicity assessment of IPM containing polyurethanes showed no evidence of cytotoxcity up to 5 wt% IPM.

  13. Water spray interaction with air-steam mixtures under containment spray conditions: experimental study in the TOSQAN facility

    Energy Technology Data Exchange (ETDEWEB)

    Porcheron, E.; Lemaitre, P.; Malet, J.; Nuboer, A.; Brun, P.; Bouilloux, L.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Surete des Usines, des laboratoires, des transports et des dechets, Saclay, BP 68 - 91192 Gif-sur-Yvette cedex (France)

    2005-07-01

    Full text of publication follows: During the course of an hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and steam wall condensation. In order to assess the risk of detonation generated by a high local hydrogen concentration, hydrogen distribution in the containment has to be known. The TOSQAN experimental program has been created to simulate typical accidental thermal hydraulic flow conditions in the reactor containment. The present work is devoted to study the interaction of a water spray injection used as a mitigation mean in order to reduce containment pressure and to produce a mixing of air, steam and hydrogen induced by spray entrainment and condensation on droplet. In order to have a better understanding of physical phenomena, we need to make a detailed characterization of the spray and the gas. The TOSQAN facility that is highly instrumented with non-intrusive diagnostics consists in a closed cylindrical vessel (7 m{sup 3} volume, 4 m high, 1.5 m i.d.) into which steam is injected. Water droplets size is measured in the vessel by the Interferometric Laser Imaging for Droplet Sizing technique. Droplet velocity is obtained by Particle Image Velocimetry and Laser Doppler Velocimetry, and droplet temperature is measured by global rainbow refractometry. Gas concentration measurements are performed by Spontaneous Raman Scattering. The walls of the vessel are thermostatically controlled by heated oil circulation. Inner spray system that is located on the top of the enclosure on the vertical axis, is composed of a single nozzle producing a full cone water spray. Spray test scenario consists of water spray injection in TOSQAN that is first pressurized with a steam injection (steam injection is stopped before spray injection). Water spray falling into the sump is removed to avoid accumulation and evaporation

  14. Development of a water separator for steam drying in nuclear power plants

    International Nuclear Information System (INIS)

    Kall, H.

    1979-01-01

    In the wet steam of nuclear power plants with light water cooling the content of liquid phase before entering the high- and low-pressure turbine or at the inlet of the reheater connected in between is limited to a few parts per thousand. For the mechanical drying necessary to maintain this moisture limit there is suited the socalled lamellar separator, in which the vertical laminae, arranged one beside the other, confine a great number of separating ducts, bended in periodically changing sequence, through which wet steam is flowing. In the development of such a lamellar separator with internal drain channels described in this paper the droplet motion in the carrier gas stream and the discharge of the separated liquid is treated independently from each other. The mathematical and experimental study of the first-mentioned partial process leads to its complete description in a dimensionless separation diagram. During the subsequent discharge of the primarily separated droplet fluid there may be torn off droplets by the steam flow and carried away from the separator.The limit for the draining capacity reached with the occurrence of this phenomenon was determined in preliminary experiments with air and water and in experiments with wet steam carried out close to operating conditions. (orig.) 891 GL/orig. 892 RRD [de

  15. Water permeability of acinar cell membranes in the isolated perfused rabbit mandibular salivary gland.

    Science.gov (United States)

    Steward, M C; Seo, Y; Rawlings, J M; Case, R M

    1990-01-01

    1. The diffusive water permeability of epithelial cell membranes in the perfused rabbit mandibular salivary gland was measured at 37 degrees C by a 1H nuclear magnetic resonance relaxation method using an extracellular relaxation reagent, gadolinium diethylenetriaminepentaacetic acid (Gd(DTPA)). 2. In glands perfused with a HEPES-buffered solution containing 10 mmol l-1 Gd(DTPA), the spin-lattice (T1) relaxation of the water protons showed two exponential components. The water compartment responsible for the slower component corresponded in magnitude to 71 +/- 5% of the wet weight of the gland, and was attributed to the exchangeable intracellular water of the acinar cells. 3. The rate constant for water efflux from the cells was estimated to be 4.1 +/- 0.1 s-1 which would be consistent with a diffusive membrane permeability (Pd) of approximately 3 x 10(-3) cm s-1. Stimulation with acetylcholine (10(-6) mol l-1) did not cause any detectable change in membrane water permeability. 4. Since the basolateral membrane probably provides the main pathway for water efflux, the osmotic water permeability of this barrier (expressed per gland) was estimated to be less than 6.2 cm3 s-1. This would be insufficient to account for the generation of a near-isosmotic fluid at the flow rates observed during secretion, and suggests that a substantial fraction of the flow of water occurs via a paracellular route. PMID:1966053

  16. Effects of water activity and low molecular weight humectants on skin permeability and hydration dynamics - a double-blind, randomized and controlled study.

    Science.gov (United States)

    Albèr, C; Buraczewska-Norin, I; Kocherbitov, V; Saleem, S; Lodén, M; Engblom, J

    2014-10-01

    The mammalian skin is a barrier that effectively separates the water-rich interior of the body from the normally dryer exterior. Changes in the external conditions, for example ambient humidity, have been shown to affect the skin barrier properties. The prime objective of this study was to evaluate the effect of water activity of a topical formulation on skin hydration and permeability. A second objective was to gain more understanding on how two commonly used humectants, urea and glycerol, affect skin barrier function in vivo. Simple aqueous formulations were applied under occlusion to the volar forearm of healthy volunteers. Following 4-h exposure, skin water loss (by transepidermal water loss measurements), skin hydration (by Corneometry) and skin permeability (by time to vasodilation due to benzyl nicotinate exposure) were monitored. The results demonstrate that a relatively small change in the water activity of a topical formulation is sufficient to induce considerable effects on stratum corneum hydration and permeability to exogenous substances. Exposing the skin to high water activity leads to increased skin hydration and also increased permeability. Furthermore, urea and glycerol promote skin hydration and permeability even at reduced water activity of the applied formulation. These results highlight the importance of considering the water activity in topically applied formulations and the potential benefit of using humectants. The results may impact formulation optimization in how to facilitate skin hydration and to modify skin permeability by temporarily open and close the skin barrier. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  17. Verification of capillary pressure functions and relative permeability equations for gas production

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jaewon [Arizona State Univ., Tempe, AZ (United States)

    2016-10-25

    The understanding of multiphase fluid flow in porous media is of great importance in many fields such as enhanced oil recovery, hydrology, CO2 sequestration, contaminants cleanup and natural gas production from hydrate bearing sediments. However, there are many unanswered questions about the key parameters that characterize gas and water flows in porous media. The characteristics of multiphase fluid flow in porous media such as water retention curve, relative permeability, preferential fluid flow patterns and fluid-particle interaction should be taken into consideration for a fundamental understanding of the behavior of pore scale systems.

  18. A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building

    International Nuclear Information System (INIS)

    Travis, J.R.; Wilson, T.L.; Spore, J.W.; Lam, K.L.; Rao, D.V.

    1994-01-01

    Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement overpressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region. (author). 2 refs., 14 figs

  19. A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building

    International Nuclear Information System (INIS)

    Travis, J.R.; Wilson, T.L.; Spore, J.W.; Lam, K.L.; Rao, D.V.

    1994-01-01

    Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement over pressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region

  20. UPTF/TEST10B/RUN081, Steam/Water Flow Phenomena Reflood PWR Cold Leg Break LOCA

    International Nuclear Information System (INIS)

    1998-01-01

    1 - Description of test facility: The Upper Plenum Test Facility (UPTF) is a geometrical full-scale simulation of the primary system of the four-loop 1300 MWe Siemens/KWU pressurized water reactor (PWR) at Grafenrheinfeld. The test vessel, upper plenum and its internals, downcomer, primary loops, pressurizer and surge line are replicas of the reference plant. The core, coolant pumps, steam generators and containment of a PWR are replaced by simulators which simulate the boundary and initial conditions during end-of-blowdown, refill and reflood phase following a loss-of-coolant accident (LOCA) with a hot or cold leg break. The break size and location can be simulated in the broken loop. The emergency core coolant (ECC) injection systems at the UPTF are designed to simulate the various ECC injection modes, such as hot leg, upper plenum, cold leg, downcomer or combined hot and cold leg injection of different ECC systems of German and US/Japan PWRs. Moreover, eight vent valves are mounted in the core barrel above the hot leg nozzle elevation for simulation of ABB and B and W PWRs. The UPTF primary system is divided into the investigation and simulation areas. The investigation areas, which are the exact replicas of a GPWR, consist of the upper plenum with internals, hot legs, cold legs and downcomer. The realistic thermal-hydraulic behavior in the investigation areas is assured by appropriate initial and boundary conditions of the area interface. The boundary conditions are realized by above mentioned simulators, the setup and the operation of which are based on small-scale data and mathematical models. The simulation areas include core simulator, steam generator simulators, pump simulators and containment simulator. The steam production and entrainment in a real core during a LOCA are simulated by steam and water injection through the core simulator. 2 - Description of test: Investigation of steam/water flow phenomena at the upper tie plate and in the upper plenum and

  1. On the origin of burnout in tubes during subheated water and wet steam flow

    International Nuclear Information System (INIS)

    Doroshchuk, V.E.

    1980-01-01

    Mecahnisms of arising the burnouts of the first and second kinds during water and steam-water mixture flow in a tube have been studied. It is shown that the burnout of the first kind arises in the cases when the main part is palyed by the thermal processes providing a possibility of the film boiling or destruction of near-wall liquid film. The high value of critical heat flux qsub(cr) is typical for this kind of burnout. In arising the burnout of the second kind the determining part is played by the hydrodynamic processes in the channel but not by the thermal ones. In this case the burnout is related with the formation of disperse structure of the flow in the pipe. The thermal load does not play the determining part in this case. The burnout arises at any q value (within the limits qsub(cr)sup(0)>q>qsub(gr)sup(0)) but always at the certain steam content. On the base of the analysis of conditions of burnout in steam-generating tubes it is concluded that determination of the two-phase flow structure in heating tubes, determination of the regularities of flow rate and film thickness changes in annular flows, investigation of the moisture carrying out by bubbles from a near-wall liquid film are of the greatest importance

  2. Two dimensional numerical model for steam--water flow in a sudden contraction

    International Nuclear Information System (INIS)

    Crowe, C.T.; Choi, H.N.

    1976-01-01

    A computational model developed for two-dimensional dispersed two-phase flows is applied to steam--water flow in a sudden contraction. The calculational scheme utilizes the cellular approach in which each cell is regarded as a control volume and the droplets are regarded as sources of mass, momentum and energy to the conveying (steam) phase. The predictions show how droplets channel in the entry region and affect the velocity and pressure distributions along the duct

  3. The effect of hot water injection on sandstone permeability

    DEFF Research Database (Denmark)

    Rosenbrand, Esther; Haugwitz, Christian; Jacobsen, Peter Sally Munch

    2014-01-01

    Seasonal energy storage can be achieved by hot water injection in geothermal sandstone aquifers. We present an analysis of literature data in combination with new short-term flow through permeability experiments in order to address physical and physico-chemical mechanisms that can alter...

  4. 40 CFR 60.4340 - How do I demonstrate continuous compliance for NOX if I do not use water or steam injection?

    Science.gov (United States)

    2010-07-01

    ... compliance for NOX if I do not use water or steam injection? 60.4340 Section 60.4340 Protection of....4340 How do I demonstrate continuous compliance for NOX if I do not use water or steam injection? (a) If you are not using water or steam injection to control NOX emissions, you must perform annual...

  5. Steam generator with perfected dryers

    International Nuclear Information System (INIS)

    Fenet, J.C.

    1987-01-01

    This steam generator has vertically superposed array of steam dryers. These dryers return the steam flow of 180 0 . The return of the water is made by draining channels to the steam production zone [fr

  6. Circumferential cracking of steam generator tubes

    International Nuclear Information System (INIS)

    Karwoski, K.J.

    1997-04-01

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, open-quote Circumferential Cracking of Steam Generator Tubes.close-quote GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff's assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness

  7. Experimental observation of a multi-dimensional mixing behavior of steam-water flow in the MIDAS test facility

    International Nuclear Information System (INIS)

    Kweon, T. S.; Yun, B. J.; Ah, D. J.; Ju, I. C.; Song, C. H.; Park, J. K.

    2001-01-01

    Multi-dimensional thermal-hydraulic hehavior, such as ECC (Emergency Core Cooling) bypass, ECC penetration, steam-water condensation and accumulated water level, in an annular downcomer of a PWR (Pressurized Water Reactor) reactor vessel with a DVI(Direct Vessel Injection) injection mode is presented based on the experimental observations in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water facility. From the steady-state tests to similate a late reflood phase of LBLOCA (Large Break Loss-of-Coolant Accidents), major thermal-hydraulic phenomena in the downcomer are quantified under a wide range of test conditions. Especially, isothermal lines show well multi-dimensional phenomena of phase interaction between steam and water in the annulus downcomer. Overall test results show that multi-dimensional thermal-hydraulic behaviors occur in the downcomer annulus region as expected. The MIDAS test facility is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of a 1400 MWe PWR type of nuclear reactor, with focusing on understanding multi-dimensional thermal-hydraulic phenomena in annulus downcomer with various types of safety injection location during refill or reflood phase of a LBLOCA in PWR

  8. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  9. Gas and water permeability tests of 25 year old concrete from the NPD Nuclear Generating Station

    International Nuclear Information System (INIS)

    Mills, R.H.

    1990-05-01

    Permeability tests on cores recovered from concrete which had been in service for 25 years in the Nuclear Power Demonstration (NPD) reactor showed rates of mass transfer of gas and water which were greater than young fresh concrete of the same proportions and that reported in previous AECB reports. This transparency of the concrete was also 2 orders of magnitude greater than that of comparable concrete which had been stored in the laboratory atmosphere for 19 years. Analysis of the effluent in water permeability tests revealed the presence of unusual amounts of soluble materials, mainly Na and K but little Ca, in the reactor concrete. This suggested service-related deterioration of the concrete rather than the release of soluble Ca by continuing hydration of cement

  10. Corrosion and indices of operating reliability of steam-water circuits of foreign NPP

    International Nuclear Information System (INIS)

    Martynova, O.I.

    1983-01-01

    Corrosion failures in circuits of foreign NPPs are considered. According to American statistics there are more corrosion failures in two-circuit NPPs than in NPPs with one circuit. Steam generators mostly suffer from ''corrosion denting''. Lately pitting corrosion becomes a potentially serious problem. Steam generator vertical tubes are maiply subjected to this corrosion type. Attention is drawn to intercrystalline corrosion. The causes of corrosion are described. The problem of optimization of structural materials is discussed to reduce corrosion failures as well as other methods of decreasing corrosion failures. Organization of nondestructive testing, increased requirements to water and steam purity are of great importance

  11. Steam drum level dynamics in a multiple loop natural circulation system of a pressure-tube type boiling water reactor

    International Nuclear Information System (INIS)

    Jain, Vikas; Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2011-01-01

    Highlights: → We have highlighted the problem of drum level dynamics in a multiple loop type NC system using RELAP5 code. → The need of interconnections in steam and liquid spaces close to drum is established. → The steam space interconnections equalize pressure and liquid space interconnections equalize level. → With this scheme, the system can withstand anomalous conditions. → However, the controller is found to be inevitable for inventory balance. - Abstract: Advanced Heavy Water Reactor (AHWR) is a pressure tube type boiling water reactor employing natural circulation as the mode of heat removal under all the operating conditions. Main heat transport system (MHTS) of AHWR is essentially a multi-loop natural circulation system with all the loops connected to each other. Each loop of MHTS has a steam drum that provides for gravity based steam-water separation. Steam drum level is a very critical parameter especially in multi-loop natural circulation systems as large departures from the set point may lead to ineffective separation of steam-water or may affect the driving head. However, such a system is susceptible to steam drum level anomalies under postulated asymmetrical operating conditions among the different quadrants of the core like feedwater flow distribution anomaly among the steam drums or power anomaly among the core quadrants. Analyses were carried out to probe such scenarios and unravel the underlying dynamics of steam drum level using system code RELAP5/Mod3.2. In addition, a scheme to obviate such problem in a passive manner without dependence on level controller was examined. It was concluded that steam drums need to be connected in the liquid as well as steam space to make the system tolerant to asymmetrical operating conditions.

  12. Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks.

    Science.gov (United States)

    Frankó, Balázs; Carlqvist, Karin; Galbe, Mats; Lidén, Gunnar; Wallberg, Ola

    2018-02-01

    Softwood bark contains a large amounts of extractives-i.e., soluble lipophilic (such as resin acids) and hydrophilic components (phenolic compounds, stilbenes). The effects of the partial removal of water-soluble extractives before acid-catalyzed steam pretreatment on enzymatic digestibility were assessed for two softwood barks-Norway spruce and Scots pine. A simple hot water extraction step removed more than half of the water-soluble extractives from the barks, which improved the enzymatic digestibility of both steam-pretreated materials. This effect was more pronounced for the spruce than the pine bark, as evidenced by the 30 and 11% glucose yield improvement, respectively, in the enzymatic digestibility. Furthermore, analysis of the chemical composition showed that the acid-insoluble lignin content of the pretreated materials decreased when water-soluble extractives were removed prior to steam pretreatment. This can be explained by a decreased formation of water-insoluble "pseudo-lignin" from water-soluble bark phenolics during the acid-catalyzed pretreatment, which otherwise results in distorted lignin analysis and may also contribute to the impaired enzymatic digestibility of the barks. Thus, this study advocates the removal of extractives as the first step in the processing of bark or bark-rich materials in a sugar platform biorefinery.

  13. A comparison of experimental methods for measuring water permeability of porous building rocks

    Directory of Open Access Journals (Sweden)

    Galvan, S.

    2014-09-01

    Full Text Available This paper compares different experimental methods for measuring water permeability in 17 different porous building rocks. Both commercial apparatus and specially made designed permeameters are used for characterising intrinsic permeability and hydraulic conductivity, k, of rocks in the range of 10−12 to 10−4 m/s (~ 10−19−10−11 m2 or ~ 10−4−104 mD. We use both falling head and constant head permeameter methods including the triaxial and modified triaxial tests and a classical constant head permeameter. Results showed that for very low and low permeability samples (k−6 m/s, triaxial conditions were found the most accurate procedures and they provided similar or slightly lower permeability values than constant and falling head methods. The latter techniques were highly recommended for permeable and high permeable porous building materials. Water permeability values were also linked to effective porosity and interpreted in terms of interparticle and vugs porosity. Finally, some modifications in the apparatus and procedures were carried out in order to assess water permeability in soft materials, which involve the use of non-saturated samples.Se comparan diferentes métodos experimentales para la medida de la permeabilidad al agua en rocas porosas usadas como material de construcción. Se usaron diferentes permeabilímetros, (comerciales y desarrollados específicamente empleando los métodos triaxial, triaxial modificado, carga constante y carga variable. Se caracterizó la permeabilidad intrínseca y conductividad hidráulica, k, con valores que var.an desde 10−12 a 10−4 m/s (~ 10−19−10−11 m2 or ~ 10−4−104 mD. Para muestras poco y muy poco permeables el ensayo con célula triaxial fue el mas reproducible. Los ensayos de carga constante son muy recomendables para rocas porosas de construcción permeables y muy permeables. Además, se definen los parámetros experimentales más apropiados para caracterizar la

  14. Dynamic response of the EBR-II secondary sodium system to postulated leaks of steam and water into sodium

    International Nuclear Information System (INIS)

    Srinivas, S.; Chopra, P.S.; Stone, C.C.

    1976-01-01

    The paper presents evaluations of the dynamic response of a steam generator system to postulated leaks of steam and water into sodium. This work is part of a comprehensive fail-safe analysis of the EBR-II steam generator system

  15. Worldwide assessment of steam-generator problems in pressurized-water-reactor nuclear power plants

    International Nuclear Information System (INIS)

    Woo, H.H.; Lu, S.C.

    1981-01-01

    Objective is to assess the reliability of steam generators of pressurized water reactor (PWR) power plants in the United States and abroad. The assessment is based on operation experience of both domestic and foreign PWR plants. The approach taken is to collect and review papers and reports available from the literature as well as information obtained by contacting research institutes both here and abroad. This report presents the results of the assessment. It contains a general background of PWR plant operations, plant types, and materials used in PWR plants. A review of the worldwide distribution of PWR plants is also given. The report describes in detail the degradation problems discovered in PWR steam generators: their causes, their impacts on the performance of steam generators, and the actions to mitigate and avoid them. One chapter is devoted to operating experience of PWR steam generators in foreign countries. Another discusses the improvements in future steam generator design

  16. Application of relative permeability modifier additives to reduce water production in different formations; Aplicacao de aditivos modificadores de permeabilidade relativa para reducao da producao de agua em diferentes formacoes

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Ricardo C.B.; Torres, Ricardo S.; Pedrosa Junior, Helio; Dean, Gregory [BJ Services do Brasil Ltda., RJ (Brazil)

    2004-07-01

    Today most oil companies would be better described as water companies. Total worldwide oil production averages some 75 million barrels per day and, while estimates vary, this is associated with the production of 300 - 400 million barrels of water per day. These values of approximately 5 - 6 barrels of water for every barrel of oil are quite conservative. In the United States, where many fields are depleted, the ratio of water-to-oil production is closer to 9 to 1. In some areas around the world, fields remain on production when the ratio is as high as 48 to 1. Numerous strategies, both mechanical and chemical, have been employed over the years in attempts to achieve reduction in water production. Simple shut-off techniques, using cement, mechanical plugs and cross-linked gels have been widely used. Exotic materials such as DPR (disproportionate permeability reducers) and or new generation of relative permeability modifiers (RPM) have been applied in radial treatments with varying degrees of success. Most recently 'Conformance Fracturing' operations have increased substantially in mature fields as the synergistic effect obtained by adding a RPM to a fracturing fluid have produced increased oil production with reduced water cut in one step, consequently eliminating the cost of additional water shut off treatment later on. This paper presents laboratory testing and worldwide case histories of applications of various RPM materials, at different permeability and temperatures. The paper also describes technical design and operational methodology that we believe to have a significant impact in the development strategies of many fields worldwide. (author)

  17. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O.; Klinga, J.; Simo, T. [Energovyzkum Ltd., Brno (Switzerland)

    1995-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  18. Primary collector wall local temperature fluctuations in the area of water-steam phase boundary

    Energy Technology Data Exchange (ETDEWEB)

    Matal, O; Klinga, J; Simo, T [Energovyzkum Ltd., Brno (Switzerland)

    1996-12-31

    A limited number of temperature sensors could be installed at the primary collector surface in the area of water - steam phase boundary. The surface temperatures as well WWER 440 steam generator process data were measured and stored for a long time and off-line evaluated. Selected results are presented in the paper. (orig.). 2 refs.

  19. Study of the characteristics of water into sodium leak acoustic noise in LMR steam generator

    International Nuclear Information System (INIS)

    Kim, Tae Joon; Jeong, Kyung Chai; Jeong, Ji Young; Hur, Seop; Nam, Ho Yun

    2005-01-01

    A successful time for detecting a water/steam leak into sodium in the LMR SG (steam generator) at an early phase of a leak origin depends on the fast response and sensitivity of a leak detection system. It is considered, that the acoustic system is intended for a fast detecting of a water/steam into sodium leak of an intermediate flow rate, 1∼10 g/s. This intention of an acoustic system is stipulated by a key impossibility of a fast detecting of an intermediate leak by the present nominal systems on measuring the hydrogen in the sodium and in the cover gas concentration generated at a leak. During the self-wastage of a water/steam into sodium leak in a particular instant, it is usual in 30∼40 minutes from the moment of a leak origin, there is a modification of a leak flow out regime from bubble regime to the steam jet outflow. This evolution occurs as a jump function of the self-wastage of a leak and is escorted by an increase of a leak noise power and qualitative change of a leak noise spectrum. Subject of this study is by means of two experiments, one is an acoustic leak noise analysis of the water into sodium leak results in no damage to the LMR SG tube bundle, and another is for prediction of the frequency band under a high outflow leak condition. We experimented with the Argon gas injection considered with the phenomena of secondary leaks in real

  20. The effect of pore-scale geometry and wettability on two-phase relative permeabilities within elementary cells

    Science.gov (United States)

    Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto

    2017-04-01

    We study the relative role of the complex pore space geometry and wettability of the solid matrix on the quantification of relative permeabilities characterizing steady state immiscible two-phase flow in porous media. We do so by considering elementary cells, which are typically employed in upscaling frameworks based on, e.g., homogenization or volume averaging. In this context one typically relies on the solution of pore-scale physics at a scale which is much smaller than that of an investigated porous system. Pressure-driven two-phase flow following simultaneous co-current injection of water and oil is numerically solved for a suite of regular and stochastically generated two-dimensional explicit elementary cells with fixed porosity and sharing main topological/morphological features. We show that relative permeabilities of the randomly generated elementary cells are significantly influenced by the formation of preferential percolation paths (principal pathways), giving rise to a strongly nonuniform distribution of fluid fluxes. These pathways are a result of the spatially variable resistance that the random pore structures exert on the fluid. The overall effect on relative permeabilities of the diverse organization of principal pathways, as driven by a given random realization at the scale of the unit cell, is significantly larger than that of the wettability of the host rock. In contrast to what can be observed for the random cells analyzed, relative permeabilities of regular cells display a clear trend with contact angle at the investigated scale. Our findings suggest the need to perform systematic upscaling studies in a stochastic context, to propagate the effects of uncertain pore space geometries to a probabilistic description of relative permeability curves at the continuum scale.

  1. Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

    Directory of Open Access Journals (Sweden)

    Sadegh Mahmoudi

    2013-04-01

    Full Text Available This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e., the pressure gradient. The influence of relationship between cohesion and adsorption parameters and the interfacial tension values in Young's equation, pore structure (micro scan image derived porous media response is compared with corresponding porosity and permeability ideal sphere pack structure, and saturation distribution on relative permeability curves are studied with the aim to achieve the realistic stable condition for the simulation of gas-liquid systems with a low viscosity ratio.

  2. Imaging optical probe for pressurized 6200K steam-water environment

    International Nuclear Information System (INIS)

    Donaldson, M.R.; Pulfrey, R.E.; Merrill, S.K.

    1979-01-01

    An air-cooled imaging optical probe, 0.3 m long with a 25.4-mm outside diameter, has been built to provide high resolution viewing of flow regimes in a steam-water environment at 620 0 K and 15.5 MPa. The probe consists of a 3.5-mm-diameter rod lens borescope, surrounded by two coaxial coolant flow channels and two coaxial insulating dead air spaces. With air flowing through the probe at 5.7 g/s, thermal analysis shows that no part of the optical borescope will exceed 366 0 K when the probe is immersed in a 620 0 K environment. The objective lens is protected by a sapphire window which tests have shown can survive over 200 hours in 620 0 K water or steam with negligible loss of resolution and contrast. Condensation on the protective window is boiled off by electrically heating the window. Computer stress analysis, plus actual tests, shows that the probe can operate successfully with conservative safety factors

  3. On the method of heat exchange calculation for critical and postcritical regimes in sodium-water steam generators

    International Nuclear Information System (INIS)

    Khudasko, V.V.; Kardash, D.Yu.; Grachev, N.S.

    1986-01-01

    Technique for calculating heat exchange in sodium-water steam generators with provisions for steam-water flow non-equilibrium character and moisture additional evaporation in pipes is suggested. Zone of heat exchange crisis representing the zone of transition from developed boiling to postcritical zone is considered. Comparison of estimated and experimental data performed for the following ranges of steame generator parameters: pressure p=7.8-14.0 MPa, coolant flow rate ρw=350-1000 kg/(m 2 xs), inlet sodium temperature T=590-825 K shows their good agreement

  4. Current experience and a new modeling on water hammer due to steam condensation in PWR secondary system

    International Nuclear Information System (INIS)

    Kawanishi, K.; Kasahara, J.; Ueno, T.; Suzuta, T.

    1998-01-01

    There have been possibilities to occur water hammer in pipelines of turbine system for nuclear or fossil fuel power plants. According to the NUREG report, approximately 150 events have been reported since 1969, we also have an experience recently. Water hammer occurs due to sudden steam condensation with pressure pulse. This kind of pressure pulses has been made by alternative producing and condensing of steam slug in the pipe and its frequency relates subcooling and pipe structures. This paper presents our current experience on water hammer with some experimental studies. The present experiment has been performed to obtain the data base for evaluating the pressure pulses. The test pipe was horizontal tubes with dead end connected to vertical tube which simulating drain line in PWR secondary system. The main results are shown as follows; Magnitude of pressure pulse depends drain velocity and initial subcooling. Pipe structure effects on the frequency and continual time of water hammer phenomenon. A new modeling for quantitative explanation of the phenomena is also presented

  5. WATER VAPOUR PERMEABILITY PROPERTIES OF CELLULAR WOOD MATERIAL AND CONDENSATION RISK OF COMPOSITE PANEL WALLS

    Directory of Open Access Journals (Sweden)

    Janis IEJAVS

    2016-09-01

    Full Text Available Invention of light weight cellular wood material (CWM with a trade mark of Dendrolight is one of innovations in wood industry of the last decade. The aim of the research was to define the water vapour permeability properties of CWM and to analyse the condensation risk of various wall envelopes where solid wood cellular material is used. To determine the water vapour permeability of CWM, test samples were produced in the factory using routine production technology and tested according to the standard EN 12086:2014. Water vapour permeability factor (μ and other properties of six different configurations of CWM samples were determined. Using the experimental data the indicative influence of geometrical parameters such as lamella thickness, number of lamellas and material direction were investigated and evaluated. To study the condensation risk within the wall envelope containing CWM calculation method given in LVS EN ISO 13788:2012 was used. To ease the calculation process previously developed JavaScript calculation software that had only capability to calculate thermal transmittance was extended so that condensation risk in multi-layer composite walls can be analysed. Water vapour permeability factor in CWM is highly direction dependant. If parallel and perpendicular direction of CWM is compared the value of water vapour permeability factor can differentiate more than two times. Another significant factor for condensation risk analysis is overall thickness of CWM since it directly influences the equivalent air layer thickness. The influence of other factors such as lamella thickness, or groove depth is minor when water vapour permeability properties are compared. From the analysis of CWM performance in building envelope it can be concluded that uninsulated CWM panels used during winter months will pose the risk of condensation damage to structure, but the risk can be reduced or prevented if insulation layer is applied to the CWM panel wall

  6. The application of neutron radiography to the measurement of the water-permeability of concrete

    International Nuclear Information System (INIS)

    Mo, Dawei; Zhang, Chaozong; Guo, Zhi-Ping; Liu, Yisi; An, Fulin; Mio, Qitian; Wang, Zhimin; Lian, Huizhen.

    1988-01-01

    The water-permeability of concrete is significant for dam, offshore platform and under-water basement of brindge etc. The traditional measuring method of permeability is the fixed pressure of water method in which the water-permeating process in a concreteblock cannot be measured continuously. Owing to the obvious difference of hydrogen content in the permeated regions of samples and the regions which have not been permeated. A combination of the neutron radiography and traditional method has been used to study continuously the whole process of water permeating. The combined method overcomes some shortages of the traditional methods and helps to gain more informations. (author)

  7. Endothelial cell permeability to water and antipyrine

    International Nuclear Information System (INIS)

    Garrick, R.A.

    1986-01-01

    The endothelium provides a structural barrier between plasma constituents and the tissues. The permeability characteristics of the the endothelial cells regulate the transcellular movement of materials across this barrier while other movement is paracellular. In this study the permeability of the endothelial cells to tritiated water ( 3 HHO) and 14 C-labeled antipyrine (AP) was investigated. The cells were isolated non-enzymatically from calf pulmonary artery and were maintained in culture and used between the seventh and fifteenth passage. The cells were removed from the T-flasks with a rubber policeman, titurated with a 22g needle and centrifuged. The cells were mixed with an extracellular marker, drawn into polyethylene tubing and packed by centrifugation for use in the linear diffusion technique. All measurements were made at 37 C. The diffusion coefficients for 3 HHO through the packed cells (D), the intracellular material (D 2 ), and the extracellular material (D 1 ) were 0.682, 0.932 and 2.45 x 10 -5 cm 2 s -1 and for AP were 0.273, 0.355 and 1.13 x 10 -5 cm 2 s -1 respectively. The permeability coefficient calculated by the series-parallel pathway model for 3 HHO was higher than that for AP and for both 3 HHO and AP were lower than those calculated for isolated lung cells and erythrocytes

  8. THEWASP library. Thermodynamic water and steam properties library in GPU

    International Nuclear Information System (INIS)

    Waintraub, M.; Lapa, C.M.F.; Mol, A.C.A.; Heimlich, A.

    2011-01-01

    In this paper we present a new library for thermodynamic evaluation of water properties, THEWASP. This library consists of a C++ and CUDA based programs used to accelerate a function evaluation using GPU and GPU clusters. Global optimization problems need thousands of evaluations of the objective functions to nd the global optimum implying in several days of expensive processing. This problem motivates to seek a way to speed up our code, as well as to use MPI on Beowulf clusters, which however increases the cost in terms of electricity, air conditioning and others. The GPU based programming can accelerate the implementation up to 100 times and help increase the number of evaluations in global optimization problems using, for example, the PSO or DE Algorithms. THEWASP is based on Water-Steam formulations publish by the International Association for the properties of water and steam, Lucerne - Switzerland, and provides several temperature and pressure function evaluations, such as specific heat, specific enthalpy, specific entropy and also some inverse maps. In this study we evaluated the gain in speed and performance and compared it a CPU based processing library. (author)

  9. Experimental and analytical study of intermittency in direct contact condensation of steam in a cross-flow of water

    NARCIS (Netherlands)

    Clerx, N.; Geld, van der C.W.M.

    2009-01-01

    The topology of a condensing steam jet, at low steam mass fluxes, injected in a cross-flow of water has been investigatedexperimentally for various conditions (system pressure around 3 bar). The intermittent character of the steam pocket growthand collapse clearly appeared from the high speed

  10. Water permeabilities of pulverized fuel ash; Bifuntan sekitanbai no tosui tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, T [Center for Coal Utilization, Japan, Tokyo (Japan); Nagataki, S [Niigata University, Niigata (Japan); Hosoda, N [Kumagai Gumi Co. Ltd., Tokyo (Japan); Utsuki, T [The Coal Mining Research Center, Japan, Tokyo (Japan); Kubo, H [Obayashi Corp., Tokyo (Japan)

    1996-09-01

    It is intended to establish a technology to utilize coal ash in bulk to deal with its increasing production. In order to expand its use into earth engineering materials, two kinds of combustion ashes produced from dust coal burning power plants were used for studies using different kinds of tests. The tests were carried out on strength properties, water permeability, and characteristics of dissolving trace amounts of chemical constituents, with regard to addition effects of cement into compacted and slurry-state dust coal burned ashes. The derived findings may be summarized as follows: as the strength properties, the strength for both of the compacted and slurry-state ashes increases as the cement addition ratio is increased; growth of the strength due to the cement addition ratio and material age varies depending on the kinds of dust coal burned ash; comparison of strengths of the compacted and the slurry-state ashes indicates the strength of the latter ash is about one-third to quarter of that of the former ash; water permeability of the ashes decreases both in the compacted and slurry- state ashes as the cement addition ratio is increased; and the cement addition ratio gives greater impact to the water permeability than the density of the ashes. 28 figs., 5 tabs.

  11. The effect of steam separataor efficiency on transient following a steam line break

    International Nuclear Information System (INIS)

    Choi, J.H.; Ohn, M.Y.; Lee, N.H.; Hwang, S.T.; Lee, S.K.

    1996-01-01

    Detailed thermalhydraulic simulations for CANDU 6 steam line break inside containment are performed to predict the response of the primary and secondary circuits. The analysis is performed using the thermalhydraulic computer code, CATHENA, with a coupled primary and secondary circuit model. A two-loop representation of the primary and secondary circuits is modelled. The secondary circuit model includes the feedwater line from the deaerator storage tank, multi-node steam generators and the steam line up to the turbine. Two cases were carried out using different assumptions for the efficiency of the steam separators. Case 1 assumes the efficiency of the steam separators becomes zero when the water level in the steam drum increases to the elevation of primary cyclones, or the outlet flow from the steam generator becomes higher than 150 % of normal flow. Case 2 assumes the efficiency becomes zero only when the water level in the steam drum reaches the elevation of primary cyclones. The simulation results show that system responses are sensitive to the assumption for the efficiency of the steam separators and case 1 gives higher discharge energy. Fuel cooling is assured, since primary circuit is cooled down sufficiently by the steam generators for both cases. (author)

  12. Influence of Steam Injection and Water-in-Oil Emulsions on Diesel Fuel Combustion Performance

    Science.gov (United States)

    Sung, Meagan

    Water injection can be an effective strategy for reducing NOx because water's high specific heat allows it to absorb heat and lower system temperatures. Introducing water as an emulsion can potentially be more effective at reducing emissions than steam injection due to physical properties (such as microexplosions) that can improve atomization and increase mixing. Unfortunately, the immiscibility of emulsions makes them difficult to work with so they must be mixed properly. In this effort, a method for adequately mixing surfactant-free emulsions was established and verified using high speed cinematography. As the water to fuel mass ratio (W/F) increased, emulsion atomization tests showed little change in droplet size and spray angle, but a shorter overall breakup point. Dual-wavelength planar laser induced fluorescence (D-PLIF) patternation showed an increase in water near the center of the spray. Steam injection flames saw little change in reaction stability, but emulsion flames experienced significant losses in stability that limited reaction operability at higher W/F. Emulsions were more effective at reducing NOx than steam injection, likely because of liquid water's latent heat of vaporization and the strategic injection of water into the flame core. OH* chemiluminescence showed a decrease in heat release for both methods, though the decrease was greater for emulsions. Both methods saw decreases in flame length for W/F 0.15. Lastly, flame imaging showed a shift towards a redder appearance with the addition or more water, as well as a reduction in flame flares.

  13. Calculation of steam content in a draught section of a tank-type boiling water cooled reactor

    International Nuclear Information System (INIS)

    Panajotov, D.P.; Gorburov, V.I.

    1989-01-01

    Structural and hydrodynamic features of a two-phase flow in a draught section of a tank-type boiling water cooled reactor are considered. A calculated model of the steady flow and methods for determining steam content and phase rate profiles under the maximum steam content at the section axis and at some distance from it are proposed. Steam content distribution by height quantitatively agrees with experimental data for the VK-50 reactor. Calculation technique allows one to obtain steam content and phase rate profiles at the section outlet

  14. Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated LWR fuel claddings

    Science.gov (United States)

    Yeom, Hwasung; Lockhart, Cody; Mariani, Robert; Xu, Peng; Corradini, Michael; Sridharan, Kumar

    2018-02-01

    This study investigates steam corrosion of bulk ZrSi2, pure Si, and zirconium-silicide coatings as well as water quenching behavior of ZrSi2 coatings to evaluate its feasibility as a potential accident-tolerant fuel cladding coating material in light water nuclear reactor. The ZrSi2 coating and Zr2Si-ZrSi2 coating were deposited on Zircaloy-4 flats, SiC flats, and cylindrical Zircaloy-4 rodlets using magnetron sputter deposition. Bulk ZrSi2 and pure Si samples showed weight loss after the corrosion test in pure steam at 400 °C and 10.3 MPa for 72 h. Silicon depletion on the ZrSi2 surface during the steam test was related to the surface recession observed in the silicon samples. ZrSi2 coating (∼3.9 μm) pre-oxidized in 700 °C air prevented substrate oxidation but thin porous ZrO2 formed on the coating. The only condition which achieved complete silicon immobilization in the oxide scale in aqueous environments was the formation of ZrSiO4 via ZrSi2 coating oxidation in 1400 °C air. In addition, ZrSi2 coatings were beneficial in enhancing quenching heat transfer - the minimum film boiling temperature increased by 6-8% in the three different environmental conditions tested. During repeated thermal cycles (water quenching from 700 °C to 85 °C for 20 s) performed as a part of quench tests, no spallation and cracking was observed and the coating prevented oxidation of the underlying Zircaloy-4 substrate.

  15. Study group meeting on steam generators for LMFBR's. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1975-07-01

    The Meeting organised by IAEA international working group on fast reactors which considered that the subject of sodium heated steam generators was a topic which needed study by the experts of several disciplines. For example: people who design such steam generators, specialists in the field of sodium water reactions, experts in material and water chemistry and members of the utilities who would be the customers for such units. Besides the exchange of large amount of information, it was considered that further special studies were necessary for the following subjects: materials; maintenance and repair; operating procedures and control of steam generators. A separate study of sodium-water reactions was recommended considering the safety aspects related to large water leakage and economic advantage of possible detection and protection against small water leaks.

  16. Study group meeting on steam generators for LMFBR's. Summary report

    International Nuclear Information System (INIS)

    1975-07-01

    The Meeting organised by IAEA international working group on fast reactors which considered that the subject of sodium heated steam generators was a topic which needed study by the experts of several disciplines. For example: people who design such steam generators, specialists in the field of sodium water reactions, experts in material and water chemistry and members of the utilities who would be the customers for such units. Besides the exchange of large amount of information, it was considered that further special studies were necessary for the following subjects: materials; maintenance and repair; operating procedures and control of steam generators. A separate study of sodium-water reactions was recommended considering the safety aspects related to large water leakage and economic advantage of possible detection and protection against small water leaks

  17. Simulation of a two phase boiling flow in Poseidon geometry with Astrid steam-water software

    International Nuclear Information System (INIS)

    Larrauri, D.

    1997-01-01

    After different validation test runs in tube an annular geometries, the simulation of a subcooled boiling flow in a rod bundle geometry has been achieved with ASTRID Steam-Water software. The experiment we have simulated is the Poseidon experiment. It is a three heating tube geometry. The thermohydraulic conditions of the simulated flow are closed to the DNB conditions. The simulation results are analysed and compared against the available measurements of liquid and wall temperatures. ASTRID Steam-Water behaviour in such a geometry brings satisfaction. The wall and the liquid temperatures are well predicted in the different parts of the flow. The void fraction reaches 40 % in the vicinity of the heating rods. Besides, the evolution of the different calculated variables shows that a three-dimensional simulation gives capital information for the analyse of the physical phenomena involved in this kind of flow. The good results obtained in Poseidon geometry lead us to think about simulating and analyzing rod bundle flows with ASTRID Steam-Water code. (author)

  18. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  19. High-efficiency condenser of steam from a steam-gas mixture

    Science.gov (United States)

    Milman, O. O.; Krylov, V. S.; Ptakhin, A. V.; Kondratev, A. V.; Yankov, G. G.

    2017-12-01

    The design of a module for a high-efficiency condenser of steam with a high content (up to 15%) of noncondensable gases (NCGs) with a nearly constant steam-gas mixture (SGM) velocity during the condensation of steam has been developed. This module provides the possibility to estimate the operational efficiency of six condenser zones during the motion of steam from the inlet to the SGM suction point. Some results of the experimental tests of the pilot high-efficiency condenser module are presented. The dependence of the average heat transfer coefficient k¯ on the volumetric NCG concentration v¯ has been derived. It is shown that the high-efficiency condenser module can provide a moderate decrease in k¯ from 4400-4600 to 2600-2800 W/(m2 K) at v¯ ≈ 0.5-9.0%. The heat transfer coefficient distribution over different module zones at a heat duty close to its nominal value has been obtained. From this distribution, it can be seen that the average heat transfer coefficient decreases to 2600 W/(m2 K) at an NCG concentration v¯ = 7.5%, but the first condenser sections ( 1- 3) retain high values of k¯ at a level of no lower than 3200 W/(m2 K), and the last sections operate less well, having k¯ at a level of 1700 W/(m2 K). The dependence of the average heat transfer coefficient on the water velocity in condenser tubes has been obtained at a nearly nominal duty such that the extrapolation of this dependence to the water velocity of 2 m/s may be expected to give k¯ = 5000 W/(m2 K) for relatively pure steam, but an increase in k¯ at v¯ = 8% will be smaller. The effect of the gas removal device characteristic on the operation of the high-efficiency condenser module is described. The design developed for the steam condenser of a gas-turbine plant with a power of 25 MW, a steam flow rate of 40.2 t/h, and a CO2 concentration of up to 12% with consideration for the results of performed studies is presented.

  20. Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow

    Science.gov (United States)

    Mitra, D.; Dhir, V. K.; Catton, I.

    2009-10-01

    Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.

  1. Water permeability evaluation of hollow cylindrical reinforced concrete structure by means of long-term water penetration test with pressure

    International Nuclear Information System (INIS)

    Fujiwara, Ai; Miura, Norihiko; Konishi, Kazuhiro; Tsuji, Yukikazu

    2005-01-01

    In order to evaluate initial permeability of large concrete structure, hollow cylindrical reinforced concrete structure, having 6 m in outer diameter, 6 m in height, 1 m in thickness, had been tested by means of 0.25 MPa of outside water pressure. As the results, although surface cracking and partial separation of joint had been observed at the inner side, no water permeation through concrete could be happened even after 5.5 years. After this test, concrete core specimen showed less water penetration within the depth of concrete cover of reinforcement. Thus it was verified that this concrete structure had very high water-tightness, and that the initial average water permeability was estimated to be about 1.6 x 10 -12 m/s. (author)

  2. The permeability of concrete for reactor containment vessels

    International Nuclear Information System (INIS)

    Mills, R.H.

    1983-07-01

    Review of the literature pertaining to water, water vapour and gas transmission through concrete revealed conflicting views on the mechanisms involved and the influence of mix design parameters such as initial porosities and water/cement ratio. Consideration of the effects of ageing and of construction defects in field concrete were totally neglected in published work. Permeability data from three published papers were compared with permeability calculated according to Powers. The ratio of calculated to observed permeability varied from 40 x 10 -3 to 860 x 10 -3 for one group: from 0.17 x 10 3 to 8.6 x 10 3 in the second; and from 24 x 10 3 to 142 x 10 3 for the third. There were therefore wide discrepancies within each group of data and between groups. A bibliography was prepared and an exploratory experimental programme was mounted to determine the relative importance of key parameters such as cement type, porosity and water/cement ratio. Contrary to frequently cited references it was found that permeability of concrete was not significantly influenced by water/cement ratio when the starting porosity was constant. If water/cement ratio was held constant, however, the permeability was strongly influenced by starting porosity. It was also found that with constant water/cement ratio permeability increased with cement content. The value of fly ash and blast furnace slag in partial substitution for Portland cement is neglected in the literature but it is important since such substitutions alleviate alkali-silicate reactions. Permeability of concrete was significantly decreased by partial substitution of Portland cement with fly ash but there was no benefit in the use of blast furnace slag

  3. CRBRP steam-generator design evolution

    International Nuclear Information System (INIS)

    Geiger, W.R.; Gillett, J.E.; Lagally, H.O.

    1983-01-01

    The overall design of the CRBRP Steam Generator is briefly discussed. Two areas of particular concern are highlighted and considerations leading to the final design are detailed. Differential thermal expansion between the shell and the steam tubes is accommodated by the tubes flexing in the curved section of the shell. Support of the tubes by the internals structure is essential to permit free movement and minimize tube wear. Special spacer plate attachment and tube hole geometry promote unimpeded axial movement of the tubes by allowing individual tubes to rotate laterally and by providing lateral movement of the spacer plates relative to the adjacent support structure. The water/steam heads of the CRBRP Steam Generator are spherical heads welded to the lower and upper tubesheets. They were chosen principally because they provide a positively sealed system and result in more favorable stresses in the tubesheets when compared to mechanically attached steamheads

  4. MPC-based auto-tuned PID controller for the steam generator water level

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    In this work, proportional-integral-derivative (PID) control gains are automatically tuned by using a model predictive control (MPC) method. The MPC has received much attention as a powerful tool for the control of industrial process systems. An MPC-based PID controller can be derived from the second order linear model of a process. The steam generator is usually described by the well-known 4 th order linear model which consists of the mass capacity, reverse dynamics and mechanical oscillations terms. But the important terms in this linear model are the mass capacity and reverse dynamics terms, both of which can be described by a 2 nd order linear system. The proposed auto-tuned PID controller was applied to a linear model of steam generators. The parameters of a linear model for steam generators are very different according to the power levels. The proposed controller showed good performance for the water level deviation and sudden steam flow disturbances that are typical in the existing power plants by changing only the input-weighting factor according to the power level

  5. Environmental response nanosilica for reducing the pressure of water injection in ultra-low permeability reservoirs

    Science.gov (United States)

    Liu, Peisong; Niu, Liyong; Li, Xiaohong; Zhang, Zhijun

    2017-12-01

    The super-hydrophobic silica nanoparticles are applied to alter the wettability of rock surface from water-wet to oil-wet. The aim of this is to reduce injection pressure so as to enhance water injection efficiency in low permeability reservoirs. Therefore, a new type of environmentally responsive nanosilica (denote as ERS) is modified with organic compound containing hydrophobic groups and "pinning" groups by covalent bond and then covered with a layer of hydrophilic organic compound by chemical adsorption to achieve excellent water dispersibility. Resultant ERS is homogeneously dispersed in water with a size of about 4-8 nm like a micro-emulsion system and can be easily injected into the macro or nano channels of ultra-low permeability reservoirs. The hydrophobic nanosilica core can be released from the aqueous delivery system owing to its strong dependence on the environmental variation from normal condition to injection wells (such as pH and salinity). Then the exposed silica nanoparticles form a thin layer on the surface of narrow pore throat, leading to the wettability from water-wet to oil-wet. More importantly, the two rock cores with different permeability were surface treated with ERS dispersion with a concentration of 2 g/L, exhibit great reduce of water injection pressure by 57.4 and 39.6%, respectively, which shows great potential for exploitation of crude oil from ultra-low permeability reservoirs during water flooding. [Figure not available: see fulltext.

  6. Results of Steam-Water-Oxygen Treatment of the Inside of Heating Surfaces in Heat-Recovery Steam Generators of the PGU-800 Power Unit at the Perm' District Thermal Power Station

    Science.gov (United States)

    Ovechkina, O. V.; Zhuravlev, L. S.; Drozdov, A. A.; Solomeina, S. V.

    2018-05-01

    Prestarting, postinstallation steam-water-oxygen treatment (SWOT) of the natural circulation/steam reheat heat-recovery steam generators (HRSG) manufactured by OAO Krasny Kotelshchik was performed at the PGU-800 power unit of the Perm District Thermal Power Station (GRES). Prior to SWOT, steam-oxygen cleaning, passivation, and preservation of gas condensate heaters (GCH) of HRSGs were performed for 10 h using 1.3MPa/260°C/70 t/h external steam. After that, test specimens were cut out that demonstrated high strength of the passivating film. SWOT of the inside of the heating surfaces was carried out during no-load operation of the gas turbine unit with an exhaust temperature of 280-300°C at the HRSG inlet. The steam turbine was shutdown, and the generated steam was discharged into the atmosphere. Oxygen was metered into the discharge pipeline of the electricity-driven feed pumps and downcomers of the evaporators. The behavior of the concentration by weight of iron compounds and the results of investigation of cutout specimens by the drop or potentiometric method indicate that the steam-water-oxygen process makes it possible to remove corrosion products and reduce the time required to put a boiler into operation. Unlike other processes, SWOT does not require metal-intensive cleaning systems, temporary metering stations, and structures for collection of the waste solution.

  7. Water modelling studies of blockage with discrete permeabilities in an 11 pin geometry

    International Nuclear Information System (INIS)

    Robinson, D.P.

    1977-06-01

    A linear array of 11 pins, representing a radial section through a 325 pin bundle, has been used to investigate the effect of discrete permeabilities on the wake geometry behind a local blockage in water. Three series of experiments were performed in each of which a different position of the permeability was considered. The complex wake geometries, visualised by the injection of air, are shown to be controlled by the position of, and flowrate through the permeability. Good agreement is shown between the experimental flow patterns and predictions by SABRE 1. (author)

  8. Effects of chemistry on corrosion-erosion of steels in water and wet steam

    International Nuclear Information System (INIS)

    Berge, P.; Ducreux, J.; Saint-Paul, P.

    1981-01-01

    In steam production plants, numerous cases of degradation of steels occur when in contact with water or wet steam circulating at high velocity: in feed or discharge pumps, water reheaters, etc. When the phenomenon occurs without any mechanical wear of the metal or the oxide from the impact of solid particles (abrasion) or droplets (erosion), it is called corrosion-erosion. The phenomenon usually occurs between 100 and 250 0 C, as has been confirmed by an empirical study of the thermal and hydraulic factors which govern it. Corrosion rates can reach 1 to 2 mm/year, for a carbon steel pipe where water treated with ammonia circulates at about pH 9, at 200 0 C, and at a velocity of 5 to 10 m/s. This study evaluates the part played by the factors solely connected to the chemistry of water, with respect to the kinetics of the corrosion-erosion phenomenon. (author)

  9. Methane-steam reforming by molten salt - membrane reactor using concentrated solar thermal energy

    International Nuclear Information System (INIS)

    Watanuki, K.; Nakajima, H.; Hasegawa, N.; Kaneko, H.; Tamaura, Y.

    2006-01-01

    By utilization of concentrated solar thermal energy for steam reforming of natural gas, which is an endothermic reaction, the chemical energy of natural gas can be up-graded. The chemical system for steam reforming of natural gas with concentrated solar thermal energy was studied to produce hydrogen by using the thermal storage with molten salt and the membrane reactor. The original steam reforming module with hydrogen permeable palladium membrane was developed and fabricated. Steam reforming of methane proceeded with the original module with palladium membrane below the decomposition temperature of molten salt (around 870 K). (authors)

  10. Acoustic sodium-water reaction detection of the Phenix steam generators

    International Nuclear Information System (INIS)

    Carminati, M.; Martin, L.; Sauzaret, A.

    1990-01-01

    The systems for acoustic sodium-water reaction detection and hydrogen detection of the Phenix steam generators as well as systems for monitoring signals analysis and processing are described. It is reported that the results obtained during operation and calibration phases are very encouraging and that industrial equipment showing the same performance are being examined. 6 figs

  11. Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater

    Science.gov (United States)

    Daily, William D.; Ramirez, Abelardo L.; Newmark, Robin L.; Udell, Kent; Buetnner, Harley M.; Aines, Roger D.

    1995-01-01

    A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

  12. Steam generators of Phenix: Measurement of the hydrogen concentration in sodium for detecting water leaks in the steam generator tubes

    International Nuclear Information System (INIS)

    Cambillard, E.; Lacroix, A.; Langlois, J.; Viala, J.

    1975-01-01

    The Phenix secondary circuits are provided with measurement systems of hydrogen concentration in sodium, that allow for the detection of possible water leaks in steam generators and the location of a faulty module. A measurement device consists of : a detector with nickel membranes of 0, 3 mm wall thickness, an ion pump with a 200 l/s flow rate, a quadrupole mass spectrometer and a calibrated hydrogen leak. The temperature correction is made automatically. The main tests carried out on the leak detection systems are reported. Since the first system operation (October 24, 1973), the measurements allowed us to obtain the hydrogen diffusion rates through the steam generator tube walls. (author)

  13. ACQUA97 - a Fortran subroutine to evaluate the IAPWS-IF97 equations of state for water and steam

    International Nuclear Information System (INIS)

    Veloso, Marcelo A.; Dias, Marcio S.; Fortini, Maria Auxiliadora

    2007-01-01

    Fundamental to subroutine ACQUA97 is the IAPWS-IF97 formulation for the thermodynamic properties of water and steam adopted by the International Association for the Properties of Water and Steam (IAPWS) in 1997. This new formulation is designed specifically for industrial applications, and replaces the previous industrial formulation, IFC-67, that has formed the basis of steam tables used in many areas of steam power industry throughout the world since the late 1960's. ACQUA97 has been programmed to compute the thermodynamic properties of water and steam (pressure, temperature, specific volume, specific entropy, specific enthalpy, and internal specific energy) and their main first partial derivatives for several combinations of two independent variables. One of the independent variable is either pressure or temperature. Vapor-liquid saturation properties are calculated at specified temperature or pressure. Transport properties (dynamic viscosity and thermal conductivity) and vapor-liquid surface tension are also calculated with formulations adopted by IAPWS. Any of the above mentioned thermophysical properties can be computed by this single subroutine from a simple main program supplied by the user. ACQUA97 might be very useful to those who deal with design and evaluation of thermal power plants. (author)

  14. Modelling of steam condensation in the primary flow channel of a gas-heated steam generator

    International Nuclear Information System (INIS)

    Kawamura, H.; Meister, G.

    1982-10-01

    A new simulation code has been developed for the analysis of steam ingress accidents in high temperatures reactors which evaluates the heat transfer in a steam generator headed by a mixture of helium and water steam. Special emphasis is laid on the analysis of steam condensation in the primary circuit of the steam generator. The code takes wall and bulk condensation into account. A new method is proposed to describe the entrainment of water droplets in the primary gas flow. Some typical results are given. Steam condensation in the primary channel may have a significant effect on temperature distributions. The effect on the heat transferred by the steam generator, however, is found to be not so prominent as might be expected. The reason is discussed. A simplified code will also be described, which gives results with reasonable accuracy within much shorter execution times. This code may be used as a program module in a program simulating the total primary circuit of a high temperature reactor. (orig.) [de

  15. Experimental and theoretical investigations on safety of the SNR - straight-tube design steam generator with sodium-water reactions

    International Nuclear Information System (INIS)

    Dumm, K.; Sauermann, F.; Schnitker, W.; Welter, A.

    A number of large sodium-water reaction tests has been performed in a steam generator model in order to verify the layout criteria of the SNR straight-tube design steam generators under accident conditions. The experimental setup is described. The test results and their applicability to the SNR steam generators are given and discussed. (U.S.)

  16. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  17. The use of tracer techniques to measure water flow rates in steam turbines

    International Nuclear Information System (INIS)

    Whitfield, O.J.; Blaylock, G.; Gale, R.W.

    1979-01-01

    Radioactive and chemical tracers offer some unique advantages in detailed flow measurement on steam turbine plant. A series of experiments on a nuclear power station are reported where tracers successfully measured water flow rates and the initial steam moisture with an accuracy suitable for performance and commissioning tests. Both radioactive and chemical tracer methods produced identical results. Straightforward practical procedures were evolved that ensured repeatable accuracy and in addition a quantitative method of detecting heater leaks on load was established. (author)

  18. Calculation of large scale relative permeabilities from stochastic properties of the permeability field and fluid properties

    Energy Technology Data Exchange (ETDEWEB)

    Lenormand, R.; Thiele, M.R. [Institut Francais du Petrole, Rueil Malmaison (France)

    1997-08-01

    The paper describes the method and presents preliminary results for the calculation of homogenized relative permeabilities using stochastic properties of the permeability field. In heterogeneous media, the spreading of an injected fluid is mainly sue to the permeability heterogeneity and viscosity fingering. At large scale, when the heterogeneous medium is replaced by a homogeneous one, we need to introduce a homogenized (or pseudo) relative permeability to obtain the same spreading. Generally, is derived by using fine-grid numerical simulations (Kyte and Berry). However, this operation is time consuming and cannot be performed for all the meshes of the reservoir. We propose an alternate method which uses the information given by the stochastic properties of the field without any numerical simulation. The method is based on recent developments on homogenized transport equations (the {open_quotes}MHD{close_quotes} equation, Lenormand SPE 30797). The MHD equation accounts for the three basic mechanisms of spreading of the injected fluid: (1) Dispersive spreading due to small scale randomness, characterized by a macrodispersion coefficient D. (2) Convective spreading due to large scale heterogeneities (layers) characterized by a heterogeneity factor H. (3) Viscous fingering characterized by an apparent viscosity ration M. In the paper, we first derive the parameters D and H as functions of variance and correlation length of the permeability field. The results are shown to be in good agreement with fine-grid simulations. The are then derived a function of D, H and M. The main result is that this approach lead to a time dependent . Finally, the calculated are compared to the values derived by history matching using fine-grid numerical simulations.

  19. Arrangement for separating water and steam in a through boiler

    International Nuclear Information System (INIS)

    Wittchow, E.

    1979-01-01

    An axial cyclone in the form of a spin generator with radial nozzles and a flow controller are installed directly in the overflow line between high and low pressure parts of a turbine. The water is centrifuged sideways via outlet slots into a water collecting chamber. The nozzles themselves are hollow and form the support for the flow controller. The extracted steam is taken via the nozzles to the flow controller and returned from this to the overflow line. (DG) 891 HP/DG 892 MB [de

  20. Rapid increases in permeability and porosity of bentonite-sand mixtures due to alteration by water vapor

    International Nuclear Information System (INIS)

    Couture, R.A.

    1984-01-01

    Packed columns of canister packing material containing 25% bentonite and 75% quartz or basalt sand, were exposed to water vapor at temperatures up t 260 0 C. The permeabilities of the columns were subsequently measured after complete saturation with liquid water in a pressurized system. Exposure to water vapor caused irreversible increases in permeability by factors of up to 10 5 . After saturation with liquid water, the permeability was nearly independent of temperature. The increases in permeability were due to a large decrease in the ability of the bentonite to swell in water. Calculations suggest that swelling of bentonite altered at 250 0 C was not sufficient to fill the pore spaces. If the pore spaces are filled, the mixture will form an effective barrier against flow, diffusion, and transport of colloids. The results suggest that if bentonite-based canister packing material is exposed even briefly to water vapor at high temperatures in a high-level nuclear waste repository, its performance will be seriously impaired. The problem is less severe if the proportion of bentonite is high and the material is highly compacted. Previous results show significant degradation of bentonite by water vapor at temperatures as low as 150 0 C. This suggests that in some repositories, backfill in tunnels and drifts may also be affected. 9 references, 5 figures, 1 table

  1. A fractal analytical model for the permeabilities of fibrous gas diffusion layer in proton exchange membrane fuel cells

    International Nuclear Information System (INIS)

    Xiao, Boqi; Fan, Jintu; Ding, Feng

    2014-01-01

    The study of water and gas transport through fibrous gas diffusion layer (GDL) is important to the optimization of proton exchange membrane fuel cells (PEMFCs). In this work, analytical models of dimensionless permeability, and water and gas relative permeabilities of fibrous GDL in PEMFCs are derived using fractal theory. In our models, the structure of fibrous GDL is characterized in terms of porosity, tortuosity fractal dimension (D T ), pore area fractal dimensions (d f ), water phase (d f,w ) and gas phase (d f,g ) fractal dimensions. The predicted dimensionless permeability, water and gas relative permeabilities based on the proposed models are in good agreement with experimental data and predictions of numerical simulations reported in the literature. The model reveals that, although water phase and gas phase fractal dimensions strongly depend on porosity, the water and gas relative permeabilities are independent of porosity and are a function of water saturation only. It is also shown that the dimensionless permeability decreases significantly with the increase of tortuosity fractal dimension. On the other hand, there is only a small decrease in the water and gas relative permeabilities when tortuosity fractal dimension increases. One advantage of the proposed analytical model is that it contains no empirical constant, which is normally required in past models

  2. Synthesis and optimization of steam system networks. 2. Multiple steam levels

    CSIR Research Space (South Africa)

    Price, T

    2010-08-01

    Full Text Available The use of steam in heat exchanger networks (HENs) can be reduced by the application of heat integration with the intention of debottlenecking the steam boiler and indirectly reducing the water requirement [Coetzee and Majozi. Ind. Eng. Chem. Res...

  3. Techno-economic study of hydrogen production by high temperature electrolysis coupled with an EPR-water steam production and coupling possibilities

    International Nuclear Information System (INIS)

    Tinoco, R. R.; Bouallou, C.; Mansilla, C.; Werkoff, F.

    2007-01-01

    Nuclear reactors present a wide range of coupling possibilities with several industrial processes, hydrogen production being one of them. Among the Pressurised Water nuclear Reactors (PWR), the new European Pressurised Reactor (EPR) offers the water steam production at low-medium temperatures, from 230 degree Celsius to 330 degree Celsius for the primary and secondary exchange circuits. The use of this water steam for hydrogen production by High Temperature Electrolysis is the subject of this study, under a French context. The study of this coupling, has considered two hypotheses. First, water steam drawing off in secondary circuit has been evaluated in terms of possible impact in electricity production and reactor availability. After the drawing off at 78 bar (EPR secondary circuit pressure), pressure has to be dropped in order to protect the high temperature electrolyser from damage, so an isenthalpic drop has been considered. Liquid-vapour equilibrium happens with pressure drops, so separation of gas phase and recycling of liquid phase are proposed. Second, only water steam production with an EPR has been evaluated. The feed water enters the secondary circuit and passes from liquid phase to vapour in the steam generators, and then all steam is canalized to the high temperature electrolyser. The potentiality of water steam production in the EPR has been evaluated from 15 to 40 bar. Small reactors could be the best choice if only water steam production is considered. After steam production, it steam enters into the High Temperature Electrolysis process, like a cold stream for two parallel series of three heat exchangers reaching temperatures up to 950 degree Celsius. Then the steam is heated by an electric device and finally it enters the electrolyser. The electrolysis product streams (hydrogen-steam mixture and oxygen) are used in the heat exchangers like hot streams. For both hypotheses, information about water composition has been studied in order to minimise

  4. Steam purity in PWRs

    International Nuclear Information System (INIS)

    Hopkinson, J.; Passell, T.

    1982-01-01

    Reports that 2 EPRI studies of PWRs prove that impure steam triggers decay of turbine metals. Reveals that EPRI is attempting to improve steam monitoring and analysis, which are key steps on the way to deciding the most cost-effective degree of steam purity, and to upgrade demineralizing systems, which can then reliably maintain that degree of purity. Points out that 90% of all cracks in turbine disks have occurred at the dry-to-wet transition zone, dubbed the Wilson line. Explains that because even very clean water contains traces of chemical impurities with concentrations in the parts-per-billion range, Crystal River-3's secondary loop was designed with even more purification capability; a deaerator to remove oxygen and prevent oxidation of system metals, and full-flow resin beds to demineralize 100% of the secondary-loop water from the condenser. Concludes that focusing attention on steam and water chemistry can ward off cracking and sludge problems caused by corrosion

  5. Fuzzy logic control of steam generator water level in pressurized water reactors

    International Nuclear Information System (INIS)

    Kuan, C.C.; Lin, C.; Hsu, C.C.

    1992-01-01

    In this paper a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical mode of the object to be controlled. The design is based on a set of linguistic rules that were adopted from the human operator's experience. After off-line fuzzy computation, the controller is a lookup table, and thus, real-time control is achieved. Shrink-and-swell phenomena are considered in the linguistic rules, and the simulation results show that their effect is dramatically reduced. The performance of the control system can also be improved by changing the input and output scaling factors, which is convenient for on-line tuning

  6. Compositional and Relative Permeability Hysteresis Effects on Near-Miscible WAG

    DEFF Research Database (Denmark)

    Christensen, Jes Reimer; Stenby, Erling Halfdan; Skauge, Arne

    1998-01-01

    Evaluation of compositional effects and fluid flow description on near-miscible (water-alternating-gas) WAG modeling have been studied for a North Sea oil field starting production in 1998. A sector model with four wells was applied to simulate a heterogeneous sandstone reservoir, and a compositi......Evaluation of compositional effects and fluid flow description on near-miscible (water-alternating-gas) WAG modeling have been studied for a North Sea oil field starting production in 1998. A sector model with four wells was applied to simulate a heterogeneous sandstone reservoir......, and a compositional model was used to compare different production strategies e.g. waterflooding and a near-miscible (WAG) injection. In the WAG scheme both dry and wet (rich) hydrocarbon gases have been considered for injection. The phase behaviour was quantified by comparing the performance of the different...... injection gases. Result obtained shows the WAG injection gives improved recovery compared to water injection, due to better sweep and lower residual oil saturation. Simulations with and without relative permeability hysteresis (two-phase model) were compared. The effect of trapped gas on oil recovery does...

  7. Thermal hydraulic aspects of steam drum level control philosophy for the natural circulation based heavy water reactor

    International Nuclear Information System (INIS)

    Gupta, S.K.; Gaikwad, A.J.; Kumar, Rajesh

    2004-01-01

    From safety considerations advanced nuclear reactors rely more and more on passive systems such as natural circulation for primary heat removal. A natural circulation based water reactor is relatively larger in size so as to reduce flow losses and channel type for proper flow distribution. From the size of steam drum considerations it has to be multi loop but has a common inlet header. Normally the turbine follows the reactor. This paper addresses the thermal hydraulic aspects of the steam drum pressure and level control philosophy for a four drum, natural circulation based, channel type boiling water advanced reactor. Three philosophies may be followed for drum control viz. individual drum control, one control drum approach and an average of all the four drums. For drum pressure control, the steam flow to the turbine is be regulated. A single point pressure control is better than individual drum pressure control. This is discussed in the paper. But the control point has to be at a place down steam the point where all steam line from individual drum meet. This may lead to different pressure in all the four drums depending on the power produced in the respective loops. The difference in pressure cannot be removed even if the four drums are directly connected through pipes. Also the pressure control scheme with/without interconnection is discussed. For level, the control of individual drum may not be normally possible because of common inlet header. As the frictional pressure drops in the large diameter downcomers are small as compared to elevation pressure drops, the level in all the steam drum tend to equalize. Consequently a single representative drum level may be chosen as a control variable for controlling level in all the four drums. But in case, where all the four loops are producing different powers and single point pressure control is effective, the scheme may not work satisfactorily. the level in a drum may depend on the power produced in the loop

  8. Report on US-Japan 1983 meetings on steam generators

    International Nuclear Information System (INIS)

    1984-04-01

    This is a report on a trip to Japan by personnel of the US Nuclear Regulatory Commission in 1983 to exchange information on steam generators of nuclear power plants. Steam generators of Japanese pressurized water reactors have experienced nearly all of the forms of degradation that have been experienced in US recirculating-type steam generators, except for denting and pitting. More tubes have been plugged per year of reactor operation in Japanese than in US steam generators, but much of the Japanese tube plugging is preventative rather than the result of leaks experienced. The number of leaks per reactor year is much smaller for Japanese than for US steam generators. No steam generators have been replaced in Japan while several have been replaced in the US. The Japanese experience may be related to their very stringent inspection and maintenance programs for steam generators

  9. Oxidation of Alloy 82 in nominal PWR primary water at 340 deg. C and in hydrogenated steam at 400 deg. C

    International Nuclear Information System (INIS)

    Chaumun, Elizabeth; Guerre Catherine; Duhamel, Cecilie; Sennour, Mohamed; Curieres, Ian-de

    2012-09-01

    Nickel-base weld metals are susceptible to stress corrosion cracking (SCC) in Pressurized Water Reactor (PWR) primary water. As tests in laboratory need to last, in some cases, at least several thousand hours to get stress corrosion crack initiation or propagation in simulated primary water, pure hydrogenated steam at 400 deg. C was used to perform accelerated tests. To confirm that these conditions are still representative of primary water conditions, results of oxidation tests of coupons in hydrogenated steam at 400 deg. C and in primary water at 340 deg. C have been compared. Surface oxide layers have been characterized in order to discuss the influence of the temperature and of the media (water or steam). (authors)

  10. Flow visualization and relative permeability measurements in rough-walled fractures

    International Nuclear Information System (INIS)

    Persoff, P.; Pruess, K.

    1993-01-01

    Two-phase (gas-liquid) flow experiments were done in a natural rock fracture and transparent replicas of natural fractures. Liquid was injected at constant volume flow rate, and gas was injected at either constant mass flow rate or constant pressure. When gas was injected at constant mass flow rate, the gas inlet pressure, and inlet and outlet capillary pressures, generally did not reach steady state but cycled irregularly. Flow visualization showed that this cycling was due to repeated blocking and unblocking of gas flow paths by liquid. Relative permeabilities calculated from flow rate and pressure data show that the sum of the relative permeabilities of the two phases is much less than 1, indicating that each phase interferes strongly with the flow of the other. Comparison of the relative permeability curves with typical curves for porous media (Corey curves) show that the phase interference is stronger in fractures than in typical porous media

  11. Thermal Hydraulic Design and Analysis of a Water-Cooled Ceramic Breeder Blanket with Superheated Steam for CFETR

    Science.gov (United States)

    Cheng, Xiaoman; Ma, Xuebin; Jiang, Kecheng; Chen, Lei; Huang, Kai; Liu, Songlin

    2015-09-01

    The water-cooled ceramic breeder blanket (WCCB) is one of the blanket candidates for China fusion engineering test reactor (CFETR). In order to improve power generation efficiency and tritium breeding ratio, WCCB with superheated steam is under development. The thermal-hydraulic design is the key to achieve the purpose of safe heat removal and efficient power generation under normal and partial loading operation conditions. In this paper, the coolant flow scheme was designed and one self-developed analytical program was developed, based on a theoretical heat transfer model and empirical correlations. Employing this program, the design and analysis of related thermal-hydraulic parameters were performed under different fusion power conditions. The results indicated that the superheated steam water-cooled blanket is feasible. supported by the National Special Project for Magnetic Confined Nuclear Fusion Energy of China (Nos. 2013GB108004, 2014GB122000 and 2014GB119000), and National Natural Science Foundation of China (No. 11175207)

  12. Analysis of experimental routines of high enthalpy steam discharge in subcooled water

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Rafael R., E-mail: Rafael.rade@ctmsp.mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil); Andrade, Delvonei A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The discharge of high enthalpy steam through safety release valves out from pressurizers in PWR's needs to be condensed in order to allow the treatment of possibly present radwaste within. The Direct Contact Condensation is used in a relief tank to achieve the condensation. Care must be taken to avoid the bypass of the steam through the subcooled water, what would increase the peak of pressure and the necessity of structural reinforcement of the relief tank. An experiment to determine the optimal set up of the relief tank components and their characteristics (type of sprinkler, level of water, volume of tank, discharge direction, pressure in the pressurizer among others) was executed in 2000, in the CTE 150 facility, in CTMSP. In a total, 144 routines varying its components and characteristics were made, although no comprehensive analysis of its results were yet made, since the mass of data was too big to be readily analyzed. In order to comprehensively analyze it, a VBA program is being made to compile and graphically represent the mass of data. The current state of this program allowed conclusions over the peak pressure, adiabatic assumption of the experiment, and the quality of the steam generated due to the discharge. (author)

  13. Analysis of experimental routines of high enthalpy steam discharge in subcooled water

    International Nuclear Information System (INIS)

    Pacheco, Rafael R.; Andrade, Delvonei A.

    2015-01-01

    The discharge of high enthalpy steam through safety release valves out from pressurizers in PWR's needs to be condensed in order to allow the treatment of possibly present radwaste within. The Direct Contact Condensation is used in a relief tank to achieve the condensation. Care must be taken to avoid the bypass of the steam through the subcooled water, what would increase the peak of pressure and the necessity of structural reinforcement of the relief tank. An experiment to determine the optimal set up of the relief tank components and their characteristics (type of sprinkler, level of water, volume of tank, discharge direction, pressure in the pressurizer among others) was executed in 2000, in the CTE 150 facility, in CTMSP. In a total, 144 routines varying its components and characteristics were made, although no comprehensive analysis of its results were yet made, since the mass of data was too big to be readily analyzed. In order to comprehensively analyze it, a VBA program is being made to compile and graphically represent the mass of data. The current state of this program allowed conclusions over the peak pressure, adiabatic assumption of the experiment, and the quality of the steam generated due to the discharge. (author)

  14. Simulation of steam-water and binary geothermal power plants

    International Nuclear Information System (INIS)

    Popel', O.S.; Frid, S.E.; Shpil'rajn, Eh.Eh.

    2004-01-01

    The generalized scheme of the geothermal power plant (GeoPP), assuming the possibility of the electric power production in the steam-water turbine or in the turbine on the low-boiling working body, is considered. The GeoPP mathematical model, making it possible to carry out the comparison of the power indices of various GeoPP schemes and analysis of the calculational indices sensitivity of these schemes to the mode parameters change, is presented [ru

  15. ECONOMICS ANALYSIS OF THE IMPLEMENTATION OF PERMEABLE REACTIVE BARRIERS FOR REMEDIATION OF CONTAMINATED GROUND WATER

    Science.gov (United States)

    This report presents an analysis of the cost of using permeable reactive barriers to remediate contaminated ground water. When possible, these costs are compared with the cost of pump-and-treat technology for similar situations. Permeable reactive barriers are no longer perceiv...

  16. Supercritical Water Nuclear Steam Supply System: Innovations In Materials, Neutronics and Thermal-Hydraulics

    International Nuclear Information System (INIS)

    Anderson, Mark; Corradini, M.L.; Sridharan, K.; Wilson, P.; Cho, D.; Kim, T.K.; Lomperski, S.

    2004-01-01

    In the 1990's supercritical light-water reactors were considered in conceptual designs. A nuclear reactor cooled by supercritical waster would have a much higher thermal efficiency with a once-through direct power cycle, and could be based on standardized water reactor components (light water or heavy water). The theoretical efficiency could be improved by more than 33% over that of other water reactors and could be simplified with higher reliability; e.g., a boiling water reactor without steam separators or dryers

  17. Study on Relative COP Changes with Increasing Heat Input Temperatures of Double Effect Steam Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2016-01-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers are mainly of double effect type. The COP of double effect varies from 0.7 to 1.2 depending on operation and maintenance practices of the chillers. Heat input to the chillers during operations could have impact on the COP of the chillers. This study is on relative COP changes with increasing the heat input temperatures for a steam absorption chiller at a gas fueled cogeneration plant. Reversible COP analysis and zero order model were used for evaluating COP of the chiller for 118 days operation period. Results indicate increasing COP trends for both the reversible COP and zero model COP. Although the zero model COP are within the range of double effect absorption chiller, it is not so for the actual COP. The actual COP is below the range of normal double effect COP. It is recommended that economic replacement analysis to be undertaken to assess the feasibility either to repair or replace the existing absorption chiller.

  18. Plasticity of skin water permeability and skin thickness in the amphibious mangrove rivulus Kryptolebias marmoratus.

    Science.gov (United States)

    Heffell, Quentin; Turko, Andy J; Wright, Patricia A

    2018-03-01

    The skin of amphibious fishes is a multipurpose organ, important for gas and ion exchange and nitrogen excretion when fish are out of water (emersed). We tested the hypothesis that skin permeability is altered to maintain water balance through changes in water permeability and skin thickness during salinity acclimation and/or when fish emerse, using the euryhaline, amphibious fish Kryptolebias marmoratus as a model. We first recorded the behaviour of fish out of water to determine which part of the cutaneous surface was in contact with the substrate. Fish spent about 70% of their time on their ventral surface when out of water. Osmotic permeability of the skin was assessed in fish acclimated to 0.3 or 45‰ using 3 H 2 O fluxes in an in vitro micro-Ussing chamber setup. In freshwater-acclimated fish, 3 H 2 O influx across the skin was significantly higher compared to hypersaline-acclimated fish, with no significant changes in efflux. Prolonged emersion (7 days) resulted in an increase in skin 3 H 2 O influx, but not efflux in fish acclimated to a moist 45‰ substrate. In a separate experiment, dorsal epidermal skin thickness increased while the ventral dermis thickness decreased in fish emersed for over a week. However, there was no link between regional skin thickness and water flux in our experiments. Taken together, these findings suggest that K. marmoratus alter skin permeability to maximize water uptake while emersed in hypersaline conditions, adjustments that probably help them survive months of emersion during the dry season when drinking to replace water loss is not possible.

  19. A model predictive controller for the water level of nuclear steam generators

    International Nuclear Information System (INIS)

    Na, Man Gyun

    2001-01-01

    In this work, the model predictive control method was applied to a linear model and a nonlinear model of steam generators. The parameters of a linear model for steam generators are very different according to the power levels. The model predictive controller was designed for the linear steam generator model at a fixed power level. The proposed controller designed at the fixed power level showed good performance for any other power levels by changing only the input-weighting factor. As the input-weighting factor usually increases, its relative stability does so. The stem generator has some nonlinear characteristics. Therefore, the proposed algorithm has been implemented for a nonlinear model of the nuclear steam generator to verify its real performance and also, showed good performance. (author)

  20. Experiment on the Influence Factors of Steam Distillation Rate of Crude Oil in Porous Media

    Directory of Open Access Journals (Sweden)

    Tian Guoqing

    2017-01-01

    Full Text Available To explore the influence of complexity of reservoir properties in porous media and the diversity of operating conditions on the steam distillation rate of crude oil in the process of heavy oil exploitation with steam injection, steam distillation simulation devices are used to study steam distillation rate of crude oil in porous media. Then steam distillation ratio is obtained under the condition of different core permeability, oil saturation, steam temperatures, system pressure, steam injection rates and steam distillation rates with different viscosities of crude oil. The results show that the steam distillation rate of crude oil in porous media depends mainly on the nature of the crude oil itself, for temperature and pressure are the key factors compared with the pore structure, the initial oil saturation and steam injection rate. The experimental results help estimate the amount of crude oil and the required steam in the reservoir in the steam drive process, aiming to facilitate the optimization design and operation of steam drive.

  1. NIST/ASME Steam Properties Database

    Science.gov (United States)

    SRD 10 NIST/ASME Steam Properties Database (PC database for purchase)   Based upon the International Association for the Properties of Water and Steam (IAPWS) 1995 formulation for the thermodynamic properties of water and the most recent IAPWS formulations for transport and other properties, this updated version provides water properties over a wide range of conditions according to the accepted international standards.

  2. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  3. Enhancement of efficacy of process water monitors in detecting heavy water leak in steam generator blow down lines

    International Nuclear Information System (INIS)

    Mitra, S.R.; Kohale, S.D.; Parida, B.K.; Gathe, G.D.; Pati, C.K.; Mudgal, B.K.; Niraj; Pawar, S.K.

    2006-01-01

    The Steam Generator (SG) serves as an interface between primary and secondary cycle in Pressurized Heavy Water Reactor (PHWR). Failure of steam generator tubes result in leaking of active heavy water in the secondary closed loop. In Tarapur Atomic Power Station-3 and 4 (TAPS- 3 and 4), Scintillator detectors are provided to detect on line heavy water leakages in SG and moderator heat exchangers by monitoring Nitrogen-16 ( 16 N) and Oxygen-19 ( 19 O) activities. Efficacy of detection of these activities at designed detector position on SG blow down line in presence of background radiation field is analysed theoretically. The count rate of 19 O and 16 N estimated at the detector position inside Reactor Building (RB) shows that detectors only respond to very high leak rates due to presence of high ambient radiation level even though sensitivity is appreciably good. For detector position in RB in the accessible areas and out side the RE containment, the travel time for the blow down feed water becomes moderately and very long respectively resulting in poor sensitivity. However the results show that wherever background levels is low, the efficacy of leak detection becomes considerably better than the results obtained when detector is placed inside RB. The study was validated during the reactor operation by recording the detector count rates due to prevalent ambient radiation level near to the detectors. Subsequently the detectors were relocated in an area inside RB where relocation was feasible, travel time of the blow down feed water was moderate and the area had an relatively low ambient radiation level. This paper discusses the methodology adopted during the study and results obtained during theoretical estimation and practical validation. (author)

  4. Steam generators: critical components in nuclear steam supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Guille, P D

    1974-02-28

    Steam generators are critical components in power reactors. Even small internal leaks result in costly shutdowns for repair. Surveys show that leaks have affected one half of all water-cooled reactors in the world with steam generators. CANDU reactors have demonstrated the highest reliability. However, AECL is actively evolving new technology in design, manufacture, inspection and operation to maintain reliability. (auth)

  5. Hideout of sea water impurities in steam generator tube deposits: laboratory and field studies

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.; Turner, C.W.; Thompson, R.; Sawochka, S.

    1996-01-01

    Sea water impurities hide out within thin (∼10 μm) deposits on steam generator tubes, as demonstrated by both laboratory studies using segments of fouled steam generator tubes pulled in 1992 from Crystal River-3 nuclear power station and field hideout return studies performed during recent plant shutdowns. Laboratory tests performed at 279 o C (534 o F) and heat fluxes ranging from 35 to 114 kW/m 2 (11,100 - 36,150 Btu/h.ft 2 ), conditions typical of the lower tubesheet to the first support plate region of a once-through steam generator, showed that impurity hideout can occur in thin free-span tube deposits. The extent of hideout increased with increasing heat flux. Soluble species, such as sodium and chloride ions, returned promptly to the bulk water from the deposits when the heat flux was turned off, whereas less soluble species, such as calcium sulfate and magnesium hydroxide, returned more slowly. Recent field hideout return studies performed at Crystal River-3 where the water level in the steam generators was maintained below the first tube support plate during the shutdown, thus wetting only the thin deposits in the free span and the small sludge pile, corroborate the laboratory findings, showing that hideout does indeed occur in the free-span regions of the tubes. These findings suggest that hideout within tube deposits has to be accounted for in the calculation of crevice chemistry from hideout return studies and in controlling the bulk chemistry using the molar ratio criterion. (author). 3 refs., 4 tabs., 3 figs

  6. Evaluation of a dryer in a steam generator

    International Nuclear Information System (INIS)

    Xue Yunkui; Liu Shixun; Guandao, Xie; Chen Junliang

    1998-01-01

    The hooked-vane-type dryer is used in vertical, natural circulation steam generators used in PWR-type nuclear power stations. it separates the fine droplets of water carried by steam so that the steam generator outlet steam moisture is below 0.25%. Such low moisture is demanded to ensure a safe and economic operation of the unit. The dryer is composed of hooked vanes and a draining structure. A series of tests to screen different designs were performed using air-water mixture. The paper presents the results of the investigation of the effect of the number of drainage hooks , the bending angle , distance between two adjacent vanes, and other geometrical parameters on the performance of a hooked-vane-type steam dryer. It indicates that the dryer still works effectively when the moisture of the steam at the dryer inlet changes in a wide range, and that the performance of the dryer is closely related to the geometry of the draining structure . On the basis of the results of this program, a draining structure with an original design was selected and it is presented in the paper. The performance of the selected draining structure is better than that of similar structures in China and abroad. (author)

  7. Hybrid preheat/recirculating steam generator

    International Nuclear Information System (INIS)

    Lilly, G.P.

    1985-01-01

    The patent describes a hybrid preheat/recirculating steam generator for nuclear power plants. The steam generator utilizes recirculated liquid to preheat incoming liquid. In addition, the steam generator incorporates a divider so as to limit the amount of recirculating water mixed with the feedwater. (U.K.)

  8. Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality.

    Science.gov (United States)

    Wang, Pei; Tao, Han; Jin, Zhengyu; Xu, Xueming

    2016-06-01

    Impact of water extractable arabinoxylan from rye bran on frozen steamed bread dough quality was investigated in terms of the bread characteristics, ice crystallization, yeast activity as well as the gluten molecular weight distribution and glutenin macropolymer content in the present study. Results showed that water extractable arabinoxylan significantly improved bread characteristics during the 60-day frozen storage. Less water was crystallized in the water extractable arabinoxylan dough during storage, which could explain the alleviated yeast activity loss. For all the frozen dough samples, more soluble high molecular weight (Mw ≈ 91,000-688,000) and low molecular weight (Mw ≈ 91,000-16,000) proteins were derived from glutenin macropolymer depolymerization. Nevertheless, water extractable arabinoxylan dough developed higher glutenin macropolymer content with lowered level of soluble low molecular weight proteins throughout the storage. This study suggested water extractable arabinoxylan from rye bran had great potential to be served as an effective frozen steamed bread dough improver. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Water vapor permeabilities through polymers: diffusivities from experiments and simulations

    International Nuclear Information System (INIS)

    Seethamraju, Sindhu; Ramamurthy, Praveen Chandrashekarapura; Madras, Giridhar

    2014-01-01

    This study experimentally determines water vapor permeabilities, which are subsequently correlated with the diffusivities obtained from simulations. Molecular dynamics (MD) simulations were used for determining the diffusion of water vapor in various polymeric systems such as polyethylene, polypropylene, poly (vinyl alcohol), poly (vinyl acetate), poly (vinyl butyral), poly (vinylidene chloride), poly (vinyl chloride) and poly (methyl methacrylate). Cavity ring down spectroscopy (CRDS) based methodology has been used to determine the water vapor transmission rates. These values were then used to calculate the diffusion coefficients for water vapor through these polymers. A comparative analysis is provided for diffusivities calculated from CRDS and MD based results by correlating the free volumes. (paper)

  10. A drier unit for steam separators

    International Nuclear Information System (INIS)

    Peyrelongue, J.-P.

    1973-01-01

    Description is given of a drier unit adapted to equip a water separator mounted in a unit for treating a wet steam fed from a high pressure enclosure, so as to dry and contingently superheat said steam prior to injecting same into a turbine low pressure stage. This drier unit is constituted by at least a stack of separating sheets maintained in parallel relationship and at a slight angle with respect to the horizontal so as to allow the water provided by wet steam to flow toward a channel communicating with a manifold, and by means for guiding the steam between the sheets and evenly distributing it. This can be applied to steam turbines in nuclear power stations [fr

  11. Fundamental study on temperature estimation of steam generator tubes at sodium-water reaction

    International Nuclear Information System (INIS)

    Furukawa, Tomohiro; Yoshida, Eiichi

    2008-11-01

    In case of the tube failure in the steam generator of the sodium cooled fast breeder reactor, its adjoined tubes are rapidly heated up by the chemical reaction between sodium and water/steam. And it is known that the tubes have the damage called 'wastage' by the disclosure steam jet. This research is a fundamental study based on the metallography about temperature estimation of the damaged tubes at the sodium-water reaction for the establishment of mechanism analysis technique of the behavior. In the examination, the material which gave the rapid thermal history which imitated sodium-water reaction was produced. And it was investigated whether the thermal history (i.e. maximum temperature and the holding time) of the samples could be presumed from the metallurgical examination of the samples. The major results are as follows: (1) The microstructure of the sample which was given the rapid thermal heating has reserved the influence of the maximum temperature and the time, and the structure can explain by referring to the equilibrium diagram and the continuous cooling transformation diagram. (2) Results of the electrolytic extraction of the samples, the ratio of the remained volume to the electrolyzed volume degreased with the increase of the maximum temperature and the time. Furthermore, it was observed the correlation between the remained volume of each element (Cr, Mo, Fe, V and Nb) and the thermal history. (3) It was obtained that the thermal history of the tubes damaged by sodium-water reaction might be able to be estimated from the metallurgical examinations. (author)

  12. Moisture separator for steam generator level measurement system

    International Nuclear Information System (INIS)

    Cantineau, B.J.

    1987-01-01

    A steam generator level measurement system having a reference leg which is kept full of water by a condensation pot, has a liquid/steam separator in the connecting line between the condensation pot and the steam phase in the steam generator to remove excess liquid from the steam externally of the steam generator. This ensures that the connecting line does not become blocked. The separator pot has an expansion chamber which slows down the velocity of the steam/liquid mixture to aid in separation, and a baffle, to avoid liquid flow into the line connected to the condensate pot. Liquid separated is returned to the steam generator below the water level through a drain line. (author)

  13. Steam injection for heavy oil recovery: Modeling of wellbore heat efficiency and analysis of steam injection performance

    International Nuclear Information System (INIS)

    Gu, Hao; Cheng, Linsong; Huang, Shijun; Li, Bokai; Shen, Fei; Fang, Wenchao; Hu, Changhao

    2015-01-01

    Highlights: • A comprehensive mathematical model was established to estimate wellbore heat efficiency of steam injection wells. • A simplified approach of predicting steam pressure in wellbores was proposed. • High wellhead injection rate and wellhead steam quality can improve wellbore heat efficiency. • High wellbore heat efficiency does not necessarily mean good performance of heavy oil recovery. • Using excellent insulation materials is a good way to save water and fuels. - Abstract: The aims of this work are to present a comprehensive mathematical model for estimating wellbore heat efficiency and to analyze performance of steam injection for heavy oil recovery. In this paper, we firstly introduce steam injection process briefly. Secondly, a simplified approach of predicting steam pressure in wellbores is presented and a complete expression for steam quality is derived. More importantly, both direct and indirect methods are adopted to determine the wellbore heat efficiency. Then, the mathematical model is solved using an iterative technique. After the model is validated with measured field data, we study the effects of wellhead injection rate and wellhead steam quality on steam injection performance reflected in wellbores. Next, taking cyclic steam stimulation as an example, we analyze steam injection performance reflected in reservoirs with numerical reservoir simulation method. Finally, the significant role of improving wellbore heat efficiency in saving water and fuels is discussed in detail. The results indicate that we can improve the wellbore heat efficiency by enhancing wellhead injection rate or steam quality. However, high wellbore heat efficiency does not necessarily mean satisfactory steam injection performance reflected in reservoirs or good performance of heavy oil recovery. Moreover, the paper shows that using excellent insulation materials is a good way to save water and fuels due to enhancement of wellbore heat efficiency

  14. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    International Nuclear Information System (INIS)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R.

    2008-03-01

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to the

  15. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R. [Royal Institute of Technology (KTH), (Sweden)

    2008-03-15

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to

  16. Steam-water jet analysis. Final report

    International Nuclear Information System (INIS)

    Kashiwa, B.A.; Harlow, F.H.; Demuth, R.B.; Ruppel, H.M.

    1984-05-01

    This report presents the results of a theoretical study on the effects of the steam-water jet emitted from a hypothetical rupture in the high-pressure piping pf a nuclear power plant. A set of calculations is presented, incorporating increasingly complex formulations for mass and momentum exchange between the liquid and vapor flow fields. Comparisons between theory and detailed experimental data are given. The study begins with a thorough evaluation of the specification of equilibrium mass and momentum exchange (homogeneous equilibrium) throughout the flow region, a model that generally overpredicts the rate of jet momentum divergence. The study finds that a near-equilibrium momentum exchange rate and a strongly nonequilibrium momentum exchange rate are needed in the region of large vapor-volume fraction to explain the impingement data for fully developed two-phase jets. This leads to the viewpoint that the large-scale jet is characterized by a flow of large liquid entities that travel relatively unaffected by the strongly diverging vapor flow field. The study also finds circumstances in which a persistent core of metastable superheated water can cause much larger impingement pressures than would otherwise be possible. Existing engineering methods are evaluated for jet-loading predictions in plant design. The existing methods appear to be conservative in most possible rupture circumstances with one exception: when the impingement target is about one pipe-diameter away, large enough to capture the full jet, and the rupture flow area is equal to the full pipe flow area, the existing method can produce loadings that are slightly lower than observed for subcooled, flashing discharge. Recommendations have been made to improve the prediction of existing methods under these conditions

  17. Detection of steam generator tube leaks in pressurized water reactors

    International Nuclear Information System (INIS)

    Roach, W.H.

    1984-11-01

    This report addresses the early detection of small steam generator tube leaks in pressurized water reactors. It identifies physical parameters, establishes instrumentation performance goals, and specifies sensor types and locations. It presents a simple algorithm that yields the leak rate as a function of known or measurable quantities. Leak rates of less than one-tenth gram per second should be detectable with existing instrumentation

  18. Remote-controlled television for locating leaking tubes in pressurized-water reactor steam generators

    International Nuclear Information System (INIS)

    Cormault, P.; Denis, J.

    1978-01-01

    The Scarabee system is designed for observation of the tubes in water boxes of pressurized-water reactor nuclear-power-station steam generators. It consists essentially of a camera and a projector used as a marker, both of which swivel freely. The whole unit is housed in a water-tight container which can easily be decontaminated. Remote control of camera and marker movement is carried out from a console. (author)

  19. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  20. Water and steam sampling systems; Provtagningssystem foer vatten och aanga

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Mats

    2009-10-15

    The supervision of cycle chemistry can be divided into two parts, the sampling system and the chemical analysis. In modern steam generating plants most of the chemical analyses are carried out on-line. The detection limits of these analyzers are pushed downward to the ppt-range (parts per trillion), however the analyses are not more correct than the accuracy of the sampling system. A lot of attention has been put to the analyzers and the statistics to interpret the results but the sampling procedures has gained much less attention. This report aims to give guidance of the considerations to be made regarding sampling systems. Sampling is necessary since most analysis of interesting parameters cannot be carried out in- situ on-line in the steam cycle. Today's on-line instruments for pH, conductivity, silica etc. are designed to meet a water sample at a temperature of 10-30 deg C. This means that the sampling system has to extract a representative sample from the process, transport and cool it down to room temperature without changing the characteristics of the fluid. In the literature research work, standards and other reports can be found. Although giving similar recommendations in most aspects there are some discrepancies that may be confusing. This report covers all parts in the sampling system: Sample points and nozzles; Sample lines; Valves, regulating and on-off; Sample coolers; Temperature, pressure and flow rate control; Cooling water; and Water recovery. On-line analyzers connecting to the sampling system are not covered. This report aims to clarify what guidelines are most appropriate amongst the existing ones. The report should also give guidance to the design of the sampling system in order to achieve representative samples. In addition to this the report gives an overview of the fluid mechanics involved in sampling. The target group of this report is owners and operators of steam generators, vendors of power plant equipment, consultants working in

  1. Chemical Composition and Water Permeability of Fruit and Leaf Cuticles of Olea europaea L.

    Science.gov (United States)

    Huang, Hua; Burghardt, Markus; Schuster, Ann-Christin; Leide, Jana; Lara, Isabel; Riederer, Markus

    2017-10-11

    The plant cuticle, protecting against uncontrolled water loss, covers olive (Olea europaea) fruits and leaves. The present study describes the organ-specific chemical composition of the cuticular waxes and the cutin and compares three developmental stages of fruits (green, turning, and black) with the leaf surface. Numerous organ-specific differences, such as the total coverage of cutin monomeric components (1034.4 μg cm -2 and 630.5 μg cm -2 ) and the cuticular waxes (201.6 μg cm -2 and 320.4 μg cm -2 ) among all three fruit stages and leaves, respectively, were detected. Water permeability as the main cuticular function was 5-fold lower in adaxial leaf cuticles (2.1 × 10 -5 m s -1 ) in comparison to all three fruit stages (9.5 × 10 -5 m s -1 ). The three fruit developmental stages have the same cuticular water permeability. It is hypothesized that a higher weighted average chain length of the acyclic cuticular components leads to a considerably lower permeability of the leaf as compared to the fruit cuticle.

  2. Analytical description of thermodynamic properties of steam, water and the phase interface for use in CFD

    OpenAIRE

    Hrubý Jan; Duška Michal

    2014-01-01

    We present a system of analytical equations for computation of all thermodynamic properties of dry steam and liquid water (undesaturated, saturated and metastable supersaturated) and properties of the liquid-vapor phase interface. The form of the equations is such that it enables computation of all thermodynamic properties for independent variables directly related to the balanced quantities - total mass, liquid mass, energy, momenta. This makes it suitable for the solvers of fluid dynamics e...

  3. Derivatization Ion Chromatography for the Determination of Monoethanolamine in Presence of Hydrazine in PHWR Steam-Water Circuits

    Directory of Open Access Journals (Sweden)

    Ayushi D.

    2011-01-01

    Full Text Available A simple, rapid and accurate method for the determination of monoethanolamine (MEA in PHWR steam-water circuits has been developed. MEA is added in the feed water to provide protection against corrosion while hydrazine is added to scavenge dissolved oxygen. The quantitative determination of MEA in presence of hydrazine was accomplished using derivatization ion chromatography with conductometric detection in nonsuppressed mode. A Metrosep cation 1-2 analytical column and a Metrosep cartridge were used for cation separation. A mixture of 4 mM tartaric acid, 20% acetone and 0.05 mM HNO3 was used as eluent. Acetone in the mobile phase leads to the formation of different derivatives with MEA and hydrazine. The interferences due Na+ and NH4 + were eliminated by adopting a simple pretreatment procedure employing OnGuard-H cartridge. The limit of detection limit of MEA was 0.1 μg mL−1 and the relative standard deviation was 2% for the overall method. The recovery of MEA added was in the range 95%–102%. The method was applied to the determination of MEA in steam generator water samples.

  4. Cleaning device for steam units in a nuclear power plant

    International Nuclear Information System (INIS)

    Sasamuro, Takemi.

    1978-01-01

    Purpose: To prevent radioactive contamination upon dismantling and inspection of steam units such as a turbine to a building containing such units and the peripheral area. Constitution: A steam generator indirectly heated by steam supplied from steam generating source in a separate system containing no radioactivity is provided to produce cleaning steam. A cleaning steam pipe is connected by way of a stop valve between separation valve of a nuclear power plant steam pipe and a high pressure turbine. Upon cleaning, the separation valve is closed, and steam supplied from the cleaning steam pipe is flown into a condenser. The water thus condensated is returned by way of a feed water heater and a condenser to a water storage tank. (Nakamura, S.)

  5. Influence of transport infrastructure on water permeability of soils of Western Siberia

    Science.gov (United States)

    Eremin, Dmitry; Eremina, Diana

    2017-10-01

    Correctly designed transport infrastructure should support the current economic relations. It should provide a reserve for development of economy of the region in the future. In Western Siberia, new highways are actively being built and major repairs of the operating roads are being conducted. Local materials are often used in the roadbed construction. In the Tyumen region, it is usually sandy silt and clayey sand. The soil has unfavourable physico-mechanical properties. The soil is prone to water and wind erosion. This type of ground gets on the adjacent to the road territory. Studies on the influence of highways on soil permeability were carried out on the basis of the federal highway Tyumen-Omsk. Three types of soils, which are actively used in the agricultural sector, were considered. It is found that the content of particles with the size less than 0.01 mm reaches 32% in the soil used in road construction. It is noted that a part of these particles accumulates on the adjacent to the road territory since it is being washed out from roadbed. The content of physical clay (initial values. The width of active accumulation of silt particles reaches 15-20 m along the roads. The soils at the distance up to 10 m from the highway are almost impermeable to water. Absence of a natural hydrological drain, results in the territory bogging. An inverse close correlation was established between the content of physical clay (<0.01 mm) and water permeability (r = 0.90).

  6. Advanced on-line monitoring of power plant water/steam quality

    Energy Technology Data Exchange (ETDEWEB)

    Perboni, G.; Rocchini, G.; Sigon, F. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-03-01

    To improve the behaviour and resistance of materials in the water-steam cycle critical components (steam generator, condensate heaters, turbine) it is necessary to adopt proper actions for promoting formation and integrity of surface protective oxide layers and preventing general and localised corrosion and transport processes of corrosion products throughout the cycle. In this report two important topics are reported: steam side corrosion in the low pressure turbines induced by the `first condensate` in the final stages of the turbine, and the stability of the oxides layers as a function of the condensate chemistry, with particular attention to the transport of corrosion products to the boiler. Furthermore an innovative technique for monitoring some physico-chemical parameters at the actual fluid temperature (150-300C) using new electrochemical sensors improved by ENEL/CRAM is studied: pH, conductivity, corrosion rate, corrosion and redox potentials.ENEL/CRAM validated on lab-scale testing loops these sensors and carried out the following programs: calibration procedures, reliability of the response, long-term stability and assessment of a reduced maintenance. Applications of the electrochemical methods to fossil fired units have demonstrated their validity for monitoring the cycle chemistry and the resistance to corrosion of structural materials in real time.

  7. Steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermal hydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. This report shows how recent advances in cleaning technology are integrated into a life management strategy, discusses downcomer flow measurement as a means of monitoring steam generator condition, and describes recent advances in hideout return as a life management tool. The research and development program, as well as operating experience, has identified

  8. CANDU steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermalhydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. The research and development program, as well as operating experience, has identified where improvements in operating practices and/or designs can be made in order to ensure steam generator design life at an acceptable capacity factory. (author)

  9. Investigation on hydrogen permeation on heat exchanger materials in conditions of steam coal gasification

    International Nuclear Information System (INIS)

    Moellenhoff, H.

    1984-01-01

    The permeation of hydrogen through iron-based alloys of different compositions in the temperature range between 700 and 1000 0 C was examined in a laboratory fluidized bed in the conditions of steam/coal gasification. Apart from tests on bright metal samples, measurement in the gasification atmosphere at a maximum pressure of 1 bar were carried out during oxidation of the metal. Experiments in a steam/hydrogen/argon mixture with the same oxidation potential were used for comparison purposes. The hydrogen permeated through the metal sample was taken to a gas chromatograph with argon flushing gas and analyzed there. The investigations on bright steel samples of various composition showed that their permeabilities for hydrogen at temperatures around 900 0 C only differed by a maximum of ± 30%. Effective prevention of permeation is therefore not possible simply by choosing a suitable alloy. If the steels are oxidized during permeation measurements, there is a reduction of the hydrogen permeability by 2 or 3 orders of magnitude due to the oxidation process, both in the steam/coal gasification fluidized bed and in a pure steam/hydrogen/argon mixture. (orig./GG) [de

  10. Water hammer phenomena occurring in nuclear power installations while filling horizontal pipe containing saturated steam with liquid

    Energy Technology Data Exchange (ETDEWEB)

    Selivanov, Y.F.; Kirillov, P.L.; Yefanov, A.D. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1995-09-01

    The potentiality of the water hammer occurrence in nuclear reactor loop components has been considered under the conditions of filling a steam-containing pipeline leg involving horizontal and vertical sections with liquid subcooled to the saturation temperature. As a result of free discharging from the tank, the liquid enters the horizontal pipeline. When the liquid slug formation in the pipeline is fulfilled. The pressure drop being occurred in steam flowing along the pipelines causes the liquid slug to move to the pipeline inlet. When the liquid slug decelerates, a water hammer occurs. This mechanism of water hammer occurrence is tested by experiments. The regimes of the occurrence of multiple considerable water hammers were identified.

  11. Water hammer phenomena occurring in nuclear power installations while filling horizontal pipe containing saturated steam with liquid

    International Nuclear Information System (INIS)

    Selivanov, Y.F.; Kirillov, P.L.; Yefanov, A.D.

    1995-01-01

    The potentiality of the water hammer occurrence in nuclear reactor loop components has been considered under the conditions of filling a steam-containing pipeline leg involving horizontal and vertical sections with liquid subcooled to the saturation temperature. As a result of free discharging from the tank, the liquid enters the horizontal pipeline. When the liquid slug formation in the pipeline is fulfilled. The pressure drop being occurred in steam flowing along the pipelines causes the liquid slug to move to the pipeline inlet. When the liquid slug decelerates, a water hammer occurs. This mechanism of water hammer occurrence is tested by experiments. The regimes of the occurrence of multiple considerable water hammers were identified

  12. Numerical fluid dynamics calculations of nonequilibrium steam-water flows with entrained droplets

    International Nuclear Information System (INIS)

    Williams, K.A.

    1984-01-01

    The present work has developed a computational fluid dynamics formulation that efficiently solves the conservation laws for a vapor field, a continuous liquid field, and two dispersed droplet fields. The thermal-hydraulic effects resulting from the exchange of mass, momentum and energy between the vapor and the dispersed droplet phases has been accurately modeled. This work is an advancement of the state-of-the-art for engineering analyses of nonequilibrium steam-water-droplet flows in heated channels. It is particularly applicable for boiling steam-water flows in which it is important to represent the effects of significant thermal nonequilibrium between the vapor and the liquid phases. This work was shown to be in good agreement with unique experimental measurements of significant thermal nonequilibrium between the vapor and dispersed droplets. The tests analyzed covered a range of mass fluxes and wall heating rates, and were all at low pressures where nonequilibrium effects are most pronounced

  13. Some Thoughts About Water Analysis in Shipboard Steam Propulsion Systems for Marine Engineering Students.

    Science.gov (United States)

    Schlenker, Richard M.; And Others

    Information is presented about the problems involved in using sea water in the steam propulsion systems of large, modern ships. Discussions supply background chemical information concerning the problems of corrosion, scale buildup, and sludge production. Suggestions are given for ways to maintain a good water treatment program to effectively deal…

  14. The water relations of mycorrhiza

    International Nuclear Information System (INIS)

    Leyton, L.

    1982-01-01

    The wettability of the surface of ectotrophic beech mycorrhiza roots which did not have any radiating hyphae, was much less than a non-mycorrhizal root epidermis. The mycorrhizal sheath has a lower permeability to the flow of water than the uninfected root. The mycorrhizal roots absorbed water more rapidly than non-mycorrhizal roots. Possible explanations for this unusual phenomenon were (1) the development of a lower water potential in water stressed mycorrhizal roots, (2) accummulation of absorbed water in the sheath and (3) a higher permeability of the sheath to incoming than outgoing water. A study with endotrophic red clover plants confirmed that infection markedly increased growth and P uptake. This was accompanied by a reduction in the root/shoot ratio. This could be explained by a faster recovery of stressed mycorrhizal plants when water was restored because they were more efficient in taking up water. Experiments with tritiated water (THO) were initiated but consistent values for conductivity were not obtained. (author)

  15. Nuclear applications for steam and hot water supply

    International Nuclear Information System (INIS)

    1991-07-01

    An increase in the heat energy needs underlined by the potential increase in fossil fuel prices, particularly in oil supplies, and by the necessity for an improvement of the environment worldwide, as signalized by the IAEA Member States, prompted the decision to start a programme leading to this report. This document is intended to help to identify the experience of Member States where nuclear power plants or specialized nuclear heat plants are employed or envisaged to be used for distribution of steam or hot water to industrial or residential consumers, covering low and medium temperature ranges. 25 refs, 33 figs, 15 tabs

  16. Ground-water flow in low permeability environments

    Science.gov (United States)

    Neuzil, Christopher E.

    1986-01-01

    Certain geologic media are known to have small permeability; subsurface environments composed of these media and lacking well developed secondary permeability have groundwater flow sytems with many distinctive characteristics. Moreover, groundwater flow in these environments appears to influence the evolution of certain hydrologic, geologic, and geochemical systems, may affect the accumulation of pertroleum and ores, and probably has a role in the structural evolution of parts of the crust. Such environments are also important in the context of waste disposal. This review attempts to synthesize the diverse contributions of various disciplines to the problem of flow in low-permeability environments. Problems hindering analysis are enumerated together with suggested approaches to overcoming them. A common thread running through the discussion is the significance of size- and time-scale limitations of the ability to directly observe flow behavior and make measurements of parameters. These limitations have resulted in rather distinct small- and large-scale approaches to the problem. The first part of the review considers experimental investigations of low-permeability flow, including in situ testing; these are generally conducted on temporal and spatial scales which are relatively small compared with those of interest. Results from this work have provided increasingly detailed information about many aspects of the flow but leave certain questions unanswered. Recent advances in laboratory and in situ testing techniques have permitted measurements of permeability and storage properties in progressively “tighter” media and investigation of transient flow under these conditions. However, very large hydraulic gradients are still required for the tests; an observational gap exists for typical in situ gradients. The applicability of Darcy's law in this range is therefore untested, although claims of observed non-Darcian behavior appear flawed. Two important nonhydraulic

  17. The casebook of technical presentation on a steam generator

    International Nuclear Information System (INIS)

    1986-05-01

    This casebook consists of seven presentations, which are measures and experience of maintenance of water quality in PWR generator, corrosion in steam generator, safely evaluation by management and closing in steam generator, testing of eddy current in steam generator, unsettled problems of safety in steam generator and maintenance of water quality in PWR generator.

  18. Test results of sodium-water reaction testing in near prototypical LMR steam generator

    International Nuclear Information System (INIS)

    Boardman, C.E.; Hui, M.; Neely, H.H.

    1990-01-01

    An extensive test program has been performed in the United States to investigate the effects of large sodium-water reaction events in LMFBR steam generators. Tests were conducted in the Large Leak Test Rig (LLTR) located at the Energy Technology Engineering Center (ETEC). The program was divided into two phases, Series I and Series II, for the purpose of satisfying near-term and long-term needs. Series II was further subdivided into large and intermediate leak tests. This paper will emphasize the Series II intermediate leak tests and resulting conclusions for steam generator design and operation. 11 figs, 2 tabs

  19. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    Science.gov (United States)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  20. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    International Nuclear Information System (INIS)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-01-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  1. Present status and future plan on LMFBR steam generator safety study

    International Nuclear Information System (INIS)

    Tanabe, Hiromi; Kuroha, Mitsuo

    1985-01-01

    The results of the sodium-water reaction test which has been carried out for the safety evaluation of the water leak phenomena in the steam generators for the prototype FBR were summarized. This is related to the behavior of minute leak, the behavior of wear and damage propagation of neighboring tubes due to small and medium leaking jets, and the pressure/flow phenomena occurring at the time of large leak. Moreover, this is related to the development of analysis codes, the development of water leak-detecting system, and the development of the techniques for treating reaction products remaining in the system at the time of accidents. Also the research and development required hereafter for determining the basic specification of the steam generators for a demonstration FBR and future FBRs and reducing the cost were examined. The water leaks in the steam generators for FBRs have been reported in the Fermi reactor of USA, the PFR of Great Britain, the BN-350 of USSR, the Phenix reactor of France and so on. In Japan, the sodium-water reaction has been well understood, and the facilities for the countremeasures to it have been established. The sodium-water reaction phenomena, the present status of sodium-water reaction research and others are reported. (Kako, I.)

  2. Modelling water vapour permeability through atomic layer deposition coated photovoltaic barrier defects

    Energy Technology Data Exchange (ETDEWEB)

    Elrawemi, Mohamed, E-mail: Mohamed.elrawemi@hud.ac.uk [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Blunt, Liam; Fleming, Leigh [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom); Bird, David, E-mail: David.Bird@uk-cpi.com [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Robbins, David [Centre for Process Innovation Limited, Sedgefield, County Durham (United Kingdom); Sweeney, Francis [EPSRC Centre for Innovative Manufacturing in Advanced Metrology, School of Computing and Engineering, University of Huddersfield, Huddersfield (United Kingdom)

    2014-11-03

    Transparent barrier films such as Al{sub 2}O{sub 3} used for prevention of oxygen and/or water vapour permeation are the subject of increasing research interest when used for the encapsulation of flexible photovoltaic modules. However, the existence of micro-scale defects in the barrier surface topography has been shown to have the potential to facilitate water vapour ingress, thereby reducing cell efficiency and causing internal electrical shorts. Previous work has shown that small defects (≤ 3 μm lateral dimension) were less significant in determining water vapour ingress. In contrast, larger defects (≥ 3 μm lateral dimension) seem to be more detrimental to the barrier functionality. Experimental results based on surface topography segmentation analysis and a model presented in this paper will be used to test the hypothesis that the major contributing defects to water vapour transmission rate are small numbers of large defects. The model highlighted in this study has the potential to be used for gaining a better understanding of photovoltaic module efficiency and performance. - Highlights: • A model of water vapour permeation through barrier defects is presented. • The effect of the defects on the water vapour permeability is investigated. • Defect density correlates with water vapour permeability. • Large defects may dominate the permeation properties of the barrier film.

  3. Removal of semivolatiles from soils by steam stripping. 1. A local equilibrium model

    International Nuclear Information System (INIS)

    Wilson, D.J.; Clarke, A.N.

    1992-01-01

    A mathematical model for the in-situ steam stripping of volatile and semivolatile organics from contaminated vadose zone soils at hazardous waste sites is developed. A single steam injection well is modeled. The model assumes that the pneumatic permeability of the soil is spatially constant and isotropic, that the adsorption isotherm of the contaminant is linear, and that the local equilibrium approximation is adequate. The model is used to explore the streamlines and transit times of the injected steam as well as the effects of injection well depth and contaminant distribution on the time required for remediation

  4. The diffusion permeability to water of the rat blood-brain barrier

    DEFF Research Database (Denmark)

    Bolwig, T G; Lassen, N A

    1975-01-01

    The diffusion permeability to water of the rat blood-brain-barrier (BBB) was studied. Preliminary data obtained with the Oldendorf tissue uptake method (Oldendorf 1970) in seizure experiments suggested that the transfer from blood to brain of labelled water is diffusion-limited. More definite...... passage increased from 0.26 to 0.67 when the arterial carbon dioxide tension was changed from 15 to 85 mm Hg, a change increasing the cerebral blood flow about sixfold. This finding suggests that water does not pass the blood-brain barrier as freely as lipophilic gases....

  5. SWAAM code development, verification and application to steam generator design

    International Nuclear Information System (INIS)

    Shin, Y.W.; Valentin, R.A.

    1990-01-01

    This paper describes the family of SWAAM codes developed by Argonne National Laboratory to analyze the effects of sodium/water reactions on LMR steam generators. The SWAAM codes were developed as design tools for analyzing various phenomena related to steam generator leaks and to predict the resulting thermal and hydraulic effects on the steam generator and the intermediate heat transport system (IHTS). The theoretical foundations and numerical treatments on which the codes are based are discussed, followed by a description of code capabilities and limitations, verification of the codes by comparison with experiment, and applications to steam generator and IHTS design. (author). 25 refs, 14 figs

  6. Steam generator operation and maintenance

    International Nuclear Information System (INIS)

    Lee, C.K.

    2004-01-01

    Corrosion of steam generator tube has resulted in the need for extensive repair and replacement of steam generators. Over the past two decades, steam generator problems in the United States were viewed to be one of the most significant contributor to lost generation in operating PWR plants. When the SGOG-I (Steam Generator Owners Groups) was formed in early 1977, denting was responsible for almost 90% of the tube plugging. By the end of 1982, this figure was reduced to less than 2%. During the existence of SGOG-II (from 1982 to 1986), IGA/SCC (lntergranular Attack/Stress Corrosion Cracking) in the tube sheet, primary side SCC, pitting, and fretting surfaced as the primary causes of tube degradation. Although significant process has been made with wastage and denting, the utilities experience shows that the percentage of reactors plugging tubes and the percentage of tubes being plugged each year has remained relatively constant. The diversity of the damage mechanisms means that no one solution is likely to resolve all problems. The task of maintaining steam generator integrity continues to be formidable and challenging. As the older problems were brought under control, many new problems emerged. SGOG-II (Steam Generator Owners Group program from 1982 to 1986) has focused on these problem areas such as tube stress corrosion cracking (SCC) and intergranular attack (IGA) in the open tube sheet crevice, primary side tube cracking, pitting in the lower span, and tube fretting in preheated section and anti-vibration bar (AVB) locations. Primary Water Stress Corrosion Cracking (PWSCC) in the tube to tubesheet roll transition has been a wide spread problem in the Recirculation Steam Generators (RSG) during this period. Although significant progress has been made in resolving this problem, considerable work still remains. One typical problem in the Once Through Steam Generator (OTSG) was the tube support plate broached hole fouling which affects the OTSG steam generating

  7. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  8. Reverse osmosis using for water demineralization for supplying the NPP and TPP steam generators

    International Nuclear Information System (INIS)

    Mamet, A.P.; Sitnyakovskij, Yu.A.

    2000-01-01

    Paper analyzes the conditions affecting the efficiency of water reverse-osmosis demineralization for NPP and TPP steam generators and presents an example of efficient application of a membrane reverse-osmosis facility serving as the first stage of water demineralization at the Mosehnergo Joint-Stock Company heating and power plant no. 23 to feed boilers [ru

  9. Model of reverse steam generator

    International Nuclear Information System (INIS)

    Malasek, V.; Manek, O.; Masek, V.; Riman, J.

    1987-01-01

    The claim of Czechoslovak discovery no. 239272 is a model designed for the verification of the properties of a reverse steam generator during the penetration of water, steam-water mixture or steam into liquid metal flowing inside the heat exchange tubes. The design may primarily be used for steam generators with a built-in inter-tube structure. The model is provided with several injection devices configured in different heat exchange tubes, spaced at different distances along the model axis. The design consists in that between the pressure and the circumferential casings there are transverse partitions and that in one chamber consisting of the circumferential casings, pressure casing and two adjoining partitions there is only one passage of the injection device through the inter-tube space. (Z.M.). 1 fig

  10. Matrix injection of relative permeability modifier for water control applied in Brazil basins; Injecao matricial de modificadores de permeabilidade relativa para controle de producao de agua aplicado nas bacias petroliferas brasileiras

    Energy Technology Data Exchange (ETDEWEB)

    Marchi, Flavio; Stefan, Rodolfo; Mendonca, Paulo; Ferreira, Antonio; Silva, Charles; Fonseca, Ana Isoila [BJ Services do Brasil Ltda., Macae, Rio de Janeiro, RJ (Brazil); Melo, Ricardo C.B. [BJ Services Company Africa Ltd., Angola (Angola)

    2008-07-01

    One of the biggest challenges for the oil industry, even at the beginning of well's production, and principally when the well is producing, is how to reduce and handling the produced water on this process. A conservative estimation says for each barrel of produced oil you have 5 or 6 barrels of formation's water. Some factors must be considerable to establish and maintain a carefully management of this effluent, for example the volume of produced water, which is always growing due to the reservoir maturation and for the secondary recovery process; salt content; residual oil and chemical products presence. Water production is the cause of several problems on wells, like scales, organic deposits or starting the process of formation's sand production induced by fines migration. As a consequence, a cost increment of production is observed due to hydrocarbon/water separation and destination of produced water. The same way, is extremely expensive to manage the even bigger volume, which demands efforts to re-inject the water, treatment which avoid or minimize possible environment impacts, development of new equipment and materials which helps and resists to the effects of produced water. Not inherent reservoir's cause can be several, like bad isolated water zones by cement fail, wrong determination of perforated interval, which is easier to use aid methods. When the water production is directly associated to reservoir, by conning, channeling and/or fingering, generally associated to mobility difference between water and oil, the nowadays most efficient treatment is the injection of relative permeability modifier. This paper will present techniques and results obtained with matrix injection in some fields by the use of the last generation of RPM (relative permeability modifier). (author)

  11. Vertical steam generator

    International Nuclear Information System (INIS)

    Cuda, F.; Kondr, M.; Kresta, M.; Kusak, V.; Manek, O.; Turon, S.

    1982-01-01

    A vertical steam generator for nuclear power plants and dual purpose power plants consists of a cylindrical vessel in which are placed heating tubes in the form upside-down U. The heating tubes lead to the jacket of the cylindrical collector placed in the lower part of the steam generator perpendicularly to its vertical axis. The cylindrical collector is divided by a longitudinal partition into the inlet and outlet primary water sections of the heating tubes. One ends of the heating tube leads to the jacket of the collector for primary water feeding and the second ends of the heating tubes into the jacket of the collector which feeds and offtakes primary water from the heating tubes. (B.S.)

  12. Liquid metal steam generator

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1975-01-01

    A liquid metal heated steam generator is described which in the event of a tube failure quickly exhausts out of the steam generator the products of the reaction between the water and the liquid metal. The steam is generated in a plurality of bayonet tubes which are heated by liquid metal flowing over them between an inner cylinder and an outer cylinder. The inner cylinder extends above the level of liquid metal but below the main tube sheet. A central pipe extends down into the inner cylinder with a centrifugal separator between it and the inner cylinder at its lower end and an involute deflector plate above the separator so that the products of a reaction between the liquid metal and the water will be deflected downwardly by the deflector plate and through the separator so that the liquid metal will flow outwardly and away from the central pipe through which the steam and gaseous reaction products are exhausted. (U.S.)

  13. SWAAM-code development and verification and application to steam generator designs

    International Nuclear Information System (INIS)

    Shin, Y.W.; Valentin, R.A.

    1990-01-01

    This paper describes the family of SWAAM codes which were developed by Argonne National Laboratory to analyze the effects of sodium-water reactions on LMR steam generators. The SWAAM codes were developed as design tools for analyzing various phenomena related to steam generator leaks and the resulting thermal and hydraulic effects on the steam generator and the intermediate heat transport system (IHTS). The paper discusses the theoretical foundations and numerical treatments on which the codes are based, followed by a description of code capabilities and limitations, verification of the codes and applications to steam generator and IHTS designs. 25 refs., 14 figs

  14. Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier

    International Nuclear Information System (INIS)

    Mrzljak, Vedran; Poljak, Igor; Mrakovčić, Tomislav

    2017-01-01

    Highlights: • Two low-power steam turbines in the LNG carrier propulsion plant were investigated. • Energy and exergy efficiencies of both steam turbines vary between 46% and 62%. • The ambient temperature has a low impact on exergy efficiency of analyzed turbines. • The maximum efficiencies area of both turbines was investigated. • A method for increasing the turbo-generator efficiencies by 1–3% is presented. - Abstract: Nowadays, marine propulsion systems are mainly based on internal combustion diesel engines. Despite this fact, a number of LNG carriers have steam propulsion plants. In such plants, steam turbines are used not only for ship propulsion, but also for electrical power generation and main feed water pump drive. Marine turbo-generators and steam turbine for the main feed water pump drive were investigated on the analyzed LNG carrier with steam propulsion plant. The measurements of various operating parameters were performed and obtained data were used for energy and exergy analysis. All the measurements and calculations were performed during the ship acceleration. The analysis shows that the energy and exergy efficiencies of both analyzed low-power turbines vary between 46% and 62% what is significantly lower in comparison with the high-power steam turbines. The ambient temperature has a low impact on exergy efficiency of analyzed turbines (change in ambient temperature for 10 °C causes less than 1% change in exergy efficiency). The highest exergy efficiencies were achieved at the lowest observed ambient temperature. Also, the highest efficiencies were achieved at 71.5% of maximum developed turbo-generator power while the highest efficiencies of steam turbine for the main feed water pump drive were achieved at maximum turbine developed power. Replacing the existing steam turbine for the main feed water pump drive with an electric motor would increase the turbo-generator energy and exergy efficiencies for at least 1–3% in all analyzed

  15. Permeability of protective coatings to tritium

    International Nuclear Information System (INIS)

    Braun, J.M.

    1987-10-01

    The permeability of four protective coatings to tritium gas and tritiated water was investigated. The coatings, including two epoxies, one vinyl and one urethane, were selected for their suitability in CANDU plant service in Ontario Hydro. Sorption rates of tritium gas into the coatings were considerably larger than for tritiated water, by as much as three to four orders of magnitude. However, as a result of the very large solubility of tritiated water in the coatings, the overall permeability to tritium gas and tritiated water are comparable, being somewhat larger for HTO. Marked differences were also evident among the four coatings, the vinyl proving to be unique in behaviour and morphology. Because of a highly porous surface structure water condensation takes place at high relative humidities, leading to an abnormally high retention of free water. Desorption rates from the four coatings were otherwise quite similar. Of practical importance was the observation that more effective desorption of tritiated water could be carried out at relatively high humidities, in this case 60%. It was believed that isotopic exchange was responsible for this phenomenon. It appears that epoxy coatings having a high pigment-to-binder ratio are most suited for coating concrete in tritium handling facilities

  16. Gas chromatographic measurement in water-steam circuits

    International Nuclear Information System (INIS)

    Zschetke, J.; Nieder, R.

    1984-01-01

    A gas chromatographic technique for measurements in water-steam circuits, which has been well known for many years, has been improved by design modifications. A new type of equipment developed for special measuring tasks on nuclear engineering plant also has a general application. To date measurements have been carried out on the ''Otto Hahn'' nuclear powered ship, on the KNK and AVR experimental nuclear power plants at Karlsruhe and Juelich respectively and on experimental boiler circuits. The measurements at the power plants were carried out under different operating conditions. In addition measurements during the alkali operating mode and during combined cycle operation were carried out on the AVR reactor. It has been possible to draw new conclusion from the many measurements undertaken. (orig.) [de

  17. Theoretic analysis for gravity separation of water droplets in PWR steam generator

    International Nuclear Information System (INIS)

    Liu Shixun

    1995-10-01

    Gravity separation space of water droplets in the PWR steam generator is one of three important separating mechanisms and provides a link between primary (vane) separator and chevron dryer. The design of steam generator should not only have highly efficient and compact separator and dryer, but also an adequate height of gravity separation space. Too short a gravity separation space will not sufficiently separate the moisture and adversely affect the performance of the dryer; too long a gravity separation space will add additional costs for steam generator and nuclear island installation. The droplet entrainment in the process of gravity separation space was theoretically studied and droplet trajectory was analytically modelled. A general expression for the height required by gravity separation, diameter and velocity of those droplets carried over was also obtained. In the analysis, the slip between two phases was considered and a combined term of diameter and viscosity was introduced. The modelling can provide a theoretical basis for determining the height of the gravity separation space. (2 refs., 2 figs.)

  18. The influence of steaming and a ratio of grated coconut to water on the yield and quality of virgin coconut oil

    Science.gov (United States)

    Rahmah, N. L.; Istikoma, R.; Kumalaningsih, S.

    2018-03-01

    The quality of Virgin Coconut Oil (VCO) is determined by the quality of coconut milk. High quality of coconut milk can be obtained by proper handling of grated coconut as raw material. When coconut was shredded, the lipases are exposed which can hydrolyse the oil resulting free fatty acid (FFA).Steaming is a technique to inactivate lipases. In addition, a ratio of grated coconut to water and steaming duration are important factor to the VCO extraction. Therefore, this study aimed to obtain the best combination of steaming duration and suitable ratio of grated coconut to water in order to produce high quality VCO. The research design was Factorial Randomized Block Design consisted of 2 factors: steaming duration (5; 10; and 15 minutes) and grated coconut to water ratio (1:0; 1:1; 1:2; 1:3; and 1:4 w/v),each treatment was repeated twice. Parameters analyzed were FFA, moisture content, and yield values. The result showed that the best treatment was a treatment with 15 minutes steaming of grated coconut and 1:4 ratio of grated coconut to water. The best treatment VCO had characteristic as follows: FFA 0.054 %, moisture content 0.129 % and yield 17.563 %.

  19. Discussion on amount of water ingress mass in steam generator heat-exchange tube rupture accident of high- temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang Yan; Zheng Yanhua; Shi Lei; Li Fu; Sun Ximing

    2009-01-01

    The steam generator heat-exchange tube rupture (SGTR) accident which will result in the water ingress to the primary circuit of reactor is an important and particular accident for high-temperature gas-cooled reactor (HTGR). The analysis of the water ingress accident is significant for verifying the inherent safety characteristics of HTGR. The amount of water ingress mass is one of the decisive factors for the seriousness of the accident consequence. The 250 MW Pebble-bed Modular High-Temperature Gas-cooled Reactor (HTR-PM) designed by Institute of Nuclear and New Energy Technology of Tsinghua University was selected as an example of analysis. The analysis results show that the amount of water ingress mass is not only affected directly with the broken position and the broken area of the tubes, but also related with the diameter of draining piping and restrictor, draining control valve, action setting of emptier system. With reasonable parameters chosen, the water in steam generator could be drained effectively, so it will prevent the primary circuit of reactor from water ingress in large quantity and reduce the radioactive isotopes ingress to the secondary circuit. (authors)

  20. Cold leg condensation tests. Task C. Steam--water interaction tests

    International Nuclear Information System (INIS)

    Brodrick, J.R.; Loiselle, V.

    1974-03-01

    A report is presented of tests to determine the condensation efficiency of ECC water injected into a quality fluid mixture flowing through the cold leg. In particular, a specific objective was to determine if the mixture of ECC water and quality fluid reached thermodynamic equilibrium before exiting the cold leg. Further, the stability of the ECC water/quality fluid interaction would be assessed by interpretation of thermocouple records and utilization of a section of cold leg piping with view ports to film the interaction whenever possible. The cold leg condensation tests showed complete condensation of the 5 lbm/sec steam quality mixtures in the cold leg by the ECC water flows of the test matrix. The cold leg exit fluid temperature remained below the saturation temperature and had good agreement with the predicted cold leg outlet temperature, calculated assuming total condensation. (U.S.)

  1. Fuzzy logic controller architecture for water level control in nuclear power plant steam generator using ANFIS training method

    International Nuclear Information System (INIS)

    Vosoughi, Naser; Ekrami, AmirHasan; Naseri, Zahra

    2003-01-01

    Since suitable control of water level can greatly enhance the operation of a power station, a fuzzy logic controller is applied to control the steam generator water level in a pressurized water reactor. The method does not require a detailed mathematical model of the object to be controlled. It is shown that two inputs, a single output and the least number of rules (9 rules) are considered for a controller, and the ANFIS training method is employed to model functions in a controlled system. By using ANFIS training method, initial membership functions will be trained and appropriate functions are generated to control water level inside the steam generator while using the stated rules. The proposed architecture can construct an input-output mapping based on both human knowledge (in the from of fuzzy if - then rules) and stipulated input-output data. This fuzzy logic controller is applied to the steam generator level control by computer simulations. The simulation results confirm the excellent performance of this control architecture in compare with a well-turned PID controller. (author)

  2. Steam-generator tube failures: world experience in water-cooled nuclear power reactors in 1974

    International Nuclear Information System (INIS)

    Hare, M.G.

    1976-01-01

    Steam-generator tube failures were reported at 25 of 59 water-cooled nuclear power reactors surveyed in 1974, compared to 11 of 49 in 1973. A summary is presented of these failures, most of which, where the cause is known, were the result of corrosion. Water chemistry control, inspection and repair procedures, and failure rates are discussed

  3. Response of the steam generator VVER 1000 to a steam line break

    International Nuclear Information System (INIS)

    Novotny, J.; Novotny, J. Jr.

    2003-01-01

    Dynamic effects of a steam line break in the weld of the steam pipe and the steam collector on the steam generator system are analyzed. Modelling of a steam line break may concern two cases. The steam line without a restraint and the steam line protected by a whip restraint with viscous elements applied at the postulated break cross-section. The second case is considered. Programme SYSTUS offers a special element the stiffness and viscous damping coefficients of which may be defined as dependent on the relative displacement and velocity of its nodes respectively. A circumferential crack is simulated by a sudden decrease of longitudinal and lateral stiffness coefficients of these special SYSTUS elements to zero. The computation has shown that one can simulate the pipe to behave like completely broken during a time interval of 0,0001 s or less. These elements are used to model the whip restraint with viscous elements and viscous dampers of the GERB type as well. In the case of a whip restraint model the stiffness coefficient-displacement relation and damping coefficient - velocity relation are chosen to fit the given characteristics of the restraint. The special SYSTUS elements are used to constitute Maxwell elements modelling the elasto-plastic and viscous properties of the GERB dampers applied to the steam generator. It has been ascertained that a steam line break at the postulated weld crack between the steam pipe and the steam generator collector cannot endanger the integrity of the system even in a case of the absence of a whip restraint effect. (author)

  4. Comments on US LMFBR steam generator base technology

    International Nuclear Information System (INIS)

    Simmons, W.R.

    1984-01-01

    The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects

  5. Superheated steam annealing of pressurized water reactor vessel

    International Nuclear Information System (INIS)

    Porowski, J.S.

    1993-01-01

    Thermal annealing of an embrittled Reactor Pressure Shell is the only recognized means for recovering material properties lost due to long-term exposure of the reactor walls to radiation. Reduced toughness of the material during operation is a major concern in evaluations of structural integrity of older reactors. Extensive studies performed within programs related to life extension of nuclear plants have confirmed that the thermal treatment of 850 deg. F for 168 hours on irradiated material essentially recovers material properties lost due to neutron exposure. Dry and wet annealing methods have been considered. Wet annealing involves operating the reactor at near design temperatures and pressures. Since the temperature of wet annealing must be limited to vessel design temperature of 650 deg. F, only partial recovery of the lost properties is achieved. Thus dry annealing was selected as an alternative for future development and industrial implementation to extend the safe life of reactors. Dry thermal annealing consists of heating portions of the reactor vessel at a specific temperature for a given period of time using a high temperature heat source. The use of spent fuel assemblies, induction heating and resistance heating elements as well as the circulation of heated fluid were investigated as potential candidate methods. To date the use of resistance heating elements which are lowered into a dry empty reactor was considered to be the preferred method. In-depth research in the United States and practical applications of such a method in Russia have confirmed feasibility of the method. The method of using circulating superheated steam to anneal the vessel at 850 deg. F without complete removal of the reactor internals is described herein. After removing the reactor head and fuel, the core barrel along with the upper and lower core in PWRs is lifted to open an annular space between the reactor shell flange and the core barrel flange. The thermal shield can remain

  6. Analysis of experimental characteristics of multistage steam-jet electors of steam turbines

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-02-01

    A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.

  7. Wavelet network controller for nuclear steam generators

    International Nuclear Information System (INIS)

    Habibiyan, H; Sayadian, A; Ghafoori-Fard, H

    2005-01-01

    Poor control of steam generator water level is the main cause of unexpected shutdowns in nuclear power plants. Particularly at low powers, it is a difficult task due to shrink and swell phenomena and flow measurement errors. In addition, the steam generator is a highly complex, nonlinear and time-varying system and its parameters vary with operating conditions. Therefore, it seems that design of a suitable controller is a necessary step to enhance plant availability factor. The purpose of this paper is to design, analyze and evaluate a water level controller for U-tube steam generators using wavelet neural networks. Computer simulations show that the proposed controller improves transient response of steam generator water level and demonstrate its superiority to existing controllers

  8. The Role of Horizontal Wells when Developing Low-Permeable, Heterogeneous Reservoirs

    Directory of Open Access Journals (Sweden)

    M.P. Yurova

    2017-09-01

    Full Text Available The widespread use of horizontal drilling in recent years has shown that horizontal wells can be successfully used both at the initial and late stages of development. This is due to the fact that horizontal wells, in contrast to vertical wells, contact a larger area of ​​the productive formation, while the surface of drainage of the oil-saturated layer, productivity of the wells due to the formation of cracks, and also the influence on thin layers increases. One of the methods of impact on the reservoir is the steam-thermal method. The main advantage of the use of the heat wave method in horizontal wells is a significant increase in the well production rate, a decrease in the water cut of the reservoir, a decrease in the oil viscosity, an increase in the injectivity of the injection well, and an increase in the inflow in producing wells. As a result of the total effect, a significant increase in production is obtained throughout the entire deposit. Enhanced oil recovery from the injection of steam is achieved by reducing the viscosity of oil, covering the reservoir with steam, distilling oil and extracting with a solvent. All this increases the displacement coefficient. One of the most effective ways to increase oil recovery at a late stage of field operation is sidetracking in emergency, highly watered and low-productive wells. This leads to the development of residual reserves in weakly drained zones of reservoirs with a substantial increase in well productivity in low-permeable reservoirs. This approach assumes that the initial drilling of wells is a ‘pilot’ stage, which precedes the development of oil reserves in the late stages of deposit development. In the fields of Western Siberia, multiple hydraulic fracturing of the reservoir has been improved due to a special stinger in the liner hanger of multi-packer installation, which excludes the influence of high pressures on the production column under the multiple hydraulic fracturing

  9. Influence of sodium water reaction on MONJU steam generator

    International Nuclear Information System (INIS)

    Takahashi, T.; Ohmori, Y.; Hoshi, Y.

    1984-01-01

    Despite the strenuous efforts improving the reliability of steam generators, it is required to ascertain the safe shutdown at Design Basis Leak and also to take the necessary actions to minimize the plant damage for more realistic small leaks. The process of Monju DBL selection and its supporting R and D works are included in this paper, together with the evaluation of system and critical components in direct connection with DBL. The detail plant shutdown procedures (including auxiliary system sequential action) at the time of water leaks are also explained. (author)

  10. Efficient steam generation by inexpensive narrow gap evaporation device for solar applications.

    Science.gov (United States)

    Morciano, Matteo; Fasano, Matteo; Salomov, Uktam; Ventola, Luigi; Chiavazzo, Eliodoro; Asinari, Pietro

    2017-09-20

    Technologies for solar steam generation with high performance can help solving critical societal issues such as water desalination or sterilization, especially in developing countries. Very recently, we have witnessed a rapidly growing interest in the scientific community proposing sunlight absorbers for direct conversion of liquid water into steam. While those solutions can possibly be of interest from the perspective of the involved novel materials, in this study we intend to demonstrate that efficient steam generation by solar source is mainly due to a combination of efficient solar absorption, capillary water feeding and narrow gap evaporation process, which can also be achieved through common materials. To this end, we report both numerical and experimental evidence that advanced nano-structured materials are not strictly necessary for performing sunlight driven water-to-vapor conversion at high efficiency (i.e. ≥85%) and relatively low optical concentration (≈10 suns). Coherently with the principles of frugal innovation, those results unveil that solar steam generation for desalination or sterilization purposes may be efficiently obtained by a clever selection and assembly of widespread and inexpensive materials.

  11. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  12. Steam turbines for PWR stations

    International Nuclear Information System (INIS)

    Muscroft, J.

    1989-01-01

    The thermodynamic cycle requirements and mechanical design features applying to modern GEC 3000 rev/min steam turbines for pressurised water reactor power stations are reviewed. The most recent developments include machines of 630 MW and 985 MW output which are currently under construction. The importance of service experience with nuclear wet steam turbines associated with a variety of types of water cooled reactor and its relevance to the design of modern 3000 rev/min turbines for pressurised water reactor applications is emphasised. (author)

  13. An analysis of critical flow for steam and water extending to supercritical conditions with experimental validation

    International Nuclear Information System (INIS)

    Porter, W.H.L.

    1985-01-01

    The basic method used in this paper for establishing the critical flow of a water steam mixture including subcooled water conditions, the quality range and superheated steam conditions has already been reported and the methods are once more summarised in the next section. These methods can be extended to any fluid and results have been reported for Freon and dissociating NO/sub 2/. If an extended or complex length of pipe is involved before the position where critical flow is established, a more elaborate method is required which involves establishing the losses down the pipe. A code RAPVOID is available for analysing such cases

  14. Permeability measuremens of brazilian Eucalyptus

    Directory of Open Access Journals (Sweden)

    Marcio Rogério da Silva

    2010-09-01

    Full Text Available The permeability of Brazilian Eucalyptus grandis and Eucalyptus citriodora wood was measured in a custom build gas analysis chamber in order to determine which species could be successfully treated with preservatives. Liquid permeability was tested using an emulsion of Neen oil and a control of distillated water. Air was used to test the gas phase permeability. For both Eucalyptus grandis and Eucalyptus citriodora, the longitudinal permeability of gas was shown to be about twice as great as the liquid phase permeability. No radial permeability was observed for either wood. The permeability of air and water through the sapwood of Eucalyptus grandis was greater than that through the sapwood of Eucalyptus citriodora. The permeability of neen oil preservative through the sapwood of Eucalyptus grandis was also greater than through the sapwood of E. Citradora, but the difference was not statistically significant. Scanning Electron Microscopy images showed that the distribution and obstruction in the vessels could be correlated with observed permeability properties. Irrespective of the causes of differences in permeability between the species, the fluid phase flux through the sapwood of both species was significant, indicating that both Eucalyptus grandis and Eucalyptus citriodora could be successfully treated with wood preservative.

  15. Stable-isotope geochemistry of the Pierina high-sulfidation Au-Ag deposit, Peru: Influence of hydrodynamics on SO42--H2S sulfur isotopic exchange in magmatic-steam and steam-heated environments

    Science.gov (United States)

    Fifarek, R.H.; Rye, R.O.

    2005-01-01

    The Pierina high-sulfidation Au-Ag deposit formed 14.5 my ago in rhyolite ash flow tuffs that overlie porphyritic andesite and dacite lavas and are adjacent to a crosscutting and interfingering dacite flow dome complex. The distribution of alteration zones indicates that fluid flow in the lavas was largely confined to structures but was dispersed laterally in the tuffs because of a high primary and alteration-induced permeability. The lithologically controlled hydrodynamics created unusual fluid, temperature, and pH conditions that led to complete SO42--H2S isotopic equilibration during the formation of some magmatic-steam and steam-heated alunite, a phenomenon not previously recognized in similar deposits. Isotopic data for early magmatic hydrothermal and main-stage alunite (??34S=8.5??? to 31.7???; ??18 OSO4=4.9??? to 16.5???; ??18 OOH=2.2??? to 14.4???; ??D=-97??? to -39???), sulfides (??34 S=-3.0??? to 4.3???), sulfur (??34S=-1.0??? to 1.1???), and clay minerals (??18O=4.3??? to 12.5???; ??D=-126??? to -81???) are typical of high-sulfidation epithermal deposits. The data imply the following genetic elements for Pierina alteration-mineralization: (1) fluid and vapor exsolution from an I-type magma, (2) wallrock buffering and cooling of slowing rising vapors to generate a reduced (H2S/SO4???6) highly acidic condensate that mixed with meteoric water but retained a magmatic ??34S???S signature of ???1???, (3) SO2 disproportionation to HSO4- and H2S between 320 and 180 ??C, and (4) progressive neutralization of laterally migrating acid fluids to form a vuggy quartz???alunite-quartz??clay???intermediate argillic???propylitic alteration zoning. Magmatic-steam alunite has higher ??34S (8.5??? to 23.2???) and generally lower ??18OSO4 (1.0 to 11.5???), ??18OOH (-3.4 to 5.9???), and ??D (-93 to -77???) values than predicted on the basis of data from similar occurrences. These data and supporting fluid-inclusion gas chemistry imply that the rate of vapor ascent for this

  16. Automatic control of the water level of steam generators from 0% to 100% of the load

    International Nuclear Information System (INIS)

    Hocepied, R.; Debelle, J.; Timmermans, A.; Lams, J.-L.; Baeyens, R.; Eussen, G.; Bassem, G.

    1978-01-01

    The water level of a steam generator is hard to control manually and it is practically impossible for a human operator to react correctly to every important perturbation. These phenomena are further accentuated during the start-up at low load and at low feedwater temperature. The control schemes traditionally provided do not permit satisfactory automatic level control during all operating circumstances. Adaptions of the control system permit all the problems encountered to be solved: automatic control of the level in the steam generators is possible from 0% to 100% of the load and also when large-scale perturbations occur. Such a result has been obtained by use of systematic methods for the analysis of the steam generator's behaviour. These methods have also been used to verify the performance of the control system. The control system installed at the Doel nuclear power station prevents most of the reactor or turbine trip-outs caused by level deviations occurring during start-up and low-load operation. It also minimizes the effects on the unit of incidents such as tripping the unit on house load, safety tripping, fast run-back on reduced load, etc. The principles used are applicable to the control of steam generators of all pressurized water reactor power stations. (author)

  17. Process and device for accelerating condensation of the steam produced during an accident from the pressure vessel of a water cooled nuclear reactor

    International Nuclear Information System (INIS)

    Schnitker, W.

    1980-01-01

    In case of an accident, the steam from the PWR is taken away via lances under the water surface of the condensation area. In order to accelerate condensation, water is added via pipes projecting sideways into the lances. The kinetic energy of the steam carries the water over and produces a fog. (DG) [de

  18. Process and device for accelerating condensation of the steam produced during an accident from the pressure vessel of a water cooled nuclear reactor

    International Nuclear Information System (INIS)

    Schnitker, W.

    1981-01-01

    In case of an accident, the steam from the PWR is taken away via lances under the water surface of the condensation area. In order to accelerate condensation, water is added via pipes projecting sideways into the lances. The kinetic energy of the steam carries the water over and produces a fog. (orig./PW)

  19. An assessment of void fraction correlations for vertical upward steam-water flow

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Maruthi Ramesh, N.; Pilkhwal, D.S.; Saha, D.

    1997-01-01

    An assessment of sixteen void fraction correlations have been carried out using experimental void fraction data compiled from open literature for vertical upward steam-water flow. Nearly 80% of all the data pertained to natural circulation flow. This assessment showed that best prediction is obtained by Chexal et al. (1996) correlation followed by Hughmark (1965) and the Mochizuki and Ishii (1992) correlations. The Mochizuki-Ishii correlation is found to satisfy all the three limiting conditions whereas Chexal et al. (1996) correlation satisfies all the limiting conditions at moderately high mass fluxes (greater than 140 kg/m 2 s) while Hughmark correlation satisfies only one of the three limiting conditions. The available void fraction data in the open literature for steam-water two-phase flow lies predominantly in the low quality region. This is the reason why correlations like Hughmark which do not satisfy the upper limiting condition (i.e. at x=1, α=1) perform rather well in assessments. Additional work is required for the generation of high quality (greater than 40%) void fraction data. (author)

  20. Draining down of a nuclear steam generating system

    International Nuclear Information System (INIS)

    Jawor, J.C.

    1987-01-01

    The method is described of draining down contained reactor-coolant water from the inverted vertical U-tubes of a vertical-type steam generator in which the upper, inverted U-shaped ends of the tubes are closed and the lower ends thereof are open. The steam generator is part of a nuclear powered steam generating system wherein the reactor coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator. The method comprises continuously introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tube sheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator, while permitting the water to flow out from the open ends of the U-tubes

  1. Future development of large steam turbines

    International Nuclear Information System (INIS)

    Chevance, A.

    1975-01-01

    An attempt is made to forecast the future of the large steam turbines till 1985. Three parameters affect the development of large turbines: 1) unit output; and a 2000 to 2500MW output may be scheduled; 2) steam quality: and two steam qualities may be considered: medium pressure saturated or slightly overheated steam (light water, heavy water); light enthalpie drop, high pressure steam, high temperature; high enthalpic drop; and 3) the quality of cooling supply. The largest range to be considered might be: open system cooling for sea-sites; humid tower cooling and dry tower cooling. Bi-fluid cooling cycles should be also mentioned. From the study of these influencing factors, it appears that the constructor, for an output of about 2500MW should have at his disposal the followings: two construction technologies for inlet parts and for high and intermediate pressure parts corresponding to both steam qualities; exhaust sections suitable for the different qualities of cooling supply. The two construction technologies with the two steam qualities already exist and involve no major developments. But, the exhaust section sets the question of rotational speed [fr

  2. Characterization of a steam plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Ni Guohua; Zhao Peng; Cheng Cheng; Song Ye; Meng Yuedong; Toyoda, Hirotaka

    2012-01-01

    An atmospheric steam plasma jet generated by an original dc water plasma torch is investigated using electrical and spectroscopic techniques. Because it directly uses the water used for cooling electrodes as the plasma-forming gas, the water plasma torch has high thermal efficiency and a compact structure. The operational features of the water plasma torch and the generation of the steam plasma jet are analyzed based on the temporal evolution of voltage, current and steam pressure in the arc chamber. The influence of the output characteristics of the power source, the fluctuation of the arc and current intensity on the unsteadiness of the steam plasma jet is studied. The restrike mode is identified as the fluctuation characteristic of the steam arc, which contributes significantly to the instabilities of the steam plasma jet. In addition, the emission spectroscopic technique is employed to diagnose the steam plasma. The axial distributions of plasma parameters in the steam plasma jet, such as gas temperature, excitation temperature and electron number density, are determined by the diatomic molecule OH fitting method, Boltzmann slope method and H β Stark broadening, respectively. The steam plasma jet at atmospheric pressure is found to be close to the local thermodynamic equilibrium (LTE) state by comparing the measured electron density with the threshold value of electron density for the LTE state. Moreover, based on the assumption of LTE, the axial distributions of reactive species in the steam plasma jet are estimated, which indicates that the steam plasma has high chemical activity.

  3. Permeability of fissured rock - an experimental study with special regard to the water injection test

    International Nuclear Information System (INIS)

    Schneider, H.J.

    1987-01-01

    The permeability to water of fissured rock is one of the most important design parameters for many underground projects, such as, e.g. the final deposition of radioactive waste. Because the conventional water injection test according to LUGEON for the calculation of permeability to water is associated with a high degree of uncertainty, new test equipment was developed. This equipment works on the principle of the water injection tracer test and multi-level measurements, enabling detailed measurement of the flow process at injection site and in the rock. The tests were carried out in Bunter sandstone and granite. The LUGEON test concept was varied in short-term and long-term tests at identical geological boundary conditions, and with test control at constant pressure on the one hand and at constant injection volume on the other. The test results show that non-steady-state flow occurs with short injection times, whereby the range is limited to the local rock at injection site. An increasing in injection time can lead to an increase in range by a number of factors as well as to steady-state flow conditions. The permeability of the rock types investigated is inhomgeneous and anistropic as a result of the fissured structure. (orig./HP) With 114 figs., 4 tabs [de

  4. 1000 MW steam turbine for Temelin nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    Before the end 1991 the delivery was completed of the main parts (3 low-pressure sections and 1 high-pressure section, all of double-flow design) of the first full-speed (3000 r.p.m.) 1000 MW steam turbine for saturated admission steam for the Temelin nuclear power plant. Description of the turbine design and of new technologies and tools used in the manufacture are given. Basic technical parameters of the steam turbine are as follows: maximum output of steam generators 6060 th -1 ; maximum steam flow into turbine 5494.7 th -1 ; output of turbo-set 1024 MW; steam conditions before the turbine inlet: pressure 5.8 MPa, temperature 273.3 degC, steam wetness 0.5%; nominal temperature of cooling water 21 degC; temperature of feed water 220.8 degC; maximum consumption of heat from turbine for heating at 3-stage heating of heating water 60/150 degC. (Z.S.) 7 figs., 2 refs

  5. Design and performance of General Electric boiling water reactor main steam line isolation valves

    International Nuclear Information System (INIS)

    Rockwell, D.A.; van Zylstra, E.H.

    1976-08-01

    An extensive test program has been completed by the General Electric Company in cooperation with the Commonwealth Edison Company on the basic design type of large main steam line isolation valves used on General Electric Boiling Water Reactors. Based on a total of 40 tests under simulated accident conditions covering a wide range of mass flows, mixture qualities, and closing times, it was concluded that the commercially available valves of this basic type will close completely and reliably as required. Analytical methods to predict transient effects in the steam line and valve after postulated breaks were refined and confirmed by the test program

  6. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector

    International Nuclear Information System (INIS)

    Yutaka Abe; Yujiro Kawamoto; Chikako Iwaki; Tadashi Narabayashi; Michitsugu Mori; Shuichi Ohmori

    2006-01-01

    Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m 2 without non-condensable gas condition in steam. (authors)

  7. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  8. Status of Siemens steam generator design and measures to assure continuous long-term reliable operation

    International Nuclear Information System (INIS)

    Hoch, G.

    1999-01-01

    Operating pressurized water reactors with U-tube steam generators have encountered difficulties with either one or a combination of inadequate material selection, poor design or manufacturing and an insufficient water chemistry control which resulted in excessive tube degradation. In contrast to the above mentioned problems, steam generators from Siemens/KWU are proving by operating experience that all measures undertaken at the design stage as well as during the operating and maintenance phase were effective enough to counteract any tube corrosion phenomena or other steam generator related problem. An Integrated Service Concept has been developed, applied and wherever necessary improved in order to ensure reliable steam generator operation. The performance of the steam generators is updated continuously, evaluated and implemented in lifetime databases. The main indicator for steam generator integrity are the results of the eddy current testing of the steam generator tubes. Tubes with indications are rated with lifetime threshold values and if necessary plugged, based on individual assessment criteria.(author)

  9. Evaluation of methods for measuring relative permeability of anhydride from the Salado Formation: Sensitivity analysis and data reduction

    International Nuclear Information System (INIS)

    Christiansen, R.L.; Kalbus, J.S.

    1997-05-01

    This report documents, demonstrates, evaluates, and provides theoretical justification for methods used to convert experimental data into relative permeability relationships. The report facilities accurate determination of relative permeabilities of anhydride rock samples from the Salado Formation at the Waste Isolation Pilot Plant (WIPP). Relative permeability characteristic curves are necessary for WIPP Performance Assessment (PA) predictions of the potential for flow of waste-generated gas from the repository and brine flow into repository. This report follows Christiansen and Howarth (1995), a comprehensive literature review of methods for measuring relative permeability. It focuses on unsteady-state experiments and describes five methods for obtaining relative permeability relationships from unsteady-state experiments. Unsteady-state experimental methods were recommended for relative permeability measurements of low-permeability anhydrite rock samples form the Salado Formation because these tests produce accurate relative permeability information and take significantly less time to complete than steady-state tests. Five methods for obtaining relative permeability relationships from unsteady-state experiments are described: the Welge method, the Johnson-Bossler-Naumann method, the Jones-Roszelle method, the Ramakrishnan-Cappiello method, and the Hagoort method. A summary, an example of the calculations, and a theoretical justification are provided for each of the five methods. Displacements in porous media are numerically simulated for the calculation examples. The simulated product data were processed using the methods, and the relative permeabilities obtained were compared with those input to the numerical model. A variety of operating conditions were simulated to show sensitivity of production behavior to rock-fluid properties

  10. Sound speed models for a noncondensible gas-steam-water mixture

    International Nuclear Information System (INIS)

    Ransom, V.H.; Trapp, J.A.

    1984-01-01

    An analytical expression is derived for the homogeneous equilibrium speed of sound in a mixture of noncondensible gas, steam, and water. The expression is based on the Gibbs free energy interphase equilibrium condition for a Gibbs-Dalton mixture in contact with a pure liquid phase. Several simplified models are discussed including the homogeneous frozen model. These idealized models can be used as a reference for data comparison and also serve as a basis for empirically corrected nonhomogeneous and nonequilibrium models

  11. Predicting steam generator crevice chemistry

    International Nuclear Information System (INIS)

    Burton, G.; Strati, G.

    2006-01-01

    'Full text:' Corrosion of steam cycle components produces insoluble material, mostly iron oxides, that are transported to the steam generator (SG) via the feedwater and deposited on internal surfaces such as the tubes, tube support plates and the tubesheet. The build up of these corrosion products over time can lead to regions of restricted flow with water chemistry that may be significantly different, and potentially more corrosive to SG tube material, than the bulk steam generator water chemistry. The aim of the present work is to predict SG crevice chemistry using experimentation and modelling as part of AECL's overall strategy for steam generator life management. Hideout-return experiments are performed under CANDU steam generator conditions to assess the accumulation of impurities in hideout, and return from, model crevices. The results are used to validate the ChemSolv model that predicts steam generator crevice impurity concentrations, and high temperature pH, based on process parameters (e.g., heat flux, primary side temperature) and blowdown water chemistry. The model has been incorporated into ChemAND, AECL's system health monitoring software for chemistry monitoring, analysis and diagnostics that has been installed at two domestic and one international CANDU station. ChemAND provides the station chemists with the only method to predict SG crevice chemistry. In one recent application, the software has been used to evaluate the crevice chemistry based on the elevated, but balanced, SG bulk water impurity concentrations present during reactor startup, in order to reduce hold times. The present paper will describe recent hideout-return experiments that are used for the validation of the ChemSolv model, station experience using the software, and improvements to predict the crevice electrochemical potential that will permit station staff to ensure that the SG tubes are in the 'safe operating zone' predicted by Lu (AECL). (author)

  12. Erosion corrision in water steam circuits - reasons and countermeasures

    International Nuclear Information System (INIS)

    Heitmann, H.G.; Kastner, W.

    An increased material erosion on tubes in steam generators, preheaters and condensers but also on turbine casings and connecting pipes of unalloyed and low-alloy steels occurs, to an essential extent, due to erosion-corrosion processes in the fluid-swept plant sections. On the one hand, they cause thinning of the material and sometimes leaks, on the other hand the erosion material leads to contamination of the water-steam cycle with its harmful consequences. The cause of erosion-corrosion is a dissolving corrosion due to the convective effect of pure fluid turbulences. The occurrence of erosion-corrosion is limited to such metallic materials, which are in need of oxide protection layers for their constancy. The cover layers are destroyed by erosive influence and the formation of new protection layers is prevented. At KWU, experimental studies of plates were carried out in the Benson test section to obtain information about the most important parameters of influence. These are in particular the flow velocity, the medium temperature and the water quality (pH value and oxygen content). Moreover, the resistivity of different materials has been compared and the resistance of magnetite protection layers to erosion-corrosion was examined. The results of these studies deliver fundamentals to avoid erosion-corrosion also in power plant engineering to the greatest possible extent. The following variants reveal to be important: 1. Use of chrome alloy materials. 2. Decrease of the flow velocity. 3. Increase of the pH value or the oxygen content. The importance of the test results for power plant engineering is briefly described. (orig.) [de

  13. Steam generator thermal hydraulic design & functional architecture features and related operational and reliability issues requiring consideration

    International Nuclear Information System (INIS)

    Klarner, R.G.

    2012-01-01

    Proper thermal hydraulic design and functional architecture are critical to successful steam generator operation and long term reliability. The evolution of steam generators has been a gradual learning process that has benefited from continuous industry operational experience (OPEX). Inadequate thermal hydraulic design can lead to numerous degradation mechanisms such as excessive deposition, corrosion, flow and level instabilities, fluid-elastic instabilities and tube wear. The functional architecture determines the health of the tube bundle and the other internals during manufacturing, handling and operation. It also determines thermal performance as well as establishing global thermal-hydraulic characteristics such as water level shrink and swell response. This paper discusses the range of operational and reliability issues and relates them to the thermal hydraulic attributes and functional architecture of steam generators (many SG reliability issues are further discussed in other presentations at this conference). In pursuing such issues, the paper focuses on the four major features of the equipment, identifying in each case the goals and requirements such features must meet. Typical approaches and the means by which such requirements are addressed in current equipment are discussed. The four features are: 1. Tubing Material and Tube Bundle Heat Transfer Performance; a. Two materials are in current use – Alloy 690 TT and Alloy 800. Both are good materials with excellent performance records which serve their owners very well (the reliability attributes of Alloy 800 and 690 are discussed in other papers at this conference). Caution is advised in the supply of any material: – material quality is only assured by what is specified to material suppliers in procurement specifications – i.e. - all the knowledge and research in the world assures nothing if its findings are not reflected in procurement requirements. b. Heat transfer performance in addition to being

  14. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z

    Science.gov (United States)

    Kumar, Manish; Grzelakowski, Mariusz; Zilles, Julie; Clark, Mark; Meier, Wolfgang

    2007-01-01

    The permeability and solute transport characteristics of amphiphilic triblock-polymer vesicles containing the bacterial water-channel protein Aquaporin Z (AqpZ) were investigated. The vesicles were made of a block copolymer with symmetric poly-(2-methyloxazoline)-poly-(dimethylsiloxane)-poly-(2-methyloxazoline) (PMOXA15-PDMS110-PMOXA15) repeat units. Light-scattering measurements on pure polymer vesicles subject to an outwardly directed salt gradient in a stopped-flow apparatus indicated that the polymer vesicles were highly impermeable. However, a large enhancement in water productivity (permeability per unit driving force) of up to ≈800 times that of pure polymer was observed when AqpZ was incorporated. The activation energy (Ea) of water transport for the protein-polymer vesicles (3.4 kcal/mol) corresponded to that reported for water-channel-mediated water transport in lipid membranes. The solute reflection coefficients of glucose, glycerol, salt, and urea were also calculated, and indicated that these solutes are completely rejected. The productivity of AqpZ-incorporated polymer membranes was at least an order of magnitude larger than values for existing salt-rejecting polymeric membranes. The approach followed here may lead to more productive and sustainable water treatment membranes, whereas the variable levels of permeability obtained with different concentrations of AqpZ may provide a key property for drug delivery applications. PMID:18077364

  15. Multi-dimensional Mixing Behavior of Steam-Water Flow in a Downcomer Annulus during LBLOCA Reflood Phase with a DVI Injection Mode

    International Nuclear Information System (INIS)

    Kwon, T.S.; Yun, B.J.; Euh, D.J.; Chu, I.C.; Song, C.H.

    2002-01-01

    Multi-dimensional thermal-hydraulic behavior in the downcomer annulus of a pressurized water reactor vessel with a Direct Vessel Injection (DVI) mode is presented based on the experimental observation in the MIDAS (Multi-dimensional Investigation in Downcomer Annulus Simulation) steam-water test facility. From the steady-state test results to simulate the late reflood phase of a Large Break Loss-of-Coolant Accidents(LBLOCA), isothermal lines show the multidimensional phenomena of a phasic interaction between steam and water in the downcomer annulus very well. MIDAS is a steam-water separate effect test facility, which is 1/4.93 linearly scaled-down of 1400 MWe PWR type of a nuclear reactor, focused on understanding multi-dimensional thermalhydraulic phenomena in downcomer annulus with various types of safety injection during the refill or reflood phase of a LBLOCA. The initial and the boundary conditions are scaled from the pre-test analysis based on the preliminary calculation using the TRAC code. The superheated steam with a superheating degree of 80 K at a given downcomer pressure of 180 kPa is injected equally through three intact cold legs into the downcomer. (authors)

  16. Steam generator tube failures: world experience in water-cooled nuclear power reactors in 1975

    International Nuclear Information System (INIS)

    Hare, M.G.

    1976-11-01

    Steam generator tube failures were reported in 22 out of 62 water-cooled nuclear power plants surveyed in 1975. This was less than in 1974, and the number of the tubes affected was noticeably less. This report summarizes these failures, most of which were due to corrosion. Secondary-water chemistry control, procedures for inspection and repair, tube materials, and failure rates are discussed. (author)

  17. Optimization of Wellhead Piping Design for Production Wells at Development of Steam-Water Geothermal Fields

    Directory of Open Access Journals (Sweden)

    A.N. Shulyupin

    2017-03-01

    Full Text Available At present, the exploitation of geothermal resources develops in a fair competition with other types of energy resources. This leads to actuality of questions which associated with the more efficient use of existing wells, because cost of their drilling is a significant share of geothermal projects. In domestic practice of development of geothermal resources the steam-water wells have greatest energy potential. One way to improve the performance of these wells is a providing of smooth change of direction of motion of steam-water mixture from the vertical, in the well, to the horizontal, in steam gathering system. Typical wellhead piping of domestic steam-water wells involves the removal of the mixture through a cross bar at a right angle. Cross bar can generate considerable pressure loss that increases the operating pressure at the mouth of the well and reduces flow rate. It seems reasonable to substitute the typical cross bar by smooth pipe bend. This reduces wellhead resistance coefficient by more than on 2. Increase of curvature radius of pipe bend reduces the pressure loss to a local resistance but increases the friction pressure loss. There is an optimal curvature radius of pipe bend for minimum pressure loss in view of a local resistance and friction in the pipe bend. Calculations have shown that the optimum value for the radius of curvature is found in the range from 1.4 to 4.5 tube internal diameters. However, for technological reasons it is recommended to choose the radius of curvature from 1.4 to 2.4 diameters. Mounting of smooth pipe bend on the wellhead can provide significant economic benefits. For Mutnovka field (Kamchatka, this effect is estimated at 17.5 million rubles in year.

  18. Expandable antivibration bar for heat transfer tubes of a pressurized water reactor steam generator

    International Nuclear Information System (INIS)

    Appleman, R.H.

    1985-01-01

    An expandable antivibration bar for use in stabilizing the U-bend portion of heat transfer tubes in a pressurized water reactor steam generator comprises two adjustable rods connected together by an arcuate connector. The two adjustable rods preferably comprise two mating rod sections having complementary angular sliding surfaces thereon, with means provided to move the rod sections relative to each other along the sliding surfaces so as to expand the rods from a first mated cross-sectional width to a second larger cross-sectional width. The ends of the rod sections have means for aligning the two rod sections and maintaining them in alignment during expansion. (author)

  19. A simulation of the hydrothermal response to the Chesapeake Bay bolide impact

    Science.gov (United States)

    Sanford, W.E.

    2005-01-01

    Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. ?? Blackwell Publishing Ltd.

  20. Gas chromatographic determination of residual hydrazine and morpholine in boiler feed water and steam condensates

    International Nuclear Information System (INIS)

    Vatsala, S.; Bansal, V.; Tuli, D.K.; Rai, M.M.; Jain, S.K.; Srivastava, S.P.; Bhatnagar, A.K.

    1994-01-01

    Hydrazine, an oxygen scavenger in boiler water, was derivatised to the corresponding acetone azine and determined at the ng ml -1 level by gas chromatography. Morpholine, a corrosion inhibitor used in steam boilers, was estimated either directly (if >2.0 μg ml -1 ) or by quantitative preconcentration (0.1 ng-2.0 μg ml -1 ). To obtain symmetrical peaks for these amines, the column packing was coated with KOH. Use of a nitrogen-specific detector improved accuracy of estimation of hydrazine and morpholine, giving a RSD of 1.9-3.6%. Chromatographic analysis of these amines in boiler feed water and steam condensate samples collected from boilers servicing a pertroleum refinery is described. Environmental safety regulations calls for monitoring of hydrazine and the methods developed can easily be adapted for this purpose. (orig.)

  1. Steam line break analysis in CAREM-25 reactor

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo O.; Vertullo, Alicia; Schlamp, Miguel A.; Garcia, Alicia E.

    2000-01-01

    The main objective of this report is to analyze the reactor response during a steam line break postulated accident with RELAP5, a plant code using a separated flow model. The steam line break caused a rapid blowdown of the secondary coolant increasing the heat removal in the steam generator. As a consequence and due to reactor features the core power is also increased. As maximum removed power in the secondary side is highly dependant on the total water volume evaporated during the accident a detailed model of feed water and outlet steam pipes is provided. Different cases are analyzed with and without feedwater system and considering the fail or success of the First Shutdown System. In all the sequences the DNBR and CPR remain above the minimum safety values established by design. Further calculations concerning depressurization ramps and steam generator feed water pumps response during depressurization are advised. (author)

  2. Steam Line Break Analysis in CAREM-25 Reactor

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo; Vertullo, Alicia; Garcia, A; Schlamp, Miguel

    2000-01-01

    The main objective of this report is to analyze the reactor response during a steam line break postulated accident with RELAP5, a plant code using a separated flow model.The steam line break caused a rapid blowdown of the secondary coolant increasing the heat removal in the steam generator.As a consequence and due to reactor features the core power is also increased.As maximum removed power in the secondary side is highly dependant on the total water volume evaporated during the accident a detailed model of feed water and outlet steam pipes is provided.Different cases are analyzed with and without feedwater system and considering the fail or success of the First Shutdown System.In all the sequences the DNBR and CPR remain above the minimum safety values established by design.Further calculations concerning depressurization ramps and steam generator feed water pumps response during depressurization are advised

  3. The Dependence of Water Permeability in Quartz Sand on Gas Hydrate Saturation in the Pore Space

    Science.gov (United States)

    Kossel, E.; Deusner, C.; Bigalke, N.; Haeckel, M.

    2018-02-01

    Transport of fluids in gas hydrate bearing sediments is largely defined by the reduction of the permeability due to gas hydrate crystals in the pore space. Although the exact knowledge of the permeability behavior as a function of gas hydrate saturation is of crucial importance, state-of-the-art simulation codes for gas production scenarios use theoretically derived permeability equations that are hardly backed by experimental data. The reason for the insufficient validation of the model equations is the difficulty to create gas hydrate bearing sediments that have undergone formation mechanisms equivalent to the natural process and that have well-defined gas hydrate saturations. We formed methane hydrates in quartz sand from a methane-saturated aqueous solution and used magnetic resonance imaging to obtain time-resolved, three-dimensional maps of the gas hydrate saturation distribution. These maps were fed into 3-D finite element method simulations of the water flow. In our simulations, we tested the five most well-known permeability equations. All of the suitable permeability equations include the term (1-SH)n, where SH is the gas hydrate saturation and n is a parameter that needs to be constrained. The most basic equation describing the permeability behavior of water flow through gas hydrate bearing sand is k = k0 (1-SH)n. In our experiments, n was determined to be 11.4 (±0.3). Results from this study can be directly applied to bulk flow analysis under the assumption of homogeneous gas hydrate saturation and can be further used to derive effective permeability models for heterogeneous gas hydrate distributions at different scales.

  4. Steam/water separation device for drying a wet vapour

    International Nuclear Information System (INIS)

    Sundheimer, P.

    1986-01-01

    The aim of the present invention is to dry a wet vapour which flows up to the device. The device has at least a group of steam dryer elements in a zone in which there is a vertical apertured panel; this vertical apertured panel is a metal grille with baffles the inlet steam flow to make it horizontal or slightly inclined to the bottom. The invention applies more particularly, to PWR steam generators [fr

  5. Droplet solidification and the potential for steam explosions

    International Nuclear Information System (INIS)

    Epstein, M.; Fauske, H.K.; Luangdilok, W.

    2009-01-01

    It is well known that under certain circumstances a mixture of coarse-hot (molten) drops in water formed from pouring a hot melt into water explodes. This so-called 'steam explosion' is generally believed to involve steam-bubble-collapse-induced fine fragmentation of the melt drops and concomitant water vaporization on a timescale that is short compared with the steam pressure relief time. Motivated by the idea put forth by Okkonen and Sehgal that rapid solidification would render UO 2 -containing (Corium) melt drops stiff and resistant to the steam-bubble-collapse-induced fragmentation required to support an explosion, here we combine solidification theory with an available theory of the stability of thin, submerged crusts subject to acceleration to predict the 'cutoff time' beyond which melt-drop fragmentation is suppressed by crust cover rigidity. Illustration calculations show that the cutoff time for Corium melt drops in water is a fraction of a second and probably shorter than the time it takes to form the explosion-prerequisite-coarse-premixture configuration of melt drops in water, while the opposite is true for the molten aluminum oxide/water system for which the window of opportunity for an explosion is predicted to be several seconds. These theoretical findings are consistent with early experiments that revealed molten uranium oxide or Corium pours into water to be non-explosive and that produced steam explosions upon pouring molten aluminum oxide into water. Also in this paper, the recent TROI Corium/water interaction experiments are examined and it is concluded that they do not contravene the earlier experimental observations that the pouring of prototypical Corium mixtures into water does not result in steam explosions with destructive potential. (author)

  6. Steam-Generator Integrity Program/Steam-Generator Group Project

    International Nuclear Information System (INIS)

    1982-10-01

    The Steam Generator Integrity Program (SGIP) is a comprehensive effort addressing issues of nondestructive test (NDT) reliability, inservice inspection (ISI) requirements, and tube plugging criteria for PWR steam generators. In addition, the program has interactive research tasks relating primary side decontamination, secondary side cleaning, and proposed repair techniques to nondestructive inspectability and primary system integrity. The program has acquired a service degraded PWR steam generator for research purposes. This past year a research facility, the Steam Generator Examination Facility (SGEF), specifically designed for nondestructive and destructive examination tasks of the SGIP was completed. The Surry generator previously transported to the Hanford Reservation was then inserted into the SGEF. Nondestructive characterization of the generator from both primary and secondary sides has been initiated. Decontamination of the channelhead cold leg side was conducted. Radioactive field maps were established in the steam generator, at the generator surface and in the SGEF

  7. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  8. Vapor generator steam drum spray heat

    International Nuclear Information System (INIS)

    Fasnacht, F.A. Jr.

    1978-01-01

    A typical embodiment of the invention provides a combination feedwater and cooldown water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure

  9. Operational control and maintenance integrity of typical and atypical coil tube steam generating systems

    Energy Technology Data Exchange (ETDEWEB)

    Beardwood, E.S.

    1999-07-01

    Coil tube steam generators are low water volume to boiler horsepower (bhp) rating, rapid steaming units which occupy substantially less space per boiler horsepower than equivalent conventional tire tube and water tube boilers. These units can be retrofitted into existing steam systems with relative ease and are more efficient than the generators they replace. During the early 1970's they became a popular choice for steam generation in commercial, institutional and light to medium industrial applications. Although these boiler designs do not require skilled or certified operators, an appreciation for a number of the operational conditions that result in lower unscheduled maintenance, increased reliability and availability cycles would be beneficial to facility owners, managers, and operators. Conditions which afford lower operating and maintenance costs will be discussed from a practical point of view. An overview of boiler design and operation is also included. Pitfalls are provided for operational and idle conditions. Water treatment application, as well as steam system operations not conducive to maintaining long term system integrity; with resolutions, will be addressed.

  10. Steam generator assessment for sustainable power plant operation

    International Nuclear Information System (INIS)

    Drexler, Andreas; Fandrich, Joerg; Ramminger, Ute; Montaner-Garcia, Violeta

    2012-09-01

    Water and steam serve in the water-steam cycle as the energy transport and work media. These fluids shall not affect, through corrosion processes on the construction materials and their consequences, undisturbed plant operation. The main objectives of the steam water cycle chemistry consequently are: - The metal release rates of the structural materials shall be minimal - The probability of selective / localized forms of corrosion shall be minimal. - The deposition of corrosion products on heat transfer surfaces shall be minimized. - The formation of aggressive media, particularly local aggressive environments under deposits, shall be avoided. These objectives are especially important for the steam generators (SGs) because their condition is a key factor for plant performance, high plant availability, life time extension and is important to NPP safety. The major opponent to that is corrosion and fouling of the heating tubes. Effective ways of counteracting all degradation problems and thus of improving the SG performance are to keep SGs in clean conditions or if necessary to plan cleaning measures such as mechanical tube sheet lancing or chemical cleaning. Based on more than 40 years of experience in steam-water cycle water chemistry treatment AREVA developed an overall methodology assessing the steam generator cleanliness condition by evaluating all available operational and inspection data together. In order to gain a complete picture all relevant water chemistry data (e.g. corrosion product mass balances, impurity ingress), inspection data (e.g. visual inspections and tube sheet lancing results) and thermal performance data (e.g. heat transfer calculations) are evaluated, structured and indexed using the AREVA Fouling Index Tool Box. This Fouling Index Tool Box is more than a database or statistical approach for assessment of plant chemistry data. Furthermore the AREVA's approach combines manufacturer's experience with plant data and operates with an

  11. Large scale sodium-water reaction tests for Monju steam generators

    International Nuclear Information System (INIS)

    Sato, M.; Hiroi, H.; Hori, M.

    1976-01-01

    To demonstrate the safe design of the steam generator system of the prototype fast reactor Monju against the postulated large leak sodium-water reaction, a large scale test facility SWAT-3 was constructed. SWAT-3 is a 1/2.5 scale model of the Monju secondary loop on the basis of the iso-velocity modeling. Two tests have been conducted in SWAT-3 since its construction. The test items using SWAT-3 are discussed, and the description of the facility and the test results are presented

  12. Study on Storm-Water Management of Grassed Swales and Permeable Pavement Based on SWMM

    Directory of Open Access Journals (Sweden)

    Jianguang Xie

    2017-10-01

    Full Text Available Grassed swales and permeable pavement that have greater permeable underlying surface relative to hard-pressing surface can cooperate with the city pipe network on participating in urban storm flood regulation. This paper took Nanshan village in Jiangsu Province as an example, the storm-water management model (SWMM was used to conceptualize the study area reasonably, and the low-impact development (LID model and the traditional development model were established in the region. Based on the storm-intensity equation, the simulation scene employed the Chicago hydrograph model to synthesize different rainfall scenes with different rainfall repetition periods, and then contrasted the storm-flood-management effect of the two models under the condition of using LID facilities. The results showed that when the rainfall repetition period ranged from 0.33a to 10a (a refers to the rainfall repetition period, the reduction rate of total runoff in the research area that adopted LID ranged from 100% to 27.5%, while the reduction rate of peak flow ranged from 100% to 15.9%, and when the values of unit area were the same, the combined system (permeable pavement + grassed swales worked more efficiently than the sum of the individuals in the reduction of total runoff and peak flow throughout. This research can provide technical support and theoretical basis for urban LID design.

  13. Horizontal steam generator thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  14. Steam turbine of WWER-1000 unit

    International Nuclear Information System (INIS)

    Drahy, J.

    1986-01-01

    The manufacture was started by Skoda of a saturated steam, 1,000 MW, 3,000 rpm turbine designed for the Temelin nuclear power plant. The turbine provides steam for heating water for district heating, this either with an output of 893 MW for a three-stage water heating at 150/60 degC, or of 570 MW for a two-stage water heating at 120/60 degC. The turbine features one high-pressure and three identical low-pressure stages. The pressure gradient between the high-pressure and the low-pressure parts was optimized with respect to the thermal efficiency of the cycle and to the thermodynamic efficiency of the low-pressure part. A value of 0.79 MPa was selected corresponding to the maximum through-flow of steam entering the turbine. This makes 5,495 t/h, the admission steam parameters are 273.3 degC and 5.8 MPa. The feed water temperature is 220.9 degC. 300 cold starts, 1,000 starts after shutdowns for 55 to 88 hours and 600 starts after shutdown for 8 hours are envisaged for the entire turbine service life. (Z.M.). 5 figs., 1 tab., 6 refs

  15. Corrosion aspects in steam generators of nuclear power plants

    International Nuclear Information System (INIS)

    Visoni, E.; Santos Pinto, M. dos

    1988-01-01

    Steam generators of pressurized water reactors (PWR), transfer heat from a primary coolant system to a secondary coolant system. Primary coolant water is heated in the core and passes through the steam generator that transfer heat to the secondary coolant water. However, the steam generator is dead for ionic impurities, corrosion products and fabrication/maintenence residues. These impurities concentrate between crevice and cracks. Many types of degradation mechanisms affect the tubes. The tubes are dented, craked, ovalized, wasted, etc. This paper describes the main corrosion problems in steam generators and includes the corrective actions to considered to reduce or eliminate these corrosion problems. (author) [pt

  16. Water and vapor permeability at different temperatures of poly (3-Hydroxybutyrate dense membranes

    Directory of Open Access Journals (Sweden)

    Luiz H. Poley

    2005-03-01

    Full Text Available Polyhydroxyalkanoates (PHAs are polymers produced from renewable resources with biodegradability and biocompatibility, being therefore attractive for medical and pharmaceutical purposes. Poly (3-hydroxybutyrate (PHB is the most important polymer of this family by considering the biotechnology process of its synthesis. In the present study, dense films of PHB were prepared by casting from chloroform solutions (1% m/m. Permeability studies with water, methanol, ethanol and n-propanol were performed using the gravimetric method at different temperatures (from 50 ºC to 65 ºC. Results provide new data on permeability coefficients of PHB membranes.

  17. Regulation of the water level in the steam generator using modal control

    International Nuclear Information System (INIS)

    Benoit, Guy.

    1981-11-01

    The nuclear power reactors type P.W.R. (900 MWe) have three steam generators (S.G.). The problem of the water level in the S.G. is analogous to that for a system with non-minimum phase. This causes a serious trouble for the stability of the regulation, which is actually realized by using the PID regulator. The first part of this study is devoted to construct a mathematical model which represents the S.G. This model is simulated on a digital computer, which order is six. The validity of this model is checked using actual measured signals which have been collected from the BUGEY III power reactor. In the second part, the mathematical representation for simulating the regulation of the level in the S.G. using the modal control is given. The simulation of the actual system is given in the third part. This actual system is composed from the S.G. as well as the PI and PID for regulating the water level. As results from this study, it can be concluded that, the modal control improves the regulation of the water level. The accuracy of the steam flow measurement at low rate is poor. So, the actual regulating system using the measurements has a reduced performance performance. The control modal which is represented in this study overcome this problem [fr

  18. Liquid metal fast breeder reactor steam generator survey of the consequences of large scale sodium water reaction

    International Nuclear Information System (INIS)

    Vambenepe, G.

    1978-01-01

    The ''Retona'' three-dimensional hydrodynamic computing code is being developed by Electricity de France to survey the consequences, on the very plant, of a large scale sodium water reaction in liquid metal steam generators. In this communication, the heat-exchanger geometry is schematized and the problem solving process briefly described under assumed simplifying hypotheses. The application of the results to the Creusot-Loire steam generator selected for Super-Phenix are given as an example. (author)

  19. Subsurface imaging of water electrical conductivity, hydraulic permeability and lithology at contaminated sites by induced polarization

    Science.gov (United States)

    Maurya, P. K.; Balbarini, N.; Møller, I.; Rønde, V.; Christiansen, A. V.; Bjerg, P. L.; Auken, E.; Fiandaca, G.

    2018-05-01

    At contaminated sites, knowledge about geology and hydraulic properties of the subsurface and extent of the contamination is needed for assessing the risk and for designing potential site remediation. In this study, we have developed a new approach for characterizing contaminated sites through time-domain spectral induced polarization. The new approach is based on: (1) spectral inversion of the induced polarization data through a reparametrization of the Cole-Cole model, which disentangles the electrolytic bulk conductivity from the surface conductivity for delineating the contamination plume; (2) estimation of hydraulic permeability directly from the inverted parameters using a laboratory-derived empirical equation without any calibration; (3) the use of the geophysical imaging results for supporting the geological modelling and planning of drilling campaigns. The new approach was tested on a data set from the Grindsted stream (Denmark), where contaminated groundwater from a factory site discharges to the stream. Two overlapping areas were covered with seven parallel 2-D profiles each, one large area of 410 m × 90 m (5 m electrode spacing) and one detailed area of 126 m × 42 m (2 m electrode spacing). The geophysical results were complemented and validated by an extensive set of hydrologic and geologic information, including 94 estimates of hydraulic permeability obtained from slug tests and grain size analyses, 89 measurements of water electrical conductivity in groundwater, and four geological logs. On average the IP-derived and measured permeability values agreed within one order of magnitude, except for those close to boundaries between lithological layers (e.g. between sand and clay), where mismatches occurred due to the lack of vertical resolution in the geophysical imaging. An average formation factor was estimated from the correlation between the imaged bulk conductivity values and the water conductivity values measured in groundwater, in order to

  20. A drainage data-based calculation method for coalbed permeability

    International Nuclear Information System (INIS)

    Lai, Feng-peng; Li, Zhi-ping; Fu, Ying-kun; Yang, Zhi-hao

    2013-01-01

    This paper establishes a drainage data-based calculation method for coalbed permeability. The method combines material balance and production equations. We use a material balance equation to derive the average pressure of the coalbed in the production process. The dimensionless water production index is introduced into the production equation for the water production stage. In the subsequent stage, which uses both gas and water, the gas and water production ratio is introduced to eliminate the effect of flush-flow radius, skin factor, and other uncertain factors in the calculation of coalbed methane permeability. The relationship between permeability and surface cumulative liquid production can be described as a single-variable cubic equation by derivation. The trend shows that the permeability initially declines and then increases after ten wells in the southern Qinshui coalbed methane field. The results show an exponential relationship between permeability and cumulative water production. The relationship between permeability and cumulative gas production is represented by a linear curve and that between permeability and surface cumulative liquid production is represented by a cubic polynomial curve. The regression result of the permeability and surface cumulative liquid production agrees with the theoretical mathematical relationship. (paper)

  1. Compression characteristics and permeability of saturated Gaomiaozi ca-bentonite

    International Nuclear Information System (INIS)

    Sun Wenjing; Sun De'an; Fang Lei

    2012-01-01

    The compression characteristics and permeability of compacted Gaomiaozi Ca-bentonite saturated by the water uptake tests are studied by conducting a series of one-dimension compression tests. The permeability coefficient can be calculated by the Terzaghi's one-dimensional consolidation theory after the consolidation coefficient is obtained by the square root of time method. It is found that the compression curves of compacted specimens saturated by the water uptake tests tend to be consistent in the relatively high stress range. The compression indexes show a linear decrease with increasing dry density and the swelling index is a constant. The permeability coefficient decreases with increasing compression stress, and they show the linear relationship in double logarithmic coordinates. Meanwhile, the permeability coefficient shows a linear decrease with decreasing void ratio, which has no relationship with initial states, stress states and stress paths. The permeability coefficient k of GMZ Ca-bentonite at dry density Pd of 1.75 g/cm 3 can be calculated as 2.0 × 10 -11 cm/s by the linear relationship between Pd and log k. It is closed to the permeability coefficient of GMZ Ca-bentonite with the same dry density published in literature, which testifies that the method calculating the permeability coefficient is feasible from the consolidation coefficient obtained by the consolidation test. (authors)

  2. Steam-treated wood pellets: Environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation

    International Nuclear Information System (INIS)

    McKechnie, Jon; Saville, Brad; MacLean, Heather L.

    2016-01-01

    Highlights: • Steam-treated pellets can greatly reduce greenhouse gas emissions relative to coal. • Cost advantage is seen relative to conventional pellets. • Higher pellet cost is more than balanced by reduced retrofit capital requirements. • Low capacity factors further favour steam-treated pellets over conventional pellets. - Abstract: Steam-treated pellets can help to address technical barriers that limit the uptake of pellets as a fuel for electricity generation, but there is limited understanding of the cost and environmental impacts of their production and use. This study investigates life cycle environmental (greenhouse gas (GHG) and air pollutant emissions) and financial implications of electricity generation from steam-treated pellets, including fuel cycle activities (biomass supply, pellet production, and combustion) and retrofit infrastructure to enable 100% pellet firing at a generating station that previously used coal. Models are informed by operating experience of pellet manufacturers and generating stations utilising coal, steam-treated and conventional pellets. Results are compared with conventional pellets and fossil fuels in a case study of electricity generation in northwestern Ontario, Canada. Steam-treated pellet production has similar GHG impacts to conventional pellets as their higher biomass feedstock requirement is balanced by reduced process electricity consumption. GHG reductions of more than 90% relative to coal and ∼85% relative to natural gas (excluding retrofit infrastructure) could be obtained with both pellet options. Pellets can also reduce fuel cycle air pollutant emissions relative to coal by 30% (NOx), 97% (SOx), and 75% (PM 10 ). Lesser retrofit requirements for steam-treated pellets more than compensate for marginally higher pellet production costs, resulting in lower electricity production cost compared to conventional pellets ($0.14/kW h vs. $0.16/kW h). Impacts of retrofit infrastructure become increasingly

  3. Wood Permeability in Eucalyptus grandis and Eucalyptus dunnii

    Directory of Open Access Journals (Sweden)

    Raphael Nogueira Rezende

    2017-12-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the flow of air and water in Eucalyptus grandis and Eucalyptus dunnii wood. Wood was collected from four trees aged 37 years in an experimental plantation of the Federal University of Lavras, Brazil. Planks were cut off the basal logs to produce specimens for air and water permeability testing. Results indicated that the longitudinal permeability to air and water of E. grandis wood were, on average, 5% and 10% higher, respectively, than that of E. dunnii wood. E. grandis and E. dunnii wood showed neither air nor water flow in the test for permeability transversal to the fibers, and longitudinal permeability to air exceeded that to water by approximately 50 fold in both species.

  4. Transverse Chemotactic Migration of Bacteria from High to Low Permeability Regions in a Dual Permeability Porous Microfluidic Device

    Science.gov (United States)

    Singh, R.; Olson, M. S.

    2011-12-01

    Low permeability regions sandwiched between high permeability regions such as clay lenses are difficult to treat using conventional treatment methods. Trace concentrations of contaminants such as non-aqueous phase liquids (NAPLs) remain trapped in these regions and over the time diffuse out into surrounding water thereby acting as a long term source of groundwater contamination. Bacterial chemotaxis (directed migration toward a contaminant source), may be helpful in enhancing bioremediation of such contaminated sites. This study is focused on simulating a two-dimensional dual-permeability groundwater contamination scenario using microfluidic devices and evaluating transverse chemotactic migration of bacteria from high to low permeability regions. A novel bi-layer polydimethylsiloxane (PDMS) microfluidic device was fabricated using photolithography and soft lithography techniques to simulate contamination of a dual- permeability region due to leakage from an underground storage tank into a low permeability region. This device consists of a porous channel through which a bacterial suspension (Escherchia Coli HCB33) is flown and another channel for injecting contaminant/chemo-attractant (DL-aspertic acid) into the porous channel. The pore arrangement in the porous channel contains a 2-D low permeability region surrounded by high permeability regions on both sides. Experiments were performed under chemotactic and non-chemotactic (replacing attractant with buffer solution in the non porous channel) conditions. Images were captured in transverse pore throats at cross-sections 4.9, 9.8, and 19.6 mm downstream from the attractant injection point and bacteria were enumerated in the middle of each pore throat. Bacterial chemotaxis was quantified in terms of the change in relative bacterial counts in each pore throat at cross-sections 9.8 and 19.6 mm with respect to counts at the cross-section at 4.9 mm. Under non-chemotactic conditions, relative bacterial count was observed

  5. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy

    Science.gov (United States)

    Ruff, S. Emil; Kuhfuss, Hanna; Wegener, Gunter; Lott, Christian; Ramette, Alban; Wiedling, Johanna; Knittel, Katrin; Weber, Miriam

    2016-01-01

    The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g-1 day-1 indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20–50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct

  6. Methane Seep in Shallow-Water Permeable Sediment Harbors High Diversity of Anaerobic Methanotrophic Communities, Elba, Italy.

    Science.gov (United States)

    Ruff, S Emil; Kuhfuss, Hanna; Wegener, Gunter; Lott, Christian; Ramette, Alban; Wiedling, Johanna; Knittel, Katrin; Weber, Miriam

    2016-01-01

    The anaerobic oxidation of methane (AOM) is a key biogeochemical process regulating methane emission from marine sediments into the hydrosphere. AOM is largely mediated by consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB), and has mainly been investigated in deep-sea sediments. Here we studied methane seepage at four spots located at 12 m water depth in coastal, organic carbon depleted permeable sands off the Island of Elba (Italy). We combined biogeochemical measurements, sequencing-based community analyses and in situ hybridization to investigate the microbial communities of this environment. Increased alkalinity, formation of free sulfide and nearly stoichiometric methane oxidation and sulfate reduction rates up to 200 nmol g(-1) day(-1) indicated the predominance of sulfate-coupled AOM. With up to 40 cm thickness the zones of AOM activity were unusually large and occurred in deeper sediment horizons (20-50 cm below seafloor) as compared to diffusion-dominated deep-sea seeps, which is likely caused by advective flow of pore water due to the shallow water depth and permeability of the sands. Hydrodynamic forces also may be responsible for the substantial phylogenetic and unprecedented morphological diversity of AOM consortia inhabiting these sands, including the clades ANME-1a/b, ANME-2a/b/c, ANME-3, and their partner bacteria SEEP-SRB1a and SEEP-SRB2. High microbial dispersal, the availability of diverse energy sources and high habitat heterogeneity might explain that the emission spots shared few microbial taxa, despite their physical proximity. Although the biogeochemistry of this shallow methane seep was very different to that of deep-sea seeps, their key functional taxa were very closely related, which supports the global dispersal of key taxa and underlines strong selection by methane as the predominant energy source. Mesophilic, methane-fueled ecosystems in shallow-water permeable sediments may comprise distinct

  7. Ultrasonic inspection for wastage in the LMFBR steam generator due to sodium--water reactions

    International Nuclear Information System (INIS)

    Neely, H.H.; Renger, L.

    1977-01-01

    As part of a program to study the results of large sodium-water reactions in the LMFBR Steam Generator, a boreside ultrasonic inspection device was developed to measure the wall thickness and diameter of the 2- 1 / 4 Cr-1 Mo, 0.397 in. I.D. steam tubes. The reaction was created in a near prototype steam generator by guillotine-type rupture of a steam tube, while the generator was at operating conditions. Wastage occurred on the surrounding tubes due to the high temperature reaction. The UT test instrument was designed to operate with a 15 MHz transducer in the pulse-echo shear-wave mode, with a sampling rate of 10 4 /sec. System outputs are diameter, wall thickness, attitude and axial position of the transducer. All are displayed digitally and may be recorded. Measurements are fed into a computer for later retrieval, and/or cascaded outputs into an x-y recorded displaying either out-of-limit or thickness data. The UT data taken in this experiment were consistent with physical measurements on a tube which was removed from the generator after the test. A machined flat 1 / 8 -inch long and 0.002-inch deep could readily be detected

  8. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  9. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (11) Visualization Study on the Start-Up of the Steam Injector

    International Nuclear Information System (INIS)

    Koji Okamoto; Tadashi Narabayashi; Chikako Iwaki; Shuichi Ohmori; Michitsugu Mori

    2006-01-01

    The Steam Injector is the superior system to pump the fluid without rotating machine. Because the water column is surrounded by the saturated steam, very high heat transfer is also expected with direct condensation. The inside of the Steam Injector is very complicated. To improve the efficiency of the Steam Injector, the water column behavior inside the Injector is visualized using the Dynamic PIV system. Dynamic PIV system consists of the high-speed camera and lasers. In this study, 384 x 180 pixel resolution with 30,000 fps camera is used to visualize the flow. For the illumination CW green laser with 300 mW is applied. To view inside the Injector, relay lens system is set at the Injector wall. Very high speed water column during the starting up of Steam Injector had been clearly visualized with 30,000 fps. The wave velocity on the water column had been analyzed using PIV technique. The instability of the water column is also detected. (authors)

  10. A three-dimensional laboratory steam injection model allowing in situ saturation measurements. [Comparing steam injection and steam foam injection with nitrogen and without nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

    1992-08-01

    The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

  11. Methods of increasing thermal efficiency of steam and gas turbine plants

    Science.gov (United States)

    Vasserman, A. A.; Shutenko, M. A.

    2017-11-01

    Three new methods of increasing efficiency of turbine power plants are described. Increasing average temperature of heat supply in steam turbine plant by mixing steam after overheaters with products of combustion of natural gas in the oxygen. Development of this idea consists in maintaining steam temperature on the major part of expansion in the turbine at level, close to initial temperature. Increasing efficiency of gas turbine plant by way of regenerative heating of the air by gas after its expansion in high pressure turbine and before expansion in the low pressure turbine. Due to this temperature of air, entering combustion chamber, is increased and average temperature of heat supply is consequently increased. At the same time average temperature of heat removal is decreased. Increasing efficiency of combined cycle power plant by avoiding of heat transfer from gas to wet steam and transferring heat from gas to water and superheated steam only. Steam will be generated by multi stage throttling of the water from supercritical pressure and temperature close to critical, to the pressure slightly higher than condensation pressure. Throttling of the water and separation of the wet steam on saturated water and steam does not require complicated technical devices.

  12. Steam generators in PWR's

    International Nuclear Information System (INIS)

    Michel, R.

    1974-01-01

    The steam generator of the PWR operates according to the principle of natural circulation. It consists of a U-shaped tube bundle whose free ends are welded to a bottom plate. The tube bundle is surrounded by a cylinder jacket which has slots closely above the bottom or tube plate. The feed water mixed with boiling water enters the tube bundle through these slots. Because of its buoyancy, the steam-water mixture flows upwards. Below the tube plate there are chambers for distributing and collecting pressurized water separated by means of a partition wall. By omitting some tubes, a free alloy is created so that the tubes in the center get sufficient water, too. By asymmetrical arrangement of the partition wall it is further possible to limit the tube alloy only to the inlet side for pressurized water. The flow over the tube plate is thus improved on the inlet side. (DG) [de

  13. Steam chugging in pressure suppression containment

    International Nuclear Information System (INIS)

    Lee, C.K.B.; Chan, C.K.

    1978-01-01

    The condensation of steam flow in subcooled water was studied by injecting a quasi-steady stream of saturated steam into a pool water at different temperature. From the movies, it was observed that chugging occurred at a frequency on the order of 1 to 2 times a second. In between each chug over a period of approximately half a second, a few bubbles formed and collapsed at the exit of the downcomer. At a mass flow rate of approximately 5.02 Kg/m 2 sec., the chugging process is found to be strongly affected by the bubble formation. At pool temperatures below 50 0 C, the chugging process is dominated by internal chugging which is characterized by high water slug exit velocity, detached steam bubble and lhigh chugging level. Above 50 0 C, the external chugging mode is dominant. The external chugging mode is characterized by pancake bubble shape, low water slug exit velocity, and low chugging level. (author)

  14. Structural analysis of steam generator internals following feed water main steam line break: DLF approach

    International Nuclear Information System (INIS)

    Bhasin, Vivek; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1993-01-01

    In order to evaluate the possible release of radioactivity in extreme events, some postulated accidents are analysed and studied during the design stage of Steam Generator (SG). Among the various accidents postulated, the most important are Feed Water Line Break (FWLB) and Main Steam Line Break (MSLB). This report concerns with dynamic structural analysis of SG internals following FWLB/MSLB. The pressure/drag-force time histories considered were corresponding to the conditions leading to the accident of maximum potential. The SG internals were analysed using two approaches of structural dynamics. In first approach simplified DLF method was adopted. This method yields an upper bound values of stresses and deflection. In the second approach time history analysis by Mode Superposition Technique was adopted. This approach gives more realistic results. The structure was qualified as per ASME B and PV Code SecIII NB. It was concluded that in all the components except perforated flow distribution plate, the stress values based on elastic analysis are within the limits specified by ASME Code. In case of perforated flow distribution plate during the MSLB transient the stress values based on elastic analysis are higher than the ASME Code limits. Therefore, its limit load analysis had to be done. Finally, the collapse pressure evaluated using limit load analysis was shown to be within the limits of ASME B and PV Code SecIII Nb. (author). 31 refs., 94 figs., 16 tabs

  15. Dependence of steam generator vibrations on feedwater pressure

    International Nuclear Information System (INIS)

    Sadilek, J.

    1989-01-01

    Vibration sensors are attached to the bottom of the steam generator jacket between the input and output primary circuit collectors. The effective vibration value is recorded daily. Several times higher vibrations were observed at irregular intervals; their causes were sought, and the relation between the steam generator vibrations measured at the bottom of its vessel and the feedwater pressure was established. The source of the vibrations was found to be in the feedwater tract of the steam generator. The feedwater tract is described and its hydraulic characteristics are given. Vibrations were measured on the S02 valve. It is concluded that vibrations can be eliminated by reducing the water pressure before the control valves and by replacing the control valves with ones with more suitable control characteristics. (E.J.). 3 figs., 1 tab., 3 refs

  16. High Temperature Monitoring the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Bao, Xiaoqi; Sherrit, Stewart; Widholm, Scott; Ostlund, Patrick; Blosiu, Julian

    2011-01-01

    An in-service health monitoring system is needed for steam pipes to track through their wall the condensation of water. The system is required to measure the height of the condensed water inside the pipe while operating at temperatures that are as high as 250 deg. C. The system needs to be able to make real time measurements while accounting for the effects of cavitation and wavy water surface. For this purpose, ultrasonic wave in pulse-echo configuration was used and reflected signals were acquired and auto-correlated to remove noise from the data and determine the water height. Transmitting and receiving the waves is done by piezoelectric transducers having Curie temperature that is significantly higher than 250 deg. C. Measurements were made at temperatures as high as 250 deg. C and have shown the feasibility of the test method. This manuscript reports the results of this feasibility study.

  17. An integrated approach to permeability modeling using micro-models

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, A.H.; Leuangthong, O.; Deutsch, C.V. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Alberta Univ., Edmonton, AB (Canada)

    2008-10-15

    An important factor in predicting the performance of steam assisted gravity drainage (SAGD) well pairs is the spatial distribution of permeability. Complications that make the inference of a reliable porosity-permeability relationship impossible include the presence of short-scale variability in sand/shale sequences; preferential sampling of core data; and uncertainty in upscaling parameters. Micro-modelling is a simple and effective method for overcoming these complications. This paper proposed a micro-modeling approach to account for sampling bias, small laminated features with high permeability contrast, and uncertainty in upscaling parameters. The paper described the steps and challenges of micro-modeling and discussed the construction of binary mixture geo-blocks; flow simulation and upscaling; extended power law formalism (EPLF); and the application of micro-modeling and EPLF. An extended power-law formalism to account for changes in clean sand permeability as a function of macroscopic shale content was also proposed and tested against flow simulation results. There was close agreement between the model and simulation results. The proposed methodology was also applied to build the porosity-permeability relationship for laminated and brecciated facies of McMurray oil sands. Experimental data was in good agreement with the experimental data. 8 refs., 17 figs.

  18. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-05-15

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  19. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    International Nuclear Information System (INIS)

    Kim, Seongil; Choi, Sangmin

    2017-01-01

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  20. Integrated petrophysical and reservoir characterization workflow to enhance permeability and water saturation prediction

    Science.gov (United States)

    Al-Amri, Meshal; Mahmoud, Mohamed; Elkatatny, Salaheldin; Al-Yousef, Hasan; Al-Ghamdi, Tariq

    2017-07-01

    Accurate estimation of permeability is essential in reservoir characterization and in determining fluid flow in porous media which greatly assists optimize the production of a field. Some of the permeability prediction techniques such as Porosity-Permeability transforms and recently artificial intelligence and neural networks are encouraging but still show moderate to good match to core data. This could be due to limitation to homogenous media while the knowledge about geology and heterogeneity is indirectly related or absent. The use of geological information from core description as in Lithofacies which includes digenetic information show a link to permeability when categorized into rock types exposed to similar depositional environment. The objective of this paper is to develop a robust combined workflow integrating geology and petrophysics and wireline logs in an extremely heterogeneous carbonate reservoir to accurately predict permeability. Permeability prediction is carried out using pattern recognition algorithm called multi-resolution graph-based clustering (MRGC). We will bench mark the prediction results with hard data from core and well test analysis. As a result, we showed how much better improvements are achieved in the permeability prediction when geology is integrated within the analysis. Finally, we use the predicted permeability as an input parameter in J-function and correct for uncertainties in saturation calculation produced by wireline logs using the classical Archie equation. Eventually, high level of confidence in hydrocarbon volumes estimation is reached when robust permeability and saturation height functions are estimated in presence of important geological details that are petrophysically meaningful.

  1. Analysis of heterogeneous characteristics in a geothermal area with low permeability and high temperature

    Directory of Open Access Journals (Sweden)

    Alfonso Aragón-Aguilar

    2017-09-01

    Full Text Available An analytical methodology for reservoir characterization was applied in the central and southwestern zones of Los Humeros geothermal field (LHGF. This study involves analysis of temperature, pressure, enthalpy and permeability in wells and their distribution along the area. The wells located in the central western side of the geothermal field are productive, whereas those located at the central-eastern side are non-productive. Through temperature profiles, determined at steady state in the analyzed wells, it was observed that at bottom conditions (approximately 2300 m depth, temperatures vary between 280 and 360 °C. The temperatures are higher at the eastern side of central zone of LHGF. A review of transient pressure tests, laboratory measurements of core samples, and correlation of circulation losses during drilling suggest that permeability of the formation is low. The enthalpy behavior in productive wells shows a tendency of increase in the steam fraction. It was found that productivity behavior has inverse relation with permeability of rock formation. Further, it is observed that an imbalance exists between exploitation and recharge. It is concluded from the results that the wells located at central-eastern area have low permeability and high temperature, which indicates possibility of heat storage.

  2. Conversion of thermall energy to mechanical work in the oscillations with steam condensation in pool water

    International Nuclear Information System (INIS)

    Aya, Izuo; Nariai, Hideki.

    1988-01-01

    Pressure and fluid oscillations with steam injection into pool water were discussed from the view point of the conversion of thermal energy into mechanical work. When the change of fluid state moves clockwise in the p-V diagram, the oscillation sustains since the thermal energy changes into positive work. The equations difining the mechanical work at the condensation oscillations were presented. The oscillation threshold determined by the condition that mechanical work became zero, coincided with the values derived by the linear oscillation theory. The changes of pressure and specific volume during chugging were also shown with one dimensional simulation analysis. The p-V diagrams at various chugging modes were presented with the movement of steam water interface, and the conversion efficiency of thermal energy to mechanical work was also discussed. (author)

  3. Carbon-based building blocks for alcohol dehydration membranes with disorder-enhanced water permeability

    DEFF Research Database (Denmark)

    Boffa, Vittorio; Etmimi, H.; Mallon, P.E.

    2017-01-01

    Graphene oxide (GO) thin films have demonstrated outstanding water permeability and excellent selectivity towards organic molecules and inorganic salts, unlocking a new exciting direction in the development of nanofiltration, desalination and pervaporation membranes. However, there are still high......-HAL membranes promising devices for alcohol dehydration technologies....

  4. Hybrid solar-PLG system for industrial scale steam and hot water generation; Sistema hibrido solar-GLP para geracao de vapor e agua quente em escala industrial

    Energy Technology Data Exchange (ETDEWEB)

    Saidel, Marco A.; Monteiro, Marcio D.; Gimenes, Andre L.V.; Fujii, Ricardo J. [Universidade de Sao Paulo (GEPEA/EPUSP), SP (Brazil). Dept. Engenharia Energia e Automacao Eletricas. Grupo de Energia], e-mail: saidel@pea.usp.br, e-mail: marcio.monteiro@poli.usp.br, e-mail: gimenes@gmail.com, e-mail: fujii@gmail.com

    2008-07-01

    This paper presents an initiative conceived for attending to objectives of the PUREFA (Program for Rational Use of Energy and Alternative Sources) of the Sao Paulo university, Brazil. The indicative consists of the implantation of a solar collector system for pre-heating of the water used in the production of the steam consumed at the university restaurant, with a production of 5800 meals per day. This system (auxiliary to the original steam boiler) pre-heats the water of the boiler minimizing the energy expenses for the production of steam and hot water.

  5. Pulsed high-pressure (PHP) drain-down of steam generating system

    International Nuclear Information System (INIS)

    Petrusek, R.A.

    1991-01-01

    This patent describes an improved method of draining down contained reactor-coolant water from the inverted vertical U-tubes of at least one vertical-type steam generator in which the upper inverted U-shaped ends of the tubes are closed and the lower ends thereof are open, the steam generator having a channel head at its lower end including a vertical dividing wall defining a primary water inlet side and a primary water outlet side of the generator, the steam generator having chemical volume control system means and residual heat removal system means, and the steam generator being part of a nuclear-powered steam generating system wherein the reactor-coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator, and the reactor being in communication with pressurizer means and comprising the steps of introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tubesheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator while permitting the water to flow out from the open ends of the U-tubes, the improvement in combination therewith for substantially increasing the effectiveness and efficiency of such water removal from the tubes. It includes determining the parameters effecting a first average volumetric rate of removal for a predetermined period of time, infra, of the reactor-coolant water from the inverted vertical U-tubes, the specific unit for the first average volumetric rate expressing properties identical with the properties expressed in a second average volumetric rate maintained in a later mentioned step

  6. Sodium monitoring in the water and steam cycle of power plants

    Energy Technology Data Exchange (ETDEWEB)

    Dudouit, P. [Ecole Nationale Superieure d' Electricite et de Mecanique, Nancy (France); Guillou, P.; Hostis, E. l' [Hach Ultra Analytics SA, Vesenaz (Switzerland)

    2006-11-15

    Today sodium concentration has become one of the most important indexes for quality control of water and steam at power plants; however, measurement of this parameter can be difficult in practice. The use of ion selective electrodes means that analyzers are sensitive to pH shifts, and constant exposure to very low concentrations of sodium ions in ultrapure water conditions can lead to electrode desensitization. In addition, there is a need to address drift through regular calibration. This paper discusses the technical challenges in low level sodium analysis and the required features for a practical and accurate analyzer to provide trouble free, sub {mu}g.kg{sup -1} (sub ppb) measurement. (orig.)

  7. Microorganism Removal in Permeable Pavement Parking Lots ...

    Science.gov (United States)

    Three types of permeable pavements (pervious concrete, permeable interlocking concrete pavers, and porous asphalt) were monitored at the Edison Environmental Center in Edison, New Jersey for indicator organisms such as fecal coliform, enterococci, and E. coli. Results showed that porous asphalt had much lower concentration in monitored infiltrate compared to pervious concrete and permeable interlocking concrete pavers. Concentrations of monitored organisms in infiltrate from porous asphalt were consistently below the bathing water quality standard. Fecal coliform and enterococci exceeded bathing water quality standards more than 72% and 34% of the time for permeable interlocking concrete pavers and pervious concrete, respectively. Purpose is to evaluate the performance of permeable pavement in removing indicator organisms from infiltrating stormwater runoff.

  8. Numerical simulation for cyclic steam injection at Santa Clara field

    International Nuclear Information System (INIS)

    Rodriguez, Edwin; Barrios, Wilson; Sandoval, Roy; Santos, Nicolas; Cortes, Ingrid

    2008-01-01

    This article presents the methodology used and the results obtained in the construction, match and prediction of the first thermal composition simulation model done in Colombia by employing advanced thermal process commercial software, globally recognized because of its effectiveness in modeling these types of processes (CMG-STARS, 2005). The Santa Clara and Palermo fields were modeled and an excellent history match was achieved. All in all 28 wells and 17 years of production were matched. Two production scenes were proposed. The first involved primary production from existing wells, in other words: primary production; and a second scene where all the wells in the field are converted into injectors and producers, to simulate cyclic steam injection. This injection process included a series of sensitivity studies for several of the parameters involved in this technology, such as: pressure and temperature injection, time and rate of injection, heat injected, soaking period, steam quality, and injection cycles. This sensitivity study was focused on optimizing the processes to obtain the maximum end recovery possible. The information entered into the simulator was validated by laboratory tests developed at the Instituto Colombiano del Petroleo (ICP). Among the tests performed the following were assessed: rock compressibility, relative permeability curve behavior at different temperatures, formation sensitivity to injection fluids, DRX analysis and residual saturation of crude oil for steam injection. The aforementioned results are documented in this paper

  9. Steam Cured Self-Consolidating Concrete and the Effects of Limestone Filler

    Science.gov (United States)

    Aqel, Mohammad A.

    The purpose of this thesis is to determine the effect and the mechanisms associated with replacing 15% of the cement by limestone filler on the mechanical properties and durability performance of self-consolidating concrete designed and cured for precast/prestressed applications. This study investigates the role of limestone filler on the hydration kinetics, mechanical properties (12 hours to 300 days), microstructural and durability performance (rapid chloride permeability, linear shrinkage, sulfate resistance, freeze-thaw resistance and salt scaling resistance) of various self-consolidating concrete mix designs containing 5% silica fume and steam cured at a maximum holding temperature of 55°C. This research also examines the resistance to delayed ettringite formation when the concrete is steam cured at 70°C and 82°C and its secondary consequences on the freeze-thaw resistance. The effect of several experimental variables related to the concrete mix design and also the curing conditions are examined, namely: limestone filler fineness, limestone filler content, cement type, steam curing duration and steam curing temperature. In general, the results reveal that self-consolidating concrete containing 15% limestone filler, steam cured at 55°C, 70°C and 82°C, exhibited similar or superior mechanical and transport properties as well as long term durability performance compared to similar concrete without limestone filler. When the concrete is steam cured at 55°C, the chemical reactivity of limestone filler has an important role in enhancing the mechanical properties at 16 hours (compared to the concrete without limestone filler) and compensating for the dilution effect at 28 days. Although, at 300 days, the expansion of all concrete mixes are below 0.05%, the corresponding freeze-thaw durability factors vary widely and are controlled by the steam curing temperature and the chemical composition of the cement. Overall, the material properties indicate that the use

  10. Effect on non-condensable gas on steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2004-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. Although non-condensable gases are well known for reducing heat transfer, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper presents an experimental study of condensation of supersonic steam around turbulent water jet with model steam injector made by transparent plastic. The experimental apparatus is described. The visual observation was carried out by using high-speed camera. The non-condensable gas effect on the pump performance and flow characteristics are clarified by the image processing technique for the jet shape and gas-liquid interface behavior. (authors)

  11. Increase of Steam Moisture in the BWR-Facility KKP 1

    International Nuclear Information System (INIS)

    Noack, Volker

    2002-01-01

    Main steam moisture in a BWR facility is determined by steam quality at core outlet and efficiency of steam separators and steam dryers. Transport of water with steam is accompanied by transport of radionuclides out of RPV resulting in enhanced radiation level in the main steam system. A remarkable increase of main steam moisture started at KKP 1 in 1997. In the following years increase of steam outlet moisture started at lower and lower core mass flow rates. Dose rate in main steam system increased simultaneously. Core mass flow rate and thus thermal power had to be reduced during stretch out operation to keep the main steam moisture below the specified boundary of 0.2 %. This boundary also guarantees, that radiological exposure remains far below approved values. The increase of main steam moisture corresponds with the application of low leakage core loading. Low leakage core loading results in enhanced steam generation in the center and in reduced steam generation in the outer zones of the core. It can be shown, that the uneven steam generation in the core became stronger over the years. Therefore, steam quality at inlet of the outer steam separators was getting lower. This resulted in higher carry over of water in this steam separators and steam dryers, thus explaining the increasing main steam moisture. KKP 1 started in 2000 with spectral shift operation. As one should expect, this resulted in reduced steam moisture. It remains the question of steam moisture in case of stretch out operation. Countermeasures are briefly discussed. (authors)

  12. 2D heat and mass transfer modeling of methane steam reforming for hydrogen production in a compact reformer

    International Nuclear Information System (INIS)

    Ni Meng

    2013-01-01

    Highlights: ► A heat and mass transfer model is developed for a compact reformer. ► Hydrogen production from methane steam reforming is simulated. ► Increasing temperature greatly increases the reaction rates at the inlet. ► Temperature in the downstream is increased at higher rate of heat supply. ► Larger permeability enhances gas flow and reaction rates in the catalyst layer. - Abstract: Compact reformers (CRs) are promising devices for efficient fuel processing. In CRs, a thin solid plate is sandwiched between two catalyst layers to enable efficient heat transfer from combustion duct to the reforming duct for fuel processing. In this study, a 2D heat and mass transfer model is developed to investigate the fundamental transport phenomenon and chemical reaction kinetics in a CR for hydrogen production by methane steam reforming (MSR). Both MSR reaction and water gas shift reaction (WGSR) are considered in the numerical model. Parametric simulations are performed to examine the effects of various structural/operating parameters, such as pore size, permeability, gas velocity, temperature, and rate of heat supply on the reformer performance. It is found that the reaction rates of MSR and WGSR are the highest at the inlet but decrease significantly along the reformer. Increasing the operating temperature raises the reaction rates at the inlet but shows very small influence in the downstream. For comparison, increasing the rate of heat supply raises the reaction rates in the downstream due to increased temperature. A high gas velocity and permeability facilitates gas transport in the porous structure thus enhances reaction rates in the downstream of the reformer.

  13. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  14. Update to Permeable Pavement Research at the Edison ...

    Science.gov (United States)

    The EPA’s Urban Watershed Management Branch (UWMB) has been monitoring the permeable pavement demonstration site at the Edison Environmental Center, NJ since 2010. This site has three different types of permeable pavements including interlocking concrete permeable pavers, pervious concrete, and porous asphalt. The permeable pavements are limited to parking spaces while adjacent driving lanes are impermeable and drain to the permeable surfaces. The parking lot is instrumented for continuous monitoring with thermistors and water content reflectometers that measure moisture as infiltrate passes through the storage gallery beneath the permeable pavements into the underlying native soil. Each permeable surface of the parking lot has four lined sections that capture infiltrate in tanks for water quality analyses; these tanks are capable of holding volumes up to 4.1 m3, which represents up to 38 mm (1.5 in.) for direct rainfall on the porous pavement and runoff from adjacent driving lanes that drain into the permeable surface.Previous technical releases concerning the demonstration site focused on monitoring techniques, observed chloride and nutrient concentrations, surface hydrology, and infiltration and evaporation rates. This presentation summarizes these past findings and addresses current water quality efforts including pH, solids analysis, total organic carbon, and chemical oxygen demand. Stormwater runoff continues to be a major cause of water pollution in

  15. Radiological protection for the ANGRA 1 steam generator replacement outage

    International Nuclear Information System (INIS)

    Oliveira, Magno Jose de; Amaral, Marcos Antonio do; Minelli, Edson; Ferreira, William Alves

    2009-01-01

    The Angra 1 Nuclear Power Plant (NPP) is a Westinghouse two-loop plant with net output before its 1P16 Outage of 632 MWe, with the Old Steam Generators (OSG) type model D3, which were replaced by two new Steam Generators with feed water-ring system. Localized in Angra dos Reis, Rio de Janeiro - Brazil, Angra 1 started in commercial operation in 1985 and, from the beginning problems related to corrosion have appeared in the Inconel 600 alloy of the tubes. The corrosion problems indicated the necessity for a strong control of the tubes thicknesses and, after a time, the ELETRONUCLEAR decided to replace the OSG. In 2009, ELETRONUCLEAR initiated in January 24, the actions for the Steam Generators Replacement - SGR. During the SGR process, several controls were applied in field, which made possible to have no radiological accidents, no dose limits exceeded, and permitted to achieve a very good result in terms of Collective Dose. This paper describes the radiological controls applied for the Angra 1 Steam Generator Replacement Outage, the radiological protection team sizing and distribution and the obtained results. (author)

  16. Wireless Monitoring of the Height of Condensed Water in Steam Pipes

    Science.gov (United States)

    Lee, Hyeong Jae; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Badescu, Mircea; Dingizian, Arsham; Takano, Nobuyuki; Blosiu, Julian O.

    2014-01-01

    A wireless health monitoring system has been developed for determining the height of water condensation in the steam pipes and the data acquisition is done remotely using a wireless network system. The developed system is designed to operate in the harsh environment encountered at manholes and the pipe high temperature of over 200 °C. The test method is an ultrasonic pulse-echo and the hardware includes a pulser, receiver and wireless modem for communication. Data acquisition and signal processing software were developed to determine the water height using adaptive signal processing and data communication that can be controlled while the hardware is installed in a manhole. A statistical decision-making tool is being developed based on the field test data to determine the height of in the condensed water under high noise conditions and other environmental factors.

  17. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  18. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  19. Twin header bore welded steam generator for pressurized water reactors

    International Nuclear Information System (INIS)

    Davies, R.J.; Hirst, B.

    1979-01-01

    A description is given of a pressurized water reactor (PWR) steam generator concept, several examples of which have been in service for up to fourteen years. Details are given of the highly successful service record of this equipment and the features which have been incorporated to minimize corrosion and deposition pockets. The design employs a vertical U tube bundle carried off two horizontal headers to which the tubes are welded by the Foster Wheeler Power Products (FWPP) bore welding process. The factors to be considered in uprating the design to meet the current operating conditions for a 1000 MW unit are discussed. (author)

  20. Mathematical modeling of a steam generator for sensor fault detection

    International Nuclear Information System (INIS)

    Prock, J.

    1988-01-01

    A dynamic model for a nuclear power pla