WorldWideScience

Sample records for steam injectors system

  1. Passive system with steam-water injector for emergency supply of NPP steam generators

    International Nuclear Information System (INIS)

    Il'chenko, A.G.; Strakhov, A.N.; Magnitskij, D.N.

    2009-01-01

    The calculation results of reliability indicators of emergency power supply system and emergency feed-water supply system of serial WWER-1000 unit are presented. To ensure safe water supply to steam generators during station blackout it was suggested using additional passive emergency feed-water system with a steam-water injector working on steam generators dump steam. Calculated analysis of steam-water injector operating capacity was conducted at variable parameters of steam at the entrance to injector, corresponding to various moments of time from the beginning of steam-and-water damping [ru

  2. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (11) Visualization Study on the Start-Up of the Steam Injector

    International Nuclear Information System (INIS)

    Koji Okamoto; Tadashi Narabayashi; Chikako Iwaki; Shuichi Ohmori; Michitsugu Mori

    2006-01-01

    The Steam Injector is the superior system to pump the fluid without rotating machine. Because the water column is surrounded by the saturated steam, very high heat transfer is also expected with direct condensation. The inside of the Steam Injector is very complicated. To improve the efficiency of the Steam Injector, the water column behavior inside the Injector is visualized using the Dynamic PIV system. Dynamic PIV system consists of the high-speed camera and lasers. In this study, 384 x 180 pixel resolution with 30,000 fps camera is used to visualize the flow. For the illumination CW green laser with 300 mW is applied. To view inside the Injector, relay lens system is set at the Injector wall. Very high speed water column during the starting up of Steam Injector had been clearly visualized with 30,000 fps. The wave velocity on the water column had been analyzed using PIV technique. The instability of the water column is also detected. (authors)

  3. Feasibility and application on steam injector for next-generation reactor

    International Nuclear Information System (INIS)

    Narabayashi, Tadashi; Ishiyama, Takenori; Miyano, Hiroshi; Nei, Hiromichi; Shioiri, Akio

    1991-01-01

    A feasibility study has been conducted on steam injector for a next generation reactor. The steam injector is a simple, compact passive device for water injection, such as Passive Core Injection System (PCIS) of Passive Containment Cooling System (PCCS), because of easy start-up without an AC power. An analysis model for a steam injector characteristics has been developed, and investigated with a visualized fundamental test for a two-stage Steam Injector System (SIS) for PCIS and a one-stage low pressure SIS for PCCS. The test results showed good agreement with the analysis results. The analysis and the test results showed the SIS could work over a very wide range of the steam pressure, and is applicable for PCIS or PCCS in the next generation reactors. (author)

  4. Study on thermal-hydraulic behavior in supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Fukuichi, Akira; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2007-01-01

    Supersonic steam injector is the one of the most possible devices aiming at simplifying system and improving the safety and the credibility for next-generation nuclear reactor systems. The supersonic steam injector has dual functions of a passive jet pump without rotating machine and a compact and high efficiency heat exchanger, because it is operated by the direct contact condensation between supersonic steam and subcooled water jet. It is necessary to clarify the flow behavior in the supersonic steam injector which is governed by the complicated turbulent flow with a great shear stress of supersonic steam. However, in previous study, there is little study about the turbulent heat transfer and flow behavior under such a great shear stress at the gas-liquid interface. In the present study, turbulent flow behavior including the effect of the interface between water jet and supersonic steam is developed based on the eddy viscosity model. Radial velocity distributions and the turbulent heat transfer are calculated with the model. The calculation results are compared with the experimental results done with the transparent steam injector. (author)

  5. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (5) operating characteristics of center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Y.; Kawamoto, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2005-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. And from temperature measuring results, it is supposed that the steam temperature at the mixing nozzle is changed between about 80 degree centigrade and about 60 degree centigrade. Then from the pressure measuring results, it is confirmed that the pressure at the diffuser depends on each the throat diameter and

  6. Water jet behavior in center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.

    2005-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. Furthermore and effect of the non-condensable gas on the steam injector is investigated by measuring the radial temperature distributions in the water jet. From measuring results, it is supposed the more the air included in the steam, the more the temperature fluctuation of both steam and discharge water

  7. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors. (6) Operating characteristics of center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Yujiro; Abe, Yutaka; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2004-01-01

    One of the most interesting devices for next generation reactor systems aiming at simplified system and improvement of safety and credibility is the steam injector which is a passive pump without large motor or turbo-machinery. One of the applications of the steam injector is the passive water injection system to inject the coolant water into the core. The system can be started up merely by injecting the steam without any outer power supply. Since the steam injector is a simple, compact and passive device for water injection, if the steam injector is applied to the actual reactor, it is expected to make the system simple and to reduce the construction cost. Although non-condensable gases are well known for reducing heat transfer between water and steam, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper reports about the experimental apparatus, measurement instrument and experimental results of observing the phenomenon inside the test section supplying water and steam to the test by using both the high-speed camera and the video camera and measuring the temperature and the pressure distribution n the test section. (author)

  8. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector

    International Nuclear Information System (INIS)

    Yutaka Abe; Yujiro Kawamoto; Chikako Iwaki; Tadashi Narabayashi; Michitsugu Mori; Shuichi Ohmori

    2006-01-01

    Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m 2 without non-condensable gas condition in steam. (authors)

  9. Study on the characteristics of the supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Shibayama, Shunsuke

    2014-01-01

    Steam injector is a passive jet pump which operates without power source or rotating machinery and it has high heat transfer performance due to the direct-contact condensation of supersonic steam flow onto subcooled water jet. It has been considered to be applied to the passive safety system for the next-generation nuclear power plants. The objective of the present study is to clarify operating mechanisms of the steam injector and to determine the operating ranges. In this study, temperature and velocity distribution in the mixing nozzle as well as flow directional pressure distribution were measured. In addition, flow structure in whole of the injector was observed with high-speed video camera. It was confirmed that there were unsteady interfacial behavior in mixing nozzle which enhanced heat transfer between steam flow and water jet with calculation of heat transfer coefficient. Discharge pressure at diffuser was also estimated with a one-dimensional model proposed previously. Furthermore, it was clarified that steam flow did not condense completely in mixing nozzle and it was two-phase flow in throat and diffuser, which seemed to induce shock wave. From those results, several discussions and suggestions to develop a physical model which predicts the steam injectors operating characteristics are described in this paper

  10. Effect on non-condensable gas on steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2004-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. Although non-condensable gases are well known for reducing heat transfer, the effect of the non-condensable gas on the condensation of supersonic steam on high-speed water jet has not been cleared. The present paper presents an experimental study of condensation of supersonic steam around turbulent water jet with model steam injector made by transparent plastic. The experimental apparatus is described. The visual observation was carried out by using high-speed camera. The non-condensable gas effect on the pump performance and flow characteristics are clarified by the image processing technique for the jet shape and gas-liquid interface behavior. (authors)

  11. A single-stage high pressure steam injector for next generation reactors: test results and analysis

    International Nuclear Information System (INIS)

    Cattadori, G.; Galbiati, L.; Mazzocchi, L.; Vanini, P.

    1995-01-01

    Steam injectors can be used in advanced light water reactors (ALWRs) for high pressure makeup water supply; this solution seems to be very attractive because of the ''passive'' features of steam injectors, that would take advantage of the available energy from primary steam without the introduction of any rotating machinery. The reference application considered in this work is a high pressure safety injection system for a BWR; a water flow rate of about 60 kg/s to be delivered against primary pressures covering a quite wide range up to 9 MPa is required. Nevertheless, steam driven water injectors with similar characteristics could be used to satisfy the high pressure core coolant makeup requirements of next generation PWRs. With regard to BWR application, an instrumented steam injector prototype with a flow rate scaling factor of about 1:6 has been built and tested. The tested steam injector operates at a constant inlet water pressure (about 0.2 MPa) and inlet water temperature ranging from 15 to 37 o C, with steam pressure ranging from 2.5 to 8.7 MPa, always fulfilling the discharge pressure target (10% higher than steam pressure). To achieve these results an original double-overflow flow rate-control/startup system has been developed. (Author)

  12. Control-volume-based model of the steam-water injector flow

    Science.gov (United States)

    Kwidziński, Roman

    2010-03-01

    The paper presents equations of a mathematical model to calculate flow parameters in characteristic cross-sections in the steam-water injector. In the model, component parts of the injector (steam nozzle, water nozzle, mixing chamber, condensation wave region, diffuser) are treated as a series of connected control volumes. At first, equations for the steam nozzle and water nozzle are written and solved for known flow parameters at the injector inlet. Next, the flow properties in two-phase flow comprising mixing chamber and condensation wave region are determined from mass, momentum and energy balance equations. Then, water compression in diffuser is taken into account to evaluate the flow parameters at the injector outlet. Irreversible losses due to friction, condensation and shock wave formation are taken into account for the flow in the steam nozzle. In two-phase flow domain, thermal and mechanical nonequilibrium between vapour and liquid is modelled. For diffuser, frictional pressure loss is considered. Comparison of the model predictions with experimental data shows good agreement, with an error not exceeding 15% for discharge (outlet) pressure and 1 K for outlet temperature.

  13. Innovative-Simplified Nuclear Power Plant Efficiency Evaluation with High-Efficiency Steam Injector System

    International Nuclear Information System (INIS)

    Shoji, Goto; Shuichi, Ohmori; Michitsugu, Mori

    2006-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injectors (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condensers and extracted steam from turbines. It can get higher pressure than supplied steam pressure. The maintenance and reliability are still higher than the feedwater ones because SI has no movable parts. This paper describes the analysis of the heat balance, plant efficiency and the operation of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency and operation are compared with the electric power of 1100 MWe-class BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show that plant efficiencies of the Innovated-Simplified BWR system are almost equal to original BWR ones. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  14. Passive heat removal system with injector-condenser

    Energy Technology Data Exchange (ETDEWEB)

    Soplenkov, K I [All-Russian Inst. of Nuclear Power Plant Operation, Electrogorsk Research and Engineering Centre of Nuclear Power Safety (Russian Federation)

    1996-12-01

    The system described in this paper is a passive system for decay heat removal from WWERs. It operates off the secondary side of the steam generators (SG). Steam is taken from the SG to operate a passive injector pump which causes secondary fluid to be pumped through a heat exchanger. Variants pass either water or steam from the SG through the heat exchanger. There is a passive initiation scheme. The programme for experimental and theoretical validation of the system is described. (author). 8 figs.

  15. A high-power millimeter wave driven steam gun for pellet injectors

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki

    1997-01-01

    A concept of steam gun is proposed for using in two-stage pneumatic hydrogen isotope pellet injectors. The steam gun is driven by megawatt-level high-power millimeter waves (∼100 GHz) supplied by gyrotrons. A small amount of water is injected into its pump tube. The water is instantaneously heated by the millimeter waves and vaporized. Generated high-pressure steam accelerates a piston for compressing light gas to drive a frozen pellet. Discussions in this paper concentrate on the piston acceleration. Results show that 1 MW millimeter waves accelerate the 25 g piston to velocities of ∼200 m/s in a 1 m-long pump tube. The piston acceleration characteristics are not improved in comparison to light gas guns with first valves. The steam gun concept, however, avoids the use of a large amount of high-pressure gas for piston accelerations. In future fusion reactors, gyrotrons used during preionization and start-up phase would be available for producing required millimeter waves. (author)

  16. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  17. Improvement of degradation with non-condensable gas in micro steam injector

    International Nuclear Information System (INIS)

    Saihara, Atsushi; Horiki, Sachiyo; Osakabe, Masahiro; Ohmori, Shuichi

    2007-01-01

    Effect of non-condensable gas on a micro steam injector (MSI) to obtain a vacuum was experimentally studied. When a pure steam was used in the MSI, the high vacuum condition was obtained. However when the mass fraction of air included in the steam was larger than a cartain value, the MSI became unstable and the vacuum condition could not be obtained. It is considered that the malfunction is due to the instability triggered with the uncondensed steam remained at the throat in downstream of the condensing region. The water nozzle was expected to be a key component to mitigate the effect of non-condensable gas. Three kinds of water nozzle whose flow areas were round, star and screw shapes were used in the present experiment. The star-shaped nozzle where the increased surface area could be expected to compensate the degradation of condensation failed to improve the malfunction of MSI with the non-condensable gas. The screw nozzle expected to drive air away outside the condensing surface could mitigate the effect of non-condensable gas. (author)

  18. Application of a steam injector for passive emergency core cooling during a station blackout

    International Nuclear Information System (INIS)

    Heinze, D.; Behnke, L.; Schulenberg, T.

    2012-01-01

    One of the basic protection targets of reactor safety is the safe heat removal during normal operation but also following shut-down. Since the reactor accident in Fukushima an optimization of the plant robustness in case of beyond-design accident is performed. Special attention is given to the increase of time available for starting appropriate measures for emergency core cooling in case of a station blackout. The state-of the art in engineering and research is presented. Investigations on the applicability of a steam injector for passive emergency core cooling during a station blackout in BWR-type reactors have progressed, experiments on dynamic behavior of the injector are described. A precise design with respect to the thermal hydraulic boundary conditions has been performed.

  19. Analysis of heat balance on innovative-simplified nuclear power plant using multi-stage steam injectors

    International Nuclear Information System (INIS)

    Goto, Shoji; Ohmori, Shuichi; Mori, Michitsugu

    2006-01-01

    The total space and weight of the feedwater heaters in a nuclear power plant (NPP) can be reduced by replacing low-pressure feedwater heaters with high-efficiency steam injectors (SIs). The SI works as a direct heat exchanger between feedwater from condensers and steam extracted from turbines. It can attain pressures higher than the supplied steam pressure. The maintenance cost is lower than that of the current feedwater heater because of its simplified system without movable parts. In this paper, we explain the observed mechanisms of the SI experimentally and the analysis of the computational fluid dynamics (CFD). We then describe mainly the analysis of the heat balance and plant efficiency of the innovative-simplified NPP, which adapted to the boiling water reactor (BWR) with the high-efficiency SI. The plant efficiencies of this innovative-simplified BWR with SI are compared with those of a 1 100 MWe-class BWR. The SI model is adopted in the heat balance simulator as a simplified model. The results show that the plant efficiencies of the innovate-simplified BWR with SI are almost equal to those of the original BWR. They show that the plant efficiency would be slightly higher if the low-pressure steam, which is extracted from the low-pressure turbine, is used because the first-stage of the SI uses very low pressure. (author)

  20. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors. (2) Analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, Shoji; Ohmori, Shuichi; Mori, Mitchitsugu

    2004-01-01

    It is possible to established simplified systems and reduced space and equipments using high-efficiency Steam Injector (SI) instead of low-pressure feed water heaters in Nuclear Power Plant (NPP). The SI works as a heat exchanger through direct contact between feedwater from condenser and extracted steam from turbine. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative-Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe class original BWR system and the Innovative-Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (author)

  1. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (2) analysis of heat balance of innovative-simplified nuclear power plant

    International Nuclear Information System (INIS)

    Goto, S.; Ohmori, S.; Mori, M.

    2005-01-01

    It is possible to establish simplified system with reduced space and total equipment weight using high-efficiency Steam Injector (SI) instead of low-pressure feedwater heaters in Nuclear Power Plant (NPP)(1)-(6). The SI works as a heat exchanger through direct contact between feedwater from the condensers and extracted steam from the turbines. It can get a higher pressure than supplied steam pressure, so it can reduce the feedwater pumps. The maintenance and reliability are still higher because SI has no movable parts. This paper describes the analysis of the heat balance and plant efficiency of this Innovative- Simplified NPP with high-efficiency SI. The plant efficiency is compared with the electric power of 1100MWe-class BWR system and the Innovative- Simplified BWR system with SI. The SI model is adapted into the heat balance simulator with a simplified model. The results show plant efficiencies of the Innovated-Simplified BWR system are almost equal to the original BWR one. The present research is one of the projects that are carried out by Tokyo Electric Power Company, Toshiba Corporation, and six Universities in Japan, funded from the Institute of Applied Energy (IAE) of Japan as the national public research-funded program. (authors)

  2. The SSRL injector beam position monitoring systems

    International Nuclear Information System (INIS)

    Lavender, W.; Baird, S.; Brennan, S.; Borland, M.; Hettel, R.; Nuhn, H.D.; Ortiz, R.; Safranek, J.; Sebek, J.; Wermelskirchen, C.; Yang, J.

    1991-01-01

    The beam position monitoring system of the SSRL injector forms a vital component of its operation. Several different types of instrumentation are used to measure the position or intensity of the electron beam in the injector. These include current toroids, fluorescent screens, Faraday cups, the 'Q' meter, a synchrotron light monitor, and electron beam position monitors. This paper focuses on the use of the electron beam position monitors to measure electron trajectories in the injector transport lines and the booster ring. The design of the beam position monitors is described in another paper to be presented at this conference. There are three different beam position monitor systems in the injector. One system consists of a set of five BPMs located on the injection transport line from the linac to the booster (known as the LTB line). There is a second system of six BPMs located on the ejection transport line (known as the BTS line). Finally, there is an array of 40 BPMs installed on the main booster ring itself. This article describes the software and processing electronics of the systems used to measure electron beam trajectories for the new SSRL injector for SPEAR

  3. Compact 250-kV injector system for PIGMI

    International Nuclear Information System (INIS)

    Hamm, R.W.; Stevens, R.R. Jr.; Mueller, D.W.; Lederer, H.M.

    1978-01-01

    A 250-kV proton injector to be used in the development of a linac suitable for medical applications has been constructed. This injector utilizes a spherical Pierce geometry to produce a converging beam. A gas insulated accelerating column is cantilevered on a grounded vacuum system, with a separate high voltage equipment dome connected to a 300-kV Cockcroft-Walton power supply. The injector can be operated locally or remotely, with the remote control accomplished by a microprocessor system linked to a central control minicomputer. This injector has been designed as a low-cost compact system. The design details and the data obtained during initial operation are presented

  4. Direct Fuel Injector Power Drive System Optimization

    Science.gov (United States)

    2014-04-01

    solenoid coil to create magnetic field in the stator. Then, the stator pulls the pintle to open the injector nozzle . This pintle movement occurs when the...that typically deal with power strategies to the injector solenoid coil. Numerical simulation codes for diesel injection systems were developed by...Laboratory) for providing the JP-8 test fuel. REFERENCES 1. Digesu, P. and Laforgia D., “ Diesel electro- injector : A numerical simulation code”. Journal of

  5. Mechanical design for TMX injector system

    International Nuclear Information System (INIS)

    Calderon, M.O.; Chen, F.F.K.; Denhoy, B.S.

    1977-01-01

    The injector system for the Tandem Mirror Experiment (TMX) contains the components required to create and maintain a high-temperature, high-density plasma. These components include a streaming-plasma gun in each of the plug tanks to form the target-plasma, 24 neutral-beam source modules for injecting neutral deuterium atoms to heat and replace losses from the plasma, and a gas box system that applies a streaming cold gas to the plasma to stabilize it. This paper discusses the mechanical design problems and solutions for this injector system

  6. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (13) Study on Heat Transfer of Direct Condensation of Steam on Subcooled Water Jet

    International Nuclear Information System (INIS)

    Yuhki Takahashi; Yasuo Koizumi; Hiroyasu Ohtake; Tohru Miyashita; Michitsugu Mori

    2006-01-01

    Characteristics of thermal-hydraulic phenomena in the steam injector were examined. In experiments, a water jet from a nozzle of 5 mm diameter flowed into the condensing test section pipe concentrically. The inner diameter of the condensing section was 7, 10, or 20 mm and the length was 105 mm. Steam flowed into the peripheral space between the water jet and the inner wall of the test section and condensed on the ware jet surface. The radial and the axial distributions of velocity and temperature of the water jet were measured. Analyses by using the STAR-CD code were also performed. The temperature measured in the central portion of the water jet was higher than the predicted assuming the ordinary turbulent flow in a pipe. The temperature measured in the peripheral region was lower than the predicted. The radial temperature distribution measured was flatter than the predicted. When the steam condensation rate was large, the measured radial velocity distribution in the water jet was flatter than the predicted. In the case that the steam velocity was quite high, the velocity measured in the peripheral region was higher than that in the center portion. These results implied that the steam condensing on the water jet brought momentum in the water jet to result in more effective radial transport of heat and momentum. The STAR-CD code analyses to allow the interface between the wall that simulated the steam flow part and the water flow that stood for the water jet to move, i.e. creating momentum in-flux at the water jet interface, provided better results to support the experimental results. To increase the interfacial friction had a minor effect on the radial velocity distribution in the tested range. (authors)

  7. Prototype steam generator test at SCTI/ETEC. Acoustic program test plan

    International Nuclear Information System (INIS)

    Greene, D.A.; Thiele, A.; Claytor, T.N.

    1981-10-01

    This document is an integrated test plan covering programs at General Electric (ARSD), Rockwell International (RI) and Argonne National Laboratory (CT). It provides an overview of the acoustic leak detection test program which will be completed in conjunction with the prototype LMFBR steam generator at the Energy Technology Engineering Laboratory. The steam generator is installed in the Sodium Components Test Installation (SCTI). Two acoustic detection systems will be used during the test program, a low frequency system developed by GE-ARSD (GAAD system) and a high frequency system developed by RI-AI (HALD system). These systems will be used to acquire data on background noise during the thermal-hydraulic test program. Injection devices were installed during fabrication of the prototype steam generator to provide localized noise sources in the active region of the tube bundle. These injectors will be operated during the steam generator test program, and it will be shown that they are detected by the acoustic systems

  8. Acquisition system of tandem injector parameters

    International Nuclear Information System (INIS)

    Decourt, M.

    1986-01-01

    The system centralizes all the parameters belonging to the accelerator injector. The acquisition center system reinforces an original device made of cameras and video receivers. Besides giving access to all the parameters of the ion source, the new system allows, in the ''OSCILLO'' mode, to visualize in real time any channel on the oscilloscope [fr

  9. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (8) numerical simulation using SOROBAN-grid CIP method

    International Nuclear Information System (INIS)

    Yasutaka Sakurai; Takashi Yabe; Tomomasa Ohkubo; Yoichi Ogata; Michitsugu Mori

    2005-01-01

    Generally, there are two coordinate systems in computation of fluid dynamics: curvilinear coordinate or Cartesian coordinate. The former is suitable for describing complex figure, but it cannot get high accuracy. On the other hand, the latter can easily increase the accuracy, but it needs a large number of grids to describe complex figure. In this paper, we propose a new grid generating method, the Soroban grid, which has large capability for treating complex figure and does not lose the accuracy. Coupling this grid generating method and the CIP method, we can get flexibility to describe complex figure without loosing (3rd order) accuracy. Since the Soroban grid is unstructured grid, we can not use the staggered grid and had better use the co-location grid. Although the fluid computation in the co-location grid is usually unstable, we succeeded in calculating the multi-phase flow that has large density difference applying the C-CUP method to this grid system. In this paper, we shall introduce this grid generating method and apply these methods to simulate the steam injector of power plant. (authors)

  10. Design of deuterium and tritium pellet injector systems for Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Wysor, R.B.; Baylor, L.R.; Bryan, W.E.

    1985-01-01

    Three pellet injector designs developed by the Oak Ridge National Laboratory (ORNL) are planned for the Tokamak Fusion Test Reactor (TFTR) to reach the goal of a tritium pellet injector by 1988. These are the Repeating Pneumatic Injector (RPI), the Deuterium Pellet Injector (DPI) and the Tritium Pellet Injector (TPI). Each of the pellet injector designs have similar performance characteristics in that they deliver up to 4-mm-dia pellets at velocities up to 1500 m/s with a dsign goal to 2000 m/s. Similar techniques are utilized to freeze and extrude the pellet material. The injector systems incorporate three gun concepts which differ in the number of gun barrels and the method of forming and chambering the pellets. The RPI, a single barrel repeating design, has been operational on TFTR since April 1985. Fabrication and assembly are essentially complete for DPI, and TPI is presently on hold after completing about 80% of the design. The TFTR pellet injector program is described, and each of the injector systems is described briefly. Design details are discussed in other papers at this symposium

  11. Transient Tolerant Automated Control System for the LEDA 75kV Injector

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.; Harrington, M.; Hodgkins, D.; Kerstiens, D.M.; Stettler, M.W.; Warren, D.S.; Zaugg, T.; Arvin, A.; Bolt, S.; Richards, M.

    1999-01-01

    The Low-Energy Demonstration Accelerator (LEDA) injector is designed to inject 75-keV, 110-mA, proton beams into the LEDA RFQ. The injector operation has been automated to provide long term, high availability operation using the Experimental Physics and Industrial Control System (EPICS). Automated recovery from spark-downs demands reliable spark detection and sequence execution by the injector controller. Reliable computer control in the high-energy transient environment required transient suppression and isolation of hundreds of analog and binary data lines connecting the EPICS computer controller to the injector and it's power supplies and diagnostics. A transient suppression design based on measured and modeled spark transient parameters provides robust injector operation. This paper describes the control system hardware and software design, implementation and operational performance

  12. The control system for the multiple-pellet injector on the Joint European Torus

    International Nuclear Information System (INIS)

    Baylor, L.R.; Jernigan, T.C.; Stewart, K.A.

    1989-01-01

    A stand-alone control and data acquisition system for the Oak Ridge National Laboratory (ORNL) multiple-pellet injector installed on the Joint European Torus (JET) has been designed and installed with the injector. This system, which is based on a MicroVAX II computer and a programmable logic controller (PLC), is an upgrade of previous systems designed for ORNL pellet injectors installed on other fusion experiments. The primary control system upgrades are in the user interface, in the automation of sequential injector operation, and in the analysis of the transient data acquired for each pellet fired. The system is integrated into the JET CODAS environment through CAMAC communications modules with customized communications software. Routine operation of the injector is automated and requires no operator intervention. Details of the hardware and software design and the operation of the system are presented in this paper. 4 refs., 3 figs

  13. Development of AMS high resolution injector system

    International Nuclear Information System (INIS)

    Bao Yiwen; Guan Xialing; Hu Yueming

    2008-01-01

    The Beijing HI-13 tandem accelerator AMS high resolution injector system was developed. The high resolution energy achromatic system consists of an electrostatic analyzer and a magnetic analyzer, which mass resolution can reach 600 and transmission is better than 80%. (authors)

  14. Microcomputer control system for the SuperHILAC third injector

    International Nuclear Information System (INIS)

    Lancaster, H.D.; Magyary, S.B.; Glatz, J.; Selph, F.B.; Fahmie, M.P.; Ritchie, A.L.; Keith, S.R.; Stover, G.R.; Besse, L.J.

    1979-09-01

    A new control system using the latest technology in microcomputers will be used on the third injector at the SuperHILAC. It incorporates some new and progressive ideas in both hardware and software design. These ideas were inspired by the revolution in microprocessors. The third injector project consists of a high voltage pre-injector, a Wideroe type linear accelerator, and connecting beam lines, requiring control of 80 analog and 300 boolean devices. To solve this problem, emphasizing inexpensive, commercially available hardware, we designed a control system consisting of 20 microcomputer boards with a total of 700 kilobytes of memory. Each computer board using a 16-bit microprocessor has the computing power of a typical minicomputer. With these microcomputers operating in parallel, the programming can be greatly simplified, literally replacing software with hardware. This improves system response speed and cuts costs dramatically. An easy to use interpretive language, similar to BASIC, will allow operations personnel to write special purpose programs in addition to the compiled procedures

  15. Calculation of the beam injector steering system using Helmholtz coils

    International Nuclear Information System (INIS)

    Passaro, A.; Sircilli Neto, F.; Migliano, A.C.C.

    1991-03-01

    In this work, a preliminary evaluation of the beam injector steering system of the IEAv electron linac is presented. From the existing injector configuration and with the assumptions of monoenergetic beam (100 keV) and uniform magnetic field, two pairs of Helmholtz coils were calculated for the steering system. Excitations of 105 A.turn and 37 A.turn were determined for the first and second coils, respectively. (author)

  16. Solution of some pumping problems in the injector vacuum system of the T-20

    International Nuclear Information System (INIS)

    Ershov, B.D.; Karasev, B.G.; Malyshev, I.F.; Saksaganskii, G.L.; Serbrennikov, D.V.; Sorokin, A.G.; Soikin, V.F.; Pustovoit, Yu.M.

    1978-09-01

    The fast neutral deuterium atom injection system in the T-20 includes 8 injectors. In the present paper an analysis is made of the vacuum system of the injectors with 160 keV rated fast atom energy, these being subjected to the largest gas loading. The pumping system for the 80 keV injectors is designed along similar lines. (UK)

  17. Redirecting by Injector

    Science.gov (United States)

    Filman, Robert E.; Lee, Diana D.; Norvig, Peter (Technical Monitor)

    2000-01-01

    We describe the Object Infrastructure Framework, a system that seeks to simplify the creation of distributed applications by injecting behavior on the communication paths between components. We touch on some of the ilities and services that can be achieved with injector technology, and then focus on the uses of redirecting injectors, injectors that take requests directed at a particular server and generate requests directed at others. We close by noting that OIF is an Aspect-Oriented Programming system, and comparing OIF to related work.

  18. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  19. On-line control system for electron injector based on autoemission cathode

    International Nuclear Information System (INIS)

    Egorov, N.V.; Karpov, A.G.; Ovsyannikov, D.A.; Prudnikov, A.P.

    1987-01-01

    An original on-line system of control of electron injector parameters on the base of an autoemission cathode is described. The system includes hardware (analog-to-digital and graphical displays, a printer, a magnetic disc memory a plotter) and data control and readout equipment. A high-voltage power source of the 'RACE' is controlled by digital measuring devices connected with a computer data via a special matching device. Software includes servicing subroutines for injector controls and those permitting to display, plot and print results. The main operating program functioning in the interactive mode enables to specify the injector operating conditions and check its characteristics

  20. Therminoic gun control system for the CEBAF injector

    International Nuclear Information System (INIS)

    Pico, R.; Diamond, B.; Fugitt, J.; Bork, R.

    1989-01-01

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  1. The NLC Injector System

    International Nuclear Information System (INIS)

    Bharadwaj, V.; Clendenin, J.E.; Emma, P.; Frisch, J.; Jobe, R.; Kotseroglou, T.; Krejcik, P.; Kulikov, A.V.; Li, Z.; Maruyama, T.; Millage, K.K.; McKee, B.; Mulhollan, G.; Munro, M.H.; Rago, C.E.; Raubenheimer, T.O.; Ross, M.C.; Phinney, N.; Schultz, D.C.; Sheppard, J.C.; Spencer, C.M.; Vlieks, A.E.; Woodley, M D.; Bibber, K. van; Takeda, S.

    1999-01-01

    The Next Linear Collider (NW) Injector System is designed to produce low emittance, 10 GeV electron and positron beams at 120 hertz for injection into the NLC main linacs. Each beam consists of a train of 9.5 bunches spaced by 2.8 ns; each bunch has a population of 1.15 x 10 10 particles. At injection into the main linacs, the horizontal and vertical emittances are specified to be γ var e psilon x = 3 x 10 -6 m-rad and γ var e psilon

  2. 3.5 MeV pulsed power system for LIA injector

    International Nuclear Information System (INIS)

    Li Jin; Dai Guangsen; Liu Xiaoping; Zhang Kaizhi; Li Xin; Li Yuan; Xia Liansheng; Xie Min; Zhang Linwen; Deng Jianjun; Ding Bonan

    2005-01-01

    A 3.5 MeV injector for linear induction accelerator has been built up at Institute of Fluid Physics, China Academy of Engineering Physics. The injector is based on the principle of inductive adder. It consists of 12 induction cells. Seven induction cells are on the cathode stem side, which are connected in series, and provide about 2 MV on the cathode of the diode. The other five are connected in series on the anode stem side and provide about 1.5 MV on the anode of the diode. A 3.5 MV pulsed power system to provide energy for the injector has been designed, which consists of two Marx generators, 12 water insulated Blumleins, and trigger system. Charge voltage of each water insulated Blumlein is 200 kV. A 300 kV/90 ns high voltage pulse is fed into one induction cell since load impedance is higher. The pulsed power system can generate an intense electron beam with 2-3 kA. (authors)

  3. Design and implementation of a control and data acquisition system for pellet injectors

    International Nuclear Information System (INIS)

    Baylor, L.R.; Burris, R.D.; Greenwood, D.E.; Stewart, K.A.

    1985-01-01

    A stand-alone control and data acquisition system for pellet injectors has been designed and implemented to support pellet injector development at Oak Ridge Laboratory (ORNL) and to enable ORNL pellet injectors to be installed on various fusion experimental devices. The stand-alone system permits LOCAL operation of the injector from a nearby panel and REMOTE operation from the experiment control room. Major components of the system are (1) an Allen-Bradley PLC 2/30 programmable controller, (2) a VAX minicomputer, and (3) a CAMAC serial highway interface. The programmable logic controller (PLC) is used to perform all control functions of the injector. In LOCAL, the operator interface is provided by an intelligent panel system that has a keypad and pushbutton module programmed from the PLC. In REMOTE, the operator interfaces via a VAX-based color graphics display and uses a trackball and keyboard to issue commands. Communications between the remote and local controls and to the fusion experiment supervisory system are via the CAMAC highway. The VAX archives transient data from pellet shots and trend data acquired from the PLC. Details of the hardware and software design and the operation of the system are presented in this paper. 3 refs., 1 fig

  4. Improving Steam System Performance: A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    2002-06-01

    The sourcebook is a reference for industrial steam system users, outlining opportunities to improve steam system performance. This Sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The Sourcebook is divided into the following three main sections: Section 1: Steam System Basics--For users unfamiliar with the basics of steam systems, or for users seeking a refresher, a brief discussion of the terms, relationships, and important system design considerations is provided. Users already familiar with industrial steam system operation may want to skip this section. This section describes steam systems using four basic parts: generation, distribution, end use, and recovery. Section 2: Performance Improvement Opportunities--This section discusses important factors that should be considered when industrial facilities seek to improve steam system performance and to lower operating costs. This section also provides an overview of the finance considerations related to steam system improvements. Additionally, this section discusses several resources and tools developed by the U. S. Department of Energy's (DOE) BestPractices Steam Program to identify and assess steam system improvement opportunities. Section 3: Programs, Contacts, and Resources--This section provides a directory of associations and other organizations involved in the steam system marketplace. This section also provides a description of the BestPractices Steam Program, a directory of contacts, and a listing of available resources and tools, such as publications, software, training courses, and videos.

  5. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  6. Real-time control and data-acquisition system for high-energy neutral-beam injectors

    International Nuclear Information System (INIS)

    Glad, A.S.; Jacobson, V.

    1981-12-01

    The need for a real-time control system and a data acquisition, processing and archiving system operating in parallel on the same computer became a requirement on General Atomic's Doublet III fusion energy project with the addition of high energy neutral beam injectors. The data acquisition processing and archiving system is driven from external events and is sequenced through each experimental shot utilizing ModComp's intertask message service. This system processes, archives and displays on operator console CRTs all physics diagnostic data related to the neutral beam injectores such as temperature, beam alignment, etc. The real-time control system is data base driven and provides periodic monitoring and control of the numerous dynamic subsystems of the neutral beam injectors such as power supplies, timing, water cooling, etc

  7. Reconstruction of steam generators super emergency feadwater supply system (SHNC) and steam dump stations to the atmosphere system PSA

    International Nuclear Information System (INIS)

    Kuzma, J.

    2001-01-01

    Steam Generators Super Emergency Feadwater Supply System (SHNC) and Steam Dump Stations to the Atmosphere System (PSA) are two systems which cooperate to remove residual heat from reactor core after seismic event. SHNC assure feeding of the secondary site of steam generator (Feed) where after heat removal.from primary loops, is relieved to the atmosphere by PSA (Bleed) in form of steam. (author)

  8. Development of a measuring system for vapor-jet forms of small-sized fuel injectors; Kogata injector funmu keijo sokutei system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hibino, H; Komatsubara, H; Kawashima, O; Fujita, A [Aisan Industry Co. Ltd., Aichi (Japan)

    1997-10-01

    In the small-sized fuel injectors adapted to the United States` exhaust-gas regulation or the like, the vapor jet is extremely atomized and the jet form as one of the performances of the product has become more important than before. Accordingly, we have developed a measuring system in which the vapor jet of the small-sized fuel injector is irradiated with a flat laser light, the sectional form of the jet that is shining due to diffusion is sampled, and the distribution and the form of the sampled sections are determined by the image processing. 2 refs., 15 figs., 4 tabs.

  9. Management of high current transients in the CWDD Injector 200 kV power system

    International Nuclear Information System (INIS)

    Carwardine, J.A.; Pile, G.; Zinneman, T.E.

    1993-01-01

    The injector for the Continuous Wave Deuterium Demonstrator is designed to deliver a high current CW negative deuterium ion beam at an energy of 200 keV to a Radio Frequency Quadrupole. The injector comprises a volume ion source, triode accelerator, high-power electron traps and low-energy beam transport with a single focusing solenoid. Some 75 Joules of energy are stored in stray capacitance around the high voltage system and discharged in a few microseconds following an injector breakdown. In order to limit damage to the accelerator grids, a magnetic snubber is incorporated to absorb most of the energy. Nevertheless, large current transients flow around the system as a result of an injector breakdown; these have frequently damaged power components and caused spurious behavior in many of the supporting systems. The analytical and practical approaches taken to minimize the effects of these transients are described. Injector breakdowns were simulated using an air spark gap and measurements made using standard EMC test techniques. The power circuit was modeled using an electrical simulation code; good agreement was reached between the model and measured results

  10. NLC electron injector beam dynamics

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.

    1995-10-01

    The Next Linear Collider (NLC) being designed at SLAC requires a train of 90 electron bunches 1.4 ns apart at 120 Hz. The intensity and emittance required at the interaction point, and the various machine systems between the injector and the IP determine the beam requirements from the injector. The style of injector chosen for the NLC is driven by the fact that the production of polarized electrons at the IP is a must. Based on the successful operation of the SLC polarized electron source a similar type of injector with a DC gun and subharmonic bunching system is chosen for the NLC

  11. A high output, large acceptance injector for the NOSAMS Tandetron AMS system

    Energy Technology Data Exchange (ETDEWEB)

    Longworth, Brett E., E-mail: blongworth@whoi.edu; Reden, Karl F. von; Long, Pat; Roberts, Mark L.

    2015-10-15

    We have completed a major upgrade of the National Ocean Sciences AMS Facility (NOSAMS) Tandetron AMS system in two stages. First, the simultaneous (recombinator) injector was replaced with a fast-cycling sequential injector and changes to the low-energy acceleration section. Data after the injector commissioning show an improvement in background, with mean machine background (commercial graphite) of Fm 0.0004 (62 ka). Second, we replaced the original ion source with a high-output 40 sample MCSNICS source. This improved beam currents and raw ratio fractionation, and increased sample to detection efficiency fivefold.

  12. An operator-console system of the photon factory injector LINAC

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Abe, Isamu; Furukawa, Kazuro; Kamikubota, Norihiko

    1990-01-01

    It is sometimes difficult to unify accelerator control systems constructed in different ways. This problem arose in unifying the control systems of the injector linac and the storage ring making up the Photon Factory of the National Laboratory for High Energy Physics. One easy approach is to unify only the operator consoles; the unified console is connected to both separate control systems using gateways. The operator-console system of the Photon Factory injector linac has been designed and constructed using this approach. It consists of several workstations interconnected via a local-area network, a gateway to the old linac control network and a CATV system for the real-time display of the accelerator status. In this way the linac will be controlled from the control center of the Photon Factory storage ring. (orig.)

  13. Injector of the Utrecht EN tandem

    Energy Technology Data Exchange (ETDEWEB)

    Borg, K. van der; Haas, A.P. de; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.; Zwol, N.A. van (Rijksuniversiteit Utrecht (Netherlands). Fysisch Lab.)

    1984-02-15

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90/sup 0/ analysing magnet, m/..delta..m=300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system.

  14. Design of cryo-vacuum system for MW neutral beam injector

    International Nuclear Information System (INIS)

    Hu Chundong; Xie Yuanlai

    2010-01-01

    Neutral beam injector is an equipment that is used to produce and then to neutralize high energetic particle beam. A neutral beam injector (EAST-NBI) with MW magnitude neutral beam power is considered to be developed to support the EAST physical research. The requirements for vacuum system were analyzed after introducing the principle of EAST-NBI. A differential vacuum system structure was chosen after analyzing the performance of different vacuum pumping system structure. The gas sources and their characteristics were analyzed, and two inserted type cryocondensation pumps were chosen as main vacuum pump. The schematic structure of the two cryocondensation pump with pumping area 8 m 2 and 6 m 2 were given and their cooling method and temperature control mode were determined. (authors)

  15. Genetic optimization of steam multi-turbines system

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2014-01-01

    Optimization analysis of partially loaded cogeneration, multiple-stages steam turbines system was numerically investigated by using own-developed code (C++). The system can be controlled by following variables: fresh steam temperature, pressure, and flow rates through all stages in steam turbines. Five various strategies, four thermodynamics and one economical, which quantify system operation, were defined and discussed as an optimization functions. Mathematical model of steam turbines calculates steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. Genetic algorithm GENOCOP was implemented as a solving engine for non–linear problem with handling constrains. Using formulated methodology, example solution for partially loaded system, composed of five steam turbines (30 input variables) with different characteristics, was obtained for five strategies. The genetic algorithm found multiple solutions (various input parameters sets) giving similar overall results. In real application it allows for appropriate scheduling of machine operation that would affect equable time load of every system compounds. Also based on these results three strategies where chosen as the most complex: the first thermodynamic law energy and exergy efficiency maximization and total equivalent energy minimization. These strategies can be successfully used in optimization of real cogeneration applications. - Highlights: • Genetic optimization model for a set of five various steam turbines was presented. • Four various thermodynamic optimization strategies were proposed and discussed. • Operational parameters (steam pressure, temperature, flow) influence was examined. • Genetic algorithm generated optimal solutions giving the best estimators values. • It has been found that similar energy effect can be obtained for various inputs

  16. Steam Generator Inspection Planning Expert System

    International Nuclear Information System (INIS)

    Rzasa, P.

    1987-01-01

    Applying Artificial Intelligence technology to steam generator non-destructive examination (NDE) can help identify high risk locations in steam generators and can aid in preparing technical specification compliant eddy current test (ECT) programs. A steam Generator Inspection Planning Expert System has been developed which can assist NDE or utility personnel in planning ECT programs. This system represents and processes its information using an object oriented declarative knowledge base, heuristic rules, and symbolic information processing, three artificial intelligence based techniques incorporated in the design. The output of the system is an automated generation of ECT programs. Used in an outage inspection, this system significantly reduced planning time

  17. Development of a steam generator lancing system

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Kim, Seok-Tae; Hong, Sung-Yull

    2006-01-01

    It is recommended to clean steam generators of nuclear power plants during plant outages. Under normal operations, sludge is created and constantly accumulates in the steam generators. The constituents of this sludge are different depending on each power plant characteristics. The sludge of the Kori Unit 1 steam generator, for example, was found to be composed of 93% ferrous oxide, 3% carbon and 1% of silica oxide and nickel oxide each. The research to develop a lancing system that would remove sludge deposits from the tubesheet of a steam generator was started in 1998 by the Korea Electric Power Research Institute (KEPRI) of the Korea Electric Power Corporation (KEPCO). The first commercial domestic lancing system in Korea, and KALANS-I Lancing System, was completed in 2000 for Kori Unit 1 for cleaning the tubesheet of its Westinghouse Delta-60 steam generator. Thereafter, the success of the development and site implementation of the KALANS-I lancing system for YGN Units 1 and 2 and Ulchin Units 3 and 4 was also realized in 2004 for sludge removal at those sites. The upper bundle cleaning system for Westinghouse model F steam generators is now under development

  18. Status of the positive-ion injector for ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.

    1986-01-01

    The planned positive-ion injector for ATLAS consists of an ECR ion source on a 350-kV platfrom and a superconducting injector linac of a new kind. The objective is to replace the present tandem injector with a system that can increase beam intensities by two orders of magnitude and extend the mass range up to uranium. In the first, developmental stage of the work, now in progress, the ECR source will be built, the technology of superconducting accelerating structures for low-velocity ions will be developed, and these structures will be used to form a 3-MV prototype injector linac. Even this small system, designed for ions with A < 130, will be superior to the present FN tandem as a heavy-ion injector. In later phases of the work, the injector linac will be enlarged enough to allow ATLAS to effectively accelerate uranium ions. The injector system is expected to provide exceptional beam quality. The status of the work, expected performance of the accelerator system, and the technical issues involved are summarized

  19. Pellet injector research and development at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Barber, G.C.; Baylor, L.R.

    1994-01-01

    Oak Ridge National Laboratory has been developing pellet injectors for plasma fueling experiments on magnetic confinement devices for more than 15 years. Recent major applications of the ORNL development program include (1) a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor, (2) a centrifuge pellet injector for the Tore Supra tokamak, and most recently (3) a three-barrel repeating pneumatic injector for the DIII-D tokamak. In addition to applications, ORNL is developing advanced technologies, including high-speed pellet injectors, tritium injectors, and long-pulse pellet feed systems. The high-speed research involves a collaboration between ORNL and ENEA-Frascati in the development of a repeating two-stage light gas gun based on an extrusion-type pellet feed system. Construction of a new tritium-compatible, extruder-based repeating pneumatic injector (8-mm-diam) is complete and will replace the pipe gun in the original tritium proof-of-principle experiment. The development of a steady-state feed system in which three standard extruders operate in tandem is under way. These research and development activities are relevant to the International Thermonuclear Experimental Reactor and are briefly described in this paper

  20. An expert system for steam generator maintenance

    International Nuclear Information System (INIS)

    Remond, A.

    1988-01-01

    The tube bundles in PWR steam generators are, by far, the major source of problems whether they are due to primary and secondary side corrosion mechanisms or to tube vibration-induced wear at tube support locations. Because of differences in SG operating, materials, and fabrication processes, the damage may differ from steam generator to steam generator. MPGV, an expert system for steam generator maintenance uses all steam generator data containing data on materials, fabrication processes, inservice inspection, and water chemistry. It has access to operational data for individual steam generators and contains models of possible degradation mechanisms. The objectives of the system are: · Diagnosing the most probable degradation mechanism or mechanisms by reviewing the entire steam generator history. · Identifying the tubes most exposed to future damage and evaluating the urgency of repair by simulating the probable development of the problem in time. · Establishing the appropriate preventive actions such as repair, inspection or other measures and establishing an action schedule. The system is intended for utilities either for individual plants before each inspection outage or any time an incident occurs or for a set of plants through a central MPGV center. (author)

  1. The injector of the Utrecht EN tandem

    International Nuclear Information System (INIS)

    Borg, K. van der; Haas, A.P. de; Hoogenboom, A.M.; Strasters, B.A.; Vermeer, A.; Zwol, N.A. van

    1984-01-01

    An injector has been built to obtain improved beam transmission through the EN tandem. The injector has been provided with a 90 0 analysing magnet, m/Δm=300, and 130 kV preacceleration. Beam optics calculations have been made for the injector and tandem. The injector has been equipped with a fiber optics control and data acquisition system. (orig.)

  2. CFD simulation of coaxial injectors

    Science.gov (United States)

    Landrum, D. Brian

    1993-01-01

    The development of improved performance models for the Space Shuttle Main Engine (SSME) is an important, ongoing program at NASA MSFC. These models allow prediction of overall system performance, as well as analysis of run-time anomalies which might adversely affect engine performance or safety. Due to the complexity of the flow fields associated with the SSME, NASA has increasingly turned to Computational Fluid Dynamics (CFD) techniques as modeling tools. An important component of the SSME system is the fuel preburner, which consists of a cylindrical chamber with a plate containing 264 coaxial injector elements at one end. A fuel rich mixture of gaseous hydrogen and liquid oxygen is injected and combusted in the chamber. This process preheats the hydrogen fuel before it enters the main combustion chamber, powers the hydrogen turbo-pump, and provides a heat dump for nozzle cooling. Issues of interest include the temperature and pressure fields at the turbine inlet and the thermal compatibility between the preburner chamber and injector plate. Performance anomalies can occur due to incomplete combustion, blocked injector ports, etc. The performance model should include the capability to simulate the effects of these anomalies. The current approach to the numerical simulation of the SSME fuel preburner flow field is to use a global model based on the MSFC sponsored FNDS code. This code does not have the capabilities of modeling several aspects of the problem such as detailed modeling of the coaxial injectors. Therefore, an effort has been initiated to develop a detailed simulation of the preburner coaxial injectors and provide gas phase boundary conditions just downstream of the injector face as input to the FDNS code. This simulation should include three-dimensional geometric effects such as proximity of injectors to baffles and chamber walls and interaction between injectors. This report describes an investigation into the numerical simulation of GH2/LOX coaxial

  3. LIPAc personnel protection system for realizing radiation licensing conditions on injector commissioning with deuteron beam

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroki, E-mail: takahashi.hiroki@jaea.go.jp [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Narita, Takahiro; Kasugai, Atsushi [IFMIF/EVEDA Accelerator Group, Japan Atomic Energy Agency (JAEA), Rokkasho, Aomori (Japan); Kojima, Toshiyuki [Gitec Co. Ltd., Hachinohe, Aomori (Japan); Marqueta, Alvaro; Nishiyama, Koichi [IFMIF/EVEDA Project Team, Rokkasho, Aomori (Japan); Sakaki, Hironao [Quantum Beam Science Center, JAEA, Kizu, Kyoto (Japan); Gobin, Raphael [Commissariat à l’Energie Atomique et aux Energies Alternatives, CEA/Saclay, DSM/IRFU, Gif/Yvette (France)

    2016-11-01

    Highlights: • Personnel Protection System (PPS) is developed to adapt the radiation licensing. • PPS achieves the target performance to secure the personnel safety. • Pulse Duty Management System (PDMS) is developed to manage the beam-operation-time. • Satisfying performance of PDMS is confirmed by injector operation with H+ beam. • By the result of PPS and PDMS tests, the radiation license was successfully obtained. - Abstract: The performance validation of the Linear IFMIF Prototype Accelerator (LIPAc), up to the energy of 9 MeV deuteron beam with 125 mA continuous wave (CW), is planned in Rokkasho, Japan. There are three main phases of LIPAc performance validation: Injector commissioning, RFQ commissioning and LIPAc commissioning. Injector commissioning was started by H{sup +} and D{sup +} beam. To apply the radiation licensing for the Injector commissioning, the entering/leaving to/from accelerator vault should be under control, and access to the accelerator vault has to be prohibited for any person during the beam operation. The Personnel Protection System (PPS) was developed to adapt the radiation licensing conditions. The licensing requests that PPS must manage the accumulated D{sup +} current. So, to manage the overall D{sup +} beam time during injector operation, Pulse Duty Management System (PDMS) was developed as a configurable subsystem as part of the PPS. The PDMS was tested during H{sup +} beam (as simulated D{sup +}) operation, to confirm that it can handle the beam inhibit from Injector before the beam accumulation is above the threshold value specified in the radiation licensing condition. In this paper, the design and configuration of these systems and the result of the tests are presented.

  4. Containments for consolidated nuclear steam systems

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    A containment system for a consolidated nuclear steam system incorporating a nuclear core, steam generator and reactor coolant pumps within a single pressure vessel is described which is designed to provide radiation shielding and pressure suppression. Design details, including those for the dry well and wet well of the containment, are given. (UK)

  5. 70 MeV injector auto tuning system handbook

    International Nuclear Information System (INIS)

    Ellis, J.E.; Munn, R.W.; Sandels, E.G.

    1976-06-01

    The handbook is in three sections: (1) description and location; (2) operating instructions; and (3) design notes on the tank and debuncher auto tuning systems for the 70 MeV injector. The purpose of the auto tuning system is to maintain the 'tune' of the four tanks and debuncher to within a few Hz, stabilizing against changes of temperature and other physical factors affecting the resonant frequency of the tanks. (U.K.)

  6. A control system upgrade of the spear synchrotron and injector

    International Nuclear Information System (INIS)

    Garrett, R.; Howry, S.; Wermelskirchen, C.; Yang, J.

    1995-11-01

    The SPEAR electron synchrotron is an old and venerable facility with a history of great physics. When this storage ring was converted to serve as a full-time synchrotron light source, it was evident that the facility was due for an overhaul of its control system. Outdated hardware interfaces, custom operator interfaces, and the control computer itself were replaced with off-the-shelf distributed intelligent controllers and networked X-workstations. However, almost all applications and control functions were retained by simply rewriting the layer of software closest to each new device. The success of this upgrade prompted us to do a similar upgrade of our Injector system. Although the Injector was already running an X-windows based control system, it was non-networked and Q-bus based. By using the same Ethernet based controllers that were used at SPEAR, we were able to integrate the two systems into one that resembles the ''standard model'' for control systems, and at the same time preserve the applications software that has been developed over the years on both systems

  7. Mathematical modeling of control system for the experimental steam generator

    Science.gov (United States)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  8. Thermodynamic study of the injection of steam bubbles in a subcooled liquid

    International Nuclear Information System (INIS)

    Besset, Jacqueline.

    1980-10-01

    The behaviour of steam bubbles injected in a subcooled liquid has been studied. Water was the fluid chosen for this experiment for the steam and the liquid. The experiment was carried out at atmospheric pressure and the variable parameters were the ΔT subcooling (difference between the saturation temperature at the pressure under consideration and that of the liquid around the bubbles) and the steam output. We first studied the formation of the bubbles in a wide subcooling range (7 0 C 0 C). In this study a straight correlation was obtained giving the volume of the bubbles formed at the injector outlet, which is valid for a wide range of variables. The implosion of free bubbles in the liquid after they separated from the injector was then studied. In these experiments the significant implosion parameters are the Jakob Ja number, that measures the possibility of the liquid to absorb the heat given off by the condensation, and the Peclet Pe(RO) number, that defines the relative participation of conduction and convection in the heat exchanges. These numbers vary in the areas: 35 [fr

  9. HTGR power plant hot reheat steam pressure control system

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    A control system for a high temperature gas cooled reactor (HTGR) power plant is disclosed wherein such plant includes a plurality of steam generators. Dual turbine-generators are connected to the common steam headers, a high pressure element of each turbine receiving steam from the main steam header, and an intermediate-low pressure element of each turbine receiving steam from the hot reheat header. Associated with each high pressure element is a bypass line connected between the main steam header and a cold reheat header, which is commonly connected to the high pressure element exhausts. A control system governs the flow of steam through the first and second bypass lines to provide for a desired minimum steam flow through the steam generator reheater sections at times when the total steam flow through the turbines is less than such minimum, and to regulate the hot reheat header steam pressure to improve control of the auxiliary steam turbines and thereby improve control of the reactor coolant gas flow, particularly following a turbine trip. (U.S.)

  10. Personnel protection and beam containment systems for the 3 GeV Injector

    International Nuclear Information System (INIS)

    Yotam, R.; Cerino, J.; Garoutte, R.; Hettel, R.; Horton, M.; Sebek, J.; Benson, E.; Crook, K.; Fitch, J.; Ipe, N.; Nelson, G.; Smith, H.

    1991-01-01

    The 3 GeV Injector is the electron beam source for the SPEAR Storage Ring, and its personnel safety system was designed to protect personnel from both radiation exposure and electrical hazards. The Personnel Protection System (PPS) was designed and implemented with complete redundancy and is a relay based interlock system completely independent from the machine protection system. A comprehensive monitoring of the system status, and control of the Injector PPS from the SPEAR Control Room via the control computer is a feature. The Beam Containment System (BCS) is based on beam current measurements along the Linac and on Beam Shut Off Ion Chambers (BSOIC) installed outside the Linac, at several locations around the Booster, and around the SPEAR storage ring. An outline of the design criteria is presented with more detailed description of the philosophy of the PPS logic and the BCS

  11. Diagnostic system of steam generator, especially molten metal heated steam generator

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1986-01-01

    A diagnostic system is described and graphically represented consisting of a leak detector, a medium analyzer and sensors placed on the piping connected to the indication sections of both tube plates. The advantage of the designed system consists in the possibility of detecting tube failure immediately on leak formation, especially in generators with duplex tubes. This shortens the period of steam generator shutdown for repair and reduces power losses. The design also allows to make periodical leak tests during planned steam generator shutdowns. (A.K.)

  12. Mathematical modeling of control system for the experimental steam generator

    Directory of Open Access Journals (Sweden)

    Podlasek Szymon

    2016-01-01

    Full Text Available A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units – quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  13. Moisture separator for steam generator level measurement system

    International Nuclear Information System (INIS)

    Cantineau, B.J.

    1987-01-01

    A steam generator level measurement system having a reference leg which is kept full of water by a condensation pot, has a liquid/steam separator in the connecting line between the condensation pot and the steam phase in the steam generator to remove excess liquid from the steam externally of the steam generator. This ensures that the connecting line does not become blocked. The separator pot has an expansion chamber which slows down the velocity of the steam/liquid mixture to aid in separation, and a baffle, to avoid liquid flow into the line connected to the condensate pot. Liquid separated is returned to the steam generator below the water level through a drain line. (author)

  14. Industrial steam systems and the energy-water nexus.

    Science.gov (United States)

    Walker, Michael E; Lv, Zhen; Masanet, Eric

    2013-11-19

    This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.

  15. Outgassing measurements and results used in designing the Doublet III Neutral Beam Injector System

    International Nuclear Information System (INIS)

    Yamamoto, R.M.; Harvey, J.

    1979-11-01

    Material vacuum properties played an important part in designing the Neutral Beam Injector System for General Atomic's Doublet III Tokamak. Low operating vacuum tank pressures were desired to keep re-ionization of the Neutral Beam to a minimum. Plasma contamination was also a major concern, hence stringent material impurity constraints were imposed. Outgassing Rate Measurement and Residual Gas Analyses were performed on different types of materials to determine if their vacuum properties were compatible with the Neutral Beam Injector System requirements

  16. Drying system for steam generators, particularly for steam generators of nuclear power stations

    International Nuclear Information System (INIS)

    Lavalerie, Claude; Borrel, Christian.

    1982-01-01

    A drying system is described which allows for modular construction and which provides a significant available exchange area in a reduced volume. All the drying elements are identical and are distributed according to a ternay circular symmetry and are placed radially and associated to steam guiding facilities which alternately provide around the axis of revolution an output volume of dry steam from one element and an input volume of wet steam in the following element [fr

  17. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has

  18. Upgraded Steam Generator Lancing System for Uljin NPP no.2

    International Nuclear Information System (INIS)

    Kim, Seok Tae; Jeong, Woo Tae; Hong, Sung Yull

    2005-01-01

    KEPRI(Korea Electric Power Research Institute) has developed various types of steam generator lancing systems since 1998. In this paper, we introduce a new lancing system with new improvements from the previous steam generator lancing system for Uljin NPP #2(nuclear power plant) constructed by KEPRI. The previous lancing system is registered as KALANS R -II and was developed for System-80 type steam generators. The previous lancing system was applied to Uljin unit #3 and it lowered radiation exposure of operators in comparison to manually operated lancing systems. And it effectively removed sludge accumulated around kidney bean zone in the Uljin unit #3 steam generators. But the previous lancing system could only clean partially the steam generators of Uljin unit #4. This was because the rail of the previous lancing system interfered with a part of the steam generator. Therefore we developed a new lancing system that can solve the interference problem. This new lancing system was upgraded from the previous lancing system. Also, a new lancing system for System-80 S/G will be introduced in this paper

  19. Control System for the NSTX Lithium Pellet Injector

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.; Gernhardt, R.; Gettelfinger, G.; Kugel, H.

    2003-01-01

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI

  20. Analytical Model of Steam Chamber Evolution from Vertical Well

    Science.gov (United States)

    Shevchenko, D. V.; Usmanov, S. A.; Shangaraeva, A. I.; Murtaizin, T. A.

    2018-05-01

    This paper is aimed to check the possibility of applying the Steam Assisted Gravity Drainage in vertical wells. This challenge seems to be vital because most of the natural bitumen reservoirs are found to occur above the oil fields being developed so that a well system is already available at the stage of field management. The existing vertical wells are hard to be used for horizontal sidetracking in most of cases as the bitumen reservoir occurs at a shallow depth. The matter is to use the existing wells as vertical ones. At the same time, it is possible to drill an additional sidetrack as a producer or an injector.

  1. First operational tests of the positive-ion injector for ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Den Hartog, P.K.; Pardo, R.C.

    1989-01-01

    This paper summarizes the status and first operational experience with the positive-ion injector for ATLAS. The new injector consists of an ECR ion source on a 350-kV platform, followed by a superconducting injector linac of a new kind. In Phase I of this project, the ECR source, voltage platform, bunching system, beam-transport system, and a 3-MV injector linac were completed and tested in early 1989 by a successful acceleration of an 40 Ar 12+ beam. Most of the new system operated as planned, and the longitudinal emittance of the 36-MeV beam out of the injector was measured to be only 5 π keV-ns, much smaller than the emittance for the present tandem injector. When completed in 1990, the final injector linac will be enlarged to 12 MV, enough to allow the original ATLAS linac to accelerate uranium ions up to 8 MeV/u. 8 refs., 2 figs

  2. First operational tests of the positive-ion injector for ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Den Hartog, P.K.; Pardo, R.C.; Shepard, K.W.; Benaroya, R.; Billquist, P.J.; Clifft, B.E.; Markovich, P.; Munson, F.H. Jr.; Nixon, J.M.

    1989-01-01

    This paper summarizes the status and first operational experience with the positive-ion injector for ATLAS. The new injector consists of an ECR ion source on a 350-kV platform, followed by a superconducting injector linac of a new kind. In Phase I of this project, the ECR source, voltage platform, bunching system, beam-transport system, and a 3-MV injector linac were completed and tested in early 1989 by a successful acceleration of an /sup 40/Ar/sup 12 +/ beam. Most of the new system operated as planned, and the longitudinal emittance of the 36-MeV beam out of the injector was measured to be only 5 ..pi.. keV-ns, much smaller than the emittance for the present tandem injector. When completed in 1990, the final injector linac will be enlarged to 12 MV, enough to allow the original ATLAS linac to accelerate uranium ions up to 8 MeV/u. 8 refs., 2 figs.

  3. Pellet injector development and experiments at ORNL

    International Nuclear Information System (INIS)

    Baylor, L.R.; Argo, B.E.; Barber, G.C.; Combs, S.K.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.H.

    1993-01-01

    The development of pellet injectors for plasma fueling of magnetic confinement fusion experiments has been under way at Oak Ridge National Laboratory (ORNL) for the past 15 years. Recently, ORNL provided a tritium-compatible four-shot pneumatic injector for the Tokamak Fusion Test Reactor (TFTR) based on the in situ condensation technique that features three single-stage gas guns and an advanced two-stage light gas gun driver. In another application, ORNL supplied the Tore Supra tokamak with a centrifuge pellet injector in 1989 for pellet fueling experiments that has achieved record numbers of injected pellets into a discharge. Work is progressing on an upgrade to that injector to extend the number of pellets to 400 and improve pellet repeatability. In a new application, the ORNL three barrel repeating pneumatic injector has been returned from JET and is being readied for installation on the DIII-D device for fueling and enhanced plasma performance experiments. In addition to these experimental applications, ORNL is developing advanced injector technologies, including high-velocity pellet injectors, tritium pellet injectors, and long-pulse feed systems. The two-stage light gas gun and electron-beam-driven rocket are the acceleration techniques under investigation for achieving high velocity. A tritium proof-of-principle (TPOP) experiment has demonstrated the feasibility of tritium pellet production and acceleration. A new tritium-compatible, extruder-based, repeating pneumatic injector is being fabricated to replace the pipe gun in the TPOP experiment and will explore issues related to the extrudability of tritium and acceleration of large tritium pellets. The tritium pellet formation experiments and development of long-pulse pellet feed systems are especially relevant to the International Tokamak Engineering Reactor (ITER)

  4. Draining down of a nuclear steam generating system

    International Nuclear Information System (INIS)

    Jawor, J.C.

    1987-01-01

    The method is described of draining down contained reactor-coolant water from the inverted vertical U-tubes of a vertical-type steam generator in which the upper, inverted U-shaped ends of the tubes are closed and the lower ends thereof are open. The steam generator is part of a nuclear powered steam generating system wherein the reactor coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator. The method comprises continuously introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tube sheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator, while permitting the water to flow out from the open ends of the U-tubes

  5. FERMILAB: Main Injector

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10 31 cm -2 s -1 in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction

  6. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, W.; Steimel, J.

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System. copyright 1998 American Institute of Physics

  7. Main injector synchronous timing system

    International Nuclear Information System (INIS)

    Blokland, Willem; Steimel, James

    1998-01-01

    The Synchronous Timing System is designed to provide sub-nanosecond timing to instrumentation during the acceleration of particles in the Main Injector. Increased energy of the beam particles leads to a small but significant increase in speed, reducing the time it takes to complete a full turn of the ring by 61 nanoseconds (or more than 3 rf buckets). In contrast, the reference signal, used to trigger instrumentation and transmitted over a cable, has a constant group delay. This difference leads to a phase slip during the ramp and prevents instrumentation such as dampers from properly operating without additional measures. The Synchronous Timing System corrects for this phase slip as well as signal propagation time changes due to temperature variations. A module at the LLRF system uses a 1.2 Gbit/s G-Link chip to transmit the rf clock and digital data (e.g. the current frequency) over a single mode fiber around the ring. Fiber optic couplers at service buildings split off part of this signal for a local module which reconstructs a synchronous beam reference signal. This paper describes the background, design and expected performance of the Synchronous Timing System

  8. Linac pre-injector

    CERN Multimedia

    CERN PhotoLab

    1965-01-01

    New accelerating column of the linac pre-injector, supporting frame and pumping system. This new system uses two mercury diffusion pumps (in the centre) and forms part of the modifications intended to increase the intensity of the linac. View taken during assembly in the workshop.

  9. CNG INJECTOR RESEARCH FOR DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    Adam Majczak

    2017-03-01

    Full Text Available The article presents the tests results of the prototype design of hydraulically assisted injector, that is designed for gas supply into diesel engines. The construction of the injector allows for it positioning in the glow plug socket, so that the gas is injected directly into the combustion chamber. The cycle analysis of the four-cylinder Andoria ADCR engine with a capacity of 2.6 dm3 for different crankshaft rotational speeds allowed to determine the necessary time for fuel injection. Because of that, it was possible to determine the required mass flow rate of the injector, for replacing as much of the original fuel by gaseous fuel. To ensure a high value of flow inside the injector, supply pressure equal to 1 MPa was applied. High gas supply pressure requires high value of valve opening forces. For this purpose a injector with hydraulic control system, using a liquid under pressure for the opening process was designed. On the basis of air pressure measurements in the flow line after the injector, the analysis of opening and closing of the valve was made. Measurements of outflow mass of the injector were also carried out. The results showed that the designed injector meets the requirements necessary to supply ADCR engine by the CNG fuel.

  10. Improving Steam System Performance: A Sourcebook for Industry, Second Edition

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-23

    This sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The sourcebook is divided into three main sections: steam system basics, performance improvement opportunities, and where to find help.

  11. Triaxial Swirl Injector Element for Liquid-Fueled Engines

    Science.gov (United States)

    Muss, Jeff

    2010-01-01

    A triaxial injector is a single bi-propellant injection element located at the center of the injector body. The injector element consists of three nested, hydraulic swirl injectors. A small portion of the total fuel is injected through the central hydraulic injector, all of the oxidizer is injected through the middle concentric hydraulic swirl injector, and the balance of the fuel is injected through an outer concentric injection system. The configuration has been shown to provide good flame stabilization and the desired fuel-rich wall boundary condition. The injector design is well suited for preburner applications. Preburner injectors operate at extreme oxygen-to-fuel mass ratios, either very rich or very lean. The goal of a preburner is to create a uniform drive gas for the turbomachinery, while carefully controlling the temperature so as not to stress or damage turbine blades. The triaxial injector concept permits the lean propellant to be sandwiched between two layers of the rich propellant, while the hydraulic atomization characteristics of the swirl injectors promote interpropellant mixing and, ultimately, good combustion efficiency. This innovation is suited to a wide range of liquid oxidizer and liquid fuels, including hydrogen, methane, and kerosene. Prototype testing with the triaxial swirl injector demonstrated excellent injector and combustion chamber thermal compatibility and good combustion performance, both at levels far superior to a pintle injector. Initial testing with the prototype injector demonstrated over 96-percent combustion efficiency. The design showed excellent high -frequency combustion stability characteristics with oxygen and kerosene propellants. Unlike the more conventional pintle injector, there is not a large bluff body that must be cooled. The absence of a protruding center body enhances the thermal durability of the triaxial swirl injector. The hydraulic atomization characteristics of the innovation allow the design to be

  12. Operation of the repeating pneumatic injector on TFTR and design of an 8-shot deuterium pellet injector

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.; Foust, C.R.

    1985-01-01

    The repeating pneumatic hydrogen pellet injector, which was developed at the Oak Ridge National Laboratory (ORNL), has been installed and operated on the Tokamak Fusion Test Reactor (TFTR). The injector combines high-speed extruder and pneumatic acceleration technologies to propel frozen hydrogen isotope pellets repetitively at high speeds. The pellets are transported to the plasma in an injection line that also serves to minimize the gas loading on the torus; the injection line incorporates a fast shutter valve and two stages of guide tubes with intermediate vacuum pumping stations. A remote, stand-alone control and data acquisition system is used for injector and vacuum system operation. In early pellet fueling experiments on TFTR, the injector has been used to deliver deuterium pellets at speeds ranging from 1.0 to 1.5 km/s into plasma discharges. First, single large (nominal 4-mm-dia) pellets provided high densities in TFTR (1.8 x 10 14 cm -3 on axis); after conversion to smaller (nominal 2.7-mm-dia) pellets, up to five pellets were injected at 0.25-s intervals into a plasma discharge, giving a line-averaged density of 1 x 10 14 cm -3 . Operating characteristics and performance of the injector in initial tests on TFTR are presented

  13. Steam 80 steam generator instrumentation

    International Nuclear Information System (INIS)

    Carson, W.H.; Harris, H.H.

    1980-01-01

    This paper describes two special instrumentation packages in an integral economizer (preheater) steam generator of one of the first System 80 plants scheduled to go into commercial operation. The purpose of the instrumentation is to obtain accurate operating information from regions of the secondary side of the steam generator inaccessible to normal plant instrumentation. In addition to verification of the System 80 steam generator design predictions, the data obtained will assist in verification of steam generator thermal/hydraulic computer codes developed for generic use in the industry

  14. Fail-safety of the EBR-II steam generator system

    International Nuclear Information System (INIS)

    Chopra, P.S.; Stone, C.C.; Hutter, E.; Barney, W.K.; Staker, R.G.

    1976-01-01

    Fail-safe analyses of the EBR-II steam-generator system show that a postulated non-instantaneous leak of water or steam into sodium, through a duplex tube or a tubesheet, at credible leak rates will not structurally damage the evaporators and superheaters. However, contamination of the system and possible shell wastage by sodium-water reaction products may render the system inoperable for a period exceeding six months. This period would be shortened to three months if the system were modified by adding a remotely operated water dump system, a steam vent system, a secondary sodium superheater relief line, and a tubesheet leak-detection system

  15. Thermionic gun control system for the CEBAF [Continuous Electron Beam Accelerator Facility] injector

    International Nuclear Information System (INIS)

    Pico, R.; Diamond, B.; Fugitt, J.; Bork, R.

    1989-01-01

    The injector for the CEBAF accelerator must produce a high-quality electron beam to meet the overall accelerator specifications. A Hermosa electron gun with a 2 mm-diameter cathode and a control aperture has been chosen as the electron source. This must be controlled over a wide range of operating conditions to meet the beam specifications and to provide flexibility for accelerator commissioning. The gun is controlled using Computer Automated Measurement and Control (CAMAC IEEE-583) technology. The system employs the CAMAC-based control architecture developed at CEBAF. The control system has been tested, and early operating data on the electron gun and the injector beam transport system has been obtained. This system also allows gun parameters to be stored at the operator location, without paralyzing operation. This paper describes the use of this computer system in the control of the CEBAF electron gun. 2 refs., 6 figs., 1 tab

  16. The upgraded data acquisition system for beam loss monitoring at the Fermilab Tevatron and Main Injector

    International Nuclear Information System (INIS)

    Baumbaugh, A.; Briegel, C.; Brown, B.C.; Capista, D.; Drennan, C.; Fellenz, B.; Knickerbocker, K.; Lewis, J.D.; Marchionni, A.; Needles, C.; Olson, M.

    2011-01-01

    A VME-based data acquisition system for beam-loss monitors has been developed and is in use in the Tevatron and Main Injector accelerators at the Fermilab complex. The need for enhanced beam-loss protection when the Tevatron is operating in collider-mode was the main driving force for the new design. Prior to the implementation of the present system, the beam-loss monitor system was disabled during collider operation and protection of the Tevatron magnets relied on the quench protection system. The new Beam-Loss Monitor system allows appropriate abort logic and thresholds to be set over the full set of collider operating conditions. The system also records a history of beam-loss data prior to a beam-abort event for post-abort analysis. Installation of the Main Injector system occurred in the fall of 2006 and the Tevatron system in the summer of 2007. Both systems were fully operation by the summer of 2008. In this paper we report on the overall system design, provide a description of its normal operation, and show a number of examples of its use in both the Main Injector and Tevatron.

  17. Tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foust, C.R.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Wilgen, J.B.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) phase. The existing TFTR deuterium pellet injector (DPI) has been modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed to provide pellets ranging from 3.3 to 4.5 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller. The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed, and the TPI was tested at ORNL with deuterium pellet. Results of the limited testing program at ORNL are described. The TPI is being installed on TFTR to support the D-D run period in 1992. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and secondary tritium containment systems and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  18. FERMILAB: Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-06-15

    The Fermilab Main Injector (FMI) project is the centerpiece of the Laboratory's Fermilab III programme for the 1990s. Designed to support a luminosity of at least 5x10{sup 31} cm{sup -2} s{sup -1} in the Tevatron collider, it will also provide new capabilities for rare neutral kaon decay and neutrino oscillation studies. The Fermilab Main Injector 8-150 GeV synchrotron is designed to replace the existing Main Ring which seriously limits beam intensities for the Tevatron and the antiproton production target. The project has passed several significant milestones and is now proceeding rapidly towards construction. The project received a $11.65M appropriation in 1992 and has been given $15M for the current fiscal year. Through the Energy Systems Acquisition Advisory Board (ESAAB) process, the US Department of Energy (DoE) has authorized funds for construction of the underground enclosure and service building where the Main Injector will touch the Tevatron, and to the preparation of bids for remaining project construction.

  19. Measure Guideline. Steam System Balancing and Tuning for Multifamily Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jayne [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Ludwig, Peter [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States); Brand, Larry [Partnership for Advanced Residential Retrofit (PARR), Chicago, IL (United States)

    2013-04-01

    This guideline provides building owners, professionals involved in multifamily audits, and contractors insights for improving the balance and tuning of steam systems. It provides readers an overview of one-pipe steam heating systems, guidelines for evaluating steam systems, typical costs and savings, and guidelines for ensuring quality installations. It also directs readers to additional resources for details not included here. Measures for balancing a distribution system that are covered include replacing main line vents and upgrading radiator vents. Also included is a discussion on upgrading boiler controls and the importance of tuning the settings on new or existing boiler controls. The guideline focuses on one-pipe steam systems, though many of the assessment methods can be generalized to two-pipe steam systems.

  20. Thermodynamics of the silica-steam system

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, Oscar H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In most nuclear cratering and cavity formation applications, the working fluid in the expanding cavity consists primarily of vaporized silica and steam. The chemical reaction products of silica and steam under these conditions are not known, although it is known that silica is very volatile in the presence of high-pressure steam under certain geologic conditions and in steam turbines. A review is made of work on the silica-steam system in an attempt to determine the vapor species that exist, and to establish the associated thermo-dynamic data. The review indicates that at 600-900 deg K and 1-100 atm steam pressure, Si(OH){sub 4} is the most likely silicon-containing gaseous species. At 600-900 deg. K and 100-1000 atm steam, Si{sub 2}O(OH){sub 6} is believed to predominate, whereas at 1350 deg K and 2000-9000 atm, a mixture of Si(OH){sub 4} and Si{sub 2}O(OH){sub 6} is consistent with the observed volatilities. In work at 1760 deg. K in which silica was reacted either with steam at 0.5 and 1 atm, or with gaseous mixtures of H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O at 1 atm total pressure, only part of the volatility could be accounted for by Si(OH){sub 4}. Hydrogen was found to greatly enhance the volatility of silica, and oxygen to suppress it. The species most likely to explain this behavior is believed to be SiO(OH). A number of other species may also be significant under these conditions. Thermodynamic data have been estimated for all species considered. The Si-OH bond dissociation energy is found to be {approx}117 kcal/mole in both Si(OH){sub 4} and Si{sub 2}O(OH){sub 6}. (author)

  1. CTF3 Drive Beam Injector Optimisation

    CERN Document Server

    AUTHOR|(CDS)2082899; Doebert, S

    2015-01-01

    In the Compact Linear Collider (CLIC) the RF power for the acceleration of the Main Beam is extracted from a high-current Drive Beam that runs parallel to the main linac. The main feasibility issues of the two-beam acceleration scheme are being demonstrated at CLIC Test Facility 3 (CTF3). The CTF3 Drive Beam injector consists of a thermionic gun followed by the bunching system and two accelerating structures all embedded in solenoidal magnetic field and a magnetic chicane. Three sub-harmonic bunchers (SHB), a prebuncher and a travelling wave buncher constitute the bunching system. The phase coding process done by the sub-harmonic bunching system produces unwanted satellite bunches between the successive main bunches. The beam dynamics of the CTF3 Drive Beam injector is reoptimised with the goal of improving the injector performance and in particular decreasing the satellite population, the beam loss in the magnetic chicane and the beam emittance in transverse plane compare to the original model based on P. Ur...

  2. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L M; Pardo, R C; Shepard, K W; Bogaty, J M; Clifft, B E; Munson, F H; Zinkann, G [Argonne National Lab., IL (United States)

    1993-04-15

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS was designed as a replacement for the tandem injector of the present tandem-linac system and, unlike the tandem, the positive-ion injector is required to provide ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and initial experience in the acceleration of heavy-ion beams through the entire ATLAS system is discussed. The unusually good longitudinal beam quality of ATLAS with its new injector is emphasized. (orig.).

  3. First operational experience with the positive-ion injector of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Bogaty, J.M.; Clifft, B.E.; Munson, F.H.; Zinkann, G.

    1992-01-01

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS was designed as a replacement for the tandem injector of the present tandem-linac system and, unlike the tandem, the positive-ion injector is required to provide ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and initial experience in the acceleration of heavy-ion beams through the entire ATLAS system is discussed. The unusually good longitudinal beam quality of ATLAS with its new injector is emphasized

  4. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Bogaty, J.M.; Clifft, B.E.; Munson, F.H.; Zinkann, G.

    1992-08-01

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS was designed as a replacement for the tandem injector of the present tandem-linac system and, unlike the tandem, the positive-ion injector is required to provide ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and initial experience in the acceleration of heavy-ion beams through the entire ATLAS system is discussed. The unusually good longitudinal beam quality of ATLAS with its new injector is emphasized.

  5. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Bogaty, J.M.; Clifft, B.E.; Munson, F.H.; Zinkann, G.

    1992-01-01

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS was designed as a replacement for the tandem injector of the present tandem-linac system and, unlike the tandem, the positive-ion injector is required to provide ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and initial experience in the acceleration of heavy-ion beams through the entire ATLAS system is discussed. The unusually good longitudinal beam quality of ATLAS with its new injector is emphasized.

  6. The Schoonebeek Oilfield: the Rw-2e High Pressure Steam Injection Project Gisement de Schoonebeek : le projet RW-2E d'injection de vapeur à haute pression

    Directory of Open Access Journals (Sweden)

    Holtam V. R.

    2006-11-01

    Full Text Available The daily oil production from the Schoonebeek Oilfield amounts to some 1400 m3 /d, of which ca. 65% is produced from a high pressure (85 bar steam injection project. This project was started in 1981 and originally consisted of 7 structurally downdip/middip steam injectors. However, following the initially somewhat disappointing project performance, steam injection was moved to 4 middip/ updip injectors in 1984. This change in the location of the steam injectors, together with an increase in the level of surveillance and a more pragmatic reservoir management policy, has resulted in improved project performance. The ultimate extra oil/steam ratio for the total project is now expected to be 0. 7 m3 oil/ton of steam injected. La production de pétrole du gisement de Schoonebeek est d'environ 1400 m3/jour, dont près de 65% sont obtenus par injection de vapeur à haute pression (85 bar. Ce projet lancé en 1981 comportait initialement 7 injecteurs de vapeur orientés vers l'aval-pendage. En raison de performances décevantes, l'injection de vapeur a été transférée en 1984 sur 4 injecteurs travaillant vers l'amont-pendage. Ce changement de position des injecteurs, accompagné d'une surveillance renforcée et d'une politique de gestion du gisement plus pragmatique, a donné des résultats favorables. On pense que le rapport pétrole/vapeur pour l'ensemble du projet devrait être en dernière analyse de 0,7 m3 de pétrole par tonne de vapeur injectée.

  7. Optimum fuel allocation in parallel steam generator systems

    International Nuclear Information System (INIS)

    Bollettini, U.; Cangioli, E.; Cerri, G.; Rome Univ. 'La Sapienza'; Trento Univ.

    1991-01-01

    An optimization procedure was developed to allocate fuels into parallel steam generators. The procedure takes into account the level of performance deterioration connected with the loading history (fossil fuel allocation and maintenance) of each steam generator. The optimization objective function is the system hourly cost, overall steam demand being satisfied. Costs are due to fuel and electric power supply and to plant depreciation and maintenance as well. In order to easily updata the state of each steam generator, particular care was put in the general formulation of the steam production function by adopting a special efficiency-load curve description based on a deterioration scaling parameter. The influence of the characteristic time interval length on the optimum operation result is investigated. A special implementation of the method based on minimum cost paths is suggested

  8. Assembly process of the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, J., E-mail: joseph.graceffa@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Boilson, D.; Hemsworth, R.; Petrov, V.; Schunke, B.; Urbani, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Pilard, V. [Fusion for Energy, C/ Josep Pla, n°2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam (NB) injectors are used for heating and diagnostics operations. There are 4 injectors in total, 3 heating neutral beam injectors (HNBs) and one diagnostic neutral beam injector (DNB). Two HNBs and the DNB will start injection into ITER during the hydrogen/helium phase of ITER operations. A third HNB is considered as an upgrade to the ITER heating systems, and the impact of the later installation and use of that injector have to be taken into account when considering the installation and assembly of the whole NB system. It is assumed that if a third HNB is to be installed, it will be installed before the nuclear phase of the ITER project. The total weight of one injector is around 1200 t and it is composed of 18 main components and 36 sets of shielding plates. The overall dimensions are length 20 m, height 10 m and width 5 m. Assembly of the first two HNBs and the DNB will start before the first plasma is produced in ITER, but as the time required to assemble one injector is estimated at around 1.5 year, the assembly will be divided into 2 steps, one prior to first plasma, and the second during the machine second assembly phase. To comply with this challenging schedule the assembly sequence has been defined to allow assembly of three first injectors in parallel. Due to the similar design between the DNB and HNBs it has been decided to use the same tools, which will be designed to accommodate the differences between the two sets of components. This reduces the global cost of the assembly and the overall assembly time for the injector system. The alignment and positioning of the injectors is a major consideration for the injector assembly as the alignment of the beamline components and the beam source are critical if good injector performance is to be achieved. The theoretical axes of the beams are defined relative to the duct liners which are installed in the NB ports. The concept adopted to achieve the required alignment accuracy is to use the

  9. Implementation and rejection of industrial steam system energy efficiency measures

    International Nuclear Information System (INIS)

    Therkelsen, Peter; McKane, Aimee

    2013-01-01

    Steam systems consume approximately one third of energy applied at US industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of 5 years through the Energy Savings Assessment (ESA) program administered by the US Department of Energy (US DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well. - Highlights: ► We examine uptake/rejection of industrial steam system energy efficiency measures. ► We examine metrics that correspond to uptake/rejection of recommended measures. ► We examine barriers hindering steam system energy efficiency measure implementation. ► Uptake/rejection of steam measures is linked to potential cost metrics. ► Increased uptake of measures and uptake of more costly measures increases with time

  10. Acoustic Leak Detection under Micro and Small Water Steam Leaks into Sodium for a Protection of the SFR Steam Generator

    International Nuclear Information System (INIS)

    Kim, Tae-Joon; Jeong, Ji-Young; Kim, Jong-Man; Kim, Byung-Ho; Hahn, Do-Hee; Yugay, Valeriy S.

    2008-01-01

    The results of an experimental study of water in a sodium leak noise spectrum formation related with a leak noise attenuation and absorption, and at various rates of water into a sodium leak, smaller than 1.0 g/s, are presented. We focused on studying the micro leak dynamics with an increasing rate of water into sodium owing to a self-development from 0.005 till 0.27 g/s. Conditions and ranges for the existence of bubbling and jetting modes in a water steam outflow into circulating sodium through an injector device, for simulating a defect in a wall of a heat-transmitting tube of a sodium water steam generator were determined. On the basis of the experimental leak noise data the simple dependency of an acoustic signal level from the rate of a micro and small leak at different frequency bands is presented to understand the principal analysis for the development of an acoustic leak detection methodology used in a K- 600 steam generator, with the operational experiences for the noise analysis and measurements in BN-600

  11. Steam generator auxiliary systems

    International Nuclear Information System (INIS)

    Heinz, A.

    1982-01-01

    The author deals with damage and defect types obtaining in auxiliary systems of power plants. These concern water/steam auxiliary systems (feed-water tank, injection-control valves, slide valves) and air/fluegas auxiliary systems (blowers, air preheaters, etc.). Operating errors and associated damage are not dealt with; by contrast, weak spots are pointed out which result from planning and design. Damage types and events are collected in statistics in order to facilitate damage evaluation for arriving at improved design solutions. (HAG) [de

  12. Development and design of railgun system to pellet injector

    International Nuclear Information System (INIS)

    Oda, Y.; Onozuka, M.; Tsujjmura, S.; Kuribayashi, S.; Shimizu, K.C.; Tamura, H.; Sawaoka, A.

    1992-01-01

    In this paper, the railgun systems for the application of pellet injector are investigated and developed in the experimental stage. One of the main features of our railgun systems is to employ a pulse laser beam to induce the initial plasma armature between rails to be accelerated. This unique feature provides the reduction of the supplied voltage to the breakdown between the rails and to reduce the erosion of the rails. This paper presents the current results of a the authors' experimental and theoretical research progress, and introduces the design study for electromagnetic railgun based on our research progress

  13. DTS technology: evaluation in steam injection pilots in PETROBRAS; Tecnologias DTS: avaliacao em pilotos de injecao de vapor na PETROBRAS

    Energy Technology Data Exchange (ETDEWEB)

    Triques, Adriana Lucia Cerri; Rodrigues, Renato Cunha; Souza, Carlos Francisco Sales de; Izetti, Ronaldo Goncalves [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    In oil and gas industry, downhole pressure and temperature distributed sensors can provide strategic information for production optimization throughout the field. Upon the successful implementation of a pilot for optical fiber distributed temperature monitoring of observer wells in a steam injection field, two new pilots have been implemented to also monitor injectors and producers in both cyclic and continuous injection fields strongly influenced by H2S. The pilots demonstrated that this technology is suitable to monitor producers in onshore fields under the conditions above without risks to the production. The sensors did not prove to be suitable for long term monitoring of injectors under continuous steam injection if fiber is installed inside the injection tubing. For cyclic injection applications, the development of steam injection packers is needed to guarantee casing integrity during the injection cycle. The application of the technology in offshore wells is nowadays restricted to dry completion situation. The potential applicability in submarine wells is tightly linked to the development of downhole and wellhead wet mate optical fiber connectors. (author)

  14. Status and performance of PF injector linac

    International Nuclear Information System (INIS)

    Sato, Isamu

    1994-01-01

    PF injector linac has been improved on a buncher section for accelerating of intense electron beam, and reinforced a focusing system of the positron generator linac for the expansion of phase space. In this presentation, I shall report present status and performance of PF injector linac, and discuss its upgrade program for B-factory project. (author)

  15. The positive-ion injector of ATLAS: design and operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L M [Physics Div., Argonne National Lab., IL (United States); Pardo, R C [Physics Div., Argonne National Lab., IL (United States); Shepard, K W [Physics Div., Argonne National Lab., IL (United States); Billquist, P J [Physics Div., Argonne National Lab., IL (United States); Bogaty, J M [Physics Div., Argonne National Lab., IL (United States); Clifft, B E [Physics Div., Argonne National Lab., IL (United States); Harkewicz, R [Physics Div., Argonne National Lab., IL (United States); Munson, F H [Physics Div., Argonne National Lab., IL (United States); Nolen, J A [Physics Div., Argonne National Lab., IL (United States); Zinkann, G P [Physics Div., Argonne National Lab., IL (United States)

    1993-06-01

    The recently completed positive-ion injector for the heavy-ion accelerator ATLAS is a replacement for the tandem injector of the present tandem-linac system. Unlike the tandem, the new injector provides ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and experience in the operation of ATLAS with its new injector is discussed. (orig.)

  16. The positive-ion injector of ATLAS: Design and operating experience

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Munson, F.H.; Nolen, J.A.; Zinkann, G.P.

    1992-01-01

    The recently completed Positive-Ion Injector for the heavy-ion accelerator ATLAS is a replacement for the tandem injector of the present tandem-linac system. Unlike the tandem, the new injector provides ions from the full range of the periodic table. The concept for the new injector, which consists of an ECR ion source on a voltage platform coupled to a very-low-velocity superconducting linac, introduces technical problems and uncertainties that are well beyond those encountered previously for superconducting linacs. The solution to these problems and their relationship to performance are outlined, and experience in the operation of ATLAS with its new injector is discussed

  17. Reliability study: steam generation and distribution system, Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Baker, F.E.; Davis, E.L.; Dent, J.T.; Walters, D.E.; West, R.M.

    1982-10-01

    A reliability study for determining the ability of the Steam Generation and Distribution System to provide reliable and adequate service through the year 2000 has been completed. This study includes an evaluation of the X-600 Steam Plant and the steam distribution system. The Steam Generation and Distribution System is in good overall condition, but to maintain this condition, the reliability study team made twelve recommendations. Eight of the recommendations are for repair or replacement of existing equipment and have a total estimated cost of $540,000. The other four recommendations are for additional testing, new procedure implementation, or continued investigations

  18. CASTOR - Advanced System for VVER Steam Generator Inspection

    International Nuclear Information System (INIS)

    Mateljak, Petar

    2014-01-01

    From the safety point of view, steam generator is a very important component of a nuclear power plant. Only a thin tube wall prevents leakage of radioactive material from the primary side into the environment. Therefore, it is very important to perform inspections in order to detect pipe damage and apply appropriate corrective actions during outage. Application of the nondestructive examination (NDE) technique, that can locate degradation and measure its size and orientation, is an integral part of nuclear power plant maintenance. The steam generator inspection system is consisted of remotely controlled manipulator, testing instrument and software for data acquisition and analysis. Recently, the inspection systems have evolved to a much higher level of automation, efficiency and reliability resulting in a lower cost and shorter outage time. Electronic components have become smaller and deal with more complex algorithms. These systems are very fast, precise, reliable and easy to handle. The whole inspection, from the planning, examination, data analysis and final report, is now a highly automated process, which makes inspection much easier and more reliable. This paper presents the new generation of INETEC's VVER steam generator inspection system as ultimate solution for steam generator inspection and repair. (author)

  19. Tritium pellet injector design for tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Fisher, P.W.; Baylor, L.R.; Bryan, W.E.

    1985-01-01

    A tritium pellet injector (TPI) system has been designed for the Tokamak Fusion Test Reactor (TFTR) Q approx. 1 phase of operation. The injector gun utilizes a radial design with eight independent barrels and a common extruder to minimize tritium inventory. The injection line contains guide tubes with intermediate vacuum pumping stations and fast valves to minimize propellant leakage to the torus. The vacuum system is designed for tritium compatibility. The entire injector system is contained in a glove box for secondary containment protection against tritium release. Failure modes and effects have been analyzed, and structural analysis has been performed for most intense predicted earthquake conditions. Details of the design and operation of this system are presented in this paper

  20. Magnetic analysis of the magnetic field reduction system of the ITER neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Germán, E-mail: german.barrera@ciemat.es [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 22, 28040 Madrid (Spain); Ahedo, Begoña; Alonso, Javier; Ríos, Luis [CIEMAT, Laboratorio Nacional de Fusión, Avda. Complutense 22, 28040 Madrid (Spain); Chareyre, Julien; El-Ouazzani, Anass [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St Paul Lez Durance Cedex (France); Agarici, Gilbert [Fusion for Energy, Josep Pla 2, Torres Diagonal Litoral B3, 07/08, 08019 Barcelona (Spain)

    2015-10-15

    The neutral beam system for ITER consists of two heating and current drive neutral beam injectors (HNB) and a diagnostic neutral beam (DNB) injector. The proposed physical plant layout allows a possible third HNB injector to be installed later. For the correct operation of the beam, the ion source and the ion path until it is neutralized must operate under a very low magnetic field environment. To prevent the stray ITER field from penetrating inside those mentioned critical areas, a magnetic field reduction system (MFRS) will envelop the beam vessels and the high voltage transmission lines to ion source. This system comprises the passive magnetic shield (PMS), a box like assembly of thick low carbon steel plates, and the Active Correction and Compensation Coils (ACCC), a set of coils carrying a current which depends on the tokamak stray field. This paper describes the magnetic model and analysis results presented at the PMS and ACCC preliminary design review held in ITER organization in April 2013. The paper focuses on the magnetic model description and on the description of the analysis results. The iterative process for obtaining optimized currents in the coils is presented. The set of coils currents chosen among the many possible solutions, the magnetic field results in the interest regions and the fulfillment of the magnetic field requirements are described.

  1. Solution of multiple circuits of steam cycle HTR system

    International Nuclear Information System (INIS)

    Li, Fu; Wang, Dengying; Hao, Chen; Zheng, Yanhua

    2014-01-01

    In order to analyze the dynamic operation performance and safety characteristics of the steam cycle high temperature gas cooled reactor (HTR) systems, it is necessary to find the solution of the whole HTR systems with all coupled circuits, including the primary circuit, the secondary circuit, and the residual heat removal system (RHRS). Considering that those circuits have their own individual fluidity and characteristics, some existing code packages for independent circuits themselves have been developed, for example THEMRIX and TINTE code for the primary circuit of the pebble bed reactor, BLAST for once through steam generator. To solve the coupled steam cycle HTR systems, a feasible way is to develop coupling method to integrate these independent code packages. This paper presents several coupling methods, e.g. the equivalent component method between the primary circuit and steam generator which reflect the close coupling relationship, the overlapping domain decomposition method between the primary circuit and the passive RHRS which reflects the loose coupling relationship. Through this way, the whole steam cycle HTR system with multiple circuits can be easily and efficiently solved by integration of several existing code packages. Based on this methodology, a code package TINTE–BLAST–RHRS was developed. Using this code package, some operation performance of HTR–PM was analyzed, such as the start-up process of the plant, and the depressurized loss of forced cooling accident when different number of residual heat removal trains is operated

  2. The Supervisory Control System for the HL-2A Neutral Beam Injector

    Science.gov (United States)

    Li, Bo; Li, Li; Feng, Kun; Wang, Xueyun; Yang, Jiaxing; Huang, Zhihui; Kang, Zihua; Wang, Mingwei; Zhang, Guoqing; Lei, Guangjiu; Rao, Jun

    2009-06-01

    Supervisory control and protection system of the neutral beam injector (NBI) in the HL-2A tokamak is presented. The system is used for a safe coordination of all the main NBI subsystems. Because the system is based on computer networks with its transmission medium of optical fiber, its advantages in high operational stability, reliability, security and flexible functional expandability are clearly shown during the NBI commissioning and heating experiment in HL-2A.

  3. Modular sludge collection system for a nuclear steam generator

    International Nuclear Information System (INIS)

    Appleman, R.H.; Bein, J.D.; Powasaki, F.S.

    1986-01-01

    A sludge collection system is described for a vertically oriented nuclear steam generator wherein vapors produced in the steam generator pass through means for separating entrained liquid from the vapor prior to the vapor being discharged from the steam generator. The sludge collection system comprises: an upwardly open chamber for collecting the separated liquid and feedwater entering the steam generator; upwardly open sludge collecting containers positioned within the chamber, wherein each of the containers includes a top rim encompassing an opening leading to the interior of each container; generally flat, perforated covers, each of the covers being positioned over one of the openings such that a gap is formed between the cover and the adjacent top rim; sludge agitating means on at least one of the containers; and sludge removal means on at least one of the containers

  4. Pulsed high-pressure (PHP) drain-down of steam generating system

    International Nuclear Information System (INIS)

    Petrusek, R.A.

    1991-01-01

    This patent describes an improved method of draining down contained reactor-coolant water from the inverted vertical U-tubes of at least one vertical-type steam generator in which the upper inverted U-shaped ends of the tubes are closed and the lower ends thereof are open, the steam generator having a channel head at its lower end including a vertical dividing wall defining a primary water inlet side and a primary water outlet side of the generator, the steam generator having chemical volume control system means and residual heat removal system means, and the steam generator being part of a nuclear-powered steam generating system wherein the reactor-coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator, and the reactor being in communication with pressurizer means and comprising the steps of introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tubesheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator while permitting the water to flow out from the open ends of the U-tubes, the improvement in combination therewith for substantially increasing the effectiveness and efficiency of such water removal from the tubes. It includes determining the parameters effecting a first average volumetric rate of removal for a predetermined period of time, infra, of the reactor-coolant water from the inverted vertical U-tubes, the specific unit for the first average volumetric rate expressing properties identical with the properties expressed in a second average volumetric rate maintained in a later mentioned step

  5. AUTOMATIC CONTROL SYSTEM OF THE DRUM BOILER SUPERHEATED STEAM TEMPERATURE.

    Directory of Open Access Journals (Sweden)

    Juravliov A.A.

    2006-04-01

    Full Text Available The control system of the temperature of the superheated steam of the drum boiler is examined. Main features of the system are the PI-controller in the external control loop and introduction of the functional component of the error signal of the external control loop with the negative feedback of the error signal between the prescribed value of steam flowrate and the signal of the steam flowrate in the exit of the boiler in the internal control loop.

  6. System for steam-reactivity measurements on fusion-relevant materials

    International Nuclear Information System (INIS)

    Anderl, R.A.; Pawelko, R.J.; Oates, M.A.; Smolik, G.R.; McCarthy, K.A.

    1996-01-01

    This paper describes an experimental system developed to investigate steam-metal reactions important to fusion technology. The system is configured specifically to measure hydrogen generation rates and tritium mobilization rates for irradiated beryllium specimens that are heated and exposed to steam. Results are presented for extensive performance and scoping tests of the system to validate the experimental technique, to determine hydrogen-generation rate detection sensitivity, and to establish appropriate calibration methods. These results include measurements of the hydrogen generation rates for steam interactions with austenitic steel, tungsten and beryllium metal specimens. The results of these scoping tests compare favorably with previous work, and they indicate a significant improvement in hydrogen detection sensitivity over previous approaches. 6 refs., 9 figs., 1 tab

  7. Pellet injectors for the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Combs, S.K.

    1986-01-01

    The repeating pneumatic injector is a device from the ORNL development program. A new eight-shot deuterium pellet injector has been designed and constructed specifically for the TFTR application and is scheduled to replace the repeating injector this year. The new device combines a cryogenic extruder and a cold wheel rotary mechanism to form and chamber eight pellets in a batch operation; the eight pellets can then be delivered in any time sequence. Another unique feature of the device is the variable pellet size with three pellets each of 3.0 and 3.5 mm diam and two each of 4.0 mm diam. The experience and technology that have been developed on previous injectors at ORNL have been utilized in the design of this latest pellet injection system

  8. New features of the MAX IV thermionic pre-injector

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, J., E-mail: joel.andersson@maxiv.lu.se; Olsson, D., E-mail: david.olsson@maxiv.lu.se; Curbis, F.; Malmgren, L.; Werin, S.

    2017-05-21

    The MAX IV facility in Lund, Sweden consists of two storage rings for production of synchrotron radiation. The smaller 1.5 GeV ring is presently under construction, while the larger 3 GeV ring is being commissioned. Both rings will be operating with top-up injections from a full-energy injector. During injection, the electron beam is first delivered to the main injector from a thermionic pre-injector which consists of a thermionic RF gun, a chopper system, and an energy filter. In order to reduce losses of high-energy electrons along the injector and in the rings, the electron beam provided by the thermionic pre-injector should have the correct time structure and energy distribution. In this paper, the design of the MAX IV thermionic pre-injector with all its sub components is presented. The electron beam delivered by the pre-injector and its dependence on parameters such as optics, cathode temperature, and RF power are studied. Measurements are here compared with simulation results obtained by particle tracking and electromagnetic codes. The chopper system is described in detail, and different driving schemes that optimize the injection efficiency for the two storage rings are investigated. During operation, it was discovered that the structure of the beam delivered by the gun is affected by mode beating between the accelerating and a low-order mode. This mode beating is also studied in detail. Finally, initial measurements of the electron beam delivered to the 3 GeV ring during commissioning are presented.

  9. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    Science.gov (United States)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  10. Control system for fluid heated steam generator

    Science.gov (United States)

    Boland, J.F.; Koenig, J.F.

    1984-05-29

    A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

  11. SPINS-IND: Pellet injector for fuelling of magnetically confined fusion systems

    Science.gov (United States)

    Gangradey, R.; Mishra, J.; Mukherjee, S.; Panchal, P.; Nayak, P.; Agarwal, J.; Saxena, Y. C.

    2017-06-01

    Using a Gifford-McMahon cycle cryocooler based refrigeration system, a single barrel hydrogen pellet injection (SPINS-IND) system is indigenously developed at Institute for Plasma Research, India. The injector is based on a pipe gun concept, where a pellet formed in situ in the gun barrel is accelerated to high speed using high pressure light propellant gas. The pellet size is decided by considering the Greenwald density limit and its speed is decided by considering a neutral gas shielding model based scaling law. The pellet shape is cylindrical of dimension (1.6 mm ℓ × 1.8 mm φ). For pellet ejection and acceleration, a fast opening valve of short opening duration is installed at the breech of the barrel. A three-stage differential pumping system is used to restrict the flow of the propellant gas into the plasma vacuum vessel. Diagnostic systems such as light gate and fast imaging camera (240 000 frames/s) are employed to measure the pellet speed and size, respectively. A trigger circuit and a programmable logic controller based integrated control system developed on LabVIEW enables to control the pellet injector remotely. Using helium as a propellant gas, the pellet speed is varied in the range 650 m/s-800 m/s. The reliability of pellet formation and ejection is found to be more than 95%. This paper describes the details of SPINS-IND and its test results.

  12. The beam bunching and transport system of the Argonne positive ion injector

    International Nuclear Information System (INIS)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (β ≤ .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/ΔM > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs

  13. The beam bunching and transport system of the Argonne positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Den Hartog, P.K.; Bogaty, J.M.; Bollinger, L.M.; Clifft, B.E.; Pardo, R.C.; Shepard, K.W.

    1989-01-01

    A new positive ion injector (PII) is currently under construction at Argonne that will replace the existing 9-MV tandem electrostatic accelerator as an injector into ATLAS. It consists of an electron-cyclotron resonance-ion source on a 350-kV platform injecting into a superconducting linac optimized for very slow (..beta.. less than or equal to .007 c) ions. This combination can potentially produce even higher quality heavy-ion beams than are currently available from the tandem since the emittance growth within the linac is largely determined by the quality of the bunching and beam transport. The system we have implemented uses a two-stage bunching system, composed of a 4-harmonic gridded buncher located on the ECR high-voltage platform and a room temperature spiral-loaded buncher of novel design. A sinusoidal beam chopper is used for removal of tails. The beam transport is designed to provide mass resolution of M/..delta..M > 250 and a doubly-isochronous beamline is used to minimize time spread due to path length differences. 4 refs., 2 figs.

  14. Neutral beam injector performance on the PLT and PDX tokamaks

    International Nuclear Information System (INIS)

    Schilling, G.; Ashcroft, D.L.; Eubank, H.P.; Grisham, L.R.; Kozub, T.A.; Kugel, H.W.; Rossmassler, J.; Williams, M.D.

    1981-02-01

    An overall injector system description is presented first, and this will be followed by a detailed discussion of those problems unique to multiple injector operation on the tokamaks, i.e., power transmission, conditioning, reliability, and failures

  15. 46 CFR 167.45-1 - Steam, carbon dioxide, and halon fire extinguishing systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Steam, carbon dioxide, and halon fire extinguishing....45-1 Steam, carbon dioxide, and halon fire extinguishing systems. (a) General requirements. (1...-extinguishing system. On such vessels contracted for prior to January 1, 1962, a steam smothering system may be...

  16. Tritium proof-of-principle injector experiment

    International Nuclear Information System (INIS)

    Fisher, P.W.; Milora, S.L.; Combs, S.K.; Carlson, R.V.; Coffin, D.O.

    1988-01-01

    The Tritium Proof-of-Principle (TPOP) pellet injector was designed and built by Oak Ridge National Laboratory (ORNL) to evaluate the production and acceleration of tritium pellets for fueling future fision reactors. The injector uses the pipe-gun concept to form pellets directly in a short liquid-helium-cooled section of the barrel. Pellets are accelerated by using high-pressure hydrogen supplied from a fast solenoid valve. A versatile, tritium-compatible gas-handling system provides all of the functions needed to operate the gun, including feed gas pressure control and flow control, plus helium separation and preparation of mixtures. These systems are contained in a glovebox for secondary containment of tritium Systems Test Assembly (TSTA) at Los Alamos National Laboratory (LANL). 18 refs., 3 figs

  17. Formula for radial profiles of temperature in steam-liquid sodium reactive jets

    International Nuclear Information System (INIS)

    Hobbes, P.; Mora-Perez, J.L.; Carreau, J.L.; Gbahoue, L.; Roger, F.

    1987-01-01

    One of the important problems of the study of distribution of temperatures in the reactive steam-liquid sodium jet rests in the mathematical formulation of their radial effects. During the experiment, two forms have been brought to light: from a certain distance of the injector, the radial distribution of temperature can be represented, in a classical way, by an error function curve; close to the injector, the radial profile allows for a minimum located on the axis of the jet. An energy balance permits, by dividing the jet in three parts: a central nucleus composed of practically pure gas, a gas ring plus drops and a liquid peripheral area plus bubbles, to obtain a mathematical formulation of the profiles, close to the injection which accounts quite well for the experimental points and their form

  18. A new protection system against high voltage vacuum breakdowns developed for the Tore Supra neutral beam injector prototype

    International Nuclear Information System (INIS)

    Fumelli, M.; Jequier, F.; Pamela, J.

    1988-01-01

    A passive protection system against high voltage vacuum breakdowns has been developed. This system is based on the principle of oscillatory discharges in an RLC circuit coupled with the use of a diode. It allows the interruption of a vacuum breakdown in a few milliseconds. This study has been made for protecting some parts of the neutral beam injectors of the Tore Supra Tokamak experiment, but its field of application should be quite large. The conception of the whole high voltage electrical circuit developed for the Tore Supra injector prototype experiments is also presented

  19. Design of the ITER Neutral Beam injectors

    International Nuclear Information System (INIS)

    Hemsworth, R.S.; Feist, J.; Hanada, M.; Heinemann, B.; Inoue, T.; Kuessel, E.; Kulygin, V.; Krylov, A.; Lotte, P.; Miyamoto, K.; Miyamoto, N.; Murdoch, D.; Nagase, A.; Ohara, Y.; Okumura, Y.; Pamela, J.; Panasenkov, A.; Shibata, K.; Tanii, M.

    1996-01-01

    This paper describes the Neutral Beam Injection system which is presently being designed in Europe, Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D 0 to the ITER plasma for pulse length of ≥1000 s. The injectors each use a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D - . This will be neutralized in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. copyright 1996 American Institute of Physics

  20. Steam Digest 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    Steam Digest 2002 is a collection of articles published in the last year on steam system efficiency. DOE directly or indirectly facilitated the publication of the articles through it's BestPractices Steam effort. Steam Digest 2002 provides a variety of operational, design, marketing, and program and program assessment observations. Plant managers, engineers, and other plant operations personnel can refer to the information to improve industrial steam system management, efficiency, and performance.

  1. Geometrical characterization and performance optimization of monopropellant thruster injector

    Directory of Open Access Journals (Sweden)

    T.R. Nada

    2012-12-01

    Full Text Available The function of the injector in a monopropellant thruster is to atomize the liquid hydrazine and to distribute it over the catalyst bed as uniformly as possible. A second objective is to place the maximum amount of catalyst in contact with the propellant in as short time as possible to minimize the starting transient time. Coverage by the spray is controlled mainly by cone angle and diameter of the catalyst bed, while atomization quality is measured by the Sauter Mean Diameter, SMD. These parameters are evaluated using empirical formulae. In this paper, two main types of injectors are investigated; plain orifice and full cone pressure swirl injectors. The performance of these two types is examined for use with blow down monopropellant propulsion system. A comprehensive characterization is given and design charts are introduced to facilitate optimizing the performance of the injector. Full-cone injector is a more suitable choice for monopropellant thruster and it might be available commercially.

  2. Repeating pneumatic pellet injector in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Satoshi; Hasegawa, Kouichi; Suzuki, Sadaaki; Miura, Yukitoshi (Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment); Oda, Yasushi; Onozuka, Masanori; Tsujimura, Seiichi.

    1992-09-01

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author).

  3. Repeating pneumatic pellet injector in JAERI

    International Nuclear Information System (INIS)

    Kasai, Satoshi; Hasegawa, Kouichi; Suzuki, Sadaaki; Miura, Yukitoshi; Oda, Yasushi; Onozuka, Masanori; Tsujimura, Seiichi.

    1992-09-01

    A repeating pneumatic pellet injector has been developed and constructed at Japan Atomic Energy Research Institute. This injector can provide repetitive pellet injection to fuel tokamak plasmas for an extended period of time, aiming at the improvement of plasma performance. The pellets with nearly identical speed and mass can be repeatedly injected with a repetition rate of 2-3.3 Hz and a speed of up to 1.7 km/s by controlling the temperature of the cryogenic system, the piston speed and the pressure of the propellant gas. (author)

  4. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    International Nuclear Information System (INIS)

    Pappx, L.

    1994-01-01

    After modification of Dukovany NPP steam generator feedwater system, the increased concentration of minerals was measured in the cold leg of modified steam generator. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators, has focused this attention on the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of flow distribution in the secondary side of SG was developed. (Author)

  5. Integrated numerical modeling of a laser gun injector

    International Nuclear Information System (INIS)

    Liu, H.; Benson, S.; Bisognano, J.; Liger, P.; Neil, G.; Neuffer, D.; Sinclair, C.; Yunn, B.

    1993-06-01

    CEBAF is planning to incorporate a laser gun injector into the linac front end as a high-charge cw source for a high-power free electron laser and nuclear physics. This injector consists of a DC laser gun, a buncher, a cryounit and a chicane. The performance of the injector is predicted based on integrated numerical modeling using POISSON, SUPERFISH and PARMELA. The point-by-point method incorporated into PARMELA by McDonald is chosen for space charge treatment. The concept of ''conditioning for final bunching'' is employed to vary several crucial parameters of the system for achieving highest peak current while maintaining low emittance and low energy spread. Extensive parameter variation studies show that the design will perform beyond the specifications for FEL operations aimed at industrial applications and fundamental scientific research. The calculation also shows that the injector will perform as an extremely bright cw electron source

  6. Steady state neutral beam injector

    International Nuclear Information System (INIS)

    Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.

    2000-01-01

    Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)

  7. Research on simulation of supercritical steam turbine system in large thermal power station

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  8. High-brightness electron injectors

    International Nuclear Information System (INIS)

    Sheffield, R.L.

    1987-01-01

    Free-electron laser (FEL) oscillators and synchrotron light sources require pulse trains of high peak brightness and, in some applications, high-average power. Recent developments in the technology of photoemissive and thermionic electron sources in rf cavities for electron-linac injector applications offer promising advances over conventional electron injectors. Reduced emittance growth in high peak-current electron injectors may be achieved by using high field strengths and by linearizing the radial component of the cavity electric field at the expense of lower shunt impedance

  9. Class structure of the Injector Linac control system of SPring-8

    International Nuclear Information System (INIS)

    Yoshikawa, H.; Itoh, Y.; Tamezane, K.; Sakaki, Y.; Kodera, M.; Yokomizo, H.

    1994-01-01

    The first section of the Injector Linac for SPring-8 has been constructed and the initial beam meets the specification. This section, from the electron gun to the buncher and monitors, is also used as a test stand for the control software. The concept of Object-Oriented programming was adopted because of the special requirements for the accelerator control. We present an overview of the linac control system and the software architecture. ((orig.))

  10. NLCTA injector experimental results

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Adolphsen, C.; Miller, R.H.; Nantista, C.D.; Wang, J.W.

    1997-04-01

    The purpose of the Next Linear Collider Test Accelerator (NLCTA) at SLAC is to integrate the new technologies of X-band accelerator structures and RF systems for the Next Linear Collider (NLC), demonstrate multibunch beam-loading energy compensation and suppression of high-order deflecting modes, measure the transverse components of the accelerating field, and measure the dark current generated by RF field emission in the accelerator. For beam loading R and D, an average current of about 1 A in a 120 ns long bunch train is required. The initial commissioning of the NLCTA injector, as well as the rest of the accelerator have been progressing very well. The initial beam parameters are very close to the requirement and they expect that injector will meet the specified requirements by the end of this summer

  11. Pure intelligent monitoring system for steam economizer trips

    Directory of Open Access Journals (Sweden)

    Basim Ismail Firas

    2017-01-01

    Full Text Available Steam economizer represents one of the main equipment in the power plant. Some steam economizer's behavior lead to failure and shutdown in the entire power plant. This will lead to increase in operating and maintenance cost. By detecting the cause in the early stages maintain normal and safe operational conditions of power plant. However, these methodologies are hard to be achieved due to certain boundaries such as system learning ability and the weakness of the system beyond its domain of expertise. The best solution for these problems, an intelligent modeling system specialized in steam economizer trips have been proposed and coded within MATLAB environment to be as a potential solution to insure a fault detection and diagnosis system (FDD. An integrated plant data preparation framework for 10 trips was studied as framework variables. The most influential operational variables have been trained and validated by adopting Artificial Neural Network (ANN. The Extreme Learning Machine (ELM neural network methodology has been proposed as a major computational intelligent tool in the system. It is shown that ANN can be implemented for monitoring any process faults in thermal power plants. Better speed of learning algorithms by using the Extreme Learning Machine has been approved as well.

  12. Steam generators: critical components in nuclear steam supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Guille, P D

    1974-02-28

    Steam generators are critical components in power reactors. Even small internal leaks result in costly shutdowns for repair. Surveys show that leaks have affected one half of all water-cooled reactors in the world with steam generators. CANDU reactors have demonstrated the highest reliability. However, AECL is actively evolving new technology in design, manufacture, inspection and operation to maintain reliability. (auth)

  13. High-brightness injector modeling

    International Nuclear Information System (INIS)

    Lewellen, J.W.

    2004-01-01

    There are many aspects to the successful conception, design, fabrication, and operation of high-brightness electron beam sources. Accurate and efficient modeling of the injector are critical to all phases of the process, from evaluating initial ideas to successful diagnosis of problems during routine operation. The basic modeling tasks will vary from design to design, according to the basic nature of the injector (dc, rf, hybrid, etc.), the type of cathode used (thermionic, photo, field emitter, etc.), and 'macro' factors such as average beam current and duty factor, as well as the usual list of desired beam properties. The injector designer must be at least aware of, if not proficient at addressing, the multitude of issues that arise from these considerations; and, as high-brightness injectors continue to move out of the laboratory, the number of such issues will continue to expand.

  14. On synthesis and optimization of steam system networks. 3. Pressure drop consideration

    CSIR Research Space (South Africa)

    Price, T

    2010-08-01

    Full Text Available Heat exchanger networks in steam systems are traditionally designed to operate in parallel. Coetzee and Majozi (Ind. Eng. Chem. Res. 2008, 47, 4405-4413) found that by reusing steam condensate within the network the steam flow rate could be reduced...

  15. Implementation and Rejection of Industrial Steam System Energy Efficiency Measures

    Energy Technology Data Exchange (ETDEWEB)

    Therkelesen, Peter [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); McKane, Aimee [Environmental Energy Technologies Division Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2013-05-01

    Steam systems consume approximately one third of energy applied at U.S. industrial facilities. To reduce energy consumption, steam system energy assessments have been conducted on a wide range of industry types over the course of five years through the Energy Savings Assessment (ESA) program administered by the U.S. Department of Energy (U.S. DOE). ESA energy assessments result in energy efficiency measure recommendations that are given potential energy and energy cost savings and potential implementation cost values. Saving and cost metrics that measure the impact recommended measures will have at facilities, described as percentages of facility baseline energy and energy cost, are developed from ESA data and used in analyses. Developed savings and cost metrics are examined along with implementation and rejection rates of recommended steam system energy efficiency measures. Based on analyses, implementation of steam system energy efficiency measures is driven primarily by cost metrics: payback period and measure implementation cost as a percentage of facility baseline energy cost (implementation cost percentage). Stated reasons for rejecting recommended measures are primarily based upon economic concerns. Additionally, implementation rates of measures are not only functions of savings and cost metrics, but time as well.

  16. Integrated steam generation process and system for enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Betzer-Zilevitch, M. [Ex-Tar Technologies Inc., Calgary, AB (Canada)

    2010-07-01

    A method of producing steam for the extraction of heavy bitumens was presented. The direct contact steam generation (DCSG) method is used for the direct heat transfer between combustion gas and contaminated liquid phase water to generate steam. This paper presented details of experimental and field studies conducted to demonstrate the DCSG. Results of the study demonstrated that pressure and temperature are positively correlated. As pressure increases, the flow rate of the discharged mass decreases and the steam ratio decreases. As pressure increases, the condensate and distillate flow rates increases while water vapor losses in the non-condensable gases decrease. The study indicated that for a 10 bar pressurized system producing 9.6 mt per hour of 10,000 kpa steam and 9.6 mt per hour of distillate BFW, 70 percent of the combustion energy should be recovered to generate 10,000 kpa pressure steam for EOR. Combustion energy requirements were found to decrease when pressure decreases. 11 refs., 5 tabs., 8 figs.

  17. Automatic system for redistributing feedwater in a steam generator of a nuclear power plant

    International Nuclear Information System (INIS)

    Fuoto, J.S.; Crotzer, M.E.; Lang, G.E.

    1980-01-01

    A system is described for automatically redistributing a steam generator secondary tube system after a burst in the secondary tubing. This applies to a given steam generator in a system having several steam generators partially sharing a common tube system, and employs a pressure control generating an electrical signal which is compared with given values [fr

  18. The RF system for the 70 MeV linac injector

    International Nuclear Information System (INIS)

    Planner, C.W.

    1975-12-01

    The Radio Frequency System for the 70 MeV Linac Injector for Nimrod is required to power the four Accelerating Cavities and the Buncher and Debuncher Cavities. The frequency of operation is 202.5 MHz and is determined by the use of existing equipment from the redundant 50 MeV Proton Linac for the second and third accelerating cavities and the buncher and de-buncher cavities. The subject is discussed under the following headings: low power drive chain; RF feed lines; cavity field level stabilisation. Circuit diagrams are presented. (U.K.)

  19. LS1 Report: injectors 2.0

    CERN Multimedia

    Anaïs Schaeffer

    2014-01-01

    Launched in 2009, the Accelerator Controls Renovation Project (ACCOR) will come to an end this year. It was brought in to replace the approximately 450 real-time control systems of the LHC injector complex, some of which were based on technology more than 20 years old.   One of the approximately 450 real-time systems that have been modified in the ACCOR project. These systems, which use special software and thousands of electronics boards, control devices that are essential to the proper functioning of the injectors – the radiofrequency system, the instrumentation, the injection kicker system, the magnets, etc. – and some of them were no longer capable of keeping pace with the LHC. As a result, they urgently needed to be upgraded. "In 2009, after assessing the new technology available on the market, we signed contracts with Europe's most cutting-edge electronics manufacturers," explains Marc Vanden Eynden, ACCOR Project Leader. We then quickly m...

  20. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L. [Inst. of Material Engineering, Ostrava (Switzerland)

    1995-12-31

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed.

  1. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L [Inst. of Material Engineering, Ostrava (Switzerland)

    1996-12-31

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed.

  2. Influence of feedwater and blowdown systems on the mineral distribution in WWER steam generators

    International Nuclear Information System (INIS)

    Papp, L.

    1995-01-01

    After modification of Dukovany NPP steam generator (SG) feedwater system, the increased concentration of minerals was measured in the cold leg of modified SG. Some modifications were performed on operating WWER 1000 steam generators with aim to optimize the water chemistry in the collectors area. Since the distribution of minerals can substantially affect on corrosion processes in steam generators, VITKOVICE, as a producer of WWER steam generators has focused the attention to the optimizing of these systems. To predict the mineral distribution on the secondary side of steam generators for considered feedwater/blowdown systems, the simple model of the flow distribution in the secondary side of SG was developed

  3. Feasibility Study for the CERN "CLIC" Photo-Injector Laser System

    CERN Document Server

    Ross, I N

    2000-01-01

    This study is designed to contribute to the development of the Cern Linear Collider (CLIC). One route to the generation of the required electron injection into this system is through the use of photo-cathodes illuminated with a suitably designed laser system. The requirements of the accelerator and photo-cathodes have led to a specification for the laser system given in Table 1. Because CLIC will not be built directly but in stages, notably via CLIC Test Facilities (CTF), this table also includes the specification for a photo-injector laser system for CTF3 which will be required before the final system for CLIC. Although there are significant differences between these two specifications it will be necessary to design the CTF3 system such that it can be easily upgraded to the system for CLIC and will be able to check all the critical issues necessary for CLIC.

  4. First operational experience with the positive-ion injector of ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L M; Pardo, R C; Shepard, K W; Billquist, P J; Bogaty, J M; Clifft, B E; Harkewicz, R; Joh, K; Markovich, P K; Munson, F H; Zinkann, G; Nolen, J A [Physics Div., Argonne National Lab., IL (United States)

    1993-03-01

    A Positive-Ion Injector (PII) designed to enable ATLAS to accelerate all stable nuclei has been completed and successfully tested. This new injector system consists of an ECR source on a 350-kV platform coupled to a 12-MV superconducting injector linac formed with four different types of independently-phased 4-gap accelerating structure. The injector linac is configured to be optimum for the acceleration of uranium ions from 0.029 to [approx equal] 1.1 MeV/u. When ions with q/A>0.1 are accelerated by PII and injected into the main ATLAS linac, CW beams with energies over 6 MeV/u can be delivered to the experimental areas. Since its completion in March 1992, PII has been tested by accelerating [sup 30]Si[sup 7+], [sup 40]Ar[sup 11+], [sup 132]Xe[sup 13+], and [sup 208]Pb[sup 24+]. For all of these, transmission through the injector linac was [approx equal] 100% of the pre-bunched beam, which corresponds to [approx equal] 60% of the DC beam from the source. The accelerating fields of the superconducting resonators were somewhat greater than the design goals, and the whole system ran stably for long periods of time. (orig.).

  5. First operation of the ATLAS Positive-Ion Injector

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Shepard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Munson, F.H.; Nolen, J.A.; Zinkann, G.P.

    1992-01-01

    The construction of the ATLAS Positive-Ion Injector (PII) is complete and beam acceleration tests are underway. The PII consists of an ECR ion source, on a high-voltage platform, providing beam to a low-velocity-acceptance, independently-phased, superconducting linac. This injector enables the ATLAS facility to accelerate any heavy ion, including uranium, to energies in excess of the Coulomb barrier. The design accelerating field performance has been exceeded, with an average accelerating field of approximately 3.2 MV/m achieved in early tests. Initial beam tests of the entire injector indicate tat all important performance goals have been met. This paper describes the results of these early tests and discusses our initial operating experience with the whole ATLAS system

  6. First operation of the ATLAS positive-ion injector

    International Nuclear Information System (INIS)

    Pardo, R.C.; Bollinger, L.M.; Shephard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Munson, F.H.; Nolen, J.A.; Zinkann, G.P.

    1992-01-01

    The construction of the ATLAS Positive-Ion Injector (PII) is complete and beam acceleration tests are underway. The PII consists of an ECR ion source, on a high-voltage platform, providing beam to a low-velocity-acceptance, independently-phased, superconducting linac. This injector enables the ATLAS facility to accelerate any heavy ion, including uranium, to energies in excess of the Coulomb barrier. The design accelerating field performance has been exceeded, with an average accelerating field of approximately 3.2 MV/m achieved in early tests. Initial beam tests of the entire injector indicate that all important performance goals have been met. This paper describes the results of these early tests and discusses our initial operating experience with the whole ATLAS system. (Author) 5 refs., tab., fig

  7. Electron linac injector developments

    International Nuclear Information System (INIS)

    Fraser, J.S.

    1986-01-01

    There is a continuing demand for improved injectors for electron linacs. Free-electron laser (FEL) oscillators require pulse trains of high brightness and, in some applications, high average power at the same time. Wakefield-accelerator and laser-acceleration experiments require isolated bunches of high peak brightness. Experiments with alkali-halide photoemissive and thermionic electron sources in rf cavities for injector applications are described. For isolated pulses, metal photocathodes (illuminated by intense laser pulses) are being employed. Reduced emittance growth in high-peak-current electron injectors may be achieved by linearizing the cavity electric field's radial component and by using high field strengths at the expense of lower shunt impedance. Harmonically excited cavities have been proposed for enlarging the phase acceptance of linac cavities and thereby reducing the energy spread produced in the acceleration process. Operation of injector linacs at a subharmonic of the main linac frequency is also proposed for enlarging the phase acceptance

  8. Criticality in the fabrication of ion extraction system for SST-1 neutral beam injector

    International Nuclear Information System (INIS)

    Jana, M.R.; Mattoo, S.K.

    2008-01-01

    For the heating of plasma in steady-state superconducting tokamak (SST-1) (Y.C. Saxena, SST-1 Team, Present status of the SST-1 project, Nucl. Fusion 40 (2000) 1069-1082; D. Bora, SST-1 Team, Test results on systems developed for the SST-1 tokamak, Nucl. Fusion 43 (2003) 1748-1758), a neutral beam injector is provided to raise the ion temperature to ∼1 keV. This injector has a capability of injecting hydrogen beam with the power of 0.5 MW at 30 keV. For the upgrade of SST-1, power of 1.7 MW at 55 KeV is required. Further, beam power is to be provided for a pulse length of 1000S. We have designed a neutral beam injector (S.K. Mattoo, A.K. Chakraborty, U.K. Baruah, P.K. Jayakumar, M. Bandyopadhyay, N. Bisai, Ch. Chakrapani, M.R. Jana, R. Onali, V. Prahlad, P.J. Patel, G.B. Patel, B. Prajapati, N.V.M. Rao, S. Rambabu, C. Rotti, S.K. Sharma, S. Shah, V. Sharma, M.J. Singh, Engineering design of the steady-state neutral beam injector for SST-1, Fusion Eng. Des. 56 (2001) 685-691; A.K. Chakraborty, N. Bisai, M.R. Jana, P.K. Jayakumar, U.K. Baruah, P.J. Patel, K. Rajasekar, S.K. Mattoo, Neutral beam injector for steady-state superconducting tokamak, Fusion Technol. (1996) 657-660; P.K. Jayakumar, M.R. Jana, N. Bisai, M. Bajpai, N.P. Singh, U.K. Baruah, A.K. Chakraborty, M. Bandyopadhyay, C. Chrakrapani, D. Patel, G.B. Patel, P. Patel, V. Prahlad, N.V.M. Rao, C. Rotti, V. Sreedhar, S.K. Mattoo, Engineering issues of a 1000S neutral beam ion source, Fusion Technol. 1 (1998) 419-422) satisfying the requirements for both SST-1 and its upgrade. Since intense power is to be transported to SST-1 situated at a distance of several meters from the ion source, the optical quality of the beam becomes a primary concern. This in turn, is determined by the uniformity of the ion source plasma and the extractor geometry. To obtain the desired optical quality of the beam, stringent tolerances are to be met during the fabrication of ion extractor system. SST-1 neutral beam injector is

  9. Solid state high power amplifier for driving the SLC injector klystron

    International Nuclear Information System (INIS)

    Judkins, J.G.; Clendenin, J.E.; Schwarz, H.D.

    1985-03-01

    The SLC injector klystron rf drive is now provided by a recently developed solid-state amplifier. The high gain of the amplifier permits the use of a fast low-power electronic phase shifter. Thus the SLC computer control system can be used to shift the phase of the high-power rf rapidly during the fill time of the injector accelerator section. These rapid phase shifts are used to introduce a phase-energy relationship in the accelerated electron pulse in conjunction with the operation of the injector bunch compressor. The amplifier, the method of controlling the rf phase, and the operational characteristics of the system are described. 5 refs., 4 figs

  10. An injector system of a NDZ-20 medical electron linear accelerator

    International Nuclear Information System (INIS)

    Wang Houwen; Lai Qiji; Zhu Yizhang; Yang Fangxin

    1987-01-01

    The structure and characteristic of an injector system of a NDZ-20 medical electron linear accelerator are described. A bombarded type of Pierce electron gun is used. There are pre-focusing coil, deflecting coil, steering coil and beam pulse lead cutting coil in drift tube region. They control electron beam efficiently for ARC, ADC and BLC of the accelerator. ARC and ADC can increase stability and reliability of the accelerator operation, and BLC improves energy spectrum of the back feed accelerator

  11. A steam inerting system for hydrogen disposal for the Vandenberg Shuttle

    Science.gov (United States)

    Belknap, Stuart B.

    1988-01-01

    A two-year feasibility and test program to solve the problem of unburned confined hydrogen at the Vandenberg Space Launch Complex Six (SLC-6) during Space Shuttle Main Engine (SSME) firings is discussed. A novel steam inerting design was selected for development. Available sound suppression water is superheated to flash to steam at the duct entrance. Testing, analysis, and design during 1987 showed that the steam inerting system (SIS) solves the problem and meets other flight-critical system requirements. The SIS design is complete and available for installation at SLC-6 to support shuttle or derivative vehicles.

  12. Swirl Coaxial Injector Testing with LOX/RP-J

    Science.gov (United States)

    Greene, Sandra Elam; Casiano, Matt

    2013-01-01

    Testing was conducted at NASA fs Marshall Space Flight Center (MSFC) in the fall of 2012 to evaluate the operation and performance of liquid oxygen (LOX) and kerosene (RP ]1) in an existing swirl coaxial injector. While selected Russian engines use variations of swirl coaxial injectors, component level performance data has not been readily available, and all previously documented component testing at MSFC with LOX/RP ]1 had been performed using a variety of impinging injector designs. Impinging injectors have been adequate for specific LOX/RP ]1 engine applications, yet swirl coaxial injectors offer easier fabrication efforts, providing cost and schedule savings for hardware development. Swirl coaxial elements also offer more flexibility for design changes. Furthermore, testing with LOX and liquid methane propellants at MSFC showed that a swirl coaxial injector offered improved performance compared to an impinging injector. So, technical interest was generated to see if similar performance gains could be achieved with LOX/RP ]1 using a swirl coaxial injector. Results would allow such injectors to be considered for future engine concepts that require LOX/RP ]1 propellants. Existing injector and chamber hardware was used in the test assemblies. The injector had been tested in previous programs at MSFC using LOX/methane and LOX/hydrogen propellants. Minor modifications were made to the injector to accommodate the required LOX/RP ]1 flows. Mainstage tests were performed over a range of chamber pressures and mixture ratios. Additional testing included detonated gbombs h for stability data. Test results suggested characteristic velocity, C*, efficiencies for the injector were 95 ]97%. The injector also appeared dynamically stable with quick recovery from the pressure perturbations generated in the bomb tests.

  13. Steam generation: fossil-fired systems: utility boilers; industrial boilers; boiler auxillaries; nuclear systems: boiling water; pressurized water; in-core fuel management; steam-cycle systems: condensate/feedwater; circulating water; water treatment

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A survey of development in steam generation is presented. First, fossil-fired systems are described. Progress in the design of utility and industrial boilers as well as in boiler auxiliaries is traced. Improvements in coal pulverizers, burners that cut pollution and improve efficiency, fans, air heaters and economisers are noted. Nuclear systems are then described, including the BWR and PWR reactors, in-core fuel management techniques are described. Finally, steam-cycle systems for fossil-fired and nuclear power plants are reviewed. Condensate/feedwater systems, circulating water systems, cooling towers, and water treatment systems are discussed

  14. Development of data management system for steam generator inspection

    International Nuclear Information System (INIS)

    Jung, Yong Moo; Im, Chang Jae; Lee, Yoon Sang; Kang, Soon Joo; An, Jong Kwan

    1994-06-01

    The data communications environment for transferring Nuclear Power Plant Steam Generator Eddy Current testing data was investigated and after connecting LAN to Hinet-F network, the remote data transfer with the speed of 56 kbps was tested successfully. Data management system for Steam Generator Eddy current testing was also developed by using HP-UX, RMB (Rock Mountain Basic) 21 figs, 13 tabs, 5 refs. (Author)

  15. Development of data management system for steam generator inspection

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Moo; Im, Chang Jae; Lee, Yoon Sang; Kang, Soon Joo; An, Jong Kwan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    The data communications environment for transferring Nuclear Power Plant Steam Generator Eddy Current testing data was investigated and after connecting LAN to Hinet-F network, the remote data transfer with the speed of 56 kbps was tested successfully. Data management system for Steam Generator Eddy current testing was also developed by using HP-UX, RMB (Rock Mountain Basic) 21 figs, 13 tabs, 5 refs. (Author).

  16. Injector of solid indicator

    Energy Technology Data Exchange (ETDEWEB)

    Chernyshev, G.I.; Luk' yanov, E.P.; Pruslin, Y.A.; Zabrodin, P.I.

    1981-04-25

    The injector can be used with remote introduction of indicators into a borehole for study in an oil well of the parameters of movement of fluid currents, control of the state of the equipment, and study of the properties of the rocks. Proposed is a method of increasing the reliability of operation of the injector by stabilizing the rate of its dispersing. Introduced to the injector of a solid indicator are auxiliary brackets and a cathode made from nonmetallic electrical conducting material and reinforced at the end by an elastic bracket. The auxillary cathode is attached to the end surface of the anode and cathode.

  17. Microwave proton source development for a high-current linac injector

    International Nuclear Information System (INIS)

    Sherman, J.; Bolme, G.; Geisik, C.

    1995-01-01

    Powerful CW proton linear accelerators (100-mA at 0.5--1.0 GeV) are being proposed for spallation neutron-source applications. A 75-keV, 110-mA dc proton injector using a microwave ion source is being tested for these applications. It has achieved 80-keV, 110-mA hydrogen-ion-beam operation. Video and dc beam-current toroid diagnostics are operational, and an EPICS control system is also operational on the 75-keV injector. A technical base development program has also been carried out on a 50-keV injector obtained from Chalk River Laboratories, and it includes low-energy beam transport studies, ion source lifetime tests, and proton-fraction enhancement studies. Technical base results and the present status of the 75-keV injector will be presented

  18. Initial operation of the new bevatron local injector

    International Nuclear Information System (INIS)

    Staples, J.; Dwinell, R.; Gough, R.

    1985-01-01

    Initial operational characteristics of a new Bevatron injector system are described. It is capable of providing an independent source of ions to the Bevatron through mass 40. The new injector consists of a sputter ion PIG source, operating on a 60 kV DC platform, an RFQ linac, and two Alvarez linacs, all operating at 199 MHz. Beams with q/A greater than or equal to 0.14 are accelerated to 200 keV/n in the RFQ and to 800 keV/n in the first Alvarez tank. Each Alvarez operates in the 2βlambda mode, and each is followed by a foil stripper. Beams with a q/A greater than or equal to 0.32 are accelerated through the second Alvarez to 5 MeV/n, fully stripped, and injected into the Bevatron. Because the Bevatron can be efficiently switched between this injector and the Super HILAC injector, a more efficient operations schedule is made possible to meet the increasingly diverse needs of the Biomedical and Nuclear Science research programs

  19. Design of a tritium pellet injector for TFTR

    International Nuclear Information System (INIS)

    Milora, S.L.; Gouge, M.J.; Fisher, P.W.; Combs, S.K.; Cole, M.J.; Wysor, R.B.; Fehling, D.T.; Foust, C.R.; Baylor, L.R.; Schmidt, G.L.; Barnes, G.W.; Persing, R.G.

    1991-01-01

    The TFTR tritium pellet injector (TPI) is designed to provide a tritium pellet fueling capability with pellet speeds in the 1- to 3 km/s-range for the TFTR D-T phase. The existing TFTR deuterium pellet injector is being modified at Oak Ridge National Laboratory to provide a fourshot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns a two -stage light gas gun driver. The pipe gun concept has been qualified for tritium operation by the tritium proof-of-principle injector experiments conducted on the Tritium Systems Test Assembly at Los Alamos National Laboratory. In these experiments, tritium and D-T pellets were accelerated to speeds near 1.5 km/s. The TPI is being designed for pellet sizes in the range from 3.43 to 4.0 mm in diameter in arbitrarily programmable firing sequences at speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation will be controlled by a programmable logic controller. 7 refs., 4 figs

  20. Initial operation of the new Bevatron local injector

    International Nuclear Information System (INIS)

    Staples, J.; Dwinell, R.; Gough, R.

    1985-05-01

    Initial operational characteristics of a new Bevatron injector system are described. It is capable of providing an independent source of ions to the Bevatron through mass 40. The new injector consists of a sputter ion PIG source, operating on a 60 kV dc platform, an RFQ linac, and two Alvarez linacs, all operating at 199 MHz. Beams with q/A greater than or equal to 0.14 are accelerated to 200 keV/n in the RFQ and to 800 keV/n in the first Alvarez tank. Each Alvarez operates in the 2βlambda mode, and each is followed by a foil stripper. Beams with a q/A greater than or equal to 0.32 are accelerated through the second Alvarez to 5 MeV/n, fully stripped, and injected into the Bevatron. Because the Bevatron can be efficiently switched between this injector and the SuperHILAC injector, a more efficient operations schedule is made possible to meet the increasingly diverse needs of the Biomedical and Nuclear Science research programs. 5 refs

  1. Study on biodiesel heat transfer through self-temperature limit injector during vehicle cold start

    Directory of Open Access Journals (Sweden)

    Wang Jun

    2015-01-01

    Full Text Available A type of Self-Temperature Limit-Injector (STL- injector is proposed to reduce the biodiesel consumption and emission in vehicle cold start process. The STL-injector is capable of fast raising fuel temperature, which helps improve the quality of diesel spray and its combustion efficiency. A STL-injector model is established with consideration of electro-mechanic coupling and fluid-structure interaction. A transient simulation is conducted using dynamic grid technology. The results show that STL-injector can effectively raise biodiesel temperature to 350K from 300K in 32 seconds. That is to say, adding STL-injector to existing biodiesel combustion system is an environment-friendly solution due to improving atomization and spray quality quickly.

  2. Elements of the system for RF power input into linear accelerator-injector for booster

    International Nuclear Information System (INIS)

    Mazurov, E.V.; Mal'tsev, I.G.; Shalashov, I.M.

    1981-01-01

    The elements of the original system for RF power input into 30 MeV linear accelerator-injector for the IHEP proton synchrotron booster are considered. A 3 dB coaxial directional coupler (T-bridge) is describedd. The characteristics of the bridge containing elements and the parameters of ballast matched load are given [ru

  3. Imitative modeling automatic system Control of steam pressure in the main steam collector with the influence on the main Servomotor steam turbine

    Science.gov (United States)

    Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.

    2017-11-01

    The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.

  4. Screening reactor steam/water piping systems for water hammer

    International Nuclear Information System (INIS)

    Griffith, P.

    1997-09-01

    A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

  5. DIAGNOSTICS AND REGENERATION OF COMMON RAIL INJECTORS

    Directory of Open Access Journals (Sweden)

    Łukasz KONIECZNY

    2015-03-01

    Full Text Available The article presents the methodology of Common Rail injector diagnostic, regeneration and regulation with use of professional test stands. The EPS 815 machine can be used to test and repair all BOSCH injectors fully satisfying the producer requirements and standards. The article describes an example injector diagnosis with use of such test stand and additionally presents appropriate injector regeneration and encoding techniques

  6. Synthesis and optimization of steam system networks. 2. Multiple steam levels

    CSIR Research Space (South Africa)

    Price, T

    2010-08-01

    Full Text Available The use of steam in heat exchanger networks (HENs) can be reduced by the application of heat integration with the intention of debottlenecking the steam boiler and indirectly reducing the water requirement [Coetzee and Majozi. Ind. Eng. Chem. Res...

  7. Simulation of Assembly Tolerance and Characteristics of High Pressure Common Rail Injector

    Directory of Open Access Journals (Sweden)

    Jiping Lu

    2011-12-01

    Full Text Available Fuel injector is the key part of a high-pressure common rail fuel injection system. Its manufacturing precision and assembly quality affect system's property and performance. According to the characteristics and demands of assembly of the fuel injector, an intelligent optimization algorithm is proposed to resolve the problem of assembly sequence planning. Based on geometric modeling, assembly dimension chain of the injector control chamber is established, and the relationship between assembly tolerance and volume change of control chamber is analyzed. The optimization model of the assembly is established. The impact of assembly tolerance on injector's performance is simulated according to the optimization algorithm. The simulation result shows that quantity of injection fuel changes correspondingly with the change of assembly tolerance, while injection rate and pressure do not change significantly, and the response rate of needle considerably slow. Similarly, the leakage rate of fuel in control chamber is calculated, indicating that the assembly tolerance has obvious impact on fuel leakage and its rate. The study illuminates that injector's assembly tolerance has prominent effect on injection.

  8. Lithium Pellet Injector Development for NSTX

    International Nuclear Information System (INIS)

    Gettelfinger, G.; Dong, J.; Gernhardt, R.; Kugel, H.; Sichta, P.; Timberlake, J.

    2003-01-01

    A pellet injector suitable for the injection of lithium and other low-Z pellets of varying mass into plasmas at precise velocities from 5 to 500 m/s is being developed for use on NSTX (National Spherical Torus Experiment). The ability to inject low-Z impurities will significantly expand NSTX experimental capability for a broad range of diagnostic and operational applications. The architecture employs a pellet-carrying cartridge propelled through a guide tube by deuterium gas. Abrupt deceleration of the cartridge at the end of the guide tube results in the pellet continuing along its intended path, thereby giving controlled reproducible velocities for a variety of pellets materials and a reduced gas load to the torus. The planned injector assembly has four hundred guide tubes contained in a rotating magazine with eight tubes provided for injection into plasmas. A PC-based control system is being developed as well and will be described elsewhere in these Proceedings. The development path and mechanical performance of the injector will be described

  9. Injector for the University of Maryland Electron Ring (UMER)

    Energy Technology Data Exchange (ETDEWEB)

    Kehne, D. E-mail: dkehne@gmu.edu; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O' Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I

    2001-05-21

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  10. Injector for the University of Maryland Electron Ring (UMER)

    Science.gov (United States)

    Kehne, D.; Godlove, T.; Haldemann, P.; Bernal, S.; Guharay, S.; Kishek, R.; Li, Y.; O'Shea, P.; Reiser, M.; Yun, V.; Zou, Y.; Haber, I.

    2001-05-01

    The electron beam injector constructed by FM technologies for the University of Maryland Electron Ring (UMER) program is described. The program will use an electron beam to model space-charge-dominated ion beams in a recirculating linac for heavy ion inertial fusion, as well as for high-current muon colliders. The injector consists of a 10 keV, 100 mA electron gun with 50-100 nsec pulse width and a repetition rate of 120 Hz. The e-gun system includes a 6-mask, rotatable aperture plate, a Rogowski current monitor, an ion pump, and a gate valve. The injector beamline consists of a solenoid, a five-quadrupole matching section, two diagnostic chambers, and a fast current monitor. An independent diagnostic chamber also built for UMER will be used to measure horizontal and vertical emittance, current, energy, energy spread, and the evolution of the beam envelope and profile along the injector beamline.

  11. SwissFEL injector conceptual design report. Accelerator test facility for SwissFEL

    International Nuclear Information System (INIS)

    Pedrozzi, M.

    2010-07-01

    This comprehensive report issued by the Paul Scherrer Institute (PSI) in Switzerland takes a look at the design concepts behind the institute's SwissFEL X-ray Laser facility - in particular concerning the conceptual design of the injector system. The SwissFEL X-ray FEL project at PSI, involves the development of an injector complex that enables operation of a FEL system operating at 0.1 - 7 nm with permanent-magnet undulator technology and minimum beam energy. The injector pre-project was motivated by the challenging electron beam requirements necessary to drive the SwissFEL accelerator facility. The report takes a look at the mission of the test facility and its performance goals. The accelerator layout and the electron source are described, as are the low-level radio-frequency power systems and the synchronisation concept. The general strategy for beam diagnostics is introduced. Low energy electron beam diagnostics, the linear accelerator (Linac) and bunch compressor diagnostics are discussed, as are high-energy electron beam diagnostics. Wavelength selection for the laser system and UV pulse shaping are discussed. The laser room for the SwissFEL Injector and constructional concepts such as the girder system and alignment concepts involved are looked at. A further chapter deals with beam dynamics, simulated performance and injector optimisation. The facility's commissioning and operation program is examined, as are operating regimes, software applications and data storage. The control system structure and architecture is discussed and special subsystems are described. Radiation safety, protection systems and shielding calculations are presented and the lateral shielding of the silo roof examined

  12. Mitigation of steam generator tube rupture in a pressurized water reactor with passive safety systems

    Science.gov (United States)

    McDermott, Daniel J.; Schrader, Kenneth J.; Schulz, Terry L.

    1994-01-01

    The effects of steam generator tube ruptures in a pressurized water reactor are mitigated by reducing the pressure in the primary loop by diverting reactor coolant through the heat exchanger of a passive heat removal system immersed in the in containment refueling water storage tank in response to a high feed water level in the steam generator. Reactor coolant inventory is maintained by also in response to high steam generator level introducing coolant into the primary loop from core make-up tanks at the pressure in the reactor coolant system pressurizer. The high steam generator level is also used to isolate the start-up feed water system and the chemical and volume control system to prevent flooding into the steam header. 2 figures.

  13. Steam systems in industry: Energy use and energy efficiency improvement potentials

    International Nuclear Information System (INIS)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO(sub 2) emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO(sub 2) emissions equivalent to 12-13 MtC

  14. Present status of the negative ion sources and injectors at JAERI tandem accelerator facility

    International Nuclear Information System (INIS)

    Minehara, E.; Yoshida, T.; Abe, S.

    1988-01-01

    The JAERI tandem accelerator began regular operation with the 350 kV negative ion jnjector and 3 kinds of nagative ion sources (Direct Extraction Duoplasmatron Ion Source, Heinickie Penning Ion Source, Negative Ion Sputter Source (Refocus-UNIS)) since 1982. An extension with the injector was constructed in 1984, (1) to increase reliability of all devices in the injector, (2) to exclude completely any unsafe operation in the injector, and (3) to tune several ion sources simultaneously, while a certain ion source is in operation. After the extended injector became available, we have been able to run the whole injector system very safely, steadily and effectively, and have had few troubles. Currently, the second injector has been constructed in order to obtain a full strength of resistance against any sudden troubles in the injector. Several other operational and developmental items will be discussed in the text briefly. (author)

  15. Real Time Monitoring of Diesel Engine Injector Waveforms for Accurate Fuel Metering and Control

    Directory of Open Access Journals (Sweden)

    Q. R. Farooqi

    2013-01-01

    Full Text Available This paper presents the development, experimentation, and validation of a reliable and robust system to monitor the injector pulse generated by an engine control module (ECM which can easily be calibrated for different engine platforms and then feedback the corresponding fueling quantity to the real-time computer in a closed-loop controller in the loop (CIL bench in order to achieve optimal fueling. This research utilizes field programmable gate arrays (FPGA and direct memory access (DMA transfer capability to achieve high speed data acquisition and delivery. This work is conducted in two stages: the first stage is to study the variability involved in the injected fueling quantity from pulse to pulse, from injector to injector, between real injector stators and inductor load cells, and over different operating conditions. Different thresholds have been used to find out the best start of injection (SOI threshold and the end of injection (EOI threshold that capture the injector “on-time” with best reliability and accuracy. Second stage involves development of a system that interprets the injector pulse into fueling quantity. The system can easily be calibrated for various platforms. Finally, the use of resulting correction table has been observed to capture the fueling quantity with highest accuracy.

  16. Operating experience of the EBR-II steam generating system

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Quilici, M.D.; Radtke, W.H.

    1981-01-01

    The Experimental Breeder Reactor II (EBR-II) is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C (820 F) and 8.62 MPa (1250 psi). The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. Safety and reliability are maximized by using duplex tubes and tubesheets. The performance of the system has been excellent and essentially trouble free. The operating experience of EBR-II provides confidence that the technology can be applied to commercial LMFBR's for an abundant supply of energy for the future. 5 refs

  17. Design of fault tolerant control system for steam generator using

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Ki; Seo, Mi Ro [Korea Electric Power Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A controller and sensor fault tolerant system for a steam generator is designed with fuzzy logic. A structure of the proposed fault tolerant redundant system is composed of a supervisor and two fuzzy weighting modulators. A supervisor alternatively checks a controller and a sensor induced performances to identify which part, a controller or a sensor, is faulty. In order to analyze controller induced performance both an error and a change in error of the system output are chosen as fuzzy variables. The fuzzy logic for a sensor induced performance uses two variables : a deviation between two sensor outputs and its frequency. Fuzzy weighting modulator generates an output signal compensated for faulty input signal. Simulations show that the proposed fault tolerant control scheme for a steam generator regulates well water level by suppressing fault effect of either controllers or sensors. Therefore through duplicating sensors and controllers with the proposed fault tolerant scheme, both a reliability of a steam generator control and sensor system and that of a power plant increase even more. 2 refs., 9 figs., 1 tab. (Author)

  18. Radiation analysis of the CIT (Compact Ignition Tokamak) pellet injector system and its impact on personnel access

    Energy Technology Data Exchange (ETDEWEB)

    Selcow, E.C.; Stevens, P.N.; Gomes, I.C.; Gomes, L.M.

    1987-01-01

    Conceptual design of the Compact Ignition Tokamak (CIT) is near completion. This short-pulse ignition experiment is planned to follow the operations of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The high neutron wall loadings, /approximately/4-5 MW/m/sup 2/, associated with the operation of this device require that neutronics-related issues be considered in the overall system design. Radiation shielding is required for the protection of device components and personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure, and the entire experiment is housed in a circular test cell facility with a radius of /approximately/12 m. The most critical radiation concern in the CIT design process relates to the numerous penetrations in the device. This paper discusses the impact of a major penetration on the design and operations of the CIT pellet injection system. The pellet injector is a major component, which has a line-of-sight penetration through the igloo and test cell wall. All current options for maintenance of the injector require personnel access. A nuclear analysis has been performed to determine the feasibility of hands-on access. Results indicate that personnel access to the pellet injector glovebox is possible. 10 refs., 3 figs., 3 tabs.

  19. 49 CFR 230.57 - Injectors and feedwater pumps.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Injectors and feedwater pumps. 230.57 Section 230... Appurtenances Injectors, Feedwater Pumps, and Flue Plugs § 230.57 Injectors and feedwater pumps. (a) Water.... Injectors and feedwater pumps must be kept in good condition, free from scale, and must be tested at the...

  20. Correction of Pressure Drop in Steam and Water System in Performance Test of Boiler

    Science.gov (United States)

    Liu, Jinglong; Zhao, Xianqiao; Hou, Fanjun; Wu, Xiaowu; Wang, Feng; Hu, Zhihong; Yang, Xinsen

    2018-01-01

    Steam and water pressure drop is one of the most important characteristics in the boiler performance test. As the measuring points are not in the guaranteed position and the test condition fluctuation exsits, the pressure drop test of steam and water system has the deviation of measuring point position and the deviation of test running parameter. In order to get accurate pressure drop of steam and water system, the corresponding correction should be carried out. This paper introduces the correction method of steam and water pressure drop in boiler performance test.

  1. ANL high resolution injector

    International Nuclear Information System (INIS)

    Minehara, E.; Kutschera, W.; Hartog, P.D.; Billquist, P.

    1985-01-01

    The ANL (Argonne National Laboratory) high-resolution injector has been installed to obtain higher mass resolution and higher preacceleration, and to utilize effectively the full mass range of ATLAS (Argonne Tandem Linac Accelerator System). Preliminary results of the first beam test are reported briefly. The design and performance, in particular a high-mass-resolution magnet with aberration compensation, are discussed. 7 refs., 5 figs., 2 tabs

  2. ILSE-ESQ injector scaled experiment

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Yu, S.; Grote, D.

    1993-01-01

    A 2 MeV, 800 mA, K + injector for the Heavy Ion Fusion Induction Linac Systems Experiments (ISLE) is under development at LBL. It consists of a 500keV-1MeV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ). One of the key issues for the ESQ centers around the control of beam aberrations due to the open-quotes energy effectclose quotes: in a strong electrostatic quadrupole field, ions at beam edge will have energies very different from those on the axis. The resulting kinematic distortions lead to S-shaped phase spaces, which, if uncorrected, will lead eventually to emittance growth. These beam aberrations can be minimized by increasing the injection energy and/or strengthening the beam focusing. It may also be possible to compensate for the open-quotes energy effectclose quotes by proper shaping of the quadrupoles electrodes. In order to check the physics of the open-quotes energy effectclose quotes of the ESQ design a scaled experiment has been designed that will accommodate the parameters of the source, as well as the voltage limitations, of the Single Beam Transport Experiment (SBTE). Since the 500 KeV pre-injector delivers a 4 cm converging beam, a quarter-scale experiment will fit the 1 cm converging beam of the SBTE source. Also, a 10 mA beam in SBTE, and the requirement of equal perveance in both systems, forces all the voltages to scale down by a factor 0.054. Results from this experiment and corresponding 3D PIC simulations will be presented

  3. Influence of injector technology on injection and combustion development - Part 1: Hydraulic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Payri, R.; Salvador, F.J.; Gimeno, J.; Morena, J. de la [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, E-46022 (Spain)

    2011-04-15

    An experimental study of two real multi-hole Diesel injectors is performed under current DI Diesel engine operating conditions. The aim of the investigation is to study the influence of injector technology on the flow at the nozzle exit and to analyse its effect on the spray in evaporative conditions and combustion development. The injectors used are two of the most common technologies used nowadays: solenoid and piezoelectric. The nozzles for both injectors are very similar since the objective of the work is the understanding of the influence of the injector technology on spray characteristics for a given nozzle geometry. In the first part of the study, experimental measurements of hydraulic characterization have been analyzed for both systems. Analysis of spray behaviour in evaporative conditions and combustion development will be carried out in the second part of the work. Important differences between both injectors have been observed, especially in their transient opening and closing of the needle, leading to a more efficient air-fuel mixing and combustion processes for the piezoelectric actuated injector. (author)

  4. First operational experience with the positive-ion injector of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Pardo, R.C.; Shepard, K.W.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Harkewicz, R.; Joh, K.; Markovich, P.K.; Munson, F.H.; Zinkann, G.; Nolen, J.A.

    1992-01-01

    A Positive-Ion Injector (PH) designed to enable ATLAS to accelerate all stable nuclei has been completed and successfully tested. This new injector system consists of an ECR source on a 350-kV platform coupled to a 12-MV superconducting injector linac formed with four different types of independently-phased 4-gap accelerating structures. The injector linac is configured to be optimum for the acceleration of uranium ions from 0.029 to ∼ 1.1 MeV/u. When ions with q/A > 0. 1 are accelerated by PII and injected into the main ATLAS linac, CW beams with energies over 6 MeV/u can be delivered to the experimental areas. Since its completion in March 1992, PII has been tested by accelerating 3O Si 7+ , 40 Ar ll+ , 132 Xe 13+ , and 208 Pb 24+ . For all of these, transmission through the injecter linac was ∼ 100% of the pre-bunched beam, which corresponds to ∼ 60% of the DC beam from the source. The accelerating fields of the superconducting resonators were somewhat greater than the design goals, and the whole system ran stably for long periods of time

  5. Numerical Simulation of Twin Nozzle Injectors

    OpenAIRE

    Milak, Dino

    2015-01-01

    Fuel injectors for marine applications have traditionally utilized nozzles with symmetric equispaced orifice configuration. But in light of the new marine emission legislations the twin nozzle concept has arisen. The twin nozzle differs from the conventional configuration by utilizing two closely spaced orifices to substitute each orifice in the conventional nozzle. Injector manufacturers regard twin nozzle injectors as a promising approach to facilitate stable spray patterns independent of t...

  6. An assessment of underground and aboveground steam system failures in the SRS waste tank farms

    International Nuclear Information System (INIS)

    Hsu, T.C.; Shurrab, M.S.; Wiersma, B.J.

    1997-01-01

    Underground steam system failures in waste tank farms at the Savannah River Site (SRS) increased significantly in the 3--4 year period prior to 1995. The primary safety issues created by the failures were the formation of sub-surface voids in soil and the loss of steam jet transfer and waste evaporation capability, and the loss of heating and ventilation to the tanks. The average annual cost for excavation and repair of the underground steam system was estimated to be several million dollars. These factors prompted engineering personnel to re-consider long-term solutions to the problem. The primary cause of these failures was the inadequate thermal insulation utilized for steam lines associated with older tanks. The failure mechanisms were either pitting or localized general corrosion on the exterior of the pipe beneath the thermal insulation. The most realistic and practical solution is to replace the underground lines by installing aboveground steam systems, although this option will incur significant initial capital costs. Steam system components, installed aboveground in other areas of the tank farms have experienced few failures, while in continuous use. As a result, piecewise installation of temporary aboveground steam systems have been implemented in F-area whenever opportunities, i.e., failures, present themselves

  7. Impact of palm biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Fazal, M.A.; Khan, Abdul Faheem; Fayaz, H.; Varman, M.

    2013-01-01

    Highlights: • 250 h Endurance test on 2 fuel samples; diesel fuel and PB20. • Visual inspection of injectors running on DF and PB20 showed deposit accumulation. • SEM and EDS analysis showed less injector deposits for DF compared to PB20 blend. • Engine oil analysis showed higher value of wear particles for PB20 compared to DF. - Abstract: During short term engine operation, renewable fuels derived from vegetable oils, are capable of providing good engine performance. In more extended operations, some of the same fuels can cause degradation of engine performance, excessive carbon and lacquer deposits and actual damage to the engine. Moreover, temperatures in the area of the injector tip due to advanced diesel injection systems may lead to particularly stubborn deposits at and around the injector tip. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline and PB20 (20% palm biodiesel and 80% DF) in a single cylinder CI engine. The effects of DF and PB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors during running on both fuels. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis showed greater carbon deposits on and around the injector tip for PB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations, decreased viscosity and increased density values when the engine was fuelled with PB20. Finally, fuel economy and emission results during the endurance test showed higher brake specific fuel consumption (bsfc) and NO x emissions, and lower HC and CO emissions, for the PB20 blend compared to DF

  8. Detailed Measurement of ORSC Main Chamber Injector Dynamics

    Science.gov (United States)

    Bedard, Michael J.

    Improving fidelity in simulation of combustion dynamics in rocket combustors requires an increase in experimental measurement fidelity for validation. In a model rocket combustor, a chemiluminescence based spectroscopy technique was used to capture flame light emissions for direct comparison to a computational simulation of the production of chemiluminescent species. The comparison indicated that high fidelity models of rocket combustors can predict spatio-temporal distribution of chemiluminescent species with trend-wise accuracy. The comparison also indicated the limited ability of OH* and CH* emission to indicate flame heat release. Based on initial spectroscopy experiments, a photomultiplier based chemiluminescence sensor was designed to increase the temporal resolution of flame emission measurements. To apply developed methodologies, an experiment was designed to investigate the flow and combustion dynamics associated with main chamber injector elements typical of the RD-170 rocket engine. A unique feature of the RD-170 injector element is the beveled expansion between the injector recess and combustion chamber. To investigate effects of this geometry, a scaling methodology was applied to increase the physical scale of a single injector element while maintaining traceability to the RD-170 design. Two injector configurations were tested, one including a beveled injector face and the other a flat injector face. This design enabled improved spatial resolution of pressure and light emission measurements densely arranged in the injector recess and near-injector region of the chamber. Experimental boundary conditions were designed to closely replicate boundary conditions in simulations. Experimental results showed that the beveled injector face had a damping effect on pressure fluctuations occurring near the longitudinal resonant acoustic modes of the chamber, implying a mechanism for improved overall combustion stability. Near the injector, the beveled geometry

  9. 400-MWe consolidated nuclear steam system (CNSS): 1200-MWt/conceptual design

    International Nuclear Information System (INIS)

    1977-06-01

    A 1200-MWt consolidated nuclear steam system (CNSS) conceptual design is described. The concept, derived from nuclear merchant ship propulsion steam systems but distinctly different from those systems in detail, incorporates the steam generators within the reactor pressure vessel. This configuration eliminates primary coolant circulating piping external to the reactor pressure vessel since the primary coolant circulating pumps are mounted in the pressure vessel head. So arranged, the maximum piping break that must be assumed is that of the pressurizer surge line, which is substantially smaller than a primary coolant circulating line. A fracture of the pressurizer surge line would result in substantially lower mass and energy release rates of the primary coolant during the assumed loss-of-coolant accident. This in turn makes practical a pressure-suppression containment rather than the ''dry'' containment commonly used for pressurized water reactors

  10. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  11. Pellet injector research at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Foster, C.A.; Milora, S.L.

    1988-01-01

    Advanced plasma fueling systems for magnetic confinement devices are under development a the Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogen isotope pellets at speeds in the range 1-2 km/s and higher. Recently, ORNL provided pneumataic-based pellet fueling systems for two of the world's largest tokamak experiments, the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). A new versatile centrifuge type injector is being readied at ORNL for use on the Tore Supra tokamak. Also, a new simplified eight-shot injector design has been developed for use on the Princeton Beta Experiment (PBX) and the Advanced Toroidal Facility (ATF). In addition to these confinement physics related activities, ORNL is pursuing advanced technologies to achieve pellet velocities significantly in excess of 2 km/s and is carrying out a Tritium Proof-of-Principle (TPOP) experiment in which the fabrication and acceleration of tritium pellets have already been demonstrated. This paper describes these ongoing activities. 25 refs., 9 figs

  12. Water treatment in the EBR-II steam system

    International Nuclear Information System (INIS)

    Klein, M.A.; Hurst, H.

    1975-01-01

    Boiler-water treatment in the EBR-II steam system consists of demineralizing makeup water and using hydrazine to remove traces of oxygen and morpholine to adjust pH to 8.8-9.2. This treatment is called a ''zero-solids'' method, because the chemical agents and reaction products are either volatile or form water and do not contribute solids to the boiler water. A continuous blowdown is cooled, filtered, and deionized to remove impurities and maintain high purity of the water. If a cooling-water leak occurs, phosphate is added to control scaling, and the ''zero-solids'' eatment is suspended until the leak is repaired. Water streams are sampled at six points to control water purity. Examination of the steam drum and an evaporator show the metal surfaces to be in excellent condition with minimal corrosion. The EBR-II steam-generating plant has accumulated over 85,000 hours of in-service operation and has operated successfully for over ten years with the ''zero-solids'' treatment. (auth)

  13. Beam dynamics simulation of the S-DALINAC injector section

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Sylvain; Ackermann, Wolfgang; Weiland, Thomas [Institut fuer Theorie Elektromagnetischer Felder, Technische Universitaet Darmstadt, Darmstadt (Germany)

    2013-07-01

    In order to extend the experimental possibilities at the superconducting electron linear accelerator S-DALINAC a new polarized gun has recently been installed in addition to the well-established thermionic electron source. Beside the two electron sources the injector section consists of several short quadrupole triplets, an alpha magnet, a Wien filter and a chopper/prebuncher system. The setup of these components differs depending on whether bunched polarized electrons with kinetic energy in the 100 keV range are supplied by the polarized source or whether a continuous unpolarized 250 keV electron beam is extracted from the thermionic gun. The electrons pass through the injector at a relatively low energy and therefore are very sensitive to the beam forming elements in this section. Thus, a proper knowledge of the particle distribution at the exit of the injector section is essential for the quality of any simulation of the subsequent accelerator parts. In this contribution first numerical beam dynamics simulation results of the S-DALINAC injector setup are discussed.

  14. Production-log base model for carbonate permeability distribution and steam flood optimization

    Energy Technology Data Exchange (ETDEWEB)

    Ahamed, S.F.; Choudhry, M.A.; Abdulbaqi, J.B. [Kuwait Gulf Oil Co. (Kuwait)

    2008-10-15

    This paper presented a model for the effective management of primary and thermal oil recovery operations in the Wafra Field in Kuwait, where a small huff and puff project was carried out in 1998 to determine if steam injection was a feasible recovery option for the field. The Eocene heavy oil reservoirs of the Wafra Field are carbonate rock admixtures with gypsum and anhydrite. They are the shallowest of the field's productive horizons and exhibit a high degree of fluid flow heterogeneity. The assessment of vertical and lateral permeability variation is a key factor for success of the reservoir development plan. Steam injection began in 2006 in a small scale test (SST) to determine if the innovative technology could produce steam from effluent water and to test the viability of steam injection in carbonate reservoirs. Following the success of the SST, a large scale pilot (LSP) is schedule to start in 2009. It can be used for completion strategies of injectors and producers in steam injection. The model showed that the productivity of the Eocene wells could be correlated with common available logs to develop a log based-permeability model. A series of cross plots for the perforated intervals of high and low productivity wells were constructed to develop a relationship between well productivity and location of log parameters on the plots. A relationship between rock quality, productivity and conventional log parameters was established. It was concluded that the vertical permeability and interwell continuity in the Eocene wells can be used to optimize new well placement for horizontal and vertical infill drilling. The model is also an effective tool to predict the steam injectivity profile to understand the anomalies related to temperature-depth distribution. The model can be used to improve the efficiency of formation heating by optimizing the steam flood process and steam pattern well completion. 16 refs.

  15. 120-keV beam direct conversion system for TFTR injectors

    International Nuclear Information System (INIS)

    Hamilton, G.W.

    1976-01-01

    Several practical motivations exist for the development of beam direct conversion systems that are compatible with the injection systems of large experiments such as the Tokamak Fusion Test Reactor (TFTR). We present a preliminary design in which we analyze the most acute problems involved in scaling up existing designs and apparatus to fulfill TFTR requirements. Some of the questions addressed are the requirements for electron suppression, gas pumping, compactness, and power densities. A new idea is presented that allows for the handling of higher beam power. The gross savings in the capital cost of injector power supplies for the TFTR will be about $7.2 million, but the net savings will be somewhat less than this. This preliminary design has not yet revealed fundamental limitations with respect to the development of beam energy-recovery systems operating at high levels of current, voltage, and power densities

  16. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    Science.gov (United States)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  17. Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system

    Science.gov (United States)

    Yan, Fang; Pei, Shilun; Geng, Huiping; Meng, Cai; Zhao, Yaliang; Sun, Biao; Cheng, Peng; Yang, Zheng; Ouyang, Huafu; Li, Zhihui; Tang, Jingyu; Wang, Jianli; Sui, Yefeng; Dai, Jianping; Sha, Peng; Ge, Rui

    2015-05-01

    The 10 MeV accelerator-driven subcritical system (ADS) Injector I test stand at Institute of High Energy Physics (IHEP) is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC) spoke cavities with β =0.12 . The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β =0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ˜5 MeV . Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.

  18. Beam divergence scaling in neutral beam injectors

    International Nuclear Information System (INIS)

    Holmes, A.J.T.

    1976-01-01

    One of the main considerations in the design of neutral beam injectors is to monimize the divergence of the primary ion beam and hence maximize the beam transport and minimize the input of thermal gas. Experimental measurements of the divergence of a cylindrical ion beam are presented and these measurements are used to analyze the major components of ion beam divergence, namely: space charge expansion, gas-ion scattering, emittance and optical aberrations. The implication of these divergence components in the design of a neutral beam injector system is discussed and a method of maximizing the beam current is described for a given area of source plasma

  19. Experimental and Numerical Investigations of Surge Extension on a Centrifugal Compressor with Vaned Diffuser Using Steam Injection

    Directory of Open Access Journals (Sweden)

    Chuang Gao

    2017-01-01

    Full Text Available This paper presents the first report on surge extension with steam injection through both experimental and numerical simulation. The experimental section covers the test facility, instrumentation, and prestall modes comparison with and without steam injection. It is found that surge extension is not in proportion to injected steam. There exists an upper bound above which deteriorates the margin. Injection of less than 1% of the designed mass flow can bring about over 10% margin improvement. Test results also indicated that steam injection not only damps out prestall waves, but also changes prestall modes and traveling direction. At 90% speed, injection changed the prestall mode from spike to modal, while at 80% speed line, it made the forward traveling wave become backward. Through numerical simulation, location and number of injectors, molecular weight, and temperature of injected gas are modified to explore their influences on surge margin. Similar to the test results, there exists an upper bound for the amount of steam injected. The flow field investigation indicates that this bound is caused by the early trigger of flow collapse due to the injected steam which is similar to the tip leakage flow spillage caused spike stall in axial compressors.

  20. Conceptual study on advanced PWR system

    International Nuclear Information System (INIS)

    Bae, Yoon Young; Chang, M. H.; Yu, K. J.; Lee, D. J.; Cho, B. H.; Kim, H. Y.; Yoon, J. H.; Lee, Y. J.; Kim, J. P.; Park, C. T.; Seo, J. K.; Kang, H. S.; Kim, J. I.; Kim, Y. W.; Kim, Y. H.

    1997-07-01

    In this study, the adoptable essential technologies and reference design concept of the advanced reactor were developed and related basic experiments were performed. 1) Once-through Helical Steam Generator: a performance analysis computer code for heli-coiled steam generator was developed for thermal sizing of steam generator and determination of thermal-hydraulic parameters. 2) Self-pressurizing pressurizer : a performance analysis computer code for cold pressurizer was developed. 3) Control rod drive mechanism for fine control : type and function were surveyed. 4) CHF in passive PWR condition : development of the prediction model bundle CHF by introducing the correction factor from the data base. 5) Passive cooling concepts for concrete containment systems: development of the PCCS heat transfer coefficient. 6) Steam injector concepts: analysis and experiment were conducted. 7) Fluidic diode concepts : analysis and experiment were conducted. 8) Wet thermal insulator : tests for thin steel layers and assessment of materials. 9) Passive residual heat removal system : a performance analysis computer code for PRHRS was developed and the conformance to EPRI requirement was checked. (author). 18 refs., 55 tabs., 137 figs

  1. Conceptual study on advanced PWR system

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Young; Chang, M H; Yu, K J; Lee, D J; Cho, B H; Kim, H Y; Yoon, J H; Lee, Y J; Kim, J P; Park, C T; Seo, J K; Kang, H S; Kim, J I; Kim, Y W; Kim, Y H

    1997-07-01

    In this study, the adoptable essential technologies and reference design concept of the advanced reactor were developed and related basic experiments were performed. (1) Once-through Helical Steam Generator: a performance analysis computer code for heli-coiled steam generator was developed for thermal sizing of steam generator and determination of thermal-hydraulic parameters. (2) Self-pressurizing pressurizer : a performance analysis computer code for cold pressurizer was developed. (3) Control rod drive mechanism for fine control : type and function were surveyed. (4) CHF in passive PWR condition : development of the prediction model bundle CHF by introducing the correction factor from the data base. (5) Passive cooling concepts for concrete containment systems: development of the PCCS heat transfer coefficient. (6) Steam injector concepts: analysis and experiment were conducted. (7) Fluidic diode concepts : analysis and experiment were conducted. (8) Wet thermal insulator : tests for thin steel layers and assessment of materials. (9) Passive residual heat removal system : a performance analysis computer code for PRHRS was developed and the conformance to EPRI requirement was checked. (author). 18 refs., 55 tabs., 137 figs.

  2. RELAP/MOD1.5 analysis of steam line break transients for a 3-loop and a 4-loop Westinghouse nuclear steam supply system

    International Nuclear Information System (INIS)

    Peeler, G.B.; McDonald, T.A.; Kennedy, M.F.

    1984-01-01

    RELAP/MOD1.5 (Cycle 31 and 34) calculations were made to assess the assumptions used by Westinghouse (W) to analyze mainsteam line break transients. Models of a W 3-loop and 4-loop nuclear steam supply system were used. Sensitivity studies were performed to determine the effect of the availability of offsite power, break size and initial core power. Comparison with W results indicated that if the assumptions used by W are replicated within the RELAP5 framework, then the W methodology for prediction of the Nuclear Steam Supply System (NSSS) response is conservative for steam line break transients

  3. Final design of the beam source for the MITICA injector

    Energy Technology Data Exchange (ETDEWEB)

    Marcuzzi, D., E-mail: diego.marcuzzi@igi.cnr.it; Agostinetti, P.; Dalla Palma, M.; De Muri, M.; Chitarin, G.; Gambetta, G.; Marconato, N.; Pasqualotto, R.; Pavei, M.; Pilan, N.; Rizzolo, A.; Serianni, G.; Toigo, V.; Trevisan, L.; Visentin, M.; Zaccaria, P.; Zaupa, M. [Consorzio RFX, Corso Stati Uniti, 4, I-35127 Padova (Italy); Boilson, D.; Graceffa, J.; Hemsworth, R. S. [ITER Organization, Route de Vinon-sur-Verdon, 13067 St Paul Lez Durance (France); and others

    2016-02-15

    The megavolt ITER injector and concept advancement experiment is the prototype and the test bed of the ITER heating and current drive neutral beam injectors, currently in the final design phase, in view of the installation in Padova Research on Injector Megavolt Accelerated facility in Padova, Italy. The beam source is the key component of the system, as its goal is the generation of the 1 MeV accelerated beam of deuterium or hydrogen negative ions. This paper presents the highlights of the latest developments for the finalization of the MITICA beam source design, together with a description of the most recent analyses and R&D activities carried out in support of the design.

  4. Studies on turbulence structure and liquid film behavior in annular two-phase flow flowing in a throat section

    International Nuclear Information System (INIS)

    Yoshida, Kenji; Miyabe, Masaya; Matsumoto, Tadayoshi; Kataoka, Isao; Ohmori, Shuichi; Mori, Michitsugu

    2004-01-01

    Experimental studies on turbulence structure and liquid film behavior in annular two-phase flow were carried out concerned with the steam injector systems for a next-generation nuclear reactor. In the steam injector, steam/water annular two-phase flow is formed at the mixing nozzle. To make an appropriate design for high-performance steam injector system, it is very important to accumulate the fundamental data of thermo-hydro dynamic characteristics of annular flow in the steam injector. Especially, the turbulence modification in multi-phase flow due to the phase interaction is one of the most important phenomena and has attracted research attention. In this study, the liquid film behavior and the resultant turbulence modification due to the phase interaction were investigated. The behavior of the interfacial waves on liquid film flow such as the ripple or disturbance waves were observed to make clear the interfacial velocity and the special structure of the interfacial waves by using the high-speed video camera and the digital camera. The measurements for gas-phase velocity profiles and turbulent intensity in annular flow passing through the throat section were precisely performed to investigate quantitatively the turbulent modification in annular flow by using the constant temperature hot-wire anemometer. The measurements for liquid film thickness by the electrode needle method were also carried out. (author)

  5. Effects of the steam chest on steamhammer analysis for nuclear piping systems

    International Nuclear Information System (INIS)

    Luk, C.

    1975-01-01

    When applying the method of characteristics for the steamhammer analysis of a nuclear piping system, if the dynamic fluid behavior in the steam chest is not considered, the boundary condition thus formulated to describe the time-dependent fluid behavior of the steam chest would lead to numerical unstable solution. To overcome this difficulty, the dynamic fluid behavior in the steam chest can be described by a single degree mechanical system. The corresponding flow conditions there are then determined by the time-step amplification method. This dynamic boundary condition reduces the calculated steamhammer loads and helps avoid numerical instability problems in the computing procedure. 4 refs

  6. Nuclear steam supply system and method of installation

    International Nuclear Information System (INIS)

    Tower, S.N.; Christenson, J.A.; Braun, H.E.

    1989-01-01

    This patent describes a method of providing a nuclear reactor power plant at a predetermined use site accessible by predetermined navigable waterways. The method is practiced with apparatus including a nuclear reactor system. The system has a nuclear steam-supply section. The method consists of: constructing a nuclear reactor system at a manufacturing site remote from the predetermined use site but accessible to the predetermined waterways for transportation from the manufacturing site to the predetermined use site, the nuclear reactor system including a barge with the nuclear steam supply section constructed integrally with the barge. Simultaneously with the construction of the nuclear reactor system, constructing facilities at the use site to be integrated with the nuclear reactor system to form the nuclear-reactor power plant; transporting the nuclear reactor system along the waterways to the predetermined use site; at the use site joining the removal parts of the altered nuclear reactor system to the remainder of the altered nuclear reactor system to complete the nuclear reactor system; and installing the nuclear reactor system at the predetermined use site and integrating the nuclear reactor system to interact with the facilities constructed at the predetermined use site to form the nuclear-reactor power plant

  7. Makeup water system performance and impact on PWR steam generator corrosion

    International Nuclear Information System (INIS)

    Bell, M.J.; Sawocha, S.G.; Smith, L.A.

    1984-01-01

    The object of this EPRI-funded project was to assess the possible relation of pressurized water reactor (PWR) steam generator corrosion at fresh water sites to makeup water impurity ingress. Makeup water system design, operation and performance reviews were based on site visits, plant design documents, performance records and grab sample analyses. Design features were assessed in terms of their effect on makeup system performance. Attempts were made to correlate the makeup plant source water, system design characteristics, and typical makeup water qualities to steam generator corrosion observations, particularly intergranular attack (IGA). Direct correlations were not made since many variables are involved in the corrosion process and in the case of IGA, the variables have not been clearly established. However, the study did demonstrate that makeup systems can be a significant source of contaminants that are suspected to lead to both IGA and denting. Additionally, it was noted that typical makeup system performance with respect to organic removal was not good. The role of organics in steam generator damage has not been quantified and may deserve further study

  8. Instrumentation and control of the Doublet III Neutral Beam Injector System

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, J.C.; Moore, C.D.; Drobnis, D.D.; Elischer, V.P.; Kilgore, R.; Uber, D.

    1980-03-01

    The hardware and software required for the operation of the Doublet III Neutral Beam Injector System (NBIS) are described. Development and implementation of this Instrumentation and Control System was divided between the major participants - General Atomic Company and Lawrence Berkeley Laboratory. The subdivision of responsibilities and the coordination of the participants' activities are described with reference to hardware and software requirements in support of the entire system. Included are a description of the operators' consoles, the interlock system and the CAMAC system. One feature of the control software is source modeling. This feature includes feedback on a shot to shot basis and adaptive control. Adaptive control permits the computer system to automatically adjust parameters after a shot, and to control the system to automatically compensate for time varying NBIS components. The Neutral Beam Power Supply features power supply modeling, fiber optic transmission of analog signals and digital control of power supply power-up/interlocks.

  9. Instrumentation and control of the Doublet III Neutral Beam Injector System

    International Nuclear Information System (INIS)

    Kohli, J.C.; Moore, C.D.; Drobnis, D.D.; Elischer, V.P.; Kilgore, R.; Uber, D.

    1980-03-01

    The hardware and software required for the operation of the Doublet III Neutral Beam Injector System (NBIS) are described. Development and implementation of this Instrumentation and Control System was divided between the major participants - General Atomic Company and Lawrence Berkeley Laboratory. The subdivision of responsibilities and the coordination of the participants' activities are described with reference to hardware and software requirements in support of the entire system. Included are a description of the operators' consoles, the interlock system and the CAMAC system. One feature of the control software is source modeling. This feature includes feedback on a shot to shot basis and adaptive control. Adaptive control permits the computer system to automatically adjust parameters after a shot, and to control the system to automatically compensate for time varying NBIS components. The Neutral Beam Power Supply features power supply modeling, fiber optic transmission of analog signals and digital control of power supply power-up/interlocks

  10. Fundamental rocket injector/spray programs at the Phillips Laboratory

    Science.gov (United States)

    Talley, D. G.

    1993-11-01

    The performance and stability of liquid rocket engines is determined to a large degree by atomization, mixing, and combustion processes. Control over these processes is exerted through the design of the injector. Injectors in liquid rocket engines are called upon to perform many functions. They must first of all mix the propellants to provide suitable performance in the shortest possible length. For main injectors, this is driven by the tradeoff between the combustion chamber performance, stability, efficiency, and its weight and cost. In gas generators and preburners, however, it is also driven by the possibility of damage to downstream components, for example piping and turbine blades. This can occur if unburned fuel and oxidant later react to create hot spots. Weight and cost considerations require that the injector design be simple and lightweight. For reusable engines, the injectors must also be durable and easily maintained. Suitable atomization and mixing must be produced with as small a pressure drop as possible, so that the size and weight of pressure vessels and turbomachinery can be minimized. However, the pressure drop must not be so small as to promote feed system coupled instabilities. Another important function of the injectors is to ensure that the injector face plate and the chamber and nozzle walls are not damaged. Typically this requires reducing the heat transfer to an acceptable level and also keeping unburned oxygen from chemically attacking the walls, particularly in reusable engines. Therefore the mixing distribution is often tailored to be fuel-rich near the walls. Wall heat transfer can become catastrophically damaging in the presence of acoustic instabilities, so the injector must prevent these from occurring at all costs. In addition to acoustic stability (but coupled with it), injectors must also be kinetically stable. That is, the flame itself must maintain ignition in the combustion chamber. This is not typically a problem with main

  11. Pellet injector development at ORNL

    International Nuclear Information System (INIS)

    Milora, S.L.; Argo, B.E.; Baylor, L.R.; Cole, M.J.; Combs, S.K.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Qualls, A.L.; Schechter, D.E.; Sparks, D.O.; Tsai, C.C.; Whealton, J.H.; Wilgen, J.B.; Schmidt, G.L.

    1992-01-01

    Plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). ORNL has recently provided a four-shot tritium pellet injector with up to 4-mm-diam capability for the Tokamak Fusion Test Reactor (TFTR). This injector, which is based on the in situ condensation technique for pellet formation, features three single-stage gas guns that have been qualified in deuterium at up to 1.7 km/s and a two-stage light gas gun driver that has been operated at 2.8-km/s pellet speeds for deep penetration in the high-temperature TFTR supershot regime. Performance improvements to the centrifugal pellet injector for the Tore Supra tokamak are being made by modifying the storage-type pellet feed system, which has been redesigned to improve the reliability of delivery of pellets and to extend operation to longer pulse durations (up to 400 pellets). Two-stage light gas guns and electron-beam (e-beam) rocket accelerators for speeds in the range from 2 to 10 km/s are also under development. A repeating, two-stage light gas gun that has been developed can accelerate low-density plastic pellets at a 1-Hz repetition rate to speeds of 3 km/s. In a collaboration with ENEA-Frascati, a test facility has been prepared to study repetitive operation of a two-stage gas gun driver equipped with an extrusion-type deuterium pellet source. Extensive testing of the e-beam accelerator has demonstrated a parametric dependence of propellant burn velocity and pellet speed, in accordance with a model derived from the neutral gas shielding theory for pellet ablation in a magnetized plasma

  12. Design of a steam reforming system to be connected to the HTTR

    International Nuclear Information System (INIS)

    Hada, K.; Nishihara, T.; Shibata, T.; Shiozawa, S.

    1996-01-01

    Top priority objective for developing the first heat utilization system to be connected to the HTTR is to demonstrate technical feasibility of a nuclear process heat utilization system for production of hydrogen for the first time in the world. Major issues to be resolved for coupling the heat utilization system to the HTTR are 1)to develop safety philosophy for reasonably and reliably ensuring safety of the nuclear reactor, 2)to develop control design concept for the total system of the nuclear reactor and heat utilization system because thermal dynamics of endothermic chemical reactor to be heated by nuclear heat is much different from the nuclear reactor, 3)to develop helium-heated components and 4)to develop enhanced hydrogen production technologies for achieving competitiveness to a fossil-fired plant. A steam reforming hydrogen production system was studied as one of the first priority candidates for an HTTR-heat utilization system due to matured technology in fossil-fired plants and since technical solutions demonstrated by the coupling of the steam reforming system to the HTTR will contribute to all other hydrogen production systems. Basic design philosophy for the HTTR-steam reforming system is that the steam reforming plant downstream of an intermediate secondary helium loop is designed at the same safety level as fossil-fired plants and therefore the secondary helium loop was selected as a safety barrier to the HTTR nuclear reactor. (J.P.N.)

  13. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  14. Impact of biodiesel blend on injector deposit formation

    International Nuclear Information System (INIS)

    Liaquat, A.M.; Masjuki, H.H.; Kalam, M.A.; Rizwanul Fattah, I.M.

    2014-01-01

    Continued legislative pressure to reduce exhaust emissions from CI (compression ignition) has resulted in the development of advanced fuel injection equipment. This advanced injection system produces higher temperatures and pressures at the injector tip, where deposit formation is initiated. In this research, an endurance test was carried out for 250 h on 2 fuel samples; DF (diesel fuel) as baseline fuel and JB20 (20% jatropha biodiesel and 80% DF) in a single-cylinder CI engine. The effects of JB20 on injector nozzle deposits, engine lubricating oil, and fuel economy and exhaust emissions were investigated during the endurance test. According to the results of the investigation, visual inspection showed some deposit accumulation on injectors for both fuel samples. SEM (scanning electron microscopy) and EDX (energy dispersive X-ray spectroscopy) analysis showed greater carbon deposits on and around the injector tip for JB20 compared to the engine running with DF. Similarly, lubricating oil analysis presented excessive wear metal concentrations and decreased viscosity values when the engine was fueled with JB20. Finally, fuel economy and emission results during the endurance test showed higher BSFC (brake specific fuel consumption) and NO x emissions, and lower HC (hydrocarbons) and CO (carbon monoxide) emissions, for the JB20 blend compared to DF. - Highlights: • Endurance test for 250 h on 2 fuel samples; diesel fuel and JB20. • Investigation on effects of JB20 on the injector deposits and exhaust emissions. • Lubricating oil analysis during endurance test. • SEM (scanning electron microscopy) analysis. • EDX (energy dispersive X-ray spectroscopy) analysis

  15. Ion Sources and Injectors for HIF Induction Linacs

    International Nuclear Information System (INIS)

    Kwan, J.W.; Ahle, L.; Beck, D.N.; Bieniosek, F. M.; Faltens, A.; Grote, D.P.; Halaxa, E.; Henestroza, E.; Herrmannsfeldt, W.B.; Karpenko, V.; Sangster, T.C.

    2000-01-01

    Ion source and injector development is one of the major parts of the HIF program in the USA. Our challenge is to design a cost effective driver-scale injector and to build a multiple beam module within the next couple of years. In this paper, several current-voltage scaling laws are summarized for guiding the injector design. Following the traditional way of building injectors for HIF induction linac, we have produced a preliminary design for a multiple beam driver-scale injector. We also developed an alternate option for a high current density injector that is much smaller in size. One of the changes following this new option is the possibility of using other kinds of ion sources than the surface ionization sources. So far, we are still looking for an ideal ion source candidate that can readily meet all the essential requirements

  16. Optimizing the Heat Exchanger Network of a Steam Reforming System

    DEFF Research Database (Denmark)

    Nielsen, Mads Pagh; Korsgaard, Anders Risum; Kær, Søren Knudsen

    2004-01-01

    Proton Exchange Membrane (PEM) based combined heat and power production systems are highly integrated energy systems. They may include a hydrogen production system and fuel cell stacks along with post combustion units optionally coupled with gas turbines. The considered system is based on a natural...... stationary numerical system model was used and process integration techniques for optimizing the heat exchanger network for the reforming unit are proposed. Objective is to minimize the system cost. Keywords: Fuel cells; Steam Reforming; Heat Exchanger Network (HEN) Synthesis; MINLP....... gas steam reformer along with gas purification reactors to generate clean hydrogen suited for a PEM stack. The temperatures in the various reactors in the fuel processing system vary from around 1000°C to the stack temperature at 80°C. Furthermore, external heating must be supplied to the endothermic...

  17. The transverse and longitudinal beam characteristics of the PHIN photo-injector at CERN

    CERN Document Server

    Mete, Ö; Dabrowski, A; Divall, M; Döbert, S; Egger, D; Elsener, K; Fedosseev, V; Lefèvre, T; Petrarca, M

    2010-01-01

    A new photo-injector, capable to deliver a long pulse train with a high charge per bunch for CTF3, has been designed and installed by a collaboration between LAL, CCLRC and CERN within the framework of the second Joint Research Activity PHIN of the European CARE program. The demonstration of the high charge and the stability along the pulse train are the important goals for CTF3 and the CLIC drive beam. The nominal beam for CTF3 has an average current of 3.5 A, a 1.5 GHz bunch repetation frequency and a pulse length of 1.27 μs (1908 bunches). The existing CTF3 injector consists of a thermionic gun and a subharmonic bunching system. The PHIN photo-injector is being tested in a dedicated test-stand at CERN to replace the existing CTF3 injector that is producing unwanted satellite bunches during the bunching process. A phase-coding scheme is planned to be implemented to the PHIN laser system providing the required beam temporal structure by CTF3. RF photo-injectors are high-brightness, low-emittance electron so...

  18. Steam-Generator Integrity Program/Steam-Generator Group Project

    International Nuclear Information System (INIS)

    1982-10-01

    The Steam Generator Integrity Program (SGIP) is a comprehensive effort addressing issues of nondestructive test (NDT) reliability, inservice inspection (ISI) requirements, and tube plugging criteria for PWR steam generators. In addition, the program has interactive research tasks relating primary side decontamination, secondary side cleaning, and proposed repair techniques to nondestructive inspectability and primary system integrity. The program has acquired a service degraded PWR steam generator for research purposes. This past year a research facility, the Steam Generator Examination Facility (SGEF), specifically designed for nondestructive and destructive examination tasks of the SGIP was completed. The Surry generator previously transported to the Hanford Reservation was then inserted into the SGEF. Nondestructive characterization of the generator from both primary and secondary sides has been initiated. Decontamination of the channelhead cold leg side was conducted. Radioactive field maps were established in the steam generator, at the generator surface and in the SGEF

  19. Deuterium pellet injector gun design

    International Nuclear Information System (INIS)

    Lunsford, R.V.; Wysor, R.B.; Bryan, W.E.; Shipley, W.D.; Combs, S.K.; Foust, C.R.; Milora, S.L.; Fisher, P.W.

    1985-01-01

    The Deuterium Pellet Injector (DPI), an eight-pellet pneumatic injector, is being designed and fabricated for the Tokamak Fusion Test Reactor (TFTR). It will accelerate eight pellets, 4 by 4 mm maximum, to greater than 1500 m/s. It utilizes a unique pellet-forming mechanism, a cooled pellet storage wheel, and improved propellant gas scavenging

  20. Steam generator

    International Nuclear Information System (INIS)

    Fenet, J.-C.

    1980-01-01

    Steam generator particularly intended for use in the coolant system of a pressurized water reactor for vaporizing a secondary liquid, generally water, by the primary cooling liquid of the reactor and comprising special arrangements for drying the steam before it leaves the generator [fr

  1. Modeling of classical swirl injector dynamics

    Science.gov (United States)

    Ismailov, Maksud M.

    The knowledge of the dynamics of a swirl injector is crucial in designing a stable liquid rocket engine. Since the swirl injector is a complex fluid flow device in itself, not much work has been conducted to describe its dynamics either analytically or by using computational fluid dynamics techniques. Even the experimental observation is limited up to date. Thus far, there exists an analytical linear theory by Bazarov [1], which is based on long-wave disturbances traveling on the free surface of the injector core. This theory does not account for variation of the nozzle reflection coefficient as a function of disturbance frequency, and yields a response function which is strongly dependent on the so called artificial viscosity factor. This causes an uncertainty in designing an injector for the given operational combustion instability frequencies in the rocket engine. In this work, the author has studied alternative techniques to describe the swirl injector response, both analytically and computationally. In the analytical part, by using the linear small perturbation analysis, the entire phenomenon of unsteady flow in swirl injectors is dissected into fundamental components, which are the phenomena of disturbance wave refraction and reflection, and vortex chamber resonance. This reveals the nature of flow instability and the driving factors leading to maximum injector response. In the computational part, by employing the nonlinear boundary element method (BEM), the author sets the boundary conditions such that they closely simulate those in the analytical part. The simulation results then show distinct peak responses at frequencies that are coincident with those resonant frequencies predicted in the analytical part. Moreover, a cold flow test of the injector related to this study also shows a clear growth of instability with its maximum amplitude at the first fundamental frequency predicted both by analytical methods and BEM. It shall be noted however that Bazarov

  2. An expert system for diagnostics and estimation of steam turbine components condition

    Science.gov (United States)

    Murmansky, B. E.; Aronson, K. E.; Brodov, Yu. M.

    2017-11-01

    The report describes an expert system of probability type for diagnostics and state estimation of steam turbine technological subsystems components. The expert system is based on Bayes’ theorem and permits to troubleshoot the equipment components, using expert experience, when there is a lack of baseline information on the indicators of turbine operation. Within a unified approach the expert system solves the problems of diagnosing the flow steam path of the turbine, bearings, thermal expansion system, regulatory system, condensing unit, the systems of regenerative feed-water and hot water heating. The knowledge base of the expert system for turbine unit rotors and bearings contains a description of 34 defects and of 104 related diagnostic features that cause a change in its vibration state. The knowledge base for the condensing unit contains 12 hypotheses and 15 evidence (indications); the procedures are also designated for 20 state parameters estimation. Similar knowledge base containing the diagnostic features and faults hypotheses are formulated for other technological subsystems of turbine unit. With the necessary initial information available a number of problems can be solved within the expert system for various technological subsystems of steam turbine unit: for steam flow path it is the correlation and regression analysis of multifactor relationship between the vibration parameters variations and the regime parameters; for system of thermal expansions it is the evaluation of force acting on the longitudinal keys depending on the temperature state of the turbine cylinder; for condensing unit it is the evaluation of separate effect of the heat exchange surface contamination and of the presence of air in condenser steam space on condenser thermal efficiency performance, as well as the evaluation of term for condenser cleaning and for tube system replacement and so forth. With a lack of initial information the expert system enables to formulate a diagnosis

  3. An Injector for the CLIC Test Facility (CTF3)

    CERN Document Server

    Braun, H; Rinolfi, Louis; Zhou, F; Mouton, B; Miller, R; Yeremian, A D

    2000-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  4. An Injector for the CLIC Test Facility (CTF3)

    International Nuclear Information System (INIS)

    Miller, Roger H.

    2001-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed

  5. An injector for the CLIC test Facility (CTF3)

    CERN Document Server

    Braun, Hans-Heinrich; Rinolfi, L.; Zhou, F.; Mouton, B.; Miller, R.; Yeremian, D.

    2008-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  6. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon

    2016-04-05

    The outwardly-opening piezoelectric injector is gaining popularity as a high efficient spray injector due to its precise control of the spray. However, few modeling studies have been reported on these promising injectors. Furthermore, traditional linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide spray angles and string-like film structures. In this study, a new spray injection modeling was proposed for outwardly-opening hollow-cone injector. The injection velocities are computed from the given mass flow rate and injection pressure instead of ambiguous annular nozzle geometry. The modified Kelvin-Helmholtz and Rayleigh-Taylor (KH-RT) breakup model is used with adjusted initial Sauter mean diameter (SMD) for modeling breakup of string-like structure. Spray injection was modeled using a Lagrangian discrete parcel method within the framework of commercial CFD software CONVERGE, and the new model was implemented through the user-defined functions. A Siemens outwardly-opening hollow-cone spray injector was characterized and validated with existing experimental data at the injection pressure of 100 bar. It was found that the collision modeling becomes important in the current injector because of dense spray near nozzle. The injection distribution model showed insignificant effects on spray due to small initial droplets. It was demonstrated that the new model can predict the liquid penetration length and local SMD with improved accuracy for the injector under study.

  7. Development of a nuclear steam generator system for gas-cooled reactors for application in oil sands extraction

    International Nuclear Information System (INIS)

    Smith, J.; Hart, R.; Lazic, L.

    2009-01-01

    Canada has vast energy reserves in the Oil Sands regions of Alberta and Saskatchewan. Present extraction technologies, such as strip mining, where oil deposits are close to the surface, and Steam Assisted Gravity Drainage (SAGD) technologies for deeper deposits consume significant amounts of energy to produce the bitumen and upgraded synthetic crude oil. Studies have been performed to assess the feasibility of using nuclear reactors as primary energy sources to produce, in particular the steam required for the SAGD deeper deposit extraction process. Presently available reactors fall short of meeting the requirements, in two areas: the steam produced in a 'standard' reactor is too low in pressure and temperature for the SAGD process. Requirements can be for steam as high as 12MPa pressure with superheat; and, 'standard' reactors are too large in total output. Ideally, reactors of output in the range of 400 to 500 MWth, in modules are better suited to Oil Sands applications. The above two requirements can be met using gas-cooled reactors. Generally, newer generation gas-cooled reactors have been designed for power generation, using Brayton Cycle gas turbines run directly from the heated reactor coolant (helium). Where secondary steam is required, heat recovery steam generators have been used. In this paper, a steam generating system is described which uses the high temperature helium from the reactor directly for steam generation purposes, with sufficient quantities of steam produced to allow for SAGD steam injection, power generation using a steam turbine-generator, and with potential secondary energy supply for other purposes such as hydrogen production for upgrading, and environmental remediation processes. It is assumed that the reactors will be in one central location, run by a utility type organization, providing process steam and electricity to surrounding Oil Sands projects, so steam produced is at very high pressure (12 MPa), with superheat, in order to

  8. Response of the steam generator VVER 1000 to a steam line break

    International Nuclear Information System (INIS)

    Novotny, J.; Novotny, J. Jr.

    2003-01-01

    Dynamic effects of a steam line break in the weld of the steam pipe and the steam collector on the steam generator system are analyzed. Modelling of a steam line break may concern two cases. The steam line without a restraint and the steam line protected by a whip restraint with viscous elements applied at the postulated break cross-section. The second case is considered. Programme SYSTUS offers a special element the stiffness and viscous damping coefficients of which may be defined as dependent on the relative displacement and velocity of its nodes respectively. A circumferential crack is simulated by a sudden decrease of longitudinal and lateral stiffness coefficients of these special SYSTUS elements to zero. The computation has shown that one can simulate the pipe to behave like completely broken during a time interval of 0,0001 s or less. These elements are used to model the whip restraint with viscous elements and viscous dampers of the GERB type as well. In the case of a whip restraint model the stiffness coefficient-displacement relation and damping coefficient - velocity relation are chosen to fit the given characteristics of the restraint. The special SYSTUS elements are used to constitute Maxwell elements modelling the elasto-plastic and viscous properties of the GERB dampers applied to the steam generator. It has been ascertained that a steam line break at the postulated weld crack between the steam pipe and the steam generator collector cannot endanger the integrity of the system even in a case of the absence of a whip restraint effect. (author)

  9. Pellet injectors for steady state plasma fuelling

    International Nuclear Information System (INIS)

    Vinyar, I.; Geraud, A.; Yamada, H.; Lukin, A.; Sakamoto, R.; Skoblikov, S.; Umov, A.; Oda, Y.; Gros, G.; Krasilnikov, I.; Reznichenko, P.; Panchenko, V.

    2005-01-01

    Successful steady state operation of a fusion reactor should be supported by repetitive pellet injection of solidified hydrogen isotopes in order to produce high performance plasmas. This paper presents pneumatic pellet injectors and its implementation for long discharge on the LHD and TORE SUPRA, and a new centrifuge pellet injector test results. All injectors are fitted with screw extruders well suited for steady state operation

  10. Steam purity in PWRs

    International Nuclear Information System (INIS)

    Hopkinson, J.

    1982-01-01

    Impurities enter the secondary loop of the PWR through both makeup water from lake or well and cooling-water leaks in the condenser. These impurities can be carried to the steam generator, where they cause corrosion deposits to form. Corrosion products in steam are swept further through the system and become concentrated at the point in the low-pressure turbine where steam begins to condense. Several plants have effectively reduced impurities, and therefore corrosion, by installing a demineralizer for the makeup water, a resin-bed system to clean condensed steam from the condenser, and a deaerator to remove oxygen from the water and so lower the risk of system metal oxidation. 5 references, 1 figure

  11. Operational control and maintenance integrity of typical and atypical coil tube steam generating systems

    Energy Technology Data Exchange (ETDEWEB)

    Beardwood, E.S.

    1999-07-01

    Coil tube steam generators are low water volume to boiler horsepower (bhp) rating, rapid steaming units which occupy substantially less space per boiler horsepower than equivalent conventional tire tube and water tube boilers. These units can be retrofitted into existing steam systems with relative ease and are more efficient than the generators they replace. During the early 1970's they became a popular choice for steam generation in commercial, institutional and light to medium industrial applications. Although these boiler designs do not require skilled or certified operators, an appreciation for a number of the operational conditions that result in lower unscheduled maintenance, increased reliability and availability cycles would be beneficial to facility owners, managers, and operators. Conditions which afford lower operating and maintenance costs will be discussed from a practical point of view. An overview of boiler design and operation is also included. Pitfalls are provided for operational and idle conditions. Water treatment application, as well as steam system operations not conducive to maintaining long term system integrity; with resolutions, will be addressed.

  12. Investigation of the Stability of the RF Gun of the SSRL Injector System

    International Nuclear Information System (INIS)

    Moore, J

    2004-01-01

    In the previous three years, Stanford Synchrotron Radiation Laboratory (SSRL) has experienced electron beam instabilities in the injector system of the Stanford Positron Electron Asymmetric Ring (SPEAR). Currently, for approximately the past four months the radio frequency (RF) gun of the linear accelerator injector system of the SPEAR at SSRL has become increasingly unstable. The current of the RF gun has become progressively sluggish and the lifetime of the cathode within the RF gun has been much shorter than expected. The cathode also sustains many unexplained damages. The instability of the RF gun affects the entire operation of SPEAR, creating substantial inconvenience. Through mechanical, design, and procedural analysis of the RF gun and the cathode that emits the electron beam of the linear accelerator, a solution to prolong the life of the cathode and secure the stability of the gun can be found. The thorough analysis of the gun and cathode involves investigation into the history of cathode installation and removal through the years of SPEAR operation as well as interviews with SSRL personnel involved with the upkeep of the gun and cathode. From speaking with SSRL employees and reviewing several articles many possible causes for beam instability were presented. The most likely cause of the SSRL gun instability is excessive back bombardment that can be attributed to running the cathode at too high a temperature

  13. Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Fang Yan

    2015-05-01

    Full Text Available The 10 MeV accelerator-driven subcritical system (ADS Injector I test stand at Institute of High Energy Physics (IHEP is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC spoke cavities with β=0.12. The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β=0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ∼5  MeV. Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.

  14. Pneumatic pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Jacobi, D.; Sandmann, W.; Schiedeck, J.; Schilling, H.B.; Weber, G.

    1983-07-01

    Pellet injection is a useful tool for plasma diagnostics of tokamaks. Pellets can be applied for investigation of particle, energy and impurity transport, fueling efficiency and magnetic surfaces. Design, operation and control of a single shot pneumatic pellet gun is described in detail including all supplies, the vacuum system and the diagnostics of the pellet. The arrangement of this injector in the torus hall and the interfaces to the JET system and CODAS are considered. A guide tube system for pellet injection is discussed but it will not be recommended for JET. (orig.)

  15. Pellet injectors for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buechl, K.; Lang, R.S.; Schilling, H.B.; Ulrich, M.

    1981-09-01

    Pellet injection for the purpose of refuelling and diagnostic of fusion experiments is considered for the parameters of JET. The feasibility of injectors for single pellets and for quasistationary refuelling is discussed. Model calculations on pellet ablation with JET parameters show the required pellet velocity ( 3 ). For single pellet injection a light gas gun, for refuelling a centrifuge accelerator is proposed. For the latter the mechanical stress problems are discussed. Control and data acquisition systems are outlined. (orig.)

  16. A Compact Multi-Beamlets High Current Injector for HIFDrivers

    Energy Technology Data Exchange (ETDEWEB)

    Kwan, J.W.; Bieniosek, F.M.; Grote, D.P.; Westenskow, G.A.

    2005-09-06

    Using curved electrodes in the injector, an array of converging beamlets can produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole (ESQ) channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than the one designed using traditional single large-aperture beams, so the success of this experiment has significant economical and technical impacts on the architecture of heavy ion fusion (HIF) drivers.

  17. Pneumatic pellet injectors for TFTR and JET

    International Nuclear Information System (INIS)

    Combs, S.K.; Milora, S.L.

    1986-01-01

    This paper describes the development of pneumatic hydrogen pellet injectors for plasma fueling applications on the Tokamak Fusion Test Reactor (TFTR) and the Joint European Torus (JET). The performance parameters of these injectors represent an extension of previous experience and include pellet sizes in the range 2-6 mm in diameter and speeds approaching 2 km/s. Design features and operating characteristics of these pneumatic injectors are presented

  18. ASTRID power conversion system: Assessment on steam and gas options

    International Nuclear Information System (INIS)

    Laffont, Guy; Cachon, Lionel; Jourdain, Vincent; Fauque, Jean Marie

    2013-01-01

    Conclusion: ◆ Two power conversion systems have been investigated for the ASTRID prototype. ◆ Steam PCS: • Most mature system based on a well-developed turbomachinery technology. • High plant efficiency. • Studies on steam generators designs and leak detection systems in progress with the aim of reducing the risk of large SWRs and of limiting its consequences. • Design and licensing safety assessment of a SFR must deal with the Sodium Water Air reaction (SWAR). ◆ Gas PCS: • Strong advantage as it inherently eliminates the SWR and SWAR risks. • Very innovative option: major breakthroughs but feasibility and viability not yet demonstrated. • Remaining technological challenges but no showstopper indentified. • General architecture: investigations in progress to improve performances, operability and maintainability

  19. Centrifuge pellet injector for JET

    International Nuclear Information System (INIS)

    Andelfinger, C.; Buchelt, E.; Jacobi, D.; Lackner, E.; Schilling, H.B.; Ulrich, M.; Weber, G.

    1983-08-01

    An engineering design of a centrifuge pellet injector for JET is reported as part of the Phase I contract number JE 2/9016. A rather detailed design is presented for the mechanical and electronic features. Stress calculations, dynamic behaviour and life estimates are considered. The interfaces to the JET vacuum system and CODAS are discussed. Proposals for the pellet diagnostics (velocity, mass and shape) are presented. (orig.)

  20. Acceleration characteristics of the injector Linacs for the Hyogo Hadrontherapy Center

    International Nuclear Information System (INIS)

    Inoue, J.; Sawada, K.; Sakata, T.

    2000-01-01

    Hyogo Hadrontherapy center in Harima Science Garden City is a cancer therapy facility with proton, helium and carbon beams. The beams are supplied by a synchrotron, which has manufactured by Mitsubishi Electric Corporation, with RF 1inacs as an injector, which has manufactured by Sumitomo Heavy Industries Ltd.(SHI). The injector consists of the identical ECR ion sources, a RFQ linac, and an Alvarez linac, which are connected by beam transport systems including vacuum systems, and some kinds of beam monitoring equipments. The results accomplished for the beam conditioning are described in this paper. (author)

  1. Integration of steam injection and inlet air cooling for a gas turbine generation system

    International Nuclear Information System (INIS)

    Wang, F.J.; Chiou, J.S.

    2004-01-01

    The temperature of exhaust gases from simple cycle gas turbine generation sets (GENSETs) is usually very high (around 500 deg. C), and a heat recovery steam generator (HRSG) is often used to recover the energy from the exhaust gases and generate steam. The generated steams can be either used for many useful processes (heating, drying, separation etc.) or used back in the power generation system for enhancing power generation capacity and efficiency. Two well-proven techniques, namely steam injection gas turbine (STIG) and inlet air cooling (IAC) are very effective features that can use the generated steam to improve the power generation capacity and efficiency. Since the energy level of the generated steam needed for steam injection is different from that needed by an absorption chiller to cool the inlet air, a proper arrangement is required to implement both the STIG and the IAC features into the simple cycle GENSET. In this study, a computer code was developed to simulate a Tai power's Frame 7B simple cycle GENSET. Under the condition of local summer weather, the benefits obtained from the system implementing both STIG and IAC features are more than a 70% boost in power and 20.4% improvement in heat rate

  2. The EBR-II steam generating system - operation, maintenance, and inspection

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Longua, K.J.

    2002-01-01

    The Experimental Breeder Reactor II (EBR-II) has operated for 20 years at the Idaho National Engineering Laboratory near Idaho Falls. EBR-II is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. EBR-II has operated at a capacity factor over 70% in the past few years. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C and 8.62 MPa. The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. During the 20 years of operation, components of the steam generator have been subjected to a variety of inspections including visual, dimensional, and ultrasonic. One superheater was removed from service because of anomalous performance and was replaced with an evaporator which was removed, examined, and converted into a superheater. Overall operating experience of the system has been excellent and essentially trouble free. Inspections have not revealed any conditions that are performance or life limiting. (author)

  3. Condensate induced water hammer in a steam distribution system results in fatality

    International Nuclear Information System (INIS)

    Debban, H.L.; Eyre, L.E.

    1996-02-01

    Water hammer event s in steam distribution piping interrupt service and have the potential to cause serious injury and property damage. Conditions of condensation induced water hammer are discussed and recommendations aimed to improve safety of steam systems are presented. Condensate induced water hammer events at Hanford, a DOE facility, are examined

  4. Dynamic modeling and simulation of EBR-II steam generator system

    International Nuclear Information System (INIS)

    Berkan, R.C.; Upadhyaya, B.R.

    1989-01-01

    This paper presents a low order dynamic model of the Experimental breeder Reactor-II (EBR-II) steam generator system. The model development includes the application of energy, mass and momentum balance equations in state-space form. The model also includes a three-element controller for the drum water level control problem. The simulation results for low-level perturbations exhibit the inherently stable characteristics of the steam generator. The predictions of test transients also verify the consistency of this low order model

  5. Performance of Doublet III neutral beam injector cryopumping system

    International Nuclear Information System (INIS)

    Langhorn, A.R.; Kim, J.; Tupper, M.L.; Williams, J.P.; Fasolo, J.

    1984-01-01

    The Doublet III neutral beam injector system is based on three beamlines; each beamline employs two 80 kV/80 A hydrogen ion sources. Two liquid helium (LHe) cooled cryopanel arrays were designed as an integral part of the beamline in order to provide high differential pumping of hydrogen gas along the beamline. The cryopanel arrays consist of a front (nearer to the torus) disk panel (3 m 2 each side) with liquid nitrogen (LN 2 ) cooled chevrons and a rear cylindrical panel of modified Santeler panels (8 m 2 ) which also employs LN 2 cooled surfaces shielding LHe cooled surfaces. These cryopanels are piped in series. The LHe delivery is based on a closed-loop, forced-flow scheme intended for variable panel temperatures (3.7 to 4.3 K). It uses small tubes for mechanical flexibility and thermal resiliency providing ease of economic defrosting. The cryogenic system consists of a liquefier (100 l/h), a large Dewar, a heat exchanger, and a liquid ring pump. Three beamlines are serviced simultaneously by the system. Pumping speeds measured locally at ionization gauges, were well in excess of the 1.4 x 10 6 l/s design goal

  6. Modelling the High-speed Injector for Diesel ICE

    Science.gov (United States)

    Buryuk, V. V.; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Zvyagintsev, V. A.

    2018-01-01

    The article describes the results of research on the option of improving the operation speed of the electro-hydraulically driven injectors (Common Rail) for diesel ICE. The injector investigated in this article is a modified serial injector Common Rail-type with solenoid. The model and the injector parameters are represented in the package LMS Imagine. Lab AMESim with the detailed description of the substantiation and background for the research. Following the research results, the advantages of the proposed approach to analysing the operation speed were detected with outlining the direction of future studies.

  7. Application of advanced diagnostics to airblast injector flows

    Science.gov (United States)

    Mcvey, John B.; Kennedy, Jan B.; Russell, Sid

    1987-01-01

    This effort is concerned with the application of both conventional laser velocimetry and phase Doppler anemometry to the flow produced by an airblast nozzle. The emphasis is placed on the acquisition of data using actual engine injector/swirler components at (noncombusting) conditions simulating those encountered in the engine. The objective of the effort was to test the applicability of the instrumentation to real injector flows, to develop information on the behavior of injectors at high flow, and to provide data useful in the development of physical models of injector flows.

  8. Design status of heavy ion injector program

    International Nuclear Information System (INIS)

    Ballard, E.O.; Meyer, E.A.; Rutkowski, H.L.; Shurter, R.P.; Van Haaften, F.W.; Riepe, K.B.

    1985-01-01

    Design and development of a sixteen beam, heavy ion injector is in progress at Los Alamos National Laboratory (LANL) to demonstrate the injector technology for the High Temperature Experiment (HTE) proposed by Lawrence Livermore Laboratory (LBL). The injector design provides for individual ion sources mounted to a support plate defining the sixteen beam array. The beamlets are electrostatically accelerated through a series of electrodes inside an evacuated (10 -7 torr) high voltage (HV) accelerating column

  9. Economic evaluation of epinephrine auto-injectors for peanut allergy.

    Science.gov (United States)

    Shaker, Marcus; Bean, Katherine; Verdi, Marylee

    2017-08-01

    Three commercial epinephrine auto-injectors were available in the United States in the summer of 2016: EpiPen, Adrenaclick, and epinephrine injection, USP auto-injector. To describe the variation in pharmacy costs among epinephrine auto-injector devices in New England and evaluate the additional expense associated with incremental auto-injector costs. Decision analysis software was used to evaluate costs of the most and least expensive epinephrine auto-injector devices for children with peanut allergy. To evaluate regional variation in epinephrine auto-injector costs, a random sample of New England national and corporate pharmacies was compared with a convenience sample of pharmacies from 10 Canadian provinces. Assuming prescriptions written for 2 double epinephrine packs each year (home and school), the mean costs of food allergy over the 20-year model horizon totaled $58,667 (95% confidence interval [CI] $57,745-$59,588) when EpiPen was prescribed and $45,588 (95% CI $44,873-$46,304) when epinephrine injection, USP auto-injector was prescribed. No effectiveness differences were evident between groups, with 17.19 (95% CI 17.11-17.27) quality-adjusted life years accruing for each subject. The incremental cost per episode of anaphylaxis treated with epinephrine over the model horizon was $12,576 for EpiPen vs epinephrine injection, USP auto-injector. EpiPen costs were lowest at Canadian pharmacies ($96, 95% CI $85-$107). There was price consistency between corporate and independent pharmacies throughout New England by device brand, with the epinephrine injection, USP auto-injector being the most affordable device. Cost differences among epinephrine auto-injectors were significant. More expensive auto-injector brands did not appear to provide incremental benefit. Copyright © 2017 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Understanding the spectrum of diesel injector deposits

    Energy Technology Data Exchange (ETDEWEB)

    Quigley, Robert; Barbour, Robert [Lubrizol Limited, Derby (United Kingdom); Arters, David; Bush, Jim [Lubrizol Corporation, Wickliffe, OH (United States)

    2013-06-01

    Understanding the origin of diesel fuel injector deposits used to be relatively simple; for the most part they were caused by the decomposition of fuel during the combustion process, were generally organic in nature and typically only affected the nozzle orifices. However, modem fuel injector designs appear to be both more severe in terms of generating conditions conducive to creating new and different types of deposits and more likely to have their operation affected by those deposits. Changes to fuel composition and type have in some cases increased the potential pool of reactive species or provided new potential deposit precursors. As a result, the universe of diesel injector deposits now range from the traditional organic to partially or fully inorganic in nature and from nozzle coking deposits to deposits which can seize the internal components of the injector; so called internal diesel injector deposits. Frequently, combinations of inorganic and organic deposits are found. While power loss is one well known issue associated with nozzle deposits, other field problems resulting from these new deposits include severe issues with drivability, emissions, fuel consumption and even engine failure. Conventional deposit control additive chemistries were developed to be effective against organic nozzle coking deposits. These conventional additives in many cases may prove ineffective against this wide range of deposit types. This paper discusses the range of deposits that have been found to adversely impact modem diesel fuel injectors and compares the performance of conventional and new, advanced deposit control additives against these various challenges to proper fuel injector functioning. (orig.)

  11. Experience in adjusting of the level regulation system of steam generators of the Rovno NPP

    International Nuclear Information System (INIS)

    Patselyuk, S.N.; Sokolov, A.G.; Kazakov, V.I.; Dorosh, Yu.A.

    1984-01-01

    A system of feed water level control in steam generators at the Rovno NPP with WWER-440 reactors which comprises start-up as well as main regulators is described. The start-up regulator (single-pulsed with a signal by the level) keeps the level in the steam generator at loadings up to 30% of the nominal reactor power Nsub(nom.) The main regulator is connected in the three-pulsed circuit and it receives signals by steam and water flow rate and by the level in the steam generator. The main regulator has been started only at loadings above 40% Nsub(nom.). After reconstruction it was used in the 15-100% Nsub(nom.) range. Characteristics of the level control system in the steam generator at perturbations intoduced by the main circulating pump (MCP) and turbine disconnection as well as change in feed water flow rate have been studied. The studies have revealed that the system ensures necessary quality of control in stationary modes. The system operates stably at perturbations of feed water flow rate up to 50% Nsub(nom.). Perturbations by MCP connections and disconnections is most difficult for control system

  12. Integrated design of the SSC linac injector

    International Nuclear Information System (INIS)

    Evans, D.; Valiecnti, R.; Wood, F.

    1992-01-01

    The Ion Source, Low Energy Beam Transport (LEBT), and Radio Frequency Quadrupole (RFQ) of the Superconducting Super Collider (SSC) Linac act as a unit (referred to as the Linac Injector), the Ion Source and LEBT being cantilevered off of the RFQ. Immediately adjacent to both ends of the RFQ cavity proper are endwall chambers containing beam instrumentation and independently-operated vacuum isolation valves. The Linac Injector delivers 30 mA of H - beam at 2.5 MeV. This paper describes the design constraints imposed on the endwalls, aspects of the integration of the Ion Source and LEBT including attachment to the RFQ, maintainability and interchangeability of LEBTs, vacuum systems for each component, and the design of necessary support structure. (Author) 2 tab

  13. A system for regulating the pressure of resuperheated steam in high temperature gas-cooled reactor power stations

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegines, K.O.

    1975-01-01

    The invention relates to a system for regulating steam-pressure in the re-superheating portion of a steam-boiler receiving heat from a gas-cooled high temperature nuclear reactor, provided with gas distributing pumps driven by steam-turbines. The system comprises means for generating a pressure signal of desired magnitude for the re-superheating portion, and means for providing a real pressure in the re-superheating portion, means (including a by-passing device) for generating steam-flow rate signal of desired magnitude, a turbine by-pass device comprising a by-pass tapping means for regulating the steam-flow-rate in said turbine according to the desired steam-flow rate signal and means for controlling said by-pass tapping means according to said desired steam-flow-rate signal [fr

  14. What is geothermal steam worth?

    International Nuclear Information System (INIS)

    Thorhallsson, S.; Ragnarsson, A.

    1992-01-01

    Geothermal steam is obtained from high-temperature boreholes, either directly from the reservoir or by flashing. The value of geothermal steam is similar to that of steam produced in boilers and lies in its ability to do work in heat engines such as turbines and to supply heat for a wide range of uses. In isolated cases the steam can be used as a source of chemicals, for example the production of carbon dioxide. Once the saturated steam has been separated from the water, it can be transported without further treatment to the end user. There are several constraints on its use set by the temperature of the reservoir and the chemical composition of the reservoir fluid. These constraints are described (temperature of steam, scaling in water phase, gas content of steam, well output) as are the methods that have been adopted to utilize this source of energy successfully. Steam can only be transported over relatively short distances (a few km) and thus has to be used close to the source. Examples are given of the pressure drop and sizing of steam mains for pipelines. The path of the steam from the reservoir to the end user is traced and typical cost figures given for each part of the system. The production cost of geothermal steam is estimated and its sensitivity to site-specific conditions discussed. Optimum energy recovery and efficiency is important as is optimizing costs. The paper will treat the steam supply system as a whole, from the reservoir to the end user, and give examples of how the site-specific conditions and system design have an influence on what geothermal steam is worth from the technical and economic points of view

  15. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Stamps, D.W.

    1997-05-01

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs

  16. Biomass-to-hydrogen via fast pyrolysis and catalytic steam reforming

    Energy Technology Data Exchange (ETDEWEB)

    Chornet, E.; Wang, D.; Czernik, S. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-10-01

    Pyrolysis of lignocellulosic biomass and reforming the pyroligneous oils is being studied as a strategy for producing hydrogen. Novel technologies for the rapid pyrolysis of biomass have been developed in the past decade. They provide compact and efficient systems to transform biomass into vapors that are condensed to oils, with yields as high as 75-80 wt.% of the anhydrous biomass. This {open_quotes}bio-oil{close_quotes} is a mixture of aldehydes, alcohols, acids, oligomers from the constitutive carbohydrates and lignin, and some water derived from the dehydration reactions. Hydrogen can be produced by reforming the bio-oil or its fractions with steam. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The reforming facility can be designed to handle alternate feedstocks, such as natural gas and naphtha, if necessary. Thermodynamic modeling of the major constituents of the bio-oil has shown that reforming is possible within a wide range of temperatures and steam-to-carbon ratios. Existing catalytic data on the reforming of oxygenates have been studied to guide catalyst selection. Tests performed on a microreactor interfaced with a molecular beam mass spectrometer showed that, by proper selection of the process variables: temperature, steam-to-carbon ratio, gas hourly space velocity, and contact time, almost total conversion of carbon in the feed to CO and CO{sub 2} could be obtained. These tests also provided possible reaction mechanisms where thermal cracking competes with catalytic processes. Bench-scale, fixed bed reactor tests demonstrated high hydrogen yields from model compounds and carbohydrate-derived pyrolysis oil fractions. Reforming bio-oil or its fractions required proper dispersion of the liquid to avoid vapor-phase carbonization of the feed in the inlet to the reactor. A special spraying nozzle injector was designed and successfully tested with an aqueous fraction of bio-oil.

  17. Initial development of a blurry injector for biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Azevedo, Claudia Goncalves de; Costa, Fernando de Souza [National Institute for Space Research (INPE) Cachoeira Paulista, SP (Brazil). Associated Lab. of Combustion and Propulsion], Emails: claudia@lcp.inpe.br, fernando@lcp.inpe.br; Couto, Heraldo da Silva [Vale Energy Solution, Sao Jose dos Campos, SP (Brazil)], E-mail: heraldo.couto@vsesa.com.br

    2010-07-01

    The increasing costs of fossil fuels, environmental concerns and stringent regulations on fuel emissions have caused a significant interest on biofuels, especially ethanol and biodiesel. The combustion of liquid fuels in diesel engines, turbines, rocket engines and industrial furnaces depends on the effective atomization to increase the surface area of the fuel and thus to achieve high rates of mixing and evaporation. In order to promote combustion with maximum efficiency and minimum emissions, an injector must create a fuel spray that evaporates and disperses quickly to produce a homogeneous mixture of vaporized fuel and air. Blurry injectors can produce a spray of small droplets of similar sizes, provide excellent vaporization and mixing of fuel with air, low emissions of NO{sub x} and CO, and high efficiency. This work describes the initial development of a blurry injector for biofuels. Theoretical droplet sizes are calculated in terms of feed pressures and mass flow rates of fuel and air. Droplet size distribution and average diameters are measured by a laser system using a diffraction technique. (author)

  18. Displacement of cryomodule in CADS injector II

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jiandong; Zhang, Bin; Wang, Fengfeng; Wan, Yuqin; Sun, Guozhen; Yao, Junjie; Zhang, Juihui; He, Yuan [Chinese Academy of Sciences, Lanzhou (China). Inst. of Modern Physics

    2017-06-15

    As Cryomodule can easily reduce higher power consumption and length of an accelerator and the accelerator can be operated more continuously. The Chinese academy of sciences institute of modern physics is developing an accelerator driven subcritical system (CADS) Injector II. Cryomodules are extremely complex systems, and their design optimization is strongly dependent on the accelerator application for which they are intended.

  19. Type GQS-1 high pressure steam manifold water level monitoring system

    International Nuclear Information System (INIS)

    Li Nianzu; Li Beicheng; Jia Shengming

    1993-10-01

    The GQS-1 high pressure steam manifold water level monitoring system is an advanced nuclear gauge that is suitable for on-line detecting and monitor in high pressure steam manifold water level. The physical variable of water level is transformed into electrical pulses by the nuclear sensor. A computer is equipped for data acquisition, analysis and processing and the results are displayed on a 14 inch color monitor. In addition, a 4 ∼ 20 mA output current is used for the recording and regulation of water level. The main application of this gauge is for on-line measurement of high pressure steam manifold water level in fossil-fired power plant and other industries

  20. Tritium pellet injector for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foust, C.R.; Milora, S.L.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  1. Dynamic response of the EBR-II secondary sodium system to postulated leaks of steam and water into sodium

    International Nuclear Information System (INIS)

    Srinivas, S.; Chopra, P.S.; Stone, C.C.

    1976-01-01

    The paper presents evaluations of the dynamic response of a steam generator system to postulated leaks of steam and water into sodium. This work is part of a comprehensive fail-safe analysis of the EBR-II steam generator system

  2. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. This phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The ensuing structural damage, inspection and repairs are described. Finally, a list of design, maintenance and operational cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  3. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. THis phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The insuing structural damage, inspection and repairs are described. Finally, a list of design cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  4. Numerical simulation for cyclic steam injection at Santa Clara field

    International Nuclear Information System (INIS)

    Rodriguez, Edwin; Barrios, Wilson; Sandoval, Roy; Santos, Nicolas; Cortes, Ingrid

    2008-01-01

    This article presents the methodology used and the results obtained in the construction, match and prediction of the first thermal composition simulation model done in Colombia by employing advanced thermal process commercial software, globally recognized because of its effectiveness in modeling these types of processes (CMG-STARS, 2005). The Santa Clara and Palermo fields were modeled and an excellent history match was achieved. All in all 28 wells and 17 years of production were matched. Two production scenes were proposed. The first involved primary production from existing wells, in other words: primary production; and a second scene where all the wells in the field are converted into injectors and producers, to simulate cyclic steam injection. This injection process included a series of sensitivity studies for several of the parameters involved in this technology, such as: pressure and temperature injection, time and rate of injection, heat injected, soaking period, steam quality, and injection cycles. This sensitivity study was focused on optimizing the processes to obtain the maximum end recovery possible. The information entered into the simulator was validated by laboratory tests developed at the Instituto Colombiano del Petroleo (ICP). Among the tests performed the following were assessed: rock compressibility, relative permeability curve behavior at different temperatures, formation sensitivity to injection fluids, DRX analysis and residual saturation of crude oil for steam injection. The aforementioned results are documented in this paper

  5. Development of a negative ion-based neutral beam injector in Novosibirsk.

    Science.gov (United States)

    Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L

    2014-02-01

    A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.

  6. Experimental and numerical investigation of a porous fuel injector

    Energy Technology Data Exchange (ETDEWEB)

    Reijnders, J.

    2009-03-15

    Diesel engines are the most fuel efficient engines for transportation. However the details of the mixing and combustion process in the cylinders result in relatively high emissions of soot. In his graduation work the author developed a new type of fuel injection system for Diesel engines. The injection from the developed porous injector nozzle can be regarded as the limiting case of injection from very many, very small holes. Furthermore it is expected that the improved combustion characteristics yielded much less soot emissions. After the computational determination of an optimal geometry for the porous nozzle, experiments have been performed. The results of the prototypes showed a rather homogeneous hemispherical spray shape. The author conducted tests that showed that the mass flow, at constant pressure, of the porous injector is higher than the conventional one. This means that the pressure can be set lower or injection time can be shortened. A patent is applied and obtained for this innovative injector.

  7. Units 3 and 4 steam generators new water level control system

    International Nuclear Information System (INIS)

    Dragoev, D.; Genov, St.

    2001-01-01

    The Steam Generator Water Level Control System is one of the most important for the normal operation systems, related to the safety and reliability of the units. The main upgrading objective for the SG level and SGWLC System modernization is to assure an automatic maintaining of the SG level within acceptable limits (below protections and interlocks) from 0% to 100% of the power in normal operation conditions and in case of transients followed by disturbances in the SG controlled parameters - level, steam flow, feedwater flow and/or pressure/temperature. To achieve this objective, the computerized controllers of new SG water level control system follows current computer control technology and is implemented together with replacement of the feedwater control valves and the needed I and C equipment. (author)

  8. Steam drum level dynamics in a multiple loop natural circulation system of a pressure-tube type boiling water reactor

    International Nuclear Information System (INIS)

    Jain, Vikas; Kulkarni, P.P.; Nayak, A.K.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2011-01-01

    Highlights: → We have highlighted the problem of drum level dynamics in a multiple loop type NC system using RELAP5 code. → The need of interconnections in steam and liquid spaces close to drum is established. → The steam space interconnections equalize pressure and liquid space interconnections equalize level. → With this scheme, the system can withstand anomalous conditions. → However, the controller is found to be inevitable for inventory balance. - Abstract: Advanced Heavy Water Reactor (AHWR) is a pressure tube type boiling water reactor employing natural circulation as the mode of heat removal under all the operating conditions. Main heat transport system (MHTS) of AHWR is essentially a multi-loop natural circulation system with all the loops connected to each other. Each loop of MHTS has a steam drum that provides for gravity based steam-water separation. Steam drum level is a very critical parameter especially in multi-loop natural circulation systems as large departures from the set point may lead to ineffective separation of steam-water or may affect the driving head. However, such a system is susceptible to steam drum level anomalies under postulated asymmetrical operating conditions among the different quadrants of the core like feedwater flow distribution anomaly among the steam drums or power anomaly among the core quadrants. Analyses were carried out to probe such scenarios and unravel the underlying dynamics of steam drum level using system code RELAP5/Mod3.2. In addition, a scheme to obviate such problem in a passive manner without dependence on level controller was examined. It was concluded that steam drums need to be connected in the liquid as well as steam space to make the system tolerant to asymmetrical operating conditions.

  9. System for measuring of air concentration in air-steam mixture during the transients

    International Nuclear Information System (INIS)

    Gorbenko, Gennady A.; Gakal, Pavlo G.; Epifanov, Konstantin S.; Osokin, Gennady V.; Smirnov, Sergey V.

    2006-01-01

    Description of system for air concentration measuring in air-steam mixture during the transients is represented. Air concentration measuring is based on discrete sampling method. The measuring system consists of sampler, transport pipeline, distributor and six measuring vessels. From the sampler air-steam mixture comes to distributor through transport pipeline and fills consecutively the measuring vessels. The true air concentration in place of measurement was defined based on measured air concentration in samples taken from measuring vessels. For this purpose, the mathematical model of transients in measuring system was developed. Air concentration transient in air-steam mixture in place of measurement was described in mathematical model by air concentration time-dependent function. The function parameters were defined based on air concentration measured in samples taken from measuring vessels. Estimated error of air concentration identification was about 10%. Measuring system was used in experiments on EREC BKV-213 test facility intended for testing of VVER-440/V-213 reactor barbotage-vacuum system

  10. Efficiency calculations for the direct energy conversion system of the Cadarache neutral beam injectors

    International Nuclear Information System (INIS)

    White, R.C.

    1988-01-01

    A prototype energy conversion system is presently in operation at Cadarache, France. Such a device is planned for installation on each six neutral beam injectors for use in the Tore Supra experiment in 1989. We present calculations of beam performance that may influence design considerations. The calculations are performed with the DART charged particle beam code. We investigate the effects of cold plasma, direct energy conversion and neutral beam production. 4 refs., 6 figs., 4 tabs

  11. Ecotaxes and their impact in the cost of steam and electric energy generated by a steam turbine system

    International Nuclear Information System (INIS)

    Montero, Gisela

    2006-01-01

    Ecotaxes allow the internalization of costs that are considered externalities associated with polluting industrial process emissions to the atmosphere. In this paper, ecotaxes internalize polluting emissions negative impacts that are added to electricity and steam generated costs of a steam turbine and heat recovery systems from a utilities refinery plant. Steam costs were calculated by means of an exergy analysis tool and Aspen Plus simulation models. Ecotaxes were calculated for specific substances emitted in the refinery flue gases, based on a toxicity and pollution scale. Ecotaxes were generated from a model that includes damages produced to biotic and abiotic resources and considers the relative position of those substances in a toxicity and pollution scale. These ecotaxes were internalized by an exergoeconomic analysis resulting in an increase in the cost per kWh produced. This kind of ecotax is not applied in Mexico. The values of ecotaxes used in the cost determination are referred to the values currently applied by some European countries to nitrogen oxides emissions. (author)

  12. Functional performance of the helical coil steam generator, Consolidated Nuclear Steam Generator (CNSG) IV system. Executive summary report

    International Nuclear Information System (INIS)

    Watson, G.B.

    1975-10-01

    The objective of this project was to study the functional performance of the CNSG - IV helical steam generator to demonstrate that the generator meets steady-state and transient thermal-hydraulic performance specifications and that secondary flow instability will not be a problem. Economic success of the CNSG concepts depends to a great extent on minimizing the size of the steam generator and the reactor vessel for ship installation. Also, for marine application the system must meet stringent specifications for operating stability, transient response, and control. The full-size two-tube experimental unit differed from the CNSG only in the number of tubes and the mode of primary flow. In general, the functional performance test demonstrated that the helical steam generator concept will exceed the specified superheat of 35F at 100% load. The experimental measured superheat at comparable operating conditions was 95F. Testing also revealed that available computer codes accurately predict trends and overall performance characteristics

  13. Pre-reforming of natural gas in solid oxide fuel-cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R.; Riensche, E.; Cremer, P. [Institute for Materials and Processes Systems IWV 3: Energy Process Engineering, Forschungszentrum Juelich (Germany)

    2000-03-01

    Several measures concerning fuel processing in a solid oxide fuel cell (SOFC) system offer the possibility of significant cost reduction and higher system efficiencies. For SOFC systems, the ratio between internal and pre-reforming has to be optimized on the basis of experimental performance data. Furthermore, anode gas recycling by an injector in front of the pre-reformer can eliminate the steam generator and the corresponding heat of evaporation. A detailed study is carried out on pre-reforming in a reformer of considerable size (10 kW{sub el}). Simulating anode gas recycling with an injector, the influence of carbon dioxide on reactor performance was studied. Also, the dependence of the methanol conversion on mass flow and temperature will be discussed. In addition, some results concerning the dynamic behaviour of the pre-reformer are given. (orig.)

  14. Innovation of blow-down system in steam generators of a VVER 440 unit

    International Nuclear Information System (INIS)

    Matal, O.; Simo, T.; Mancev, M.D.

    1997-01-01

    The impurities getting into the steam generator with the feedwater are continually removed by the blowdown and unit sludge system. The mostly non-symmetrical type of pipe branches under steam generators at WWER-440 units causes nonuniform blowdown flow rates at the halves of the steam generator; this often leads to a blocking of the pipe with the lower flow rate. The most simple way of hydraulically equalizing the blowdown pipes is to implement symmetric blowdown pipes and to install efficient throttling elements in the pipe. The proposed innovation will make it possible to re-distribute the blowdown flow rates and to reduce more effectively the concentrations of impurities in steam generators. (M.D.)

  15. New developments of HIF injector

    Directory of Open Access Journals (Sweden)

    Liang Lu

    2018-01-01

    Full Text Available The ultra-high intensity heavy-ion beam is highly pursued for heavy-ion researches and applications. However, it is limited by heavy-ion production of ion source and space-charge-effect in the low energy region. The Heavy-ion Inertial Fusion (HIF facilities were proposed in 1970s. The HIF injectors have large cavity number and long total length, e.g., there are 27 injectors in HIDIF and HIBLIC is 30 km in length, and the corresponding HIF facilities are too large and too expensive to be constructed. Recently, ion acceleration technologies have been developing rapidly, especially in the low energy region, where the acceleration of high intensity heavy-ions is realized. Meanwhile, superconducting (SC acceleration matures and increases the acceleration gradient in medium and high energy regions. The length of HIF injectors can be shortened to a buildable length of 2.5 km. This paper will present a review of a renewed HIF injector, which adopts multi-beam linac-based cavities. Keywords: Heavy-ion inertial fusion (HIF, Radio frequency quadrupole (RFQ, IH cavity, Heavy-ion, Multi-beam accelerator, PACS Codes: 52.58.Hm, 28.52.Av, 29.20.Ej, 29.27.-a, 29.27.Ac, 41.75.Lx

  16. Radiation analysis of the CIT [Compact Ignition Tokamak] pellet injector system and its impact on personnel access

    International Nuclear Information System (INIS)

    Selcow, E.C.; Stevens, P.N.; Gomes, I.C.; Gomes, L.M.

    1988-08-01

    The conceptual design of the Compact Ignition Tokamak (CIT) is nearing completion. The CIT is a short-pulse ignition experiment, which is planned to follow the operations of the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory (PPPL). The high neutron wall loadings, 4--5 MW/m 2 , associated with the operation of this device require that neutronics-related issues be considered in the overall system design. Radiation shielding is required for the protection of device components as well as personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure, and the entire experiment is housed in a circular test cell facility that has a radius of 12 m. The most critical radiation concerns in the CIT design process relate to the numerous penetrations in the device. This report discusses the impact of a major penetration on the design and operation of the pellet injection system in the CIT. The pellet injector is a major component, and it has a line-of-sight penetration through the igloo and test cell wall. All current options for maintenance of the injector require hands-on-access. A nuclear analysis has been performed to establish the feasibility of hands-on-access. A coupled Monte Carlo/discrete-ordinates methodology was used to perform the analysis. This problem is characterized by deep penetration and streaming with very large length-to-diameter ratios. Results from this study indicate that personnel access to the pellet injector glovebox is possible. 14 refs., 3 figs., 3 tabs

  17. SAGD pilot project, wells MFB-772 (producer) / MFB-773 (injector), U1,3 MFB-53 reservoir, Bare Field. Orinoco oil belt. Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Mago, R.; Franco, L.; Armas, F.; Vasquez, R.; Rodriguez, J.; Gil, E. [PDVSA EandP (Venezuela)

    2011-07-01

    In heavy oil and extra heavy oil fields, steam assisted gravity drainage is a thermal recovery method used to reduce oil viscosity and thus increase oil recovery. For SAGD to be successfully applied in deep reservoirs, drilling and completion of the producer and injector wells are critical. Petroleos de Venezuela SA (PDVSA) is currently assessing the feasibility of SAGD in the Orinoco oil belt in Venezuela and this paper aims at presenting the methodology used to ensure optimal drilling and completion of the project. This method was divided in several stages: planning, drilling and completion of the producer, injector and then of the observer wells and cold information capture. It was found that the use of magnetic guidance tools, injection pipe pre-insulated and pressure and temperature sensors helps optimize the drilling and completion process. A methodology was presented to standardize operational procedures in the drilling and completion of SAGD projects in the Orinoco oil belt.

  18. Development of an acoustic steam generator leak detection system using delay-and-sum beamformer

    International Nuclear Information System (INIS)

    Chikazawa, Yoshitaka

    2009-01-01

    A new acoustic steam generator leak detection system using delay-and-sum beamformer is proposed. The major advantage of the delay-and-sum beamformer is it could provide information of acoustic source direction. An acoustic source of a sodium-water reaction is supposed to be localized while the background noise of the steam generator operation is uniformly distributed in the steam generator tube region. Therefore the delay-and-sum beamformer could distinguish the acoustic source of the sodium-water reaction from steam generator background noise. In this paper, results from numerical analyses are provided to show fundamental feasibility of the new method. (author)

  19. Diagnostics and camera strobe timers for hydrogen pellet injectors

    International Nuclear Information System (INIS)

    Bauer, M.L.; Fisher, P.W.; Qualls, A.L.

    1993-01-01

    Hydrogen pellet injectors have been used to fuel fusion experimental devices for the last decade. As part of developments to improve pellet production and velocity, various diagnostic devices were implemented, ranging from witness plates to microwave mass meters to high speed photography. This paper will discuss details of the various implementations of light sources, cameras, synchronizing electronics and other diagnostic systems developed at Oak Ridge for the Tritium Proof-of-Principle (TPOP) experiment at the Los Alamos National Laboratory's Tritium System Test Assembly (TSTA), a system built for the Oak Ridge Advanced Toroidal Facility (ATF), and the Tritium Pellet Injector (TPI) built for the Princeton Tokamak Fusion Test Reactor (TFTR). Although a number of diagnostic systems were implemented on each pellet injector, the emphasis here will be on the development of a synchronization system for high-speed photography using pulsed light sources, standard video cameras, and video recorders. This system enabled near real-time visualization of the pellet shape, size and flight trajectory over a wide range of pellet speeds and at one or two positions along the flight path. Additionally, the system provides synchronization pulses to the data system for pseudo points along the flight path, such as the estimated plasma edge. This was accomplished using an electronic system that took the time measured between sets of light gates, and generated proportionally delayed triggers for light source strobes and pseudo points. Systems were built with two camera stations, one located after the end of the barrel, and a second camera located closer to the main reactor vessel wall. Two or three light gates were used to sense pellet velocity and various spacings were implemented on the three experiments. Both analog and digital schemes were examined for implementing the delay system. A digital technique was chosen

  20. On line instrument systems for monitoring steam turbogenerators

    Science.gov (United States)

    Clapis, A.; Giorgetti, G.; Lapini, G. L.; Benanti, A.; Frigeri, C.; Gadda, E.; Mantino, E.

    A computerized real time data acquisition and data processing for the diagnosis of malfunctioning of steam turbogenerator systems is described. Pressure, vibration and temperature measurements are continuously collected from standard or special sensors including startup or stop events. The architecture of the monitoring system is detailed. Examples of the graphics output are presented. It is shown that such a system allows accurate diagnosis and the possibility of creating a data bank to describe the dynamic characteristics of the machine park.

  1. Simulation of main steam and feedwater system of full scope simulator for Qinshan 300 MW Nuclear Power Unit

    International Nuclear Information System (INIS)

    Zhao Xiaoyu

    1996-01-01

    The simulation of main steam and feedwater system is the most important and maximal part in secondary circuit model, including all of main steam and feedwater's thermal-hydraulic properties, except heat-exchange of secondary side of steam generator. It simulates main steam header, steam power in each stage of turbine, moisture separator-reheater, deaerator, condenser, high pressure and low pressure heater, auxiliary feedwater and main steam bypass in full scope

  2. Ignition Delay Properties of Alternative Fuels with Navy-Relevant Diesel Injectors

    Science.gov (United States)

    2014-06-01

    nozzle tip. 8 Figure 3 EMD injector cross-sectional view, after [15]. c. Sturman Injector A Sturman research diesel injector was used to validate...PROPERTIES OF ALTERNATIVE FUELS WITH NAVY-RELEVANT DIESEL INJECTORS by Andrew J. Rydalch June 2014 Thesis Advisor: Christopher M. Brophy...Navy’s Green Fleet Initiative, this thesis researched the ignition characteristics for diesel replacement fuels used with Navy-relevant fuel injectors

  3. Steam separator-superheater with drawing of a fraction of the dried steam

    International Nuclear Information System (INIS)

    Bessouat, Roger; Marjollet, Jacques.

    1976-01-01

    This invention concerns a vertical separator-superheater of the steam from a high pressure expansion turbine before it is admitted to an expansion turbine at a lower pressure, by heat exchange with steam under a greater pressure, and drawing of a fraction of the dried steam before it is superheated. Such drawing off is necessary in the heat exchange systems of light water nuclear reactors. Its purpose is to provide a separator-superheater that provides an even flow of non superheated steam and a regular distribution of the steam to be superheated to the various superheating bundles, with a significantly uniform temperature of the casing, thereby preventing thermal stresses and ensuring a minimal pressure drop. The vertical separator-superheater of the invention is divided into several vertical sections comprising as from the central area, a separation area of the steam entrained water and a superheater area and at least one other vertical section with only a separation area of the steam entrained water [fr

  4. High-Average, High-Peak Current Injector Design

    CERN Document Server

    Biedron, S G; Virgo, M

    2005-01-01

    There is increasing interest in high-average-power (>100 kW), um-range FELs. These machines require high peak current (~1 kA), modest transverse emittance, and beam energies of ~100 MeV. High average currents (~1 A) place additional constraints on the design of the injector. We present a design for an injector intended to produce the required peak currents at the injector, eliminating the need for magnetic compression within the linac. This reduces the potential for beam quality degradation due to CSR and space charge effects within magnetic chicanes.

  5. Table-top pellet injector (TATOP) for impurity pellet injection

    Energy Technology Data Exchange (ETDEWEB)

    Szepesi, Tamás, E-mail: szepesi.tamas@wigner.mta.hu [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary); Herrmann, Albrecht [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Kocsis, Gábor; Kovács, Ádám; Németh, József [Wigner RCP, RMI, Konkoly Thege 29-33, H-1121 Budapest (Hungary); Ploeckl, Bernhard [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany)

    2015-10-15

    Highlights: • A portable pellet injector for solid state pellets was designed. • Aims to study ELM triggering potential of impurity pellets. • Aims for multi-machine comparison of pellet–plasma interaction. • Max. pellet speed: 450 m/s, max. rate: 25 Hz. • Pellet size: 0.5–1.5 mm (diameter). - Abstract: A table-top pellet injector (TATOP) has been designed to fulfill the following scientific aims: to study the ELM triggering potential of impurity pellets, and to make pellet injection experiments comparable over several fusion machines. The TATOP is based on a centrifugal accelerator therefore the complete system is run in vacuum, ensuring the compatibility with fusion devices. The injector is able to launch any solid material (stable at room temperature) in form of balls with a diameter in the 0.5–1.5 mm range. The device hosts three individual pellet tanks that can contain e.g. pellets of different materials, and the user can select from those without opening the vacuum chamber. A key element of the accelerator is a two-stage stop cylinder that reduces the spatial scatter of pellets exiting the acceleration arm below 6°, enabling the efficient collection of all fired pellets. The injector has a maximum launch speed of 450 m/s. The launching of pellets can be done individually by providing TTL triggers for the injector, giving a high level of freedom for the experimenter when designing pellet trains. However, the (temporary) firing rate cannot be larger than 25 Hz. TATOP characterization was done in a test bed; however, the project is still in progress and before application at a fusion oriented experiment.

  6. Commissioning of the RFQ1 injector

    International Nuclear Information System (INIS)

    Arbique, G.M.; Sheikh, J.Y.; Taylor, T.; Birney, L.F.; Davidson, A.D.; Wills, J.S.C.

    1987-01-01

    The RFQ1 accelerator is being developed at Chalk River to test the limits of the cw RFQ technology. A 50 kV injector has been built and is now being commissioned as the first phase of the program. This paper describes some of the innovative features of the RFQ1 injector and reports on initial operating experience

  7. SLC injector simulation and tuning for high charge transport

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.; Clendenin, J.E.; Early, R.A.; Ross, M.C.; Turner, J.L.; Wang, J.W.

    1992-01-01

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model. (Author) 5 figs., 7 refs

  8. Tuner control system of Spoke012 SRF cavity for C-ADS injector I

    Science.gov (United States)

    Liu, Na; Sun, Yi; Wang, Guang-Wei; Mi, Zheng-Hui; Lin, Hai-Ying; Wang, Qun-Yao; Liu, Rong; Ma, Xin-Peng

    2016-09-01

    A new tuner control system for spoke superconducting radio frequency (SRF) cavities has been developed and applied to cryomodule I of the C-ADS injector I at the Institute of High Energy Physics, Chinese Academy of Sciences. We have successfully implemented the tuner controller based on Programmable Logic Controller (PLC) for the first time and achieved a cavity tuning phase error of ±0.7° (about ±4 Hz peak to peak) in the presence of electromechanical coupled resonance. This paper presents preliminary experimental results based on the PLC tuner controller under proton beam commissioning. Supported by Proton linac accelerator I of China Accelerator Driven sub-critical System (Y12C32W129)

  9. 21 CFR 870.1670 - Syringe actuator for an injector.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Syringe actuator for an injector. 870.1670 Section 870.1670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... actuator for an injector. (a) Identification. A syringe actuator for an injector is an electrical device...

  10. Economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry

    Directory of Open Access Journals (Sweden)

    Flavia Melo Menezes

    2017-12-01

    Full Text Available The burning of fossil fuels majorly contributes to the increase in global warming, and it represents 93% of greenhouse gases emissions in the chemical industry. Most of the energy demand in this sector is associated with steam systems, where 1/3 of the energy efficiency opportunities are located in its distribution system. However, most of the literature focuses on the design of new systems. Those that deal with existing systems, not always use simple and available methods. Furthermore, they address energy losses of steam systems only due to thermal insulation, ignoring those due to leakages of traps. Given this context, the purpose of this paper is to determine the economic feasibility of an energy efficiency project for a steam distribution system in a chemical industry, located in the metropolitan region of Salvador, Brazil. First, the energy lost in the steam distribution system through heat insulation and steam traps was estimated by applying thermodynamic principles, and technic consulting, respectively. Then, investments were estimated using commercial prices for new thermal insulation and steam traps. Finally, an economic evaluation of the improvement project was made, through the construction of a cash flow, and calculation of economic indicators: payback time, net present value (NPV, and internal rate of return (IRR. Economic indicators showed that the project is economically viable. The NPV and IRR reached approximately 5 million reais, and 66% per year, respectively. Additionally, this project also had social and environmental benefits, such as a reduction in greenhouse gases emissions, and increased local water availability.

  11. Fuel injection and mixing systems having piezoelectric elements and methods of using the same

    Science.gov (United States)

    Mao, Chien-Pei [Clive, IA; Short, John [Norwalk, IA; Klemm, Jim [Des Moines, IA; Abbott, Royce [Des Moines, IA; Overman, Nick [West Des Moines, IA; Pack, Spencer [Urbandale, IA; Winebrenner, Audra [Des Moines, IA

    2011-12-13

    A fuel injection and mixing system is provided that is suitable for use with various types of fuel reformers. Preferably, the system includes a piezoelectric injector for delivering atomized fuel, a gas swirler, such as a steam swirler and/or an air swirler, a mixing chamber and a flow mixing device. The system utilizes ultrasonic vibrations to achieve fuel atomization. The fuel injection and mixing system can be used with a variety of fuel reformers and fuel cells, such as SOFC fuel cells.

  12. Measure Guideline: Steam System Balancing and Tuning for Multifamily Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-04-01

    This report was written as a resource for professionals involved in multifamily audits, retrofit delivery, and program design, as well as for building owners and contractors. It is intended to serve as a guide for those looking to evaluate and improve the efficiency and operation of one-pipe steam heating systems. In centrally heated multifamily buildings with steam or hydronic systems, the cost of heat for tenants is typically absorbed into the owner's operating costs. Highly variable and rising energy costs have placed a heavy burden on landlords. In the absence of well-designed and relevant efficiency efforts, increased operating costs would be passed on to tenants who often cannot afford those increases. Misinvestment is a common problem with older heating systems -- multiple contractors may inadequately or inappropriately upgrade parts of systems and reduce system functionality and efficiency, or the system has not been properly maintained.

  13. The development of a control system for a small high speed steam microturbine generator system

    Science.gov (United States)

    Alford, A.; Nichol, P.; Saunders, M.; Frisby, B.

    2015-08-01

    Steam is a widely used energy source. In many situations steam is generated at high pressures and then reduced in pressure through control valves before reaching point of use. An opportunity was identified to convert some of the energy at the point of pressure reduction into electricity. To take advantage of a market identified for small scale systems, a microturbine generator was designed based on a small high speed turbo machine. This machine was packaged with the necessary control valves and systems to allow connection of the machine to the grid. Traditional machines vary the speed of the generator to match the grid frequency. This was not possible due to the high speed of this machine. The characteristics of the rotating unit had to be understood to allow a control that allowed export of energy at the right frequency to the grid under the widest possible range of steam conditions. A further goal of the control system was to maximise the efficiency of generation under all conditions. A further complication was to provide adequate protection for the rotating unit in the event of the loss of connection to the grid. The system to meet these challenges is outlined with the solutions employed and tested for this application.

  14. Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming

    International Nuclear Information System (INIS)

    Poran, Arnon; Tartakovsky, Leonid

    2015-01-01

    This article discusses the concept of a direct-injection ICE (internal combustion engine) with thermo-chemical recuperation realized through SRM (steam reforming of methanol). It is shown that the energy required to compress the reformate gas prior to its injection into the cylinder is substantial and has to be accounted for. Results of the analysis prove that the method of reformate direct-injection is unviable when the reforming is carried-out under atmospheric pressure. To reduce the energy penalty resulted from the gas compression, it is suggested to implement a high-pressure reforming process. Effects of the injection timing and the injector's flow area on the ICE-SRM system's fuel conversion efficiency are studied. The significance of cooling the reforming products prior to their injection into the engine-cylinder is demonstrated. We show that a direct-injection ICE with high-pressure SRM is feasible and provides a potential for significant efficiency improvement. Development of injectors with greater flow area shall contribute to further efficiency improvements. - Highlights: • Energy needed to compress the reformate is substantial and has to be accounted for. • Reformate direct-injection is unviable if reforming is done at atmospheric pressure. • Direct-injection engine with high-pressure methanol reforming is feasible. • Efficiency improvement by 12–14% compared with a gasoline-fed engine was shown

  15. SLC injector simulation and tuning for high charge transport

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Miller, R.H.; Clendenin, J.E.; Early, R.A.; Ross, M.C.; Turner, J.L.; Wang, J.W.

    1992-08-01

    We have simulated the SLC injector from the thermionic gun through the first accelerating section and used the resulting parameters to tune the injector for optimum performance and high charge transport. Simulations are conducted using PARMELA, a three-dimensional ray-trace code with a two-dimensional space-charge model. The magnetic field profile due to the existing magnetic optics is calculated using POISSON, while SUPERFISH is used to calculate the space harmonics of the various bunchers and the accelerator cavities. The initial beam conditions in the PARMELA code are derived from the EGUN model of the gun. The resulting injector parameters from the PARMELA simulation are used to prescribe experimental settings of the injector components. The experimental results are in agreement with the results of the integrated injector model

  16. LTP fibre injector qualification and status

    International Nuclear Information System (INIS)

    Bogenstahl, J; Cunningham, L; Fitzsimons, E D; Hough, J; Killow, C J; Perreur-Lloyd, M; Robertson, D; Rowan, S; Ward, H

    2009-01-01

    This paper presents the current state of the LISA Technology Package (LTP) fibre injector qualification project in terms of vibration and shock tests. The fibre injector is a custom built part and therefore must undergo a full space qualification process. The mounting structure and method for sinusoidal vibration and random vibration tests as well as shock tests will be presented. Furthermore a proposal will be presented to use the fibre injector pair qualification model to build an optical prototype bench. The optical prototype bench is a full-scale model of the flight model. It will be used for development and rehearsal of all the assembly stages of the flight model and will provide an on-ground simulator for investigation as an updated engineering model.

  17. Application of a two-phase injector in the safety systems of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Popov, E; Stanev, I [Energoproekt, Sofia (Bulgaria)

    1996-12-31

    A concept for simplification of the active part of the safety system (ASS) of nuclear power plants is presented. A two-phase injection jet device (IJD) is proposed to substitute the currently used IP-EM (impeller pumps -electric motors) couple. It is capable of sustaining a constant flow rate regardless of the variation in the system hydraulic resistance. The conditions for effective work of IJD are: development of the necessary head and flow rate, reliable supply of working medium and maintaining of the temperature of the injected water. IJD efficiency, steam and water flow rates have been calculated and compared with experimentally measured values. A short analysis of different typical accident regimes is carried out. It shows that IJD introduction brings significant advantages especially in the steam generator emergency feedwater system making it completely insensitive to loss of electricity supply accidents. 8 refs., 7 figs.

  18. Application of a two-phase injector in the safety systems of nuclear power plants

    International Nuclear Information System (INIS)

    Popov, E.; Stanev, I.

    1995-01-01

    A concept for simplification of the active part of the safety system (ASS) of nuclear power plants is presented. A two-phase injection jet device (IJD) is proposed to substitute the currently used IP-EM (impeller pumps -electric motors) couple. It is capable of sustaining a constant flow rate regardless of the variation in the system hydraulic resistance. The conditions for effective work of IJD are: development of the necessary head and flow rate, reliable supply of working medium and maintaining of the temperature of the injected water. IJD efficiency, steam and water flow rates have been calculated and compared with experimentally measured values. A short analysis of different typical accident regimes is carried out. It shows that IJD introduction brings significant advantages especially in the steam generator emergency feedwater system making it completely insensitive to loss of electricity supply accidents. 8 refs., 7 figs

  19. Reliability and current-adaptability studies of a 352 MHz, 17 MeV, continuous-wave injector for an accelerator-driven system

    Directory of Open Access Journals (Sweden)

    Chuan Zhang

    2010-08-01

    Full Text Available EUROTRANS is a European research program for the transmutation of high level nuclear waste in an accelerator-driven system (ADS. As proposed, the driver linac needs to deliver a 2.5–4 mA, 600 MeV continuous-wave (CW proton beam and later a 20 mA, 800 MeV one to the spallation target in the prototype-scale and industrial-scale demonstration phases, respectively. This paper is focusing on the conceptual studies performed with respect to the 17 MeV injector. First, the special beam dynamics strategies and methods, which have been developed and applied to design a current-variable injector up to 30 mA for allowing an easy upgrade without additional R&D costs, will be introduced. Then the error study made for evaluating the tolerance limits of the designed injector will be presented as well.

  20. Design of the steam generator in an energy conversion system based on the aluminum combustion with water

    International Nuclear Information System (INIS)

    Mercati, Stefano; Milani, Massimo; Montorsi, Luca; Paltrinieri, Fabrizio

    2012-01-01

    Highlights: ► Development of a numerical approach for the analysis of a co-generation system based on the aluminum water reaction. ► Construction of system operating maps for estimating the system behavior. ► Comparison of two different designs of the steam generator for the system. ► Definition of the operating range where each configuration provides the best performance. -- Abstract: The paper shows the preliminary design of the superheated steam generator to be used in a novel hydrogen production and energy conversion system based on the combustion of aluminum particles with water. The system is aimed at producing hydrogen and pressurized superheated steam, using the heat released by the Al–H 2 O reaction. The interest on this type of technology arises because of the possibility of obtaining hydrogen with very low pollutant and greenhouse gas emissions, compared to the traditional hydrogen production systems, such as the steam reforming from methane. The analysis of the combustion chamber and the heat recovery system is carried out by means of a lumped and distributed parameter numerical approach. The multi phase and gas mixture theoretical principles are used both to characterize the mass flow rate and the heat release in the combustion chamber and within the heat exchangers in order to relate the steam generator performance to the system operating parameters. Finally, the influence of the steam generator performance on the whole energy conversion system behavior is addressed, with particular care to the evaluation of the total power and efficiency variation with the combustion parameters.

  1. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    International Nuclear Information System (INIS)

    Tippets, F.E.

    1975-01-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  2. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Tippets, F E

    1975-07-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  3. Neutron production and dose rate in the IFMIF/EVEDA LIPAc injector beam commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Keitaro, E-mail: kondo.keitaro@jaea.go.jp [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Narita, Takahiro; Usami, Hiroki; Takahashi, Hiroki; Ochiai, Kentaro; Shinto, Katsuhiro; Kasugai, Atsushi [Rokkasho Fusion Institute, Japan Atomic Energy Agency, Rokkasho-mura, Kamikita-gun, Aomori (Japan); Okumura, Yoshikazu [IFMIF/EVEDA Project Team, Rokkasho-mura, Kamikita-gun, Aomori (Japan)

    2016-11-01

    Highlights: • A dedicated neutron production yield monitoring system for LIPAc has been developed. • The biological dose rate during operation of the LIPAc injector was analyzed. • The neutron streaming effect due to penetrations in the shielding wall was investigated. - Abstract: The construction of the Linear IFMIF Prototype Accelerator (LIPAc) is in progress in Rokkasho, Japan, and the deuteron beam commissioning of the injector began in July 2015. Due to the huge beam current of 125 mA, a large amount of d-D neutrons are produced in the commissioning. The neutron streaming effect through pipe penetrations and underground pits may dominate the radiation dose at the outside of the accelerator vault during the injector operation. In the present study the effective dose rate expected during the injector commissioning was analyzed by a Monte Carlo calculation and compared with the measured value. For the comparison it is necessary to know the total neutron production yield in the accelerator vault, thus a dedicated neutron production yield monitoring system was developed. The yield obtained was smaller than that previously reported in a literature by a factor of a few and seems to depend on some beam conditions. From the comparison it was proved that the calculation always provides a conservative estimate and the dose rates in places where occupational works can always access and the controlled area boundary are expected to be far less than the legal criteria throughout the injector commissioning.

  4. High Brightness Injectors Based On Photocathode DC Gun

    International Nuclear Information System (INIS)

    B. Yunn

    2001-01-01

    Sample results of new injector design method based on a photocathode dc gun are presented, based on other work analytically proving the validity of the emittance compensation scheme for the case even when beam bunching is involved. We have designed several new injectors appropriate for different bunch charge ranges accordingly. Excellent beam quality produced by these injectors clearly shows that a photocathode dc gun can compete with a rf gun on an equal footing as the source of an electron beam for the bunch charge ranging up to 2 nano Coulomb (nC). This work therefore elevates a dc gun based injector to the preferred choice for many ongoing high brightness accelerator projects considering the proven operational stability and high average power capability of the dc gun

  5. NSLS 3: Conceptual design report: 750 MeV e+ or e- injector

    International Nuclear Information System (INIS)

    1986-05-01

    The 750 MeV positron or electron injector is comprised of an electron linear accelerator which accelerates an intense beam of electrons to an energy of about 250 MeV, a positron converter, a second linear accelerator that boosts the final positron energy to 750 MeV, and a damping ring in which radiation damping is used to reduce the emittance of the positron beam for injection into the storage rings. The reasons for the need of a new injector are enumerated. The conceptual design of the system and its component systems are described, as well as project cost, schedule, and manpower requirements

  6. The effect of steam separataor efficiency on transient following a steam line break

    International Nuclear Information System (INIS)

    Choi, J.H.; Ohn, M.Y.; Lee, N.H.; Hwang, S.T.; Lee, S.K.

    1996-01-01

    Detailed thermalhydraulic simulations for CANDU 6 steam line break inside containment are performed to predict the response of the primary and secondary circuits. The analysis is performed using the thermalhydraulic computer code, CATHENA, with a coupled primary and secondary circuit model. A two-loop representation of the primary and secondary circuits is modelled. The secondary circuit model includes the feedwater line from the deaerator storage tank, multi-node steam generators and the steam line up to the turbine. Two cases were carried out using different assumptions for the efficiency of the steam separators. Case 1 assumes the efficiency of the steam separators becomes zero when the water level in the steam drum increases to the elevation of primary cyclones, or the outlet flow from the steam generator becomes higher than 150 % of normal flow. Case 2 assumes the efficiency becomes zero only when the water level in the steam drum reaches the elevation of primary cyclones. The simulation results show that system responses are sensitive to the assumption for the efficiency of the steam separators and case 1 gives higher discharge energy. Fuel cooling is assured, since primary circuit is cooled down sufficiently by the steam generators for both cases. (author)

  7. Pellet injector research and development at ORNL

    International Nuclear Information System (INIS)

    Combs, S.K.; Argo, B.E.; Baylor, L.R.; Cole, M.J.; Dyer, G.R.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Gouge, M.J.; Jernigan, T.C.; Langley, R.A.; Milora, S.L.; Qualls, A.L.; Schechter, E.; Sparks, D.O.; Tsai, C.C.; Wilgen, J.B.; Whealton, J.W.

    1993-01-01

    A variety of pellet injector designs have been developed at ORNL including single-shot guns that inject one pellet, multiple-shot guns that inject four and eight pellets, machine gun-types (single- and multiple-barrel) that can inject up to >100 pellets, and centrifugal accelerators (mechanical devices that are inherently capable of high repetition rates and long-pulse operation). With these devices, macroscopic pellets (1--6 mm in diameter) composed of hydrogen isotopes are typically accelerated to speeds of ∼1.0 to 2.0 km/s for injection into plasmas of experimental fusion devices. In the past few years, steady progress has been made at ORNL in the development and application of pellet injectors for fueling present-day and future fusion devices. In this paper, we briefly describe some research and development activities at ORNL, including: (1) two recent applications and a new one on large experimental fusion devices, (2) high-velocity pellet injector development, and (3) tritium injector research

  8. Review on pressure swirl injector in liquid rocket engine

    Science.gov (United States)

    Kang, Zhongtao; Wang, Zhen-guo; Li, Qinglian; Cheng, Peng

    2018-04-01

    The pressure swirl injector with tangential inlet ports is widely used in liquid rocket engine. Commonly, this type of pressure swirl injector consists of tangential inlet ports, a swirl chamber, a converging spin chamber, and a discharge orifice. The atomization of the liquid propellants includes the formation of liquid film, primary breakup and secondary atomization. And the back pressure and temperature in the combustion chamber could have great influence on the atomization of the injector. What's more, when the combustion instability occurs, the pressure oscillation could further affects the atomization process. This paper reviewed the primary atomization and the performance of the pressure swirl injector, which include the formation of the conical liquid film, the breakup and atomization characteristics of the conical liquid film, the effects of the rocket engine environment, and the response of the injector and atomization on the pressure oscillation.

  9. Risk-based and maintenance systems for steam turbines

    International Nuclear Information System (INIS)

    Fujiyama, K.; Nagai, S.; Akikuni, Y.; Fujiwara, T.; Furuya, K.; Matsumoto, S.; Takagi, K.; Kawabata, T.

    2003-01-01

    The risk-based maintenance (RBM) system has been developed for steam turbine plants coupled with the quick inspection systems. The RBM system utilizes the field failure and inspection database accumulated over 30 years. The failure modes are determined for each component of steam turbines and the failure scenarios are described as event trees. The probability of failure is expressed in the form of unreliability functions of operation hours or start-up cycles through the cumulative hazard function method. The posterior unreliability is derived from the field data analysis according to the inspection information. Quick inspection can be conducted using air-cooled borescope and heat resistant ultrasonic sensors even if the turbine is not cooled down sufficiently. Another inspection information comes from degradation and damage measurement. The probabilistic life assessment using structural analysis and statistical material properties, the latter is estimated from hardness measurement, replica observation and embrittlement measurement. The risk function is calculated as the sum product of unreliability functions and expected monetary loss as the consequence of failure along event trees. The optimum maintenance plan is determined among simulated scenarios described through component breakdown trees, life cycle event trees and risk functions. Those methods are effective for total condition assessment and economical maintenance for operating plants. (orig.)

  10. What are the 'ideal' features of an adrenaline (epinephrine) auto-injector in the treatment of anaphylaxis?

    Science.gov (United States)

    Frew, A J

    2011-01-01

    Anaphylaxis is a systemic allergic reaction that often involves respiratory symptoms and cardiovascular collapse, which are potentially life-threatening if not treated promptly with intramuscular adrenaline. Owing to the unpredictable nature of anaphylaxis and accidental exposure to allergens (such as peanuts and shellfish), patients should be prescribed intramuscular adrenaline auto-injectors and carry these with them at all times. Patients also need to be able to use their auto-injectors correctly while under high stress, when an anaphylactic attack occurs. Despite this, an alarming number of patients fail to carry their auto-injectors and many patients, carers of children with known anaphylaxis and healthcare professionals do not know how to use the device correctly, despite having had training. Currently available auto-injector devices have various limitations that may impede their use in the management of anaphylaxis. There is also a lack of validated assessment criteria and regulatory requirements for new devices. This review describes the different delivery systems used in currently available auto-injectors and discusses the key barriers to the use of adrenaline auto-injectors, with the goal of identifying the 'ideal' features/characteristics of such devices in the emergency treatment of anaphylaxis that will ensure ease of use, portability and accurate delivery of a life-saving drug. © 2010 John Wiley & Sons A/S.

  11. Comparison of JP-8 Sprays from a Hydraulically Actuated Electronically Controlled Unit Injector and a Common Rail Injector

    Science.gov (United States)

    2015-10-01

    the oil from the engine to pressurize the fuel for injection. The engine oil passes to an intensifier piston and plunger inside the injector which...pressure. Fuel is supplied to a high pressure pump where the fuel is compressed to increase the pressure. The high pressure fuel is then directed to a...pressurization systems were used during the experiments for this study. The common rail fuel injection system consists of an air driven pump capable of

  12. Spray Modeling for Outwardly-Opening Hollow-Cone Injector

    KAUST Repository

    Sim, Jaeheon; Badra, Jihad; Elwardani, Ahmed Elsaid; Im, Hong G.

    2016-01-01

    linear instability sheet atomization (LISA) model was originally developed for pressure swirl hollow-cone injectors with moderate spray angle and toroidal ligament breakups. Therefore, it is not appropriate for the outwardly-opening injectors having wide

  13. Application of the code Slac to the study of Ion Extraction Systems in Neutral Injectors

    International Nuclear Information System (INIS)

    Garcia, M.; Liniers, M.; Guasp, J.

    1997-01-01

    In this study different extraction geometries for intense ion beams have been analyzed with the code SLAC, in view of its possible application to the neutral injectors of TJ-II. With this aim, we have introduced several modifications in the code in order to correctly simulate the transition between the ion source plasma and the extraction region, which has great impact on the beam optics. These modifications include the introduction of a population of Boltzmann electrons in the transition region, and the implementation of an option to simulate the thermal velocity of the ions in the source. We have found a better agreement between the results obtained with the new version of the code and the experimental data in two well known systems. With this new version of the code two different studies have been carried out: in the first place an optimization of the ATF injectors extraction system for its use on TJ-II, leading to an optimum value of the gap in the energy range 30-40 KeV, and in the second place a systematic study of extraction geometries at 40 KeV. As a result of this second study we have found the combinations of parameters that can be used under different working conditions (e.g. different pulse lengths), leading to acceptable values of the beam divergence. (Author)

  14. Preliminary design of steam reformer in out-pile demonstration test facility for HTTR heat utilization system

    Energy Technology Data Exchange (ETDEWEB)

    Haga, Katsuhiro; Hino, Ryutaro; Inagaki, Yosiyuki; Hata, Kazuhiko; Aita, Hideki; Sekita, Kenji; Nishihara, Tetsuo; Sudo, Yukio [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Yamada, Seiya

    1996-11-01

    One of the key objectives of HTTR is to demonstrate effectiveness of high-temperature nuclear heat utilization system. Prior to connecting a heat utilization system to HTTR, an out-pile demonstration test is indispensable for the development of experimental apparatuses, operational control and safety technology, and verification of the analysis code of safety assessment. For the first heat utilization system of HTTR, design of the hydrogen production system by steam reforming is going on. We have proposed the out-pile demonstration test plan of the heat utilization system and conducted preliminary design of the test facility. In this report, design of the steam reformer, which is the principal component of the test facility, is described. In the course of the design, two types of reformers are considered. The one reformer contains three reactor tubes and the other contains one reactor tube to reduce the construction cost of the test facility. We have selected the steam reformer operational conditions and structural specifications by analyzing the steam reforming characteristics and component structural strength for each type of reformer. (author)

  15. Evaluation of steam generator U-tube integrity during PWR station blackout with secondary system depressurization

    International Nuclear Information System (INIS)

    Hidaka, Akihide; Asaka, Hideaki; Sugimoto, Jun; Ueno, Shingo; Yoshino, Takehito

    1999-12-01

    In PWR severe accidents such as station blackout, the integrity of steam generator U-tube would be threatened early at the transient among the pipes of primary system. This is due to the hot leg countercurrent natural circulation (CCNC) flow which delivers the decay heat of the core to the structures of primary system if the core temperature increases after the secondary system depressurization. From a view point of accident mitigation, this steam generator tube rupture (SGTR) is not preferable because it results in the direct release of primary coolant including fission products (FP) to the environment. Recent SCDAP/RELAP5 analyses by USNRC showed that the creep failure of pressurizer surge line which results in release of the coolant into containment would occur earlier than SGTR during the secondary system depressurization. However, the analyses did not consider the decay heat from deposited FP on the steam generator U-tube surface. In order to investigate the effect of decay heat on the steam generator U-tube integrity, the hot leg CCNC flow model used in the USNRC's calculation was, at first, validated through the analysis for JAERI's LSTF experiment. The CCNC model reproduced well the thermohydraulics observed in the LSTF experiment and thus the model is mostly reliable. An analytical study was then performed with SCDAP/RELAP5 for TMLB' sequence of Surry plant with and without secondary system depressurization. The decay heat from deposited FP was calculated by JAERI's FP aerosol behavior analysis code, ART. The ART analysis showed that relatively large amount of FPs may deposit on steam generator U-tube inlet mainly by thermophoresis. The SCDAP/RELAP5 analyses considering the FP decay heat predicted small safety margin for steam generator U-tube integrity during secondary system depressurization. Considering associated uncertainties in the analyses, the potential for SGTR cannot be ignored. Accordingly, this should be considered in the evaluation of merits

  16. Engineering problems of future neutral beam injectors

    International Nuclear Information System (INIS)

    Fink, J.

    1977-01-01

    Because there is no limit to the energy or power that can be delivered by a neutral-beam injector, its use will be restricted by either its cost, size, or reliability. Studies show that these factors can be improved by the injector design, and several examples, taken from mirror reactor studies, are given

  17. Design and implementation of a control system for a deuterium pellet injector

    International Nuclear Information System (INIS)

    Burris, R.D.; Baylor, L.R.; Greenwood, D.E.; Stewart, K.A.

    1986-03-01

    The Oak Ridge National Laboratory is currently developing a Deuterium Pellet Injector for installation on the Tokamak Fusion Test Reactor (TFTR). This paper describes the design and development of a stand-alone data acquisition and control system for that device. Major elements of the hardware are an Allen-Bradley PLC 2/30 programmable logic controller, a MicroVAX-II computer using the VMS operating system, CAMAC data acquisition and communication equipment, and special-purpose controllers for temperature and for the sequencing of pellet firing valves. The PLC performs all actual control actions and acquires data pertinent to those actions. The MicroVAX receives the data acquired by the PLC, displays it for the operator, prompts for and processes requests for action from the operator, and informs the PLC of those requests. The primary purpose of this paper is to describe the software operating in the MicroVAX, including the system architecture, major tasks, and ancillary and background tasks

  18. The design and performance of a twenty barrel hydrogen pellet injector for Alcator C-Mod

    International Nuclear Information System (INIS)

    Urbahn, J.A.

    1994-05-01

    A twenty barrel hydrogen pellet injector has been designed, built and tested both in the laboratory and on the Alcator C-Mod Tokamak at MIT. The injector functions by firing pellets of frozen hydrogen or deuterium deep into the plasma discharge for the purpose of fueling the plasma, modifying the density profile and increasing the global energy confinement time. The design goals of the injector are: (1) Operational flexibility, (2) High reliability, (3) Remote operation with minimal maintenance. These requirements have lead to a single stage, pipe gun design with twenty barrels. Pellets are formed by in- situ condensation of the fuel gas, thus avoiding moving parts at cryogenic temperatures. The injector is the first to dispense with the need for cryogenic fluids and instead uses a closed cycle refrigerator to cool the thermal system components. The twenty barrels of the injector produce pellets of four different size groups and allow for a high degree of flexibility in fueling experiments. Operation of the injector is under PLC control allowing for remote operation, interlocked safety features and automated pellet manufacturing. The injector has been extrusively tested and shown to produce pellets reliably with velocities up to 1400 m/sec. During the period from September to November of 1993, the injector was successfully used to fire pellets into over fifty plasma discharges. Experimental results include data on the pellet penetration into the plasma using an advanced pellet tracking diagnostic with improved time and spatial response. Data from the tracker indicates pellet penetrations were between 30 and 86 percent of the plasma minor radius

  19. Neutral beam injector for 475 keV MARS sloshing ions

    International Nuclear Information System (INIS)

    Goebel, D.M.; Hamilton, G.W.

    1983-01-01

    A neutral beam injector system which produces 5 MW of 475 keV D 0 neutrals continuously on target has been designed. The beamline is intended to produce the sloshing ion distribution required in the end plug region of the conceptual MARS tandem mirror commercial reactor. The injector design utilizes the LBL self-extraction negative ion source and Transverse Field Focusing (TFF) accelerator to generate a long, ribbon ion beam. A laser photodetachment neutralizer strips over 90% of the negative ions. Magnetic and neutron shield designs are included to exclude the fringe fields of the end plug and provide low activation by the neutron flux from the target plasma. The use of a TFF accelerator and photodetachment neutralizer produces a total system electrical efficiency of about 63% for this design

  20. Erosion corrosion in wet steam

    International Nuclear Information System (INIS)

    Tavast, J.

    1988-03-01

    The effect of different remedies against erosion corrosion in wet steam has been studied in Barsebaeck 1. Accessible steam systems were inspected in 1984, 1985 and 1986. The effect of hydrogen peroxide injection of the transport of corrosion products in the condensate and feed water systems has also been followed through chemical analyses. The most important results of the project are: - Low alloy chromium steels with a chromium content of 1-2% have shown excellent resistance to erosion corrosion in wet steam. - A thermally sprayed coating has shown good resistance to erosion corrosion in wet steam. In a few areas with restricted accessibility minor attacks have been found. A thermally sprayed aluminium oxide coating has given poor results. - Large areas in the moisture separator/reheater and in steam extraction no. 3 have been passivated by injection of 20 ppb hydrogen peroxide to the high pressure steam. In other inspected systems no significant effect was found. Measurements of the wall thickness in steam extraction no. 3 showed a reduced rate of attack. - The injection of 20 ppb hydrogen peroxide has not resulted in any significant reduction of the iron level result is contrary to that of earlier tests. An increase to 40 ppb resulted in a slight decrease of the iron level. - None of the feared disadvantages with hydrogen peroxide injection has been observed. The chromium and cobalt levels did not increase during the injection. Neither did the lifetime of the precoat condensate filters decrease. (author)

  1. Conceptual design of a compact absolute valve for the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Chris [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom)], E-mail: chris.m.jones@jet.uk; Waldon, Chris; Martin, David; Watson, Mike [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Sonderegger, Kurt; Lenherr, Bruno [VAT Vakuumventile AG, CH-9469 Haag (Switzerland); Andrews, Ian; Mansbridge, Simon [VAT Vacuum Products Ltd., Edmund House, Rugby Road, Leamington Spa, Warwickshire CV32 6EL (United Kingdom)

    2009-06-15

    The reference design for the ITER neutral beam injectors incorporated a fast shutter to limit tritium migration to the injector vacuum enclosures. In 2005, a need for an 'absolute' isolation valve was identified to facilitate injector maintenance procedures and protect the system from an in-vessel ingress of coolant event (ICE). An outline concept for an all-metal seal valve was developed during 2006, in close cooperation with the Swiss valve manufacturer VAT. During the following year, it became apparent that the length of beamline available for the valve was significantly less than originally envisaged, resulting in a radical revision of the design concept. A casing length of 760 mm has been achieved by means of major changes to the casing structure, plate dimensions, pendulum mechanism and seal actuators. A concept for a seal protection system has been developed to prevent beam line contamination reaching the valve components and to protect the valve plate from surface heating by plasma radiation. The new design concept has been extensively validated by analysis, including a whole-system FE model of the valve.

  2. Application of nuclear steam supply system of NIKA series for seawater desalination

    International Nuclear Information System (INIS)

    Adamovich, L.A.; Achkasov, A.N.; Grechko, G.I.; Pavlov, V.L.; Shishkin, V.A.

    1998-01-01

    The nuclear steam supply system (NSSS) NIKA has been developed on the basis of experience available in Russia in designing, construction and operation of similar systems for ship propulsion reactors. Major systems and equipment of the NSSS are designed to take advantage of the proven engineering features and to meet Russian regulations, standards, practices and up-to-date safety philosophy. NSSS NIKA-75 has been designed for arrangement on barge. This permits to manufacture all NSSS equipment at the factory and to deliver it to the exploitation area ready for operation. NSSS NIKA-300 is designed for erection on land. It seems very interesting to use those NSSS types for seawater desalination. The main technical solutions, concept statements, technical and economical evaluations of NIKA series nuclear steam supply systems for seawater desalination are described. (author)

  3. Necessary LIU studies in the injectors during 2012

    International Nuclear Information System (INIS)

    Rumolo, G.; Bartosik, H.; Papaphilippou, Y.

    2012-01-01

    A significant fraction of the Machine Development (MD) time in the LHC injectors in 2011 was devoted to the study of the intensity limitations in the injectors (e.g. space charge effects in PS and SPS, electron cloud effects in the PS and SPS, single bunch and multi-bunch instabilities in PS and SPS, emittance preservation across the injector chain, etc.). The main results achieved in 2011 are presented as well as the questions that still remain unresolved and are of relevance for the LHC Injector Upgrade (LIU) project. 2012 MD will also continue exploring the potential of scenarios that might become operational in the future, like the development of a low gamma transition optics in the SPS or alternative production schemes for the LHC beams in the PS. A tentative prioritized list of studies is provided. (authors)

  4. Bevalac injector final stage RF amplifier upgrades

    International Nuclear Information System (INIS)

    Howard, D.; Calvert, J.; Dwinell, R.; Lax, J.; Lindner, A.; Richter, R.; Ridgeway, W.

    1991-01-01

    With the assistance of the DOE In-house Energy Management Program, the Bevalac injector final stage RF amplifier systems have been successfully upgraded to reduce energy consumption and operating costs. This recently completed project removed the energy-inefficient plate voltage modulator circuits that were used in conjunction with the final stage RF amplifiers. Construction, design, and operating parameters are described in detail

  5. Design of a partial inter-tube lancing system actuated by hydraulic power for type F model steam generator in nuclear power plant

    International Nuclear Information System (INIS)

    Kim, S. T.; Jeong, W. T.

    2008-01-01

    The sludge grown up in steam generators of nuclear power plants shortens the life-cycle of steam generators and reduces the output of power plants. So KHNP(Korea Hydro and Nuclear Power), the only nuclear power utility in Korea, removes it periodically using a steam generator lancing system during the outage of plants for an overhaul. KEPRI(Korea Electric Power Research Institute) has developed lancing systems with high pressured water nozzle for steam generators of nuclear power plants since 2001. In this paper, the design of a partial inter-tube lancing system for model F type steam generators will be described. The system is actuated without a DC motor inner steam generators because the motors in a steam generator make a trouble from high intensity of radioactivity as a break down

  6. Ion source and injector development

    International Nuclear Information System (INIS)

    Curtis, C.D.

    1976-01-01

    This is a survey of low energy accelerators which inject into proton linacs. Laboratories covered include Argonne, Brookhaven, CERN, Chalk River, Fermi, ITEP, KEK, Rutherford, and Saclay. This paper emphasizes complete injector systems, comparing significant hardware features and beam performance data, including recent additions. There is increased activity now in the acceleration of polarized protons, H + and H - , and of unpolarized H - . New source development and programs for these ion beams is outlined at the end of the report. Heavy-ion sources are not included

  7. Heavy ion fusion 2 MV injector

    International Nuclear Information System (INIS)

    Yu, S.; Eylon, S.; Henestroza, E.

    1995-04-01

    A heavy-ion-fusion driver-scale injector has been constructed and operated at Lawrence Berkeley Laboratory. The injector has produced 2.3 MV and 950 mA of K + , 15% above original design goals in energy and current. Normalized edge emittance of less than 1 π mm-mr was measured over a broad range of parameters. The head-to-tail energy flatness is less than ± 0.2% over the 1 micros pulse

  8. Steam plant for pressurized water reactors

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This book discusses the research and development organisations and users to highlight those aspects of the steam turbine and associated plant which are particularly related to the PWR system. The contents include: Characteristics of the steam system (including feed train, dump system and safety aspects); overall design aspects of high and half speed turbines; design aspects of the steam generator and seismic considerations; moisture separators and reheaters; feed pumps and their drives; water treatment; safety related valves; operational experience; availability and performance

  9. ELECTRON BEAM ION SOURCE PRE-INJECTOR DIGNOSTICS

    International Nuclear Information System (INIS)

    WILINSKI, M.; ALESSI, J.; BEEBE, E.; BELLAVIA, S.; PIKIN, A.

    2006-01-01

    A new ion pre-injector line is currently under design at Brookhaven National Laboratory (BNL) for the Relativistic Heavy Ion Collider (RHIC) and the NASA Space Radiation Laboratory (NSRL,). Collectively, this new line is referred to as the EBIS project. This pre-injector is based on an Electron Beam Ion Source (EBIS), a Radio Frequency Quadrupole (R-FQ) accelerator, and a linear accelerator. The new EBIS will be able to produce a wide range of heavy ion species as well as rapidly switching between species. To aid in operation of the pre-injector line, a suite of diagnostics is currently proposed which includes faraday cups, current transformers, profile monitors, and a pepperpot emittance measurement device

  10. EPRI steam generator programs

    International Nuclear Information System (INIS)

    Martel, L.J.; Passell, T.O.; Bryant, P.E.C.; Rentler, R.M.

    1977-01-01

    The paper describes the current overall EPRI steam generator program plan and some of the ongoing projects. Because of the recent occurrence of a corrosion phenomenon called ''denting,'' which has affected a number of operating utilities, an expanded program plan is being developed which addresses the broad and urgent needs required to achieve improved steam generator reliability. The goal of improved steam generator reliability will require advances in various technologies and also a management philosophy that encourages conscientious efforts to apply the improved technologies to the design, procurement, and operation of plant systems and components that affect the full life reliability of steam generators

  11. Status report on the positive ion injector (PII) for ATLAS at Argonne National Laboratory

    International Nuclear Information System (INIS)

    Zinkann, G.P.; Added, N.; Billquist, P.; Bogaty, J.; Clifft, B.; Markovich, P.; Phillips, D.; Strickhorn, P.; Shepard, K.W.

    1991-01-01

    The Positive Ion Injector (PII) is part of the Uranuim upgrade for ATLAS accelerator at Argonne National Laboratory. This paper will include a technical discussion of the Positive Ion Injector (PII) accelerator with its superconducting, niobium, very low-velocity accelerating structures. It will also discuss the current construction schedule of PII, and review an upgrade of the fast- tuning system. 10 refs., 6 figs

  12. Status report on the positive ion injector (PII) for ATLAS at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Zinkann, G.P.; Added, N.; Billquist, P.; Bogaty, J.; Clifft, B.; Markovich, P.; Phillips, D.; Strickhorn, P.; Shepard, K.W.

    1991-01-01

    The Positive Ion Injector (PII) is part of the Uranuim upgrade for ATLAS accelerator at Argonne National Laboratory. This paper will include a technical discussion of the Positive Ion Injector (PII) accelerator with its superconducting, niobium, very low-velocity accelerating structures. It will also discuss the current construction schedule of PII, and review an upgrade of the fast- tuning system. 10 refs., 6 figs.

  13. Computerized operating cost model for industrial steam generation

    Energy Technology Data Exchange (ETDEWEB)

    Powers, T.D.

    1983-02-01

    Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.

  14. Digital Measuring Devices Used for Injector Hydraulic Test

    Directory of Open Access Journals (Sweden)

    S. N. Leontiev

    2015-01-01

    Full Text Available To ensure a high specific impulse of the LRE (liquid-propellant engine chamber it is necessary to have optimally organized combustion of the fuel components. This can be ensured by choosing the optimum geometry of gas-dynamic contour of the LRE combustor, as well as by improving the sputtering processes and mixing the fuel components, for example, by selection of the optimum type, characteristics, and location of injectors on the mixing unit of the chamber.These particular reasons arise the interest in the injector characteristics in terms of science, and technological aspects determine the need for control of underlying design parameters in their manufacture.The objective of this work is to give an experimental justification on used digital measurement instrumentation and research the hydraulic characteristics of injectors.To determine injector parameters most widely were used the units with sectional collectors. A technique to control injector parameters using the sectional collectors involves spraying the liquid by injector at a given pressure drop on it for a certain time (the longer, the higher the accuracy and reliability of the results and then determining the amount of liquid in each section to calculate the required parameters of injector.In this work the liquid flow through the injector was determined by high-precision flowmeters FLONET FN2024.1 of electromagnetic type, which have very high metrological characteristics, in particular a flow rate error does not exceed 0.5% in a range of water flow from Qmin= 0.0028 l/s to Qmax Qmax = 0.28 l/s. To determine the coefficient of uneven spray were used differential pressure sensors DMD 331-ASLX of company "DB Sensors RUS", which have an error of 0.075% with a range of differential pressure 0 ... 5 kPa. Measuring complex MIC-200 of company "NPP Measure" and WinPos software for processing array information provided entry, recording, and processing of all the data of the experiment.In this

  15. Design of a repeating pneumatic pellet injector for the Joint European Torus

    International Nuclear Information System (INIS)

    Milora, S.L.; Combs, S.K.; Baylor, L.R.; Sparks, D.O.; Foust, C.R.; Gethers, F.E.

    1987-01-01

    A three-barrel pneumatic pellet injector has been developed for plasma fueling of the Joint European Torus (JET). The versatile device consists of three independent machine-gun-like mechanisms that operate at cryogenic temperatures (14 0 K to 20 0 K). Individual high speed extruders provide a continuous supply of solid deuterium to each gun assembly, where a reciprocating breech-side cutting mechanism forms and chambers cylindrical pellets from the extrusion; deuterium pellets are then accelerated in the gun barrels with controlled amounts of compressed hydrogen gas (pressures up to 100 bars) to velocities ≤ 1.5 km/s. The injector features three nominal pellet sizes (2.7 mm, 4.0 mm, and 6.0 mm) and has been tested at repetition rates of 5 Hz, 2.5 Hz, and 1 Hz, respectively. Each gun is capable of operating (individually or simultaneously) at the design repetition rate for 15-second duration pulses (limited only by the capacity of the extruder feed system). A remote, stand-alone control and data acquisition system is used for injector operation. 7 refs

  16. An integrated leak detection system for the ALMR steam generator

    International Nuclear Information System (INIS)

    Dayal, Y.; Gaubatz, D.C.; Wong, K.K.; Greene, D.A.

    1995-01-01

    The steam generator (SG) of the Advanced Liquid Metal Reactor (ALMR) system serves as a heat exchanger between the shell side secondary loop hot liquid sodium and the tube side water/steam mixture. A leak in the tube will result in the injection of the higher pressure water/steam into the sodium and cause an exothermic sodium-water reaction. An initial small leak (less than 1 gm/sec) can escalate into an intermediate size leak in a relatively short time by self enlargement of the original flaw and by initiating leaks in neighboring tubes. If not stopped, complete rupture of one or more tubes can cause injection rates of thousands of gm/sec and result in the over pressurization of the secondary loop rupture disk and dumping of the sodium to relieve pressure. The down time associated with severe sodium-water reaction damage has great adverse economic consequence. An integrated leak detection system (ILDS) has been developed which utilizes both chemical and acoustic sensors for improved leak detection. The system provides SG leak status to the reactor operator and is reliable enough to trigger automatic control action to protect the SG. The ILDS chemical subsystem uses conventional in-sodium and cover gas hydrogen detectors and incorporates knowledge based effects due to process parameters for improved reliability. The ILDS acoustic subsystem uses an array of acoustic sensors and incorporates acoustic beamforming technology for highly reliable and accurate leak identification and location. The new ILDS combines the small leak detection capability of the chemical system with the reliability and rapid detection/location capability of the acoustic system to provide a significantly improved level of protection for the SG over a wide range of operation conditions. (author)

  17. Numerical investigation of passive heat removal system via steam generator in VVER 1200

    International Nuclear Information System (INIS)

    Dinh Anh Tuan; Duong Thanh Tung; Tran Chi Thanh; Nguyen Van Thai

    2015-01-01

    Passive heat removal system (PHRS) via Steam Generator is an important part in VVER design. In case of Design Basic Accidents such as blackout, failure of feed water supply to steam generator or coolant leakage with failure of emergency core cooling at high pressure. PHRS is designed to remove the residual heat from reactor core through steam generator to heat exchanger which is placed outside reactor vessel. In order to evaluate the passive system, a numerical investigation using a CFD code is performed. However, PHRS has complex geometry for using CFD simulation. Thus, RELAP5 is applied to provide the wall heat flux of tube in the heat exchanger tank. The natural convection in the heat exchanger tank is investigated in this report. Numerical results show temperature and velocity distribution in the heat exchanger tank are calculated with different wall heat flux corresponding to various transient conditions. The calculated results contribute to the capacity analysis of passive heat removal system and giving valuable information for safe operation of VVER 1200. (author)

  18. An Experimental Study of Emission and Combustion Characteristics of Marine Diesel Engine with Fuel Injector Malfunctions

    Directory of Open Access Journals (Sweden)

    Kowalski Jerzy

    2016-01-01

    Full Text Available The presented paper shows the results of the laboratory study on the relation between chosen malfunctions of a fuel injector and composition of exhaust gas from the marine engine. The object of research is a marine 3-cylinder, four-stroke, direct injection diesel engine with an intercooler system. The engine was loaded with a generator and supercharged. The generator was electrically connected to the water resistance. The engine operated with a load between 50 kW and 250 kW at a constant speed. The engine load and speed, parameters of the turbocharger, systems of cooling, fuelling, lubricating and air exchange, were measured. Fuel injection and combustion pressures in all cylinders of the engine were also recorded. Exhaust gas composition was recorded by using a electrochemical gas analyzer. Air pressure, temperature and humidity were also recorded. Emission characteristics of the engine were calculated according to ISO 8178 standard regulations. During the study the engine operated at the technical condition recognized as „working properly” and with simulated fuel injector malfunctions. Simulation of malfunctions consisted in the increasing and decreasing of fuel injector static opening pressure, decalibration of fuel injector holes and clogging 2 neighboring of 9 fuel injector holes on one of 3 engine cylinders.

  19. Computer control and monitoring of neutral beam injectors on the 2XIIB CTR experiment at LLL

    International Nuclear Information System (INIS)

    Pollock, G.G.

    1975-01-01

    The original manual control system for the 12 neutral beam injectors on the 2XIIB Machine is being integrated with a computer control system. This, in turn, is a part of a multiple computer network comprised of the three computers which are involved in the operation and instrumentation of the 2XIIB experiment. The computer control system simplifies neutral beam operation and centralizes it to a single operating position. A special purpose console utilizes computer generated graphics and interactive function entry buttons to optimize the human/machine interface. Through the facilities of the computer network, a high level control function will be implemented for the use of the experimenter in a remotely located experiment diagnositcs area. In addition to controlling the injectors in normal operation, the computer system provides automatic conditioning of the injectors, bringing rebuilt units back to full energy output with minimum loss of useful life. The computer system also provides detail archive data recording

  20. Design considerations for single-stage and two-stage pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Fisher, P.W.; Milora, S.L.

    1988-09-01

    Performance of single-stage pneumatic pellet injectors is compared with several models for one-dimensional, compressible fluid flow. Agreement is quite good for models that reflect actual breech chamber geometry and incorporate nonideal effects such as gas friction. Several methods of improving the performance of single-stage pneumatic pellet injectors in the near term are outlined. The design and performance of two-stage pneumatic pellet injectors are discussed, and initial data from the two-stage pneumatic pellet injector test facility at Oak Ridge National Laboratory are presented. Finally, a concept for a repeating two-stage pneumatic pellet injector is described. 27 refs., 8 figs., 3 tabs

  1. An introduction to photo-injector design

    International Nuclear Information System (INIS)

    Travier, C.

    1993-07-01

    A quick overview is given of the RF gun basic theory for photo-injectors and of the presently achievable technical parameters thus providing some guidelines to help the designer in his choices. Simple scaling laws and formulas for both beam dynamics and technical parameters are proposed and compared to corresponding values for existing photo-injectors. Various sophisticated schemes used to improve the performances beyond those given by a straightforward approach are reviewed. (author) 65 refs., 11 figs., 3 tabs

  2. Beam forming system modernization at the MMF linac proton injector

    CERN Document Server

    Derbilov, V I; Nikulin, E S; Frolov, O T

    2001-01-01

    The isolation improvements of the beam forming system (BFS) of the MMF linac proton injector ion source are reported. The mean beam current and,accordingly, BFS electrode heating were increased when the MMF linac has began to operate regularly in long beam sessions with 50 Hz pulse repetition rate. That is why the BFS electrode high-voltage isolation that was made previously as two consequently and rigidly glued solid cylinder insulators has lost mechanical and electric durability. The substitution of large (160 mm) diameter cylinder insulator for four small diameter (20 mm) tubular rods has improved vacuum conditions in the space of beam forming and has allowed to operate without failures when beam currents being up to 250 mA and extraction and focusing voltage being up to 25 and 40 kV respectively. Moreover,the construction provides the opportunity of electrode axial move. The insulators are free from electrode thermal expansion mechanical efforts in a transverse direction.

  3. Verification on spray simulation of a pintle injector for liquid rocket engine

    Science.gov (United States)

    Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye

    2016-02-01

    The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.

  4. Efficiency gain of solid oxide fuel cell systems by using anode offgas recycle - Results for a small scale propane driven unit

    Science.gov (United States)

    Dietrich, Ralph-Uwe; Oelze, Jana; Lindermeir, Andreas; Spitta, Christian; Steffen, Michael; Küster, Torben; Chen, Shaofei; Schlitzberger, Christian; Leithner, Reinhard

    The transfer of high electrical efficiencies of solid oxide fuel cells (SOFC) into praxis requires appropriate system concepts. One option is the anode-offgas recycling (AOGR) approach, which is based on the integration of waste heat using the principle of a chemical heat pump. The AOGR concept allows a combined steam- and dry-reforming of hydrocarbon fuel using the fuel cell products steam and carbon dioxide. SOFC fuel gas of higher quantity and quality results. In combination with internal reuse of waste heat the system efficiency increases compared to the usual path of partial oxidation (POX). The demonstration of the AOGR concept with a 300 Wel-SOFC stack running on propane required: a combined reformer/burner-reactor operating in POX (start-up) and AOGR modus; a hotgas-injector for anode-offgas recycling to the reformer; a dynamic process model; a multi-variable process controller; full system operation for experimental proof of the efficiency gain. Experimental results proof an efficiency gain of 18 percentage points (η·POX = 23%, η·AOGR = 41%) under idealized lab conditions. Nevertheless, further improvements of injector performance, stack fuel utilization and additional reduction of reformer reformer O/C ratio and system pressure drop are required to bring this approach into self-sustaining operation.

  5. Space shuttle orbital maneuvering engine platelet injector program

    Science.gov (United States)

    1975-01-01

    A platelet-face injector for the fully reusable orbit maneuvering system OMS on the space shuttle was evaluated as a means of obtaining additional design margin and low cost. Performance, heat transfer, and combustion stability were evaluated over the anticipated range of OMS operating conditions. The effects of acoustic cavity configuration on combustion stability, including cavity depth, open area, inlet contour, and other parameters, were investigated using sea level bomb tests. Prototype injector and chamber behavior was evaluated for a variety of conditions; these tests examined the effects of film cooling, helium saturated propellants, chamber length, inlet conditions, and operating point, on performance, heat transfer and engine transient behavior. Helium bubble ingestion into both propellant circuits was investigated, as was chugging at low pressure operation, and hot and cold engine restart with and without a purge.

  6. Steam purity in PWRs

    International Nuclear Information System (INIS)

    Hopkinson, J.; Passell, T.

    1982-01-01

    Reports that 2 EPRI studies of PWRs prove that impure steam triggers decay of turbine metals. Reveals that EPRI is attempting to improve steam monitoring and analysis, which are key steps on the way to deciding the most cost-effective degree of steam purity, and to upgrade demineralizing systems, which can then reliably maintain that degree of purity. Points out that 90% of all cracks in turbine disks have occurred at the dry-to-wet transition zone, dubbed the Wilson line. Explains that because even very clean water contains traces of chemical impurities with concentrations in the parts-per-billion range, Crystal River-3's secondary loop was designed with even more purification capability; a deaerator to remove oxygen and prevent oxidation of system metals, and full-flow resin beds to demineralize 100% of the secondary-loop water from the condenser. Concludes that focusing attention on steam and water chemistry can ward off cracking and sludge problems caused by corrosion

  7. Steam System Balancing and Tuning for Multifamily Residential Buildings in Chicagoland - Second Year of Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.; Ludwig, P.; Brand, L.

    2013-08-01

    Steam heated buildings often suffer from uneven heating as a result of poor control of the amount of steam entering each radiator. In order to satisfy the heating load to the coldest units, other units are overheated. As a result, some tenants complain of being too hot and open their windows in the middle of winter, while others complain of being too cold and are compelled to use supplemental heat sources. Building on previous research, CNT Energy identified 10 test buildings in Chicago and conducted a study to identify best practices for the methodology, typical costs, and energy savings associated with steam system balancing. A package of common steam balancing measures was assembled and data were collected on the buildings before and after these retrofits were installed to investigate the process, challenges, and the cost effectiveness of improving steam systems through improved venting and control systems. The test buildings that received venting upgrades and new control systems showed 10.2% savings on their natural gas heating load, with a simple payback of 5.1 years. The methodologies for and findings from this study are presented in detail in this report. This report has been updated from a version published in August 2012 to include natural gas usage information from the 2012 heating season and updated natural gas savings calculations.

  8. Investigation of a combined gas-steam system with flue gas recirculation

    Directory of Open Access Journals (Sweden)

    Chmielniak Tadeusz

    2016-06-01

    Full Text Available This article presents changes in the operating parameters of a combined gas-steam cycle with a CO2 capture installation and flue gas recirculation. Parametric equations are solved in a purpose-built mathematical model of the system using the Ebsilon Professional code. Recirculated flue gases from the heat recovery boiler outlet, after being cooled and dried, are fed together with primary air into the mixer and then into the gas turbine compressor. This leads to an increase in carbon dioxide concentration in the flue gases fed into the CO2 capture installation from 7.12 to 15.7%. As a consequence, there is a reduction in the demand for heat in the form of steam extracted from the turbine for the amine solution regeneration in the CO2 capture reactor. In addition, the flue gas recirculation involves a rise in the flue gas temperature (by 18 K at the heat recovery boiler inlet and makes it possible to produce more steam. These changes contribute to an increase in net electricity generation efficiency by 1%. The proposed model and the obtained results of numerical simulations are useful in the analysis of combined gas-steam cycles integrated with carbon dioxide separation from flue gases.

  9. Fabrication of remote steam atomized scrubbers for DWPF off-gas system

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Lafferty, J.D.

    1988-01-01

    The defense waste processing facility (DWPF) is being constructed for the purpose of processing high-level waste from sludge to a vitrified borosilicate glass. In the operation of continuous slurry-fed melters, off-gas aerosols are created by entrainment of feed slurries and the vaporization of volatile species from the molten glass mixture. It is necessary to decontaminate these aerosols in order to minimize discharge of airborne radionuclide particulates. A steam atomized scrubber (SAS) has been developed for DWPF which utilizes a patented hydro- sonic system gas scrubbing method. The Hydro-Sonic System utilizes a steam aspirating-type venturi scrubber that requires very precise fabrication tolerances in order to obtain acceptable decontamination factors. In addition to the process-related tolerances, precision mounting and nozzle tolerances are required for remote service at DWPF

  10. A light ion four rod RFQ injector

    International Nuclear Information System (INIS)

    Schempp, A.; Ferch, M.; Klein, H.

    1987-01-01

    The four-rod RFQ has been developed in Frankfurt as an alternative solution for ion injectors. A 202 MHz resonator has been built with design parameters taken from the HERA injector (18keV-750keV, 20mA H - ). Properties of this structure are described and applications as light ion accelerator for particles from an EBIS ion source are discussed

  11. Initial use of the positive-ion injector of ATLAS

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Billquist, P.J.; Bogaty, J.M.; Clifft, B.E.; Den Hartog, P.K.; Munson, F.H. Jr.; Pardo, R.C.; Shepard, K.W.; Zinkann, G.P.

    1989-01-01

    The positive-ion injector of ATLAS consists of an ECR heavy-ion source coupled to a 12-MV superconducting injector linac. The ECR source and a 3-MV version of the partially completed linac have been used to accelerate successfully several species of heavy ions. The operating experience is summarized, with emphasis on the excellent beam quality of beams from the new injector. Two new fast-timing detectors are described. 9 refs., 5 figs., 1 tab

  12. Water and steam sampling systems; Provtagningssystem foer vatten och aanga

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Mats

    2009-10-15

    The supervision of cycle chemistry can be divided into two parts, the sampling system and the chemical analysis. In modern steam generating plants most of the chemical analyses are carried out on-line. The detection limits of these analyzers are pushed downward to the ppt-range (parts per trillion), however the analyses are not more correct than the accuracy of the sampling system. A lot of attention has been put to the analyzers and the statistics to interpret the results but the sampling procedures has gained much less attention. This report aims to give guidance of the considerations to be made regarding sampling systems. Sampling is necessary since most analysis of interesting parameters cannot be carried out in- situ on-line in the steam cycle. Today's on-line instruments for pH, conductivity, silica etc. are designed to meet a water sample at a temperature of 10-30 deg C. This means that the sampling system has to extract a representative sample from the process, transport and cool it down to room temperature without changing the characteristics of the fluid. In the literature research work, standards and other reports can be found. Although giving similar recommendations in most aspects there are some discrepancies that may be confusing. This report covers all parts in the sampling system: Sample points and nozzles; Sample lines; Valves, regulating and on-off; Sample coolers; Temperature, pressure and flow rate control; Cooling water; and Water recovery. On-line analyzers connecting to the sampling system are not covered. This report aims to clarify what guidelines are most appropriate amongst the existing ones. The report should also give guidance to the design of the sampling system in order to achieve representative samples. In addition to this the report gives an overview of the fluid mechanics involved in sampling. The target group of this report is owners and operators of steam generators, vendors of power plant equipment, consultants working in

  13. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Min, Kyoung Doug

    2006-01-01

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images

  14. Visualisation of diesel injector with neutron imaging

    Science.gov (United States)

    Lehmann, E.; Grünzweig, C.; Jollet, S.; Kaiser, M.; Hansen, H.; Dinkelacker, F.

    2015-12-01

    The injection process of diesel engines influences the pollutant emissions. The spray formation is significantly influenced by the internal flow of the injector. One of the key parameters here is the generation of cavitation caused by the geometry and the needle lift. In modern diesel engines the injection pressure is established up to 3000 bar. The details of the flow and phase change processes inside the injector are of increasing importance for such injectors. With these experimental measurements the validation of multiphase and cavitation models is possible for the high pressure range. Here, for instance, cavitation effects can occur. Cavitation effects in the injection port area destabilize the emergent fuel jet and improve the jet break-up. The design of the injection system in direct-injection diesel engines is an important challenge, as the jet breakup, the atomization and the mixture formation in the combustion chamber are closely linked. These factors have a direct impact on emissions, fuel consumption and performance of an engine. The shape of the spray at the outlet is determined by the internal flow of the nozzle. Here, geometrical parameters, the injection pressure, the injection duration and the cavitation phenomena play a major role. In this work, the flow dependency in the nozzles are analysed with the Neutron-Imaging. The great advantage of this method is the penetrability of the steel structure while a high contrast to the fuel is given due to the interaction of the neutrons with the hydrogen amount. Compared to other methods (optical with glass structures) we can apply real components under highest pressure conditions. During the steady state phase of the injection various cavitation phenomena are visible in the injector, being influenced by the nozzle geometry and the fuel pressure. Different characteristics of cavitation in the sac and spray hole can be detected, and the spray formation in the primary breakup zone is influenced.

  15. End-to-end simulation of the C-ADS injector Ⅱ with a 3-D field map

    International Nuclear Information System (INIS)

    Wang Zhijun; He Yuan; Li Chao; Wang Wangsheng; Liu Shuhui; Jia Huan; Xu Xianbo; Chen Ximeng

    2013-01-01

    The Injector II, one of the two parallel injectors of the high-current superconducting proton driver linac for the China Accelerator-Driven System (C-ADS) project, is being designed and constructed by the Institute of Modern Physics. At present, the design work for the injector is almost finished. End-to-end simulation has been carried out using the TRACK multiparticle simulation code to check the match between each acceleration section and the performance of the injector as a whole. Moreover, multiparticle simulations with all kinds of errors and misalignments have been performed to define the requirements of each device. The simulation results indicate that the lattice design is robust. In this paper, the results of end-to-end simulation and error simulation with a 3-D field map are presented. (authors)

  16. Design of injector section for SPring-8 linac

    International Nuclear Information System (INIS)

    Yoshikawa, Hiroshi; Nakamura, Naoki; Mizuno, Akihiko; Suzuki, Shinsuke; Hori, Toshihiko; Yanagida, Kenichi; Mashiko, Katsuo; Yokomizo, Hideaki

    1993-07-01

    In the SPring-8, we are planning to use positrons in order to increase the beam life time in the storage-ring. For the injector linac, though high current beam production to yield positrons is alternative with accurate low current beam production for commissioning, we designed the injector section to achieve both of the high current mode and the low current mode. In this paper, overview of some simulation codes for the design of electron accelerators are described and the calculation results by TRACE for the injector section of the linac are shown. That is useful not only for the design of machines but for the selection of sensitive parameters to establish the good beam quality. Now the injector section, which is settled at Tokai Establishment, is arranged for the case of the performance check of the electron gun. And we present that the layout of this section is needed to be rearranged for the high current mode operation. (author)

  17. Multifrequency eddy-current system for inspection of steam generator turbine

    International Nuclear Information System (INIS)

    Davis, T.J.

    1980-11-01

    The objectives of this program were to: determine the maximum advantage of the multifrequency eddy current method for nuclear steam generator tubing inspection; simplify system operating procedures and enhance presentation of mutifrequency data; and evaluate multifrequency methods for inspecting recently encountered types of anomalies such as circumferential cracks, inside diameter flaws, and flaws in dented regions. New test methods developed under the program have resulted in a dramatic improvement over earlier multifrequency work. The methods rely on judicious selection of test frequencies and the simultaneous use of differential and absolute multiparameter inspection. Flaws may be sized and profiled with increased accuracy over that of the single-frequency method, and improved rejection of indications from unwanted parameters such as support plates and probe wobble has been obtained. The ability to detect and size support cracks in both corroded and non-corroded supports has been demonstrated on a laboratory basis. A field-usable test system employing four test frequencies was developed under the program and has been evaluated in the EPRI steam generator mockup. Some of the new technology used in this system has been commercialized into the new Zetec MIZ-12 multifrequency system

  18. Design and implementation of fast charging circuit for repetitive compact torus injector

    International Nuclear Information System (INIS)

    Onchi, T.; McColl, D.; Dreval, M.; Wolfe, S.; Xiao, C.; Hirose, A.

    2014-01-01

    A novel circuit for compact torus (CT) injector operated at high repetition rates has been developed. The core technology adopted in the present work is to charge a large storage capacitor bank and quickly charge the CT capacitor bank through a stack of insulated-gate bipolar transistors (IGBTs). A system consisting of IGBTs and slow banks for the repetitive operation has been developed and installed for each discharge circuit of the University of Saskatchewan Compact Torus Injector (USCTI). A repetition rate up to 1.7 Hz and a burst of 8 CTs have been achieved

  19. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  20. Numerical Analysis on Transient of Steam-gas Pressurizer

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Lee, Yeon-Gun; Park, Goon-Cherl

    2008-01-01

    In nuclear reactors, various pressurizers are adopted to satisfy their characteristics and uses. The additional active systems such as heater, pressurizer cooler, spray and insulator are essential for a steam or a gas pressurizer. With a steam-gas pressurizer, additional systems are not required due to the use of steam and non-condensable gas as pressure-buffering materials. The steam-gas pressurizer in integrated small reactors experiences very complicated thermal-hydraulic phenomena. To ensure the integrity of this pressurizer type, the analysis on the transient behavior of the steam-gas pressure is indispensable. For this purpose, the steam-gas pressurizer model is introduced to predict the accurate system pressure. The proposed model includes bulk flashing, rainout, inter-region heat and mass transfer and wall condensation with non-condensable gas. However, the ideal gas law is not applied because of significant interaction at high pressure between steam and non-condensable gas. The results obtained from this proposed model agree with those from pressurizer tests. (authors)

  1. Simulation of a Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant

    International Nuclear Information System (INIS)

    Reis Martins Junior, L.L. dos.

    1980-01-01

    The following work intends to perform the digital simulation, of the Nuclear Steam Supply System (NSSS) of a PWR nuclear power plant for control systems design and analysis purposes. There are mathematical models for the reactor, the steam generator, the pressurizer and for transport lags of the coolant in the primary circuit. Nevertheless no one control system has been considered to permit any user the inclusion in the more convenient way of the desired control systems' models. The characteristics of the system in consideration are fundamentally equal to the ones of Almirante Alvaro Alberto Nuclear Power Plant, Unit I (Angra I) obtained in the Final Safety Analysis Report at Comissao Nacional de Energia Nuclear. (author)

  2. The development of control systems for high power steam turbines

    International Nuclear Information System (INIS)

    Mathey, M.

    1983-01-01

    The functional and technological aspects of developments in the field of control systems for steam turbines over the last twenty years are analyzed. These developments have now culminated in very sophisticated systems which closely link electronics to high pressure hydraulic technology. A detailed description of these systeme high-lighting the high technical level of the control methods and the flexibility and reliability in service of turbines controlled in this way is given [fr

  3. Development of repeating pneumatic pellet injector

    International Nuclear Information System (INIS)

    Oda, Y.; Onozuka, M.; Shimomura, T.

    1990-01-01

    A repeating pneumatic pellet injector has been constructed to experiment with the technique of continuous injection for fueling fusion reactors. This device is composed of a cryogenic extruder and a gun assembly in (among others) a high-vacuum vessel, diagnostic vessels, LHe, fuel-gas and propellant-gas supply systems, control and data acquisition systems, etc. The performance tests, using hydrogen, have proved that the device provides the function of extruding frozen hydrogen ribbons at the speed of 6 mm s -1 , chambering pellet at the rate of 5 Hz, and injecting pellet at the speed of 900 m s -1 , as planned. (author)

  4. Evaluation of pesticide adsorption in gas chromatographic injector and column

    Directory of Open Access Journals (Sweden)

    Gevany Paulino de Pinho

    2012-01-01

    Full Text Available Components in complex matrices can cause variations in chromatographic response during analysis of pesticides by gas chromatography. These variations are related to the competition between analytes and matrix components for adsorption sites in the chromatographic system. The capacity of the pesticides chlorpyrifos and deltamethrin to be adsorbed in the injector and chromatographic column was evaluated by constructing three isotherms and changing the column heating rate to 10 and 30 ºC min-1. By using ANCOVA to compare the slope of calibration graphs, results showed that the higher the injector temperature (310 ºC the lower the pesticide adsorption. Also, deltamethrin influenced the adsorption of chlorpyrifos on the column chromatographic.

  5. 46 CFR 61.15-5 - Steam piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler...

  6. NBS-LANL RTM injector installation

    International Nuclear Information System (INIS)

    Wilson, M.A.; Ayres, R.L.; Cutler, R.I.; Lindstrom, E.R.; Martin, E.R.; Mohr, D.L.; Penner, S.; Yoder, N.R.; Young, L.M.

    1983-01-01

    The injector for the NBS-LANL CW racetrack microtron consists of a 100 KeV electron gun and beam transport line followed by a 5 MeV linac. The function of the gun and transport line, which have been installed at NBS, is to provide a chopped and bunched 100 KeV and up to 0.67 mA dc or pulsed beam of very low transverse emittance for matched insertion into the linac. In this paper the authors present both the design and construction details of the 100 KeV system and the results of preliminary beam tests. The tests conducted thus far show the gun and transport system to be performing well within design specifications

  7. On the prediction of spray angle of liquid-liquid pintle injectors

    Science.gov (United States)

    Cheng, Peng; Li, Qinglian; Xu, Shun; Kang, Zhongtao

    2017-09-01

    The pintle injector is famous for its capability of deep throttling and low cost. However, the pintle injector has been seldom investigated. To get a good prediction of the spray angle of liquid-liquid pintle injectors, theoretical analysis, numerical simulations and experiments were conducted. Under the hypothesis of incompressible and inviscid flow, a spray angle formula was deduced from the continuity and momentum equations based on a control volume analysis. The formula was then validated by numerical and experimental data. The results indicates that both geometric and injection parameters affect the total momentum ratio (TMR) and then influence the spray angle formed by liquid-liquid pintle injectors. TMR is the pivotal non-dimensional number that dominates the spray angle. Compared with gas-gas pintle injectors, spray angle formed by liquid-liquid injectors is larger, which benefits from the local high pressure zone near the pintle wall caused by the impingement of radial and axial sheets.

  8. The COSY control system, a distributed realtime operating system: First practical experience at the COSY-injector

    International Nuclear Information System (INIS)

    Stephan, M.; Hacker, U.; Henn, K.; Richert, A.; Sobotta, K.; Weinert, A.

    1991-01-01

    The COSY control system is hierarchically organized with distributed intelligence and autonomous processing units for dedicated components. Data communication is performed via LAN and over a fieldbus. The hostsystems are UNIX-based, whereas the field-controllers are running a modular realtime operating-system RT/OS which has been developed at KFA. The computer-hardware consists of RISC mini computers, VME-computers in the field and G64 equipment-control-module in geographical expansion of the controller by a fieldbus based on the PDV-standard. The man-machine interface consists of X-window based work stations. On top of X-window a graphical user interface based on object oriented methods is used. A distributed realtime data base allows access to the accelerator state from every workstation. A special highlevel language debugger hosted on the UNIX based workstation and connected over LAN to the VME targets will be used. Together with the software development system for UNIX applications an uniform view of the system appears to the programmer. First practical experience at the COSY injector is presented

  9. Recommendation for a injector-cyclotron and ion sources for the acceleration of heavy ions and polarized protons and deuterons

    International Nuclear Information System (INIS)

    Botha, A.H.; Cronje, P.M.; Du Toit, Z.B.; Nel, W.A.G.; Celliers, P.J.

    1984-01-01

    It was decided to accelerate both heavy and light ions with the open-sector cyclotron. The injector SPS1, was used for light ions and SPS2 for heavy ions. Provision was also made for the acceleration of polarized neutrons. To enable this, the injector must have an axial injection system. The working of a source of polarized ions and inflectors for an axial injection system is discussed. The limitations of the open-sector cyclotron on the acceleration of heavy ions are also dealt with. The following acceleration/ion source combinations are discussed: i) The open-sector cyclotron and a k=40 injector cyclotron with a Penning ion source, and a stripper between the injector and the open-sector cyclotron and also a source of polarized protons and deuterons; ii) The acceleration/ion source combination with the addition of electron beam ion sources; iii) The open-sector cyclotron and a k=11 injector cyclotron with a electron beam ion source and a source of polarized protons and deuterons

  10. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  11. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  12. Risk-based inspection and maintenance systems for steam turbines

    International Nuclear Information System (INIS)

    Fujiyama, Kazunari; Nagai, Satoshi; Akikuni, Yasunari; Fujiwara, Toshihiro; Furuya, Kenichiro; Matsumoto, Shigeru; Takagi, Kentaro; Kawabata, Taro

    2004-01-01

    The risk-based maintenance (RBM) system has been developed for steam turbine plants coupled with the quick inspection systems. The RBM system utilizes the field failure and inspection database accumulated over 30 years. The failure modes are determined for each component of steam turbines and the failure scenarios are described as event trees. The probability of failure is expressed in the form of unreliability functions of operation hours or start-up cycles through the cumulative hazard function method. The posterior unreliability is derived from the field data analysis according to the inspection information. Quick inspection can be conducted using air-cooled borescope and heat resistant ultrasonic sensors even if the turbine is not cooled down sufficiently. Another inspection information comes from degradation and damage measurement. The probabilistic life assessment using structural analysis and statistical material properties, the latter is estimated from hardness measurement, replica observation and embrittlement measurement. The risk function is calculated as the sum product of unreliability functions and expected monetary loss as the consequence of failure along event trees. The optimum maintenance plan is determined among simulated scenarios described through component breakdown trees, life cycle event trees and risk functions. Those methods are effective for total condition assessment and economical maintenance for operating plants

  13. Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries: Main Report

    Energy Technology Data Exchange (ETDEWEB)

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  14. Steam system opportunity assessment for the pulp and paper, chemical manufacturing, and petroleum refining industries: Main report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-10-01

    This report assesses steam generation and use in the pulp and paper, chemical, and petroleum refining industries, and estimates the potential for energy savings from implementation of steam system performance and efficiency improvements.

  15. Design and development of low level S-Band RF control system for IRFEL injector LINAC

    International Nuclear Information System (INIS)

    Mohania, Praveen; Mahawar, Ashish; Singh, Adarsh Pratap; Namdeo, Rajkumar; Baxy, Deodatta; Shrivastava, Purushottam

    2015-01-01

    A low level RF system has been designed and developed for phase and amplitude stabilization of S- Band microwave power being fed to fundamental buncher cavity and the injector LINAC structure of the Infra Red Free Electron Laser being developed at RRCAT Indore. The system uses analog phase shifters and voltage variable attenuators to control the phase and amplitude respectively, the control voltages for phase shifters and attenuators are generated using a 12 Bit ADC and is software controlled. The system has a slow feedback to correct phase and amplitude drifts occurring due to thermal variations and a fast feed forward mechanism to vary amplitude and phase of the output pulse to compensate beam loading and to shape the klystron output power. The present paper describes the design aspects of the LLRF system. (author)

  16. Interpretation of Core Length in Shear Coaxial Rocket Injectors from X-ray Radiography Measurements

    Science.gov (United States)

    2014-06-01

    interrogating the near field of a number of dense sprays including diesel injectors , aerated liquid jets, solid-cone sprays, impinging-jet sprays and gas...Measurements of Mass Distributions in the Near- Nozzle Region of Sprays form Standard Multi-hole Common-rail Diesel Injection Systems,” 11th Triennial...Shear Coaxial Rocket Injectors from X-ray Radiography Measurements 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT

  17. The linac and booster RF systems for a dedicated injector for SPEAR

    International Nuclear Information System (INIS)

    Weaver, J.N.; Baird, S.; Baltay, M.; Borland, M.; Nuhn, H.D.; Safranek, J.; Chavis, C.; Emery, L.; Genin, R.D.; Hettel, R.; Morales, H.; Sebek, J.; Voss, J.; Wang, D.; Wiedemann, H.; Youngmann, B.; Miller, R.H.

    1991-01-01

    A 120 MeV, 2,856 MHz, TW linac, with a microwave gun, alpha magnet, and chopper, has been built at SSRL as a preinjector for and along with a 3 GeV booster synchrotron ring. The resulting injector will be available on demand to fill SPEAR, which is a storage ring now dedicated to synchrotron light production. The linac sections were purchased from China, the XK-5 klystrons were obtained surplus from SLAC, the modulators are a variation on those at SLAC and were built by SSRL, the alpha magnet and chopper were designed and built at SSRL and the microwave gun was designed and built in collaboration with Varian Associates. The RF system for the booster ring is similar to those at SPEAR and PEP and was built by SSRL. Some of the interesting mechanical and electrical details are discussed and the operating characteristics of the linac and ring RF system are highlighted

  18. The linac and booster RF systems for a dedicated injector for SPEAR

    International Nuclear Information System (INIS)

    Weaver, J.N.; Baird, S.; Baltay, M.; Borland, M.; Nuhn, H.D.; Safranek, J.; Chavis, C.; Emery, L.; Genin, R.D.; Hettel, R.; Morales, H.; Sebek, J.; Voss, J.; Wang, H.; Wiedemann, H.; Youngmann, B.

    1991-05-01

    A 120 MeV, 2856 MHz, TW linac, with a microwave gun, alpha magnet, and chopper, has been built at SSRL as a preinjector for and along with a 3 GeV booster synchrotron ring. The resulting injector will be available on demand to fill SPEAR, which is a storage ring now dedicated to synchrotron light production. The linac sections were purchased from China, the XK-5 klystrons were obtained surplus from SLAC, the modulators are a variation on those at SLAC and were built by SSRL, the alpha magnet and chopper were designed and built at SSRL and the microwave gun was designed and built in collaboration with Varian Associates. The rf system for the booster ring is similar to those at SPEAR and PEP and was built by SSRL. Some of the interesting mechanical and electrical details are discussed and the operating characteristics of the linac and ring rf system are highlighted. 8 refs., 6 figs

  19. Leak detection of steam or water into sodium in steam generators of liquid-metal fast breeder reactors

    International Nuclear Information System (INIS)

    Hans, R.; Dumm, K.

    1977-01-01

    The leakage of water or steam into sodium in LMFBR steam generators, including a study of how leaks are detected and located as well as the potential damage that could be caused by such leaks, is surveyed. The most interesting steam generator designs evolving in those countries that develop and construct LMFBRs are presented. The relevant protection measures are described. Fault conditions are defined and descriptions given of possible sequences of events leading to abnormal conditions in a steam generator. Taking into account theory, the potential of the hydrogen and oxygen detection systems is discussed. Different hydrogen and oxygen detection systems are fully described. In so far as interesting technical solutions are concerned, previously developed devices have also been taken into account. The way oxygen detection supplements hydrogen detection is described by listing the available oxygen measuring devices and the relevant theory. Only a few sonic and accelerometer measurements have been made on complete steam generator units so there is little system data available. Descriptions, however, have been included to give the state of the art achieved for the sensors and the achieved sensitivities or band widths. The potential of this monitoring method is made evident by adding the technical data of the sensors. Furthermore, the available systems for monitoring medium and large leakages are described. Finally, recommendations are made concerning steam generator development and the application of hydrogen and oxygen detection systems, as well as acoustic measuring methods for small-leakage detection

  20. Optimization of RF Compressor in the SPARX Injector

    CERN Document Server

    Ronsivalle, Concetta; Ferrario, Massimo; Serafini, Luca; Spataro, Bruno

    2005-01-01

    The SPARX photoinjector consists in a rf gun injecting into three SLAC accelerating sections, the first one operating in the RF compressor configuration in order to achieve higher peak current. A systematic study based on PARMELA simulations has been done in order to optimize the parameters that influence the compression also in view of the application of this system as injector of the so called SPARXINO 3-5 nm FEL test facility. The results of computations show that peak currents at the injector exit up to kA level are achievable with a good control of the transverse and longitudinal emittance by means of a short SW section operating at 11424 MHz placed before the first accelerating section. Some working points in different compression regimes suitable for FEL experiments have been selected. The stability of these points and the sensitivity to various types of random errors are discussed.

  1. Steam Distillation with Induction Heating System: Analysis of Kaffir Lime Oil Compound and Production Yield at Various Temperatures

    International Nuclear Information System (INIS)

    Zuraida Muhammad; Zakiah Mohd Yusoff; Mohd Noor Nasriq Nordin

    2013-01-01

    The steam temperature during the extraction process has a great influence on the essential oil quality. .This study was conducted to analyze the compound of kaffir-lime oil during extracting at different steam temperature using GC-MS analysis. The extraction was carried out by using steam distillation based on induction heating system at different extraction temperature such as 90, 95 and 100 degree Celsius, the power of the induction heating system is fixed at 1.6 kW. Increment of the steam temperature will increase the oil yield. In terms of oil composition, extraction at lower temperature resulted high concentration for four marker compounds of kaffir-lime oil which are α-pinene, sabinene, limonene, β-pinene. (author)

  2. Steam relief valve control system for a nuclear reactor

    International Nuclear Information System (INIS)

    Torres, J.M.

    1976-01-01

    Described is a turbine follow system and method for Pressurized Water Reactors utilizing load bypass and/or atmospheric dump valves to provide a substitute load upon load rejection by bypassing excess steam to a condenser and/or to the atmosphere. The system generates a variable pressure setpoint as a function of load and applies an error signal to modulate the load bypass valves. The same signal which operates the bypass valves actuates a control rod automatic withdrawal prevent to insure against reactor overpower

  3. A study on nozzle flow and spray characteristics of piezo injector for next generation high response injection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jin Wook [Korea Institue of Machinery and Materials, Daejeon (Korea, Republic of); Min, Kyoung Doug [Seoul National University, Seoul (Korea, Republic of)

    2006-06-15

    Most diesel injector, which is currently used in high-pressure common rail fuel injection system of diesel engine, is driven by the solenoid coil energy for its needle movement. The main disadvantage of this solenoid-driven injector is a high power consumption, high power loss through solenoid coil and relatively fixed needle response's problem. In this study, a prototype piezo-driven injector, as a new injector mechanism driven by piezoelectric energy based on the concept of inverse piezo-electric effect, has been designed and fabricated to know the effect of piezo-driven injection processes on the diesel spray structure and internal nozzle flow. Firstly we investigated the spray characteristics in a constant volume chamber pressurized by nitrogen gas using the back diffusion light illumination method for high-speed temporal photography and also analyzed the inside nozzle flow by a fully transient simulation with cavitation model using VOF(Volume Of Fraction) method. The numerical calculation has been performed to simulate the cavitating flow of 3-dimensional real size single hole nozzle along the injection duration. Results were compared between a conventional solenoid-driven injector and piezo-driven injector, both equipped with the same micro-sac multi-hole injection nozzle. The experimental results show that the piezo-driven injector has short injection delay and a faster spray development and produces higher injection velocity than the solenoid-driven injector. And the predicted simulation results with the degree of cavitation's generation inside nozzle for faster needle response in a piezo-driven injector were reflected to spray development in agreement with the experimental spray images.

  4. Simulation and analysis of main steam control system based on heat transfer calculation

    Science.gov (United States)

    Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai

    2018-05-01

    In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.

  5. ILSE-ESQ injector scaled experiment

    International Nuclear Information System (INIS)

    Henestroza, E.; Eylon, S.; Yu, S.; Grote, D.

    1993-05-01

    A 2 MeV, 800 mA, K + injector for the Heavy Ion Fusion Induction Linac Systems Experiments (ISLE) is under development at LBL. It consists of a 500 keV-1MeV diode preinjector followed by an electrostatic quadrupole accelerator (ESQ). One of the key issues for the ESQ centers around the control of beam aberrations due to the ''energy effect'': in a strong electrostatic quadrupole field, ions at beam edge will have energies very different from those on the axis. The resulting kinematic distortions lead to S-shaped phase spaces, which, if uncorrected, will lead eventually to emittance growth. These beam aberrations can be minimized by increasing the injection energy and/or strengthening the beam focusing. It may also be possible to compensate for the ''energy effect'' by proper shaping of the quadrupoles electrodes. In order to check the physics of the ''energy effect'' of the ESQ design a scaled experiment has been designed that will accommodate the parameters of the source, as well as the voltage limitations, of the Single Beam Transport Experiment (SBTE). Since the 500 keV pre-injector delivers a 4 cm converging beam, a quarter-scale experiment will fit the 1 cm converging beam of the SBTE source. Also, a 10 mA beam in SBTE, and the requirement of equal perveance in both systems, forces all the voltages to scale down by a factor 0.054. Results from this experiment and corresponding 3D PIC simulations will be presented

  6. What factors affect the carriage of epinephrine auto-injectors by teenagers?

    Science.gov (United States)

    Macadam, Clare; Barnett, Julie; Roberts, Graham; Stiefel, Gary; King, Rosemary; Erlewyn-Lajeunesse, Michel; Holloway, Judith A; Lucas, Jane S

    2012-02-02

    Teenagers with allergies are at particular risk of severe and fatal reactions, but epinephrine auto-injectors are not always carried as prescribed. We investigated barriers to carriage. Patients aged 12-18 years old under a specialist allergy clinic, who had previously been prescribed an auto-injector were invited to participate. Semi-structured interviews explored the factors that positively or negatively impacted on carriage. Twenty teenagers with food or venom allergies were interviewed. Only two patients had used their auto-injector in the community, although several had been treated for severe reactions in hospital. Most teenagers made complex risk assessments to determine whether to carry the auto-injector. Most but not all decisions were rational and were at least partially informed by knowledge. Factors affecting carriage included location, who else would be present, the attitudes of others and physical features of the auto-injector. Teenagers made frequent risk assessments when deciding whether to carry their auto-injectors, and generally wanted to remain safe. Their decisions were complex, multi-faceted and highly individualised. Rather than aiming for 100% carriage of auto-injectors, which remains an ambitious ideal, personalised education packages should aim to empower teenagers to make and act upon informed risk assessments.

  7. What factors affect the carriage of epinephrine auto-injectors by teenagers?

    Directory of Open Access Journals (Sweden)

    Macadam Clare

    2012-02-01

    Full Text Available Abstract Background Teenagers with allergies are at particular risk of severe and fatal reactions, but epinephrine auto-injectors are not always carried as prescribed. We investigated barriers to carriage. Methods Patients aged 12-18 years old under a specialist allergy clinic, who had previously been prescribed an auto-injector were invited to participate. Semi-structured interviews explored the factors that positively or negatively impacted on carriage. Results Twenty teenagers with food or venom allergies were interviewed. Only two patients had used their auto-injector in the community, although several had been treated for severe reactions in hospital. Most teenagers made complex risk assessments to determine whether to carry the auto-injector. Most but not all decisions were rational and were at least partially informed by knowledge. Factors affecting carriage included location, who else would be present, the attitudes of others and physical features of the auto-injector. Teenagers made frequent risk assessments when deciding whether to carry their auto-injectors, and generally wanted to remain safe. Their decisions were complex, multi-faceted and highly individualised. Conclusions Rather than aiming for 100% carriage of auto-injectors, which remains an ambitious ideal, personalised education packages should aim to empower teenagers to make and act upon informed risk assessments.

  8. DESY III, the new proton injector for HERA

    International Nuclear Information System (INIS)

    Hemmie, G.; Maidment, J.R.

    1987-01-01

    The design of a 7.5 GeV/c proton synchrotron, DESY III, which will form part of the injector chain for HERA /1/ is described. Features of the latice and brief details of sub-systems are presented. A selection of parameters and expected time schedule for the accelerator which is at present under construction at the DESY laboratory, Hamburg, are given

  9. DARHT-II Injector Transients and the Ferrite Damper

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Will; Reginato, Lou; Chow, Ken; Houck, Tim; Henestroza, Enrique; Yu, Simon; Kang, Michael; Briggs, Richard

    2006-08-04

    This report summarizes the transient response of the DARHT-II Injector and the design of the ferrite damper. Initial commissioning of the injector revealed a rise time excited 7.8 MHz oscillation on the diode voltage and stalk current leading to a 7.8 MHz modulation of the beam current, position, and energy. Commissioning also revealed that the use of the crowbar to decrease the voltage fall time excited a spectrum of radio frequency modes which caused concern that there might be significant transient RF electric field stresses imposed on the high voltage column insulators. Based on the experience of damping the induction cell RF modes with ferrite, the concept of a ferrite damper was developed to address the crowbar-excited oscillations as well as the rise-time-excited 7.8 MHz oscillations. After the Project decided to discontinue the use of the crowbar, further development of the concept focused exclusively on damping the oscillations excited by the rise time. The design was completed and the ferrite damper was installed in the DARHT-II Injector in February 2006. The organization of this report is as follows. The suite of injector diagnostics are described in Section 2. The data and modeling of the injector transients excited on the rise-time and also by the crowbar are discussed in Section 3; the objective is a concise summary of the present state of understanding. The design of the ferrite damper, and the small scale circuit simulations used to evaluate the ferrite material options and select the key design parameters like the cross sectional area and the optimum gap width, are presented in Section 4. The details of the mechanical design and the installation of the ferrite damper are covered in Section 5. A brief summary of the performance of the ferrite damper following its installation in the injector is presented in Section 6.

  10. Effect of injector geometry on the performance of an internally mixed liquid atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Kushari, A.

    2010-11-15

    This paper presents the results of an experimental study of the effect of injector's geometry on the performance of an internally mixed, air-assisted, liquid injector. In this type of injector a small amount of air is injected into a liquid stream within the injector. The interaction of the liquid with the atomizing air inside the injector induces atomization. The results presented in this paper show that the size of the droplets produced by the investigated injector decreases with a decrease in the air injection area. This is due to the increase in atomizing air injection velocity that accompanies the decrease in the air injection area, which improves atomization. This study also shows that the droplet sizes decrease with an increase in the injector's length, which is attributed to the increase in total interactive force. (author)

  11. Using one-dimensional modeling to analyze the influence of the use of biodiesels on the dynamic behavior of solenoid-operated injectors in common rail systems: Results of the simulations and discussion

    International Nuclear Information System (INIS)

    Salvador, F.J.; Gimeno, J.; De la Morena, J.; Carreres, M.

    2012-01-01

    Highlights: ► Effect of using diesel or biodiesel on injector hydraulic behavior has been analyzed. ► Single and main + post injections have been studied for different injection pressures. ► Higher viscosity affects needle dynamics, especially for low injection pressure. ► The post injection masses are lower for biodiesel fuel despite its higher density. ► Modified injector has been proposed to compensate the differences between the fuels. - Abstract: The influence of using biodiesel fuels on the hydraulic behavior of a solenoid operated common rail injection system has been explored by means of a one-dimensional model. This model has been previously obtained, including a complete characterization of the different components of the injector (mainly the nozzle, the injector holder and the electrovalve), and extensively validated by means of mass flow rate results under different conditions. After that, both single and multiple injection strategies have been analyzed, using a standard diesel fuel and rapeseed methyl ester (RME) as working fluids. Single long injections allowed the characterization of the hydraulic delay of the injector, the needle dynamics and the discharge capability of the couple injector-nozzle for the two fuels considered. Meanwhile, the effect of biodiesel on main plus post injection strategies has been evaluated in several aspects, such as the separation of the two injections or the effect of the main injection on the post injection fueling. Finally, a modification in the injector hardware has been proposed in order to have similar performances using biodiesel as the original injector configuration using standard diesel fuel.

  12. Commissioning of the 123 MeV injector for 12 GeV CEBAF

    International Nuclear Information System (INIS)

    Wang, Yan; Hofler, Alicia S.; Kazimi, Reza

    2015-09-01

    The upgrade of CEBAF to 12GeV included modifications to the injector portion of the accelerator. These changes included the doubling of the injection energy and relocation of the final transport elements to accommodate changes in the CEBAF recirculation arcs. This paper will describe the design changes and the modelling of the new 12GeV CEBAF injector. Stray magnetic fields have been a known issue for the 6 GeV CEBAF injector, the results of modelling the new 12GeV injector and the resulting changes implemented to mitigate this issue are described in this paper. The results of beam commissioning of the injector are also presented.

  13. Extraction septum magnet for the SSRL SPEAR injector

    International Nuclear Information System (INIS)

    Cerino, J.; Baltay, M.; Boyce, R.; Harris, S.; Hettel, R.; Horton, M.; Zuo, K.

    1991-01-01

    The Stanford Synchrotron Radiation Laboratory (SSRL) successfully commissioned a 3-3.5 GeV electron injector for the SPEAR Storage Ring during 1990. The Injector operates at a 10 Hz repetition rate and accelerates ∼ 10 10 electrons per second for extraction and transport to SPEAR. The extraction septum magnet is a pulsed Lambertson type which, for reasons of economy, was constructed from the same laminations which form 1/2 of an Injector booster synchrotron dipole magnet core block. The excitation coil also utilizes a design in common with the pulse chokes of the booster magnet circuit. The septum magnet is pulsed by an SCR controlled resonant LC circuit with a resonant frequency of 30 Hz

  14. Hollow-Wall Heat Shield for Fuel Injector Component

    Science.gov (United States)

    Hanson, Russell B. (Inventor)

    2018-01-01

    A fuel injector component includes a body, an elongate void and a plurality of bores. The body has a first surface and a second surface. The elongate void is enclosed by the body and is integrally formed between portions of the body defining the first surface and the second surface. The plurality of bores extends into the second surface to intersect the elongate void. A process for making a fuel injector component includes building an injector component body having a void and a plurality of ports connected to the void using an additive manufacturing process that utilizes a powdered building material, and removing residual powdered building material from void through the plurality of ports.

  15. Development of 4-shot pellet injector for JET-2M

    International Nuclear Information System (INIS)

    Noda, O.; Kuribayashi, S.; Uchikawa, T.; Onozuka, M.; Kasaki, S.; Hasegawa, K.

    1987-01-01

    A pneumatic 4 pellet injector has been constructed for JFT-2M. The performance tests have proved high performance and reliability of the injector. The maximum pellet velocity obtained in hydrogen pellet tests is 1.4km sec. The device is now in use for JFT-2M in a place of a previous single pellet injector, contributing to plasma studies. In this paper the outline of features and performance of the device is presented

  16. System for combustion of sunflower shells in industrial steam generators

    International Nuclear Information System (INIS)

    Todoriev, Kh.

    2000-01-01

    The paper presents an economically efficient solution for reconstruction of steam generators with steam production over 5 t/h using foregoing cyclone chamber for sunflower shells combustion. For average fuel caloricity 9 445 ccal/kg and sunflower shells caloricity between 3 485 and 3 750 ccal/kg, the petroleum saving is 68.78% for an average boiler efficiency 4.6 t/h steam

  17. PIP-II Injector Test: Challenges and Status

    Energy Technology Data Exchange (ETDEWEB)

    Derwent, P. F. [Fermilab; Carneiro, J. P. [Fermilab; Edelen, J. [Fermilab; Lebedev, V. [Fermilab; Prost, L. [Fermilab; Saini, A. [Fermilab; Shemyakin, A. [Fermilab; Steimel, J. [Fermilab

    2016-10-04

    The Proton Improvement Plan II (PIP-II) at Fermilab is a program of upgrades to the injection complex. At its core is the design and construction of a CW-compatible, pulsed H- superconducting RF linac. To validate the concept of the front-end of such machine, a test accelerator known as PIP-II Injector Test is under construction. It includes a 10mA DC, 30 keV H- ion source, a 2 m-long Low Energy Beam Transport (LEBT), a 2.1 MeV CW RFQ, followed by a Medium Energy Beam Transport (MEBT) that feeds the first of 2 cryomodules increasing the beam energy to about 25 MeV, and a High Energy Beam Transport section (HEBT) that takes the beam to a dump. The ion source, LEBT, RFQ, and initial version of the MEBT have been built, installed, and commissioned. This report presents the overall status of the Injector Test warm front end, including results of the beam commissioning through the installed components, and progress with SRF cryomodules and other systems.

  18. CAREM-25 Steam Generator Stability Analysis

    International Nuclear Information System (INIS)

    Rabiti, A.; Delmastro, D.

    2003-01-01

    In this work the stability of a once-through CAREM-25 steam generator is analyzed.A fix nodes numerical model, that allows the modelling of the liquid, two-phase and superheated steam zones, is implemented.This model was checked against a mobile finite elements model under saturated steam conditions at the channel exit and a good agreement was obtained.Finally the stability of a CAREM steam generator is studied and the range of in let restrictions that a assure the system stability is analyzed

  19. The breakthrough of common rail system. Closed-loop control strategy using injector with built-in pressure sensor

    Energy Technology Data Exchange (ETDEWEB)

    Miyaki, Masahiko; Takeuchi, Katsuhiko; Ishizuka, Koji; Sasaki, Satoru [DENSO Corporation, Aichi-ken (Japan)

    2009-07-01

    DENSO has developed the world's first common rail system injector with built-in pressure sensor. This technology makes it possible to execute closed loop injection control in the cylinders, which has been one of the most challenging issues for diesel engine systems. Attaining both further fuel economy and emission reduction requires further technological innovation in the air system and fuel injection system. With the combustion technology that has been developed, stable combustion with high exhaust gas recirculation (EGR) is required in order to reduce nitrogen oxide's (NOx), however robustness is also required in order to handle bio-diesel and low-cetane value fuels and the range for attaining this is extremely narrow. Therefore, for the fuel injection system, in addition to conventional high pressure and high response, lifetime accuracy compensation is key. With this newly developed technology, the fuel injection rate, which determines the combustion within the engine cylinders, is directly detected and controlled in a closed loop to allow precise compensation of the injection system for its entire service life. Highly advanced injection control allows for extremely close multiple injections and variable injection rate control to be possible on the mass production level for the first time. Furthermore, the use of this technology can provide three major advantages for the overall engine system. Firstly succeeds in an expansion of the possible calibration range, which improves fuel economy and emissions, secondly it provides an improvement in the overall engine robustness and reliability. Thirdly, the use of closed loop control makes it possible to greatly reduce the man-hours required for calibration. Given this, the new DENSO common rail system using injectors with built-in pressure sensors is the first step to opening up a new era of diesel engine control. (orig.)

  20. Radiotracer injector: An Industrial Application (RIIA)

    International Nuclear Information System (INIS)

    Noraishah Othman; Mohd Arif Hamzah; Fadil Ismail; Nurliyana Abdullah

    2011-01-01

    The radiotracer injector is meant for transferring liquid radiotracer in the system for industrial radiotracer application with minimal radiation exposure to the operator. The motivation of its invention is coming from the experience of the workers who are very concern about the radiation safety while handling with the radioactive source. The idea ensuring the operation while handling the radioactive source is fast and safe without interrupting the efficiency and efficacy of the process. Thus, semi automated device assisting with pneumatic technology is applied for its invention. (author)

  1. Dynamic modelling of nuclear steam generators

    International Nuclear Information System (INIS)

    Kerlin, T.W.; Katz, E.M.; Freels, J.; Thakkar, J.

    1980-01-01

    Moving boundary, nodal models with dynamic energy balances, dynamic mass balances, quasi-static momentum balances, and an equivalent single channel approach have been developed for steam generators used in nuclear power plants. The model for the U-tube recirculation type steam generator is described and comparisons are made of responses from models of different complexity; non-linear versus linear, high-order versus low order, detailed modeling of the control system versus a simple control assumption. The results of dynamic tests on nuclear power systems show that when this steam generator model is included in a system simulation there is good agreement with actual plant performance. (author)

  2. Development of repeating pneumatic pellet injector

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y.; Onozuka, M.; Shimomura, T. (Mitsubishi Heavy Industries Ltd., Kobe (Japan)) (and others)

    1990-01-01

    A repeating pneumatic pellet injector has been constructed to experiment with the technique of continuous injection for fueling fusion reactors. This device is composed of a cryogenic extruder and a gun assembly in (among others) a high-vacuum vessel, diagnostic vessels, LHe, fuel-gas and propellant-gas supply systems, control and data acquisition systems, etc. The performance tests, using hydrogen, have proved that the device provides the function of extruding frozen hydrogen ribbons at the speed of 6 mm s{sup -1}, chambering pellet at the rate of 5 Hz, and injecting pellet at the speed of 900 m s{sup -1}, as planned. (author).

  3. Manpower development for safe operation of nuclear power plant. China. Main steam bypass system operation and maintenance. Task: 6.1.6. Technical report

    International Nuclear Information System (INIS)

    Stubley, P.H.

    1994-01-01

    This mission concentrated on the Steam Bypass system of Qinshan Nuclear Power Plant. The system had experienced spurious opening of the bypass valves, disrupting the steam pressure control and the steam generator level control system. A series of commissioning type tests were defined which should allow the operators to revise the setpoints used in the control of the bypass system, and thus prevent spurious opening while maintaining the desired steam pressure control during power maneuvering. Training also included giving experience from other operating plants on aspects of steam and feedwater systems and components, especially as this experience affected maintenance or gave rise to problems. Steam generated maintenance experience is especially applicable, and a future mission is planned for an expert in this field. In addition other aspects of the Chinese nuclear program was assessed to guide future missions. This included assessment of operating procedures from an availability point of view

  4. Economic impact of latent heat thermal energy storage systems within direct steam generating solar thermal power plants with parabolic troughs

    International Nuclear Information System (INIS)

    Seitz, M.; Johnson, M.; Hübner, S.

    2017-01-01

    Highlights: • Integration of a latent heat thermal energy storage system into a solar direct steam generation power cycle. • Parametric study of solar field and storage size for determination of the optimal layout. • Evaluation of storage impact on the economic performance of the solar thermal power plant. • Economic comparison of new direct steam generation plant layout with state-of-the-art oil plant layout. - Abstract: One possible way to further reduce levelized costs of electricity of concentrated solar thermal energy is to directly use water/steam as the primary heat transfer fluid within a concentrated collector field. This so-called direct steam generation offers the opportunity of higher operating temperatures and better exergy efficiency. A technical challenge of the direct steam generation technology compared to oil-driven power cycles is a competitive storage technology for heat transfer fluids with a phase change. Latent heat thermal energy storages are suitable for storing heat at a constant temperature and can be used for direct steam generation power plants. The calculation of the economic impact of an economically optimized thermal energy storage system, based on a latent heat thermal energy storage system with phase change material, is the main focus of the presented work. To reach that goal, a thermal energy storage system for a direct steam generation power plant with parabolic troughs in the solar field was thermally designed to determine the boundary conditions. This paper discusses the economic impact of the designed thermal energy storage system based on the levelized costs of electricity results, provided via a wide parametric study. A state-of-the-art power cycle with a primary and a secondary heat transfer fluid and a two-tank thermal energy storage is used as a benchmark technology for electricity generation with solar thermal energy. The benchmark and direct steam generation systems are compared to each other, based respectively

  5. Magnetized Target Fusion Propulsion: Plasma Injectors for MTF Guns

    Science.gov (United States)

    Griffin, Steven T.

    2003-01-01

    To achieve increased payload size and decreased trip time for interplanetary travel, a low mass, high specific impulse, high thrust propulsion system is required. This suggests the need for research into fusion as a source of power and high temperature plasma. The plasma would be deflected by magnetic fields to provide thrust. Magnetized Target Fusion (MTF) research consists of several related investigations into these topics. These include the orientation and timing of the plasma guns and the convergence and interface development of the "pusher" plasma. Computer simulations of the gun as it relates to plasma initiation and repeatability are under investigation. One of the items under development is the plasma injector. This is a surface breakdown driven plasma generator designed to function at very low pressures. The performance, operating conditions and limitations of these injectors need to be determined.

  6. Fueling of magnetically confined plasmas by single- and two-stage repeating pneumatic pellet injectors

    International Nuclear Information System (INIS)

    Gouge, M.J.; Combs, S.K.; Foust, C.R.; Milora, S.L.

    1990-01-01

    Advanced plasma fueling systems for magnetic fusion confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range using single shot and repetitive pneumatic (light-gas gun) pellet injectors. The millimeter-to-centimeter size pellets enter the plasma and continuously ablate because of the plasma electron heat flux, depositing fuel atoms along the pellet trajectory. This fueling method allows direct fueling in the interior of the hot plasma and is more efficient than the alternative method of injecting room temperature fuel gas at the wall of the plasma vacuum chamber. Single-stage pneumatic injectors based on the light-gas gun concept have provided hydrogenic fuel pellets in the speed range of 1--2 km/s in single-shot injector designs. Repetition rates up to 5 Hz have been demonstrated in repetitive injector designs. Future fusion reactor-scale devices may need higher pellet velocities because of the larger plasma size and higher plasma temperatures. Repetitive two-stage pneumatic injectors are under development at ORNL to provide long-pulse plasma fueling in the 3--5 km/s speed range. Recently, a repeating, two-stage light-gas gun achieved repetitive operation at 1 Hz with speeds in the range of 2--3 km/s

  7. Design and performance of BWC replacement steam generators for PWR systems

    International Nuclear Information System (INIS)

    Klarner, R.; Steinmoeller, F.; Millman, J.; Schneider, W.

    1998-01-01

    In recent years, Babcock and Wilcox Canada (BWC) has provided a number of PWR Replacement Steam Generators (RSGS) to replace units that had experienced extensive Alloy 600 tube degradation. BWC RSG units are in operation at Northeast Utilities' Millstone Unit 2, Rochester Gas and Electric's Ginna Station, Duke Energy's Catawba Unit 1, McGuire Unit 1 and 2, Florida Power and Light's St. Lucie Unit 1 and Commonwealth Edison's Byron 1 Station. Extensive start-up performance characteristics have been obtained for Millstone 2, Ginna, McGuire 1, and Catawba 1 RSGS. The Millstone 2, Ginna and Catawba 1 RSGs have also undergone extensive inspections following their first cycle of operation. The design and start-up performance characteristics of these RSGs are presented. The BWC Replacement Steam generators were designed to fit the existing envelope of pressure boundary dimensions to ensure licensability and integration into the Nuclear Steam Supply System. The RSGs were provided with a tube bundle of Alloy 690TT tubing, sized to match or exceed the original steam generator (OSG) thermal performance including provision for the reduced thermal conductivity of Alloy 690 relative to Alloy 600. The RSG tube bundle configurations provide a higher circulation design relative to the OSG, and feature corrosion resistant lattice grid and U-bend tube supports which provide effective anti-vibration support. The tube bundle supports accommodate relatively unobstructed flow and allow unrestrained structural interactions during thermal transients. Efficient steam separators assure low moisture carryover as well as high circulation. Performance measurements obtained during start-up verify that the BWC RSGs meet or exceed the specified thermal and moisture carryover performance requirements. RSG water level stability results at nor-mal operation and during plant transients have been excellent. Visual and ECT inspections have confirmed minimal deposition and 100% tube integrity following

  8. Computed tomography and magnetic resonance imaging contrast media injectors: technical feature review – what is really needed?

    Directory of Open Access Journals (Sweden)

    Friebe M

    2016-07-01

    Full Text Available Michael Friebe Institute of Medical Engineering, Otto-von-Guericke-University, Magdeburg, Germany Abstract: There has been little technical innovation over the last few years for contrast media (CM injectors that are used for diagnostic imaging (computed tomography [CT], magnetic resonance imaging [MRI], and hybrid imaging systems, such as positron emission tomography–CT or magnetic resonance–positron emission tomography examinations. The medical need of CM for the enhancement of diagnostic images has been around for a long time, but the application of the CM into the blood stream comes with potential medical complications for the patient and requires a lot of operator experience and training. Most power injector systems that are currently used can do significantly more than what is typically required; this complexity however, adds error potential and cost. This paper focuses on the main features that CM injector systems should have and highlights the technical developments that are useful to have but which add complexity and cost, increase setup time, and require intensive training for safe use. CM injection protocols are very different between CT and MRI, with CT requiring many more variances, has a need for multiphase protocols, and requires a higher timing accuracy. A CM injector used in the MRI suite, on the other-hand, could only need a relatively time insensitive injection with a standard injection flow rate and a volume that is dependent on the patients’ weight. This would make easy and lightweight systems possible, which are able to safely and accurately perform the injection task, while allowing full MRI compatibility with relatively low cost investment and consumable costs. Keywords: power injector, contrast media injection, injection protocols, MRI compatibility

  9. Technical study of real-time simulation system for digital I and C system of steam generator in nuclear power plant

    International Nuclear Information System (INIS)

    Shi Ji; Jiang Mingyu; Ma Yunqin

    2004-01-01

    The real-time simulation system, which forms a interactive closed circle together with the steam generator control system, has been developed using a dynamic mathematical model of steam generator in this paper. It can provide a simulation target for upgrades of digital Instrument and Control system in Nuclear Power Plant (NPP) and is applicable for further research of control schemes. With this program, the authors have studied and analyzed the response of transient parameters to some different disturbance, the calculated results are in good agreement with those calculated by NPP simulator program. This will give a theoretical analysis for upgrades of digital I and C system in nuclear power plant

  10. Tritium pellet injector results

    International Nuclear Information System (INIS)

    Fisher, P.W.; Bauer, M.L.; Baylor, L.R.; Deleanu, L.E.; Fehling, D.T.; Milora, S.L.; Whitson, J.C.

    1988-01-01

    Injection of solid tritium pellets is considered to be the most promising way of fueling fusion reactors. The Tritium Proof-of- Principle (TPOP) experiment has demonstrated the feasibility of forming and accelerating tritium pellets. This injector is based on the pneumatic pipe-gun concept, in which pellets are formed in situ in the barrel and accelerated with high-pressure gas. This injector is ideal for tritium service because there are no moving parts inside the gun and because no excess tritium is required in the pellet production process. Removal of 3 He from tritium to prevent blocking of the cryopumping action by the noncondensible gas has been demonstrated with a cryogenic separator. Pellet velocities of 1280 m/s have been achieved for 4-mm-diam by 4-mm-long cylindrical tritium pellets with hydrogen propellant at 6.96 MPa (1000 psi). 10 refs., 10 figs

  11. ATA injector-gun calculations

    International Nuclear Information System (INIS)

    Paul, A.C.

    1981-01-01

    ATA is a pulsed, 50 ns 10 KA, 50 MeV linear induction electron accelerator at LLNL. The ETA could be used as an injector for ATA. However the possibility of building a new injector gun for ATA, raised the question as to what changes from the ETA gun in electrode dimensions or potentials, if any, should be considered. In this report the EBQ code results for the four electrode configurations are reviewed and an attempt is made to determine the geometrical scaling laws appropriate to these ETA type gun geometries. Comparison of these scaling laws will be made to ETA operation. The characteristic operating curves for these geometries will also be presented and the effect of washer position determined. It will be shown that emittance growth will impose a limitation on beam current for a given anode potential before the virtual cathode limit is reached

  12. Injector MD Days 2017

    CERN Document Server

    Rumolo, G

    2017-01-01

    The Injector Machine Development (MD) days 2017 were held on 23-24 March, 2017, at CERN with thefollowing main goals:Give a chance to the MD users to present their results and show the relevant progress made in 2016 onseveral fronts.Provide the MD users and the Operation (OP) crews with a general overview on the outcome and theimpact of all ongoing MD activities.Identify the open questions and consequently define - with priorities - a list of machine studies in theinjectors for 2017 (covering the operational beams, LHC Injectors Upgrade, High Luminosity LHC,Physics Beyond Colliders, other projects).Create the opportunity to collect and document the highlights of the 2016 MDs and define the perspectivesfor 2017.Discuss how to make best use of the MD time, in particular let the main MD user express their wishesand see whether/how OP teams can contribute to their fulfilment.

  13. Innovated feed water distributing system of VVER steam generators

    International Nuclear Information System (INIS)

    Matal, O.; Sousek, P.; Simo, T.; Lehota, M.; Lipka, J.; Slugen, V.

    2000-01-01

    Defects in feed water distributing system due to corrosion-erosion effects have been observed at many VVER 440 steam generators (SG). Therefore analysis of defects origin and consequently design development and testing of a new feed water distributing system were performed. System tests in-situ supported by calculations and comparison of measured and calculated data were focused on demonstration of long term reliable operation, definition of water flow and water chemical characteristics at the SG secondary side and their measurements and study of dynamic characteristics needed for the innovated feed water distributing system seismic features approval. The innovated feed water distributing system was installed in the SGs of two VVER units already. (author)

  14. Platelet injectors for Space Shuttle orbit maneuvering engine

    Science.gov (United States)

    Kahl, R. C.; Labotz, R. J.; Bassham, L. B.

    1974-01-01

    The Space Shuttle Orbit Maneuvering Subsystem Rocket Engine employs a platelet element injector concept. This injector has demonstrated 316-sec vacuum specific impulse performance under simulated altitude conditions when tested with a milled slot/electroformed nickel close-out regenerative chamber and a full 71 area ratio nozzle. To date, over 300 altitude engine tests and 300 stability bomb tests have demonstrated stable, erosion free operation with this concept to test durations of 150 seconds. The injector and chamber also meet the reusable requirements of the shuttle with a cycle life capability in excess of 1000 cycles. An extensive altitude restart program has also demonstrated OMS-engine operation over large variations in the burn and coast times with helium saturated propellants.

  15. Steam distribution and energy delivery optimization using wireless sensors

    Science.gov (United States)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.

    2011-05-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  16. Injector design for liner-on-target gas-puff experiments

    Science.gov (United States)

    Valenzuela, J. C.; Krasheninnikov, I.; Conti, F.; Wessel, F.; Fadeev, V.; Narkis, J.; Ross, M. P.; Rahman, H. U.; Ruskov, E.; Beg, F. N.

    2017-11-01

    We present the design of a gas-puff injector for liner-on-target experiments. The injector is composed of an annular high atomic number (e.g., Ar and Kr) gas and an on-axis plasma gun that delivers an ionized deuterium target. The annular supersonic nozzle injector has been studied using Computational Fluid Dynamics (CFD) simulations to produce a highly collimated (M > 5), ˜1 cm radius gas profile that satisfies the theoretical requirement for best performance on ˜1-MA current generators. The CFD simulations allowed us to study output density profiles as a function of the nozzle shape, gas pressure, and gas composition. We have performed line-integrated density measurements using a continuous wave (CW) He-Ne laser to characterize the liner gas density. The measurements agree well with the CFD values. We have used a simple snowplow model to study the plasma sheath acceleration in a coaxial plasma gun to help us properly design the target injector.

  17. Numerical determination of injector design for high beam quality

    International Nuclear Information System (INIS)

    Boyd, J.K.

    1985-01-01

    The performance of a free electron laser strongly depends on the electron beam quality or brightness. The electron beam is transported into the free electron laser after it has been accelerated to the desired energy. Typically the maximum beam brightness produced by an accelerator is constrained by the beam brightness deliverd by the accelerator injector. Thus it is important to design the accelerator injector to yield the required electron beam brightness. The DPC (Darwin Particle Code) computer code has been written to numerically model accelerator injectors. DPC solves for the transport of a beam from emission through acceleration up to the full energy of the injector. The relativistic force equation is solved to determine particle orbits. Field equations are solved for self consistent electric and magnetic fields in the Darwin approximation. DPC has been used to investigate the beam quality consequences of A-K gap, accelerating stress, electrode configuration and axial magnetic field profile

  18. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  19. Power supply system for KSTAR neutral beam injector

    Energy Technology Data Exchange (ETDEWEB)

    Cho, W., E-mail: franciscocho@nfri.re.kr; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-10-15

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  20. Power supply system for KSTAR neutral beam injector

    International Nuclear Information System (INIS)

    Cho, W.; Bae, Y.S.; Han, W.S.; Jeong, J.H.; Kim, J.S.; Park, H.T.; Yang, H.L.; Oh, Y.K.; Kwak, J.G.

    2015-01-01

    Highlights: • The power supply system in KSTAR NBI consists of DC power supplies for ion source. • For operation NBI, DC High Voltage based on the low voltage transformer with chopper. • The surge absorber near the ion source limit the energy deposited to accelerator grid. - Abstract: The power supply system in KSTAR neutral beam injector consists of low voltage and high current DC power supplies for plasma generator of ion source and high voltage and high current DC power supply for accelerator grid system. The arc discharge is initiated by an arc power supply supplying the arc voltage between the chamber wall and 12 filaments which are heated by individual filament power supply. The negative output of arc power supply is common to each positive output of 12 filament power supplies. To interrupt the arc discharging for the fault condition of the arc current unbalance, DCCT current monitor is placed at the positive output cable of the filament power supply. The plasma grid (G1) power supply has the maximum capability of 120 kV/70 A which consists of low voltage regulator with IGBT-switched chopper array system for the voltage control in unit of 600 V and the high voltage rectified transformers to supply DC voltage of 20 kV, 30 kV, and 50 kV. The output voltage of the G1 power supply is also connected to the input of the voltage divider system which supplies the gradient voltage to the gradient grid (G2) in the range of 80–90% of G1 voltage by changing tap of winding resistors in unit of 1%. The charged G1 voltage is turned on and off by the high voltage switch (HVS) system consisting of MOSFET fast semiconductor switches which can immediately be opened less than 1 μs when the ion source grid breakdown occurs. The decelerating grid (G3) power supply is inverter system using capacitor-charge power supply to supply maximum −5 kV/5 A. The important component in power supply system is the surge absorber near the ion source to limit the arc energy deposited to

  1. Atlas positive-ion injector project

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, R C; Bollinger, L M; Shepard, K W

    1987-04-01

    The goal of the Argonne Positive Ion Injector project is to replace the ATLAS tandem injector with a facility which will increase the beam currents presently available by a factor of 100 and to make beams of essentially all elements including uranium available at ATLAS. The beam quality expected from the facility will be at least as good as that of the tandem based ATLAS. The project combines two relatively new technologies - the electron cyclotron resonance ion source, which provides ions of high charge states at microampere currents, and rf superconductivity which has been shown to be capable of generating accelerating fields as high as 10 MV/m resulting in an essentially new method of acceleration for low-energy heavy ions.

  2. Beam dynamics studies of the Heavy Ion Fusion Accelerator injector

    International Nuclear Information System (INIS)

    Henestroza, E.; Yu, S.S.; Eylon, S.

    1995-04-01

    A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K + ) and low normalized emittance (< 1 π mm-mr). The injector consists of a 750 keV diode pre-injector followed by an electrostatic quadrupole accelerator (ESQ) which provides strong (alternating gradient) focusing for the space-charge dominated beam and simultaneously accelerates the ions to 2 MeV. The fully 3-D PIC code WARP together with EGUN and POISSON were used to design the machine and analyze measurements of voltage, current and phase space distributions. A comparison between beam dynamics characteristics as measured for the injector and corresponding computer calculations will be presented

  3. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  4. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  5. Method for operating a steam turbine of the nuclear type with electronic reheat control of a cycle steam reheater

    International Nuclear Information System (INIS)

    Luongo, M.C.

    1975-01-01

    An electronic system is provided for operating a nuclear electric power plant with electronic steam reheating control applied to the nuclear turbine system in response to low pressure turbine temperatures, and the control is adapted to operate in a plurality of different automatic control modes to control reheating steam flow and other steam conditions. Each of the modes of control permit turbine temperature variations within predetermined constraints and according to predetermined functions of time. (Official Gazette)

  6. Emergency systems and protection equipment of modular steam generators for fast reactors

    International Nuclear Information System (INIS)

    Matal, O.

    The requirements are discussed for accident protection of modular steam generators for fast reactors. Accident protection is assessed for a modular through-flow steam generator and for a natural circulation modular steam generator. Benefits and constraints are shown and possible improvements are outlined for accident protection of liquid sodium fired modular steam generators. (Kr)

  7. Development of main steam safety valve set pressure evaluating system

    International Nuclear Information System (INIS)

    Oketani, Koichiro; Manabe, Yoshihisa.

    1991-01-01

    A main steam safety valve set pressure test is conducted for all valves during every refueling outage in Japan's PWRs. Almost all operations of the test are manually conducted by a skilled worker. In order to obtain further reliability and reduce the test time, an automatic test system using a personnel computer has been developed in accordance with system concept. Quality assurance was investigated to fix system specifications. The prototype of the system was manufactured to confirm the system reliability. The results revealed that this system had high accuracy measurement and no adverse influence on the safety valve. This system was concluded to be applicable for actual use. (author)

  8. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  9. A proposed injector for the LCLS linac

    International Nuclear Information System (INIS)

    Yeremian, A.D.; Bharadwaj, V.K.; Emma, P.; Miller, R.H.; Palmer, D.T.; Woodley, M.D.

    1996-11-01

    The Linac Coherent Light Source (LCLS) will use the last portion of the SLAC accelerator as a driver for a short wavelength FEL. The injector must produce 1-nC, 3-ps rms electron bunches at a repetition rate of up to 120 Hz with a normalized rms emittance of about 1 mm-mrad. The injector design takes advantage of the photocathode rf gun technology developed since its conception in the mid 1980's, in particular the S-band rf gun developed by the SLAC/BNL/UCLA collaboration, and emittance compensation techniques developed in the last decade. The injector beamline has been designed using the SUPERFISH, POISSON, PARMELA, and TRANSPORT codes in a consistent way to simulate the beam from the gun up to the entrance of the main accelerator linac where the beam energy is 150 MeV. PARMELA simulations indicate that at 150 MeV, space charge effects are negligible

  10. The JET high frequency pellet injector project

    International Nuclear Information System (INIS)

    Geraud, Alain; Dentan, M.; Whitehead, A.; Butcher, P.; Communal, D.; Faisse, F.; Gedney, J.; Gros, G.; Guillaume, D.; Hackett, L.; Hennion, V.; Homfray, D.; Lucock, R.; McKivitt, J.; Sibbald, M.; Portafaix, C.; Perin, J.P.; Reade, M.; Sands, D.; Saille, A.

    2007-01-01

    A new deuterium ice pellet injector is in preparation for JET. It is designed to inject both small pellets (variable volume within 1-2 mm 3 ) at high frequency (up to 60 Hz) for ELM mitigation experiments and large pellets (volume within 35-70 mm 3 ) at moderate frequency (up to 15 Hz) for plasma fuelling. It is based on the screw extruder technology developed by PELIN and pneumatic acceleration. An injection line will connect the injector to the flight tubes already in place to convey the pellets toward the plasma either from the low field side or from the high field side of the torus. This injection line enables: (i) the pumping of the propellant gas, (ii) the provision of the vacuum interface with the torus and (iii) the selection of the flight tube to be used via a fast selector. All the interfaces have been designed and a prototype injector is being built, to demonstrate that the required performance is achievable

  11. Status of the SPIRAL2 injector commissioning

    Energy Technology Data Exchange (ETDEWEB)

    Thuillier, T., E-mail: thuillier@lpsc.in2p3.fr; Angot, J.; Jacob, J.; Lamy, T.; Sole, P. [LPSC, Université Grenoble Alpes, CNRS/IN2P3, 53 rue des Martyrs, 38026 Grenoble Cedex (France); Barué, C.; Bertrand, P.; Canet, C.; Ferdinand, R.; Flambard, J.-L.; Jardin, P.; Lemagnen, F.; Maunoury, L.; Osmond, B. [GANIL, CNRS/IN2P3, Bvd Henri Becquerel, BP 55027, 14076 Caen Cedex 5 (France); Biarrotte, J. L. [IPN Orsay, Université Paris Sud, CNRS/IN2P3, 15 rue Georges Clémenceau, 91406 Orsay Cedex (France); Denis, J.-F.; Roger, A.; Touzery, R.; Tuske, O.; Uriot, D. [Irfu, CEA Saclay, DSM/Irfu/SACM, 91191 Gif Sur Yvette (France); and others

    2016-02-15

    The SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.45 GHz electron cyclotron resonance ion source, has been successfully produced in December 2014. The first beam of the PHOENIX V2 18 GHz heavy ion source was analyzed on 10 July 2015. A status of the SPIRAL2 injector commissioning is given. An upgrade of the heavy ion source, named PHOENIX V3 aimed to replace the V2, is presented. The new version features a doubled plasma chamber volume and the high charge state beam intensity is expected to increase by a factor of 1.5 to 2 up to the mass ∼50. A status of its assembly is proposed.

  12. Development of the double-wall-tube steam generator. Evaluation of inner tube leak detection system

    International Nuclear Information System (INIS)

    Teraoku, Takuji; Kisohara, Naoyuki

    1995-01-01

    A double-wall-tube steam generator (DWT-SG) is considered to have possibility of eliminating a secondary heat transport system to realize a reliable and simplified FBR plant. Thus, basic tests for inner/outer tube leak detection and prototypical leak tests by use of the 1MWt DWT-SG model have been performed to evaluate the feasibility of DWT-SG. Their results demonstrated that the inner leak detection system can definitely detect a steam leak from an inner tube flaw. Analyses of the inner tube leak and detection behavior obtained in the 1MWt DWT-SG test enabled to estimate the performance of the inner tube detection system of the commercial DWT-SG system. (author)

  13. Steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermal hydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. This report shows how recent advances in cleaning technology are integrated into a life management strategy, discusses downcomer flow measurement as a means of monitoring steam generator condition, and describes recent advances in hideout return as a life management tool. The research and development program, as well as operating experience, has identified

  14. Increase of Steam Moisture in the BWR-Facility KKP 1

    International Nuclear Information System (INIS)

    Noack, Volker

    2002-01-01

    Main steam moisture in a BWR facility is determined by steam quality at core outlet and efficiency of steam separators and steam dryers. Transport of water with steam is accompanied by transport of radionuclides out of RPV resulting in enhanced radiation level in the main steam system. A remarkable increase of main steam moisture started at KKP 1 in 1997. In the following years increase of steam outlet moisture started at lower and lower core mass flow rates. Dose rate in main steam system increased simultaneously. Core mass flow rate and thus thermal power had to be reduced during stretch out operation to keep the main steam moisture below the specified boundary of 0.2 %. This boundary also guarantees, that radiological exposure remains far below approved values. The increase of main steam moisture corresponds with the application of low leakage core loading. Low leakage core loading results in enhanced steam generation in the center and in reduced steam generation in the outer zones of the core. It can be shown, that the uneven steam generation in the core became stronger over the years. Therefore, steam quality at inlet of the outer steam separators was getting lower. This resulted in higher carry over of water in this steam separators and steam dryers, thus explaining the increasing main steam moisture. KKP 1 started in 2000 with spectral shift operation. As one should expect, this resulted in reduced steam moisture. It remains the question of steam moisture in case of stretch out operation. Countermeasures are briefly discussed. (authors)

  15. Necessary LIU studies in the injectors during 2012

    CERN Document Server

    Rumolo, G; Papaphilippou, Y

    2012-01-01

    A significant fraction of the Machine Development (MD) time in the LHC injectors in 2011 was devoted to the study of the intensity limitations in the injectors (e.g. space charge effects in PS and SPS, electron cloud effects in the PS and SPS, single bunch and multi-bunch instabilities in PS and SPS, emittance preservation across the injector chain, etc.). The main results achieved in 2011 will be presented as well as the questions that still remain unresolved and are of relevance for the LIU project. 2012 MDs will also continue exploring the potential of scenarios that might become operational in the future, like the development of a low gamma transition optics in the SPS or alternative production schemes for the LHC beams in the PS. A tentative prioritized list of studies is provided.

  16. Thermal hydraulic studies in steam generator test facility

    International Nuclear Information System (INIS)

    Vinod, V.; Suresh Kumar, V.A.; Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G.

    2005-01-01

    Full text of publication follows: A 500 MWe fast breeder reactor is being constructed at Kalpakkam, India. This is a sodium cooled reactor with two primary and two secondary sodium loops with total 8 steam generators. The typical advantage of fast breeder plants is the high operating temperature of steam cycles and the high plant efficiency. To produce this high pressure and high temperature steam, once through straight tube vertical sodium heated steam generators are used. The steam is generated from the heat produced in the reactor core and being transported through primary and secondary sodium circuits. The steam generator is a 25 m high middle supported steam generator with expansion bend and 23 m heat transfer length. Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam aims at performing various tests on a 5.5 MWt steam generator. This vertically simulated test article is similar in all respects to the proposed 157 MWt steam generator module for the Prototype Fast Breeder Reactor (PFBR), with reduced number of tubes. Heat transfer performance tests are done with this 19 tube steam generator at various load conditions. Sodium circuit for the SGTF is equipped with oil fired heater as heat source and centrifugal sodium pump, to pump sodium at 105 m 3 /hr flow rate. Other typical components like sodium to air heat exchanger, sodium purification system and hydrogen leak detection system is also present in the sodium circuit. High pressure steam produced in the steam generator is dumped in a condenser and recycled. Important tests planned in SGTF are the heat transfer performance test, stability test, endurance test and performance test of steam generator under various transients. The controlled operation of steam generator will be studied with possible control schemes. A steady state simulation of the steam generator is done with a mathematical model. This paper gives the details of heat transfer

  17. Design Study of Low-Emittance Injector for SASE-XFEL at Pohang Accelerator Laboratory

    CERN Document Server

    Park, Sungju J; Yun, H J; Kim, D E; Kim, E S; Ko, In Soo; Nam, S H; Oh, Jong Seok

    2004-01-01

    We report on the design study of the low-emittance injector for the SASE-XFEL that is being considered as a possible choice for the next-generation light sources at the Pohang Accelerator Laboratory, POSTECH. Using the PARMELA code, beam dynamics simulations were performed aiming to achieve the invariant-envelope matching at booster entrance, and to insure beam emittance < 1 mm.mrad (at 1-nC bunch charge) at the injector end. We also utilized the MAGIC code for analyzing beam dynamics inside the RF-gun cavities and to confirm the part of PARMELA simulations. Hardware design was done with possible implementation of high-Q.E. photocathode, which could reduce burdens imposed on laser system, thus improving overall system stability and reliability.

  18. Digital simulation for nuclear once-through steam generators

    International Nuclear Information System (INIS)

    Chen, A.T.

    1976-01-01

    Mathematical models for calculating the dynamic response of the Oconee type once through steam generator (OTSG) and the integral economizer once through steam generator (IEOTSG) was developed and presented in this dissertation. Linear and nonlinear models of both steam generator types were formulated using the state variable, lumped parameter approach. Transient and frequency responses of system parameters were calculated for various perturbations from both the primary coolant side and the secondary side. Transients of key parameters, including primary outlet temperature, superheated steam outlet temperature, boiling length/subcooled length and steam pressure, were generated, compared and discussed for both steam generator types. Frequency responses of delta P/sub s//deltaT/sub pin/ of the linear OTSG model were validated by using the dynamic testing results obtained at the Oconee I nuclear power station. A sensitivity analysis in both the time and the frequency domains was performed. It was concluded that the mathematical and computer models developed in this dissertation for both the OTSG and the IEOTSG are suitable for overall plant performance evaluation and steam generator related component/system design analysis for nuclear plants using either type of steam generator

  19. PC-based control of a high-voltage injector

    International Nuclear Information System (INIS)

    Constantin, F.

    1998-01-01

    The stability of high voltage injectors is one of the major problems in any accelerator system. Most of the troubles encountered in the normal operation of an accelerator are connected with the ion source and associated high voltage platforms, regardless of the source or high voltage generator type. The quality of the ion beam injected in the accelerator strongly depends on the power supplies used in the injector and on the ability to control the non-electrical parameters (gas-flow, temperature, etc.). A wide used method in controlling is based on optical links between high-voltage platform and computer, the adjustments being more or less automated. Although the method mentioned above can be still useful in injector control, a different approach is presented in this work, i.e., the computer itself is placed inside the high-voltage terminal. Only one optical link is still necessary to connect this computer with an user-friendly host at ground potential. Requirements: - varying and monitoring the filament current; - gas flow control in the ion source; - reading the vacuum values; - current and voltage control for the anodic, magnet, extraction, suppression and lens' sources. Even in the high voltage terminal there are compartments with different voltages regardless the floating ground. In our injector the extraction voltage is applied on the top of the ion source including the filament and the anodic voltage. The extraction voltage is of maximum 30 kV. In this situation a second optical link is required to transfer the control for the anodic and magnet source power supply assuming the dedicated computer on the floating ground. One PC is placed inside the high voltage terminal and one PC outside the injector. The optical link (more precisely two optical wires) connects the serial ports. The inside computer is equipped with two multipurpose ADC/DAC and digital I/O card. They permit to read or output DC levels ranging between 0 to 10 volts or TTL signals. The filament

  20. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2007-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Unit 2 that will extend the in-service tile of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from he bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  1. Determination of moisture content in steams and variation in moisture content with operating boiler level by analyzing sodium content in steam generator water and steam condensate of a nuclear power plant using ion chromatographic technique

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    Dry steam with moisture content less than <1% is the stringent requirements in a steam generator for good health of the turbine. In order to confirm the same, determination of sodium is done in steam generator water and steam condensate using Flame photometer in ppm level and ion chromatograph in ppb level. Depending on the carry over of sodium in steam along with the water droplet (moisture), the moisture content in steam was calculated and was found to be < 1% which is requirements of the system. The paper described the salient features of a PHWR, principle of Ion Chromatography, chemistry parameters of Steam Generators and calculation of moisture content in steam on the basis of sodium analysis. (author)

  2. Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy

    International Nuclear Information System (INIS)

    Su, Bosheng; Han, Wei; Jin, Hongguang

    2017-01-01

    Highlights: •A novel CCHP system with biogas steam reforming using solar energy is raised. •Chemical and physical energy of biogas is efficiently used in a cascaded way. •The energy quality of concentrating solar heat is promoted in the system. •A parametric analysis is adopted to optimize the thermodynamic performance. •A typical-day study is conducted to explore the general operation features. -- Abstract: The conventional way to utilize biogas either is energy-intensive due to biogas upgrading or causes huge waste of energy grade and environmental pollution by direct burning. This paper proposes a biogas and solar energy-assisted combined cooling, heating and power (BSCCHP) system that upgrades the caloric value of biogas before combustion by introducing a thermochemical conversion process that is driven by solar heat. Adopting commercially established technologies including steam reforming and parabolic dish concentrators, the system exhibits an enhanced system exergy efficiency, and the technology considerably reduces the direct CO 2 footprint and saves depletable fossil fuel. With a solar thermal share of 22.2%, the proposed system not only has a high net solar-to-product thermal and exergy efficiency of 46.80% and 26.49%, respectively, but also results in a commensurate 18.27% reduction of the direct CO 2 footprint compared with the reference individual systems. The effect of critical parameters in the biogas steam reforming process on the system performance was studied. A proper selection of the steam/carbon ratio leads to the optimal direct CO 2 footprint and system exergy efficiency. Pursuing a very high conversion of biogas by improving the reforming temperature is not a wise choice from a system perspective. Finally, a typical-day dynamic simulation was conducted to preliminarily explore the general operation features. This study may provide a new way to efficiently use the renewable energy in the distributed energy system.

  3. Effect of thermal barrier coatings on the performance of steam and water-cooled gas turbine/steam turbine combined cycle system

    Science.gov (United States)

    Nainiger, J. J.

    1978-01-01

    An analytical study was made of the performance of air, steam, and water-cooled gas-turbine/steam turbine combined-cycle systems with and without thermal-barrier coatings. For steam cooling, thermal barrier coatings permit an increase in the turbine inlet temperature from 1205 C (2200 F), resulting in an efficiency improvement of 1.9 percentage points. The maximum specific power improvement with thermal barriers is 32.4 percent, when the turbine inlet temperature is increased from 1425 C (2600 F) to 1675 C (3050 F) and the airfoil temperature is kept the same. For water cooling, the maximum efficiency improvement is 2.2 percentage points at a turbine inlet temperature of 1683 C (3062 F) and the maximum specific power improvement is 36.6 percent by increasing the turbine inlet temperature from 1425 C (2600 F) to 1730 C (3150 F) and keeping the airfoil temperatures the same. These improvements are greater than that obtained with combined cycles using air cooling at a turbine inlet temperature of 1205 C (2200 F). The large temperature differences across the thermal barriers at these high temperatures, however, indicate that thermal stresses may present obstacles to the use of coatings at high turbine inlet temperatures.

  4. Developing the Model of Fuel Injection Process Efficiency Analysis for Injector for Diesel Engines

    Science.gov (United States)

    Anisimov, M. Yu; Kayukov, S. S.; Gorshkalev, A. A.; Belousov, A. V.; Gallyamov, R. E.; Lysenko, Yu D.

    2018-01-01

    The article proposes an assessment option for analysing the quality of fuel injection by the injector constituting the development of calculation blocks in a common injector model within LMS Imagine.Lab AMESim. The parameters of the injector model in the article correspond to the serial injector Common Rail-type with solenoid. The possibilities of this approach are demonstrated with providing the results using the example of modelling the modified injector. Following the research results, the advantages of the proposed approach to analysing assessing the fuel injection quality were detected.

  5. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2006-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Units 2 that will extend the in-service life of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from the bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  6. Characteristics of modified CT injector for JFT-2M

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, N. [Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201 (Japan)]. E-mail: fukumoto@elct.eng.himeji-tech.ac.jp; Ogawa, H. [Japan Atomic Energy Research Institute (JAERI), 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 311-0193 (Japan); Nagata, M. [Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201 (Japan); Uyama, T. [Himeji Institute of Technology, 2167 Shosha, Himeji, Hyogo 671-2201 (Japan); Shibata, T. [Japan Atomic Energy Research Institute (JAERI), 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 311-0193 (Japan); Kashiwa, Y. [Japan Atomic Energy Research Institute (JAERI), 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 311-0193 (Japan); Kusama, Y. [Japan Atomic Energy Research Institute (JAERI), 2-4 Shirakatashirane, Tokai-mura, Naka-gun, Ibaraki 311-0193 (Japan)

    2004-10-01

    The HIT-CTI mark II compact toroid (CT) injector employed for the JFT-2M tokamak facility at the Japan Atomic Energy Research Institute (JAERI) has been upgraded to improve injection performance. The nozzle of the mark III injector now has a linear tube in place of the original focus cone to avoid rapid focus and deceleration, and the tapered outer electrode has been replaced with more gentle taper in the compression section in order to facilitate gradual compression. The dependence of CT velocity and electron density on poloidal bias flux and trigger time of CT acceleration have been investigated in the operable range of 70-230 km/s average CT velocity and electron density of 0.1-1.0 x 10{sup 22} m{sup -3} at an accelerator bank voltage of 25 kV. The operation window is broader than that of the mark II injector. Emission of a CT plasmoid from the injector, and transport to the flux conserver as a high-density spheromak magnetic structure have also been confirmed.

  7. An Improved Steam Injection Model with the Consideration of Steam Override

    OpenAIRE

    He , Congge; Mu , Longxin; Fan , Zifei; Xu , Anzhu; Zeng , Baoquan; Ji , Zhongyuan; Han , Haishui

    2017-01-01

    International audience; The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, th...

  8. Improved Bevatron local injector ion source performance

    International Nuclear Information System (INIS)

    Stover, G.; Zajec, E.

    1985-05-01

    Performance tests of the improved Bevatron Local Injector PIG Ion Source using particles of Si 4 + , Ne 3 + , and He 2 + are described. Initial measurements of the 8.4 keV/nucleon Si 4 + beam show an intensity of 100 particle microamperes with a normalized emittance of .06 π cm-mrad. A low energy beam transport line provides mass analysis, diagnostics, and matching into a 200 MHz RFQ linac. The RFQ accelerates the beam from 8.4 to 200 keV/nucleon. The injector is unusual in the sense that all ion source power supplies, the ac distribution network, vacuum control equipment, and computer control system are contained in a four bay rack mounted on insulators which is located on a floor immediately above the ion source. The rack, transmission line, and the ion source housing are raised by a dc power supply to 80 kilovolts above earth ground. All power supplies, which are referenced to rack ground, are modular in construction and easily removable for maintenance. AC power is delivered to the rack via a 21 kVA, 3-phase transformer. 2 refs., 5 figs., 1 tab

  9. Influence of operating parameters in the gravity segregation during the process of steam flood; Influencia dos parametros operacionais na segregacao gravitacional durante a injecao de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Marcos Allyson F.; Galvao, Edney Rafael Viana P.; Barbosa, Janaina Medeiros D.; Barillas, Jennys Lourdes M.; Mata, Wilson da; Dutra Junior, Tarcilio V. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    Steam injection is the most used method of additional recovery for the extraction of heavy oil. In this type procedure is common to happen gravitational segregation and this phenomenon can affect the production of oil and therefore, it should be considered in the projects of continuous steam injection. The effect of gravity causes the segregation of fluids inside the porous media according to their densities. We know that the gravitational segregation can happen in almost every case where there is injection of light fluid, specially steam, and occurs with greater intensity for viscous oil reservoirs. This work discusses an optimization of some operational parameters as flow rate steam, distance between the wells (injector-producer), and interval of completion, which contributed to the reduction of gravity override, in a numerical model that shows the phenomenon with greater intensity. It was made an analysis of technical and economical viability of an optimized model. The analysis was performed using the simulator of CMG (Computer Modeling Group) - Stars 2007.11, in which it was observed the influence of operational parameters in heavy oil reservoirs with similar characteristics to Brazilian Northeast. (author)

  10. Development of a non-engine fuel injector deposit test for alternative fuels (ENIAK-project)

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Hajo; Pohland vom Schloss, Heide [OWI - Oel Waerme Institut GmbH, Herzogenrath (Germany)

    2013-06-01

    Deposit formation in and on the injectors of diesel engines may lead to injector malfunction, resulting in a loss in power, rough engine operation and poor emission levels. Poor Biodiesel quality, contamination with copper and zinc as well as undesired reactions between (several) additives and biodiesel components are known causes for nozzle fouling. Therefore, good housekeeping when using biodiesel is required, and all additives have to pass a no-harm test concerning injector fouling. The standard fouling tests are two engine tests: The XUD9-test (CEC F-23-01) and the DW-10-test (CEC DF 98-08). The XUD9 is a cost efficient, fast and proven testing method. It uses, however, an obsolete indirect injection diesel engine and cannot reproduce internal diesel injector deposits (IDID). The newer DW10 test is complex, costly and designed for high stress. This reduces the engine life and leads to a fuel consumption of approximately 1,000 1 per test, both contributing to the high costs of the test. The ENIAK-Project is funded by the FNR (''Fachagentur Nachwachsende Rohstoffe'', Agency for Renewable Resources) and conducted in cooperation with AGQM, ASG and ERC. Its main goal is the development, assembly, commissioning, and evaluation of a non-engine fuel injector test. It uses a complete common rail system. The injection takes place in a self-designed reactor instead of an engine, and the fuel is not combusted, but re-condensed and pumped in a circle, leading to a low amount of fuel required. If the test method proves to be as reliable as expected, it can be used as an alternative test method for injector fouling with low requirements regarding infrastructure on the testing site and sample volume. (orig.)

  11. Technological Challenges for High-Brightness Photo-Injectors

    CERN Multimedia

    Suberlucq, Guy

    2004-01-01

    Many applications, from linear colliders to free-electron lasers, passing through light sources and many other electron sources, require high brightness electron beams, usually produced by photo-injectors. Because certain parameters of these applications differ by several orders of magnitude, various solutions were implemented for the design and construction of the three main parts of the photo-injectors: lasers, photocathodes and guns. This paper summarizes the different requirements, how they lead to technological challenges and how R&D programs try to overcome these challenges. Some examples of state-of-the-art parts are presented.

  12. Modeling and optimization of a utility system containing multiple extractions steam turbines

    International Nuclear Information System (INIS)

    Luo, Xianglong; Zhang, Bingjian; Chen, Ying; Mo, Songping

    2011-01-01

    Complex turbines with multiple controlled and/or uncontrolled extractions are popularly used in the processing industry and cogeneration plants to provide steam of different levels, electric power, and driving power. To characterize thermodynamic behavior under varying conditions, nonlinear mathematical models are developed based on energy balance, thermodynamic principles, and semi-empirical equations. First, the complex turbine is decomposed into several simple turbines from the controlled extraction stages and modeled in series. THM (The turbine hardware model) developing concept is applied to predict the isentropic efficiency of the decomposed simple turbines. Stodola's formulation is also used to simulate the uncontrolled extraction steam parameters. The thermodynamic properties of steam and water are regressed through linearization or piece-wise linearization. Second, comparison between the simulated results using the proposed model and the data in the working condition diagram provided by the manufacturer is conducted over a wide range of operations. The simulation results yield small deviation from the data in the working condition diagram where the maximum modeling error is 0.87% among the compared seven operation conditions. Last, the optimization model of a utility system containing multiple extraction turbines is established and a detailed case is analyzed. Compared with the conventional operation strategy, a maximum of 5.47% of the total operation cost is saved using the proposed optimization model. -- Highlights: → We develop a complete simulation model for steam turbine with multiple extractions. → We test the simulation model using the performance data of commercial turbines. → The simulation error of electric power generation is no more than 0.87%. → We establish a utility system operational optimization model. → The optimal industrial operation scheme featured with 5.47% of cost saving.

  13. Heavy-Ion Injector for the High Current Experiment

    Science.gov (United States)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  14. The light-ion injector

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    In an extensive field mapping program the magnetic fields of the main coils and various pole-gap coils of the light-ion injector (SPC1) were measured. As a further test, the measured field maps were used to calculate the excitation currents through the various coils for a specific field shape. Orbit calculations, based on the electric potential fields measured is the electrolytic tank on the 3:1 scale model of the central region, made it possible to optimise the ion-source position, improve the axial focussing of the beam and specify an approximate position for the second axial. The coils for the first magnetic channel were manufactured and field measurements with the channel in position in the pole-gap have been performed. The radio-frequency system of SPC1 consists of three main sections, namely resonators, power amplifiers and the control systems. The purpose of the rf-system is to provide the accelerating voltages of up to 70 kV peak in the 8,6 to 26 MHz frequency range, which are required to accelerate the particle beams

  15. Steam turbine installations

    International Nuclear Information System (INIS)

    Bainbridge, A.

    1976-01-01

    The object of the arrangement described is to enable raising steam for driving steam turbines in a way suited to operating with liquid metals, such as Na, as heat transfer medium. A preheated water feed, in heat transfer relationship with the liquid metals, is passed through evaporator and superheater stages, and the superheated steam is supplied to the highest pressure stage of the steam turbine arrangement. Steam extracted intermediate the evaporator and superheater stages is employed to provide reheat for the lower pressure stage of the steam turbine. Only a major portion of the preheated water feed may be evaporated and this portion separated and supplied to the superheater stage. The feature of 'steam to steam' reheat avoids a second liquid metal heat transfer and hence represents a simplification. It also reduces the hazard associated with possible steam-liquid metal contact. (U.K.)

  16. PROFIL-360 high resolution steam generator tube profilometry system

    International Nuclear Information System (INIS)

    Glass, S.W.

    1985-01-01

    A high-resolution profilometry system, PROFIL 360, has been developed to assess the condition of steam generator tubes and rapidly produce the data to evaluate the potential for developing in-service leaks. The probe has an electromechanical sensor in a rotating head. This technique has been demonstrated in the field, saving tubes that would have been plugged with the go-gauge criterion and indicating plugging other high-risk candidates that might otherwise not have been removed from service

  17. Profil-360 high resolution steam generator tube profilometry system

    International Nuclear Information System (INIS)

    Glass, S.W.

    1985-01-01

    A high-resolution profilometry system, PROFIL 360, has been developed to assess the condition of steam generator tubes and rapidly produce the data to evaluate the potential for developing in-service leaks. The probe has an electromechanical sensor in a rotating head. This technique has been demonstrated in the field, saving tubes that would have been plugged with the go-gauge criterion and indicating plugging other high-risk candidates that might otherwise not have been removed from service

  18. Maintenance and repair of LMFBR steam generators

    International Nuclear Information System (INIS)

    Verriere, P.; Alanche, J.; Minguet, J.L.

    1984-06-01

    After some general remarks on the French fast neutron system, this paper presents the state of the program for the construction of fast reactor in France. Then, the general design of Super Phenix 1 steam generator components is outlined and, the in-service monitoring systems and protective devices with which they are equiped are briefly described. The methods used, in the event of leakage, for leak location, steam generator inspection, steam generator repair and putting the affected loop back into service, are discussed. There are two main lines of research, relating respectively to the means of water leak detection in sodium and the inspection arrangements that will be used either periodically, or following a sodium-water reaction. Finally, after a brief description of the steam generator, this paper describes the four incidents (leaks) that occurred on the Phenix steam generator in the course of 1982 and 1983, and the subsequent repair operations

  19. Connection of superaccident feed pumps, especially for PWR or WWER power plants

    International Nuclear Information System (INIS)

    Sykora, D.

    1983-01-01

    The design is described of a superaccident feed pump for emergency water supply from storage tanks to the steam generator. Between the pump and the steam generator in the connecting pipe is installed an injector mixer, possibly complete with a heat exchanger. The output of the injector mixer is connected to the secondary side of the steam generator, the input of the forced or drawn medium is connected either to the steam space or to the water space of the secondary side of the steam generator. The said connection will considerably reduce the heat impact which threatens the integrity of the construction material of the steam generator during transition to superaccident feeding. (M.D.)

  20. Design and performance of BWC replacement steam generators for PWR systems

    Energy Technology Data Exchange (ETDEWEB)

    Klarner, R.; Steinmoeller, F.; Millman, J.; Schneider, W. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada)

    1998-07-01

    In recent years, Babcock and Wilcox Canada (BWC) has provided a number of PWR Replacement Steam Generators (RSGS) to replace units that had experienced extensive Alloy 600 tube degradation. BWC RSG units are in operation at Northeast Utilities' Millstone Unit 2, Rochester Gas and Electric's Ginna Station, Duke Energy's Catawba Unit 1, McGuire Unit 1 and 2, Florida Power and Light's St. Lucie Unit 1 and Commonwealth Edison's Byron 1 Station. Extensive start-up performance characteristics have been obtained for Millstone 2, Ginna, McGuire 1, and Catawba 1 RSGS. The Millstone 2, Ginna and Catawba 1 RSGs have also undergone extensive inspections following their first cycle of operation. The design and start-up performance characteristics of these RSGs are presented. The BWC Replacement Steam generators were designed to fit the existing envelope of pressure boundary dimensions to ensure licensability and integration into the Nuclear Steam Supply System. The RSGs were provided with a tube bundle of Alloy 690TT tubing, sized to match or exceed the original steam generator (OSG) thermal performance including provision for the reduced thermal conductivity of Alloy 690 relative to Alloy 600. The RSG tube bundle configurations provide a higher circulation design relative to the OSG, and feature corrosion resistant lattice grid and U-bend tube supports which provide effective anti-vibration support. The tube bundle supports accommodate relatively unobstructed flow and allow unrestrained structural interactions during thermal transients. Efficient steam separators assure low moisture carryover as well as high circulation. Performance measurements obtained during start-up verify that the BWC RSGs meet or exceed the specified thermal and moisture carryover performance requirements. RSG water level stability results at nor-mal operation and during plant transients have been excellent. Visual and ECT inspections have confirmed minimal deposition and 100

  1. The performance of a temperature cascaded cogeneration system producing steam, cooling and dehumidification

    KAUST Repository

    Myat, Aung

    2013-02-01

    This paper discusses the performance of a temperature-cascaded cogeneration plant (TCCP), equipped with an efficient waste heat recovery system. The TCCP, also called a cogeneration system, produces four types of useful energy-namely, (i) electricity, (ii) steam, (iii) cooling and (iv) dehumidification-by utilizing single fuel source. The TCCP comprises a Capstone C-30 micro-turbine that generates nominal capacity of 26 kW of electricity, a compact and efficient waste heat recovery system and a host of waste-heat-activated devices, namely (i) a steam generator, (ii) an absorption chiller, (iii) an adsorption chiller and (iv) a multi-bed desiccant dehumidifier. The performance analysis was conducted under different operation conditions such as different exhaust gas temperatures. It was observed that energy utilization factor could be as high as 70% while fuel energy saving ratio was found to be 28%. © 2013 Desalination Publications.

  2. Improving Steam System Performance: A Sourcebook for Industry, Second Edition (Book) (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2012-10-01

    Improving Steam System Performance: A Sourcebook for Industry was developed for the U.S. Department of Energy's (DOE) Advanced Manufacturing Office (AMO), formerly the Industrial Technologies Program. AMO undertook this project as a series of sourcebook publications. Other topics in this series include: compressed air systems, pumping systems, fan systems, process heating and motor and drive systems. For more information about program resources, see AMO in the Where to Find Help section of this publication.

  3. Pellet injector development at ORNL [Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Gouge, M.J.; Argo, B.E.; Baylor, L.R.; Combs, S.K.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Simmons, D.W.; Sparks, D.O.; Tsai, C.C.

    1990-01-01

    Advanced plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range by either pneumatic (light-gas gun) or mechanical (centrifugal force) techniques. ORNL has recently provided a centrifugal pellet injector for the Tore Supra tokamak and a new, simplified, eight-shot pneumatic injector for the Advanced Toroidal Facility stellarator at ORNL. Hundreds of tritium and DT pellets were accelerated at the Tritium Systems Test Assembly facility at Los Alamos in 1988--89. These experiments, done in a single-shot pipe-gun system, demonstrated the feasibility of forming and accelerating tritium pellets at low 3 He levels. A new, tritium-compatible extruder mechanism is being designed for longer-pulse DT applications. Two-stage light-gas guns and electron beam rocket accelerators for speeds of the order of 2--10 km/s are also under development. Recently, a repeating, two-stage light-gas gun accelerated 10 surrogate pellets at a 1-Hz repetition rate to speeds in the range of 2--3 km/s; and the electron beam rocket accelerator completed initial feasibility and scaling experiments. ORNL has also developed conceptual designs of advanced plasma fueling systems for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor

  4. Development of the quickmix injector for in-situ filter testing

    International Nuclear Information System (INIS)

    Costigan, G.; Loughborough, D.

    1993-01-01

    In-situ filter testing is routinely carried out on nuclear ventilation plant to assess the effectiveness of installed filter systems. Ideally the system is tested by introducing a sub-micron aerosol upstream of the filter, in such a way as to present a uniform challenge to the whole of the upstream filter face. Samples are withdrawn from upstream and downstream of the filter, and the respective concentrations are used to calculate the system (or filter) efficiency. These requirements are documented in the Atomic Energy Code of Practice, AECP 1054. The Filter Development Section at Harwell Laboratory has been investigating methods of improving the accuracy and reliability of the in-situ filter test over the past ten years. The programme has included the evaluation of devices used to mix the aerosol and multi-point samplers to obtain representative aerosol samples. This paper reports the results of laboratory trials on the open-quotes QUICKMIXclose quotes injector developed and patented by Harwell. The Quickmix injector is designed to mix the test aerosol with the air stream and thereby reduce the duct length required to produce uniform concentrations. The injector has been tested in ducts ranging from 150 mm diameter to 610 mm square, at air velocities up to 26 m/s. Upstream mixing lengths required to achieve a ± 10% concentration variation on the mean were reduced to between 2 and 5 duct diameters, with a very small pressure drop. This simple, compact device is being installed in new and existing plants in the UK to improve the accuracy and reliability of in-situ filter testing. Some examples of plant applications are given, together with some of the first results from operating plant

  5. Simulation of transient effects in the heavy ion fusion injectors

    International Nuclear Information System (INIS)

    Chen, Y.J.; Hewett, D.

    1993-01-01

    The authors have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced

  6. Simulation of transient effects in the heavy ion fusion injectors

    Science.gov (United States)

    Chen, Yu-Jiuan; Hewett, D. W.

    1993-05-01

    We have used the 2-D PIC code, GYMNOS, to study the transient behaviors in the Heavy Ion Fusion (HIF) injectors. GYMNOS simulations accurately provide the steady state Child-Langmuir current and the beam transient behavior within a planar diode. The simulations of the LBL HIF ESAC injector experiments agree well with the experimental data and EGUN steady state results. Simulations of the nominal HIF injectors have revealed the need to design the accelerating electrodes carefully to control the ion beam current, particularly the ion loss at the end of the bunch as the extraction voltage is reduced.

  7. The positive ion injector for ALPI

    International Nuclear Information System (INIS)

    Bisoffi, G.

    1996-01-01

    In the framework of the ALPI upgrading, a new positive ion injector is foreseen in order to be able to accelerate ions with masses of the order of 200 and with high charge states from the velocity of β=0.009 up to β=0.055. The structures chosen for that velocity range are superconducting radio frequency quadrupoles operating at a frequency of 80 MHz, which is the operating frequency of the ALPI low β cavities. The paper describes the current status of the project including beam dynamics, cavity design, beam transfer lines and vacuum, control and cryogenic systems. (orig.)

  8. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive leading...

  9. Dismantling of the 50 MW steam generator test facility

    International Nuclear Information System (INIS)

    Nakai, S.; Onojima, T.; Yamamoto, S.; Akai, M.; Isozaki, T.; Gunji, M.; Yatabe, T.

    1997-01-01

    We have been dismantling the 50MW Steam Generator Test Facility (50MWSGTF). The objectives of the dismantling are reuse of sodium components to a planned large scale thermal hydraulics sodium test facility and the material examination of component that have been operated for long time in sodium. The facility consisted of primary sodium loop with sodium heater by gas burner as heat source instead of reactor, secondary sodium loop with auxiliary cooling system (ACS) and water/steam system with steam temperature and pressure reducer instead of turbine. It simulated the 1 loop of the Monju cooling system. The rated power of the facility was 50MWt and it was about 1/5 of the Monju power plant. Several sodium removal methods are applied. As for the components to be dismantled such as piping, intermediate heat exchanger (IHX), air cooled heat exchangers (AC), sodium is removed by steam with nitrogen gas in the air or sodium is burned in the air. As for steam generators which material tests are planned, sodium is removed by steam injection with nitrogen gas to the steam generator. The steam generator vessel is filled with nitrogen and no air in the steam generator during sodium removal. As for sodium pumps, pump internal structure is pulled out from the casing and installed into the tank. After the installation, sodium is removed by the same method of steam generator. As for relatively small reuse components such as sodium valves, electromagnet flow meters (EMFs) etc., sodium is removed by alcohol process. (author)

  10. The ATLAS positive ion injector

    International Nuclear Information System (INIS)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs

  11. The ATLAS positive ion injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Bollinger, L.M.; Pardo, R.C.

    1990-01-01

    This paper reviews the design, construction status, and beam tests to date of the positive ion injector (PII) which is replacing the tandem injector for the ATLAS heavy-ion facility. PII consists of an ECR ion source on a 350 KV platform injecting a very low velocity superconducting linac. The linac is composed of an independently-phased array of superconducting four-gap interdigital resonators which accelerate over a velocity range of .006 to .05c. In finished form, PII will be able to inject ions as heavy as uranium into the existing ATLAS linac. Although at the present time little more than 50% of the linac is operational, the indenpently-phased array is sufficiently flexible that ions in the lower half of the periodic table can be accelerated and injected into ATLAS. Results of recent operational experience will be discussed. 5 refs.

  12. CANDU steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermalhydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. The research and development program, as well as operating experience, has identified where improvements in operating practices and/or designs can be made in order to ensure steam generator design life at an acceptable capacity factory. (author)

  13. Availability of steam generator against thermal disturbance of hydrogen production system coupled to HTGR

    International Nuclear Information System (INIS)

    Shibata, Taiju; Nishihara, Tetsuo; Hada, Kazuhiko; Shiozawa, Shusaku

    1996-01-01

    One of the safety issues to couple a hydrogen production system to an HTGR is how the reactor coolability can be maintained against anticipated abnormal reduction of heat removal (thermal disturbance) of the hydrogen production system. Since such a thermal disturbance is thought to frequently occur, it is desired against the thermal disturbance to keep reactor coolability by means other than reactor scram. Also, it is thought that the development of a passive cooling system for such a thermal disturbance will be necessary from a public acceptance point of view in a future HTGR-hydrogen production system. We propose a SG as the passive cooling system which can keep the reactor coolability during a thermal disturbance of a hydrogen production system. This paper describes the proposed steam generator (SG) for the HTGR-hydrogen production system and a result of transient thermal-hydraulic analysis of the total system, showing availability of the SG against a thermal disturbance of the hydrogen production system in case of the HTTR-steam reforming hydrogen production system. (author)

  14. Optimal sampling period of the digital control system for the nuclear power plant steam generator water level control

    International Nuclear Information System (INIS)

    Hur, Woo Sung; Seong, Poong Hyun

    1995-01-01

    A great effort has been made to improve the nuclear plant control system by use of digital technologies and a long term schedule for the control system upgrade has been prepared with an aim to implementation in the next generation nuclear plants. In case of digital control system, it is important to decide the sampling period for analysis and design of the system, because the performance and the stability of a digital control system depend on the value of the sampling period of the digital control system. There is, however, currently no systematic method used universally for determining the sampling period of the digital control system. Generally, a traditional way to select the sampling frequency is to use 20 to 30 times the bandwidth of the analog control system which has the same system configuration and parameters as the digital one. In this paper, a new method to select the sampling period is suggested which takes into account of the performance as well as the stability of the digital control system. By use of the Irving's model steam generator, the optimal sampling period of an assumptive digital control system for steam generator level control is estimated and is actually verified in the digital control simulation system for Kori-2 nuclear power plant steam generator level control. Consequently, we conclude the optimal sampling period of the digital control system for Kori-2 nuclear power plant steam generator level control is 1 second for all power ranges. 7 figs., 3 tabs., 8 refs. (Author)

  15. Digital control system of a steam generator water level by LQG optimal method

    International Nuclear Information System (INIS)

    Lee, Yoon Joon

    1993-01-01

    A digital control system for the steam generator water level control is developed using LQG optimal design method. To describe the more realistic situaton, a feedwater valve actuator is assumed to be of the first order lagger and is included in the overall control system. By composing the digital control circuit in such a way that the overall control system consists of two sub-systems of feedwater station and feedback loop digital controller, the design procedure is divided into two independent steps. The feedwater station system is described in the error dynamics of an ordinary regulator system. The optimal gains are obtained by LQ method which imposes the constraints of the feedwater valve motion as well as on the output deviations. Developed also is a Kalman observer on account of the flow measurement uncertainty at low power. Then a digital controller on the feedback loop is designed so that the system maintains the same stability margins for all power ranges. The simulation results show thst the optimal digital system has a good control characteristics despite the adverse dynamics of a steam generator at low power. (Author)

  16. Laser ignition of a multi-injector LOX/methane combustor

    Science.gov (United States)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-06-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  17. Laser ignition of a multi-injector LOX/methane combustor

    Science.gov (United States)

    Börner, Michael; Manfletti, Chiara; Hardi, Justin; Suslov, Dmitry; Kroupa, Gerhard; Oschwald, Michael

    2018-02-01

    This paper reports the results of a test campaign of a laser-ignited combustion chamber with 15 shear coaxial injectors for the propellant combination LOX/methane. 259 ignition tests were performed for sea-level conditions. The igniter based on a monolithic ceramic laser system was directly attached to the combustion chamber and delivered 20 pulses with individual pulse energies of {33.2 ± 0.8 mJ } at 1064 nm wavelength and 2.3 ns FWHM pulse length. The applicability, reliability, and reusability of this ignition technology are demonstrated and the associated challenges during the start-up process induced by the oxygen two-phase flow are formulated. The ignition quality and pressure dynamics are evaluated using 14 dynamic pressure sensors distributed both azimuthally and axially along the combustion chamber wall. The influence of test sequencing on the ignition process is briefly discussed and the relevance of the injection timing of the propellants for the ignition process is described. The flame anchoring and stabilization process, as monitored using an optical probe system close to the injector faceplate connected to photomultiplier elements, is presented. For some of the ignition tests, non-uniform anchoring was detected with no influence onto the anchoring at steady-state conditions. The non-uniform anchoring can be explained by the inhomogeneous, transient injection of the two-phase flow of oxygen across the faceplate. This characteristic is verified by liquid nitrogen cold flow tests that were recorded by high-speed imaging. We conclude that by adapting the ignition sequence, laser ignition by optical breakdown of the propellants within the shear layer of a coaxial shear injector is a reliable ignition technology for LOX/methane combustors without significant over-pressure levels.

  18. Future aspects for liquid metal heated steam generators

    International Nuclear Information System (INIS)

    Jansing, W.; Ratzel, W.; Vinzens, K.

    1975-01-01

    The present status of steam generators is shown. The experience gained until now is expressed in form of basic points. The most important design criteria for steam generator systems are outlined. On the basis of these design criteria, two possible steam generator concepts are shown. Costs in relationship to the repair concepts of two modular steam generators (thermal output 156 and 625 MW) and a pool design of 625 MW are compared. (author)

  19. Future aspects for liquid metal heated steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Jansing, W; Ratzel, W; Vinzens, K

    1975-07-01

    The present status of steam generators is shown. The experience gained until now is expressed in form of basic points. The most important design criteria for steam generator systems are outlined. On the basis of these design criteria, two possible steam generator concepts are shown. Costs in relationship to the repair concepts of two modular steam generators (thermal output 156 and 625 MW) and a pool design of 625 MW are compared. (author)

  20. Proposed Fermilab upgrade main injector project

    International Nuclear Information System (INIS)

    1992-04-01

    The US Department of Energy (DOE) proposes to construct and operate a ''Fermilab Main Injector'' (FMI), a 150 GeV proton injector accelerator, at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. The purpose and need for this action are given of this Environmental Assessment (EA). A description of the proposed FMI and construction activities are also given. The proposed FMI would be housed in an underground tunnel with a circumference of approximately 2.1 miles (3.4 kilometers), and the construction would affect approximately 135 acres of the 6,800 acre Fermilab site. The purpose of the proposed FMI is to construct and bring into operation a new 150 GeV proton injector accelerator. This addition to Fermilab's Tevatron would enable scientists to penetrate ever more deeply into the subatomic world through the detection of the super massive particles that can be created when a proton and antiproton collide head-on. The conversion of energy into matter in these collisions makes it possible to create particles that existed only an instant after the beginning of time. The proposed FMI would significantly extend the scientific reach of the Tevatron, the world's first superconducting accelerator and highest energy proton-antiproton collider