WorldWideScience

Sample records for steam engines

  1. Small Engines as Bottoming Cycle Steam Expanders for Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Rohitha Weerasinghe

    2017-01-01

    Full Text Available Heat recovery bottoming cycles for internal combustion engines have opened new avenues for research into small steam expanders (Stobart and Weerasinghe, 2006. Dependable data for small steam expanders will allow us to predict their suitability as bottoming cycle engines and the fuel economy achieved by using them as bottoming cycles. Present paper is based on results of experiments carried out on small scale Wankel and two-stroke reciprocating engines as air expanders and as steam expanders. A test facility developed at Sussex used for measurements is comprised of a torque, power and speed measurements, electronic actuation of valves, synchronized data acquisition of pressure, and temperatures of steam and inside of the engines for steam and internal combustion cycles. Results are presented for four engine modes, namely, reciprocating engine in uniflow steam expansion mode and air expansion mode and rotary Wankel engine in steam expansion mode and air expansion mode. The air tests will provide base data for friction and motoring effects whereas steam tests will tell how effective the engines will be in this mode. Results for power, torque, and p-V diagrams are compared to determine the change in performance from air expansion mode to steam expansion mode.

  2. 49 CFR 230.65 - Steam blocking view of engine crew.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam blocking view of engine crew. 230.65 Section... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Steam Leaks § 230.65 Steam blocking view of engine crew. The steam locomotive owner and/or...

  3. Shiraz solar power plant operation with steam engine

    International Nuclear Information System (INIS)

    Yaghoubi, M.; Azizian, K.

    2004-01-01

    The present industrial developments and daily growing need of energy, as well as economical and environmental problem caused by fossil fuels consumption, resulted certain constraint for the future demand of energy. During the past two decades great attention has been made to use renewable energy for different sectors. In this regard for the first time in Iran, design and construction of a 250 K W Solar power plant in Shiraz, Iran is being carried out and it will go to operation within next year. The important elements of this power plant is an oil cycle and a steam cycle, and several studies have been done about design and operation of this power plant, both for steady state and transient conditions. For the steam cycle, initially a steam turbine was chosen and due to certain limitation it has been replaced by a steam engine. The steam engine is able to produce electricity with hot or saturated vapor at different pressures and temperatures. In this article, the effects of installing a steam engine and changing its vapor inlet pressure and also the effects of sending hot or saturated vapor to generate electricity are studied. Various cycle performance and daily electricity production are determined. The effects of oil cycle temperature on the collector field efficiency, and daily, monthly and annual amount of electricity production is calculated. Results are compared with the steam cycle output when it contains a steam turbine. It is found that with a steam engine it is possible to produce more annual electricity for certain conditions

  4. Small Engines as Bottoming Cycle Steam Expanders for Internal Combustion Engines

    OpenAIRE

    Weerasinghe, Rohitha; Hounsham, Sandra

    2017-01-01

    Heat recovery bottoming cycles for internal combustion engines have opened new avenues for research into small steam expanders [1]. Dependable data for small steam expanders will allow us to predict on their suitability as bottoming cycle engines and the fuel economy achieved by using them as bottoming cycles. Wankel Engines, with its lower resistance properties at small scale provide excellent contenders for bottoming cycle expanders. Present paper is based on results of experiments carried ...

  5. Engineering task plan for steam line ramp calculations

    International Nuclear Information System (INIS)

    DeSantis, G.N.; Freeman, R.D.

    1994-01-01

    The purpose of this document is to provide an approved work plan to perform calculations that verify the load limits of a proposed ramp over a steam line at the back side (East side) of SY Farm in support of work package 2W-94-00812/K. The objective of this supporting document is to provide Operations with a set of checked calculations that verify the ramp over the steam line at SY Farm will support a fully loaded concrete mixer truck without affecting the steam line. The calculations will be performed by an engineers from Facility Systems and independently checked and reviewed by another engineer. The calculations may then be added to the work package. If Operations decides to make any configuration changes to the steam line or surrounding area, Operations shall have these changes documented by an Engineering Change Notice (ECN). This ECN can be done by Facility Systems or any other engineering organization at the direction of Operations

  6. Numerical study on steam injection in a turbocompound diesel engine for waste heat recovery

    International Nuclear Information System (INIS)

    Zhao, Rongchao; Li, Weihua; Zhuge, Weilin; Zhang, Yangjun; Yin, Yong

    2017-01-01

    Highlights: • Steam injection was adopted in a turbocompound engine to further recover waste heat. • Thermodynamics model for the turbocompound engine was established and calibrated. • Steam injection at CT inlet obtained lower engine BSFC than injection at PT inlet. • The optimal injected steam mass at different engine speeds was presented. • Turbocompounding combined with steam injection can reduce the BSFC by 6.0–11.2%. - Abstract: Steam injection and turbocompouding are both effective methods for engine waste heat recovery. The fuel saving potential obtained by the combination of the two methods is not clear. Based on a turbocompound engine developed in the previous study, the impacts of pre-turbine steam injection on the fuel saving potentials of the turbocompound engine were investigated in this paper. Firstly, thermodynamic cycle model for the baseline turbocompound engine is established using commercial software GT-POWER. The cycle model is calibrated with the experiment data of the turbocompound engine and achieves high accuracy. After that, the influences of steam mass flow rate, evaporating pressure and injection location on the engine performance are studied. In addition, the impacts of hot liquid water injection are also investigated. The results show that steam injection at the turbocharger turbine inlet can reduce the turbocompound engine BSFC at all speed conditions. The largest fuel reduction 6.15% is obtained at 1000 rpm condition. However, steam injection at power turbine inlet can only lower the BSFC at high speed conditions. Besides, it is found that hot liquid water injection in the exhaust cannot improve the engine performance. When compared with the conventional turbocharged engine, the combination of turbocompounding and steam injection can reduce the BSFC by 6.0–11.2% over different speeds.

  7. Steam generators and waste heat boilers for process and plant engineers

    CERN Document Server

    Ganapathy, V

    2014-01-01

    Incorporates Worked-Out Real-World ProblemsSteam Generators and Waste Heat Boilers: For Process and Plant Engineers focuses on the thermal design and performance aspects of steam generators, HRSGs and fire tube, water tube waste heat boilers including air heaters, and condensing economizers. Over 120 real-life problems are fully worked out which will help plant engineers in evaluating new boilers or making modifications to existing boiler components without assistance from boiler suppliers. The book examines recent trends and developments in boiler design and technology and presents novel idea

  8. 46 CFR 11.518 - Service requirements for chief engineer (limited oceans) of steam and/or motor vessels.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Service requirements for chief engineer (limited oceans... Requirements for Engineer Officer § 11.518 Service requirements for chief engineer (limited oceans) of steam... engineer (limited oceans) of steam and/or motor vessels is five years total service in the engineroom of...

  9. Exploration of steam engine wrecks off Minicoy Island, Laksadsweep, India

    Digital Repository Service at National Institute of Oceanography (India)

    Gaur, A; Vora, K.H.; Sundaresh; Tripati, S.; Gudigar, P.; Bandodkar, S.N.

    . It is a steam-engine ship, but boilers were not seen. Wreck 2: This wreck is lying about 200 m south of the first wreck and perpendicular to the shore. It is also lies in 4 to 15 m of water. It is estimated to be over 100 m long. The boilers and engine...

  10. An approach for exhaust gas energy recovery of internal combustion engine: Steam-assisted turbocharging

    International Nuclear Information System (INIS)

    Fu, Jianqin; Liu, Jingping; Deng, Banglin; Feng, Renhua; Yang, Jing; Zhou, Feng; Zhao, Xiaohuan

    2014-01-01

    Highlights: • The calculation method for SAT engine was developed and introduced. • SAT can effectively promote the low-speed performances of IC engine. • At 1500 r/min, intake pressure reaches target value and torque is increased by 25%. • The thermal efficiency of SAT engine only has a slight increase. - Abstract: An approach for IC engine exhaust gas energy recovery, named as steam-assisted turbocharging (SAT), is developed to assist the exhaust turbocharger. A steam generating plant is coupled to the exhaust turbocharged engine’s exhaust pipe, which uses the high-temperature exhaust gas to generate steam. The steam is injected into turbine inlet and used as the supplementary working medium for turbine. By this means, turbine output power and then boosting pressure can be promoted due to the increase of turbine working medium. To reveal the advantages and energy saving potentials of SAT, this concept was applied to an exhaust turbocharging engine, and a parameter analysis was carried out. Research results show that, SAT can effectively promote the low-speed performances of IC engine, and make the peak torque shift to low-speed area. At 1500 r/min, the intake gas pressure can reach the desired value and the torque can be increased by 25.0% over the exhaust turbocharging engine, while the pumping mean effective pressure (PMEP) and thermal efficiency only have a slight increase. At 1000 r/min, the improvement of IC engine performances is very limited due to the low exhaust gas energy

  11. Investigation of the effects of steam injection on performance and NO emissions of a diesel engine running with ethanol–diesel blend

    International Nuclear Information System (INIS)

    Gonca, Guven

    2014-01-01

    Highlights: • A combustion simulation is conducted by using two-zone combustion model. • Effect of steam injection into engine fueled ethanol–diesel blend are investigated. • It is shown that this method improves performance and diminish NO emissions. - Abstract: The use of ethanol–diesel blends in diesel engines without any modifications negatively affects the engine performance and NOx emissions. However, steam injection method decreases NOx emissions and improves the engine performance. In this study, steam injection method is applied into a single cylinder, four-stroke, direct injection, naturally aspirated diesel engine fueled with ethanol–diesel blend in order improve the performance and NOx emissions by using two-zone combustion model for 15% ethanol addition and 20% steam ratios at full load condition. The results obtained are compared with conventional diesel engine (D), steam injected diesel engine (D + S20), diesel engine fueled with ethanol–diesel blend (E15) and steam injected diesel engine fueled with ethanol–diesel blend (E15 + S20) in terms of performance and NO emissions. The results showed that as NO emissions considerably decrease the performance significantly increases with steam injection method

  12. 46 CFR 11.522 - Service requirements for assistant engineer (limited oceans) of steam and/or motor vessels.

    Science.gov (United States)

    2010-10-01

    ... oceans) of steam and/or motor vessels. 11.522 Section 11.522 Shipping COAST GUARD, DEPARTMENT OF HOMELAND... Requirements for Engineer Officer § 11.522 Service requirements for assistant engineer (limited oceans) of... assistant engineer (limited oceans) of steam and/or motor vessels is three years of service in the...

  13. Alternatives to electrical cogeneration: The direct application of steam engines

    International Nuclear Information System (INIS)

    Phillips, W.C.

    1993-01-01

    Although small to medium sized industrial facilities are aware of electrical cogeneration, often they are too small for it to be economically justifiable. The direct application of steam turbine power to equipment formerly powered by electric motors, can allow them to use steam capacity to reduce electrical demand and consumption, bypassing cogeneration. Cogeneration converts the heat energy of steam into circular mechanical motion and then converts the circular mechanical motion into electricity. Each conversion entails a loss of energy due to friction and other conversion losses. A substantial amount of the generated electricity is then converted back into circular motion with electric motors, again incurring energy losses. Directly applying the mechanical motion of turbines eliminates both the motion-to-electricity (generator) and the electricity-to-motion (motor) conversion losses. Excess steam capacity during the summer is not unusual for facilities that use steam to provide winter heating. Similarly, most of these facilities experience a large electrical demand peak during the cooling season due to the electricity needed to operate centrifugal chillers. Steam capacity via a turbine to power the chillers can allow the boilers to operate at a higher loading while reducing electrical consumption and demand precisely those periods when demand reduction is most needed. In facilities where the steam generating capacity is sufficient, air compressors provide an appropriate year-round application for turbine power. This paper is the result of an on-going project by the Energy Division, State of North Carolina, Department of Economic and Community Development, in conjunction with the University of North Carolina at Charlotte. The objective of this project is to educate the operating engineers and managers of small to medium sized manufacturing facilities on the technical application and economic justification of steam turbine power

  14. Investigation of In-Cylinder Steam Injection in a Turbocharged Diesel Engine for Waste Heat Recovery and NOx Emission Control

    OpenAIRE

    Zhongbo Zhang; Lifu Li

    2018-01-01

    In this study, an in-cylinder steam injection method is introduced and applied to a turbocharged diesel engine for waste heat recovery and NOx emission reduction. In the method, cool water was first heated into superheated steam by exhaust. Then the superheated steam was directly injected into the cylinder during the compression stroke. The potential for fuel savings and NOx emission reduction obtained by this method was investigated. First, a two-zone combustion model for the baseline engine...

  15. Pressure drop-flow rate curves for single-phase steam in Combustion Engineering type steam generator U-tubes during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Fynan, Douglas A.; Ahn, Kwang-Il, E-mail: kiahn@kaeri.re.kr

    2016-12-15

    Highlights: • Pressure drop-flow rate curves for superheated steam in U-tubes were generated. • Forward flow of hot steam is favored in the longer and taller U-tubes. • Reverse flow of cold steam is favored in short U-tubes. • Steam generator U-tube bundle geometry and tube diameter are important. • Need for correlation development for natural convention heat transfer coefficient. - Abstract: Characteristic pressure drop-flow rate curves are generated for all row numbers of the OPR1000 steam generators (SGs), representative of Combustion Engineering (CE) type SGs featuring square bend U-tubes. The pressure drop-flow rate curves are applicable to severe accident natural circulations of single-phase superheated steam during high pressure station blackout sequences with failed auxiliary feedwater and dry secondary side which are closely related to the thermally induced steam generator tube rupture event. The pressure drop-flow rate curves which determine the recirculation rate through the SG tubes are dependent on the tube bundle geometry and hydraulic diameter of the tubes. The larger CE type SGs have greater variation of tube length and height as a function of row number with forward flow of steam favored in the longer and taller high row number tubes and reverse flow favored in the short low row number tubes. Friction loss, natural convection heat transfer coefficients, and temperature differentials from the primary to secondary side are dominant parameters affecting the recirculation rate. The need for correlation development for natural convection heat transfer coefficients for external flow over tube bundles currently not modeled in system codes is discussed.

  16. Steam Digest 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-11-01

    Steam Digest 2002 is a collection of articles published in the last year on steam system efficiency. DOE directly or indirectly facilitated the publication of the articles through it's BestPractices Steam effort. Steam Digest 2002 provides a variety of operational, design, marketing, and program and program assessment observations. Plant managers, engineers, and other plant operations personnel can refer to the information to improve industrial steam system management, efficiency, and performance.

  17. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    International Nuclear Information System (INIS)

    Tippets, F.E.

    1975-01-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  18. Some engineering aspects of the steam generator system for the United States LMFBR demonstration plant

    Energy Technology Data Exchange (ETDEWEB)

    Tippets, F E

    1975-07-01

    This paper describes the main design features of the steam generator system for the Clinch River Breeder Reactor Plant and the engineering approach being employed for some of the critical elements of this system, including in particular the sodium-steam/water boundary, the efforts to have this boundary be of highest integrity, and the system features to safely accommodate any failure of the boundary. (author)

  19. An Isothermal Steam Expander for an Industrial Steam Supplying System

    Directory of Open Access Journals (Sweden)

    Chen-Kuang Lin

    2015-01-01

    Full Text Available Steam is an essential medium used in the industrial process. To ensure steam quality, small and middle scale boilers are often adopted. However, because a higher steam pressure (compared to the necessary steam pressure is generated, the boiler’s steam pressure will be reduced via a pressure regulator before the steam is directed through the process. Unfortunately, pressure is somewhat wasted during the reducing process. Therefore, in order to promote energy efficiency, a pressure regulator is replaced by a steam expander. With this steam expander, the pressure will be transformed into mechanical energy and extracted during the expansion process. A new type of isothermal steam expander for an industrial steam supplying system will be presented in the paper. The isothermal steam expander will improve the energy efficiency of a traditional steam expander by replacing the isentropic process with an isothermal expansion process. With this, steam condensation will decrease, energy will increase, and steam quality will be improved. Moreover, the mathematical model of the isothermal steam expander will be established by using the Schmidt theory, the same principle used to analyze Stirling engines. Consequently, by verifying the correctness of the theoretical model for the isothermal steam expander using experimental data, a prototype of 100 c.c. isothermal steam expander is constructed.

  20. Effect of steam injection on nox emissions and performance of a single cylinder diesel engine fuelled with soy methyl ester

    Directory of Open Access Journals (Sweden)

    Manickam Madhavan V.

    2017-01-01

    Full Text Available Biodiesel attracts most of the researchers and automotive industries in recent years as an alternative fuel for diesel engines, because of its better lubricity property, higher cetane number, and less greenhouse gas emissions. The use of bio diesel leads to reduction in hydro carbons, carbon monoxide, and particulate matter, but increase in NOx emissions. Increase in biodiesel blends in standard diesel leads to increase in NOx emission. In this study, an attempt is made to reduce the NOx emis-sions of a diesel engine fueled with pure soy methyl ester (B100 with low pressure steam injection. Experiments were carried out and studied for both standard diesel and pure biodiesel of soy methyl ester with steam injection ratio of 5, 10, and 15% on mass ratio basis of air in the inlet manifold. The present study has shown that around 30% reduction in NOx can be achieved for the steam injection rate of 10% and considerable reduction for all other steam injection rates when compared to standard diesel and B100. It is also observed that steam injection having signifi-cant impact on reduction of other emissions such as HC, CO, and CO2. The study also noted marginal improvement in the engine brake power, brake thermal effi-ciency and reduction in specific fuel consumption at part loads and minor increase during peak load operation for the low pressure steam injection on B100.

  1. Amazing & extraordinary facts the steam age

    CERN Document Server

    Holland, Julian

    2012-01-01

    Respected transport author Julian Holland delves into the intriguing world of steam in his latest book, which is full of absorbing facts and figures on subjects ranging from Cornish beam engines, steam railway locomotives, road vehicles and ships through to traction engines, steam rollers and electricity generating stations and the people who designed and built them. Helped along the way by the inventive minds of James Watt, Richard Trevithick and George Stephenson, steam became the powerhouse that drove the Industrial Revolution in Britain in the late 18th and 19th centuries.

  2. Effect of turbo charging and steam injection methods on the performance of a Miller cycle diesel engine (MCDE)

    International Nuclear Information System (INIS)

    Gonca, Guven; Sahin, Bahri

    2017-01-01

    Highlights: • Performance of a diesel engine is simulated by finite time thermodynamics. • Effect of steam injection on performance of a Miller cycle engine is examined. • Model results are verified with the experimental data with less than 7% error. - Abstract: In this study, application of the steam injection method (SIM), Miller cycle (MC) and turbo charging (TC) techniques into a four stroke, direct-injection diesel engine has been numerically and empirically conducted. NOx emissions have detrimental influences on the environment and living beings. They are formed at the high temperatures, thus the Diesel engines are serious NOx generation sources since they have higher compression ratios and higher combustion temperatures. The international regulations have decreased the emission limits due to environmental reasons. The Miller cycle (MC) application and steam injection method (SIM) have been popular to abate NOx produced from the internal combustion engines (ICEs), in the recent years. However, the MC application can cause a reduction in power output. The most known technique which maximizes the engine power and abates exhaust emissions is TC. Therefore, if these three techniques are combined, the power loss can be tolerated and pollutant emissions can be minimized. While the application of the MC and SIM causes to diminish in the brake power and brake thermal efficiency of the engine up to 6.5% and 10%, the TC increases the brake power and brake thermal efficiency of the engine up to 18% and 12%. The experimental and theoretical results have been compared in terms of the torque, the specific fuel consumption (SFC), the brake power and the brake thermal efficiency. The results acquired from theoretical modeling have been validated with empirical data with less than 7% maximum error. The results showed that developed combination can increase the engine performance and the method can be easily applied to the Diesel engines.

  3. STEAM by Design

    Science.gov (United States)

    Keane, Linda; Keane, Mark

    2016-01-01

    We live in a designed world. STEAM by Design presents a transdisciplinary approach to learning that challenges young minds with the task of making a better world. Learning today, like life, is dynamic, connected and engaging. STEAM (Science, Technology, Environment, Engineering, Art, and Math) teaching and learning integrates information in…

  4. Safety Picks up "STEAM"

    Science.gov (United States)

    Roy, Ken

    2016-01-01

    This column shares safety information for the classroom. STEAM subjects--science, technology, engineering, art, and mathematics--are essential for fostering students' 21st-century skills. STEAM promotes critical-thinking skills, including analysis, assessment, categorization, classification, interpretation, justification, and prediction, and are…

  5. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    International Nuclear Information System (INIS)

    Mendler, O.J.; Takeuchi, K.; Young, M.Y.

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results

  6. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  7. Mathematical modeling of control system for the experimental steam generator

    Science.gov (United States)

    Podlasek, Szymon; Lalik, Krzysztof; Filipowicz, Mariusz; Sornek, Krzysztof; Kupski, Robert; Raś, Anita

    2016-03-01

    A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units - quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics) are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  8. Human Capital Formation during the First Industrial Revolution: Evidence from the Use of Steam Engines

    NARCIS (Netherlands)

    de Pleijt, Alexandra|info:eu-repo/dai/nl/375805621; Nuvolari, A.; Weisdorf, J.

    2016-01-01

    This paper explores the effect of technological change on human capital formation during the early phases of England’s Industrial Revolution. Following the methodology used in Franck and Galor (2016), we consider the adoption of steam engines as an indicator of technical change, examining the

  9. Mathematical modeling of control system for the experimental steam generator

    Directory of Open Access Journals (Sweden)

    Podlasek Szymon

    2016-01-01

    Full Text Available A steam generator is an essential unit of each cogeneration system using steam machines. Currently one of the cheapest ways of the steam generation can be application of old steam generators came from army surplus store. They have relatively simple construction and in case of not so exploited units – quite good general conditions, and functionality of mechanical components. By contrast, electrical components and control systems (mostly based on relay automatics are definitely obsolete. It is not possible to use such units with cooperation of steam bus or with steam engines. In particular, there is no possibility for automatically adjustment of the pressure and the temperature of the generated steam supplying steam engines. Such adjustment is necessary in case of variation of a generator load. The paper is devoted to description of improvement of an exemplary unit together with construction of the measurement-control system based on a PLC. The aim was to enable for communication between the steam generator and controllers of the steam bus and steam engines in order to construction of a complete, fully autonomic and maintenance-free microcogeneration system.

  10. CDIO – The steam engine powering the electric grid

    DEFF Research Database (Denmark)

    Træholt, Chresten; Holbøll, Joachim; Thomsen, Ole Cornelius

    2011-01-01

    In building the new DTU B.Eng programme [1] one of the pilots on the 4’th semester is the Design-build project course in Electric Energy Systems. In this course, which is the last Designbuild course many of the CDIO Syllabus bullets [2] are addressed starting with problem identification and formu......In building the new DTU B.Eng programme [1] one of the pilots on the 4’th semester is the Design-build project course in Electric Energy Systems. In this course, which is the last Designbuild course many of the CDIO Syllabus bullets [2] are addressed starting with problem identification...... and formulation, experimental inquiry and modelling, finally leading to planning and solution. The goal is to acquire the skills that are needed for an engineer within electric power engineering to analyse a given task, define the necessary steps to solve the task, organize him/her self and others and finally...... solve the task with success. The concrete work is built up around a miniaturized electric energy system powered by a steam engine. The system mimics an essential sub-section of a real electric power system. The process is realised with a combination of optional lectures, optional exercises, 3 set...

  11. Research program plan: steam generators

    International Nuclear Information System (INIS)

    Muscara, J.; Serpan, C.Z. Jr.

    1985-07-01

    This document presents a plan for research in Steam Generators to be performed by the Materials Engineering Branch, MEBR, Division of Engineering Technology, (EDET), Office of Nuclear Regulatory Research. It is one of four plans describing the ongoing research in the corresponding areas of MEBR activity. In order to answer the questions posed, the Steam Generator Program has been organized with the three elements of non-destructive examination; mechanical integrity testing; and corrosion, cleaning and decontamination

  12. Deliberate ignition of hydrogen-air-steam mixtures in condensing steam environments

    International Nuclear Information System (INIS)

    Blanchat, T.K.; Stamps, D.W.

    1997-05-01

    Large scale experiments were performed to determine the effectiveness of thermal glow plug igniters to burn hydrogen in a condensing steam environment due to the presence of water sprays. The experiments were designed to determine if a detonation or accelerated flame could occur in a hydrogen-air-steam mixture which was initially nonflammable due to steam dilution but was rendered flammable by rapid steam condensation due to water sprays. Eleven Hydrogen Igniter Tests were conducted in the test vessel. The vessel was instrumented with pressure transducers, thermocouple rakes, gas grab sample bottles, hydrogen microsensors, and cameras. The vessel contained two prototypic engineered systems: (1) a deliberate hydrogen ignition system and (2) a water spray system. Experiments were conducted under conditions scaled to be nearly prototypic of those expected in Advanced Light Water Reactors (such as the Combustion Engineering (CE) System 80+), with prototypic spray drop diameter, spray mass flux, steam condensation rates, hydrogen injection flow rates, and using the actual proposed plant igniters. The lack of any significant pressure increase during the majority of the burn and condensation events signified that localized, benign hydrogen deflagration(s) occurred with no significant pressure load on the containment vessel. Igniter location did not appear to be a factor in the open geometry. Initially stratified tests with a stoichiometric mixture in the top showed that the water spray effectively mixes the initially stratified atmosphere prior to the deflagration event. All tests demonstrated that thermal glow plugs ignite hydrogen-air-steam mixtures under conditions with water sprays near the flammability limits previously determined for hydrogen-air-steam mixtures under quiescent conditions. This report describes these experiments, gives experimental results, and provides interpretation of the results. 12 refs., 127 figs., 16 tabs

  13. STEAM Enacted: A Case Study of a Middle School Teacher Implementing STEAM Instructional Practices

    Science.gov (United States)

    Herro, Danielle; Quigley, Cassie

    2016-01-01

    This paper examines the implementation practices of a 6th grade middle school teacher enacting STEAM (science, technology, engineering, art and math) teaching in his classroom after participating in a 45-hour STEAM professional development. Case study is used to detail the process, successes, and challenges. Project-based learning, technology…

  14. Kids Inspire Kids for STEAM

    OpenAIRE

    Fenyvesi, Kristof; Houghton, Tony; Diego-Mantecón, José Manuel; Crilly, Elizabeth; Oldknow, Adrian; Lavicza, Zsolt; Blanco, Teresa F.

    2017-01-01

    Abstract The goal of the Kids Inspiring Kids in STEAM (KIKS) project was to raise students' awareness towards the multi- and transdisciplinary connections between the STEAM subjects (Science, Technology, Engineering, Arts & Mathematics), and make the learning about topics and phenomena from these fields more enjoyable. In order to achieve these goals, KIKS project has popularized the STEAM-concept by projects based on the students inspiring other students-approach and by utilizing new tec...

  15. A Review of Multi-Sensory Technologies in a Science, Technology, Engineering, Arts and Mathematics (STEAM) Classroom

    Science.gov (United States)

    Taljaard, Johann

    2016-01-01

    This article reviews the literature on multi-sensory technology and, in particular, looks at answering the question: "What multi-sensory technologies are available to use in a science, technology, engineering, arts and mathematics (STEAM) classroom, and do they affect student engagement and learning outcomes?" Here engagement is defined…

  16. Combined gas and steam power plant

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D T; Davis, J P

    1977-06-02

    The invention concerns a combination of internal combustion engine and steam turbine, where not only the heat of the hot exhaust gases of the internal combustion engine, but also the heat in the coolant of the internal combustion engine is used for power generation. The working fluid of the steam turbine is an organic fluid of low boiling point. A mixture of 85 mol% of tri-fluoro ethanol and 15 mol% of water is the most suitable fluid. The combustion engine (a Diesel engine is the most suitable), drives a working machine, e.g. a generator. The hot combustion exhaust gases produce evaporation of the working fluid in an HP evaporator. The superheated steam gives up its energy in the HP turbine stage, flows through the feed preheater of the fluid, and is condensed in the condenser. A pump pumps the fluid via control valve to heat the feed preheater of the fluid, from which it returns to the HP evaporator. At the same time evaporated coolant flows into an LP evaporator in counter-flow to the working fluid, condenses, and is returned to the cooling circuit of the combustion engine. The working fluid in the LP evaporator is heated to its boiling point, gives up its energy in the LP stage of the steam turbine is condensed, pumped to the preheater and returns to the LP evaporator. The two rotors of the turbine stages (HP and LP stages) are mounted on the same shaft, which drives a working machine or a generator.

  17. Modelling the Turbocharger Cut Off Application Due to Slow Steaming Operation 12RTA96C-B Engine

    Directory of Open Access Journals (Sweden)

    Karsten Wehner

    2017-09-01

    Full Text Available Out of the total operational costs of a ship, fuel costs account for by far the highest proportion. In view of the global economic situation and the rising oil prices, shipowners and charterers are looking for solutions to cut costs by reducing fuel consumption. Low load operation, also well-known as “slow steaming”, represents the currently most effective and popular measure to cut fuel costs and, in consequence, the total operational costs for increased competitiveness in the market. Low load operation is possible and there is an increasing trend to operate in these very low engine load ranges. As the engines were not designed for this operational condition, various retrofit modifications to the engine can compensate for this. By using low load operation, the reduction of the RPM gives problems when sailing at low speed.  A turbocharger (TC compresses inlet air to a high pressure and after cooling this compressed air it results in higher mass of air in the cylinder. But when running at a low power load this air reaches temperatures that are too low for an optimal combustion process. One of the solution comes from the company Wärtsilä. They install so called “low steam engine kits”. When this kit is installed it allows the engine operators to cut off one turbocharger of the engine, this result’s in a higher RPM for the operating turbochargers. When the remaining TC’s have a higher RPM their efficiency improves and gives the engine more air for combustion.The goal of this Bachelor thesis is to make a calculation modelling and prove that by switching off one or more turbocharger on the system will improve the efficiency in slow steaming operation. Beside that, this thesis is aims to estimated the performance of the engine in both operation condition.

  18. Thermo-economic analysis of a micro-cogeneration system based on a rotary steam engine (RSE)

    International Nuclear Information System (INIS)

    Alanne, Kari; Saari, Kari; Kuosa, Maunu; Jokisalo, Juha; Martin, Andrew R.

    2012-01-01

    A rotary steam engine (RSE) is a simple, small, quiet and lubricant-free option for micro-cogeneration. It is capable of exploiting versatile thermal sources and steam temperatures of 150–180 °C, which allow operational pressures less than 10 bar for electrical power ranges of 1–20 kW e . An RSE can be easily integrated in commercially available biomass-fired household boilers. In this paper, we characterize the boiler-integrated RSE micro-cogeneration system and specify a two-control-volume thermodynamic model to conduct performance analyses in residential applications. Our computational analysis suggests that an RSE integrated with a 17 kW th pellet-fueled boiler can obtain an electrical output of 1.925 kW e, in the design temperature of 150 °C, the electrical efficiency being 9% (based on the lower heating value of the fuel, LHV) and the thermal efficiency 77% (LHV). In a single-family house in Finland, the above system would operate up to 1274 h/y, meeting 31% of the house's electrical demand. The amount of electricity delivered into the grid is 989 kW h/y. An economic analysis suggests that incremental costs not exceeding € 1500 are justifiable at payback periods less than five years, when compared to standard boilers. - Highlights: ► We characterize and model a micro-cogeneration system based on a rotary steam engine. ► We assess the performance of the above system in a residential building in Finland. ► The above system is capable of meeting 31% of the building's annual electrical demand. ► The above system may cost at most € 1500 more than a standard boiler system.

  19. Engineering Study for a Full Scale Demonstration of Steam Reforming Black Liquor Gasification at Georgia-Pacific's Mill in Big Island, Virginia; FINAL

    International Nuclear Information System (INIS)

    Robert De Carrera; Mike Ohl

    2002-01-01

    Georgia-Pacific Corporation performed an engineering study to determine the feasibility of installing a full-scale demonstration project of steam reforming black liquor chemical recovery at Georgia-Pacific's mill in Big Island, Virginia. The technology considered was the Pulse Enhanced Steam Reforming technology that was developed and patented by Manufacturing and Technology Conversion, International (MTCI) and is currently licensed to StoneChem, Inc., for use in North America. Pilot studies of steam reforming have been carried out on a 25-ton per day reformer at Inland Container's Ontario, California mill and on a 50-ton per day unit at Weyerhaeuser's New Bern, North Carolina mill

  20. Steam generators and fuel engineering utilizing solid, liquid, gaseous and special fuels

    Energy Technology Data Exchange (ETDEWEB)

    Thor, G

    1983-01-01

    Provided were technological specifications and details in the design of brown coal fired steam generators, produced in the German Democratic Republic. These steam generators range in their capacity between 1.6 and more than 1,000 t/h. The appropriate coal feeding systems, water supply and cleaning equipment, coal pulverizers and ash removal units are also manufactured. Various schemes show the design of a 25 to 64 t/h, a 320 t/h and an 815 t/h brown coal steam generator. Specifications are given for series of fuel pulverizers available, for the water circulation system and steam evaporators. The VEB Dampferzeugerbau Berlin also offers steam generators for saliniferous brown coal with a steam capacity up to 125 t/h, steam generators for pulverized black coal with a capacity up to 350 t/h and oil and gas fired generators up to 250 t/h. The company has experience in combustion of biomass (sugar cane waste) with oil in steam generators of more than 100 t/h capacity, and in projecting firing systems for other biofuels including rice, peanut and coconut hulls, wood and bark. Multi-biofuel firing in combination with coal for steam generation is also regarded as possible. (In English)

  1. Future development LMFBR-steam generators SNR2

    International Nuclear Information System (INIS)

    Essebaggers, J.; Pors, J.G.

    1975-01-01

    The development work for steam generators for large LMFBR plants by Neratoom will be reviewed consisting of: 1. Development engineering information. 2. Concept select studies followed by conceptual designs of selected models. 3. Development manufacturing techniques. 4. Detail design of a prototype unit. 5. Testing of sub-constructions for prototype steam generators. In this presentation item 1 and 2 above will be high lighted, identifying the development work for the SNR-2 steam generators on short term basis. (author)

  2. STEAM by Another Name: Transdisciplinary Practice in Art and Design Education

    Science.gov (United States)

    Costantino, Tracie

    2018-01-01

    The recent movement to include art and design in Science, Technology, Engineering, and Mathematics (STEM) education has made Science, Technology, Engineering, Arts, and Mathematics (STEAM) an increasingly common acronym in the education lexicon. The STEAM movement builds on existing models of interdisciplinary curriculum, but what makes the union…

  3. Practical Suggestions for Calculating Supercritical Water-Steam Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2016-12-15

    A standard procedure for determining water-steam properties has been established through an international collaboration in addition to a domestic effort. The current accepted international standard for industrial application is based on the IAPWS-IF97 (International Association for the Properties of Water and Steam-Industrial Formation 97). Based on this standard, the ASME (American Society of Mechanical Engineers)/NIST (National Institute of Standard and Technology) developed the REPROP program in the USA, and the JSME (Japan Society of Mechanical Engineers) developed the steam table and calculation code. Upon applying this standard procedure, modified procedures were proposed for computational convenience, particularly in the supercritical pressure region where non-smooth variations of water-steam properties were distinctively observed. In this paper, the internationally adopted procedures and the progress of related activities are briefly summarized. Some practical considerations are presented for the efficient execution of computational code.

  4. What is geothermal steam worth?

    International Nuclear Information System (INIS)

    Thorhallsson, S.; Ragnarsson, A.

    1992-01-01

    Geothermal steam is obtained from high-temperature boreholes, either directly from the reservoir or by flashing. The value of geothermal steam is similar to that of steam produced in boilers and lies in its ability to do work in heat engines such as turbines and to supply heat for a wide range of uses. In isolated cases the steam can be used as a source of chemicals, for example the production of carbon dioxide. Once the saturated steam has been separated from the water, it can be transported without further treatment to the end user. There are several constraints on its use set by the temperature of the reservoir and the chemical composition of the reservoir fluid. These constraints are described (temperature of steam, scaling in water phase, gas content of steam, well output) as are the methods that have been adopted to utilize this source of energy successfully. Steam can only be transported over relatively short distances (a few km) and thus has to be used close to the source. Examples are given of the pressure drop and sizing of steam mains for pipelines. The path of the steam from the reservoir to the end user is traced and typical cost figures given for each part of the system. The production cost of geothermal steam is estimated and its sensitivity to site-specific conditions discussed. Optimum energy recovery and efficiency is important as is optimizing costs. The paper will treat the steam supply system as a whole, from the reservoir to the end user, and give examples of how the site-specific conditions and system design have an influence on what geothermal steam is worth from the technical and economic points of view

  5. Engaging High School Girls in Native American Culturally Responsive STEAM Enrichment Activities

    Science.gov (United States)

    Kant, Joanita M.; Burckhard, Suzette R.; Meyers, Richard T.

    2018-01-01

    Providing science, technology, engineering, art, and mathematics (STEAM) culturally responsive enrichment activities is one way of promoting more interest in science, technology, engineering, and mathematics (STEM) studies and careers among indigenous students. The purpose of the study was to explore the impact, if any, of STEAM culturally…

  6. Implementation of STEAM Education to Improve Mastery Concept

    Science.gov (United States)

    Liliawati, W.; Rusnayati, H.; Purwanto; Aristantia, G.

    2018-01-01

    Science Technology Engineering, Art, Mathematics (STEAM) is an integration of art into Science Technology Engineering, Mathematics (STEM). Connecting art to science makes learning more effective and innovative. This study aims to determine the increase in mastery of the concept of high school students after the application of STEAM education in learning with the theme of Water and Us. The research method used is one group Pretest-posttest design with students of class VII (n = 37) junior high school. The instrument used in the form of question of mastery of concepts in the form of multiple choices amounted to 20 questions and observation sheet of learning implementation. The results of the study show that there is an increase in conceptualization on the theme of Water and Us which is categorized as medium (=0, 46) after the application of the STEAM approach. The conclusion obtained that by applying STEAM approach in learning can improve the mastery of concept

  7. Research and engineering application of coordinated instrumentation control and protection technology between reactor and steam turbine generator on nuclear power plant

    International Nuclear Information System (INIS)

    Sun Xingdong

    2014-01-01

    The coordinated instrumentation control and protection technology between reactor and steam turbine generator (TG) usually is very significant and complicated for a new construction of nuclear power plant, because it carries the safety, economy and availability of nuclear power plant. Based on successful practice of a nuclear power plant, the experience on interface design and hardware architecture of coordinated instrumentation control and protection technology between reactor and steam turbine generator was abstracted and researched. In this paper, the key points and engineering experience were introduced to give the helpful instructions for the new project. (author)

  8. Component Test Facility (Comtest) Phase 1 Engineering For 760°C (1400°F) Advanced Ultrasupercritical (A-USC) Steam Generator Development

    Energy Technology Data Exchange (ETDEWEB)

    Weitzel, Paul [Babcock & Wilcox Power Generation Group, Inc., Barberton, OH (United States)

    2016-05-13

    The Babcock & Wilcox Company (B&W) performed a Pre-Front End Engineering Design (Pre-FEED) of an A-USC steam superheater for a proposed component test program achieving 760°C (1400°F) steam temperature. This would lead to follow-on work in a Phase 2 and Phase 3 that would involve detail design, manufacturing, construction and operation of the ComTest. Phase 1 results have provided the engineering data necessary for proceeding to the next phase of ComTest. The steam generator superheater would subsequently supply the steam to an A-USC prototype intermediate pressure steam turbine. The ComTest program is important in that it will place functioning A-USC components in operation and in coordinated boiler and turbine service. It is also important to introduce the power plant operation and maintenance personnel to the level of skills required and provide the first background experience with hands-on training. The project will provide a means to exercise the complete supply chain events required in order to practice and perfect the process for A-USC power plant design, supply, manufacture, construction, commissioning, operation and maintenance. Representative participants will then be able to transfer knowledge and recommendations to the industry. ComTest is conceived in the manner of using a separate standalone plant facility that will not jeopardize the host facility or suffer from conflicting requirements in the host plant’s mission that could sacrifice the nickel alloy components and not achieve the testing goals. ComTest will utilize smaller quantities of the expensive materials and reduce the risk in the first operational practice for A-USC technology in the United States. Components at suitable scale in ComTest provide more assurance before putting them into practice in the full size A-USC demonstration plant.

  9. Theorizing the Nexus of STEAM Practice

    Science.gov (United States)

    Peppler, Kylie; Wohlwend, Karen

    2018-01-01

    Recent advances in arts education policy, as outlined in the latest National Core Arts Standards, advocate for bringing digital media into the arts education classroom. The promise of such Science, Technology, Engineering, Arts, and Mathematics (STEAM)-based approaches is that, by coupling Science, Technology, Engineering, and Mathematics (STEM)…

  10. 46 CFR 54.01-10 - Steam-generating pressure vessels (modifies U-1(g)).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam-generating pressure vessels (modifies U-1(g)). 54... ENGINEERING PRESSURE VESSELS General Requirements § 54.01-10 Steam-generating pressure vessels (modifies U-1(g)). (a) Pressure vessels in which steam is generated are classed as “Unfired Steam Boilers” except as...

  11. Materials engineering issues, LMFBR steam generators

    International Nuclear Information System (INIS)

    Spalaris, C.N.; Challenger, K.D.; Day, R.A.; Dutina, D.; Ring, P.J.

    1976-01-01

    Selection of 2-1/4 Cr-1 Mo as the reference construction material for LMFBR steam generators assumed a balance between its known intrinsic properties and our ability to accommodate certain of its deficiencies through design allowance. A comprehensive development program was undertaken to define base data needed, confirm assumptions made relative to desired performance, minimize defects by optimization of melting, fabrication and heat treatment processes, and prepare specifications for purchasing reactor components

  12. Engineering nonlinearity characteristic compensation for commercial steam turbine control valve using linked MARS code and Matlab Simulink

    International Nuclear Information System (INIS)

    Halimi, B.; Suh, Kune Y.

    2012-01-01

    Highlights: ► A nonlinearity characteristic compensation is proposed of the steam turbine control valve. ► A steady state and transient analyzer is developed of Ulchin Units 3 and 4 OPR1000 nuclear plants. ► MARS code and Matlab Simulink are used to verify the compensation concept. ► The results show the concept can compensate for the nonlinearity characteristic very well. - Abstract: Steam turbine control valves play a pivotal role in regulating the output power of the turbine in a commercial power plant. They thus have to be operated linearly to be run by an automatic control system. Unfortunately, the control valve has inherently nonlinearity characteristics. The flow increases more significantly near the closed end than near the open end of the stem travel given the valve position signal. The steam flow should nonetheless be proportional to the final desired quantity, output power, of the turbine to obtain a linear operation. This paper presents the valve engineering linked analysis (VELA) for nonlinearity characteristic compensation of the steam turbine control valve by using a linked two existing commercial software. The Multi-dimensional Analysis of Reactor Safety (MARS) code and Matlab Simulink have been selected for VELA to develop a steady state and transient analyzer of Ulchin Units 3 and 4 powered by the Optimized Power Reactor 1000 MWe (OPR1000). MARS is capable of modeling a wide range of systems from single pipes to full nuclear power plants. As one of standard nuclear power plant thermal hydraulic analysis software tools, MARS simulates the primary and secondary sides of the nuclear power plant. To simulate the electric power flow part, Matlab Simulink is chosen as the standard analysis software. Matlab Simulink having an interactive environment to model analyzes and simulates a wide variety of engineering dynamic systems including multimachine power systems. Based on the MARS code result, Matlab Simulink analyzes the power flow of the

  13. Watt steam governor stability

    Science.gov (United States)

    Denny, Mark

    2002-05-01

    The physics of the fly-ball governor, introduced to regulate the speed of steam engines, is here analysed anew. The original analysis is generalized to arbitrary governor geometry. The well-known stability criterion for the linearized system breaks down for large excursions from equilibrium; we show approximately how this criterion changes.

  14. Operating experiences with 1 MW steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Sano, A; Kanamori, A; Tsuchiya, T

    1975-07-01

    1 MW steam generator, which was planned as the first stage of steam generator development in Power Reactor and Nuclear Fuel Corp. (PNC) in Japan, is a single-unit, once-through, integrated shell and tube type with multi-helical coil tubes. It was completed in Oarai Engineering Center of PNC in March of 1971, and the various performance tests were carried out up to April, 1972. After the dismantle of the steam generator for structural inspection and material test, it was restored with some improvements. In this second 1 MW steam generator, small leak occurred twice during normal operation. After repairing the failure, the same kind of performance tests as the first steam generator were conducted in order to verify the thermal insulation effect of argon gas in downcomer zone from March to June, 1974. In this paper the above operating experiences were presented including the outline of some performance test results. (author)

  15. Dancing with STEAM: Creative Movement Generates Electricity for Young Learners

    Science.gov (United States)

    Simpson Steele, Jamie; Fulton, Lori; Fanning, Lisa

    2016-01-01

    The integration of science, technology, engineering, arts, and mathematics (STEAM) serves to develop creative thinking and twenty-first-century skills in the classroom (Maeda 2012). Learning through STEAM promotes novelty, innovation, ingenuity, and task-specific purposefulness to solve real-world problems--all aspects that define creativity. Lisa…

  16. Decentralized power plants. Steam engines in an agriculture cooperative in Paraguay, plant extension in cooperation with the GTZ

    Energy Technology Data Exchange (ETDEWEB)

    1979-06-01

    About 1 cent are the running costs to generate 1 kWh - less than three years is the time for return of investment: tThat are the facts of steam engines using tungfruit shells as a fuel. The more oil prices are rising the more efficiently will such plants work. The way an agricultural cooperative in Paraquay changed their power supply is a good example for varying decentralized power plants - and how to save oil.

  17. Chemical control and design considerations for CANDU-PHW steam generators

    International Nuclear Information System (INIS)

    Frost, C.R.; Churchill, B.R.

    1978-01-01

    Ontario Hydro presently operates eight nuclear power units with a total capacitiy of about 4000 MW(e) net. Operating experience has been with Monel-400 and with Inconel-600 tubed steam generators using sodium phosphate or all volatile control of the boiler steam and water system. With a heavy water Heat Transport System, steam generator tube integrity is an essential ingredient of economical power production. Only three steam generator tube failures have occurred so far in about 40 unit-years operation. None was attributable to corrosion. Factors in the good reliability are, careful engineering design, good quality control at all stages of tubing and steam generator manufacture and close chemical control. The continuing evolution of our steam generator design means that future requirements will be more stringent. (author)

  18. Steam generator life management

    International Nuclear Information System (INIS)

    King, P.; McGillivray, R.; Reinhardt, W.; Millman, J.; King, B.; Schneider, W.

    2003-01-01

    'Full-Text:' Steam Generator Life Management responsibility embodies doing whatever is necessary to maintain the steam generation equipment of a nuclear plant in effective, reliable service. All comes together in that most critical deliverable, namely the submission of the documentation which wins approval for return to service after an outage program. Life management must address all aspects of SG reliability over the life of the plant. Nevertheless, the life management activities leading up to return to service approval is where all of it converges. Steam Generator Life Management activities entail four types of work, all equally important in supporting the objective of successful operation. These activities are i) engineering functions; including identification of inspection and maintenance requirements, outage planning and scope definition plus engineering assessment, design and analysis as necessary to support equipment operation, ii) fitness of service work; including the expert evaluation of degradation mechanisms, disposition of defects for return to service or not, and the fitness for service analysis as required to justify ongoing operation with acceptable defects, iii) inspection work; including large scale eddy current inspection of tubing, the definition of defect size and character, code inspections of pressure vessel integrity and visual inspections for integrity and iv) maintenance work; including repairs, retrofits, cleaning and modifications, all as necessary to implement the measures defined during activities i) through iii). The paper discusses the approach and execution of the program for the achievement of the above objectives and particularly of items i) and ii). (author)

  19. Teachers' Perceptions and Practices of STEAM Education in South Korea

    Science.gov (United States)

    Park, HyunJu; Byun, Soo-yong; Sim, Jaeho; Han, Hyesook; Baek, Yoon Su

    2016-01-01

    This study examined teachers' perceptions and practices of science, technology, engineering, arts, and mathematics (STEAM) education in South Korea, drawing on a survey of teachers in STEAM model schools. Results showed that the majority of Korean teachers, especially experienced teachers and male teachers, had a positive view on the role of STEAM…

  20. Wet steam turbines for nuclear generating stations -design and operating experience

    International Nuclear Information System (INIS)

    Usher, J.

    1977-01-01

    Lecture to the Institution of Nuclear Engineers, 11 Jan. 1977. The object of this lecture was to give an account of some design features of large wet steam turbines and to show by describing some recent operational experience how their design concepts were fulfilled. Headings are as follows: effects of wet steam cycle on turbine layout and operation (H.P. turbine, L.P. turbine); turbine control and operation; water separators; and steam reheaters. (U.K.)

  1. Waste to Energy Conversion by Stepwise Liquefaction, Gasification and "Clean" Combustion of Pelletized Waste Polyethylene for Electric Power Generation---in a Miniature Steam Engine

    Science.gov (United States)

    Talebi Anaraki, Saber

    The amounts of waste plastics discarded in developed countries are increasing drastically, and most are not recycled. The small fractions of the post-consumer plastics which are recycled find few new uses as their quality is degraded; they cannot be reused in their original applications. However, the high energy density of plastics, similar to that of premium fuels, combined with the dwindling reserves of fossil fuels make a compelling argument for releasing their internal energy through combustion, converting it to thermal energy and, eventually, to electricity through a heat engine. To minimize the emission of pollutants this energy conversion is done in two steps, first the solid waste plastics undergo pyrolytic gasification and, subsequently, the pyrolyzates (a mixture of hydrocarbons and hydrogen) are blended with air and are burned "cleanly" in a miniature power plant. This plant consists of a steam boiler, a steam engine and an electricity generator.

  2. Genetic optimization of steam multi-turbines system

    International Nuclear Information System (INIS)

    Olszewski, Pawel

    2014-01-01

    Optimization analysis of partially loaded cogeneration, multiple-stages steam turbines system was numerically investigated by using own-developed code (C++). The system can be controlled by following variables: fresh steam temperature, pressure, and flow rates through all stages in steam turbines. Five various strategies, four thermodynamics and one economical, which quantify system operation, were defined and discussed as an optimization functions. Mathematical model of steam turbines calculates steam properties according to the formulation proposed by the International Association for the Properties of Water and Steam. Genetic algorithm GENOCOP was implemented as a solving engine for non–linear problem with handling constrains. Using formulated methodology, example solution for partially loaded system, composed of five steam turbines (30 input variables) with different characteristics, was obtained for five strategies. The genetic algorithm found multiple solutions (various input parameters sets) giving similar overall results. In real application it allows for appropriate scheduling of machine operation that would affect equable time load of every system compounds. Also based on these results three strategies where chosen as the most complex: the first thermodynamic law energy and exergy efficiency maximization and total equivalent energy minimization. These strategies can be successfully used in optimization of real cogeneration applications. - Highlights: • Genetic optimization model for a set of five various steam turbines was presented. • Four various thermodynamic optimization strategies were proposed and discussed. • Operational parameters (steam pressure, temperature, flow) influence was examined. • Genetic algorithm generated optimal solutions giving the best estimators values. • It has been found that similar energy effect can be obtained for various inputs

  3. The STEAM behind the Scenes

    Science.gov (United States)

    Smith, Carmen Petrick; King, Barbara; González, Diana

    2015-01-01

    There is a growing need for STEAM-based (Science, Technology, Engineering, Arts, and Mathematics) knowledge and skills across a wide range of professions (Brazell 2013). Yet students often fail to see the usefulness of mathematics beyond the classroom (Kloosterman, Raymond, and Emenaker 1996), and they do not regularly make connections between…

  4. Investigation of SAGD steam trap control in two and three dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Edmunds, N. R. [Clearwater Engineering, AB (Canada)

    1998-12-31

    Steam trap production control has been traditionally recommended for steam-assisted gravity drainage (SAGD) operations. This study examines the relationship between producing steam trap subcool settings and related parameters of interest such as fluid level, pressure, production rate, and profitability for a prototype Athabasca reservoir. Study results indicate that the steam trap dynamics are far more complex than hitherto imagined, that 3-D simulations predict significantly lower production rates than 2-D simulations, and that these variations have implications for all aspects of SAGD engineering, including process optimization, production operations and performance analysis. 10 refs., 2 tabs., 15 figs.

  5. Energy efficiency of a direct-injection internal combustion engine with high-pressure methanol steam reforming

    International Nuclear Information System (INIS)

    Poran, Arnon; Tartakovsky, Leonid

    2015-01-01

    This article discusses the concept of a direct-injection ICE (internal combustion engine) with thermo-chemical recuperation realized through SRM (steam reforming of methanol). It is shown that the energy required to compress the reformate gas prior to its injection into the cylinder is substantial and has to be accounted for. Results of the analysis prove that the method of reformate direct-injection is unviable when the reforming is carried-out under atmospheric pressure. To reduce the energy penalty resulted from the gas compression, it is suggested to implement a high-pressure reforming process. Effects of the injection timing and the injector's flow area on the ICE-SRM system's fuel conversion efficiency are studied. The significance of cooling the reforming products prior to their injection into the engine-cylinder is demonstrated. We show that a direct-injection ICE with high-pressure SRM is feasible and provides a potential for significant efficiency improvement. Development of injectors with greater flow area shall contribute to further efficiency improvements. - Highlights: • Energy needed to compress the reformate is substantial and has to be accounted for. • Reformate direct-injection is unviable if reforming is done at atmospheric pressure. • Direct-injection engine with high-pressure methanol reforming is feasible. • Efficiency improvement by 12–14% compared with a gasoline-fed engine was shown

  6. Welded joints engineering design of the primary circuit, surge line and main steam piping of the Angra 2 reactor

    International Nuclear Information System (INIS)

    Volta, Angelo Roberto; Couto, Jose Gonzalo Villaverde

    1995-01-01

    The erection of nuclear systems of a Nuclear Power Station is under international requests, that results in a detailed elaboration of documents for the performance of welds. NUCLEN as an engineering design company, responsible for the erection of Angra 2, developed a suitable software program for the elaboration of welding procedure qualifications, tests and examination sequence plans and heat treatment plans applied to primary circuit, surgeline and main steam piping. The paper shows the employed methodology for the elaboration of these documents, as well as the requested engineering design of welding technology and testability in order to assure the stipulated quality level, according to requirements of the specifications, codes and norms. (author). 6 refs

  7. Steam 80 steam generator instrumentation

    International Nuclear Information System (INIS)

    Carson, W.H.; Harris, H.H.

    1980-01-01

    This paper describes two special instrumentation packages in an integral economizer (preheater) steam generator of one of the first System 80 plants scheduled to go into commercial operation. The purpose of the instrumentation is to obtain accurate operating information from regions of the secondary side of the steam generator inaccessible to normal plant instrumentation. In addition to verification of the System 80 steam generator design predictions, the data obtained will assist in verification of steam generator thermal/hydraulic computer codes developed for generic use in the industry

  8. Sludge cleaning in the steam generators: sludge Lancing e IBL

    International Nuclear Information System (INIS)

    Montoro, E.; Gonzalez, S.; Calderon, N.

    2013-01-01

    IBERDROLA Engineering and Construction has echoed the need for plants to remove oxide deposits (sludge) located on the secondary side, on the bottom plate and into the tube bundle steam steam generators. Therefore, and with its partner SAVAC SRA has developed a specific system consisting of applying a capillary water at very high pressure applied directly to the location of these oxides. (Author)

  9. Industrial steam systems and the energy-water nexus.

    Science.gov (United States)

    Walker, Michael E; Lv, Zhen; Masanet, Eric

    2013-11-19

    This paper presents estimates for water consumption and steam generation within U.S. manufacturing industries. These estimates were developed through the integration of detailed, industry-level fuel use and operation data with an engineering-based steam system model. The results indicate that industrial steam systems consume approximately 3780 TBTU/yr (3.98 × 10(9) GJ/yr) to generate an estimated 2.9 trillion lb/yr (1.3 trillion kg/yr) of steam. Since a good portion of this steam is injected directly into plant processes, vented, leaked, or removed via blowdown, roughly 354 MGD of freshwater must be introduced to these systems as makeup. This freshwater consumption rate is approximately 11% of that for the entire U.S. manufacturing sector, or the total residential consumption rate of Los Angeles, the second largest city in the U.S. The majority of this consumption (>94%) can be attributed to the food, paper, petroleum refining, and chemicals industries. The results of the analyses presented herein provide previously unavailable detail on water consumption in U.S. industrial steam systems and highlight opportunities for combined energy and water savings.

  10. Characteristics of steam jet impingement on annulus

    International Nuclear Information System (INIS)

    Yoon, Sang H.; Kim, Won J.; Suh, Kune Y.; Song, Chul H.

    2004-01-01

    The steam jet impingement occurs when the steam through the cold leg from the steam generator strikes the inner reactor barrel during the reflood phase of a loss-of-coolant accident (LOCA), which is a characteristic behavior for the APR1400 (Advanced Power Reactor 1400 MWe). In the cold leg break LOCA, the steam and water flows in the downcomer are truly multidimensional. The azimuthal velocity distribution of the steam flow has an important bearing on the thermal hydraulic phenomena such as the emergency coolant water direct bypass, sweepout, steam condensation, and so forth. The investigation of jet flow is required to determine the steam path and momentum reduction rate after the impingement. For the observation of the steam behavior near the break, the computational fluid dynamic (CFD) analysis has been carried out using CFX5.6. The flow visualization and analysis demonstrate the velocity profiles of the steam flow in the annulus region for the same boundary conditions. Pursuant to the CFD results, the micro-Pitot tubes were positioned at varying angles, and corrected for their sensitivity. The experiments were carried out to directly measure the pressure differential and to visualize the flow utilizing a smoke injection method. Results from this study are slated to be applied to MARS, which is a thermal hydraulic system code for the best-estimate analysis. The current one- or two-dimensional analysis in MARS was known to distort the local flow behavior. To enhance prediction capability of MARS, it is necessary to inspect the steam path in the break flow and mechanically simulate the momentum variation. The present experimental and analytical results can locally be applied to developing the engineering models of specific and essential phenomena. (author)

  11. Turbine main engines

    CERN Document Server

    Main, John B; Herbert, C W; Bennett, A J S

    1965-01-01

    Turbine Main Engines deals with the principle of operation of turbine main engines. Topics covered include practical considerations that affect turbine design and efficiency; steam turbine rotors, blades, nozzles, and diaphragms; lubricating oil systems; and gas turbines for use with nuclear reactors. Gas turbines for naval boost propulsion, merchant ship propulsion, and naval main propulsion are also considered. This book is divided into three parts and begins with an overview of the basic mode of operation of the steam turbine engine and how it converts the pressure energy of the ingoing ste

  12. Air-steam hybrid engine : an alternative to internal combustion.

    Science.gov (United States)

    2011-03-01

    In this Small Business Innovation Research (SBIR) Phase 1 project, an energy-efficient air-steam propulsion system has been developed and patented, and key performance attributes have been demonstrated to be superior to those of internal combustion e...

  13. A review of test results on parabolic dish solar thermal power modules with dish-mounted Rankine engines and for production of process steam

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-11-01

    This paper presents results of development testing of various solar thermal parabolic dish modules and assemblies. Most of the tests were at modules and assemblies that used a dish-mounted, organic Rankine cycle turbine for production of electric power. Some tests were also run on equipment for production of process steam or for production of electricity using dish-mounted reciprocating steam engines. These tests indicate that early modules achieve efficiencies of about 18 percent in converting sunlight to electricity (excluding the inverter but including parasitics). A number of malfunctions occurred. The performance measurements, as well as the malfunctions and other operating experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  14. Numerical simulation in steam injection process by a mechanistic approach

    Energy Technology Data Exchange (ETDEWEB)

    De Souza, J.C.Jr.; Campos, W.; Lopes, D.; Moura, L.S.S. [Petrobras, Rio de Janeiro (Brazil)

    2008-10-15

    Steam injection is a common thermal recovery method used in very viscous oil reservoirs. The method involves the injection of heat to reduce viscosity and mobilize oil. A steam generation and injection system consists primarily of a steam source, distribution lines, injection wells and a discarding tank. In order to optimize injection and improve the oil recovery factor, one must determine the parameters of steam flow such as pressure, temperature and steam quality. This study focused on developing a unified mathematical model by means of a mechanistic approach for two-phase steam flow in pipelines and wells. The hydrodynamic and heat transfer mechanistic model was implemented in a computer simulator to model the parameters of steam injection while trying to avoid the use of empirical correlations. A marching algorithm was used to determine the distribution of pressure and temperature along the pipelines and wellbores. The mathematical model for steam flow in injection systems, developed by a mechanistic approach (VapMec) performed well when the simulated values of pressures and temperatures were compared with the values measured during field tests. The newly developed VapMec model was incorporated in the LinVap-3 simulator that constitutes an engineering supporting tool for steam injection wells operated by Petrobras. 23 refs., 7 tabs., 6 figs.

  15. Creep of Hi-Nicalon S Fiber Tows at Elevated Temperature in Air and in Steam

    Science.gov (United States)

    2013-03-01

    with steam port and alumina steam feeding tube with slot to divert steam away from directly impacting the fiber tow specimen . . . . 25 4.7 Hi-Nicalon...The activation energy for the creep of Hi-Nicalon fibers was determined to be 360 kJ/mol and the predominant creep mechanism was identified as...engines, gas turbines for electrical power/steam cogeneration , as well as nuclear power plant components. It is recognized that the structural

  16. Catalytic Steam Reforming of Bio-Oil to Hydrogen Rich Gas

    DEFF Research Database (Denmark)

    Trane-Restrup, Rasmus

    heating value and high content of oxygen, which makes it unsuited for direct utilization in engines. One prospective technology for upgrading of bio-oil is steam reforming (SR), which can be used to produce H2 for upgrading of bio-oil through hydrodeoxygenation or synthesis gas for processes like......-oil. There are two main pathways to minimize carbon deposition in steam reforming; either through optimization of catalyst formulation or through changes to the process parameters, like changes in temperature, steam to carbon ratio (S/C), or adding O2 or H2 to the feed. In this thesis both pathways have been...

  17. Pressurizer and steam-generator behavior under PWR transient conditions

    International Nuclear Information System (INIS)

    Wahba, A.B.; Berta, V.T.; Pointner, W.

    1983-01-01

    Experiments have been conducted in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR), at the Idaho National Engineering Laboratory, in which transient phenomena arising from accident events with and without reactor scram were studied. The main purpose of the LOFT facility is to provide data for the development of computer codes for PWR transient analyses. Significant thermal-hydraulic differences have been observed between the measured and calculated results for those transients in which the pressurizer and steam generator strongly influence the dominant transient phenomena. Pressurizer and steam generator phenomena that occurred during four specific PWR transients in the LOFT facility are discussed. Two transients were accompanied by pressurizer inflow and a reduction of the heat transfer in the steam generator to a very small value. The other two transients were accompanied by pressurizer outflow while the steam generator behavior was controlled

  18. Steam generator thermal sleeve reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Caton, E.; Askari, A.; Volder, P. [Babcock and Wilcox Canada Ltd., Cambridge, Ontario (Canada)]. E-mail: eecaton@babcock.com

    2003-07-01

    'Full text:' Successful implementation of a physically difficult repair program requires collaboration of the design and construction functions of an organization to ensure that goals are shared and rework or on-the-fly design changes are not required. Furthermore, in a nuclear facility this collaboration results in the optimal safety condition as dose uptake is minimized with a well planned job. The replacement of the degraded thermal sleeves in the Pickering A Steam Generator feedwater nozzles posed this type of problem. The project may be summarized as follows: i) problem analysis, ii) identification of design parameters and limitations, iii) integration of field engineering and design engineering solutions, iv) installation. Integration of the design engineering and field engineering design parameters ensured that the most effective solution was implemented. (author)

  19. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H. [ed.] [IVO Group, Vantaa (Finland); Purhonen, H. [ed.] [VTT, Espoo (Finland); Kouhia, V. [ed.] [Lappeenranta Univ. of Technology (Finland)

    1997-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  20. Fourth international seminar on horizontal steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Tuomisto, H [ed.; IVO Group, Vantaa (Finland); Purhonen, H [ed.; VTT, Espoo (Finland); Kouhia, V [ed.; Lappeenranta Univ. of Technology (Finland)

    1998-12-31

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries.

  1. Fourth international seminar on horizontal steam generators

    International Nuclear Information System (INIS)

    Tuomisto, H.; Purhonen, H.; Kouhia, V.

    1997-01-01

    The general objective of the International Seminars of Horizontal Steam Generator Modelling has been the improvement in understanding of realistic thermal hydraulic behaviour of the generators when performing safety analyses for VVER reactors. The main topics presented in the fourth seminar were: thermal hydraulic experiments and analyses, primary collector integrity, feedwater distributor replacement, management of primary-to-secondary leakage accidents and new developments in the VVER safety technology. The number of participants, representing designers and manufacturers of the horizontal steam generators, plant operators, engineering companies, research organizations, universities and regulatory authorities, was 70 from 10 countries

  2. 46 CFR 35.25-15 - Carrying of excess steam-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Carrying of excess steam-TB/ALL. 35.25-15 Section 35.25... § 35.25-15 Carrying of excess steam—TB/ALL. It shall be the duty of the chief engineer of any tank vessel to see that a steam pressure is not carried in excess of that allowed by the certificate of...

  3. Successful and failing challengers: Diesel and steam as alternatives to the gasoline automotive engine

    Energy Technology Data Exchange (ETDEWEB)

    Haard, M. [Norwegian Univ. of Science and Technology (Norway). Centre for Technology and Society; Jamison, A. [Lund Univ. (Sweden). Research Policy Inst.

    1996-07-01

    This paper aims at explaining why it is that some technologies become so entrenched in our society that it becomes virtually impossible to alter them, and why some challengers nevertheless succeed. It attempts to show that it is seldom enough to explain success and failure by reference to technical factors. By means of an historically comparative analysis of two challengers to the automobile gasoline engine - steam and diesel, the paper tries to show that history can help us understand and perhaps amend the problems that contemporary politicians and other social actors experience in trying to find niches for unconventional technologies. The central thesis is that established technologies remain because they have gained symbolic power, are carried by deeply embedded organizational structures, and have helped to create strong behavioral patterns. An alternative technology seldom succeeds if it poses an alternative at all three levels; indeed, the contention is that a too ambitious alternative is less likely to succeed than a conservative one. In this particular case, the diesel slowly but surely rid itself of the symbolism that had for a long time put it at a disadvantage compared to the gasoline engine; it was taken up by the same actors and organizations that supported the gasoline engine; its engineers managed to provide users with functions that were so familiar that they did not have to change their set patterns of behavior. The steamer, by contrast, did not succeed in any of these respects; its meaning came to be associated (negatively) with high fuel consumption; its organizational affiliations were weak; and users were never given the opportunity to test their willingness to modify their behavior. 50 refs

  4. Steam generator replacement at Bruce A: approach, results, and lessons learned

    International Nuclear Information System (INIS)

    Tomkiewicz, W.; Savage, B.; Smith, J.

    2008-01-01

    Steam Generator Replacement is now complete in Bruce A Units 1 and 2. In each reactor, eight steam generators were replaced; these were the first CANDU steam generator replacements performed anywhere in the world. The plans for replacement were developed in 2004 and 2005, and were summarized in an earlier paper for the CNS Conference held in November, 2006. The present paper briefly summarizes the methodologies and special processes used such as metrology, cutting and welding and heavy lifting. The paper provides an update since the earlier report and focuses on the project achievements to date, such as: - A combination of engineered methodology, laser metrology and precise remote machining led to accurate first time fit-ups of each new replacement steam generator and steam drums - Lessons learned in the first unit led to schedule improvements in the second unit - Dose received was lowest recorded for any steam generator replacement project. The experience gained and lessons learned from Units 1 and 2 will be valuable in planning and executing future replacement steam generator projects. A video was presented

  5. Perspective of the Westinghouse steam generator secondary side maintenance approach

    Energy Technology Data Exchange (ETDEWEB)

    Ramaley, D. [Westinghouse Electric Company LLC, Cranberry Township, Pennsylvania (United States)

    2012-07-01

    Historically, Westinghouse had developed a set of steam generator secondary maintenance guidelines focused around performing recurring activities each outage without direct regards to the age, deposit loading, operational status, or corrosion status of the steam generator. Through the evolution of steam generator design and steam generator condition data, Westinghouse now uses a proactive assessment and planning approach for utilities. Westinghouse works with utilities to develop steam generator secondary maintenance plans for long term steam generator viability. Westinghouse has developed a portfolio of products to allow utilities to optimize steam generator operability and develop programs aimed at maintaining the steam generator secondary side in a favorable condition for successful long term operation. Judicious use of the means available for program development should allow for corrosion free operation, long term full power operation at optimum thermal efficiency, and leveling of outage expenditures over a long period of time. This paper will review the following required elements for an effective steam generator secondary side strategy: • Assessment: In order to develop an appropriate maintenance strategy, actions must be taken to obtain an accurate picture of the SG secondary side condition. • Forecasting: Using available data predictions are developed for future steam generator conditions and required maintenance actions. • Action: Cost effective engineering and maintenance actions must be completed at the appropriate time as designated by the plan. • Evaluation of Results: Following execution of maintenance tactics, it is necessary to revise strategy and develop technology enhancements as appropriate. (author)

  6. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy

    2017-01-01

    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  7. A Comparison of Organic and Steam Rankine Cycle Power Systems for Waste Heat Recovery on Large Ships

    Directory of Open Access Journals (Sweden)

    Jesper Graa Andreasen

    2017-04-01

    Full Text Available This paper presents a comparison of the conventional dual pressure steam Rankine cycle process and the organic Rankine cycle process for marine engine waste heat recovery. The comparison was based on a container vessel, and results are presented for a high-sulfur (3 wt % and low-sulfur (0.5 wt % fuel case. The processes were compared based on their off-design performance for diesel engine loads in the range between 25% and 100%. The fluids considered in the organic Rankine cycle process were MM(hexamethyldisiloxane, toluene, n-pentane, i-pentane and c-pentane. The results of the comparison indicate that the net power output of the steam Rankine cycle process is higher at high engine loads, while the performance of the organic Rankine cycle units is higher at lower loads. Preliminary turbine design considerations suggest that higher turbine efficiencies can be obtained for the ORC unit turbines compared to the steam turbines. When the efficiency of the c-pentane turbine was allowed to be 10% points larger than the steam turbine efficiency, the organic Rankine cycle unit reaches higher net power outputs than the steam Rankine cycle unit at all engine loads for the low-sulfur fuel case. The net power production from the waste heat recovery units is generally higher for the low-sulfur fuel case. The steam Rankine cycle unit produces 18% more power at design compared to the high-sulfur fuel case, while the organic Rankine cycle unit using MM produces 33% more power.

  8. "Finding the Joy in the Unknown": Implementation of STEAM Teaching Practices in Middle School Science and Math Classrooms

    Science.gov (United States)

    Quigley, Cassie F.; Herro, Dani

    2016-06-01

    In response to a desire to strengthen the economy, educational settings are emphasizing science, technology, engineering, and mathematics (STEM) curriculum and programs. Yet, because of the narrow approach to STEM, educational leaders continue to call for a more balanced approach to teaching and learning, which includes the arts, design, and humanities. This desire created space for science, technology, engineering, arts, and mathematics (STEAM) education, a transdisciplinary approach that focuses on problem-solving. STEAM-based curricula and STEAM-themed schools are appearing all over the globe. This growing national and global attention to STEAM provides an opportunity for teacher education to explore the ways in which teachers implement STEAM practices, examining the successes and challenges, and how teachers are beginning to make sense of this innovative teaching practice. The purpose of this paper is to examine the implementation of STEAM teaching practices in science and math middle school classrooms, in hopes to provide research-based evidence on this emerging topic to guide teacher educators.

  9. A steam inerting system for hydrogen disposal for the Vandenberg Shuttle

    Science.gov (United States)

    Belknap, Stuart B.

    1988-01-01

    A two-year feasibility and test program to solve the problem of unburned confined hydrogen at the Vandenberg Space Launch Complex Six (SLC-6) during Space Shuttle Main Engine (SSME) firings is discussed. A novel steam inerting design was selected for development. Available sound suppression water is superheated to flash to steam at the duct entrance. Testing, analysis, and design during 1987 showed that the steam inerting system (SIS) solves the problem and meets other flight-critical system requirements. The SIS design is complete and available for installation at SLC-6 to support shuttle or derivative vehicles.

  10. New frontiers of multidisciplinary research in STEAM-H (science, technology, engineering, agriculture, mathematics, and health)

    CERN Document Server

    2014-01-01

    This highly multidisciplinary volume contains contributions from leading researchers in STEAM-H disciplines (Science, Technology, Engineering, Agriculture, Mathematics and Health). The volume explores new frontiers in multidisciplinary research, including: the mathematics of cardiac arrhythmia; brain research on working memory; penalized ordinal regression to classify melanoma skin samples; forecasting of time series data; dynamics of niche models; analysis of chemical moieties as anticancer agents; study of gene locus control regions; qualitative mathematical modelling; convex quadrics and group circle systems; remanufacturing planning and control; complexity reduction of functional differential equations; computation of viscous interfacial motion; and differentiation in human pluripotent stem cells. An extension of a seminar series at Virginia State University, the collection is intended to foster student interest and participation in interdisciplinary research, and to stimulate new research. The content wi...

  11. Steam turbine cycle

    International Nuclear Information System (INIS)

    Okuzumi, Naoaki.

    1994-01-01

    In a steam turbine cycle, steams exhausted from the turbine are extracted, and they are connected to a steam sucking pipe of a steam injector, and a discharge pipe of the steam injector is connected to an inlet of a water turbine. High pressure discharge water is obtained from low pressure steams by utilizing a pressurizing performance of the steam injector and the water turbine is rotated by the high pressure water to generate electric power. This recover and reutilize discharged heat of the steam turbine effectively, thereby enabling to improve heat efficiency of the steam turbine cycle. (T.M.)

  12. Steam condenser

    International Nuclear Information System (INIS)

    Masuda, Fujio

    1980-01-01

    Purpose: To enable safe steam condensation by providing steam condensation blades at the end of a pipe. Constitution: When high temperature high pressure steam flows into a vent pipe having an opening under water in a pool or an exhaust pipe or the like for a main steam eacape safety valve, non-condensable gas filled beforehand in the steam exhaust pipe is compressed, and discharged into the water in the pool. The non-condensable gas thus discharged from the steam exhaust pipe is introduced into the interior of the hollow steam condensing blades, is then suitably expanded, and thereafter exhausted from a number of exhaust holes into the water in the pool. In this manner, the non-condensable gas thus discharged is not directly introduced into the water in the pool, but is suitable expanded in the space of the steam condensing blades to suppress extreme over-compression and over-expansion of the gas so as to prevent unstable pressure vibration. (Yoshihara, H.)

  13. Replacement of steam generators at arkansas nuclear one, unit-2 (ano-2)

    International Nuclear Information System (INIS)

    Wilson, R.M.; Buford, A.

    2001-01-01

    The Arkansas Nuclear One, Unit-2 steam generators, originally supplied by Combustion Engineering, began commercial operation in 1980 producing a gross electrical output of 958 MW. After several years of successful operation, the owner decided that the tube degradation rates of the original steam generators were too high for the plant to meet the performance requirements for the full 40-year license period. The contract to supply replacement steam generators (RSGs) was awarded to Westinghouse Electric Company in 1996. Installation of these RSGs took place in the last months of 2000. This paper compares the design features of the original and re-placement steam generators with emphasis on design and reliability enhancements achieved. (author)

  14. Steam generator materials performance in high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Chafey, J.E.; Roberts, D.I.

    1980-11-01

    This paper reviews the materials technology aspects of steam generators for HTGRs which feature a graphite-moderated, uranium-thorium, all-ceramic core and utilizes high-pressure helium as the primary coolant. The steam generators are exposed to gas-side temperatures approaching 760 0 C and produce superheated steam at 538 0 C and 16.5 MPa (2400 psi). The prototype Peach Bottom I 40-MW(e) HTGR was operated for 1349 EFPD over 7 years. Examination after decommissioning of the U-tube steam generators and other components showed the steam generators to be in very satisfactory condition. The 330-MW(e) Fort St. Vrain HTGR, now in the final stages of startup, has achieved 70% power and generated more than 1.5 x 10 6 MWh of electricity. The steam generators in this reactor are once-through units of helical configuration, requiring a number of new materials factors including creep-fatigue and water chemistry control. Current designs of larger HTGRs also feature steam generators of helical once-through design. Materials issues that are important in these designs include detailed consideration of time-dependent behavior of both base metals and welds, as required by current American Society of Mechanical Engineers (ASME) Code rules, evaluation of bimetallic weld behavior, evaluation of the properties of large forgings, etc

  15. Corrosion and Rupture of Steam Generator Tubings in PWRs

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-15

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned.

  16. Corrosion and Rupture of Steam Generator Tubings in PWRs

    International Nuclear Information System (INIS)

    Hwang, Seong Sik; Kim, Hong Pyo

    2007-08-01

    This report is intended to provide corrosion engineers in the filed of nuclear energy with information on the corrosion and rupture behavior of steam generator tubing in PWRs. Various types of corrosion in PWR steam generator tubing have been reported all around the world, and countermeasures such as the addition of corrosion inhibitors, a water chemistry control, a tube plugging and sleeving have been applied. Steam generators equipped with alloy 600 tubing, which are not so resistant to a stress corrosion cracking (SCC), have generally been replaced with new steam generators made of alloy 690 TT (Thermally treated). Pull tube examination results which were performed of KAERI are summarized. The tubes were affected by a pitting, SCC, and a denting. Nondestructive examination method for the tubes and repair techniques are also reviewed. In addition, the regulatory guidance of some countries are reviewed. As a part of a tube integrity project in Korea, some results on a tube rupture and leak behaviors for axial cracks are also mentioned

  17. Practical aspects of steam injection processes: A handbook for independent operators

    Energy Technology Data Exchange (ETDEWEB)

    Sarathi, P.S.; Olsen, D.K.

    1992-10-01

    More than 80% of the total steam injection process operating costs are for the production of steam and the operation of surface and subsurface equipment. The proper design and operation of the surface equipment is of critical importance to the success of any steam injection operation. However, the published monographs on thermal recovery have attached very little importance to this aspect of thermal oil recovery; hence, a definite need exists for a comprehensive manual that places emphasis on steam injection field practices and problems. This handbook is an attempt to fulfill this need. This handbook explores the concept behind steam injection processes and discusses the information required to evaluate, design, and implement these processes in the field. The emphasis is on operational aspects and those factors that affect the technology and economics of oil recovery by steam. The first four chapters describe the screening criteria, engineering, and economics of steam injection operation as well as discussion of the steam injection fundamentals. The next four chapters begin by considering the treatment of the water used to generate steam and discuss in considerable detail the design, operation and problems of steam generations, distribution and steam quality determination. The subsurface aspects of steamflood operations are addressed in chapters 9 through 12. These include thermal well completion and cementing practices, insulated tubulars, and lifting equipment. The next two chapters are devoted to subsurface operational problems encountered with the use of steam. Briefly described in chapters 15 and 16 are the steam injection process surface production facilities, problems and practices. Chapter 17 discusses the importance of monitoring in a steam injection project. The environmental laws and issues of importance to steam injection operation are outlined in chapter 18.

  18. Steam generator waterlancing at DNGS

    International Nuclear Information System (INIS)

    Seppala, D.; Malaugh, J.

    1995-01-01

    Darlington Nuclear Generating Station (DNGS) is a four 900 MW Unit nuclear station forming part of the Ontario Hydro East System. There are four identical steam generators(SGs) per reactor unit. The Darlington SGs are vertical heat exchangers with an inverted U-tube bundle in a cylindrical shell. The DNGS Nuclear Plant Life Assurance Group , a department of DNGS Engineering Services have taken a Proactive Approach to ensure long term SG integrity. Instead of waiting until the tubesheets are covered by a substantial and established hard deposit; DNGS plan to clean each steam generator's tubesheet, first half lattice tube support assembly and bottom of the thermal plate every four years. The ten year business plan provides for cleaning and inspection to be conducted on all four SGs in each unit during maintenance outages (currently scheduled for every four years)

  19. An Improved Steam Injection Model with the Consideration of Steam Override

    OpenAIRE

    He , Congge; Mu , Longxin; Fan , Zifei; Xu , Anzhu; Zeng , Baoquan; Ji , Zhongyuan; Han , Haishui

    2017-01-01

    International audience; The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, th...

  20. The Development of STEAM Educational Policy to Promote Student Creativity and Social Empowerment

    Science.gov (United States)

    Allina, Babette

    2018-01-01

    The Science, Technology, Engineering, Arts, and Mathematics (STEAM) movement argues that broad-based education that promotes creativity recognizes student learning diversity, increases student engagement and can potentially enhance Science, Technology, Engineering, and Mathematics (STEM) learning by embracing cross-cutting translational skills…

  1. Review of the coal-fired, over-supercritical and ultra-supercritical steam power plants

    Science.gov (United States)

    Tumanovskii, A. G.; Shvarts, A. L.; Somova, E. V.; Verbovetskii, E. Kh.; Avrutskii, G. D.; Ermakova, S. V.; Kalugin, R. N.; Lazarev, M. V.

    2017-02-01

    The article presents a review of developments of modern high-capacity coal-fired over-supercritical (OSC) and ultra-supercritical (USC) steam power plants and their implementation. The basic engineering solutions are reported that ensure the reliability, economic performance, and low atmospheric pollution levels. The net efficiency of the power plants is increased by optimizing the heat balance, improving the primary and auxiliary equipment, and, which is the main thing, by increasing the throttle conditions. As a result of the enhanced efficiency, emissions of hazardous substances into the atmosphere, including carbon dioxide, the "greenhouse" gas, are reduced. To date, the exhaust steam conditions in the world power industry are p 0 ≈ 30 MPa and t 0 = 610/620°C. The efficiency of such power plants reaches 47%. The OSC plants are being operated in Germany, Denmark, Japan, China, and Korea; pilot plants are being developed in Russia. Currently, a project of a power plant for the ultra-supercritical steam conditions p 0 ≈ 35 MPa and t 0 = 700/720°C with efficiency of approximately 50% is being studied in the EU within the framework of the Thermie AD700 program, project AD 700PF. Investigations in this field have also been launched in the United States, Japan, and China. Engineering solutions are also being sought in Russia by the All-Russia Thermal Engineering Research Institute (VTI) and the Moscow Power Engineering Institute. The stated steam parameter level necessitates application of new materials, namely, nickel-base alloys. Taking into consideration high costs of nickel-base alloys and the absence in Russia of technologies for their production and manufacture of products from these materials for steam-turbine power plants, the development of power plants for steam parameters of 32 MPa and 650/650°C should be considered to be the first stage in creating the USC plants as, to achieve the above parameters, no expensive alloys are require. To develop and

  2. Steam turbine installations

    International Nuclear Information System (INIS)

    Bainbridge, A.

    1976-01-01

    The object of the arrangement described is to enable raising steam for driving steam turbines in a way suited to operating with liquid metals, such as Na, as heat transfer medium. A preheated water feed, in heat transfer relationship with the liquid metals, is passed through evaporator and superheater stages, and the superheated steam is supplied to the highest pressure stage of the steam turbine arrangement. Steam extracted intermediate the evaporator and superheater stages is employed to provide reheat for the lower pressure stage of the steam turbine. Only a major portion of the preheated water feed may be evaporated and this portion separated and supplied to the superheater stage. The feature of 'steam to steam' reheat avoids a second liquid metal heat transfer and hence represents a simplification. It also reduces the hazard associated with possible steam-liquid metal contact. (U.K.)

  3. Nitrogen oxide emission calculation for post-Panamax container ships by using engine operation power probability as weighting factor: A slow-steaming case.

    Science.gov (United States)

    Cheng, Chih-Wen; Hua, Jian; Hwang, Daw-Shang

    2017-12-07

    In this study, the nitrogen oxide (NO x ) emission factors and total NO x emissions of two groups of post-Panamax container ships operating on a long-term slow-steaming basis along Euro-Asian routes were calculated using both the probability density function of engine power levels and the NO x emission function. The main engines of the five sister ships in Group I satisfied the Tier I emission limit stipulated in MARPOL (International Convention for the Prevention of Pollution from Ships) Annex VI, and those in Group II satisfied the Tier II limit. The calculated NO x emission factors of the Group I and Group II ships were 14.73 and 17.85 g/kWhr, respectively. The total NO x emissions of the Group II ships were determined to be 4.4% greater than those of the Group I ships. When the Tier II certification value was used to calculate the average total NO x emissions of Group II engines, the result was lower than the actual value by 21.9%. Although fuel consumption and carbon dioxide (CO 2 ) emissions were increased by 1.76% because of slow steaming, the NO x emissions were markedly reduced by 17.2%. The proposed method is more effective and accurate than the NO x Technical Code 2008. Furthermore, it can be more appropriately applied to determine the NO x emissions of international shipping inventory. The usage of operating power probability density function of diesel engines as the weighting factor and the NO x emission function obtained from test bed for calculating NO x emissions is more accurate and practical. The proposed method is suitable for all types and purposes of diesel engines, irrespective of their operating power level. The method can be used to effectively determine the NO x emissions of international shipping and inventory applications and should be considered in determining the carbon tax to be imposed in the future.

  4. Heysham II/Torness AGR steam generator

    International Nuclear Information System (INIS)

    Charcharos, A.N.; Wood, M.B.; Glasgow, J.R.

    1988-01-01

    The AGR Steam Generators for Heysham II and Torness Power Stations have been installed at site and are being operated in the initial low temperature commissioning plant engineering tests. In this paper a description of the high pressure once-through steam generators together with layout arrangements, materials employed, operating parameters, plant operating conditions and constraints is given. An outline of the development of the design through thermo-hydraulic considerations, mechanical design, instrumentation to component testing is presented. Special features of the design directed to accommodate such requirements as seismic loadings, waterside static and dynamic stability, gas flow induced vibration, thermal expansions are described in detail. The fabrication facilities employed and techniques selected and developed for the manufacture and assembly of the heating surfaces are presented. These include welding processes, tube manipulation and heat treatment with details of the automation applied to the processes. Operating experience in the early commissioning plant engineering tests at Site is described with an emphasis on those tests which provide the final confirmation of the design prior to operation at full load. The paper concludes with a description of the outstanding commissioning activities up to raise power. (author)

  5. Heysham II/Torness AGR steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Charcharos, A N [National Nuclear Corporation Ltd., Knutsford (United Kingdom); Wood, M B; Glasgow, J R [NEI Power Projects Ltd., Gateshead (United Kingdom)

    1988-07-01

    The AGR Steam Generators for Heysham II and Torness Power Stations have been installed at site and are being operated in the initial low temperature commissioning plant engineering tests. In this paper a description of the high pressure once-through steam generators together with layout arrangements, materials employed, operating parameters, plant operating conditions and constraints is given. An outline of the development of the design through thermo-hydraulic considerations, mechanical design, instrumentation to component testing is presented. Special features of the design directed to accommodate such requirements as seismic loadings, waterside static and dynamic stability, gas flow induced vibration, thermal expansions are described in detail. The fabrication facilities employed and techniques selected and developed for the manufacture and assembly of the heating surfaces are presented. These include welding processes, tube manipulation and heat treatment with details of the automation applied to the processes. Operating experience in the early commissioning plant engineering tests at Site is described with an emphasis on those tests which provide the final confirmation of the design prior to operation at full load. The paper concludes with a description of the outstanding commissioning activities up to raise power. (author)

  6. 46 CFR 97.45-1 - Master and chief engineer responsible.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Master and chief engineer responsible. 97.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 97.45-1 Master and chief engineer responsible. It shall be the duty of the master and the chief engineer of any vessel to require that a steam pressure is not...

  7. 46 CFR 78.55-1 - Master and chief engineer responsible.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 3 2010-10-01 2010-10-01 false Master and chief engineer responsible. 78.55-1 Section... OPERATIONS Carrying of Excess Steam § 78.55-1 Master and chief engineer responsible. It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a steam pressure is...

  8. Open Distribution of Virtual Containers as a Key Framework for Open Educational Resources and STEAM Subjects

    Science.gov (United States)

    Corbi, Alberto; Burgos, Daniel

    2017-01-01

    This paper presents how virtual containers enhance the implementation of STEAM (science, technology, engineering, arts, and math) subjects as Open Educational Resources (OER). The publication initially summarizes the limitations of delivering open rich learning contents and corresponding assignments to students in college level STEAM areas. The…

  9. Forced circulation type steam generator simulation code: HT4

    International Nuclear Information System (INIS)

    Okamoto, Masaharu; Tadokoro, Yoshihiro

    1982-08-01

    The purpose of this code is a understanding of dynamic characteristics of the steam generator, which is a component of High-temperature Heat Transfer Components Test Unit. This unit is a number 4th test section of Helium Engineering Demonstration Loop (HENDEL). Features of this report are as follows, modeling of the steam generator, a basic relationship for the continuity equation, numerical analysis techniques of a non-linear simultaneous equation and computer graphics output techniques. Forced circulation type steam generator with strait tubes and horizontal cut baffles, applied in this code, have be designed at the Over All System Design of the VHTRex. The code is for use with JAERI's digital computer FACOM M200. About 1.5 sec required for each time step reiteration, then about 40 sec cpu time required for a standard problem. (author)

  10. North Anna Power Station - Unit 1: Overview of steam generator replacement project activities

    International Nuclear Information System (INIS)

    Gettler, M.W.; Bayer, R.K.; Lippard, D.W.

    1993-01-01

    The original steam generators at Virginia Electric and Power Company's (Virginia Power) North Anna Power Station (NAPS) Unit 1 have experienced corrosion-related degradation that require periodic inspection and plugging of steam generator tubes to ensure their continued safe and reliable operation. Despite improvements in secondary water chemistry, continued tube degradation in the steam generators necessitated the removal from service of approximately 20.3 percent of the tubes by plugging, (18.6, 17.3, and 25.1 for steam generators A, B, and C, respectively). Additionally, the unit power was limited to 95 % during, its last cycle of operation. Projections of industry and Virginia Power experience indicated the possibility of mid-cycle inspections and reductions in unit power. Therefore, economic considerations led to the decision to repair the steam generators (i.e., replace the steam generator lower assemblies). Three new Model 51F Steam Generator lower assembly units were ordered from Westinghouse. Virginia Power contracted Bechtel Power Corporation to provide the engineering and construction support to repair the Unit 1 steam generators. On January 4, 1993, after an extended coastdown period, North Anna Unit 1 was brought off-line and the 110 day (breaker-to-breaker) Steam Generator Replacement Project (SGRP) outage began. As of this paper, the outage is still in progress

  11. Steam generator replacement project in 2000

    International Nuclear Information System (INIS)

    Cerjak, J.; Holz, R.; Haus, J.; Gloaguen, C.

    1999-01-01

    NE Krsko has awarded the contract for the Steam Generator Replacement Project, which is one of the modernization projects in Krsko, to the Consortium of Siemens / Framatome in February 1998. This paper deals with the various aspects of the project: scope planning, engineering, preparation of modification packages for licensing, management, major techniques used, etc., showing also the status of the activities for the project which are scheduled to be performed in April through June 2000. The project is being performed on a turnkey basis, that means the Consortium is performing all engineering, preparation of the modification packages and site activities; NE Krsko is dealing with the licensing of the project.(author)

  12. Research on simulation of supercritical steam turbine system in large thermal power station

    Science.gov (United States)

    Zhou, Qiongyang

    2018-04-01

    In order to improve the stability and safety of supercritical steam turbine system operation in large thermal power station, the body of the steam turbine is modeled in this paper. And in accordance with the hierarchical modeling idea, the steam turbine body model, condensing system model, deaeration system model and regenerative system model are combined to build a simulation model of steam turbine system according to the connection relationship of each subsystem of steam turbine. Finally, the correctness of the model is verified by design and operation data of the 600MW supercritical unit. The results show that the maximum simulation error of the model is 2.15%, which meets the requirements of the engineering. This research provides a platform for the research on the variable operating conditions of the turbine system, and lays a foundation for the construction of the whole plant model of the thermal power plant.

  13. Steam-Generator Integrity Program/Steam-Generator Group Project

    International Nuclear Information System (INIS)

    1982-10-01

    The Steam Generator Integrity Program (SGIP) is a comprehensive effort addressing issues of nondestructive test (NDT) reliability, inservice inspection (ISI) requirements, and tube plugging criteria for PWR steam generators. In addition, the program has interactive research tasks relating primary side decontamination, secondary side cleaning, and proposed repair techniques to nondestructive inspectability and primary system integrity. The program has acquired a service degraded PWR steam generator for research purposes. This past year a research facility, the Steam Generator Examination Facility (SGEF), specifically designed for nondestructive and destructive examination tasks of the SGIP was completed. The Surry generator previously transported to the Hanford Reservation was then inserted into the SGEF. Nondestructive characterization of the generator from both primary and secondary sides has been initiated. Decontamination of the channelhead cold leg side was conducted. Radioactive field maps were established in the steam generator, at the generator surface and in the SGEF

  14. Steam drums

    International Nuclear Information System (INIS)

    Crowder, R.

    1978-01-01

    Steam drums are described that are suitable for use in steam generating heavy water reactor power stations. They receive a steam/water mixture via riser headers from the reactor core and provide by means of separators and driers steam with typically 0.5% moisture content for driving turbines. The drums are constructed as prestressed concrete pressure vessels in which the failure of one or a few of the prestressing elements does not significantly affect the overall strength of the structure. The concrete also acts as a radiation shield. (U.K.)

  15. Analysis methods for evaluating leak-before-break in U-tube steam generators

    International Nuclear Information System (INIS)

    Griesbach, T.; Cipolla, R.

    1985-01-01

    In recent years, there has been an increased incidence of cracking in steam generator tubes. As a result, there has been increased effort in assuring that cracks in steam generator tubes will leak well in advance of significant loss in structural integrity. Demonstrating a leak-before-break condition is an integrated analysis process that utilizes several engineering disciplines, specifically, materials engineering, fracture mechanics, stress analysis, and fluid mechanics. The output from a leak-before-break assessment is typically depicted in terms of available margins against failure and measurable or detectable leak rate. In this paper, the analysis methods for performing a leak-before-break analysis for the U-tubes of a recirculating steam generator are presented. The results from generic analysis for the first row U-tubes illustrates the analysis techniques. Because of realistic input values used herein, these results also suggest that large leak rates are possible from cracks in U-bend regions, yet these cracks are small relative to their critical size for failure. Hence, orderly shutdowns can be completed prior to the point when tube bursting is of concern

  16. Use of virtual steam generator cassette for tube spatial design and SGC assembling procedure

    International Nuclear Information System (INIS)

    Kim, Y. W.; Kim, J. I.; Ji, S. K.

    2003-01-01

    A method of determining spatial arrangement of tube connection and assembling procedure of once-through helical steam generator cassette utilizing three dimensional virtual steam generator cassette has been developed on the basis of recent 3-D modelling technology. One ends of the steam generator tubes are connected to the module feed water header and the other sides are connected to the module steam header. Due to the complex geometry of tube arrangement, it is very difficult to connect the tubes to the module headers without the help of a physical engineering mock up. A comparative study has been performed at each design step for the tube arrangement and heat transfer area. Heat transfer area computed from thermal sizing was 4% less than that of measured. Heat transfer area calculated from the virtual steam generator cassette mock up has only 0.2% difference with that of measured. Assembling procedure of the steam generator cassette also, can be developed in the design stage

  17. An Improved Steam Injection Model with the Consideration of Steam Override

    Directory of Open Access Journals (Sweden)

    He Congge

    2017-01-01

    Full Text Available The great difference in density between steam and liquid during wet steam injection always results in steam override, that is, steam gathers on the top of the pay zone. In this article, the equation for steam override coefficient was firstly established based on van Lookeren’s steam override theory and then radius of steam zone and hot fluid zone were derived according to a more realistic temperature distribution and an energy balance in the pay zone. On this basis, the equation for the reservoir heat efficiency with the consideration of steam override was developed. Next, predicted results of the new model were compared with these of another analytical model and CMG STARS (a mature commercial reservoir numerical simulator to verify the accuracy of the new mathematical model. Finally, based on the validated model, we analyzed the effects of injection rate, steam quality and reservoir thickness on the reservoir heat efficiency. The results show that the new model can be simplified to the classic model (Marx-Langenheim model under the condition of the steam override being not taken into account, which means the Marx-Langenheim model is corresponding to a special case of this new model. The new model is much closer to the actual situation compared to the Marx-Langenheim model because of considering steam override. Moreover, with the help of the new model, it is found that the reservoir heat efficiency is not much affected by injection rate and steam quality but significantly influenced by reservoir thickness, and to ensure that the reservoir can be heated effectively, the reservoir thickness should not be too small.

  18. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Arrell

    2006-05-31

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  19. Prototype steam generator test at SCTI/ETEC. Acoustic program test plan

    International Nuclear Information System (INIS)

    Greene, D.A.; Thiele, A.; Claytor, T.N.

    1981-10-01

    This document is an integrated test plan covering programs at General Electric (ARSD), Rockwell International (RI) and Argonne National Laboratory (CT). It provides an overview of the acoustic leak detection test program which will be completed in conjunction with the prototype LMFBR steam generator at the Energy Technology Engineering Laboratory. The steam generator is installed in the Sodium Components Test Installation (SCTI). Two acoustic detection systems will be used during the test program, a low frequency system developed by GE-ARSD (GAAD system) and a high frequency system developed by RI-AI (HALD system). These systems will be used to acquire data on background noise during the thermal-hydraulic test program. Injection devices were installed during fabrication of the prototype steam generator to provide localized noise sources in the active region of the tube bundle. These injectors will be operated during the steam generator test program, and it will be shown that they are detected by the acoustic systems

  20. Analysis of experimental characteristics of multistage steam-jet electors of steam turbines

    Science.gov (United States)

    Aronson, K. E.; Ryabchikov, A. Yu.; Brodov, Yu. M.; Brezgin, D. V.; Zhelonkin, N. V.; Murmanskii, I. B.

    2017-02-01

    A series of questions for specification of physical gas dynamics model in flow range of steam-jet unit and ejector computation methodology, as well as functioning peculiarities of intercoolers, was formulated based on analysis of experimental characteristics of multistage team-jet steam turbines. It was established that coefficient defining position of critical cross-section of injected flow depends on characteristics of the "sound tube" zone. Speed of injected flow within this tube may exceed that of sound, and pressure jumps in work-steam decrease at the same time. Characteristics of the "sound tube" define optimal axial sizes of the ejector. According to measurement results, the part of steam condensing in the first-stage coolant constitutes 70-80% of steam amount supplied into coolant and is almost independent of air content in steam. Coolant efficiency depends on steam pressure defined by operation of steam-jet unit of ejector of the next stage after coolant of steam-jet stage, temperature, and condensing water flow. As a rule, steam entering content of steam-air mixture supplied to coolant is overheated with respect to saturation temperature of steam in the mixture. This should be taken into account during coolant computation. Long-term operation causes changes in roughness of walls of the ejector's mixing chamber. The influence of change of wall roughness on ejector characteristic is similar to the influence of reverse pressure of the steam-jet stage. Until some roughness value, injection coefficient of the ejector stage operating in superlimiting regime hardly changed. After reaching critical roughness, the ejector switches to prelimiting operating regime.

  1. An investigation of steam-explosion loadings with SIMMER-2

    International Nuclear Information System (INIS)

    Bohl, W.R.

    1990-03-01

    The purpose of this work was to provide a reasonable estimate of the maximum loads that might be expected at the upper head of a pressurized water reactor following an in-vessel steam explosion. These loads were determined by parametric cases using a specially modified and calibrated version of the SIMMER-II computer code. Using the determined range of loads, the alpha-mode containment failure probability was to be estimated using engineering judgment. In this context, an alpha-mode failure is defined as resulting from a missile, produced by a steam explosion, and assuming core melt has occurred. 51 refs., 185 figs., 19 tabs

  2. An Analysis of STEM/STEAM Teacher Education in Korea with a Case Study of Two Schools from a Community of Practice Perspective

    Science.gov (United States)

    Jho, Hunkoog; Hong, Oksu; Song, Jinwoong

    2016-01-01

    The aim of this study was to investigate STEAM (Science, Technology, Engineering, Arts, and Mathematics) teacher education and to examine the successful conditions for its implementation. This study observed two leading schools that have actively participated in STEAM education since the initial stage of STEAM education in Korea. Through…

  3. Steam sterilization does not require saturated steam

    NARCIS (Netherlands)

    van Doornmalen Gomez Hoyos, J. P.C.M.; Paunovic, A.; Kopinga, K.

    2017-01-01

    The most commonly applied method to sterilize re-usable medical devices in hospitals is steam sterilization. The essential conditions for steam sterilization are derived from sterilization in water. Microbiological experiments in aqueous solutions have been used to calculate various time–temperature

  4. The EBR-II steam generating system - operation, maintenance, and inspection

    International Nuclear Information System (INIS)

    Buschman, H.W.; Penney, W.H.; Longua, K.J.

    2002-01-01

    The Experimental Breeder Reactor II (EBR-II) has operated for 20 years at the Idaho National Engineering Laboratory near Idaho Falls. EBR-II is a Liquid Metal Fast Breeder Reactor (LMFBR) with integrated power producing capability. EBR-II has operated at a capacity factor over 70% in the past few years. Superheated steam is produced by eight natural circulation evaporators, two superheaters, and a conventional steam drum. Steam throttle conditions are 438 C and 8.62 MPa. The designs of the evaporators and superheaters are essentially identical; both are counterflow units with low pressure nonradioactive sodium on the shell side. During the 20 years of operation, components of the steam generator have been subjected to a variety of inspections including visual, dimensional, and ultrasonic. One superheater was removed from service because of anomalous performance and was replaced with an evaporator which was removed, examined, and converted into a superheater. Overall operating experience of the system has been excellent and essentially trouble free. Inspections have not revealed any conditions that are performance or life limiting. (author)

  5. Kempe's engineers year-book for 1977. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Prockter, C.E. (ed.)

    1977-01-01

    The second volume of this two-volume yearbook contains data on: electrical and electronic engineering; aerodynamics and aircraft propulsion; gas turbines; internal combustion engines; motor vehicles; fuels; fluidics; nuclear energy; gas and gas engineering; steam engineering and steam turbines; marine diesel engines; naval architecture; mining engineering; industrial explosives; air compression, pneumatic equipment, etc.; refrigeration, heating, ventilation and air conditioning; lighting; industrial safety and protection; fire protection; highway engineering; surveying; foundation and earthwork; cements, mortars and clay products; buildings; public health engineering; concretes; design of steel structures; bridges and bridgework; paints and coatings; patents, designs and trade marks; depreciation; legal notes for engineers; factory planning and layout; and agricultural engineering. (1325p.) A subject index is provided. (LCL)

  6. Passive system with steam-water injector for emergency supply of NPP steam generators

    International Nuclear Information System (INIS)

    Il'chenko, A.G.; Strakhov, A.N.; Magnitskij, D.N.

    2009-01-01

    The calculation results of reliability indicators of emergency power supply system and emergency feed-water supply system of serial WWER-1000 unit are presented. To ensure safe water supply to steam generators during station blackout it was suggested using additional passive emergency feed-water system with a steam-water injector working on steam generators dump steam. Calculated analysis of steam-water injector operating capacity was conducted at variable parameters of steam at the entrance to injector, corresponding to various moments of time from the beginning of steam-and-water damping [ru

  7. Importance of deposit information in the design and execution of steam generator chemical cleaning

    International Nuclear Information System (INIS)

    Flores, O.; Remark, J.

    1997-01-01

    During the planning stages of the chemical cleaning of the San Onofre Nuclear Generating Station (SONGS) units 2 and 3 steam generators, it was determined that an understanding of the steam generator deposit loading and composition was essential to the design and success of the project. It was also determined that qualification testing, preferably with actual deposits from the SONGS steam generators, was also essential. SONGS units 2 and 3 have Combustion Engineering (CE)-designed pressurized water reactors. Each unit has two CE model 3410 steam generators. Each steam generator has 9350 alloy 600 tubes with 1.9-cm (3/4 in.) outside diameter. Unit 2 began commercial operation in 1983, and unit 3, in 1984. The purpose of this technical paper is to explain the effort and methodology for deposit composition, characterization, and quantification. In addition, the deposit qualification testing and design of the cleaning are discussed

  8. Avoiding steam-bubble-collapse-induced water hammers in piping systems

    International Nuclear Information System (INIS)

    Chou, Y.; Griffith, P.

    1989-10-01

    In terms of the frequency of occurrence, steam bubble collapse in subcooled water is the dominant initiating mechanism for water hammer events in nuclear power plants. Water hammer due to steam bubble collapse occurs when water slug forms in stratified horizontal flow, or when steam bubble is trapped at the end of the pipe. These types of water hammer events have been studied experimentally and analytically in order to develop stability maps showing those combinations of filling velocities and liquid subcooling that cause water hammer and those which don't. In developing the stability maps, experiments with different piping orientations were performed in a low pressure laboratory apparatus. Details of these experiments are described, including piping arrangement, test procedures, and test results. Visual tests using a transparent Lexan pipe are also performed to study the flow regimes accompanying the water hammer events. All analytical models were tested by comparison with the corresponding experimental results. Based on these models, and step-by-step approach for each flow geometry is presented for plant designers and engineers to follow in avoiding water hammer induced by steam bubble collapse when admitting cold water into pipes filled with steam. 37 refs., 54 figs., 2 tabs

  9. Steaming ahead

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    An example of the development of geothermal power in Indonesia is described. Wells are being drilled into the Salak volcano on Java, about 60km south of Jakarta. These let out high pressure hot water trapped 1 to 3km below the surface which can be flashed into steam for driving turbines. The hot water field has already produced 110MW of power since 1994 and is currently being expanded to 330MW. Some details of the drilling and civil engineering are given. Since Indonesia sits on the edge of giant tectonic boundary known as the ''Pacific ring of fire'', the potential for further development is enormous. Ultimately volcanic activity could release an estimated 27,000MW capacity. More realistically, 2,000MW of crustal power by 2020 is spoken of. (UK)

  10. HTGR steam generator development

    International Nuclear Information System (INIS)

    Schuetzenduebel, W.G.; Hunt, P.S.; Weber, M.

    1976-01-01

    More than 40 gas-cooled reactor plants have produced in excess of 400 reactor years of operating experience which have proved a reasonably high rate of gas-cooled reactor steam generator availability. The steam generators used in these reactors include single U-tube and straight-tube steam generators as well as meander type and helically wound or involute tube steam generators. It appears that modern reactors are being equipped with helically wound steam generators of the once-through type as the end product of steam generator evolution in gas-cooled reactor plants. This paper provides a general overview of gas-cooled reactor steam generator evolution and operating experience and shows how design criteria and constraints, research and development, and experience data are factored into the design/development of modern helically wound tube steam generators for the present generation of gas-cooled reactors

  11. Steam microturbines in distributed cogeneration

    CERN Document Server

    Kicinski, Jan

    2014-01-01

    This book presents the most recent trends and concepts in power engineering, especially with regard to prosumer and civic energy generation. In so doing, it draws widely on his experience gained during the development of steam microturbines for use in small combined heat and power stations based on the organic Rankine cycle (CHP-ORC). Major issues concerning the dynamic properties of mechanical systems, in particular rotating systems, are discussed, and the results obtained when using unconventional bearing systems, presented. Modeling and analysis of radial-flow and axial-flow microturbines a

  12. Response of the steam generator VVER 1000 to a steam line break

    International Nuclear Information System (INIS)

    Novotny, J.; Novotny, J. Jr.

    2003-01-01

    Dynamic effects of a steam line break in the weld of the steam pipe and the steam collector on the steam generator system are analyzed. Modelling of a steam line break may concern two cases. The steam line without a restraint and the steam line protected by a whip restraint with viscous elements applied at the postulated break cross-section. The second case is considered. Programme SYSTUS offers a special element the stiffness and viscous damping coefficients of which may be defined as dependent on the relative displacement and velocity of its nodes respectively. A circumferential crack is simulated by a sudden decrease of longitudinal and lateral stiffness coefficients of these special SYSTUS elements to zero. The computation has shown that one can simulate the pipe to behave like completely broken during a time interval of 0,0001 s or less. These elements are used to model the whip restraint with viscous elements and viscous dampers of the GERB type as well. In the case of a whip restraint model the stiffness coefficient-displacement relation and damping coefficient - velocity relation are chosen to fit the given characteristics of the restraint. The special SYSTUS elements are used to constitute Maxwell elements modelling the elasto-plastic and viscous properties of the GERB dampers applied to the steam generator. It has been ascertained that a steam line break at the postulated weld crack between the steam pipe and the steam generator collector cannot endanger the integrity of the system even in a case of the absence of a whip restraint effect. (author)

  13. Procedure for generating steam and steam generator for operating said procedure

    International Nuclear Information System (INIS)

    Chlique, Bernard.

    1975-01-01

    This invention concerns the generation of steam by bringing the water to be vaporised into indirect thermal exchange relation with the heating steam which condenses when passing in series, along alternate routes, through bundles of tubes immersed in a vaporising chamber. A number of steam generators working on this principle already exist. The purpose of the invention is to modify the operating method of these steam generators by means of a special disposition making it possible to build a compact unit including an additional bundle of tubes heated by the condensates collected at the outlet of each bundle through which the heating steam passes [fr

  14. Design Evolution and Verification of the A-3 Chemical Steam Generator

    Science.gov (United States)

    Kirchner, Casey K.

    2009-01-01

    Following is an overview of the Chemical Steam Generator system selected to provide vacuum conditions for a new altitude test facility, the A-3 Test Stand at Stennis Space Center (SSC) in Bay St. Louis, MS. A-3 will serve as NASA s primary facility for altitude testing of the J-2X rocket engine, to be used as the primary propulsion device for the upper stages of the Ares launch vehicles. The Chemical Steam Generators (CSGs) will produce vacuum conditions in the test cell through the production and subsequent supersonic ejection of steam into a diffuser downstream of the J-2X engine nozzle exit. The Chemical Steam Generators chosen have a rich heritage of operation at rocket engine altitude test facilities since the days of the Apollo program and are still in use at NASA White Sands Test Facility (WSTF) in New Mexico. The generators at WSTF have been modified to a degree, but are still very close to the heritage design. The intent for the A-3 implementation is to maintain this heritage design as much as possible, making minimal updates only where necessary to substitute for obsolete parts and to increase reliability. Reliability improvements are especially desired because the proposed system will require 27 generators, which is nine times the largest system installed in the 1960s. Improvements were suggested by the original design firm, Reaction Motors, by NASA SSC and NASA WSTF engineers, and by the A-3 test stand design contractor, Jacobs Technology, Inc. (JTI). This paper describes the range of improvements made to the design to date, starting with the heritage generator and the minor modifications made over time at WSTF, to the modernized configuration which will be used at A-3. The paper will discuss NASA s investment in modifications to SSC s E-2 test facility fire a full-scale Chemical Steam Generator in advance of the larger steam system installation at A-3. Risk mitigation testing will be performed in early 2009 at this test facility to verify that the CSGs

  15. AGE RELATED DEGRADATION OF STEAM GENERATOR INTERNALS BASED ON INDUSTRY RESPONSES TO GENERIC LETTER 97-06

    International Nuclear Information System (INIS)

    SUBUDHI, M.; SULLIVAN, JR. E.J.

    2002-01-01

    THIS PAPER PRESENTS THE RESULTS OF AN AGING ASSESSMENT OF THE NUCLEAR POWER INDUSTRY RESPONSES TO NRC GENERIC LETTER 97-06 ON THE DEGRADATION OF STEAM GENERATOR INTERNALS EXPERIENCED AT ELECTRICITE DE FRANCE (EDF) PLANTS IN FRANCE AND AT A UNITED STATES PRESSURIZED WATER REACTOR (PWR). WESTINGHOUSE (W), COMBUSTION ENGINEERING (CE), AND BABCOCK AND WILCOX (BW) STEAM GENERATOR MODELS, CURRENTLY IN SERVICE AT U.S. NUCLEAR POWER PLANTS, POTENTIALLY COULD EXPERIENCE DEGRADATION SIMILAR TO THATFOUND AT EDF PLANTS AND THE U.S. PLANT. THE STEAM GENERATORS IN MANY OF THE U.S. PWRS HAVE BEEN REPLACED WITH STEAM GENERATORS WITH STEAM GENERATORS WITH IMPROVED DESIGNS AND MATERIALS. THESE REPLACEMENT STEAM GENERATORS HAVE BEEN MANUFACTURED IN THE U.S. AND ABROAD. DURING THIS ASSESSMENT, EACH OF THE THREE OWNERS GROUPS (W,CE, AND BW) IDENTIFIED FOR ITS STEAM GENERATOR, MODELS ALL THE POTENTIAL INTERNAL COMPONENTS THAT ARE VULNERABLE TO DEGRADATION WHILE IN SERVICE. EACH OWNERS GROUPDEVELOPED INSPEC TION AND MONITORING GUIDANCE AND RECOMMENDATIONS FOR ITS PARTICULAR STEAM GENERATOR MODELS. THE NUCLEAR ENERGY INSTITUTE INCORPORATED IN NEI 97-06 STEAM GENERATOR PROGRAM GUIDELINES, A REQUIREMENT TO MONITOR SECONDARY SIDE STEAM GENERATOR COMPONENTS IF THEIR FAILURE COULD PREVENT THE STEAM GENERATOR FROM FULFILLING ITS INTENDED SAFETY-RELATED FUNCTION. LICENSEES INDICATED THAT THEY IMPLEMENTED OR PLANNED TO IMPLEMENT, AS APPROPRIATE FOR THEIR STEAM GENERATORS, THEIR OWNERS GROUPRECOMMENDATIONS TO ADDRESS THE LONG-TERM EFFECTS OF THE POTENTIAL DEGRADATION MECHANISMS ASSOCIATED WITH THE STEAM GENERATOR INTERNALS

  16. Modernisation of a lignite-fired steam generator. Reduction of NO{sub x} emission

    Energy Technology Data Exchange (ETDEWEB)

    Kriegeskotte, Ralf; Thierbach, Hans-Ulrich; Zimmermann, Bernhard [Steinmueller Engineering GmbH, Gummersbach (Germany); Di Ferdinando, Quinto [ContourGlobal Maritsa East 3 AD, Sofia (Bulgaria)

    2013-11-01

    ContourGlobal Maritsa East 3 is a lignite-fired power plant with an electrical total output of 4 x 227 MW. The four steam generators of Russian design have a steam capacity up to 730 t/h each and were commissioned between 1978 and 1981. According to EU requirements, the NO{sub x} emissions have to be reduced reliably by 2015. The consortium Steinmueller Engineering GmbH Gummersbach and Siemens EOOD, Sofia, successfully redesigned the furnace of boiler 4. (orig.)

  17. A non-conventional interpretation of thermal regeneration in steam cycles

    International Nuclear Information System (INIS)

    Bracco, Stefano; Damiani, Lorenzo

    2012-01-01

    Highlights: ► A better understanding of the concept of thermal regeneration in steam cycles. ► Use of a system composed by a non-regenerative cycle and several reverse cycles. ► Calculation of the heat pumps coefficients of performance. ► New interesting formulations of the regenerative cycle efficiency. -- Abstract: The paper aims to contribute to a better understanding of the thermodynamic concept of heat regeneration in steam power plants with a finite number of bleedings. A regenerative Rankine cycle is compared to a complex system (CHC – complete hybrid cycle) composed by one non-regenerative Rankine cycle (HEC – hybrid engine cycle) and more reverse cycles (RCs – reverse cycles), as many as the number of the bleedings, able to pump heat from the condenser to a series of surface feedwater heaters, disposed upstream of the steam plant boiler. The COPs (coefficients of performance) of the heat pumps are evaluated, and new interesting formulations of the efficiency of the regenerative steam cycle are proposed. In particular a steam cycle with two bleedings is analyzed, neglecting heat losses and pressure drops in the boiler and considering irreversibility only along the expansion line of the steam turbine and into the feedwater heaters. The efficiency and the work of the regenerative cycle are compared to the analogous values of the CHC cycle composed by one simple steam cycle (HEC) and two heat pump cycles (RCs), with steam as the working fluid. The two reverse cycles are considered completely reversible and raising heat from the condenser temperature to the bled steam condensing temperature. The paper shows the most significant results of the study in order to analyze the regenerative cycle and the CHC cycle in comparison with the non-regenerative Rankine cycle; in particular, the analysis is focused on the evaluation of the useful work, the heat supplied and the heat rejected for the examined cycles.

  18. Future steam generator designs. Single wall designs

    International Nuclear Information System (INIS)

    Hayden, O.

    1978-01-01

    The easily removable 'U' tube design style adopted in the UK for the existing PFR Steam Generators, the Replacement Units now in production and for the future CDFR, gives the operator an extremely valuable option in the event of a water/steam leak occurring inside the Steam Generator. He can choose to shut-down, attempt to find the leak, assess damage, repair, revalidate and return to service in situ, or he can elect to remove the defect unit and replace with a 'proven' spare before returning the circuit to power. With the latter approach the resultant outage time is a known entity of about two weeks. If a repair is attempted in situ, predictions of outage time can become a matter of guesswork since one has no 'guaranteed' method of leak location and the assessment of secondary damage may be very time consuming, depending on the size and type of the original leak together with the particular design style of the Steam Generator. A further significant advantage of the removable 'U' tube design concept is that periodic interchanging of bundles with a spare enables routine chemical cleaning and thorough scheduled tube inspections, with specimen tube sample removal if required for monitoring purposes. If necessary, bundle decontamination can be undertaken to assess engineering deterioration to various degrees of thoroughness ranging from 100% equivalent factory final assembly inspection, to partial decontamination operating via a glovebox type of maintenance bag arrangement, examining local points of both shell and tube areas of the bundle. Many lessons from the last five years' experience of PFR will be incorporated into the design of the CDFR and PFR Steam Generators have two very good examples of how the designer can ease or severely handicap the operator in coping with sodium/water leakages. Good, quick access to tube ends is achieved in the existing PFR Evaporator by simply unbolting the steam/water closure head, but on the superheater and reheater hand-caps have

  19. Future steam generator designs. Single wall designs

    Energy Technology Data Exchange (ETDEWEB)

    Hayden, O [Nuclear Power Company Ltd, Warrington, Cheshire (United Kingdom)

    1978-10-01

    The easily removable 'U' tube design style adopted in the UK for the existing PFR Steam Generators, the Replacement Units now in production and for the future CDFR, gives the operator an extremely valuable option in the event of a water/steam leak occurring inside the Steam Generator. He can choose to shut-down, attempt to find the leak, assess damage, repair, revalidate and return to service in situ, or he can elect to remove the defect unit and replace with a 'proven' spare before returning the circuit to power. With the latter approach the resultant outage time is a known entity of about two weeks. If a repair is attempted in situ, predictions of outage time can become a matter of guesswork since one has no 'guaranteed' method of leak location and the assessment of secondary damage may be very time consuming, depending on the size and type of the original leak together with the particular design style of the Steam Generator. A further significant advantage of the removable 'U' tube design concept is that periodic interchanging of bundles with a spare enables routine chemical cleaning and thorough scheduled tube inspections, with specimen tube sample removal if required for monitoring purposes. If necessary, bundle decontamination can be undertaken to assess engineering deterioration to various degrees of thoroughness ranging from 100% equivalent factory final assembly inspection, to partial decontamination operating via a glovebox type of maintenance bag arrangement, examining local points of both shell and tube areas of the bundle. Many lessons from the last five years' experience of PFR will be incorporated into the design of the CDFR and PFR Steam Generators have two very good examples of how the designer can ease or severely handicap the operator in coping with sodium/water leakages. Good, quick access to tube ends is achieved in the existing PFR Evaporator by simply unbolting the steam/water closure head, but on the superheater and reheater hand-caps have

  20. Hydrogen production via catalytic steam reforming of fast pyrolysis oil fractions

    International Nuclear Information System (INIS)

    Wang, D.; Czernik, S.; Montane, D.; Mann, M.; Chornet, E.

    1997-01-01

    Hydrogen is the prototype of the environmentally cleanest fuel of interest for power generation using fuel cells, and as a co-adjuvant or autonomous transportation fuel in internal combustion engines. The conversion of biomass to hydrogen can be carried out through two distinct thermochemical strategies: (a) gasification followed by shift conversion; (b) catalytic steam reforming and shift conversion of specific fractions derived from fast pyrolysis and aqueous/steam processes of biomass. This paper shows that fast pyrolysis of biomass results in a bio-oil that can be adequately fractionated into valuable co-products leaving as by-product an aqueous fraction containing soluble organics (a mixture of alcohols, aldehydes and acids). This fraction can be converted to hydrogen by catalytic steam reforming followed by a shift conversion step. The methods used, the yields obtained and their economic significance will be discussed. (author)

  1. Design of large reheat steam turbines for U.K. and overseas markets

    International Nuclear Information System (INIS)

    Mitchell, J.M.

    1979-01-01

    Two prototype designs of large reheat steam turbines are described, together with the technical, economic and plant design aspects that have influenced their main features. Relevant service experience is outlined and details are given of the solutions adopted to overcome the relatively few problems that were encountered. The evolution of these designs to form the current range of adaptable, pre-engineered modular designs is presented and the main features of current machines are described. A brief account is given of likely future developments in large steam turbines. (author)

  2. The effect of steam separataor efficiency on transient following a steam line break

    International Nuclear Information System (INIS)

    Choi, J.H.; Ohn, M.Y.; Lee, N.H.; Hwang, S.T.; Lee, S.K.

    1996-01-01

    Detailed thermalhydraulic simulations for CANDU 6 steam line break inside containment are performed to predict the response of the primary and secondary circuits. The analysis is performed using the thermalhydraulic computer code, CATHENA, with a coupled primary and secondary circuit model. A two-loop representation of the primary and secondary circuits is modelled. The secondary circuit model includes the feedwater line from the deaerator storage tank, multi-node steam generators and the steam line up to the turbine. Two cases were carried out using different assumptions for the efficiency of the steam separators. Case 1 assumes the efficiency of the steam separators becomes zero when the water level in the steam drum increases to the elevation of primary cyclones, or the outlet flow from the steam generator becomes higher than 150 % of normal flow. Case 2 assumes the efficiency becomes zero only when the water level in the steam drum reaches the elevation of primary cyclones. The simulation results show that system responses are sensitive to the assumption for the efficiency of the steam separators and case 1 gives higher discharge energy. Fuel cooling is assured, since primary circuit is cooled down sufficiently by the steam generators for both cases. (author)

  3. Steam separator-superheater with drawing of a fraction of the dried steam

    International Nuclear Information System (INIS)

    Bessouat, Roger; Marjollet, Jacques.

    1976-01-01

    This invention concerns a vertical separator-superheater of the steam from a high pressure expansion turbine before it is admitted to an expansion turbine at a lower pressure, by heat exchange with steam under a greater pressure, and drawing of a fraction of the dried steam before it is superheated. Such drawing off is necessary in the heat exchange systems of light water nuclear reactors. Its purpose is to provide a separator-superheater that provides an even flow of non superheated steam and a regular distribution of the steam to be superheated to the various superheating bundles, with a significantly uniform temperature of the casing, thereby preventing thermal stresses and ensuring a minimal pressure drop. The vertical separator-superheater of the invention is divided into several vertical sections comprising as from the central area, a separation area of the steam entrained water and a superheater area and at least one other vertical section with only a separation area of the steam entrained water [fr

  4. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    Science.gov (United States)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  5. The testing of a steam-water separating device used for vertical steam generators

    International Nuclear Information System (INIS)

    Ding Xunshen; Cui Baoyuan; Xue Yunkui; Liu Shixun

    1989-01-01

    The air-water screening tests of a steam-water separating device used for vertical steam generators at low pressure are introduced. The article puts emphasis on the qualification test of the steam-water separating device at hot conditions in a high temperature and pressure water test rig. The performance of the comprehensive test of the steam-water separating device indicates that the humidity of the steam at the drier exit is much less than the specified amount of 0.25%

  6. Experimental investigations on a cascaded steam-/organic-Rankine-cycle (RC/ORC) system for waste heat recovery (WHR) from diesel engine

    International Nuclear Information System (INIS)

    Yu, Guopeng; Shu, Gequn; Tian, Hua; Huo, Yongzhan; Zhu, Weijie

    2016-01-01

    Highlights: • A novel cascaded RC/ORC system was constructed for WHR of a heavy-duty diesel engine. • The RC/ORC system was experimentally investigated under engine operating conditions. • Good system stability and satisfying thermal states of working fluids were observed. • The power increment can reach up to 5.6% by equipping the novel cascaded RC/ORC system. - Abstract: A novel cascaded RC/ORC system that comprises a steam Rankine cycle as the high-temperature loop (H-RC) and an organic Rankine cycle as the low-temperature loop (L-ORC) was constructed and experimentally investigated to recover waste heat from exhaust gas of a heavy-duty diesel engine (DE). By monitoring key parameters of the RC/ORC system against time, good system stability and satisfying thermal states of working fluids were observed. Impacts that the engine operations have on this proposed waste-heat-recovery (WHR) system were studied, indicating that waste heat recovered from the gas increases gradually and greatly as the engine load increases, yet decreases slightly as the speed grows. At full loads at speeds lower than 2050 rpm, up to 101.5 kW of waste heat can be abstracted from the gas source, showing a promising heat transfer potential. Besides, observations of key exergy states as well as estimations and comparisons of potential output power were carried out stepwise. Results indicated that up to 12.7 kW of output power could be obtained by the novel RC/ORC system under practical estimations. Comparing to the basic diesel engine, the power increment reaches up to 5.6% by equipping the cascaded RC/ORC system.

  7. Steam generation unit in a simple version of biomass based small cogeneration unit

    Directory of Open Access Journals (Sweden)

    Sornek Krzysztof

    2014-01-01

    Full Text Available The organic Rankine cycle (ORC is a very promising process for the conversion of low or medium temperature heat to electricity in small and micro scale biomass powered systems. Classic ORC is analogous to Clausius–Rankine cycle in a steam power plant, but instead of water it uses low boiling, organic working fluids. Seeking energy and economical optimization of biomass-based ORC systems, we have proposed some modifications e.g. in low boiling fluid circuit construction. Due to the fact that the operation of a micro steam turbine is rather inefficient from the technical and economic point of view, a specially modified air compressor can be used as a steam piston engine. Such engine should be designed to work at low pressure of the working medium. Studies regarding the first version of the prototype installation were focused on the confirmation of applicability of a straw boiler in the prototype ORC power system. The results of the previous studies and the studies described in the paper (on the new cogeneration unit confirmed the high potential of the developed solution. Of course, many further studies have to be carried out.

  8. Strategies for steam

    International Nuclear Information System (INIS)

    Hennagir, T.

    1996-01-01

    This article is a review of worldwide developments in the steam turbine and heat recovery steam generator markets. The Far East is driving the market in HRSGs, while China is driving the market in orders placed for steam turbine prime movers. The efforts of several major suppliers are discussed, with brief technical details being provided for several projects

  9. The use of engineering features and schematic solutions of propulsion nuclear steam supply systems for floating nuclear power plant design

    International Nuclear Information System (INIS)

    Achkasov, A.N.; Grechko, G.I.; Pepa, V.N.; Shishkin, V.A.

    2000-01-01

    In recent years many countries and the international community represented by the IAEA have shown a notable interest in designing small and medium size nuclear power plants intended for electricity and heat generation for remote areas. These power plants can be also used for desalination purposes. As these nuclear plants are planned for use in areas without a well-developed power grid, the design shall account for their transportation to the site in complete preparedness for operation. Since the late 80s, the Research and Development Institute of Power Engineering (RDIPE) has carried out active efforts in designing reactor facilities for floating nuclear power plants. This work relies on the long-term experience of RDIPE engineers in designing the propulsion NSSS. Advantages can be gained from the specific engineering solutions that are already applied in the design of propulsion Nuclear Steam Supply System (NSSS) or from development of new designs based on the proven technologies. Successful implementation of the experience has been made easier owing to rather similar design requirements prescribed to ship-mounted NSSS and floating NPP. The common design targets are, in particular, minimization of mass and dimensions, resistance to such external impacts as rolling, heel and trim, operability in case of running aground or collision with other ships, etc. (author)

  10. Condensation of steam

    International Nuclear Information System (INIS)

    Prisyazhniuk, V.A.

    2002-01-01

    An equation for nucleation kinetics in steam condensation has been derived, the equation taking into account the concurrent and independent functioning of two nucleation mechanisms: the homogeneous one and the heterogeneous one. The equation is a most general-purpose one and includes all the previously known condensation models as special cases. It is shown how the equation can be used in analyzing the process of steam condensation in the condenser of an industrial steam-turbine plant, and in working out new ways of raising the efficiency of the condenser, as well as of the steam-turbine plant as a whole. (orig.)

  11. Completion of a simulation model for calculation of static and dynamic behaviour of steam generators and its use for a pilot steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Seybold, M

    1979-07-20

    In the present paper, first of all the model concept reported in detail by Schittke is applied to the steady-state predictive calculation of an arbitrarily nested steam generator based on the design data and empirical values on heat discharge and heat transfer. The dynamics of the system are precalculated on the basis of the known steady-state behaviour and with the construction data, that is without experimental identification, according to the Schittke concept. The object for the calculation is a steam generator with once-through forced flow (VDE) which was put at the disposal of the Institute for Process Engineering and Steamboiler Studies. Data for the computer programs were taken only from the construction documents (geometries, nesting etc.) or from design data (thermic parameters). Parallel with the program preparation and the calculation measurements on the experimental plant were planned, adaptations and tests were carried out. The correctness of precalculating a steam generator could then be checked with the experimental plant and by comparison with the results of the measurements.

  12. Stationary Engineers Apprenticeship. Related Training Modules. 15.1-15.5 Turbines.

    Science.gov (United States)

    Lane Community Coll., Eugene, OR.

    This learning module, one in a series of 20 related training modules for apprentice stationary engineers, deals with turbines. addressed in the individual instructional packages included in the module are the following topics: types and components of steam turbines, steam turbine auxiliaries, operation and maintenance of steam turbines, and gas…

  13. Maintenance and repair of LMFBR steam generators: specialists` meeting, O-Arai Engineering Center, Japan, 4-8 June 1984. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-07-01

    The Specialists` Meeting on "Maintenance and Repair of LMFBR Steam Generators" was held in Oarai, Japan, from 4-8 June 1984. The meeting was sponsored by the International Atomic Energy Agency on the recommendation of the IAEA International Working Group on Fast Reactors and was hosted by the Power Reactor and Nuclear Fuel Development Corporation of Japan. The purpose of the meeting was to review and discuss the experience accumulated in various countries on the general design philosophy of LMFBR steam generators from the view point of maintenance and repair, in-service inspection of steam generator tube bundles, identification and inspection of failed tubes and the cleaning and repairing of failed steam generators. The following main topical areas were discussed by participants: national review presentations on maintenance and repair of LMFBR steam generators - design philosophy for maintenance and repair; research and development work on maintenance and repair; and experience on steam generator maintenance and repair.

  14. Particle Swarm Optimization to the U-tube steam generator in the nuclear power plant

    International Nuclear Information System (INIS)

    Ibrahim, Wesam Zakaria

    2014-01-01

    Highlights: • We establish stability mathematical model of steam generator and reactor core. • We propose a new Particle Swarm Optimization algorithm. • The algorithm can overcome premature phenomenon and has a high search precision. • Optimal weight of steam generator is 15.1% less than the original. • Sensitivity analysis and optimal design provide reference for steam generator design. - Abstract: This paper, proposed an improved Particle Swarm Optimization approach for optimize a U-tube steam generator mathematical model. The UTSG is one of the most important component related to safety of most of the pressurized water reactor. The purpose of this article is to present an approach to optimization in which every target is considered as a separate objective to be optimized. Multi-objective optimization is a powerful tool for resolving conflicting objectives in engineering design and numerous other fields. One approach to solve multi-objective optimization problems is the non-dominated sorting Particle Swarm Optimization. PSO was applied in regarding the choice of the time intervals for the periodic testing of the model of the steam generator

  15. Particle Swarm Optimization to the U-tube steam generator in the nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Wesam Zakaria, E-mail: mimi9_m@yahoo.com

    2014-12-15

    Highlights: • We establish stability mathematical model of steam generator and reactor core. • We propose a new Particle Swarm Optimization algorithm. • The algorithm can overcome premature phenomenon and has a high search precision. • Optimal weight of steam generator is 15.1% less than the original. • Sensitivity analysis and optimal design provide reference for steam generator design. - Abstract: This paper, proposed an improved Particle Swarm Optimization approach for optimize a U-tube steam generator mathematical model. The UTSG is one of the most important component related to safety of most of the pressurized water reactor. The purpose of this article is to present an approach to optimization in which every target is considered as a separate objective to be optimized. Multi-objective optimization is a powerful tool for resolving conflicting objectives in engineering design and numerous other fields. One approach to solve multi-objective optimization problems is the non-dominated sorting Particle Swarm Optimization. PSO was applied in regarding the choice of the time intervals for the periodic testing of the model of the steam generator.

  16. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules. Final Report

    International Nuclear Information System (INIS)

    1981-09-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions

  17. Steam generator

    International Nuclear Information System (INIS)

    Fenet, J.-C.

    1980-01-01

    Steam generator particularly intended for use in the coolant system of a pressurized water reactor for vaporizing a secondary liquid, generally water, by the primary cooling liquid of the reactor and comprising special arrangements for drying the steam before it leaves the generator [fr

  18. Steam generator with perfected dryers

    International Nuclear Information System (INIS)

    Fenet, J.C.

    1987-01-01

    This steam generator has vertically superposed array of steam dryers. These dryers return the steam flow of 180 0 . The return of the water is made by draining channels to the steam production zone [fr

  19. How to compute the power of a steam turbine with condensation, knowing the steam quality of saturated steam in the turbine discharge

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Albarran, Manuel Jaime; Krever, Marcos Paulo Souza [Braskem, Sao Paulo, SP (Brazil)

    2009-07-01

    To compute the power and the thermodynamic performance in a steam turbine with condensation, it is necessary to know the quality of the steam in the turbine discharge and, information of process variables that permit to identifying with high precision the enthalpy of saturated steam. This paper proposes to install an operational device that will expand the steam from high pressure point on the shell turbine to atmosphere, both points with measures of pressure and temperature. Arranging these values on the Mollier chart, it can be know the steam quality value and with this data one can compute the enthalpy value of saturated steam. With the support of this small instrument and using the ASME correlations to determine the equilibrium temperature and knowing the discharge pressure in the inlet of surface condenser, the absolute enthalpy of the steam discharge can be computed with high precision and used to determine the power and thermodynamic efficiency of the turbine. (author)

  20. Safety analysis program for steam generators replacement and power uprate at Tihange 2 nuclear power plant

    International Nuclear Information System (INIS)

    Delhaye, X.; Charlier, A.; Damas, Ph.; Druenne, H.; Mandy, C.; Parmentier, F.; Pirson, J.; Zhang, J.

    2002-01-01

    The Belgian Tihange 2 nuclear power plant went into commercial operation in 1983 producing a thermal power of 2785 MW. Since the commissioning of the plant the steam generators U-tubes have been affected by primary stress corrosion cracking. In order to avoid further degradation of the performance and an increase in repair costs, Electrabel, the owner of the plant, decided in 1997 to replace the 3 steam generators. This decision was supported by the feasibility study performed by Tractebel Energy Engineering which demonstrated that an increase of 10% of the initial power together with a fuel cycle length of 18 months was achieved. Tractebel Energy Engineering was entrusted by Electrabel as the owner's engineer to manage the project. This paper presents the role of Tractebel Energy Engineering in this project and the safety analysis program necessary to justify the new operation point and the fuel cycle extension to 18 months re-analysis of FSAR chapter 15 accidents and verification of the capacity of the safety and auxiliary systems. The FSAR chapter 15 accidents were reanalyzed jointly by Framatome and Tractebel Energy Engineering while the systems verifications were carried out by Tractebel Energy Engineering. (author)

  1. Vibration Analysis for Steam Dryer of APR1400 Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sung-heum; Ko, Doyoung [KHNP CRI, Daejeon (Korea, Republic of); Cho, Minki [Doosan Heavy Industry, Changwon (Korea, Republic of)

    2016-10-15

    This paper is related to comprehensive vibration assessment program for APR1400 steam generator internals. According to U.S. Nuclear Regulatory Commission, Regulatory Guide 1.20 (Rev.3, March 2007), we conducted vibration analysis for a steam dryer as the second steam separator of steam generator internals. The vibration analysis was performed at the 100 % power operating condition as the normal operation condition. The random hydraulic loads were calculated by the computational fluid dynamics and the structural responses were predicted by power spectral density analysis for the probabilistic method. In order to meet the recently revised U.S. NRC RG 1.20 Rev.3, the CVAP against the potential adverse flow effects in APR1400 SG internals should be performed. This study conducted the vibration response analysis for the SG steam dryer as the second moisture separator at the 100% power condition, and evaluated the structural integrity. The predicted alternating stress intensities were evaluated to have more than 17.78 times fatigue margin compared to the endurance limit.

  2. Long-term damage management strategies for optimizing steam generator performance

    International Nuclear Information System (INIS)

    Egan, G.R.; Besuner, P.M.; Fox, J.H.; Merrick, E.A.

    1991-01-01

    Minimizing long-term impact of steam generator operating, maintenance, outage, and replacement costs is the goal of all pressurized water reactor utilities. Recent research results have led to deterministic controls that may be implemented to optimize steam generator performance and to minimize damage accumulation. The real dilemma that utilities encounter is the decision process that needs to be made in the face of uncertain data. Some of these decisions involve the frequency and extent of steam generator eddy current tube inspections; the definition of operating conditions to minimize the rate of corrosion reactions (T (hot) , T (cold) ; and the imposition of strict water quality management guidelines. With finite resources, how can a utility decide which damage management strategy provides the most return for its investment? Aptech Engineering Services, Inc. (APTECH) developed a damage management strategy that starts from a deterministic analysis of a current problem- primary water stress corrosion cracking (PWSCC). The strategy involves a probabilistic treatment that results in long-term performance optimization. By optimization, we refer to minimizing the total cost of operating the steam generator. This total includes the present value costs of operations, maintenance, outages, and replacements. An example of the application of this methodology is presented. (author)

  3. Steam Digest: Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  4. Steam Digest Volume IV

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    This edition of the Steam Digest is a compendium of 2003 articles on the technical and financial benefits of steam efficiency, presented by the stakeholders of the U.S. Department of Energy's BestPractices Steam effort.

  5. An assessment of underground and aboveground steam system failures in the SRS waste tank farms

    International Nuclear Information System (INIS)

    Hsu, T.C.; Shurrab, M.S.; Wiersma, B.J.

    1997-01-01

    Underground steam system failures in waste tank farms at the Savannah River Site (SRS) increased significantly in the 3--4 year period prior to 1995. The primary safety issues created by the failures were the formation of sub-surface voids in soil and the loss of steam jet transfer and waste evaporation capability, and the loss of heating and ventilation to the tanks. The average annual cost for excavation and repair of the underground steam system was estimated to be several million dollars. These factors prompted engineering personnel to re-consider long-term solutions to the problem. The primary cause of these failures was the inadequate thermal insulation utilized for steam lines associated with older tanks. The failure mechanisms were either pitting or localized general corrosion on the exterior of the pipe beneath the thermal insulation. The most realistic and practical solution is to replace the underground lines by installing aboveground steam systems, although this option will incur significant initial capital costs. Steam system components, installed aboveground in other areas of the tank farms have experienced few failures, while in continuous use. As a result, piecewise installation of temporary aboveground steam systems have been implemented in F-area whenever opportunities, i.e., failures, present themselves

  6. Geothermal engineering fundamentals and applications

    CERN Document Server

    Watson, Arnold

    2013-01-01

    This book explains the engineering required to bring geothermal resources into use. The book covers specifically engineering aspects that are unique to geothermal engineering, such as measurements in wells and their interpretation, transport of near-boiling water through long pipelines, turbines driven by fluids other than steam, and project economics. The explanations are reinforced by drawing comparisons with other energy industries.

  7. Selling steam

    International Nuclear Information System (INIS)

    Zimmer, M.J.; Goodwin, L.M.

    1991-01-01

    This article addresses the importance of steam sales contract is in financing cogeneration facilities. The topics of the article include the Public Utility Regulatory Policies Act provisions and how they affect the marketing of steam from qualifying facilities, the independent power producers market shift, and qualifying facility's benefits

  8. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  9. Pressure drop, steam content and turbulent cross exchange in water/steam flows

    International Nuclear Information System (INIS)

    Teichel, H.

    1978-01-01

    For describing the behaviour of two-phase flows of water and steam with the help of calculating patterns, a number of empirical correlations are required. - In this article, correlations for the friction pressure drop in water/steam flows are compared, as well as for the steam mass and the volumetric steam content with each other and with the test results on simple geometries. As the mutual effect between cooling chanels plays an important part at the longitudinal flow through bar bundles, the appertaining equations are evaluated, in addition. (orig.) 891 HP [de

  10. Engineering design and exergy analyses for combustion gas turbine based power generation system

    International Nuclear Information System (INIS)

    Sue, D.-C.; Chuang, C.-C.

    2004-01-01

    This paper presents the engineering design and theoretical exergetic analyses of the plant for combustion gas turbine based power generation systems. Exergy analysis is performed based on the first and second laws of thermodynamics for power generation systems. The results show the exergy analyses for a steam cycle system predict the plant efficiency more precisely. The plant efficiency for partial load operation is lower than full load operation. Increasing the pinch points will decrease the combined cycle plant efficiency. The engineering design is based on inlet air-cooling and natural gas preheating for increasing the net power output and efficiency. To evaluate the energy utilization, one combined cycle unit and one cogeneration system, consisting of gas turbine generators, heat recovery steam generators, one steam turbine generator with steam extracted for process have been analyzed. The analytical results are used for engineering design and component selection

  11. Steam Digest 2001

    Energy Technology Data Exchange (ETDEWEB)

    2002-01-01

    Steam Digest 2001 chronicles BestPractices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  12. Electrical engineer's reference book

    CERN Document Server

    Laughton, M A

    1985-01-01

    Electrical Engineer's Reference Book, Fourteenth Edition focuses on electrical engineering. The book first discusses units, mathematics, and physical quantities, including the international unit system, physical properties, and electricity. The text also looks at network and control systems analysis. The book examines materials used in electrical engineering. Topics include conducting materials, superconductors, silicon, insulating materials, electrical steels, and soft irons and relay steels. The text underscores electrical metrology and instrumentation, steam-generating plants, turbines

  13. Analysis of the VVER-440 reactor steam generator secondary side with the RELAP5/MOD3 code

    International Nuclear Information System (INIS)

    Tuunanen, J.

    1993-01-01

    Nuclear Engineering Laboratory of the Technical Research Centre of Finland has widely used RELAP5/MOD2 and -MOD3 codes to simulate horizontal steam generators. Several models have been developed and successfully used in the VVER-safety analysis. Nevertheless, the models developed have included only rather few nodes in the steam generator secondary side. The secondary side has normally been divided into about 10 to 15 nodes. Since the secondary side at the steam generators of VVER-440 type reactors consists of a rather large water pool, these models were only roughly capable to predict secondary side flows. The paper describes an attempt to use RELAP5/MOD3 code to predict secondary side flows in a steam generator of a VVER-440 reactor. A 2D/3D model has been developed using RELAP5/MOD3 codes cross-flow junctions. The model includes 90 volumes on the steam generator secondary side. The model has been used to calculate steady state flow conditions in the secondary side of a VVER-440 reactor steam generator. (orig.) (1 ref., 9 figs., 2 tabs.)

  14. A three-dimensional laboratory steam injection model allowing in situ saturation measurements. [Comparing steam injection and steam foam injection with nitrogen and without nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Demiral, B.M.R.; Pettit, P.A.; Castanier, L.M.; Brigham, W.E.

    1992-08-01

    The CT imaging technique together with temperature and pressure measurements were used to follow the steam propagation during steam and steam foam injection experiments in a three dimensional laboratory steam injection model. The advantages and disadvantages of different geometries were examined to find out which could best represent radial and gravity override flows and also fit the dimensions of the scanning field of the CT scanner. During experiments, steam was injected continuously at a constant rate into the water saturated model and CT scans were taken at six different cross sections of the model. Pressure and temperature data were collected with time at three different levels in the model. During steam injection experiments, the saturations obtained by CT matched well with the temperature data. That is, the steam override as observed by temperature data was also clearly seen on the CT pictures. During the runs where foam was present, the saturation distributions obtained from CT pictures showed a piston like displacement. However, the temperature distributions were different depending on the type of steam foam process used. The results clearly show that the pressure/temperature data alone are not sufficient to study steam foam in the presence of non-condensible gas.

  15. Test results of sodium-water reaction testing in near prototypical LMR steam generator

    International Nuclear Information System (INIS)

    Boardman, C.E.; Hui, M.; Neely, H.H.

    1990-01-01

    An extensive test program has been performed in the United States to investigate the effects of large sodium-water reaction events in LMFBR steam generators. Tests were conducted in the Large Leak Test Rig (LLTR) located at the Energy Technology Engineering Center (ETEC). The program was divided into two phases, Series I and Series II, for the purpose of satisfying near-term and long-term needs. Series II was further subdivided into large and intermediate leak tests. This paper will emphasize the Series II intermediate leak tests and resulting conclusions for steam generator design and operation. 11 figs, 2 tabs

  16. Sodium and steam leak simulation studies for fluidized bed steam generators

    International Nuclear Information System (INIS)

    Keeton, A.R.; Vaux, W.G.; Lee, P.K.; Witkowski, R.E.

    1976-01-01

    An experimental program is described which was conducted to study the effects of sodium or steam leaking into an operating fluidized bed of metal or ceramic particles at 680 to 800 0 K. This effort was part of the early development studies for a fluidized-bed steam generator concept using helium as the fluidizing gas. Test results indicated that steam and small sodium leaks had no effect on the quality of fluidization, heat transfer coefficient, temperature distribution, or fluidizing gas pressure drop across the bed. Large sodium leaks, however, immediately upset the operation of the fluidized bed. Both steam and sodium leaks were detected positively and rapidly at an early stage of a leak by instruments specifically selected to accomplish this

  17. DEMONSTRATION BULLETIN STEAM ENHANCED REMEDIATION STEAM TECH ENVIRONMENTAL SERVICES, INC.

    Science.gov (United States)

    Steam Enhanced Remediation is a process in which steam is injected into the subsurface to recover volatile and semivolatile organic contaminants. It has been applied successfully to recover contaminants from soil and aquifers and at a fractured granite site. This SITE demonstra...

  18. Steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermal hydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. This report shows how recent advances in cleaning technology are integrated into a life management strategy, discusses downcomer flow measurement as a means of monitoring steam generator condition, and describes recent advances in hideout return as a life management tool. The research and development program, as well as operating experience, has identified

  19. Thermal noise engines

    OpenAIRE

    Kish, Laszlo B.

    2010-01-01

    Electrical heat engines driven by the Johnson-Nyquist noise of resistors are introduced. They utilize Coulomb's law and the fluctuation-dissipation theorem of statistical physics that is the reverse phenomenon of heat dissipation in a resistor. No steams, gases, liquids, photons, combustion, phase transition, or exhaust/pollution are present here. In these engines, instead of heat reservoirs, cylinders, pistons and valves, resistors, capacitors and switches are the building elements. For the ...

  20. Large scale steam flow test: Pressure drop data and calculated pressure loss coefficients

    International Nuclear Information System (INIS)

    Meadows, J.B.; Spears, J.R.; Feder, A.R.; Moore, B.P.; Young, C.E.

    1993-12-01

    This report presents the result of large scale steam flow testing, 3 million to 7 million lbs/hr., conducted at approximate steam qualities of 25, 45, 70 and 100 percent (dry, saturated). It is concluded from the test data that reasonable estimates of piping component pressure loss coefficients for single phase flow in complex piping geometries can be calculated using available engineering literature. This includes the effects of nearby upstream and downstream components, compressibility, and internal obstructions, such as splitters, and ladder rungs on individual piping components. Despite expected uncertainties in the data resulting from the complexity of the piping geometry and two-phase flow, the test data support the conclusion that the predicted dry steam K-factors are accurate and provide useful insight into the effect of entrained liquid on the flow resistance. The K-factors calculated from the wet steam test data were compared to two-phase K-factors based on the Martinelli-Nelson pressure drop correlations. This comparison supports the concept of a two-phase multiplier for estimating the resistance of piping with liquid entrained into the flow. The test data in general appears to be reasonably consistent with the shape of a curve based on the Martinelli-Nelson correlation over the tested range of steam quality

  1. ORCENT-2, Full Load Steam Turbine Cycle Thermodynamics for LWR Power Plant

    International Nuclear Information System (INIS)

    Fuller, L.C.

    1979-01-01

    1 - Description of problem or function: ORCENT-2 performs heat and mass balance calculations at valves-wide-open design conditions, maximum guaranteed rating conditions, and an approximation of part-load conditions for steam turbine cycles supplied with throttle steam, characteristic of contemporary light-water reactors. The program handles both condensing and back-pressure turbine exhaust arrangements. Turbine performance calculations are based on the General Electric Company method for 1800-rpm large steam turbine- generators operating with light-water-cooled nuclear reactors. Output includes all information normally shown on a turbine-cycle heat balance diagram. 2 - Method of solution: The turbine performance calculations follow the procedures outlined in General Electric report GET-6020. ORCENT-2 utilizes the 1967 American Society of Mechanical Engineers (ASME) formulations and procedures for calculating the properties of steam, adapted for ORNL use by D.W. Altom. 3 - Restrictions on the complexity of the problem: Maxima of: 12 feed-water heaters, 5 moisture removal stages in the low-pressure turbine section. ORCENT-2 is limited to 1800-rpm tandem-compound turbine-generators with single- or double-flow high pressure sections and one, two, or three double-flow low-pressure turbine sections. Steam supply for LWR cycles should be between 900 and 1100 psia and slightly wet to 100 degrees F of initial superheat. Generator rating should be greater than 100 MVA

  2. Steam generator tube failures

    International Nuclear Information System (INIS)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service

  3. Systems and Control Engineering

    Indian Academy of Sciences (India)

    design of civil engineering structures has been noted. Protecting ci vil ... R despite disturbing forces such as wind gusts, changes in ambient temperature, etc .. Brief History of ... frequency regulation, boiler control for steam generation, electric.

  4. Steam generators, turbines, and condensers. Volume six

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Volume six covers steam generators (How steam is generated, steam generation in a PWR, vertical U-tube steam generators, once-through steam generators, how much steam do steam generators make?), turbines (basic turbine principles, impulse turbines, reaction turbines, turbine stages, turbine arrangements, turbine steam flow, steam admission to turbines, turbine seals and supports, turbine oil system, generators), and condensers (need for condensers, basic condenser principles, condenser arrangements, heat transfer in condensers, air removal from condensers, circulating water system, heat loss to the circulating water system, factors affecting condenser performance, condenser auxiliaries)

  5. Horizontal steam generator thermal-hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Ubra, O. [SKODA Praha Company, Prague (Czechoslovakia); Doubek, M. [Czech Technical Univ., Prague (Czechoslovakia)

    1995-09-01

    Horizontal steam generators are typical components of nuclear power plants with pressure water reactor type VVER. Thermal-hydraulic behavior of horizontal steam generators is very different from the vertical U-tube steam generator, which has been extensively studied for several years. To contribute to the understanding of the horizontal steam generator thermal-hydraulics a computer program for 3-D steady state analysis of the PGV-1000 steam generator has been developed. By means of this computer program, a detailed thermal-hydraulic and thermodynamic study of the horizontal steam generator PGV-1000 has been carried out and a set of important steam generator characteristics has been obtained. The 3-D distribution of the void fraction and 3-D level profile as functions of load and secondary side pressure have been investigated and secondary side volumes and masses as functions of load and pressure have been evaluated. Some of the interesting results of calculations are presented in the paper.

  6. Enhancement of enzymatic saccharification of Eucalyptus globulus: steam explosion versus steam treatment.

    Science.gov (United States)

    Martin-Sampedro, Raquel; Revilla, Esteban; Villar, Juan C; Eugenio, Maria E

    2014-09-01

    Steam explosion and steam pre-treatment have proved capable of enhancing enzymatic saccharification of lignocellulosic materials. However, until now, these methods had not been compared under the same operational conditions and using the same raw material. Both pre-treatments lead to increased yields in the saccharification of Eucalyptus globulus; but results have been better with steam pre-treatments, despite the more accessible surface of exploded samples. The reason for this finding could be enzymatic inhibition: steam explosion causes a more extensive extraction of hemicelluloses and releases a greater amount of degradation products which can inhibit enzymatic action. Enzymatic inhibition is also dependent on the amount and chemical structure of lignin, which was also a contributing factor to the lower enzymatic yields obtained with the most severe pre-treatment. Thus, the highest yields (46.7% glucose and 73.4% xylose yields) were obtained after two cycle of steam treatment, of 5 and 3 min, at 183°C. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Steam and sodium leak simulation in a fluidized-bed steam generator

    International Nuclear Information System (INIS)

    Vaux, W.G.; Keeton, A.R.; Keairns, D.L.

    1977-01-01

    A fluidized-bed steam generator for the liquid metal fast breeder reactor enhances plant availability and minimizes the probability of a water/sodium reaction. An experimental test program was conceived to assess design criteria and fluidized-bed operation under conditions of water, steam, and sodium leaks. Sodium, steam, and water were leaked into helium-fluidized beds of metal and ceramic particles at 900 F. Test results show the effects of leaks on the heat transfer coefficient, quality of fluidization, leak detection, and cleanup procedures

  8. Design of SMART steam generator cassette

    International Nuclear Information System (INIS)

    Kim, Y. W.; Kim, J. I.; Jang, M. H.

    2001-01-01

    Basic design development for the steam generator to be installed in the integral reactor SMART has been performed. Optimization of the steam generator shape, determination of the basic dimension and confirmation of the structural strength have been carried out. Individual steam generator cassette can be replaced in the optimized design concept of steam generator. Shape design of the steam generator cassette has been done on the computer based on 3-D CAE strategy. The structural integrity of the developed steam generator was investigated by performing the dynamic analysis for the steam generator cassette, flow induced vibration analysis for the tube bundle, and the thermo-mechanical analysis for the module header and tube. As for the manufacturing of steam generator, the numerical and the experimental simulation have been carried to control the amount of spring back and to eliminate residual stress. SMART steam generator cassette was developed by a sequential research of the aforementioned activities

  9. Steam generators - problems and prognosis

    International Nuclear Information System (INIS)

    Tapping, R.L.

    1997-05-01

    Steam-generator problems, largely a consequence of corrosion and fouling, have resulted in increased inspection requirements and more regulatory attention to steam-generator integrity. In addition, utilities have had to develop steam-generator life-management strategies, including cleaning and replacement, to achieve design life. This paper summarizes the pertinent data to 1993/1994, and presents an overview of current steam-generator management practices. (author)

  10. Steam generators: critical components in nuclear steam supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Stevens-Guille, P D

    1974-02-28

    Steam generators are critical components in power reactors. Even small internal leaks result in costly shutdowns for repair. Surveys show that leaks have affected one half of all water-cooled reactors in the world with steam generators. CANDU reactors have demonstrated the highest reliability. However, AECL is actively evolving new technology in design, manufacture, inspection and operation to maintain reliability. (auth)

  11. Steam power plant

    International Nuclear Information System (INIS)

    Campbell, J.W.E.

    1981-01-01

    This invention relates to power plant forced flow boilers operating with water letdown. The letdown water is arranged to deliver heat to partly expanded steam passing through a steam reheater connected between two stages of the prime mover. (U.K.)

  12. Modelling of steam condensation in the primary flow channel of a gas-heated steam generator

    International Nuclear Information System (INIS)

    Kawamura, H.; Meister, G.

    1982-10-01

    A new simulation code has been developed for the analysis of steam ingress accidents in high temperatures reactors which evaluates the heat transfer in a steam generator headed by a mixture of helium and water steam. Special emphasis is laid on the analysis of steam condensation in the primary circuit of the steam generator. The code takes wall and bulk condensation into account. A new method is proposed to describe the entrainment of water droplets in the primary gas flow. Some typical results are given. Steam condensation in the primary channel may have a significant effect on temperature distributions. The effect on the heat transferred by the steam generator, however, is found to be not so prominent as might be expected. The reason is discussed. A simplified code will also be described, which gives results with reasonable accuracy within much shorter execution times. This code may be used as a program module in a program simulating the total primary circuit of a high temperature reactor. (orig.) [de

  13. Steam turbines for the future

    International Nuclear Information System (INIS)

    Trassl, W.

    1988-01-01

    Approximately 75% of the electrical energy produced in the world is generated in power plants with steam turbines (fossil and nuclear). Although gas turbines are increasingly applied in combined cycle power plants, not much will change in this matter in the future. As far as the steam parameters and the maximum unit output are concerned, a certain consolidation was noted during the past decades. The standard of development and mathematical penetration of the various steam turbine components is very high today and is applied in the entire field: For saturated steam turbines in nuclear power plants and for steam turbines without reheat, with reheat and with double reheat in fossil-fired power plants and for steam turbines with and without reheat in combined cycle power plants. (orig.) [de

  14. The Invisibility of Steam

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    2014-01-01

    Almost everyone "knows" that steam is visible. After all, one can see the cloud of white issuing from the spout of a boiling tea kettle. In reality, steam is the gaseous phase of water and is invisible. What you see is light scattered from the tiny droplets of water that are the result of the condensation of the steam as its temperature…

  15. 30 CFR 75.155 - Qualified hoisting engineer; qualifications.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Qualified hoisting engineer; qualifications. 75... Persons § 75.155 Qualified hoisting engineer; qualifications. (a)(1) A person is a qualified hoisting engineer within the provisions of subpart O of this part, for the purpose of operating a steam-driven hoist...

  16. Optimal design of marine steam turbine

    International Nuclear Information System (INIS)

    Liu Chengyang; Yan Changqi; Wang Jianjun

    2012-01-01

    The marine steam turbine is one of the key equipment in marine power plant, and it tends to using high power steam turbine, which makes the steam turbine to be heavier and larger, it causes difficulties to the design and arrangement of the steam turbine, and the marine maneuverability is seriously influenced. Therefore, it is necessary to apply optimization techniques to the design of the steam turbine in order to achieve the minimum weight or volume by means of finding the optimum combination of design parameters. The math model of the marine steam turbine design calculation was established. The sensitivities of condenser pressure, power ratio of HP turbine with LP turbine, and the ratio of diameter with height at the end stage of LP turbine, which influence the weight of the marine steam turbine, were analyzed. The optimal design of the marine steam turbine, aiming at the weight minimization while satisfying the structure and performance constraints, was carried out with the hybrid particle swarm optimization algorithm. The results show that, steam turbine weight is reduced by 3.13% with the optimization scheme. Finally, the optimization results were analyzed, and the steam turbine optimization design direction was indicated. (authors)

  17. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    A two-stage steam-water separating device is introduced, where the second stage is made as a cyclone separator. The water separated here is collected in the first stage of the inner tube and is returned to the steam raising unit. (TK) [de

  18. EPRI steam generator programs

    International Nuclear Information System (INIS)

    Martel, L.J.; Passell, T.O.; Bryant, P.E.C.; Rentler, R.M.

    1977-01-01

    The paper describes the current overall EPRI steam generator program plan and some of the ongoing projects. Because of the recent occurrence of a corrosion phenomenon called ''denting,'' which has affected a number of operating utilities, an expanded program plan is being developed which addresses the broad and urgent needs required to achieve improved steam generator reliability. The goal of improved steam generator reliability will require advances in various technologies and also a management philosophy that encourages conscientious efforts to apply the improved technologies to the design, procurement, and operation of plant systems and components that affect the full life reliability of steam generators

  19. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery

    International Nuclear Information System (INIS)

    Conklin, James C.; Szybist, James P.

    2010-01-01

    A concept adding two strokes to the Otto or Diesel engine cycle to increase fuel efficiency is presented here. It can be thought of as a four-stroke Otto or Diesel cycle followed by a two-stroke heat recovery steam cycle. A partial exhaust event coupled with water injection adds an additional power stroke. Waste heat from two sources is effectively converted into usable work: engine coolant and exhaust gas. An ideal thermodynamics model of the exhaust gas compression, water injection and expansion was used to investigate this modification. By changing the exhaust valve closing timing during the exhaust stroke, the optimum amount of exhaust can be recompressed, maximizing the net mean effective pressure of the steam expansion stroke (MEP steam ). The valve closing timing for maximum MEP steam is limited by either 1 bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens. The range of MEP steam calculated for the geometry of a conventional gasoline engine and is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEP combustion ) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy.

  20. STEAM DALAM PEMBUATAN PAKAN UNTUK KOMODITAS AKUAKULTUR

    Directory of Open Access Journals (Sweden)

    Sukarman Sukarman

    2010-12-01

    Full Text Available Kualitas fisik pakan (pelet untuk hewan akuakultur sangat penting, karena akan dimasukkan ke dalam air dan diharapkan tidak banyak mencemari lingkungan. Salah satu faktor yang berpengaruh dalam menjaga kualitas fisik pakan adalah penambahan dan pengaturan steam pada saat proses pembuatan pelet. Steam adalah aliran gas yang dihasilkan oleh air pada saat mendidih. Steam dibagi menjadi 3 jenis yaitu steam basah, saturated steam, dan superheated steam. Steam yang digunakan dalam proses pembuatan pelet adalah saturated steam. Pengaruh penambahan steam pada kualitas pelet bisa mencapai 20%. Penambahan steam dengan jumlah dan kualitas yang tepat akan menghasilkan pelet berkualitas. Sedangkan jika pengaturan dan penambahannya tidak tepat, maka kualitas fisik pelet akan rendah dan kemungkinan bisa merusak kandungan nutrisi seperti vitamin dan protein. Penambahan steam yang benar bisa dilakukan di dalam kondisioner dengan mengatur retention time, sudut kemiringan paddle conditioner, kecepatan putaran bearing dan menjaga kualitas steam dari mesin boiler sampai dengan kondisioner.

  1. Synthesis and optimization of steam system networks. 2. Multiple steam levels

    CSIR Research Space (South Africa)

    Price, T

    2010-08-01

    Full Text Available The use of steam in heat exchanger networks (HENs) can be reduced by the application of heat integration with the intention of debottlenecking the steam boiler and indirectly reducing the water requirement [Coetzee and Majozi. Ind. Eng. Chem. Res...

  2. Improvement of Steam Turbine Operational Performance and Reliability with using Modern Information Technologies

    Science.gov (United States)

    Brezgin, V. I.; Brodov, Yu M.; Kultishev, A. Yu

    2017-11-01

    The report presents improvement methods review in the fields of the steam turbine units design and operation based on modern information technologies application. In accordance with the life cycle methodology support, a conceptual model of the information support system during life cycle main stages (LC) of steam turbine unit is suggested. A classifying system, which ensures the creation of sustainable information links between the engineer team (manufacture’s plant) and customer organizations (power plants), is proposed. Within report, the principle of parameterization expansion beyond the geometric constructions at the design and improvement process of steam turbine unit equipment is proposed, studied and justified. The report presents the steam turbine unit equipment design methodology based on the brand new oil-cooler design system that have been developed and implemented by authors. This design system combines the construction subsystem, which is characterized by extensive usage of family tables and templates, and computation subsystem, which includes a methodology for the thermal-hydraulic zone-by-zone oil coolers design calculations. The report presents data about the developed software for operational monitoring, assessment of equipment parameters features as well as its implementation on five power plants.

  3. Materials for advanced ultrasupercritical steam turbines

    Energy Technology Data Exchange (ETDEWEB)

    Purgert, Robert [Energy Industries Of Ohio Inc., Independence, OH (United States); Shingledecker, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Saha, Deepak [Energy Industries Of Ohio Inc., Independence, OH (United States); Thangirala, Mani [Energy Industries Of Ohio Inc., Independence, OH (United States); Booras, George [Energy Industries Of Ohio Inc., Independence, OH (United States); Powers, John [Energy Industries Of Ohio Inc., Independence, OH (United States); Riley, Colin [Energy Industries Of Ohio Inc., Independence, OH (United States); Hendrix, Howard [Energy Industries Of Ohio Inc., Independence, OH (United States)

    2015-12-01

    The U.S. Department of Energy (DOE) and the Ohio Coal Development Office (OCDO) have sponsored a project aimed at identifying, evaluating, and qualifying the materials needed for the construction of the critical components of coal-fired power plants capable of operating at much higher efficiencies than the current generation of supercritical plants. This increased efficiency is expected to be achieved principally through the use of advanced ultrasupercritical (A-USC) steam conditions. A limiting factor in this can be the materials of construction for boilers and for steam turbines. The overall project goal is to assess/develop materials technology that will enable achieving turbine throttle steam conditions of 760°C (1400°F)/35MPa (5000 psi). This final technical report covers the research completed by the General Electric Company (GE) and Electric Power Research Institute (EPRI), with support from Oak Ridge National Laboratory (ORNL) and the National Energy Technology Laboratory (NETL) – Albany Research Center, to develop the A-USC steam turbine materials technology to meet the overall project goals. Specifically, this report summarizes the industrial scale-up and materials property database development for non-welded rotors (disc forgings), buckets (blades), bolting, castings (needed for casing and valve bodies), casting weld repair, and casting to pipe welding. Additionally, the report provides an engineering and economic assessment of an A-USC power plant without and with partial carbon capture and storage. This research project successfully demonstrated the materials technology at a sufficient scale and with corresponding materials property data to enable the design of an A-USC steam turbine. The key accomplishments included the development of a triple-melt and forged Haynes 282 disc for bolted rotor construction, long-term property development for Nimonic 105 for blading and bolting, successful scale-up of Haynes 282 and Nimonic 263 castings using

  4. Steam cleaning device

    International Nuclear Information System (INIS)

    Karaki, Mikio; Muraoka, Shoichi.

    1985-01-01

    Purpose: To clean complicated and long objects to be cleaned having a structure like that of nuclear reactor fuel assembly. Constitution: Steams are blown from the bottom of a fuel assembly and soon condensated initially at the bottom of a vertical water tank due to water filled therein. Then, since water in the tank is warmed nearly to the saturation temperature, purified water is supplied from a injection device below to the injection device above the water tank on every device. In this way, since purified water is sprayed successively from below to above and steams are condensated in each of the places, the entire fuel assembly elongated in the vertical direction can be cleaned completely. Water in the reservoir goes upward like the steam flow and is drained together with the eliminated contaminations through an overflow pipe. After the cleaning has been completed, a main steam valve is closed and the drain valve is opened to drain water. (Kawakami, Y.)

  5. Steam purity in PWRs

    International Nuclear Information System (INIS)

    Hopkinson, J.

    1982-01-01

    Impurities enter the secondary loop of the PWR through both makeup water from lake or well and cooling-water leaks in the condenser. These impurities can be carried to the steam generator, where they cause corrosion deposits to form. Corrosion products in steam are swept further through the system and become concentrated at the point in the low-pressure turbine where steam begins to condense. Several plants have effectively reduced impurities, and therefore corrosion, by installing a demineralizer for the makeup water, a resin-bed system to clean condensed steam from the condenser, and a deaerator to remove oxygen from the water and so lower the risk of system metal oxidation. 5 references, 1 figure

  6. Wet-steam erosion of steam turbine disks and shafts

    International Nuclear Information System (INIS)

    Averkina, N. V.; Zheleznyak, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.; Shishkin, V. I.

    2011-01-01

    A study of wet-steam erosion of the disks and the rotor bosses or housings of turbines in thermal and nuclear power plants shows that the rate of wear does not depend on the diagrammed degree of moisture, but is determined by moisture condensing on the surfaces of the diaphragms and steam inlet components. Renovating the diaphragm seals as an assembly with condensate removal provides a manifold reduction in the erosion.

  7. High-efficiency condenser of steam from a steam-gas mixture

    Science.gov (United States)

    Milman, O. O.; Krylov, V. S.; Ptakhin, A. V.; Kondratev, A. V.; Yankov, G. G.

    2017-12-01

    The design of a module for a high-efficiency condenser of steam with a high content (up to 15%) of noncondensable gases (NCGs) with a nearly constant steam-gas mixture (SGM) velocity during the condensation of steam has been developed. This module provides the possibility to estimate the operational efficiency of six condenser zones during the motion of steam from the inlet to the SGM suction point. Some results of the experimental tests of the pilot high-efficiency condenser module are presented. The dependence of the average heat transfer coefficient k¯ on the volumetric NCG concentration v¯ has been derived. It is shown that the high-efficiency condenser module can provide a moderate decrease in k¯ from 4400-4600 to 2600-2800 W/(m2 K) at v¯ ≈ 0.5-9.0%. The heat transfer coefficient distribution over different module zones at a heat duty close to its nominal value has been obtained. From this distribution, it can be seen that the average heat transfer coefficient decreases to 2600 W/(m2 K) at an NCG concentration v¯ = 7.5%, but the first condenser sections ( 1- 3) retain high values of k¯ at a level of no lower than 3200 W/(m2 K), and the last sections operate less well, having k¯ at a level of 1700 W/(m2 K). The dependence of the average heat transfer coefficient on the water velocity in condenser tubes has been obtained at a nearly nominal duty such that the extrapolation of this dependence to the water velocity of 2 m/s may be expected to give k¯ = 5000 W/(m2 K) for relatively pure steam, but an increase in k¯ at v¯ = 8% will be smaller. The effect of the gas removal device characteristic on the operation of the high-efficiency condenser module is described. The design developed for the steam condenser of a gas-turbine plant with a power of 25 MW, a steam flow rate of 40.2 t/h, and a CO2 concentration of up to 12% with consideration for the results of performed studies is presented.

  8. Assessment of vibration anomalies of main steam lines at Palo Verde-3

    International Nuclear Information System (INIS)

    Amr, A.; Landstrom, C.; Maxwell, H.; Miller, J.S.; Lynch, J.J.

    1996-01-01

    Historically, flow induced vibration in piping systems that transport liquid has presented problems for plant designers. When evaluating a vibration problem, it is always important to determine the forcing frequencies from different phenomena and the natural frequencies of the system as an integral part of establishing the root cause of the problem. Since in most cases of large vibration and noise levels, the natural frequency of the system and the frequency of the flow induced vibration are very close, determining the natural frequency of the system is important. Palo Verde Unit-3 exhibited a vibration problem where identification of the root cause was difficult. A Palo Verde team was created which consisted of engineers from different on-site departments and support from consultants. The process used to determine the root cause for the vibration/noise problem on Main Steam Supply System (MSSS) steam line 2 at Palo Verde Unit 3 is discussed in this paper. Since the root cause was not readily apparent, a finite element model was constructed to determine the natural frequency of the piping system. The finite element model consisted of a portion of the main steam lines, including a sample line which traverses the main steam line

  9. Using the artificial neural network to control the steam turbine heating process

    International Nuclear Information System (INIS)

    Nowak, Grzegorz; Rusin, Andrzej

    2016-01-01

    Highlights: • Inverse Artificial Neural Network has a potential to control the start-up process of a steam turbine. • Two serial neural networks made it possible to model the rotor stress based of steam parameters. • An ANN with feedback enables transient stress modelling with good accuracy. - Abstract: Due to the significant share of renewable energy sources (RES) – wind farms in particular – in the power sector of many countries, power generation systems become sensitive to variable weather conditions. Under unfavourable changes in weather, ensuring required energy supplies involves hasty start-ups of conventional steam power units whose operation should be characterized by higher and higher flexibility. Controlling the process of power engineering machinery operation requires fast predictive models that will make it possible to analyse many parallel scenarios and select the most favourable one. This approach is employed by the algorithm for the inverse neural network control presented in this paper. Based on the current thermal state of the turbine casing, the algorithm controls the steam temperature at the turbine inlet to keep both the start-up rate and the safety of the machine at the allowable level. The method used herein is based on two artificial neural networks (ANN) working in series.

  10. Steam injection for heavy oil recovery: Modeling of wellbore heat efficiency and analysis of steam injection performance

    International Nuclear Information System (INIS)

    Gu, Hao; Cheng, Linsong; Huang, Shijun; Li, Bokai; Shen, Fei; Fang, Wenchao; Hu, Changhao

    2015-01-01

    Highlights: • A comprehensive mathematical model was established to estimate wellbore heat efficiency of steam injection wells. • A simplified approach of predicting steam pressure in wellbores was proposed. • High wellhead injection rate and wellhead steam quality can improve wellbore heat efficiency. • High wellbore heat efficiency does not necessarily mean good performance of heavy oil recovery. • Using excellent insulation materials is a good way to save water and fuels. - Abstract: The aims of this work are to present a comprehensive mathematical model for estimating wellbore heat efficiency and to analyze performance of steam injection for heavy oil recovery. In this paper, we firstly introduce steam injection process briefly. Secondly, a simplified approach of predicting steam pressure in wellbores is presented and a complete expression for steam quality is derived. More importantly, both direct and indirect methods are adopted to determine the wellbore heat efficiency. Then, the mathematical model is solved using an iterative technique. After the model is validated with measured field data, we study the effects of wellhead injection rate and wellhead steam quality on steam injection performance reflected in wellbores. Next, taking cyclic steam stimulation as an example, we analyze steam injection performance reflected in reservoirs with numerical reservoir simulation method. Finally, the significant role of improving wellbore heat efficiency in saving water and fuels is discussed in detail. The results indicate that we can improve the wellbore heat efficiency by enhancing wellhead injection rate or steam quality. However, high wellbore heat efficiency does not necessarily mean satisfactory steam injection performance reflected in reservoirs or good performance of heavy oil recovery. Moreover, the paper shows that using excellent insulation materials is a good way to save water and fuels due to enhancement of wellbore heat efficiency

  11. Steam generator replacement at Doel 3 NPP (Belgium)

    International Nuclear Information System (INIS)

    Danhier, B.

    1993-01-01

    The reasons are presented that led to the conclusion that the most cost-effective strategy for the Doel 3 unit was the immediate replacement of the SG. Discussed are the advantages and drawbacks of the replacement techniques, the so-called 2, 3 and 4 cuts methods. The advantages are emphasized of intensive use of computer aided engineering in this kind of backfitting. The methodology applied to combine a power uprating of 10% over the nominal power with the steam generator replacement is presented. (author) 1 fig

  12. Hybrid preheat/recirculating steam generator

    International Nuclear Information System (INIS)

    Lilly, G.P.

    1985-01-01

    The patent describes a hybrid preheat/recirculating steam generator for nuclear power plants. The steam generator utilizes recirculated liquid to preheat incoming liquid. In addition, the steam generator incorporates a divider so as to limit the amount of recirculating water mixed with the feedwater. (U.K.)

  13. Compilation of contract research for the Materials Engineering Branch, Division of Engineering

    International Nuclear Information System (INIS)

    1991-03-01

    This compilation of annual reports for FY 1990 by contractors to the Materials Engineering Branch of the Nuclear Regulatory Commission Office of Research concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators, and nondestructive examination of primary system components. Separate abstracts have been prepared for each of the reports which are divided into the following categories: (1) vessel and piping fracture mechanics (including irradiation embrittlement); (2) pressure vessel surveillance dosimetry; (3) steam generators, aging, and environmental cracking; and (4) nondestructive examination techniques

  14. CANDU steam generator life management

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.; Spekkens, P.; Maruska, C.

    1998-01-01

    Steam generators are a critical component of a nuclear power reactor, and can contribute significantly to station unavailability, as has been amply demonstrated in Pressurized Water Reactors (PWRs). CANDU steam generators are not immune to steam generator degradation, and the variety of CANDU steam generator designs and tube materials has led to some unexpected challenges. However, aggressive remedial actions, and careful proactive maintenance activities, have led to a decrease in steam generator-related station unavailability of Canadian CANDUs. AECL and the CANDU utilities have defined programs that will enable existing or new steam generators to operate effectively for 40 years. Research and development work covers corrosion and mechanical degradation of tube bundles and internals, chemistry, thermalhydraulics, fouling, inspection and cleaning, as well as provision for specially tool development for specific problem solving. A major driving force is development of CANDU-specific fitness-for-service guidelines, including appropriate inspection and monitoring technology to measure steam generator condition. Longer-range work focuses on development of intelligent on-line monitoring for the feedwater system and steam generator. New designs have reduced risk of corrosion and fouling, are more easily inspected and cleaned, and are less susceptible to mechanical damage. The Canadian CANDU utilities have developed programs for remedial actions to combat degradation of performance (Gentilly-2, Point Lepreau, Bruce A/B, Pickering A/B), and have developed strategic plans to ensure that good future operation is ensured. The research and development program, as well as operating experience, has identified where improvements in operating practices and/or designs can be made in order to ensure steam generator design life at an acceptable capacity factory. (author)

  15. From STEM to STEAM: Toward a Human-Centered Education

    Science.gov (United States)

    Boy, Guy A.

    2013-01-01

    The 20th century was based on local linear engineering of complicated systems. We made cars, airplanes and chemical plants for example. The 21st century has opened a new basis for holistic non-linear design of complex systems, such as the Internet, air traffic management and nanotechnologies. Complexity, interconnectivity, interaction and communication are major attributes of our evolving society. But, more interestingly, we have started to understand that chaos theories may be more important than reductionism, to better understand and thrive on our planet. Systems need to be investigated and tested as wholes, which requires a cross-disciplinary approach and new conceptual principles and tools. Consequently, schools cannot continue to teach isolated disciplines based on simple reductionism. Science; Technology, Engineering, and Mathematics (STEM) should be integrated together with the Arts1 to promote creativity together with rationalization, and move to STEAM (with an "A" for Arts). This new concept emphasizes the possibility of longer-term socio-technical futures instead of short-term financial predictions that currently lead to uncontrolled economies. Human-centered design (HCD) can contribute to improving STEAM education technologies, systems and practices. HCD not only provides tools and techniques to build useful and usable things, but also an integrated approach to learning by doing, expressing and critiquing, exploring possible futures, and understanding complex systems.

  16. Dynamic Modeling of Steam Condenser and Design of PI Controller Based on Grey Wolf Optimizer

    Directory of Open Access Journals (Sweden)

    Shu-Xia Li

    2015-01-01

    Full Text Available Shell-and-tube condenser is a heat exchanger for cooling steam with high temperature and pressure, which is one of the main kinds of heat exchange equipment in thermal, nuclear, and marine power plant. Based on the lumped parameter modeling method, the dynamic mathematical model of the simplified steam condenser is established. Then, the pressure PI control system of steam condenser based on the Matlab/Simulink simulation platform is designed. In order to obtain better performance, a new metaheuristic intelligent algorithm, grey wolf optimizer (GWO, is used to realize the fine-tuning of PI controller parameters. On the other hand, the Z-N engineering tuning method, genetic algorithm, and particle swarm algorithm are adopted for tuning PI controller parameters and compared with GWO algorithm. Simulation results show that GWO algorithm has better control performance than other four algorithms.

  17. Robert Henry Thurston: Professionalism and Engineering Education

    Science.gov (United States)

    Nienkamp, Paul

    2016-01-01

    Robert Henry Thurston is presented in this article. He provides one the most significant examples of professionalizing engineering through innovative education and promoting scientific education practices in the late nineteenth century. The son of a draftsmen and steam engine mechanic, Thurston spent his early years in Providence, Rhode Island.…

  18. Facility to separate water and steam

    International Nuclear Information System (INIS)

    Loesel, G.

    1977-01-01

    The water/steam mixture from the pressure vessel e.g. of a BWR is separated by means of centrifugal separators untilizing the natural separation of steam. The steam is supplied to a steam drying vessel and the water to a water collecting tank. These vessels may be combined to a common vessel or connected through additional pipes. From the water collecting tank, arranged below the steam dryer, a feedwater pipe runs back to the pressure vessel. By construction out of individual components cleaning, decontamination, and operating control are essentially simplified. (RW) 891 RW [de

  19. Drying system for steam generators, particularly for steam generators of nuclear power stations

    International Nuclear Information System (INIS)

    Lavalerie, Claude; Borrel, Christian.

    1982-01-01

    A drying system is described which allows for modular construction and which provides a significant available exchange area in a reduced volume. All the drying elements are identical and are distributed according to a ternay circular symmetry and are placed radially and associated to steam guiding facilities which alternately provide around the axis of revolution an output volume of dry steam from one element and an input volume of wet steam in the following element [fr

  20. Development of expanded type plugging technique for leaky tubes of steam generators of Indian PHWRs

    International Nuclear Information System (INIS)

    Das, Nirupam; Samuel, K.A.; Joemon, V.; Rupani, B.B.

    2006-01-01

    Steam generators are very important component of Nuclear Power Plant (NPP), as they are part of Primary Heat Transport (PHT) system of Pressurised Heavy Water Reactors (PHWRs). A nuclear power plant of 220 MWe capacity has four mushroom type steam generators, each consisting of 1830 U-tubes (16 mm outside diameter and 1 mm wall thickness) made of Incoloy-800 material. The tubes of 'tube and shell type steam generator' act as the pressure boundary of PHT System. Any structural failure of these tubes may lead to release of radioactivity along with plant outage and significant economic loss. Hence, it is necessary to plug the leaky tubes for continued and safe operation of a steam generator. An expanded type plugging technique has been developed at Reactor Engineering Division to plug the leaky tubes. This plugging technique is selected because of low residual stress imparted in the adjacent 'tube to tube-sheet' joints. This plug meets the various codal requirements of steam generator. A number of qualification trials have been carried out with such plugs in the mock up facility. The expanded plugs meet the design requirements for pull out strength and leak-tightness. This paper describes the design concept of the plug, developmental aspects and qualification of the plugging technique. (author)

  1. Engineering report for interim solids removal modifications of the Steam Plant Wastewater Treatment Facility

    International Nuclear Information System (INIS)

    1995-04-01

    The Steam Plant Wastewater Treatment Facility (SPWTF) treats wastewater from the Y-12 Plant coal yard, steam plant, and water demineralizer facility. The facility is required to comply with National Pollutant Discharge Elimination System (NPDES) standards prior to discharge to East Fork Poplar Creek (EFPC). The existing facility was designed to meet Best Available Technology (BAT) standards and has been in operation since 1988. The SPWTF has had intermittent violations of the NPDES permit primarily due to difficulties in complying with the limit for total iron of 1.0 ppM. A FY-1997 Line Item project, SPWTF Upgrades, is planned to improve the capabilities of the SPWTF to eliminate non-compliances with the permit limits. The intent of the Interim Solids Removal Modification project is to improve the SPWTF effluent quality and to provide pilot treatment data to assist in the design and implementation of the SPWTF Upgrades Line Item Project

  2. Theory and practice in engineering thermodynamics

    International Nuclear Information System (INIS)

    Polak, P.

    1983-01-01

    The book is a new approach to engineering thermodynamics for students of mechanical engineering at diploma and degree levels. There is an explanation of the basic principles of thermodynamics, followed by several chapters illustrating these principles as applied to piston engines, the gas turbine, steam power, and refrigerators and heat pumps. The book aims to introduce some key features of theory and current practice in a way that students will find interesting

  3. International examples of steam generator replacement

    International Nuclear Information System (INIS)

    Wiechmann, K.

    1993-01-01

    Since 1979-1980 a total of twelve nuclear power plants world-wide have had their steam generators replaced. The replacement of the Combustion steam generators in the Millstone-2 plant in the United States was completed very recently. Steam generator replacement activities are going on at present in four plants. In North Anna, the steam generators have been under replacement since January 1990. In Japan, preparations have been started for Genkai-1. Since January 1992, the two projects in Beznau-1, Switzerland, and Doel-3, Belgium, have bee planned and executed in parallel. Why steam generator replacement? There are a number of defect mechanisms which give rise to the need for early steam generator replacement. One of the main reasons is the use of Inconel-600 as material for the heating tubes. Steam generator heating tubes made of Inconel-600 have been known to exhibit their first defects due to stress corrosion cracking after less than one year of operation. (orig.) [de

  4. French steam generator design developments

    International Nuclear Information System (INIS)

    Ginier, R.; Campan, J.L.; Pontier, M.; Leridon, A.; Remond, A.; Castello, G.; Holcblat, A.; Paurobally, H.

    1986-01-01

    From the outset of the French nuclear power program, a significant R and D effort has been invested in improvement of the design and operation of Pressurized Water Reactors including a special committment to improving steam generators. The steam generator enhancement program has spawned a wide variety of specific R and D resources, e.g., low temperature hydraulic models for investigation of areas with single-phase flow, and freon-filled models for simulation of areas of steam generators experiencing two-phase flow (tube bundles and moisture separators). For the moisture separators, a large scale research program using freon-filled models and highly sophisticated instrumentation was used. Tests at reactor sites during startup of both 900 MWe and 1300 MWe have been used to validate the assumptions made on the basis of loop tests. These tests also demonstrated the validity of using freon to simulate two-phase flow conditions. The wealth of knowledge accumulated by the steam generator R and D program has been used to develop a new design of steam generators for the N4 plants. The current R and D effort is aimed at qualifying the N4 steam generator model and developing more comprehensive models. One prong of the R and D effort is the Megeve program. Megeve is a 25 MW steam generator which simulates operating conditions of the N4 model. The other prong is Clotaire, a freon-filled steam generator model which will be used to qualify thermal/hydraulic design codes used for multidimensional calculations for design of tube bundles

  5. Exergy Steam Drying and Energy Integration

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Prem; Muenter, Claes (Exergy Engineering and Consulting, SE-417 55 Goeteborg (Sweden)). e-mail: verma@exergyse.com

    2008-10-15

    Exergy Steam Drying technology has existed for past 28 years and many new applications have been developed during this period. But during past few years the real benefits have been exploited in connection with bio-fuel production and energy integration. The steam dryer consists of a closed loop system, where the product is conveyed by superheated and pressurised carrier steam. The carrier steam is generated by the water vapours from the product being dried, and is indirectly superheated by another higher temperature energy source such as steam, flue gas, thermal oil etc. Besides the superior heat transfer advantages of using pressurised steam as a drying medium, the energy recovery is efficient and simple as the recovered energy (80-90%) is available in the form of steam. In some applications the product quality is significantly improved. Examples presented in this paper: Bio-Combine for pellets production: Through integration of the Exergy Steam Dryer for wood with a combined heat and power (CHP) plant, together with HP steam turbine, the excess carrier steam can be utilised for district heating and/or electrical power production in a condensing turbine. Bio-ethanol production: Both for first and second generation of ethanol can the Exergy process be integrated for treatment of raw material and by-products. Exergy Steam Dryer can dry the distillers dark grains and solubles (DDGS), wood, bagasse and lignin. Bio-diesel production: Oil containing seeds and fruits can be treated in order to improve both the quality of oil and animal feed protein, thus minimizing further oil processing costs and increasing the sales revenues. Sewage sludge as bio-mass: Municipal sewage sludge can be considered as a renewable bio-fuel. By drying and incineration, the combustion heat value of the sludge is sufficient for the drying process, generation of electrical energy and production of district heat. Keywords; Exergy, bio-fuel, bio-mass, pellets, bio-ethanol, biodiesel, bio

  6. Steam jet ejectors are examined automatically

    International Nuclear Information System (INIS)

    Lardiere, C.

    2013-01-01

    Steam jet ejectors are used in the nuclear industry particularly for the transfer of radioactive fluids. Their working is based on the Venturi effect and the conservation of energy. A steam ejector can be considered as a thermodynamical pump without mobile parts. The Descote enterprise manufactures a broad range of steam jet ejectors and the characterization and testing of the steam ejectors was made manually and empirically so far. A new test bench has been designed, the tests are led automatically and allow a more accurate characterization and optimization of the steam jet ejectors. (A.C.)

  7. Steam generator tube integrity program

    International Nuclear Information System (INIS)

    Dierks, D.R.; Shack, W.J.; Muscara, J.

    1996-01-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given

  8. Steam generator water lancing

    International Nuclear Information System (INIS)

    Kamler, F.; Schneider, W.

    1992-01-01

    The tubesheet and tube support plate deposits in CANDU steam generators are notable for their hardness. Also notable is the wide variety of steam generator access situations. Because of the sludge hardness and the difficulty of the access, traditional water lancing processes which directed jets from the central tube free lane or from the periphery of the bundle have proven unsuitable. This has led to the need for some very unique inter tube water lancing devices which could direct powerful water jets directly onto the deposits. This type of process was applied to the upper broached plates of the Bruce A steam generators, which had become severely blocked. It has since been applied to various other steam generator situations. This paper describes the flexlance equipment development, qualification, and performance in the various CANDU applications. 4 refs., 2 tabs., 7 figs

  9. Steam turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Kosyak, Yu.F.

    1978-01-01

    Considered are the peculiarities of the design and operation of steam turbines, condensers and supplementary equipment of steam turbines for nuclear power plants; described are the processes of steam flow in humid-steam turbines, calculation and selection principles of main parameters of heat lines. Designs of the turbines installed at the Charkov turbine plant are described in detail as well as of those developed by leading foreign turbobuilding firms

  10. From STEM to STEAM: How Early Childhood Educators Can Apply Fred Rogers' Approach

    Science.gov (United States)

    Sharapan, Hedda

    2012-01-01

    For many in early childhood education, STEAM is a new term. It began in this decade as STEM, an acronym for Science, Technology, Engineering, and Math. These curriculum areas have become a major focus in education because of the concern that the United States is falling behind in scientific innovation. With a new and familiar addition to the…

  11. Some Thoughts About Water Analysis in Shipboard Steam Propulsion Systems for Marine Engineering Students.

    Science.gov (United States)

    Schlenker, Richard M.; And Others

    Information is presented about the problems involved in using sea water in the steam propulsion systems of large, modern ships. Discussions supply background chemical information concerning the problems of corrosion, scale buildup, and sludge production. Suggestions are given for ways to maintain a good water treatment program to effectively deal…

  12. Engineering design of a direct-cycle steam-generating blanket for a long-pulse fusion reactor

    International Nuclear Information System (INIS)

    Cort, G.E.; Hagenson, R.L.; Teasdale, R.W.; Fox, W.E.; Soran, P.D.; Cullingford, H.S.; Bathke, C.G.; Krakowski, R.A.

    1979-01-01

    A comprehensive neutronics, thermohydraulic, and mechanical design of a tritium-breeding blanket for use by a conceptual long-pulse Reversed-Field Pinch Reactor (RFPR) is described. On the basis of constraints imposed by cost and the desire to use existing technology, a direct-cycle steam system and stainless-steel construction were used. For reasons of plasma stability, the RFPR blanket supports a 20-mm-thick copper first wall. Located behind the 1.5-m-radius first wall is a 0.50-m-thick stainless-steel blanket containing a granular bed of Li 2 O through which flows low-pressure helium (0.1 MPa) for tritium extraction. Water/steam tubes radially penetrate this packed bed. The large thermal capacity and low thermal diffusivity of the Li 2 O blanket are sufficient to maintain a nearly constant temperature during the approx. 25-s burn period

  13. Steam generator tube extraction

    International Nuclear Information System (INIS)

    Delorme, H.

    1985-05-01

    To enable tube examination on steam generators in service, Framatome has now developed a process for removing sections of steam generator tubes. Tube sections can be removed without being damaged for treating the tube section expanded in the tube sheet

  14. Steam jet mill-a prospective solution to industrial exhaust steam and solid waste.

    Science.gov (United States)

    Zhang, Mingxing; Chen, Haiyan

    2018-04-20

    Bulk industrial solid wastes occupy a lot of our resources and release large amounts of toxic and hazardous substances to the surrounding environment, demanding innovative strategies for grinding, classification, collection, and recycling for economically ultrafine powder. A new technology for grinding, classification, collection, and recycling solid waste is proposed, using the superheated steam produced from the industrial exhaust steam to disperse, grind, classify, and collect the industrial solid waste. A large-scale steam jet mill was designed to operate at an inlet steam temperature 230-300 °C and an inlet pressure of 0.2-0.6 MPa. A kind of industrial solid waste fluidized-bed combustion ashes was used to grinding tests at different steam temperatures and inlet pressures. The total process for grinding, classification, and collection is drying. Two kinds of particle sizes are obtained. One particle size is d 50  = 4.785 μm, and another particle size is d 50  = 8.999 μm. For particle size d 50  = 8.999 μm, the inlet temperature is 296 °C and an inlet pressure is 0.54 MPa for the grinding chamber. The steam flow is 21.7 t/h. The yield of superfine powder is 73 t/h. The power consumption is 3.76 kW h/t. The obtained superfine powder meets the national standard S95 slag. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to solid waste recycling is proposed, providing an efficient, large-scale, low-cost, promising, and green method for both solid waste recovery and industrial exhaust heat reutilization.

  15. 49 CFR 229.105 - Steam generator number.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam generator number. 229.105 Section 229.105..., DEPARTMENT OF TRANSPORTATION RAILROAD LOCOMOTIVE SAFETY STANDARDS Safety Requirements Steam Generators § 229.105 Steam generator number. An identification number shall be marked on the steam generator's...

  16. Signal analysis of steam line acoustics

    International Nuclear Information System (INIS)

    Martin, C. Samuel

    2003-01-01

    The vibration of nuclear steam piping is usually associated with pressure fluctuations emanating from flow disturbances such as steam generator nozzles, bends, or other pipe fittings. Flow separation at pipe tees and within steam chest manifolds or headers generate pressure fluctuations that propagate both upstream to steam generators as well as downstream to the steam turbine. Steady-state acoustic oscillations at various frequencies occur within the piping, possibly exciting structural vibrations. This paper focuses on the assessment of the origin of the disturbances using signal analyses of two dynamic pressure recordings from pressure transducers located along straight runs in the steam piping. The technique involves performing the cross spectrum to two dynamic pressure signals in piping between (1) the steam generator and steam chest header, and (2) between the header and steam turbine outlet. If, at a specified frequency, no causality occurs between the two signals then the cross spectra magnitude will be negligible. Of interest here is the value of the phase between the two signals for frequencies for which the magnitude of the cross spectrum is not negligible. It is shown in the paper that the direction of the dominant waves at all frequencies can be related to the phase angle from the cross spectrum. It has to be realized that pressure waves emanating from one source such as a steam generator will propagate along uniform steam pipes with little transformation or attenuation, but will be reflected at fittings and at inlets and outlets. Hence, the eventual steady-state time record at a given location in the piping is a result of not only the disturbance, but also reflections of earlier pulsations. Cross-spectral analyses has been employed to determine the direction of the dominant acoustic waves in the piping for various frequencies for which there are signals. To prove the technique, synthetic spectra are generated comprised of harmonic waves moving both

  17. Steam-water separator

    International Nuclear Information System (INIS)

    Modrak, T.M.; Curtis, R.W.

    1978-01-01

    The steam-water separator connected downstream of a steam generator consists of a vertical centrifugal separator with swirl blades between two concentric pipes and a cyclone separator located above. The water separated in the cyclone separator is collected in the inner tube of the centrifugal separator which is closed at the bottom. This design allows the overall height of the separator to be reduced. (DG) [de

  18. Erosion corrosion in wet steam

    International Nuclear Information System (INIS)

    Tavast, J.

    1988-03-01

    The effect of different remedies against erosion corrosion in wet steam has been studied in Barsebaeck 1. Accessible steam systems were inspected in 1984, 1985 and 1986. The effect of hydrogen peroxide injection of the transport of corrosion products in the condensate and feed water systems has also been followed through chemical analyses. The most important results of the project are: - Low alloy chromium steels with a chromium content of 1-2% have shown excellent resistance to erosion corrosion in wet steam. - A thermally sprayed coating has shown good resistance to erosion corrosion in wet steam. In a few areas with restricted accessibility minor attacks have been found. A thermally sprayed aluminium oxide coating has given poor results. - Large areas in the moisture separator/reheater and in steam extraction no. 3 have been passivated by injection of 20 ppb hydrogen peroxide to the high pressure steam. In other inspected systems no significant effect was found. Measurements of the wall thickness in steam extraction no. 3 showed a reduced rate of attack. - The injection of 20 ppb hydrogen peroxide has not resulted in any significant reduction of the iron level result is contrary to that of earlier tests. An increase to 40 ppb resulted in a slight decrease of the iron level. - None of the feared disadvantages with hydrogen peroxide injection has been observed. The chromium and cobalt levels did not increase during the injection. Neither did the lifetime of the precoat condensate filters decrease. (author)

  19. Application of nuclear steam supply system of NIKA series for seawater desalination

    International Nuclear Information System (INIS)

    Adamovich, L.A.; Achkasov, A.N.; Grechko, G.I.; Pavlov, V.L.; Shishkin, V.A.

    1998-01-01

    The nuclear steam supply system (NSSS) NIKA has been developed on the basis of experience available in Russia in designing, construction and operation of similar systems for ship propulsion reactors. Major systems and equipment of the NSSS are designed to take advantage of the proven engineering features and to meet Russian regulations, standards, practices and up-to-date safety philosophy. NSSS NIKA-75 has been designed for arrangement on barge. This permits to manufacture all NSSS equipment at the factory and to deliver it to the exploitation area ready for operation. NSSS NIKA-300 is designed for erection on land. It seems very interesting to use those NSSS types for seawater desalination. The main technical solutions, concept statements, technical and economical evaluations of NIKA series nuclear steam supply systems for seawater desalination are described. (author)

  20. Phase 2 THOR Steam Reforming Tests for Sodium Bearing Waste Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Nicholas R. Soelberg

    2004-01-01

    About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste is stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Steam reforming is a candidate technology being investigated for converting the waste into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. A steam reforming technology patented by Studsvik, Inc., and licensed to THOR Treatment Technologies has been tested in two phases using a Department of Energy-owned fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center located in Idaho Falls, Idaho. The Phase 1 tests were reported earlier in 2003. The Phase 2 tests are reported here. For Phase 2, the process feed rate, stoichiometry, and chemistry were varied to identify and demonstrate process operation and product characteristics under different operating conditions. Two test series were performed. During the first series, the process chemistry was designed to produce a sodium carbonate product. The second series was designed to produce a more leach-resistant, mineralized sodium aluminosilicate product. The tests also demonstrated the performance of a MACT-compliant off-gas system.

  1. Steam generator reliability improvement project

    International Nuclear Information System (INIS)

    Blomgren, J.C.; Green, S.J.

    1987-01-01

    Upon successful completion of its research and development technology transfer program, the Electric Power Research Institute's Steam Generator Owners Group (SGOG II) will disband in December 1986 and be replaced in January 1987 by a successor project, the Steam Generator Reliability Project (SGRP). The new project, funded in the EPRI base program, will continue the emphasis on reliability and life extension that was carried forward by SGOG II. The objectives of SGOG II have been met. Causes and remedies have been identified for tubing corrosion problems, such as stress corrosion cracking and pitting, and steam generator technology has been improved in areas such as tube wear prediction and nondestructive evaluation (NDE). These actions have led to improved reliability of steam generators. Now the owners want to continue with a centrally managed program that builds on what has been learned. The goal is to continue to improve steam generator reliability and solve small problems before they become large problems

  2. Steam generator reliability improvement project

    International Nuclear Information System (INIS)

    Blomgren, J.C.; Green, S.J.

    1987-01-01

    Upon successful completion of its research and development technology transfer program, the Electric Power Research Institute's (EPRI's) Steam Generator Owners Group (SGOG II) will disband in December 1986, and be replaced in January 1987, by a successor project, the Steam Generator Reliability Project (SGRP). The new project, funded in the EPRI base program, will continue to emphasize reliability and life extension, which were carried forward by SGOG II. The objectives of SGOG II have been met. Causes and remedies have been identified for tubing corrosion problems such as stress corrosion cracking and pitting, and steam generator technology has been improved in areas such as tube wear prediction and nondestructive evaluation. These actions have led to improved reliability of steam generators. Now the owners want to continue with a centrally managed program that builds on what has been learned. The goal is to continue to improve steam generator reliability and to solve small problems before they become large problems

  3. A drier unit for steam separators

    International Nuclear Information System (INIS)

    Peyrelongue, J.-P.

    1973-01-01

    Description is given of a drier unit adapted to equip a water separator mounted in a unit for treating a wet steam fed from a high pressure enclosure, so as to dry and contingently superheat said steam prior to injecting same into a turbine low pressure stage. This drier unit is constituted by at least a stack of separating sheets maintained in parallel relationship and at a slight angle with respect to the horizontal so as to allow the water provided by wet steam to flow toward a channel communicating with a manifold, and by means for guiding the steam between the sheets and evenly distributing it. This can be applied to steam turbines in nuclear power stations [fr

  4. Steam explosion studies review

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Kim, Hee Dong

    1999-03-01

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  5. Water regime of steam power plants

    International Nuclear Information System (INIS)

    Oesz, Janos

    2011-01-01

    The water regime of water-steam thermal power plants (secondary side of pressurized water reactors (PWR); fossil-fired thermal power plants - referred to as steam power plants) has changed in the past 30 years, due to a shift from water chemistry to water regime approach. The article summarizes measures (that have been realised by chemists of NPP Paks) on which the secondary side of NPP Paks has become a high purity water-steam power plant and by which the water chemistry stress corrosion risk of heat transfer tubes in the VVER-440 steam generators was minimized. The measures can also be applied to the water regime of fossil-fired thermal power plants with super- and subcritical steam pressure. Based on the reliability analogue of PWR steam generators, water regime can be defined as the harmony of construction, material(s) and water chemistry, which needs to be provided in not only the steam generators (boiler) but in each heat exchanger of steam power plant: - Construction determines the processes of flow, heat and mass transfer and their local inequalities; - Material(s) determines the minimal rate of general corrosion and the sensitivity for local corrosion damage; - Water chemistry influences the general corrosion of material(s) and the corrosion products transport, as well as the formation of local corrosion environment. (orig.)

  6. Piping engineering and operation

    International Nuclear Information System (INIS)

    1993-01-01

    The conference 'Piping Engineering and Operation' was organized by the Institution of Mechanical Engineers in November/December 1993 to follow on from similar successful events of 1985 and 1989, which were attended by representatives from all sectors of the piping industry. Development of engineering and operation of piping systems in all aspects, including non-metallic materials, are highlighted. The range of issues covered represents a balance between current practices and implementation of future international standards. Twenty papers are printed. Two, which are concerned with pressurized pipes or steam lines in the nuclear industry, are indexed separately. (Author)

  7. Moisture separator for steam generator level measurement system

    International Nuclear Information System (INIS)

    Cantineau, B.J.

    1987-01-01

    A steam generator level measurement system having a reference leg which is kept full of water by a condensation pot, has a liquid/steam separator in the connecting line between the condensation pot and the steam phase in the steam generator to remove excess liquid from the steam externally of the steam generator. This ensures that the connecting line does not become blocked. The separator pot has an expansion chamber which slows down the velocity of the steam/liquid mixture to aid in separation, and a baffle, to avoid liquid flow into the line connected to the condensate pot. Liquid separated is returned to the steam generator below the water level through a drain line. (author)

  8. Future development of large steam turbines

    International Nuclear Information System (INIS)

    Chevance, A.

    1975-01-01

    An attempt is made to forecast the future of the large steam turbines till 1985. Three parameters affect the development of large turbines: 1) unit output; and a 2000 to 2500MW output may be scheduled; 2) steam quality: and two steam qualities may be considered: medium pressure saturated or slightly overheated steam (light water, heavy water); light enthalpie drop, high pressure steam, high temperature; high enthalpic drop; and 3) the quality of cooling supply. The largest range to be considered might be: open system cooling for sea-sites; humid tower cooling and dry tower cooling. Bi-fluid cooling cycles should be also mentioned. From the study of these influencing factors, it appears that the constructor, for an output of about 2500MW should have at his disposal the followings: two construction technologies for inlet parts and for high and intermediate pressure parts corresponding to both steam qualities; exhaust sections suitable for the different qualities of cooling supply. The two construction technologies with the two steam qualities already exist and involve no major developments. But, the exhaust section sets the question of rotational speed [fr

  9. Vapor generator steam drum spray heat

    International Nuclear Information System (INIS)

    Fasnacht, F.A. Jr.

    1978-01-01

    A typical embodiment of the invention provides a combination feedwater and cooldown water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure

  10. The new equation of steam quality and the evaluation of nonradioactive tracer method in PWR steam generators

    International Nuclear Information System (INIS)

    Ki Bang, Sung; Young Jin, Chang

    2001-01-01

    The performance of steam turbines is tested as ANSI/ASME-PTC 6. This code provides rules for the accurate testing of steam turbines for the purpose of obtaining the level of performance with a minimum uncertainty. Only the relevant portion of this code needs to process any individual case, In some case the procedure is simple. However, in complex turbines or complex operation modes, more procedures are required to test the involved provisions. Anyway, to measure the steam quality in the Wolsong PHWR with 4 SGs in Korea by the methods in the section ''Measure of steam quality methods'' of ANSI/ASME PTC 6, the result was not good though the steam generators are efficient. So, the new testing method was developed and the sophisticated equation of steam quality was introduced and uses the nonradioactive chemical tracer, Lithium hydroxide(LiOH) instead of the radioactive tracer, Na-24. (author)

  11. High-temperature oxidation of Zircaloy in hydrogen-steam mixtures

    International Nuclear Information System (INIS)

    Chung, H.M.; Thomas, G.R.

    1982-09-01

    Oxidation rates of Zircaloy-4 cladding tubes have been measured in hydrogen-steam mixtures at 1200 to 1700 0 C. For a given isothermal oxidation temperature, the oxide layer thicknesses have been measured as a function of time, steam supply rate, and hydrogen overpressure. The oxidation rates in the mixtures were compared with similar data obtained in pure steam and helium-steam environments under otherwise identical conditions. The rates in pure steam and helium-steam mixtures were equivalent and comparable to the parabolic rates obtained under steam-saturated conditions and reported in the literature. However, when the helium was replaced with hydrogen of equivalent partial pressure, a significantly smaller oxidation rate was observed. For high steam-supply rates, the oxidation kinetics in a hydrogen-steam mixture were parabolic, but the rate was smaller than for pure steam or helium-steam mixtures. Under otherwise identical conditions, the ratio of the parabolic rate for hydrogen-steam to that for pure steam decreased with increasing temperature and decreasing steam-supply rate

  12. From STEM to STEAM: Strategies for Enhancing Engineering & Technology Education

    Directory of Open Access Journals (Sweden)

    Andy M. Connor

    2015-05-01

    Full Text Available This paper sets out to challenge the common pedagogies found in STEM (Science, Technology, Engineering and Mathematics education with a particular focus on engineering. The dominant engineering pedagogy remains “chalk and talk”; despite research evidence that demonstrates its ineffectiveness. Such pedagogical approaches do not embrace the possibilities provided by more student-centric approaches and more active learning. The paper argues that there is a potential confusion in engineering education around the role of active learning approaches, and that the adoption of these approaches may be limited as a result of this confusion, combined with a degree of disciplinary egocentrism. The paper presents examples of design, engineering and technology projects that demonstrate the effectiveness of adopting pedagogies and delivery methods more usually attributed to the liberal arts such as studio based learning. The paper concludes with some suggestions about how best to create a fertile environment from which inquiry based learning can emerge as well as a reflection on whether the only real limitation on cultivating such approaches is the disciplinary egocentrism of traditional engineering educators.

  13. Thermal hydraulic studies in steam generator test facility

    International Nuclear Information System (INIS)

    Vinod, V.; Suresh Kumar, V.A.; Noushad, I.B.; Ellappan, T.R.; Rajan, K.K.; Rajan, M.; Vaidyanathan, G.

    2005-01-01

    Full text of publication follows: A 500 MWe fast breeder reactor is being constructed at Kalpakkam, India. This is a sodium cooled reactor with two primary and two secondary sodium loops with total 8 steam generators. The typical advantage of fast breeder plants is the high operating temperature of steam cycles and the high plant efficiency. To produce this high pressure and high temperature steam, once through straight tube vertical sodium heated steam generators are used. The steam is generated from the heat produced in the reactor core and being transported through primary and secondary sodium circuits. The steam generator is a 25 m high middle supported steam generator with expansion bend and 23 m heat transfer length. Steam Generator Test Facility (SGTF) constructed at Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam aims at performing various tests on a 5.5 MWt steam generator. This vertically simulated test article is similar in all respects to the proposed 157 MWt steam generator module for the Prototype Fast Breeder Reactor (PFBR), with reduced number of tubes. Heat transfer performance tests are done with this 19 tube steam generator at various load conditions. Sodium circuit for the SGTF is equipped with oil fired heater as heat source and centrifugal sodium pump, to pump sodium at 105 m 3 /hr flow rate. Other typical components like sodium to air heat exchanger, sodium purification system and hydrogen leak detection system is also present in the sodium circuit. High pressure steam produced in the steam generator is dumped in a condenser and recycled. Important tests planned in SGTF are the heat transfer performance test, stability test, endurance test and performance test of steam generator under various transients. The controlled operation of steam generator will be studied with possible control schemes. A steady state simulation of the steam generator is done with a mathematical model. This paper gives the details of heat transfer

  14. Improving Steam System Performance: A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    2002-06-01

    The sourcebook is a reference for industrial steam system users, outlining opportunities to improve steam system performance. This Sourcebook is designed to provide steam system users with a reference that describes the basic steam system components, outlines opportunities for energy and performance improvements, and discusses the benefits of a systems approach in identifying and implementing these improvement opportunities. The Sourcebook is divided into the following three main sections: Section 1: Steam System Basics--For users unfamiliar with the basics of steam systems, or for users seeking a refresher, a brief discussion of the terms, relationships, and important system design considerations is provided. Users already familiar with industrial steam system operation may want to skip this section. This section describes steam systems using four basic parts: generation, distribution, end use, and recovery. Section 2: Performance Improvement Opportunities--This section discusses important factors that should be considered when industrial facilities seek to improve steam system performance and to lower operating costs. This section also provides an overview of the finance considerations related to steam system improvements. Additionally, this section discusses several resources and tools developed by the U. S. Department of Energy's (DOE) BestPractices Steam Program to identify and assess steam system improvement opportunities. Section 3: Programs, Contacts, and Resources--This section provides a directory of associations and other organizations involved in the steam system marketplace. This section also provides a description of the BestPractices Steam Program, a directory of contacts, and a listing of available resources and tools, such as publications, software, training courses, and videos.

  15. Liquid metal steam generator

    International Nuclear Information System (INIS)

    Wolowodiuk, W.

    1975-01-01

    A liquid metal heated steam generator is described which in the event of a tube failure quickly exhausts out of the steam generator the products of the reaction between the water and the liquid metal. The steam is generated in a plurality of bayonet tubes which are heated by liquid metal flowing over them between an inner cylinder and an outer cylinder. The inner cylinder extends above the level of liquid metal but below the main tube sheet. A central pipe extends down into the inner cylinder with a centrifugal separator between it and the inner cylinder at its lower end and an involute deflector plate above the separator so that the products of a reaction between the liquid metal and the water will be deflected downwardly by the deflector plate and through the separator so that the liquid metal will flow outwardly and away from the central pipe through which the steam and gaseous reaction products are exhausted. (U.S.)

  16. Steam purity in PWRs

    International Nuclear Information System (INIS)

    Hopkinson, J.; Passell, T.

    1982-01-01

    Reports that 2 EPRI studies of PWRs prove that impure steam triggers decay of turbine metals. Reveals that EPRI is attempting to improve steam monitoring and analysis, which are key steps on the way to deciding the most cost-effective degree of steam purity, and to upgrade demineralizing systems, which can then reliably maintain that degree of purity. Points out that 90% of all cracks in turbine disks have occurred at the dry-to-wet transition zone, dubbed the Wilson line. Explains that because even very clean water contains traces of chemical impurities with concentrations in the parts-per-billion range, Crystal River-3's secondary loop was designed with even more purification capability; a deaerator to remove oxygen and prevent oxidation of system metals, and full-flow resin beds to demineralize 100% of the secondary-loop water from the condenser. Concludes that focusing attention on steam and water chemistry can ward off cracking and sludge problems caused by corrosion

  17. Two Phase Flow Stability in the HTR-10 Steam Generator

    Institute of Scientific and Technical Information of China (English)

    居怀明; 左开芬; 刘志勇; 徐元辉

    2001-01-01

    A 10 MW High Temperature Gas Cooled Reactor (HTR-10) designed bythe Institute of Nuclear Energy Technology (INET) is now being constructed. The steam generator (SG) in the HTR-10 is one of the most important components for reactor safety. The thermal-hydraulic performance of the SG was investigated. A full scale HTR-10 Steam Generator Two Tube Engineering Model Test Facility (SGTM-10) was installed and tested at INET. This paper describes the SGTM-10 thermal hydraulic experimental system in detail. The SGTM-10 simulates the actual thermal and structural parameters of the HTR-10. The SGTM-10 includes three separated loops: the primary helium loop, the secondary water loop, and the tertiary cooling water loop. Two parallel tubes are arranged in the test assembly. The main experimental equipment is shown in the paper. Expermental results are given illustrating the effects of the outlet pressures, the heating power, and the inlet subcooling.

  18. Computer aided training in nuclear power engineering at the Gdansk Technical University

    International Nuclear Information System (INIS)

    Marecki, J.; Duzinkiewicz, K.; Kosmowski, K.T.

    1993-01-01

    The Faculty of Electrical Engineering of the Gdansk Technical University has organized post-graduate studies in nuclear power engineering in cooperation with the Institute of Nuclear Research at Swierk since 1973. Post-graduate courses in nuclear power plant construction and design were organized twice. Between 1986 and 1990, prototype software was developed for aiding lectures, self-teaching and knowledge testing in the following fields: 1) dynamics and control of nuclear reactors; 2) simulators of nuclear power plant basic systems (reactor, steam generator, steam turbine, and synchronous generator). (Z.S.) 2 refs

  19. CAREM-25 Steam Generator Stability Analysis

    International Nuclear Information System (INIS)

    Rabiti, A.; Delmastro, D.

    2003-01-01

    In this work the stability of a once-through CAREM-25 steam generator is analyzed.A fix nodes numerical model, that allows the modelling of the liquid, two-phase and superheated steam zones, is implemented.This model was checked against a mobile finite elements model under saturated steam conditions at the channel exit and a good agreement was obtained.Finally the stability of a CAREM steam generator is studied and the range of in let restrictions that a assure the system stability is analyzed

  20. 46 CFR 61.15-5 - Steam piping.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Steam piping. 61.15-5 Section 61.15-5 Shipping COAST... Periodic Tests of Piping Systems § 61.15-5 Steam piping. (a) Main steam piping shall be subjected to a... removed and the piping thoroughly examined. (b) All steam piping subject to pressure from the main boiler...

  1. Steampunk: Full Steam Ahead

    Science.gov (United States)

    Campbell, Heather M.

    2010-01-01

    Steam-powered machines, anachronistic technology, clockwork automatons, gas-filled airships, tentacled monsters, fob watches, and top hats--these are all elements of steampunk. Steampunk is both speculative fiction that imagines technology evolved from steam-powered cogs and gears--instead of from electricity and computers--and a movement that…

  2. Sludge Lancing and Visual Inspection of Steam Generator for KORI Nuclear Power Plant Unit 3

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Woo-Tae [Korea Hydro and Nuclear Power Co. Ltd. Central Research Institute, Daejeon(Korea, Republic of); Kim, Sang-Tae; Hong, Jae-Yung; Jeong, Yun-Soon [Sae-An Engineering Corporation, Seoul (Korea, Republic of)

    2015-05-15

    Annulus, tube-lane, and in-bundle area of the steam generators were searched for possible foreign objects. No new foreign objects were found. Two foreign objects which were found during previous outage were impossible to remove. Mock-up training before the operation was helpful to finish the service as scheduled. Sludge lancing of the three steam generators was made using FOLAS-I lancing system. FOSAR operations were done using video probe and special tools of Sae-An Engineering Cooperation. The weight of sludge removed from SG 'A', 'B', and 'C' was 177kg, 134kg, 117kg respectively. Bag filters for and cartridge filters consumed for SG 'A', 'B', and 'C' was (53,414), (75,243), and (61,171) respectively. Foreign object search operation for the annulus, the tube lane, and in-bundle area of the steam generators found nothing. Retrieval of the two remaining foreign objects from the previous outage was tried but failed.

  3. Sludge Lancing and Visual Inspection of Steam Generator for KORI Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Kim, Sang-Tae; Hong, Jae-Yung; Jeong, Yun-Soon

    2015-01-01

    Annulus, tube-lane, and in-bundle area of the steam generators were searched for possible foreign objects. No new foreign objects were found. Two foreign objects which were found during previous outage were impossible to remove. Mock-up training before the operation was helpful to finish the service as scheduled. Sludge lancing of the three steam generators was made using FOLAS-I lancing system. FOSAR operations were done using video probe and special tools of Sae-An Engineering Cooperation. The weight of sludge removed from SG 'A', 'B', and 'C' was 177kg, 134kg, 117kg respectively. Bag filters for and cartridge filters consumed for SG 'A', 'B', and 'C' was (53,414), (75,243), and (61,171) respectively. Foreign object search operation for the annulus, the tube lane, and in-bundle area of the steam generators found nothing. Retrieval of the two remaining foreign objects from the previous outage was tried but failed

  4. 7 CFR 29.3058 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3058 Section 29.3058 Agriculture... Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [24 FR 8771, Oct. 29, 1959. Redesignated at 47 FR...

  5. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. (TECOGEN, Inc., Waltham, MA (United States))

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  6. Steam atmosphere drying concepts using steam exhaust recompression

    Energy Technology Data Exchange (ETDEWEB)

    DiBella, F.A. [TECOGEN, Inc., Waltham, MA (United States)

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  7. Cycle improvement for nuclear steam power plant

    International Nuclear Information System (INIS)

    Silvestri, G.J. Jr.

    1976-01-01

    A pressure-increasig ejector element is disposed in an extraction line intermediate to a high pressure turbine element and a feedwater heater. The ejector utilizes high pressure fluid from a reheater drain as the motive fluid to increase the pressure at which the extraction steam is introduced into the feedwater heater. The increase in pressure of the extraction steam entering the feedwater heater due to the steam passage through the ejector increases the heat exchange capability of the extraction steam thus increasing the overall steam power plant efficiency

  8. 46 CFR 196.45-1 - Master and chief engineer responsible.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Master and chief engineer responsible. 196.45-1 Section... VESSELS OPERATIONS Carrying of Excess Steam § 196.45-1 Master and chief engineer responsible. (a) It shall be the duty of the master and the engineer in charge of the boilers of any vessel to require that a...

  9. 7 CFR 29.2552 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2552 Section 29.2552 Agriculture...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2552 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam...

  10. 7 CFR 29.2300 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.2300 Section 29.2300 Agriculture... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2300 Steam... machine or other steam-conditioning equipment. [37 FR 13521, July 11, 1972. Redesignated at 51 FR 40406...

  11. 7 CFR 29.3548 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.3548 Section 29.3548 Agriculture... Type 95) § 29.3548 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [30 FR 9207, July 23, 1965...

  12. 7 CFR 29.1060 - Steam-dried.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Steam-dried. 29.1060 Section 29.1060 Agriculture... Type 92) § 29.1060 Steam-dried. The condition of unfermented tobacco as customarily prepared for storage by means of a redrying machine or other steam-conditioning equipment. [42 FR 21092, Apr. 25, 1977...

  13. Design of stability-guaranteed fuzzy logic controller for nuclear steam generators

    International Nuclear Information System (INIS)

    Cho, B.H.; No, H.C.

    1996-01-01

    A fuzzy logic controller (FLC) and a fuzzy logic filter (FLF), which have a special type of fuzzifier, inference engine, and defuzzifier, are applied to the water level control of a nuclear steam generator (S/G). It is shown that arbitrary two-input, single-output linear controllers can be adequately expressed by this FLC. A procedure to construct stability-guaranteed FLC rules is proposed. It contains the following steps: (1) the stable sector of linear feedback gains is obtained from the suboptimal concept based on LQR theory and the Lyapunov's stability criteria; (2) the stable sector of linear gains is mapped into two linear rule tables that are used as limits for the FLC rules; and (3) the construction of an FLC rule table is done by choosing certain rules that lie between these limits. This type of FLC guarantees asymptotic stability of the control system. The FLF generates a feedforward signal of S/G feedwater from the steam flow measurement using a fuzzy concept. Through computer simulation, it is found that the FLC with the FLF works better than a well-tuned PID controller with variable gains to reduce swell/shrink phenomena, especially for the water level deviation and abrupt steam flow disturbances that are typical in the existing power plants

  14. Steam generating system in LMFBR type reactors

    International Nuclear Information System (INIS)

    Kurosawa, Katsutoshi.

    1984-01-01

    Purpose: To suppress the thermal shock loads to the structures of reactor system and secondary coolant system, for instance, upon plant trip accompanying turbine trip in the steam generation system of LMFBR type reactors. Constitution: Additional feedwater heater is disposed to the pipeway at the inlet of a steam generator in a steam generation system equipped with a closed loop extended from a steam generator by way of a gas-liquid separator, a turbine and a condensator to the steam generator. The separated water at high temperature and high pressure from a gas-liquid separator is heat exchanged with coolants flowing through the closed loop of the steam generation system in non-contact manner and, thereafter, introduced to a water reservoir tank. This can avoid the water to be fed at low temperature as it is to the steam generator, whereby the thermal shock loads to the structures of the reactor system and the secondary coolant system can be suppressed. (Moriyama, K.)

  15. Design considerations for a steam-injection pilot with in-situ foaming

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, M.H.; Sanyal, S.K.; Horn, A.J.

    1982-08-01

    This report reviews the necessary aspects of the planning, operation, evaluation, environmental impact and cost to implement a field pilot of steam injection with in-situ foaming. The Stanford University Petroleum Research Institute (SUPRI) is planning to implement such a pilot in Kern County, California. The cost of the pilot will be shared by the US Department of Energy and an oil company. Some important aspects of drilling and completion programs and their specifications, permits from regulatory bodies, and downhole tools to improve steam stimulation are discussed. The essential surface facilities which include water treatment plant, steam generator, demulsifier and dehydrator are considered. The necessary laboratory research in support of the pilot has been recommended. The formation evaluation and reservoir engineering effort for the pilot has been divided into three phases: reservoir definition, reservoir monitoring and post-pilot study. Appropriate techniques applicable to each phase of the test have been discussed. The environmental impact regulations as related to the steam injection process have been considered. In particular, the environmental problems associated with the burning of crude oil and desulfurization of flue gas have been discussed. Other environmental considerations such as solid and liquid waste disposal, health and safety are also discussed. An estimate of the cost of this field test is presented. Three scenarii (for pilots with high, medium, and low investment potentials, respectively) are presented. Since this report was prepared, a specific site for the supri pilot has been chosen. Appendices G and H present the details on this site.

  16. Circumferential cracking of steam generator tubes

    International Nuclear Information System (INIS)

    Karwoski, K.J.

    1997-04-01

    On April 28, 1995, the U.S. Nuclear Regulatory Commission (NRC) issued Generic Letter (GL) 95-03, open-quote Circumferential Cracking of Steam Generator Tubes.close-quote GL 95-03 was issued to obtain information needed to verify licensee compliance with existing regulatory requirements regarding the integrity of steam generator tubes in domestic pressurized-water reactors (PWRs). This report briefly describes the design and function of domestic steam generators and summarizes the staff's assessment of the responses to GL 95-03. The report concludes with several observations related to steam generator operating experience. This report is intended to be representative of significant operating experience pertaining to circumferential cracking of steam generator tubes from April 1995 through December 1996. Operating experience prior to April 1995 is discussed throughout the report, as necessary, for completeness

  17. Options for Steam Generator Decommissioning

    International Nuclear Information System (INIS)

    Krause, Gregor; Amcoff, Bjoern; Robinson, Joe

    2016-01-01

    Selecting the best option for decommissioning steam generators is a key consideration in preparing for decommissioning PWR nuclear power plants. Steam Generators represent a discrete waste stream of large, complex items that can lend themselves to a variety of options for handling, treatment, recycling and disposal. Studsvik has significant experience in processing full size Steam Generators at its metal recycling facility in Sweden, and this paper will introduce the Studsvik steam generator treatment concept and the results achieved to date across a number of projects. The paper will outline the important parameters needed at an early stage to assess options and to help consider the balance between off-site and on-site treatment solutions, and the role of prior decontamination techniques. The paper also outlines the use of feasibility studies and demonstration projects that have been used to help customers prepare for decommissioning. The paper discusses physical, radiological and operational history data, Pro and Contra factors for on- and off-site treatment, the role of chemical decontamination prior to treatment, planning for off-site shipments as well as Studsvik experience This paper has an original focus upon the coming challenges of steam generator decommissioning and potential external treatment capacity constraints in the medium term. It also focuses on the potential during operations or initial shut-down to develop robust plans for steam generator management. (authors)

  18. Comparative Study on the Effects of Boiling, Steaming, Grilling, Microwaving and Superheated Steaming on Quality Characteristics of Marinated Chicken Steak

    Science.gov (United States)

    Choi, Yun-Sang; Kim, Young-Boong; Jeon, Ki-Hong; Kim, Eun-Mi; Sung, Jung-Min; Kim, Hyun-Wook

    2016-01-01

    The effects of five different cooking methods (boiling, steaming, grilling, microwaving, and superheated steaming) on proximate composition, pH, color, cooking loss, textural properties, and sensory characteristics of chicken steak were studied. Moisture content and lightness value (L*-value) were higher in superheated steam cooked chicken steak than that of the other cooking treatments such as boiling, steaming, grilling and microwaving cooking (pcooked chicken steak was lower than that in the other cooking treatments (pchicken steak cooked using various methods (p>0.05). Among the sensory characteristics, tenderness score, juiciness score and overall acceptability score were the highest for the superheated steam samples (p0.05). These results show that marinated chicken steak treated with superheated steam in a preheated 250℃ oven and 380℃ steam for 5 min until core temperature reached 75℃ improved the quality characteristics and sensory properties the best. Therefore, superheated steam was useful to improve cooked chicken steak. PMID:27499656

  19. Determination of moisture content in steams and variation in moisture content with operating boiler level by analyzing sodium content in steam generator water and steam condensate of a nuclear power plant using ion chromatographic technique

    International Nuclear Information System (INIS)

    Pal, P.K.; Bohra, R.C.

    2015-01-01

    Dry steam with moisture content less than <1% is the stringent requirements in a steam generator for good health of the turbine. In order to confirm the same, determination of sodium is done in steam generator water and steam condensate using Flame photometer in ppm level and ion chromatograph in ppb level. Depending on the carry over of sodium in steam along with the water droplet (moisture), the moisture content in steam was calculated and was found to be < 1% which is requirements of the system. The paper described the salient features of a PHWR, principle of Ion Chromatography, chemistry parameters of Steam Generators and calculation of moisture content in steam on the basis of sodium analysis. (author)

  20. Reciprocating wear in a steam environment

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.J.; Gee, M.G. [National Physical Laboratory, Teddington, Middlesex (United Kingdom)

    2010-07-01

    Tests to simulate the wear between sliding components in steam power plant have been performed using a low frequency wear apparatus at elevated temperatures under static load, at ambient pressure, in a steam environment. The apparatus was modified to accept a novel method of steam delivery. The materials tested were pre-exposed in a flowing steam furnace at temperature for either 500 or 3000 hours to provide some simulation of long term ageing. The duration of each wear test was 50 hours and tests were also performed on as-received material for comparison purposes. Data has been compared with results of tests performed on non-oxidised material for longer durations and also on tests without steam to examine the effect of different environments. Data collected from each test consists of mass change, stub height measurement and friction coefficient as well as visual inspection of the wear track. Within this paper, it is reported that both pre-ageing and the addition of steam during testing clearly influence the friction between material surfaces. (orig.)

  1. Reconstruction of steam generators super emergency feadwater supply system (SHNC) and steam dump stations to the atmosphere system PSA

    International Nuclear Information System (INIS)

    Kuzma, J.

    2001-01-01

    Steam Generators Super Emergency Feadwater Supply System (SHNC) and Steam Dump Stations to the Atmosphere System (PSA) are two systems which cooperate to remove residual heat from reactor core after seismic event. SHNC assure feeding of the secondary site of steam generator (Feed) where after heat removal.from primary loops, is relieved to the atmosphere by PSA (Bleed) in form of steam. (author)

  2. Thermal performances of molten salt steam generator

    International Nuclear Information System (INIS)

    Yuan, Yibo; He, Canming; Lu, Jianfeng; Ding, Jing

    2016-01-01

    Highlights: • Thermal performances of molten salt steam generator were experimentally studied. • Overall heat transfer coefficient reached maximum with optimal molten salt flow rate. • Energy efficiency first rose and then decreased with salt flow rate and temperature. • Optimal molten salt flow rate and temperature existed for good thermal performance. • High inlet water temperature benefited steam generating rate and energy efficiency. - Abstract: Molten salt steam generator is the key technology for thermal energy conversion from high temperature molten salt to steam, and it is used in solar thermal power station and molten salt reactor. A shell and tube type molten salt steam generator was set up, and its thermal performance and heat transfer mechanism were studied. As a coupling heat transfer process, molten salt steam generation is mainly affected by molten salt convective heat transfer and boiling heat transfer, while its energy efficiency is also affected by the heat loss. As molten salt temperature increased, the energy efficiency first rose with the increase of heat flow absorbed by water/steam, and then slightly decreased for large heat loss as the absorbed heat flow still rising. At very high molten salt temperature, the absorbed heat flow decreased as boiling heat transfer coefficient dropping, and then the energy efficiency quickly dropped. As the inlet water temperature increased, the boiling region in the steam generator remarkably expanded, and then the steam generation rate and energy efficiency both rose with the overall heat transfer coefficient increasing. As the molten salt flow rate increased, the wall temperature rose and the boiling heat transfer coefficient first increased and then decreased according to the boiling curve, so the overall heat transfer coefficient first increased and then decreased, and then the steam generation rate and energy efficiency of steam generator both had maxima.

  3. HTGR power plant hot reheat steam pressure control system

    International Nuclear Information System (INIS)

    Braytenbah, A.S.; Jaegtnes, K.O.

    1975-01-01

    A control system for a high temperature gas cooled reactor (HTGR) power plant is disclosed wherein such plant includes a plurality of steam generators. Dual turbine-generators are connected to the common steam headers, a high pressure element of each turbine receiving steam from the main steam header, and an intermediate-low pressure element of each turbine receiving steam from the hot reheat header. Associated with each high pressure element is a bypass line connected between the main steam header and a cold reheat header, which is commonly connected to the high pressure element exhausts. A control system governs the flow of steam through the first and second bypass lines to provide for a desired minimum steam flow through the steam generator reheater sections at times when the total steam flow through the turbines is less than such minimum, and to regulate the hot reheat header steam pressure to improve control of the auxiliary steam turbines and thereby improve control of the reactor coolant gas flow, particularly following a turbine trip. (U.S.)

  4. Model of reverse steam generator

    International Nuclear Information System (INIS)

    Malasek, V.; Manek, O.; Masek, V.; Riman, J.

    1987-01-01

    The claim of Czechoslovak discovery no. 239272 is a model designed for the verification of the properties of a reverse steam generator during the penetration of water, steam-water mixture or steam into liquid metal flowing inside the heat exchange tubes. The design may primarily be used for steam generators with a built-in inter-tube structure. The model is provided with several injection devices configured in different heat exchange tubes, spaced at different distances along the model axis. The design consists in that between the pressure and the circumferential casings there are transverse partitions and that in one chamber consisting of the circumferential casings, pressure casing and two adjoining partitions there is only one passage of the injection device through the inter-tube space. (Z.M.). 1 fig

  5. From "They" Science to "Our" Science: Hip Hop Epistemology in STEAM Education

    Science.gov (United States)

    Dolberry, Maurice E.

    Hip hop has moved from being considered a type of music into being understood as a culture in which a prominent type of music originates. Hip hop culture has a philosophy and epistemological constructs as well. This study analyzed those constructs to determine how conceptions of science factor in hip hop worldviews. Pedagogical models in culturally responsive teaching and Science, Technology, Engineering, Arts, and Mathematics (STEAM) education were also examined to discern their philosophical connections with hip hop culture. These connections were used to create two theoretical models. The first one, Hip Hop Science, described how scientific thought functions in hip hop culture. The second model, Hip Hop STEAM Pedagogy, proposes how hip hop culture can inform STEAM teaching practices. The study began by using Critical Race Theory to create a theoretical framework proposing how the two theoretical models could be derived from the philosophical and pedagogical concepts. Content analysis and narrative inquiry were used to analyze data collected from scholarly texts, hip hop songs, and interviews with hip hop-responsive educators. The data from these sources were used initially to assess the adequacy of the proposed theoretical framework, and subsequently to improve its viability. Four overlapping themes emerged from the data analyses, including hip hop-resistance to formal education; how hip hop culture informs pedagogical practice in hip hop-responsive classrooms; conceptions of knowledge and reality that shape how hip hoppers conduct scientific inquiry; and hip hop-based philosophies of effective teaching for hip hoppers as a marginalized cultural group. The findings indicate that there are unique connections between hip hop epistemology, sciencemindedness, and pedagogical practices in STEAM education. The revised theoretical framework clarified the nature of these connections, and supported claims from prior research that hip hop culture provides viable sites of

  6. Steam generator operation and maintenance

    International Nuclear Information System (INIS)

    Lee, C.K.

    2004-01-01

    Corrosion of steam generator tube has resulted in the need for extensive repair and replacement of steam generators. Over the past two decades, steam generator problems in the United States were viewed to be one of the most significant contributor to lost generation in operating PWR plants. When the SGOG-I (Steam Generator Owners Groups) was formed in early 1977, denting was responsible for almost 90% of the tube plugging. By the end of 1982, this figure was reduced to less than 2%. During the existence of SGOG-II (from 1982 to 1986), IGA/SCC (lntergranular Attack/Stress Corrosion Cracking) in the tube sheet, primary side SCC, pitting, and fretting surfaced as the primary causes of tube degradation. Although significant process has been made with wastage and denting, the utilities experience shows that the percentage of reactors plugging tubes and the percentage of tubes being plugged each year has remained relatively constant. The diversity of the damage mechanisms means that no one solution is likely to resolve all problems. The task of maintaining steam generator integrity continues to be formidable and challenging. As the older problems were brought under control, many new problems emerged. SGOG-II (Steam Generator Owners Group program from 1982 to 1986) has focused on these problem areas such as tube stress corrosion cracking (SCC) and intergranular attack (IGA) in the open tube sheet crevice, primary side tube cracking, pitting in the lower span, and tube fretting in preheated section and anti-vibration bar (AVB) locations. Primary Water Stress Corrosion Cracking (PWSCC) in the tube to tubesheet roll transition has been a wide spread problem in the Recirculation Steam Generators (RSG) during this period. Although significant progress has been made in resolving this problem, considerable work still remains. One typical problem in the Once Through Steam Generator (OTSG) was the tube support plate broached hole fouling which affects the OTSG steam generating

  7. Minimize corrosion degradation of steam generator tube materials

    International Nuclear Information System (INIS)

    Lu, Y.

    2006-01-01

    As part of a coordinated program, AECL is developing a set of tools to aid with the prediction and management of steam generator performance. Although stress corrosion cracking (of Alloy 800) has not been detected in any operating steam generator, for life management it is necessary to develop mechanistic models to predict the conditions under which stress corrosion cracking is plausible. Experimental data suggest that all steam generator tube materials are susceptible to corrosion degradation under some specific off-specification conditions. The tolerance to the chemistry upset for each steam generator tube alloy is different. Electrochemical corrosion behaviors of major steam generator tube alloys were studied under the plausible aggressive crevice chemistry conditions. The potential hazardous conditions leading to steam generator tube degradation and the conditions, which can minimize steam generator tube degradation have been determined. Recommended electrochemical corrosion potential/pH zones were defined for all major steam generator tube materials, including Alloys 600, 800, 690 and 400, under CANDU steam generator operating and startup conditions. Stress corrosion cracking tests and accelerated corrosion tests were carried out to verify and revise the recommended electrochemical corrosion potential/pH zones. Based on this information, utilities can prevent steam generator material degradation surprises by appropriate steam generator water chemistry management and increase the reliability of nuclear power generating stations. (author)

  8. Steam generator sludge removal apparatus

    International Nuclear Information System (INIS)

    Schafer, B.W.; Werner, C.E.; Klahn, F.C.

    1992-01-01

    The present invention relates to equipment for cleaning steam generators and in particular to a high pressure fluid lance for cleaning sludge off the steam generator tubes away from an open tube lane. 6 figs

  9. Effects of aging and service wear on main steam isolation valves and valve operators

    International Nuclear Information System (INIS)

    Clark, R.L.

    1996-03-01

    In recent years main steam isolation valve (MSIV operating problems have resulted in significant operational transients (e.g., spurious reactor trips, steam generator dry out, excessive valve seat leakage), increased cost, and decreased plant availability. A key ingredient to an engineering-oriented reliability improvement effort is a thorough understanding of relevant historical experience. A detailed review of historical failure data available through the Institute of Nuclear Power Operation's Nuclear Plant Reliability Data System has been conducted for several types of MSIVs and valve operators for both boiling-water reactors and pressurized-water reactors. The focus of this review is on MSIV failures modes, actuator failure modes, consequences of failure on plant operations, method of failure detection, and major stressors affecting both valves and valve operators

  10. Increase of Steam Moisture in the BWR-Facility KKP 1

    International Nuclear Information System (INIS)

    Noack, Volker

    2002-01-01

    Main steam moisture in a BWR facility is determined by steam quality at core outlet and efficiency of steam separators and steam dryers. Transport of water with steam is accompanied by transport of radionuclides out of RPV resulting in enhanced radiation level in the main steam system. A remarkable increase of main steam moisture started at KKP 1 in 1997. In the following years increase of steam outlet moisture started at lower and lower core mass flow rates. Dose rate in main steam system increased simultaneously. Core mass flow rate and thus thermal power had to be reduced during stretch out operation to keep the main steam moisture below the specified boundary of 0.2 %. This boundary also guarantees, that radiological exposure remains far below approved values. The increase of main steam moisture corresponds with the application of low leakage core loading. Low leakage core loading results in enhanced steam generation in the center and in reduced steam generation in the outer zones of the core. It can be shown, that the uneven steam generation in the core became stronger over the years. Therefore, steam quality at inlet of the outer steam separators was getting lower. This resulted in higher carry over of water in this steam separators and steam dryers, thus explaining the increasing main steam moisture. KKP 1 started in 2000 with spectral shift operation. As one should expect, this resulted in reduced steam moisture. It remains the question of steam moisture in case of stretch out operation. Countermeasures are briefly discussed. (authors)

  11. Testing installation for a steam generator

    International Nuclear Information System (INIS)

    Dubourg, M.

    1985-01-01

    The invention proposes a testing installation for a steam generator associated to a boiler, comprising a testing exchanger connected to a feeding circuit in secondary fluid and to a circuit to release the steam produced, and comprising a heating-tube bundle connected to a closed circuit of circulation of a primary coolant at the same temperature and at the pressure than the primary fluid. The heating-tube bundle of the testing exchanger has the same height than the primary bundle of the steam generator and the testing exchanger is at the same level and near the steam generator and is fed by the same secondary fluid such as it is subject to the same operation phases during a long period. The in - vention applies, more particularly, to the steam generators of pressurized water nuclear power plants [fr

  12. Compilation of contract research for the Materials Engineering Branch, Division of Engineering: Annual report for FY 1987

    International Nuclear Information System (INIS)

    1988-06-01

    This compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators, nondestructive examination of primary components, and in safety research for decommissioning and decontamination, on-site storage, and engineered safety features. This report, covering research conducted during Fiscal Year 1987 is the sixth volume of the series of NUREG-0975, ''Compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering.''

  13. Corrosion Evaluation and Corrosion Control of Steam Generators

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M.

    2008-06-01

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants

  14. Gas-steam combined cycles for power generation: Current state-of-the-art and future prospects

    International Nuclear Information System (INIS)

    Macchi, E.; Chiesa, P.; Consonni, S.; Lozza, G.

    1992-01-01

    The first part of this paper points out the many factors which, after years of stagnation in the electric power industry, are giving rise to a true revolution in power generation engineering: the passing from closed cycles, using steam as the working fluid and energy sources external to the power cycle, to the use of open cycles, in which the primary energy source, in the form of a fuel, is directly immersed in the working fluid of the engine. Attention is given to the advantages in terms of energy and cost savings, greater flexibility in energy policy options and pollution abatement which are now being afforded through the use of gas turbines with combined gas-steam cycles. The second part of the paper deals with an assessment of the current state-of-the-art of the technology relative to these innovative power systems. The assessment is followed by a review of foreseen developments in combined cycle system design, choice of construction materials, type of cooling systems, operating temperatures and performance capabilities

  15. Condensation of the steam in the horizontal steam line during cold water flooding

    International Nuclear Information System (INIS)

    Strubelj, L.; Tiselj, I.

    2006-01-01

    Direct contact condensation and condensation induced water-hammer in a horizontal pipe was experimentally investigated at PMK-2 test facility of the Hungarian Atomic Energy Research Institute KFKI. The experiment is preformed in the horizontal section of the steam line of the PMK-2 integral test facility. As liquid water floods the horizontal part of the pipeline, the counter current horizontally stratified flow is being observed. During the flooding of the steam line, the vapour-liquid interface area increases and therefore the vapour condensation rate and the vapour velocity also increase. Similar phenomena can occur in the cold/hot leg of the primary loop of PWR nuclear power plant during loss of coolant accident, when emergency core cooling system is activated. Water level at one cross-section and four local void fraction and temperature at the top of steam line was measured and compared with simulation. Condensed steam increases the water temperature that is why the local temperature measurements are the most important information, from which condensation rate can be estimated, since mass of condensed steam was not measured. Free surface simulation of the experiment with thermal phase change model is presented. Surface renewal concept with small eddies is used for calculation of heat transfer coefficient. With surface renewal theory we did not get results similar to experiment, that is why heat transfer coefficient was increased by factor 20. In simulation with heat transfer coefficient calculated with surface renewal concept bubble entrapment is due to reflection of the wave from the end of the pipe. When heat transfer coefficient is increased, condensation rate and steam velocity are also increased, bubble entrapment is due to Kelvin-Helmholtz instability of the free surface, and the results become similar to the measurements. (author)

  16. Cleanliness criteria to improve steam generator performance

    International Nuclear Information System (INIS)

    Schwarz, T.; Bouecke, R.; Odar, S.

    2005-01-01

    High steam generator performance is a prerequisite for high plant availability and possible life time extension. The major opponent to that is corrosion and fouling of the heating tubes. Such steam generator degradation problems arise from the continuous ingress of non-volatile contaminants, i.e. corrosion products and salt impurities may accumulate in the steam generators. These impurities have their origin in the secondary side systems. The corrosion products generally accumulate in the steam generators and form deposits not only in the flow restricted areas, such as on top of tube sheet and tube support structure, but also build scales on the steam generator heating tubes. In addition, the tube scales in general affect the steam generator thermal performance, which ultimately causes a reduction of power output. The most effective ways of counteracting all these degradation problems, and thus of improving the steam generator performance is to keep them in clean conditions or, if judged necessary, to plan cleaning measures such as mechanical tube sheet lancing or chemical cleaning. This paper presents a methodology how to assess the cleanliness condition of a steam generator by bringing together all available operational and inspection data such as thermal performance and water chemistry data. By means of this all-inclusive approach the cleanliness condition is quantified in terms of a fouling index. The fouling index allows to monitor the condition of a specific steam generator, compare it to other plants and, finally, to serve as criterion for cleaning measures such as chemical cleaning. The application of the cleanliness criteria and the achieved field results with respect to improvements of steam generator performance will be presented. (author)

  17. A brief history of mechanical engineering

    CERN Document Server

    Dixit, Uday Shanker; Davim, J Paulo

    2017-01-01

    What is mechanical engineering? What a mechanical engineering does? How did the mechanical engineering change through ages? What is the future of mechanical engineering? This book answers these questions in a lucid manner. It also provides a brief chronological history of landmark events and answers questions such as: When was steam engine invented? Where was first CNC machine developed? When did the era of additive manufacturing start? When did the marriage of mechanical and electronics give birth to discipline of mechatronics? This book informs and create interest on mechanical engineering in the general public and particular in students. It also helps to sensitize the engineering fraternity about the historical aspects of engineering. At the same time, it provides a common sense knowledge of mechanical engineering in a handy manner.

  18. Materials for Advanced Ultrasupercritical Steam Turbines Task 4: Cast Superalloy Development

    Energy Technology Data Exchange (ETDEWEB)

    Thangirala, Mani

    2015-09-30

    The Steam Turbine critical stationary structural components are high integrity Large Shell and Valve Casing heavy section Castings, containing high temperature steam under high pressures. Hence to support the development of advanced materials technology for use in an AUSC steam turbine capable of operating with steam conditions of 760°C (1400°F) and 35 Mpa (5000 psia), Casting alloy selection and evaluation of mechanical, metallurgical properties and castability with robust manufacturing methods are mandated. Alloy down select from Phase 1 based on producability criteria and creep rupture properties tested by NETL-Albany and ORNL directed the consortium to investigate cast properties of Haynes 282 and Haynes 263. The goals of Task 4 in Phase 2 are to understand a broader range of mechanical properties, the impact of manufacturing variables on those properties. Scale up the size of heats to production levels to facilitate the understanding of the impact of heat and component weight, on metallurgical and mechanical behavior. GE Power & Water Materials and Processes Engineering for the Phase 2, Task 4.0 Castings work, systematically designed and executed casting material property evaluation, multiple test programs. Starting from 15 lbs. cylinder castings to world’s first 17,000 lbs. poured weight, heavy section large steam turbine partial valve Haynes 282 super alloy casting. This has demonstrated scalability of the material for steam Turbine applications. Activities under Task 4.0, Investigated and characterized various mechanical properties of Cast Haynes 282 and Cast Nimonic 263. The development stages involved were: 1) Small Cast Evaluation: 4 inch diam. Haynes 282 and Nimonic 263 Cylinders. This provided effects of liquidus super heat range and first baseline mechanical data on cast versions of conventional vacuum re-melted and forged Ni based super alloys. 2) Step block castings of 300 lbs. and 600 lbs. Haynes 282 from 2 foundry heats were evaluated which

  19. Thermodynamic analysis of steam-injected advanced gas turbine cycles

    Science.gov (United States)

    Pandey, Devendra; Bade, Mukund H.

    2017-12-01

    This paper deals with thermodynamic analysis of steam-injected gas turbine (STIGT) cycle. To analyse the thermodynamic performance of steam-injected gas turbine (STIGT) cycles, a methodology based on pinch analysis is proposed. This graphical methodology is a systematic approach proposed for a selection of gas turbine with steam injection. The developed graphs are useful for selection of steam-injected gas turbine (STIGT) for optimal operation of it and helps designer to take appropriate decision. The selection of steam-injected gas turbine (STIGT) cycle can be done either at minimum steam ratio (ratio of mass flow rate of steam to air) with maximum efficiency or at maximum steam ratio with maximum net work conditions based on the objective of plants designer. Operating the steam injection based advanced gas turbine plant at minimum steam ratio improves efficiency, resulting in reduction of pollution caused by the emission of flue gases. On the other hand, operating plant at maximum steam ratio can result in maximum work output and hence higher available power.

  20. A new six stroke single cylinder diesel engine referring Rankine cycle

    International Nuclear Information System (INIS)

    Chen, Hao; Guo, Qi; Yang, Lu; Liu, Shenghua; Xie, Xuliang; Chen, Zhaoyang; Liu, Zengqiang

    2015-01-01

    Six stroke engine presented by Conklin and Szybist is an effective way to recover energy of exhaust gas by adding a partial exhaust stroke and steam expansion stroke. Characteristics of the engine are analyzed and its disadvantages are pointed out. A new six stroke diesel engine is presented here. It refers rankine cycle inside cylinder. Total exhaust gas is recompressed and at a relatively low back pressure in the fourth stroke water is injected to which maintains liquid phase until the piston moves to the TDC. At c′ 720 °CA (crank angle) the water becomes saturated. An ideal thermodynamics model of exhaust gas compression, water injection and expansion is constructed to investigate this modification. Properties at characteristic points are calculated to determine the increased indicated work. Results show that the work increases with the advance of water injection timing and the quality of water. The cycle is more efficient and the new engine has potential for saving energy. Moreover, it is forecasted that HC and PM emissions may reform with steam in reality and H 2 is produced which will react with NO X . - Highlights: • A new six stroke diesel engine is introduced and a new ideal cycle is constructed. • Increased indicated work of the cycle proves that the cycle is more efficient. • In reality steam may reform with HC and PM and produced H 2 may react with NO X emission. • The engine has the potential for energy saving and emission reducing

  1. Developing 21st century skills in chemistry classrooms: Opportunities and challenges of STEAM integration

    Science.gov (United States)

    Hadinugrahaningsih, Tritiyatma; Rahmawati, Yuli; Ridwan, Achmad

    2017-08-01

    The paper portrays the first year of two-year study in integration Science, Technology, Engineering, Art, and Mathematics (STEAM) in chemistry learning. The research focused on developing 21st-century skills of chemistry students in secondary schools. The 21st-century skills as a set of abilities that students need to develop in facing the future challenge which involves learning, literacy, and life skills. The study was conducted in two secondary schools both public and private school in topics of hydrocarbon, petroleum, solubility, and acid base in year 10 and 11. The qualitative methodology was applied to explore the students' learning experiences and understanding the research context. Data was collected through observation, interview, reflective journal, and 21st-century rubric. The STEAM approach was integrated through modification of project-based learning model. The students had opportunities to develop their own projects by integrating chemistry and STEAM principles to their project. The results show that students have developed their critical and creative thinking, problem-solving skills, collaboration and argumentation skills, leadership and responsibility, information and literacy skills. The researchers faced the challenges of integrating STEAM within the chemistry curricula, empowering students, and managing the teaching and time resources. Students have started to challenge their critical and creative thinking within the existing learning environments. Integrating STEAM into chemistry learning has developed students' 21st-century skills in those three areas. Teachers also learned to develop their competencies for being facilitators and agents of change, in addition to skills development in dealing with students' differences.

  2. Electric Engines to Gas

    International Nuclear Information System (INIS)

    Novoa, M.G.

    1996-01-01

    Environmental pollution and specially air pollution, it is produced in a wide range by exhaust gases of internal combustion engines, those which are used to generate energy. Direct use of fossil combustibles as petroleum derivatives and coal produces large quantities of harmful elements to ecology equilibrium. Whit the objective of reducing this pollutant load has been development thermoelectric plants whit turbine to gas or to steam, those which are moved by internal combustion engines. Gas engines can burn most of available gases, as both solid waste and wastewater treatment plants biogas, propane gas, oil-liquefied gas or natural gas. These gases are an alternative and clean energy source, and its efficiency in internal combustion engines is highest compared whit other combustibles as gasoline-motor or diesel

  3. Corrosion Evaluation and Corrosion Control of Steam Generators

    Energy Technology Data Exchange (ETDEWEB)

    Maeng, W. Y.; Kim, U. C.; Sung, K. W.; Na, J. W.; Lee, Y. H.; Lee, D. H.; Kim, K. M

    2008-06-15

    Corrosion damage significantly influences the integrity and efficiency of steam generator. Corrosion problems of steam generator are unsolved issues until now even though much effort is made around world. Especially the stress corrosion cracking of heat exchange materials is the first issue to be solved. The corrosion protection method of steam generator is important and urgent for the guarantee of nuclear plant's integrity. The objectives of this study are 1) to evaluate the corrosion properties of steam generator materials, 2) to optimize the water chemistry of steam generator and 3) to develop the corrosion protection method of primary and secondary sides of steam generator. The results will be reflected to the water chemistry guideline for improving the integrity and efficiency of steam generator in domestic power plants.

  4. Non-polluting steam generators with fluidized-bed furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, H [Deutsche Babcock A.G., Oberhausen (Germany, F.R.)

    1979-07-01

    The author reports on a 35 MW steam generator with hard coal fluidized-bed furnace a planned 35 MW steam generator with flotation-dirt fluidized-bed furnace, and on planned steam generators for fluidized-bed firing of hard coal up to a steam power of about 200 MW.

  5. Erosion corrision in water steam circuits - reasons and countermeasures

    International Nuclear Information System (INIS)

    Heitmann, H.G.; Kastner, W.

    An increased material erosion on tubes in steam generators, preheaters and condensers but also on turbine casings and connecting pipes of unalloyed and low-alloy steels occurs, to an essential extent, due to erosion-corrosion processes in the fluid-swept plant sections. On the one hand, they cause thinning of the material and sometimes leaks, on the other hand the erosion material leads to contamination of the water-steam cycle with its harmful consequences. The cause of erosion-corrosion is a dissolving corrosion due to the convective effect of pure fluid turbulences. The occurrence of erosion-corrosion is limited to such metallic materials, which are in need of oxide protection layers for their constancy. The cover layers are destroyed by erosive influence and the formation of new protection layers is prevented. At KWU, experimental studies of plates were carried out in the Benson test section to obtain information about the most important parameters of influence. These are in particular the flow velocity, the medium temperature and the water quality (pH value and oxygen content). Moreover, the resistivity of different materials has been compared and the resistance of magnetite protection layers to erosion-corrosion was examined. The results of these studies deliver fundamentals to avoid erosion-corrosion also in power plant engineering to the greatest possible extent. The following variants reveal to be important: 1. Use of chrome alloy materials. 2. Decrease of the flow velocity. 3. Increase of the pH value or the oxygen content. The importance of the test results for power plant engineering is briefly described. (orig.) [de

  6. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    Science.gov (United States)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  7. Oxide growth and exfoliation of materials in steam tubing. Lesson 9

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, R. Barry; Bursik, Albert

    2011-04-15

    University 101 courses are typically designed to help incoming first-year undergraduate students to adjust to the university, develop a better understanding of the college environment, and acquire essential academic success skills. Why are we offering a special Boiler and HRSG Tube Failures PPChem 101? The answer is simple, yet very conclusive: - There is a lack of knowledge on the identification of tube failure mechanisms and for the implementation of adequate counteractions in many power plants, particularly at industrial power and steam generators. - There is a lack of knowledge to prevent repeat tube failures. The vast majority of BTF/HTF have been, and continue to be, repeat failures. It is hoped that the information about the failure mechanisms of BTF supplied in this course will help to put plant engineers and chemists on the right track. The major goal of this course is the avoidance of repeat BTF. This ninth lesson is focused on Oxide Growth and Exfoliation of Materials in Steam Tubing. (orig.)

  8. Analysis of Korean Elementary Pre-Service Teachers' Changing Attitudes about Integrated STEAM Pedagogy through Developing Lesson Plans

    Science.gov (United States)

    Kim, Dongryeul; Bolger, Molly

    2017-01-01

    Integrated curricula have become a major educational focus in Korea. Policy changes began in 2009 when the Korea Ministry of Education, Science, and Technology announced a new curriculum incorporating Science, Technology, Engineering, Arts, and Mathematics (STEAM). Various stages of educational reform have occurred since that time. This study…

  9. Study on steam separation in steam generators of a NPP with the WWER-440 reactors

    International Nuclear Information System (INIS)

    Dmitriev, A.I.; Kolzov, Yu.V.; Titov, V.F.; Dubrovin, A.V.; Ilyushin, V.F.; Volkov, A.P.

    1977-01-01

    The separation characteristics as well as the actual level position in steam generators with and without a submerged holy sheet have been determined at a WWER-440 reactor nuclear power plant. It has been shown, that without changing the design of steam generators their load at the WWER-440 reactor nuclear power plant can be increased by about 10%. In this case the vapour humidity does not exceed the permissible value equal to 0.25%. The submerged holy sheet considerably decreases load irregularity and swelling of the water-steam mixture layer

  10. 7 CFR 160.8 - Steam distilled wood turpentine.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Steam distilled wood turpentine. 160.8 Section 160.8... STANDARDS FOR NAVAL STORES General § 160.8 Steam distilled wood turpentine. The designation “steam distilled wood turpentine” shall refer to the kind of spirits of turpentine obtained by steam distillation from...

  11. Computerized operating cost model for industrial steam generation

    Energy Technology Data Exchange (ETDEWEB)

    Powers, T.D.

    1983-02-01

    Pending EPA regulations, establishing revised emission levels for industrial boilers are perceived to have an effect on the relative costs of steam production technologies. To aid in the comparison of competitive boiler technologies, the Steam Cost Code was developed which provides levelized steam costs reflecting the effects of a number of key steam cost parameters. The Steam Cost Code is a user interactive FORTRAN program designed to operate on a VAX computer system. The program requires the user to input a number of variables describing the design characteristics, capital costs, and operating conditions for a specific boiler system. Part of the input to the Steam Cost Code is the capital cost of the steam production system. The capital cost is obtained from a program called INDCEPT, developed by Oak Ridge National Laboratory under Department of Energy, Morgantown Energy Technology Center sponsorship.

  12. Modernization of the Nuclear Power Plant Krsko with new steam generators

    International Nuclear Information System (INIS)

    Holz, R.; Stach, U.; Gloaguen, C.

    2000-01-01

    The contract for the replacement of two steam generators at NPP Krsko was awarded in February 1998 to the Consortium SIEMENS AG FRAMATOME S.A.. The time frame for the replacement outage was scheduled from April to June 2000. The replacement itself started with the plant shut down on 15 th of April 2000 and the plant was back on line on 15 th of June, so that after an intensive engineering period of more than two years the plant was off line only 62 days, as scheduled. This document deals with the various aspects of the replacement phase itself and the techniques used. During the last years conference the engineering and licensing phase of the project have been presented. (author)

  13. Modernization of the Nuclear Power Plant Krsko with new steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Holz, R; Stach, U [Siemens AG, Erlangen, Offenbach (Germany); Gloaguen, C [Framatome, Paris (France)

    2000-07-01

    The contract for the replacement of two steam generators at NPP Krsko was awarded in February 1998 to the Consortium SIEMENS AG FRAMATOME S.A.. The time frame for the replacement outage was scheduled from April to June 2000. The replacement itself started with the plant shut down on 15{sup th} of April 2000 and the plant was back on line on 15{sup th} of June, so that after an intensive engineering period of more than two years the plant was off line only 62 days, as scheduled. This document deals with the various aspects of the replacement phase itself and the techniques used. During the last years conference the engineering and licensing phase of the project have been presented. (author)

  14. Steam hydrocarbon cracking and reforming

    NARCIS (Netherlands)

    Golombok, M.

    2004-01-01

    Many industrial chemical processes are taught as distinct contrasting reactions when in fact the unifying comparisons are greater than the contrasts. We examine steam hydrocarbon reforming and steam hydrocarbon cracking as an example of two processes that operate under different chemical reactivity

  15. Steam-water relative permeability

    Energy Technology Data Exchange (ETDEWEB)

    Ambusso, W.; Satik, C.; Home, R.N. [Stanford Univ., CA (United States)

    1997-12-31

    A set of relative permeability relations for simultaneous flow of steam and water in porous media have been measured in steady state experiments conducted under the conditions that eliminate most errors associated with saturation and pressure measurements. These relations show that the relative permeabilities for steam-water flow in porous media vary approximately linearly with saturation. This departure from the nitrogen/water behavior indicates that there are fundamental differences between steam/water and nitrogen/water flows. The saturations in these experiments were measured by using a high resolution X-ray computer tomography (CT) scanner. In addition the pressure gradients were obtained from the measurements of liquid phase pressure over the portions with flat saturation profiles. These two aspects constitute a major improvement in the experimental method compared to those used in the past. Comparison of the saturation profiles measured by the X-ray CT scanner during the experiments shows a good agreement with those predicted by numerical simulations. To obtain results that are applicable to general flow of steam and water in porous media similar experiments will be conducted at higher temperature and with porous rocks of different wetting characteristics and porosity distribution.

  16. Regulation of ageing steam generators

    International Nuclear Information System (INIS)

    Jarman, B.L.; Grant, I.M.; Garg, R.

    1998-01-01

    Recent years have seen leaks and shutdowns of Canadian CANDU plants due to steam generator tube degradation by mechanisms including stress corrosion cracking, fretting and pitting. Failure of a single steam generator tube, or even a few tubes, would not be a serious safety related event in a CANDU reactor. The leakage from a ruptured tube is within the makeup capacity of the primary heat transport system, so that as long as the operator takes the correct actions, the off-site consequences will be negligible. However, assurance that no tubes deteriorate to the point where their integrity could be seriously breached as result of potential accidents, and that any leakage caused by such an accident will be small enough to be inconsequential, can only be obtained through detailed monitoring and management of steam generator condition. This paper presents the AECB's current approach and future regulatory directions regarding ageing steam generators. (author)

  17. CRBRP steam-generator design evolution

    International Nuclear Information System (INIS)

    Geiger, W.R.; Gillett, J.E.; Lagally, H.O.

    1983-01-01

    The overall design of the CRBRP Steam Generator is briefly discussed. Two areas of particular concern are highlighted and considerations leading to the final design are detailed. Differential thermal expansion between the shell and the steam tubes is accommodated by the tubes flexing in the curved section of the shell. Support of the tubes by the internals structure is essential to permit free movement and minimize tube wear. Special spacer plate attachment and tube hole geometry promote unimpeded axial movement of the tubes by allowing individual tubes to rotate laterally and by providing lateral movement of the spacer plates relative to the adjacent support structure. The water/steam heads of the CRBRP Steam Generator are spherical heads welded to the lower and upper tubesheets. They were chosen principally because they provide a positively sealed system and result in more favorable stresses in the tubesheets when compared to mechanically attached steamheads

  18. Steam gasification of coal using a pressurized circulating fluidized bed

    International Nuclear Information System (INIS)

    Werner, K.F.J.

    1989-09-01

    Subject of this investigation is the process engineering of a coal gasification using nuclear heat. A special aspect is the efficiency. To this purpose a new method for calculating the kinetics of hard coal steam gasification in a fluidized bed is presented. It is used for evaluations of gasification kinetics in a large-scale process on the basis of laboratory-scale experiments. The method is verified by experimental data from a large-scale gasifier. The investment costs and the operating costs of the designed process are estimated. (orig.) [de

  19. An expert system for steam generator maintenance

    International Nuclear Information System (INIS)

    Remond, A.

    1988-01-01

    The tube bundles in PWR steam generators are, by far, the major source of problems whether they are due to primary and secondary side corrosion mechanisms or to tube vibration-induced wear at tube support locations. Because of differences in SG operating, materials, and fabrication processes, the damage may differ from steam generator to steam generator. MPGV, an expert system for steam generator maintenance uses all steam generator data containing data on materials, fabrication processes, inservice inspection, and water chemistry. It has access to operational data for individual steam generators and contains models of possible degradation mechanisms. The objectives of the system are: · Diagnosing the most probable degradation mechanism or mechanisms by reviewing the entire steam generator history. · Identifying the tubes most exposed to future damage and evaluating the urgency of repair by simulating the probable development of the problem in time. · Establishing the appropriate preventive actions such as repair, inspection or other measures and establishing an action schedule. The system is intended for utilities either for individual plants before each inspection outage or any time an incident occurs or for a set of plants through a central MPGV center. (author)

  20. Steam generator tube rupture (SGTR) scenarios

    International Nuclear Information System (INIS)

    Auvinen, A.; Jokiniemi, J.K.; Laehde, A.; Routamo, T.; Lundstroem, P.; Tuomisto, H.; Dienstbier, J.; Guentay, S.; Suckow, D.; Dehbi, A.; Slootman, M.; Herranz, L.; Peyres, V.; Polo, J.

    2005-01-01

    The steam generator tube rupture (SGTR) scenarios project was carried out in the EU 5th framework programme in the field of nuclear safety during years 2000-2002. The first objective of the project was to generate a comprehensive database on fission product retention in a steam generator. The second objective was to verify and develop predictive models to support accident management interventions in steam generator tube rupture sequences, which either directly lead to severe accident conditions or are induced by other sequences leading to severe accidents. The models developed for fission product retention were to be included in severe accident codes. In addition, it was shown that existing models for turbulent deposition, which is the dominating deposition mechanism in dry conditions and at high flow rates, contain large uncertainties. The results of the project are applicable to various pressurised water reactors, including vertical steam generators (western PWR) and horizontal steam generators (VVER)

  1. Thermodynamics of the silica-steam system

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, Oscar H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In most nuclear cratering and cavity formation applications, the working fluid in the expanding cavity consists primarily of vaporized silica and steam. The chemical reaction products of silica and steam under these conditions are not known, although it is known that silica is very volatile in the presence of high-pressure steam under certain geologic conditions and in steam turbines. A review is made of work on the silica-steam system in an attempt to determine the vapor species that exist, and to establish the associated thermo-dynamic data. The review indicates that at 600-900 deg K and 1-100 atm steam pressure, Si(OH){sub 4} is the most likely silicon-containing gaseous species. At 600-900 deg. K and 100-1000 atm steam, Si{sub 2}O(OH){sub 6} is believed to predominate, whereas at 1350 deg K and 2000-9000 atm, a mixture of Si(OH){sub 4} and Si{sub 2}O(OH){sub 6} is consistent with the observed volatilities. In work at 1760 deg. K in which silica was reacted either with steam at 0.5 and 1 atm, or with gaseous mixtures of H{sub 2}/H{sub 2}O and O{sub 2}/H{sub 2}O at 1 atm total pressure, only part of the volatility could be accounted for by Si(OH){sub 4}. Hydrogen was found to greatly enhance the volatility of silica, and oxygen to suppress it. The species most likely to explain this behavior is believed to be SiO(OH). A number of other species may also be significant under these conditions. Thermodynamic data have been estimated for all species considered. The Si-OH bond dissociation energy is found to be {approx}117 kcal/mole in both Si(OH){sub 4} and Si{sub 2}O(OH){sub 6}. (author)

  2. Diagnostic system of steam generator, especially molten metal heated steam generator

    International Nuclear Information System (INIS)

    Matal, O.; Martoch, J.

    1986-01-01

    A diagnostic system is described and graphically represented consisting of a leak detector, a medium analyzer and sensors placed on the piping connected to the indication sections of both tube plates. The advantage of the designed system consists in the possibility of detecting tube failure immediately on leak formation, especially in generators with duplex tubes. This shortens the period of steam generator shutdown for repair and reduces power losses. The design also allows to make periodical leak tests during planned steam generator shutdowns. (A.K.)

  3. Comments on US LMFBR steam generator base technology

    International Nuclear Information System (INIS)

    Simmons, W.R.

    1984-01-01

    The development of steam generators for the LMFBR was recognized from the onset by the AEC, now DOE, as a difficult, challenging, and high-priority task. The highly reactive nature of sodium with water/steam requires that the sodium-water/steam boundaries of LMFBR steam generators possess a degree of leak-tightness reliability not normally attempted on a commercial scale. In addition, the LMFBR steam generator is subjected to high fluid temperatures and severe thermal transients. These requirements place great demand on materials, fabrication processes, and inspection methods; and even greater demands on the designer to provide steam generators that can meet these demanding requirements, be fabricated without unreasonable shop requirements, and tolerate off-normal effects

  4. Infrared technique for measuring steam density

    International Nuclear Information System (INIS)

    Snyder, S.C.; Baker, A.G.

    1982-01-01

    A prototype infrared steam densitometer using a two-wavelength, dual-beam technique was developed. Tests were performed on dry steam flows with this technique, which uses two narrow bandwidths of infrared light in the region of 0.9 to 3.0 μm. One wavelength is absorbed by steam, while the other is not. The latter wavelength is used to account for nonabsorptive light losses. In addition to the beam that traverses the steam flow, a reference beam that does not traverse the flow allows the light source to be monitored. The theory of the device is presented, along with a description of the components and of the system's operation. Test results are also presented

  5. Steam generator arrangement

    International Nuclear Information System (INIS)

    Ssinegurski, E.

    1981-01-01

    A steam flow path arrangement for covering the walls of the rear gas pass of a steam generator is disclosed. The entire flow passes down the sidewalls with a minor portion then passing up through the rear wall to a superheater inlet header at an intermediate elevation. The major portion of the flow passes up the front wall and through hanger tubes to a roof header. From there the major portion passes across the roof and down the rear wall to the superheater inlet header at the intermediate elevation

  6. Optimal Operations and Resilient Investments in Steam Networks

    Energy Technology Data Exchange (ETDEWEB)

    Bungener, Stéphane L., E-mail: stephane.bungener@a3.epfl.ch [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Van Eetvelde, Greet [Environmental and Spatial Management, Faculty of Engineering and Architecture, Ghent University, Ghent (Belgium); Maréchal, François [Industrial Process and Energy Systems Engineering, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland)

    2016-01-20

    Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.

  7. Optimal Operations and Resilient Investments in Steam Networks

    International Nuclear Information System (INIS)

    Bungener, Stéphane L.; Van Eetvelde, Greet; Maréchal, François

    2016-01-01

    Steam is a key energy vector for industrial sites, most commonly used for process heating and cooling, cogeneration of heat and mechanical power as a motive fluid or for stripping. Steam networks are used to carry steam from producers to consumers and between pressure levels through letdowns and steam turbines. The steam producers (boilers, heat and power cogeneration units, heat exchangers, chemical reactors) should be sized to supply the consumers at nominal operating conditions as well as peak demand. First, this paper proposes an Mixed Integer Linear Programing formulation to optimize the operations of steam networks in normal operating conditions and exceptional demand (when operating reserves fall to zero), through the introduction of load shedding. Optimization of investments based on operational and investment costs are included in the formulation. Though rare, boiler failures can have a heavy impact on steam network operations and costs, leading to undercapacity and unit shutdowns. A method is therefore proposed to simulate steam network operations when facing boiler failures. Key performance indicators are introduced to quantify the network’s resilience. The proposed methods are applied and demonstrated in an industrial case study using industrial data. The results indicate the importance of oversizing key steam producing equipments and the value of industrial symbiosis to increase industrial site resilience.

  8. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1997-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  9. Advanced technologies on steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Kaoru; Nakamura, Yuuki [Mitsubishi Heavy Industry Co., Takasago (Japan); Nakamori, Nobuo; Mizutani, Toshiyuki; Uwagawa, Seiichi; Saito, Itaru [Mitsubishi Heavy Industry Co., Kobe (Japan); Matsuoka, Tsuyoshi [Mitsubishi Heavy Industry Co., Yokohama (Japan)

    1998-12-31

    The thermal-hydraulic tests for a horizontal steam generator of a next-generation PWR (New PWR-21) were performed. The purpose of these tests is to understand the thermal-hydraulic behavior in the secondary side of horizontal steam generator during the plant normal operation. A test was carried out with cross section slice model simulated the straight tube region. In this paper, the results of the test is reported, and the effect of the horizontal steam generator internals on the thermalhydraulic behavior of the secondary side and the circulation characteristics of the secondary side are discussed. (orig.). 3 refs.

  10. Vibration and wear prediction for steam generator tubes: Final report

    International Nuclear Information System (INIS)

    Rao, M.S.M.; Gupta, G.D.; Eisinger, F.L.

    1988-06-01

    As part of the overall EPRI program to develop a mechanistic model for tube fretting and wear prediction, Foster Wheeler Development Corporation undertook the responsibility of developing analytical models to predict structural response and wear in a multispan tube. The project objective was to develop the analytical capability to simulate the time-dependent motion of a multispan steam generator tube in the presence of the clearance gaps at each tube baffle or support. The models developed were to simulate nonlinear tube-to-tube support interaction by determining the impact force, the sliding distance, and the resultant tube wear. Other objectives of the project included: validate the models by comparing the analytical results with the EPRI tests done at Combustion Engineering (C-E) on single multispan tubes; test the models for simulating the U-bend region of the steam generator tube, including the antivibration bars; and develop simplified methods to treat the nonlinear dynamic problem of a multispan tube so that computing costs could be minimized. 15 refs., 53 figs., 27 tabs

  11. 21 CFR 890.5250 - Moist steam cabinet.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Moist steam cabinet. 890.5250 Section 890.5250...) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5250 Moist steam cabinet. (a) Identification. A moist steam cabinet is a device intended for medical purposes that delivers...

  12. The progress of test and study for steam dryer in vertical steam generator

    International Nuclear Information System (INIS)

    Ding Xunshen

    1993-01-01

    Constructions, tests and test results are reviewed for three types of steam generator dryer that are concentric vertical corrugated separator, centrifugal conic separator and chevron separator. The last type is considered as the best one in comparison, which has been applied to Qinshan 300 MW steam generator. A number of pertinent remarks to draining scheme, hydraulic loss reduction, and conduct of test are given based on experiences

  13. Materials Performance in USC Steam

    Energy Technology Data Exchange (ETDEWEB)

    G. R. Holcomb, P. Wang, P. D. Jablonski, and J. A. Hawk

    2010-05-01

    The proposed steam inlet temperature in the Advanced Ultra Supercritical (A-USC) steam turbine is high enough (760 °C) that traditional turbine casing and valve body materials such as ferritic/martensitic steels will not suffice due to temperature limitations of this class of materials. Cast versions of several traditionally wrought Ni-based superalloys were evaluated for use as casing or valve components for the next generation of industrial steam turbines. The full size castings are substantial: 2-5,000 kg each half and on the order of 100 cm thick. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled to produce equivalent microstructures. A multi-step homogenization heat treatment was developed to better deploy the alloy constituents. The most successful of these cast alloys in terms of creep strength (Haynes 263, Haynes 282, and Nimonic 105) were subsequently evaluated by characterizing their microstructure as well as their steam oxidation resistance (at 760 and 800 °C).

  14. LMFBR steam generator development: duplex bayonet tube steam generator. Volume II

    International Nuclear Information System (INIS)

    DeFur, D.D.

    1975-04-01

    This report represents the culmination of work performed in fulfillment of ERDA Contract AT(11-1)-2426, Task Agreement 2, in which alternate steam generator designs were developed and studied. The basic bayonet tube generator design previously developed by C-E under AEC Contract AT(11-1)-3031 was expanded by incorporating duplex heat transfer tubes to enhance the unit's overall safety and reliability. The effort consisted of providing and evaluating conceptual designs of the evaporator, superheater and reheater components for a large plant LMFBR steam generator (950 MWt per heat transport loop)

  15. Variable effect of steam injection level on beef muscles: semitendinosus and biceps femoris cooked in convection-steam oven.

    Science.gov (United States)

    Zając, Marzena; Kącik, Sławomir; Palka, Krystyna; Widurek, Paweł

    2015-01-01

    Combi ovens are used very often in restaurants to heat up food. According to the producers the equipment allows to cook meat portions which are more tender and flavoursome comparing to conventional cooking techniques. Beef steaks from muscles semitendinosus and biceps femoris were cooked in convection-steam oven at three humidity levels: 10, 60 and 100%. Chemical composition, including total and insoluble collagen content and cook losses were analysed along with the texture and colour parameters. M. biceps femoris was the hardest and the most chewy at 100% steam saturation level and hardness measured for m. semitendinosus was the lowest at 10% of vapour injection. Changing the steam conditions in the oven chamber did not affect the detectable colour differences of m. biceps femoris, but it was significant for m. semitendinosus. Applying 100% steam saturation caused higher cook losses and the increase of insoluble collagen fractions in both analysed muscles. The results are beneficial for caterers using steam-convection ovens in terms of providing evidence that the heating conditions should be applied individually depending on the muscle used. The tenderness of m. semitendinosus muscle cooked at 10% steam saturation level was comparable to the tenderness obtained for the same muscle aged for 10 days and cooked with 100% steam saturation. Steaks from m. biceps femoris muscle should be cooked with maximum 60% saturation level to obtain higher tenderness.

  16. Evaluation of acoustic resonance at branch section in main steam line. Part 1. Effects of steam wetness on acoustic resonance

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2011-01-01

    The power uprating of the nuclear power plant (NPP) is conducted in United States, EU countries and so on, and also is planned in Japan. However, the degradation phenomena such as flow-induced vibration and wall thinning may increase or expose in the power uprate condition. In U.S. NPP, the dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a 17% extended power uprating (EPU) condition. This is caused by acoustic resonance at the stub pipes of safety relief valves (SRVs) in the main steam lines (MSL). Increased velocity by uprating excites the pressure fluctuations and makes large amplitude resonance. To evaluate the acoustic resonance at the stub pipes of SRVs in actual BWR, it is necessary to clarify the acoustic characteristics in steam flow. Although there are several previous studies about acoustic resonance, most of them are not steam flow but air flow. Therefore in this study, to investigate the acoustic characteristics in steam flow, we conducted steam flow experiments in each dry and wet steam conditions, and also nearly saturated condition. We measured pressure fluctuation at the top of the single stub pipe and in main steam piping. As a result, acoustic resonance in dry steam flow could be evaluated as same as that in air flow. It is clarified that resonance amplitude of fluctuating pressure at the top of the stub pipe in wet steam was reduced to one-tenth compared with that in dry. (author)

  17. Method to detect steam generator tube leakage

    International Nuclear Information System (INIS)

    Watabe, Kiyomi

    1994-01-01

    It is important for plant operation to detect minor leakages from the steam generator tube at an early stage, thus, leakage detection has been performed using a condenser air ejector gas monitor and a steam generator blow down monitor, etc. In this study highly-sensitive main steam line monitors have been developed in order to identify leakages in the steam generator more quickly and accurately. The performance of the monitors was verified and the demonstration test at the actual plant was conducted for their intended application to the plants. (author)

  18. Numerical Analysis on Transient of Steam-gas Pressurizer

    International Nuclear Information System (INIS)

    Kim, Jong-Won; Lee, Yeon-Gun; Park, Goon-Cherl

    2008-01-01

    In nuclear reactors, various pressurizers are adopted to satisfy their characteristics and uses. The additional active systems such as heater, pressurizer cooler, spray and insulator are essential for a steam or a gas pressurizer. With a steam-gas pressurizer, additional systems are not required due to the use of steam and non-condensable gas as pressure-buffering materials. The steam-gas pressurizer in integrated small reactors experiences very complicated thermal-hydraulic phenomena. To ensure the integrity of this pressurizer type, the analysis on the transient behavior of the steam-gas pressure is indispensable. For this purpose, the steam-gas pressurizer model is introduced to predict the accurate system pressure. The proposed model includes bulk flashing, rainout, inter-region heat and mass transfer and wall condensation with non-condensable gas. However, the ideal gas law is not applied because of significant interaction at high pressure between steam and non-condensable gas. The results obtained from this proposed model agree with those from pressurizer tests. (authors)

  19. To Estimation of Efficient Usage of Organic Fuel in the Cycle of Steam Power Installations

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2013-01-01

    Full Text Available Tendencies of power engineering development in the world were shown in this article. There were carried out the thermodynamic Analysis of efficient usage of different types of fuel. This article shows the obtained result, which reflects that low-calorie fuel (from the point of thermodynamics is more efficient to use at steam power stations then high-energy fuel.

  20. Cuban Sugar Industry: Transnational Networks and Engineering Migrants in Mid-Nineteenth Century Cuba

    NARCIS (Netherlands)

    Curry Machado, J.M.

    2011-01-01

    Technological innovation was central to nineteenth-century Cuba’s lead in world sugar manufacture. Along with steam-powered machinery came migrant engineers, indispensable aliens who were well rewarded for their efforts. These migrant engineers remained perennial outsiders, symbolic of Cuba's

  1. Materials choices for the advanced LWR steam generators

    International Nuclear Information System (INIS)

    Paine, J.P.N.; Shoemaker, C.E.; McIlree, A.R.

    1987-01-01

    Current light water reactor (LWR) steam generators have been affected by a variety of corrosion and mechanical damage degradation mechanisms. Included are wear caused by tube vibration, intergranular corrosion, pitting, and thinning or wastage of the steam generator tubing and accelerated corrosion of carbon steel supports (denting). The Electric Power Research Institute (EPRI) and the Steam Generator Owners Groups (I, II) have sponsored laboratory and field studies to provide ameliorative actions for the majority of the damage forms experienced to date. Some of the current corrosion mechanisms are aggravated or caused by unique materials choices or materials interactions. New materials have been proposed and at least partially qualified for use in replacement model steam generators, including an advanced LWR design. In so far as possible, the materials choices for the advanced LWR steam generator avoid the corrosion pitfalls seemingly inherent in the current designs. The EPRI Steam Generator Project staff has recommended materials and design choices for a new steam generator. Based on these recommendations we believe that the advanced LWR steam generators will be much less affected by corrosion and mechanical damage mechanisms than are now experienced

  2. Digital simulation for nuclear once-through steam generators

    International Nuclear Information System (INIS)

    Chen, A.T.

    1976-01-01

    Mathematical models for calculating the dynamic response of the Oconee type once through steam generator (OTSG) and the integral economizer once through steam generator (IEOTSG) was developed and presented in this dissertation. Linear and nonlinear models of both steam generator types were formulated using the state variable, lumped parameter approach. Transient and frequency responses of system parameters were calculated for various perturbations from both the primary coolant side and the secondary side. Transients of key parameters, including primary outlet temperature, superheated steam outlet temperature, boiling length/subcooled length and steam pressure, were generated, compared and discussed for both steam generator types. Frequency responses of delta P/sub s//deltaT/sub pin/ of the linear OTSG model were validated by using the dynamic testing results obtained at the Oconee I nuclear power station. A sensitivity analysis in both the time and the frequency domains was performed. It was concluded that the mathematical and computer models developed in this dissertation for both the OTSG and the IEOTSG are suitable for overall plant performance evaluation and steam generator related component/system design analysis for nuclear plants using either type of steam generator

  3. Hydrogen enrichment of an internal combustion engine via closed loop thermochemical recuperation

    NARCIS (Netherlands)

    Zwitserlood, J.G.; Hofman, T.; Erickson, P.A.

    2013-01-01

    Hydrogen enrichment in an internal combustion engine can greatly improve efficiency and at the same time reduce emissions without the need for extensive engine modifications. One option for a hydrogen source for the enrichment is actively producing hydrogen on-board the vehicle through steam

  4. Gas chromatographic measurement in water-steam circuits

    International Nuclear Information System (INIS)

    Zschetke, J.; Nieder, R.

    1984-01-01

    A gas chromatographic technique for measurements in water-steam circuits, which has been well known for many years, has been improved by design modifications. A new type of equipment developed for special measuring tasks on nuclear engineering plant also has a general application. To date measurements have been carried out on the ''Otto Hahn'' nuclear powered ship, on the KNK and AVR experimental nuclear power plants at Karlsruhe and Juelich respectively and on experimental boiler circuits. The measurements at the power plants were carried out under different operating conditions. In addition measurements during the alkali operating mode and during combined cycle operation were carried out on the AVR reactor. It has been possible to draw new conclusion from the many measurements undertaken. (orig.) [de

  5. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-04

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  6. Thermal-hydraulics in recirculating steam generators

    International Nuclear Information System (INIS)

    Carver, M.B.; Carlucci, L.N.; Inch, W.W.R.

    1981-04-01

    This manual describes the THIRST code and its use in computing three-dimensional two-phase flow and heat transfer in a steam generator under steady state operation. The manual is intended primarily to facilitate the application of the code to the analysis of steam generators typical of CANDU nuclear stations. Application to other steam generator designs is also discussed. Details of the assumptions used to formulate the model and to implement the numerical solution are also included

  7. Endotoxin inactivation via steam-heat treatment in dilute simethicone emulsions used in biopharmaceutical processes.

    Science.gov (United States)

    Britt, Keith A; Galvin, Jeffrey; Gammell, Patrick; Nti-Gyabaah, Joseph; Boras, George; Kolwyck, David; Ramirez, José G; Presente, Esther; Naugle, Gregory

    2014-01-01

    Simethicone emulsion is used to regulate foaming in cell culture operations in biopharmaceutical processes. It is also a potential source of endotoxin contamination. The inactivation of endotoxins in dilute simethicone emulsions was assessed as a function of time at different steam temperatures using a Limulus amebocyte lysate kinetic chromogenic technique. Endotoxin inactivation from steam-heat treatment was fit to a four-parameter double exponential decay model, which indicated that endotoxin inactivation was biphasic, consisting of fast and slow regimes. In the fast regime, temperature-related effects were dominant. Transitioning into the slow regime, the observed temperature dependence diminished, and concentration-related effects became increasingly significant. The change in the Gibbs free energy moving through the transition state indicated that a large energy barrier must be overcome for endotoxin inactivation to occur. The corresponding Arrhenius pre-exponential factor was >10(12) s(-1) suggesting that endotoxins in aqueous solution exist as aggregates. The disorder associated with the endotoxin inactivation reaction pathway was assessed via the change in entropy moving through the transition state. This quantity was positive indicating that endotoxin inactivation may result from hydrolysis of individual endotoxin molecules, which perturbs the conformation of endotoxin aggregates, thereby modulating the biological activity observed. Steam-heat treatment decreased endotoxin levels by 1-2 logarithm (log) reduction (LRV), which may be practically relevant depending on incoming raw material endotoxin levels. Antifoam efficiency and cell culture performance were negligibly impacted following steam-heat treatment. The results from this study show that steam-heat treatment is a viable endotoxin control strategy that can be implemented to support large-scale biopharmaceutical manufacturing. © 2014 American Institute of Chemical Engineers.

  8. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  9. Steam reformer with catalytic combustor

    Science.gov (United States)

    Voecks, Gerald E. (Inventor)

    1990-01-01

    A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

  10. Cleaning device for steam units in a nuclear power plant

    International Nuclear Information System (INIS)

    Sasamuro, Takemi.

    1978-01-01

    Purpose: To prevent radioactive contamination upon dismantling and inspection of steam units such as a turbine to a building containing such units and the peripheral area. Constitution: A steam generator indirectly heated by steam supplied from steam generating source in a separate system containing no radioactivity is provided to produce cleaning steam. A cleaning steam pipe is connected by way of a stop valve between separation valve of a nuclear power plant steam pipe and a high pressure turbine. Upon cleaning, the separation valve is closed, and steam supplied from the cleaning steam pipe is flown into a condenser. The water thus condensated is returned by way of a feed water heater and a condenser to a water storage tank. (Nakamura, S.)

  11. Students' construction of a simple steam distillation apparatus and development of creative thinking skills: A project-based learning

    Science.gov (United States)

    Diawati, Chansyanah; Liliasari, Setiabudi, Agus; Buchari

    2017-05-01

    This project-based learning combined the chemistry of separation process using steam distillation with engineering design process in an undergraduate chemistry course. Students built upon their knowledge of phase changes, immiscible mixture, and the relationship between vapor pressure and boiling point to complete a project of modifications steam distillation apparatus. The research method is a qualitative case study, which aims to describe how (1) the creative thinking skills of students emerged during six weeks of theproject, (2) students built steam distillation apparatus characteristics as the project product and (3) students response to the project-based learning model. The results showed that the students had successfully constructed a steam distillation apparatus using plastic kettle as steam generator and distillation flask. A Plastic tubewas used to drain water vapor from steam generator to distillation flask and to drain steam containing essential oil to the condenser. A biscuit tin filled with ice was used as a condenser. The time required until resulting distillate was fifteen minutes. The production of essential was conductive qualitatively by a very strong smell typical of essential oil and two phases of distillate. Throughout the project, students formulated the relevant and varied problem, formulated the goals, proposed the ideas of the apparatus and materials, draw apparatus design, constructed apparatus, tested apparatus, evaluated, and reported the project. Student response was generally positive. They were pleased, interested, more understanding the concepts and work apparatus principles, also implemented new ideas. These results indicate that project-based learning can develop students' creative thinking skills. Based on these results, it is necessary to conduct research and implemented project-based learning to other concepts.

  12. Maintaining steam/condensate lines

    International Nuclear Information System (INIS)

    Russum, S.A.

    1992-01-01

    Steam and condensate systems must be maintained with the same diligence as the boiler itself. Unfortunately, they often are not. The water treatment program, critical to keeping the boiler at peak efficiency and optimizing operating life, should not stop with the boiler. The program must encompass the steam and condensate system as well. A properly maintained condensate system maximizes condensate recovery, which is a cost-free energy source. The fuel needed to turn the boiler feedwater into steam has already been provided. Returning the condensate allows a significant portion of that fuel cost to be recouped. Condensate has a high heat content. Condensate is a readily available, economical feedwater source. Properly treated, it is very pure. Condensate improves feedwater quality and reduces makeup water demand and pretreatment costs. Higher quality feedwater means more reliable boiler operation

  13. A semi-quantitative risk assessment method for analyzing the level of risk associated with parameters in design of thermal heavy oil Steam Assisted Gravity Drainage (SAGD) pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhzad, M.A. [IMV Projects Inc., Alberta (Canada)

    2009-07-01

    During the design stage of a thermal heavy oil pipeline, the design engineer should include the consideration of more factors than what is normally used for the design of a conventional pipeline. In the Steam Assisted Gravity Drainage (SAGD) production, for the extraction of bitumen from oily soil, it is required that a stream of hot and pressurized steam (over 300 deg C) to be injected into the oil reservoir. The steam reaches the oily soil reservoir from a steam sour such as boilers by traveling through above-ground pipeline arrangements. As a result of the steam injection into the well site, bitumen oil is released from the oily soil. The produced bitumen also consists of high pressure and temperature (over 200 deg C) and requires a gathering pipeline arrangement for traveling to the processing plant. During the layout design, both steam injection and hot production lines are usually designed parallel with each other by using a series of anchor-loop-anchor supported by steel structures and pilings. The coexistence of two extremely hot pipelines (Injecting Steam and Production pipelines) on the aboveground pipe rack should be designed with extreme care. The higher than normal design temperature of these lines creates considerable lateral and longitudinal movements and heavy loads on the supporting structure and piling. In addition, since both lines contain high pressure mediums, the design engineer shall include a few more parameters than what is normally considered for conventional pipelines. These parameters include; sustain loads, slug forces, natural frequency, mechanical interactions, frictional forces on anchors and guides, and mechanical engagement of supporting components, as well as the effects of these loads on the steel structure-piling and their reaction with the surrounding soil. In addition the design engineer shall be aware of any potential failures associated with these physical and mechanical parameters, the impact and probability rationales and

  14. Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

    2004-12-01

    Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62

  15. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I. [Energoproekt, Sofia (Bulgaria)

    1995-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  16. Parametric study for horizontal steam generator modelling

    Energy Technology Data Exchange (ETDEWEB)

    Ovtcharova, I [Energoproekt, Sofia (Bulgaria)

    1996-12-31

    In the presentation some of the calculated results of horizontal steam generator PGV - 440 modelling with RELAP5/Mod3 are described. Two nodalization schemes have been used with different components in the steam dome. A study of parameters variation on the steam generator work and calculated results is made in cases with separator and branch.

  17. Thermodynamic analysis of an in-cylinder waste heat recovery system for internal combustion engines

    International Nuclear Information System (INIS)

    Zhu, Sipeng; Deng, Kangyao; Qu, Shuan

    2014-01-01

    In this paper, an in-cylinder waste heat recovery system especially for turbocharged engines is proposed to improve the thermal efficiencies of internal combustion engines. Simplified recovery processes can be described as follows: superheated steam generated by engine waste heat is injected into the pipe before the turbine to increase the boost pressure of the fresh air; intake valve close timing is adjusted to control the amount of fresh air as the original level, and thus the higher pressure charged air expands in the intake stroke and transfers the pressure energy directly to the crankshaft. In this way, the increased turbine output by the pre-turbine steam injection is finally recovered in the cylinder, which is different from the traditional Rankine cycle. The whole energy transfer processes are studied with thermodynamic analyses and numerical simulations. The results show that the mass flow rate of the injected steam has the biggest influence on the energy transfer processes followed by the temperature of the injected steam. With this in-cylinder waste heat recovery system, the fuel economy of a selected turbocharged diesel engine can be improved by 3.2% at the rated operating point when the injected mass flow ratio is set to be 0.1. - Highlights: • An in-cylinder waste heat recovery system is proposed. • Effects of injected parameters are studied with energy and exergy balance theories. • Variations of operating points on the compressor map are studied in detail. • The fuel economy is improved by 3.2% at the rated operating point

  18. Steam plant for pressurized water reactors

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    This book discusses the research and development organisations and users to highlight those aspects of the steam turbine and associated plant which are particularly related to the PWR system. The contents include: Characteristics of the steam system (including feed train, dump system and safety aspects); overall design aspects of high and half speed turbines; design aspects of the steam generator and seismic considerations; moisture separators and reheaters; feed pumps and their drives; water treatment; safety related valves; operational experience; availability and performance

  19. Model studies of the vertical steam generator thermal-hydraulic characteristics

    International Nuclear Information System (INIS)

    Desyatun, V.F.; Moskvichev, V.F.; Ulasov, V.M.; Morozov, V.G.; Burkov, V.K.; Grebennikov, V.N.

    1984-01-01

    Results of investigations conducted to clarify the calculation technique and to test the workability of the main elements and units of the PGV-250 vertical steam generator of saturated steam are considered. The steam generating capacity of the plant is 1486 t/h, thermal power is 792 MW. Steam generation follows a multiple circulation scheme. The heat surface comprises 330-shields. The investigations are carried out with a model which reproduces all the main elements of the steam generator xcluding the economizer section. The flow rates of feed water, generated steam and coolant of the first circuit as well as temperature, pressure and humidity of the generated steam past the separator are determined. The average heat transfer factors of the heat surface are calculated on the base of the data obtained and a conclusion is drawn on the correctness of the thermohydraulic calculation technique used in development of the PGV-250 steam generator design. Temperature pulsations and heat surface steaming are not observed. The steam humidity at the outlet and steam capture into sinking tubes are within permissible values

  20. Steam generator operating experience update, 1982-1983

    International Nuclear Information System (INIS)

    Frank, L.

    1984-06-01

    This report is a continuation of earlier reports by the staff addressing pressurized water reactor steam generator operating experience. NUREG-0886, Steam Generator Tube Experience, published in February 1982 summarized experience in domestic and foreign plants through December 1981. This report summarizes steam generator operating experience in domestic plants for the years 1982 and 1983. Included are new problems encountered with secondary-side loose parts, sulfur-induced stress-assisted corrosion cracking, and flow-induced vibrational wear in the new preheater design steam generators. The status of Unresolved Safety Issues A3, A4, and A5 is also discussed

  1. Numerical fluid dynamics calculations of nonequilibrium steam-water flows with entrained droplets

    International Nuclear Information System (INIS)

    Williams, K.A.

    1984-01-01

    The present work has developed a computational fluid dynamics formulation that efficiently solves the conservation laws for a vapor field, a continuous liquid field, and two dispersed droplet fields. The thermal-hydraulic effects resulting from the exchange of mass, momentum and energy between the vapor and the dispersed droplet phases has been accurately modeled. This work is an advancement of the state-of-the-art for engineering analyses of nonequilibrium steam-water-droplet flows in heated channels. It is particularly applicable for boiling steam-water flows in which it is important to represent the effects of significant thermal nonequilibrium between the vapor and the liquid phases. This work was shown to be in good agreement with unique experimental measurements of significant thermal nonequilibrium between the vapor and dispersed droplets. The tests analyzed covered a range of mass fluxes and wall heating rates, and were all at low pressures where nonequilibrium effects are most pronounced

  2. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1985. Volume 4

    International Nuclear Information System (INIS)

    1986-03-01

    The compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research, concentrates on achievements in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators and for non-destructive examination of primary system components. This report, covering research conducted during Fiscal Year 1985, is the fourth volume of the series of NUREG-0975, Compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering Technology

  3. Compilation of contract research for the Materials Engineering Branch, Division of Engineering Technology. Annual report for FY 1984. Volume 3

    International Nuclear Information System (INIS)

    1985-04-01

    This compilation of annual reports by contractors to the Materials Engineering Branch of the NRC Office of Research, concentrates on achievments in safety research for the primary system of commercial light water power reactors, particularly with regard to reactor vessels, primary system piping, steam generators and for non-destructive examination of primary system components. This report, covering research conducted during Fiscal Year 1984, is the third volume of the series of NUREG-0975, compilation of Contractor Research for the Materials Engineering Branch, Division of Engineering Technology

  4. Strategic maintenance plan for Cernavoda steam generators

    International Nuclear Information System (INIS)

    Cicerone, T.; Dhar, D.; VandenBerg, J.P.

    2002-01-01

    Steam generators are among the most important pieces of equipment in a nuclear power plant. They are required full time during the plant operation and obviously no redundancy exists. Past experience has shown that those utilities which implemented comprehensive steam generator inspection and maintenance programs and strict water chemistry controls, have had good steam generator performance that supports good overall plant performance. The purpose of this paper is to discuss a strategic Life Management and Operational-monitoring program for the Cernavoda steam generators. The program is first of all to develop a base of expertise for the management of the steam generator condition; and that is to be supported by a program of actions to be accomplished over time to assess their condition, to take measures to avoid degradation and to provide for inspections, cleaning and modifications as necessary. (author)

  5. Steam reforming of commercial ultra-low sulphur diesel

    Energy Technology Data Exchange (ETDEWEB)

    Boon, J.; Van Dijk, E.; De Munck, S.; Van den Brink, R. [Energy research Centre of The Netherlands, ECN Hydrogen and Clean Fossil Fuels, P.O. Box 1, NL1755ZG Petten (Netherlands)

    2011-03-11

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  6. Steam reforming of commercial ultra-low sulphur diesel

    Science.gov (United States)

    Boon, Jurriaan; van Dijk, Eric; de Munck, Sander; van den Brink, Ruud

    Two main routes for small-scale diesel steam reforming exist: low-temperature pre-reforming followed by well-established methane steam reforming on the one hand and direct steam reforming on the other hand. Tests with commercial catalysts and commercially obtained diesel fuels are presented for both processes. The fuels contained up to 6.5 ppmw sulphur and up to 4.5 vol.% of biomass-derived fatty acid methyl ester (FAME). Pre-reforming sulphur-free diesel at around 475 °C has been tested with a commercial nickel catalyst for 118 h without observing catalyst deactivation, at steam-to-carbon ratios as low as 2.6. Direct steam reforming at temperatures up to 800 °C has been tested with a commercial precious metal catalyst for a total of 1190 h with two catalyst batches at steam-to-carbon ratios as low as 2.5. Deactivation was neither observed with lower steam-to-carbon ratios nor for increasing sulphur concentration. The importance of good fuel evaporation and mixing for correct testing of catalysts is illustrated. Diesel containing biodiesel components resulted in poor spray quality, hence poor mixing and evaporation upstream, eventually causing decreasing catalyst performance. The feasibility of direct high temperature steam reforming of commercial low-sulphur diesel has been demonstrated.

  7. Steam temperature variation behind a turbine steam separator-superheater during NPP start-up

    International Nuclear Information System (INIS)

    Lejzerovich, A.Sh.; Melamed, A.D.

    1979-01-01

    To determine necessary parameters of the steam temperature automatic regulator behind the steam separator-rheater supe (SSS) of an NPP turbine the static and dynamic characteristics of the temperature change behind the SSS were studied experimentally. The measurements were carried out at the K-220-44 turbine of the Kolskaja NPP in the case of both varying turbine loads and the flow rate of the heating vapor. Disturbances caused by the opening of the regulating valve at the inlet of the heating vapor are investigated as well. It is found that due to a relatively high inertiality of the SSS a rather simple structure of the start-up steam temperature regulators behind the SSS in composition with automatated driving systems of the turbine start-up without regard for the change of the dynamic characteristics can be used

  8. Feed water pre-heater with two steam spaces

    International Nuclear Information System (INIS)

    Tratz, H.; Kelp, F.; Netsch, E.

    1976-01-01

    A feed water pre-heater for the two stage heating of feed water by condensing steam, having a low installed height is described, which can be installed in the steam ducts of turbines of large output, as in LWRs in nuclear power stations. The inner steam space is closed on one side by the water vessel, while the tubes of the inner steam space go straight from the water vessel, and the tubes of the outer steam space are bent into a U shape and open out into the water vessel. The two-stage preheater is thus surrounded by feedwater in two ways. (UWI) [de

  9. Future aspects for liquid metal heated steam generators

    International Nuclear Information System (INIS)

    Jansing, W.; Ratzel, W.; Vinzens, K.

    1975-01-01

    The present status of steam generators is shown. The experience gained until now is expressed in form of basic points. The most important design criteria for steam generator systems are outlined. On the basis of these design criteria, two possible steam generator concepts are shown. Costs in relationship to the repair concepts of two modular steam generators (thermal output 156 and 625 MW) and a pool design of 625 MW are compared. (author)

  10. Future aspects for liquid metal heated steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Jansing, W; Ratzel, W; Vinzens, K

    1975-07-01

    The present status of steam generators is shown. The experience gained until now is expressed in form of basic points. The most important design criteria for steam generator systems are outlined. On the basis of these design criteria, two possible steam generator concepts are shown. Costs in relationship to the repair concepts of two modular steam generators (thermal output 156 and 625 MW) and a pool design of 625 MW are compared. (author)

  11. Imitative modeling automatic system Control of steam pressure in the main steam collector with the influence on the main Servomotor steam turbine

    Science.gov (United States)

    Andriushin, A. V.; Zverkov, V. P.; Kuzishchin, V. F.; Ryzhkov, O. S.; Sabanin, V. R.

    2017-11-01

    The research and setting results of steam pressure in the main steam collector “Do itself” automatic control system (ACS) with high-speed feedback on steam pressure in the turbine regulating stage are presented. The ACS setup is performed on the simulation model of the controlled object developed for this purpose with load-dependent static and dynamic characteristics and a non-linear control algorithm with pulse control of the turbine main servomotor. A method for tuning nonlinear ACS with a numerical algorithm for multiparametric optimization and a procedure for separate dynamic adjustment of control devices in a two-loop ACS are proposed and implemented. It is shown that the nonlinear ACS adjusted with the proposed method with the regulators constant parameters ensures reliable and high-quality operation without the occurrence of oscillations in the transient processes the operating range of the turbine loads.

  12. Acoustic detection for water/steam leak from a tube of LMFBR steam generator

    International Nuclear Information System (INIS)

    Sonoda, Masataka; Shindo, Yoshihisa

    1989-01-01

    Acoustic leak detector is useful for detecting more quickly intermediate leak than the existing hydrogen detector and is available for identification of leak location on the accident of water/steam leak from a tube of LMFBR steam generator. This paper presents the overview of HALD (High frequency Acoustics Leak Detection) system, which is more sensitive for leak detection and lower cost of equipment for identification of leak location than a low frequency type detector. (author)

  13. Nuclear reactor steam depressurization valve

    International Nuclear Information System (INIS)

    Moore, G.L.

    1991-01-01

    This patent describes improvement in a nuclear reactor plant, an improved steam depressurization valve positioned intermediate along a steam discharge pipe for controlling the venting of steam pressure from the reactor through the pipe. The improvement comprises: a housing including a domed cover forming a chamber and having a partition plate dividing the chamber into a fluid pressure activation compartment and a steam flow control compartment, the valve housing being provided with an inlet connection and an outlet connection in the steam flow control compartment, and a fluid duct in communication with a source of fluid pressure for operating the valve; a valve set mounted within the fluid flow control compartment comprising a cylindrical section surrounding the inlet connection with one end adjoining the connection and having a radially projecting flange at the other end with a contoured extended valve sealing flange provided with an annular valve sealing member, and a valve cylinder traversing the partition plate and reciprocally movable within an opening in the partition plate with one terminal and extending into the fluid pressure activation compartment and the other terminal end extending into the steam flow control compartment coaxially aligned with the valve seat surrounding the inlet connection, the valve cylinder being surrounded by two bellow fluid seals and provided with guides to inhibit lateral movement, an end of the valve cylinder extending into the fluid flow control compartment having a radially projecting flange substantially conterminous with the valve seat flange and having a contoured surface facing and complimentary to the contoured valve seating surface whereby the two contoured valve surfaces can meet in matching relationship, thus providing a pressure actuated reciprocatable valve member for making closing contact with the valve seat and withdrawing therefrom for opening fluid flow through the valve

  14. Predicting steam generator crevice chemistry

    International Nuclear Information System (INIS)

    Burton, G.; Strati, G.

    2006-01-01

    'Full text:' Corrosion of steam cycle components produces insoluble material, mostly iron oxides, that are transported to the steam generator (SG) via the feedwater and deposited on internal surfaces such as the tubes, tube support plates and the tubesheet. The build up of these corrosion products over time can lead to regions of restricted flow with water chemistry that may be significantly different, and potentially more corrosive to SG tube material, than the bulk steam generator water chemistry. The aim of the present work is to predict SG crevice chemistry using experimentation and modelling as part of AECL's overall strategy for steam generator life management. Hideout-return experiments are performed under CANDU steam generator conditions to assess the accumulation of impurities in hideout, and return from, model crevices. The results are used to validate the ChemSolv model that predicts steam generator crevice impurity concentrations, and high temperature pH, based on process parameters (e.g., heat flux, primary side temperature) and blowdown water chemistry. The model has been incorporated into ChemAND, AECL's system health monitoring software for chemistry monitoring, analysis and diagnostics that has been installed at two domestic and one international CANDU station. ChemAND provides the station chemists with the only method to predict SG crevice chemistry. In one recent application, the software has been used to evaluate the crevice chemistry based on the elevated, but balanced, SG bulk water impurity concentrations present during reactor startup, in order to reduce hold times. The present paper will describe recent hideout-return experiments that are used for the validation of the ChemSolv model, station experience using the software, and improvements to predict the crevice electrochemical potential that will permit station staff to ensure that the SG tubes are in the 'safe operating zone' predicted by Lu (AECL). (author)

  15. BWR Steam Dryer Alternating Stress Assessment Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Morante, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Hambric, S. A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Ziada, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    This report presents an overview of Boiling Water Reactor (BWR) steam dryer design; the fatigue cracking failures that occurred at the Quad Cities (QC) plants and their root causes; a history of BWR Extended Power Uprates (EPUs) in the USA; and a discussion of steam dryer modifications/replacements, alternating stress mechanisms on steam dryers, and structural integrity evaluations (static and alternating stress).

  16. From hero to Newcomen: the critical scientific and technological developments that led to the invention of the steam engine.

    Science.gov (United States)

    Kitsikopoulos, Harry

    2013-09-01

    This essay provides an analytical account of the history of various steam devices by tracing the key technological and scientific developments culminating in the Savery and Newcomen models. It begins in antiquity with the writings of Hero of Alexandria, which were rediscovered and translated in Italy fourteen centuries later, followed by the construction of simple steam devices. The most decisive development comes in the middle of the seventeenth century with the overturning, through the experimental work of Torricelli, Pascal, and Guericke, of the Aristotelian dogma that no vacuum exists. The final stretch of this discovery process amounted to an Anglo-French race, with English inventors being more successful in the end.

  17. Combined heat and power considered as a virtual steam cycle heat pump

    International Nuclear Information System (INIS)

    Lowe, Robert

    2011-01-01

    The first aim of this paper is to shed light on the thermodynamic reasons for the practical pursuit of low temperature operation by engineers involved in the design and the operation of combined heat and power (CHP) and district heating (DH) systems. The paper shows that the steam cycle of a combined heat and power generator is thermodynamically equivalent to a conventional steam cycle generator plus an additional virtual steam cycle heat pump. This apparently novel conceptualisation leads directly to (i) the observed sensitivity of coefficient of performance of CHP to supply and return temperatures in associated DH systems, and (ii) the conclusion that the performance of CHP will tend to be significantly higher than real heat pumps operating at similar temperatures. The second aim, which is pursued more qualitatively, is to show that the thermodynamic performance advantages of CHP are consistent with the goal of deep, long-term decarbonisation of industrialised economies. As an example, estimates are presented, which suggest that CHP based on combined-cycle gas turbines with carbon capture and storage has the potential to reduce the carbon intensity of delivered heat by a factor of ∼30, compared with a base case of natural gas-fired condensing boilers. - Highlights: → Large-scale CHP systems are thermodynamically equivalent to virtual steam cycle heat pumps. → COPs of such virtual heat pumps are necessarily better than the Carnot limit for real heat pumps. → COPs can approach 9 for plant matched to district heating systems with flow temperatures of 90 deg. C. → CHP combined with CCGT and CCS can reduce the carbon intensity of delivered heat ∼30-fold.

  18. Troubleshooting vacuum systems steam turbine surface condensers and refinery vacuum towers

    CERN Document Server

    Lieberman, Norman P

    2012-01-01

    Vacuum systems are in wide spread use in the petrochemical plants, petroleum refineries and power generation plants. The existing texts on this subject are theoretical in nature and only deal with how the equipment functions when in good mechanical conditions, from the viewpoint of the equipment vendor.  In this much-anticipated volume, one of the most well-respected and prolific process engineers in the world takes on troubleshooting vacuum systems, and especially steam ejectors, an extremely complex and difficult subject that greatly effects the profitability of the majority of the world'

  19. Cogeneration steam turbines from Siemens: New solutions

    Science.gov (United States)

    Kasilov, V. F.; Kholodkov, S. V.

    2017-03-01

    The Enhanced Platform system intended for the design and manufacture of Siemens AG turbines is presented. It combines organizational and production measures allowing the production of various types of steam-turbine units with a power of up to 250 MWel from standard components. The Enhanced Platform designs feature higher efficiency, improved reliability, better flexibility, longer overhaul intervals, and lower production costs. The design features of SST-700 and SST-900 steam turbines are outlined. The SST-700 turbine is used in backpressure steam-turbine units (STU) or as a high-pressure cylinder in a two-cylinder condensing turbine with steam reheat. The design of an SST-700 single-cylinder turbine with a casing without horizontal split featuring better flexibility of the turbine unit is presented. An SST-900 turbine can be used as a combined IP and LP cylinder (IPLPC) in steam-turbine or combined-cycle power units with steam reheat. The arrangements of a turbine unit based on a combination of SST-700 and SST-900 turbines or SST-500 and SST-800 turbines are presented. Examples of this combination include, respectively, PGU-410 combinedcycle units (CCU) with a condensing turbine and PGU-420 CCUs with a cogeneration turbine. The main equipment items of a PGU-410 CCU comprise an SGT5-4000F gas-turbine unit (GTU) and STU consisting of SST-700 and SST-900RH steam turbines. The steam-turbine section of a PGU-420 cogeneration power unit has a single-shaft turbine unit with two SST-800 turbines and one SST-500 turbine giving a power output of N el. STU = 150 MW under condensing conditions.

  20. Energy, mining, and the commercial success of the Newcomen "steam" engine

    Science.gov (United States)

    Murphy, John Paul

    This dissertation is about energy; specifically how prime movers changed at the beginning of the Industrial Revolution. These power needs are explored via the history of the Newcomen atmospheric engine, as it was used in the 18th century to drive pumps in flooded mines. This approach examines society as an energy-converting phenomenon, and uses the concept of an energy rent. The dissertation seeks to reach past the 19th century's "high-pressure historiography" of the first engines powered by fire; instead, it traces the actual low-pressure atmospheric technology of the first commercially successful engines, and the surprising, rather than inevitable, transformation they engendered. The costs of fuel are shown to be an essential factor in the success or failure of the first Newcomen engines. Thomas Newcomen's failed first attempts in Cornwall (1710) are contrasted with success in collieries, located in the relatively distant region of the Midlands, only two years later. To test the suggestion that coal is needed for a Newcomen engine to be profitable, two detailed case histories compare 18th century engines, both fired using wood fuel, at iron ore mines. The first was a failed engine at Dannemora, Sweden (1728); the second a successful machine built by the Brown brothers at Cranston, Rhode Island (1783). The Brown engine's case history was based on extensive original archive research, and also provides a detailed history of the Hope Furnace, which used the ore from Cranston. Success for the Browns in Rhode Island is found to have been rooted in their careful planning for fuel needs. The two mines were also found to have significantly different construction of gender roles, suggesting the Rhode Island context had established more thoroughly capitalist relations. The work shows that the demand for more extensive power, which led to these engines, was propelled by the ability of the evolving commercial market place to convert energy profitably (16th and 17th centuries

  1. Development of a steam generator lancing system

    International Nuclear Information System (INIS)

    Jeong, Woo-Tae; Kim, Seok-Tae; Hong, Sung-Yull

    2006-01-01

    It is recommended to clean steam generators of nuclear power plants during plant outages. Under normal operations, sludge is created and constantly accumulates in the steam generators. The constituents of this sludge are different depending on each power plant characteristics. The sludge of the Kori Unit 1 steam generator, for example, was found to be composed of 93% ferrous oxide, 3% carbon and 1% of silica oxide and nickel oxide each. The research to develop a lancing system that would remove sludge deposits from the tubesheet of a steam generator was started in 1998 by the Korea Electric Power Research Institute (KEPRI) of the Korea Electric Power Corporation (KEPCO). The first commercial domestic lancing system in Korea, and KALANS-I Lancing System, was completed in 2000 for Kori Unit 1 for cleaning the tubesheet of its Westinghouse Delta-60 steam generator. Thereafter, the success of the development and site implementation of the KALANS-I lancing system for YGN Units 1 and 2 and Ulchin Units 3 and 4 was also realized in 2004 for sludge removal at those sites. The upper bundle cleaning system for Westinghouse model F steam generators is now under development

  2. Evaluation of acoustic resonance at branch section in main steam line. Part 2. Proposal of method for predicting resonance frequency in steam flow

    International Nuclear Information System (INIS)

    Uchiyama, Yuta; Morita, Ryo

    2012-01-01

    Flow-induced acoustic resonances of piping system containing closed side-branches are sometimes encountered in power plants. Acoustic standing waves with large amplitude pressure fluctuation in closed side-branches are excited by the unstable shear layer which separates the mean flow in the main piping from the stagnant fluid in the branch. In U.S. NPP, the steam dryer had been damaged by high cycle fatigue due to acoustic-induced vibration under a power uprating condition. Our previous research developed the method for evaluating the acoustic resonance at the branch sections in actual power plants by using CFD. In the method, sound speed in wet steam is evaluated by its theory on the assumption of homogeneous flow, although it may be different from practical sound speed in wet steam. So, it is necessary to consider and introduce the most suitable model of practical sound speed in wet steam. In addition, we tried to develop simplified prediction method of the amplitude and frequency of pressure fluctuation in wet steam flow. Our previous experimental research clarified that resonance amplitude of fluctuating pressure at the top of the branch in wet steam. However, the resonance frequency in steam condition could not be estimated by using theoretical equation as the end correction in steam condition and sound speed in wet steam is not clarified as same reason as CFD. Therefore, in this study, we tried to evaluate the end correction in each dry and wet steam and sound speed of wet steam from experimental results. As a result, method for predicting resonance frequency by using theoretical equation in each wet and dry steam condition was proposed. (author)

  3. Integrated Gasification SOFC Plant with a Steam Plant

    DEFF Research Database (Denmark)

    Rokni, Masoud; Pierobon, Leonardo

    2011-01-01

    A hybrid Solid Oxide Fuel Cell (SOFC) and Steam Turbine (ST) plant is integrated with a gasification plant. Wood chips are fed to the gasification plant to produce biogas and then this gas is fed into the anode side of a SOFC cycle to produce electricity and heat. The gases from the SOFC stacks...... enter into a burner to burn the rest of the fuel. The offgases after the burner are now used to generate steam in a Heat Recovery Steam Generator (HRSG). The generated steam is expanded in a ST to produce additional power. Thus a triple hybrid plant based on a gasification plant, a SOFC plant...... and a steam plant is presented and studied. The plant is called as IGSS (Integrated Gasification SOFC Steam plant). Different systems layouts are presented and investigated. Electrical efficiencies up to 56% are achieved which is considerably higher than the conventional integrated gasification combined...

  4. Report on US-Japan 1983 meetings on steam generators

    International Nuclear Information System (INIS)

    1984-04-01

    This is a report on a trip to Japan by personnel of the US Nuclear Regulatory Commission in 1983 to exchange information on steam generators of nuclear power plants. Steam generators of Japanese pressurized water reactors have experienced nearly all of the forms of degradation that have been experienced in US recirculating-type steam generators, except for denting and pitting. More tubes have been plugged per year of reactor operation in Japanese than in US steam generators, but much of the Japanese tube plugging is preventative rather than the result of leaks experienced. The number of leaks per reactor year is much smaller for Japanese than for US steam generators. No steam generators have been replaced in Japan while several have been replaced in the US. The Japanese experience may be related to their very stringent inspection and maintenance programs for steam generators

  5. Characterization of a steam plasma jet at atmospheric pressure

    International Nuclear Information System (INIS)

    Ni Guohua; Zhao Peng; Cheng Cheng; Song Ye; Meng Yuedong; Toyoda, Hirotaka

    2012-01-01

    An atmospheric steam plasma jet generated by an original dc water plasma torch is investigated using electrical and spectroscopic techniques. Because it directly uses the water used for cooling electrodes as the plasma-forming gas, the water plasma torch has high thermal efficiency and a compact structure. The operational features of the water plasma torch and the generation of the steam plasma jet are analyzed based on the temporal evolution of voltage, current and steam pressure in the arc chamber. The influence of the output characteristics of the power source, the fluctuation of the arc and current intensity on the unsteadiness of the steam plasma jet is studied. The restrike mode is identified as the fluctuation characteristic of the steam arc, which contributes significantly to the instabilities of the steam plasma jet. In addition, the emission spectroscopic technique is employed to diagnose the steam plasma. The axial distributions of plasma parameters in the steam plasma jet, such as gas temperature, excitation temperature and electron number density, are determined by the diatomic molecule OH fitting method, Boltzmann slope method and H β Stark broadening, respectively. The steam plasma jet at atmospheric pressure is found to be close to the local thermodynamic equilibrium (LTE) state by comparing the measured electron density with the threshold value of electron density for the LTE state. Moreover, based on the assumption of LTE, the axial distributions of reactive species in the steam plasma jet are estimated, which indicates that the steam plasma has high chemical activity.

  6. High speed drying of saturated steam

    International Nuclear Information System (INIS)

    Marty, C.; Peyrelongue, J.P.

    1993-01-01

    This paper describes the development of the drying process for the saturated steam used in the PWR nuclear plant turbines in order to prevent negative effects of water on turbine efficiency, maintenance costs and equipment lifetime. The high speed drying concept is based on rotating the incoming saturated steam in order to separate water which is more denser than the steam; the water film is then extracted through an annular slot. A multicellular modular equipment has been tested. Applications on high and low pressure extraction of various PWR plants are described (Bugey, Loviisa)

  7. The casebook of technical presentation on a steam generator

    International Nuclear Information System (INIS)

    1986-05-01

    This casebook consists of seven presentations, which are measures and experience of maintenance of water quality in PWR generator, corrosion in steam generator, safely evaluation by management and closing in steam generator, testing of eddy current in steam generator, unsettled problems of safety in steam generator and maintenance of water quality in PWR generator.

  8. Thermoelastic steam turbine rotor control based on neural network

    Science.gov (United States)

    Rzadkowski, Romuald; Dominiczak, Krzysztof; Radulski, Wojciech; Szczepanik, R.

    2015-12-01

    Considered here are Nonlinear Auto-Regressive neural networks with eXogenous inputs (NARX) as a mathematical model of a steam turbine rotor for controlling steam turbine stress on-line. In order to obtain neural networks that locate critical stress and temperature points in the steam turbine during transient states, an FE rotor model was built. This model was used to train the neural networks on the basis of steam turbine transient operating data. The training included nonlinearity related to steam turbine expansion, heat exchange and rotor material properties during transients. Simultaneous neural networks are algorithms which can be implemented on PLC controllers. This allows for the application neural networks to control steam turbine stress in industrial power plants.

  9. Leak detection of steam or water into sodium in steam generators of liquid-metal fast breeder reactors

    International Nuclear Information System (INIS)

    Hans, R.; Dumm, K.

    1977-01-01

    The leakage of water or steam into sodium in LMFBR steam generators, including a study of how leaks are detected and located as well as the potential damage that could be caused by such leaks, is surveyed. The most interesting steam generator designs evolving in those countries that develop and construct LMFBRs are presented. The relevant protection measures are described. Fault conditions are defined and descriptions given of possible sequences of events leading to abnormal conditions in a steam generator. Taking into account theory, the potential of the hydrogen and oxygen detection systems is discussed. Different hydrogen and oxygen detection systems are fully described. In so far as interesting technical solutions are concerned, previously developed devices have also been taken into account. The way oxygen detection supplements hydrogen detection is described by listing the available oxygen measuring devices and the relevant theory. Only a few sonic and accelerometer measurements have been made on complete steam generator units so there is little system data available. Descriptions, however, have been included to give the state of the art achieved for the sensors and the achieved sensitivities or band widths. The potential of this monitoring method is made evident by adding the technical data of the sensors. Furthermore, the available systems for monitoring medium and large leakages are described. Finally, recommendations are made concerning steam generator development and the application of hydrogen and oxygen detection systems, as well as acoustic measuring methods for small-leakage detection

  10. An experimental and analytical investigation of glow plug performance in ignition and flame propagation through low concentrations of H2 in a steam/fog environment

    International Nuclear Information System (INIS)

    Davis, B.W.

    1982-01-01

    Thermal igniters proposed by the Tennessee Valley Authority for intentional ignition of hydrogen in nuclear reactor containments have been tested in mixtures of air, hydrogen, and steam. The igniters, conventional diesel engine glow plugs, were tested in a 10.6 ft 3 pressure vessel with dry hydrogen concentrations from 4% to 29%, and in steam fractions of up to 50%. Dry tests indicated complete combustion consistently occurred at H 2 fractions above 8% with no combustion for concentrations below 5%. Combustion tests in the presence of steam were conducted with hydrogen volume fractions of 8%, 10%, and 12%. Steam concentrations of up to 30% consistently resulted in ignition. Most of the 40% steam fraction tests indicated a pressure rise. Circulation of the mixture improved combustion in both the dry and the steam tests, most notably at low H 2 concentrations. An analysis of the high steam fraction test data yielded evidence of the presence of small, suspended, water droplets in the combustion mixture. The suppressive influence of condensation-generated fog on combustion is evaluated. Analysis of experimental results along with results derived from analytic models have provided consistent evidence of the strong influence of mass condensation rates and fog on experimentally observed ignition and flame propagation phenomena

  11. Removal of NAPLs from the unsaturated zone using steam: prevention of downward migration by injecting mixtures of steam and air

    DEFF Research Database (Denmark)

    Schmidt, R.; Gudbjerg, Jacob; Sonnenborg, Torben Obel

    2002-01-01

    injection technology is presented, where a mixture of steam and air was injected. In twodimensional experiments with unsaturated porous medium contaminated with nonaqueous phase liquids, it was demonstrated how injection of pure steam lead to severe downward migration. Similar experiments, where steam......Steam injection for remediation of porous media contaminated by nonaqueous phase liquids has been shown to be a potentially efficient technology. There is, however, concern that the technique may lead to downward migration of separate phase contaminant. In this work, a modification of the steam...... and air were injected simultaneously, resulted in practically no downward migration and still rapid cleanup was achieved. The processes responsible for the prevention of downward migration when injecting steam–air mixtures were analyzed using a nonisothermal multiphase flow and transport model. Hereby...

  12. Steam injections wells: topics to consider in casing design of steam injection wells; Revestimento para pocos de vapor

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Antonio Carlos Farias [PETROBRAS, Recife, PE (Brazil). Gerencia de Perfuracao do Nordeste. Div. de Operacoes

    1994-07-01

    Steam injection is one of the processes used to increase production from very viscous oil reservoirs. A well is completed at a temperature of about 110 deg F and during steam injection that temperature varies around 600 deg F. Strain or breakdowns may occur to the casing, due to the critical conditions generated by the change of temperature. The usual casing design methods, do not take into account special environmental conditions, such as those which exist for steam injection. From the results of this study we come up to the conclusion that casing grade K-55, heavy weight with premium connections, without pre-stressing and adequately heated, is the best option for steam injection well completion for most of the fields in Brazil. (author)

  13. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2006-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Units 2 that will extend the in-service life of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from the bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  14. Draining down of a nuclear steam generating system

    International Nuclear Information System (INIS)

    Jawor, J.C.

    1987-01-01

    The method is described of draining down contained reactor-coolant water from the inverted vertical U-tubes of a vertical-type steam generator in which the upper, inverted U-shaped ends of the tubes are closed and the lower ends thereof are open. The steam generator is part of a nuclear powered steam generating system wherein the reactor coolant water is normally circulated from and back into the reactor via a loop comprising the steam generator and inlet and outlet conduits connected to the lower end of the steam generator. The method comprises continuously introducing a gas which is inert to the system and which is under pressure above atmospheric pressure into at least one of the downwardly facing open ends of each of the U-tubes from below the tube sheet in which the open ends of the U-tubes are mounted adjacent the lower end of the steam generator, while permitting the water to flow out from the open ends of the U-tubes

  15. Maintenance and repair of LMFBR steam generators

    International Nuclear Information System (INIS)

    Verriere, P.; Alanche, J.; Minguet, J.L.

    1984-06-01

    After some general remarks on the French fast neutron system, this paper presents the state of the program for the construction of fast reactor in France. Then, the general design of Super Phenix 1 steam generator components is outlined and, the in-service monitoring systems and protective devices with which they are equiped are briefly described. The methods used, in the event of leakage, for leak location, steam generator inspection, steam generator repair and putting the affected loop back into service, are discussed. There are two main lines of research, relating respectively to the means of water leak detection in sodium and the inspection arrangements that will be used either periodically, or following a sodium-water reaction. Finally, after a brief description of the steam generator, this paper describes the four incidents (leaks) that occurred on the Phenix steam generator in the course of 1982 and 1983, and the subsequent repair operations

  16. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    (configuration 2) is more efficient than the two pressure level cycle (configuration 1). At the same time, the engine equipped with waste heat recovery with a three-pressure level steam cycle is simpler to operate in Tier II operation. However, the two-pressure level steam cycle is a simpler configuration....

  17. NIST/ASME Steam Properties Database

    Science.gov (United States)

    SRD 10 NIST/ASME Steam Properties Database (PC database for purchase)   Based upon the International Association for the Properties of Water and Steam (IAPWS) 1995 formulation for the thermodynamic properties of water and the most recent IAPWS formulations for transport and other properties, this updated version provides water properties over a wide range of conditions according to the accepted international standards.

  18. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    Science.gov (United States)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-03-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  19. Production of D-lactic acid from sugarcane bagasse using steam-explosion

    International Nuclear Information System (INIS)

    Sasaki, Chizuru; Okumura, Ryosuke; Asakawa, Ai; Asada, Chikako; Nakamura, Yoshitoshi

    2012-01-01

    This study investigated the production of D-lactic acid from unutilized sugarcane bagasse using steam explosion pretreatment. The optimal steam pressure for a steaming time of 5 min was determined. By enzymatic saccharification using Meicellase, the highest recovery of glucose from raw bagasse, 73.7%, was obtained at a steam pressure of 20 atm. For residue washed with water after steam explosion, the glucose recovery increased up to 94.9% at a steam pressure of 20 atm. These results showed that washing with water is effective in removing enzymatic reaction inhibitors. After steam pretreatment (steam pressure of 20 atm), D-lactic acid was produced by Lactobacillus delbrueckii NBRC 3534 from the enzymatic hydrolyzate of steam-exploded bagasse and washed residue. The conversion rate of D-lactic acid obtained from the initial glucose concentration was 66.6% for the hydrolyzate derived from steam-exploded bagasse and 90.0% for that derived from the washed residue after steam explosion. These results also demonstrated that the hydrolyzate of steam-exploded bagasse (without washing with water) contains fermentation inhibitors and washing with water can remove them.

  20. Cerium and jojoba in engines?; Cerium et jojoba dans les moteurs?

    Energy Technology Data Exchange (ETDEWEB)

    Massy-Delhotel, E.

    1996-10-01

    The Belgium company CreaTel proposes a new system, called Forac, which can lead to a 10% reduction of fuel consumption in thermal engines together with a quasi-complete reduction of CO, HC, NOx pollutants and CO{sub 2} particulates emission. The system comprises a steam production device and an admission pipe with a cerium alloy whorl inside. The steam produced is mixed with the admission air and tears cerium particles from the inside of the admission pipe to the combustion chamber. The cerium particles act as a catalyst which favours the complete combustion of the fuel. The same company proposes also lubricant additives made from liquid jojoba wax which allow the reduction of pollutant emissions, fuel consumption and noise emissions of diesel engines. (J.S.)

  1. 7 CFR 305.23 - Steam sterilization treatment schedules.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Steam sterilization treatment schedules. 305.23... Steam sterilization treatment schedules. Treatment schedule Temperature( °F) Pressure Exposure period (minutes) Directions T303-b-1 10 lbs 20 Use 28″ vacuum. Steam sterilization is not practical for treatment...

  2. US PWR steam generator management: An overview

    International Nuclear Information System (INIS)

    Welty, C.S. Jr.

    1997-01-01

    This paper provides an overview on the status of steam generator management activities in US PWRs, and includes: (1) an overview of the impact of steam generator problems; (2) a brief discussion of historical damage trends and the current damage mechanism of most concern; (3) a discussion of the elements of open-quotes steam generator managementclose quotes; and (4) a description of the approach being followed to implement a degradation-specific protocol for tubing inspection and repair. This paper was prepared in conjunction with another paper presented during the Plenary Session of this Conference, open-quotes Steam Generator Degradation: Current Mitigation Strategies for Controlling Corrosionclose quotes, and is provided as a supplement to that material

  3. Three-dimensional modeling of nuclear steam generator

    International Nuclear Information System (INIS)

    Bogdan, Z.; Afgan, N.

    1985-01-01

    In this paper mathematical model for steady-state simulation of thermodynamic and hydraulic behaviour of U-tube nuclear steam generator is described. The model predicts three-dimensional distribution of temperatures, pressures, steam qualities and velocities in the steam generator secondary loop. In this analysis homogeneous two phase flow model is utilized. Foe purpose of the computer implementation of the mathematical model, a special flow distribution code NUGEN was developed. Calculations are performed with the input data and geometrical characteristics related to the D-4 (westinghouse) model of U-tube nuclear steam generator built in Krsko, operating under 100% load conditions. Results are shown in diagrams giving spatial distribution of pertinent variables in the secondary loop. (author)

  4. Parametric Optimization of Biomass Steam-and-Gas Plant

    Directory of Open Access Journals (Sweden)

    V. Sednin

    2013-01-01

    Full Text Available The paper contains a parametric analysis of the simplest scheme of a steam-and gas plant for the conditions required for biomass burning. It has been shown that application of gas-turbine and steam-and-gas plants can significantly exceed an efficiency of steam-power supply units which are used at the present moment. Optimum thermo-dynamical conditions for application of steam-and gas plants with the purpose to burn biomass require new technological solutions in the field of heat-exchange equipment designs.

  5. A theoretical model of air and steam co-injection to prevent the downward migration of DNAPLs during steam-enhanced extraction

    Science.gov (United States)

    Kaslusky, Scott F.; Udell, Kent S.

    2002-04-01

    When steam is injected into soil containing a dense volatile non-aqueous phase liquid contaminant the DNAPL vaporized within the heated soil region condenses and accumulates ahead of the steam condensation front. If enough DNAPL accumulates, gravitational forces can overcome trapping forces allowing the liquid contaminant to flow downward. By injecting air with steam, a portion of the DNAPL vapor remains suspended in equilibrium with the air, decreasing liquid contaminant accumulation ahead of the steam condensation front, and thus reducing the possibility of downward migration. In this work, a one-dimensional theoretical model is developed to predict the injection ratio of air to steam that will prevent the accumulation of volatile DNAPLs. The contaminated region is modeled as a one-dimensional homogeneous porous medium with an initially uniform distribution of a single component contaminant. Mass and energy balances are combined to determine the injection ratio of air to steam that eliminates accumulation of the contaminant ahead of the steam condensation front, and hence reduces the possibility of downward migration. The minimum injection ratio that eliminates accumulation is defined as the optimum injection ratio. Example calculations are presented for three DNAPLs, carbon tetrachloride (CCl 4), trichloroethylene (TCE), and perchloroethylene (PCE). The optimum injection ratio of air to steam is shown to depend on the initial saturation and the volatility of the liquid contaminant. Numerical simulation results are presented to validate the model, and to illustrate downward migration for ratios less than optimum. Optimum injection ratios determined from numerical simulations are shown to be in good agreement with the theoretical model.

  6. Gas--steam turbine combined cycle power plants

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1978-10-01

    The purpose of this technology evaluation is to provide performance and cost characteristics of the combined gas and steam turbine, cycle system applied to an Integrated Community Energy System (ICES). To date, most of the applications of combined cycles have been for electric power generation only. The basic gas--steam turbine combined cycle consists of: (1) a gas turbine-generator set, (2) a waste-heat recovery boiler in the gas turbine exhaust stream designed to produce steam, and (3) a steam turbine acting as a bottoming cycle. Because modification of the standard steam portion of the combined cycle would be necessary to recover waste heat at a useful temperature (> 212/sup 0/F), some sacrifice in the potential conversion efficiency is necessary at this temperature. The total energy efficiency ((electric power + recovered waste heat) divided by input fuel energy) varies from about 65 to 73% at full load to 34 to 49% at 20% rated electric power output. Two major factors that must be considered when installing a gas--steam turbine combines cycle are: the realiability of the gas turbine portion of the cycle, and the availability of liquid and gas fuels or the feasibility of hooking up with a coal gasification/liquefaction process.

  7. Steam generator replacement in Bruce A Unit 1 and Unit 2

    International Nuclear Information System (INIS)

    Hart, R.S.

    2007-01-01

    The Bruce A Generating Station consists of four 900 MW class CANDU units. The reactor and Primary Heat Transport System for each Unit are housed within a reinforced concrete reactor vault. A large duct running below the reactor vaults accommodates the shared fuel handling system, and connects the four reactor vaults to the vacuum building. The reactor vaults, fuelling system duct and the vacuum building constitute the station vacuum containment system. Bruce A Unit 2 was shut down in 1995 and Bruce A Units 1, 3 and 4 were shutdown in 1997. Bruce A Units 3 and 4 were returned to service in late 2003 and are currently operating. Units 1 and 2 remain out of service. Bruce Power is currently undertaking a major rehabilitation of Bruce A Unit 1 and Unit 2 that will extend the in-service tile of these units by at least 25 years. Replacement of the Steam Generators (eight in each unit) is required; this work was awarded to SNC-Lavalin Nuclear (SLN). The existing steam drums (which house the steam separation and drying equipment) will be retained. Unit 2 is scheduled to be synchronized with the grid in 2009, followed by Unit 1 in 2009. Each Bruce A unit has two steam generating assemblies, one located above and to each end of the reactor. Each steam generating assembly consists of a horizontal cylindrical steam drum and four vertical Steam Generators. The vertical Steam Generators connect to individual nozzles that are located on the underside of the Steam Drum (SD). The steam drums are located in concrete shielding structures (steam drum enclosures). The lower sections of the Steam Generators penetrate the top of the reactor vaults: the containment pressure boundary is established by bellows assemblies that connect between the reactor vault roof slab and the Steam Generators. Each Steam Generators is supported from he bottom by a trapeze that is suspended from the reactor vault top structure. The Steam Generator Replacement (SGR) methodology developed by SLN for Unit 1

  8. Nuclear process steam for industry

    International Nuclear Information System (INIS)

    Seddon, W.A.

    1981-11-01

    A joint industrial survey funded by the Bruce County Council, the Ontario Energy Corporation and Atomic Energy of Canada Limited was carried out with the cooperation of Ontario Hydro and the Ontario Ministry of Industry and Tourism. Its objective was to identify and assess the future needs and interest of energy-intensive industries in an Industrial Energy Park adjacent to the Bruce Nuclear Power Development. The Energy Park would capitalize on the infrastructure of the existing CANDU reactors and Ontario Hydro's proven and unique capability to produce steam, as well as electricity, at a cost currently about half that from a comparable coal-fired station. Four industries with an integrated steam demand of some 1 x 10 6 lb/h were found to be prepared to consider seriously the use of nuclear steam. Their combined plants would involve a capital investment of over $200 million and provide jobs for 350-400 people. The high costs of transportation and the lack of docking facilities were considered to be the major drawbacks of the Bruce location. An indication of steam prices would be required for an over-all economic assessment

  9. EFFECT OF STEAMING ON THE COLOUR CHANGE OF SOFTWOODS

    Directory of Open Access Journals (Sweden)

    Laszlo Tolvaj,

    2012-05-01

    Full Text Available The heat treatment of softwood (i.e. spruce, pine, fir, and larch may result in significant colour changes. During this study Scots pine and spruce samples were steamed and analysed for their altered hue and lightness. Treatments included: 0 to 22 days of steaming time at a temperature range of 70 to 100°C. The outcome included a variety of colours between the initial hues and brownish tint. These new colours are similar to that of aged furniture and indoor wooden structures. Consequently, properly steamed softwood may be used to repair historical artefacts and relic furniture. Besides restoration, steamed stocks are excellent sources for manufacture of periodical furniture, where the aged appearance has aesthetical value. Results however, indicated that steaming at a temperature above 90 ˚C has a bleaching effect, i.e. the coloured chemical components formed by moderate steaming may be removed. Furthermore, we observed a linear correlation between lightness and colour hue at all steaming times and temperatures.

  10. 1000 MW steam turbine for Temelin nuclear power station

    International Nuclear Information System (INIS)

    Drahy, J.

    1992-01-01

    Before the end 1991 the delivery was completed of the main parts (3 low-pressure sections and 1 high-pressure section, all of double-flow design) of the first full-speed (3000 r.p.m.) 1000 MW steam turbine for saturated admission steam for the Temelin nuclear power plant. Description of the turbine design and of new technologies and tools used in the manufacture are given. Basic technical parameters of the steam turbine are as follows: maximum output of steam generators 6060 th -1 ; maximum steam flow into turbine 5494.7 th -1 ; output of turbo-set 1024 MW; steam conditions before the turbine inlet: pressure 5.8 MPa, temperature 273.3 degC, steam wetness 0.5%; nominal temperature of cooling water 21 degC; temperature of feed water 220.8 degC; maximum consumption of heat from turbine for heating at 3-stage heating of heating water 60/150 degC. (Z.S.) 7 figs., 2 refs

  11. Technological investigations and efficiency analysis of a steam heat exchange condenser: Conceptual design of a hybrid steam condenser

    OpenAIRE

    Kapooria, R K; Kumar, S; Kasana, K S

    2008-01-01

    Most of the electricity being produced throughout the world today is from steam power plants. At the same time, many other competent means of generating electricity have been developed viz. electricity from natural gas, MHD generators, biogas, solar cells, etc. But steam power plants will continue to be competent because of the use of water as the main working fluid which is abundantly available and is also reusable. The condenser remains among one of the key components of a steam power plant...

  12. Selective hydrogenation processes in steam cracking

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M.; Schroeter, M.K.; Hinrichs, M.; Makarczyk, P. [BASF SE, Ludwigshafen (Germany)

    2010-12-30

    Hydrogen is the key elixir used to trim the quality of olefinic and aromatic product slates from steam crackers. Being co-produced in excess amounts in the thermal cracking process a small part of the hydrogen is consumed in the ''cold part'' of a steam cracker to selectively hydrogenate unwanted, unsaturated hydrocarbons. The compositions of the various steam cracker product streams are adjusted by these processes to the outlet specifications. This presentation gives an overview over state-of-art selective hydrogenation technologies available from BASF for these processes. (Published in summary form only) (orig.)

  13. Chemical cleaning for sludge in steam generator of nuclear power plant

    International Nuclear Information System (INIS)

    Zhang Mengqin; Lu Yucheng; Zhang Binyong; Yu Jinghua

    2002-01-01

    The sludge induced corrosion damage to secondary side of tubes of Steam Generator (SG), effect of chemical cleaning technique on maintenance integrity of tubes of SG NPP and use of chemical cleaning technique in SG NPP have been summarized. The engineering technique of chemical cleaning for removing sludge in secondary side of SG NPP has been studied and qualified by CIAE (China Institute of Atomic Energy). Chemical cleaning engineering technique is introduced (main agent is EDTA, temp. <100 degree C), including chemical cleaning technology for tube plate and full tube nest of secondary side of SG, the monitoring technique of chemical cleaning process (effectiveness and safety), the disposal method of wastage of chemical cleaning, the system of chemical cleaning. The method for preventing sludge deposition in secondary side and the research on advanced water chemistry of secondary loop are introduced

  14. Steam Generator Tube Integrity Program: Surry Steam Generator Project, Hanford site, Richland, Benton County, Washington: Environmental assessment

    International Nuclear Information System (INIS)

    1980-03-01

    The US Nuclear Regulatory Commission (NRC) has placed a Nuclear Regulatory Research Order with the Richland Operations Office of the US Department of Energy (DOE) for expanded investigations at the DOE Pacific Northwest Laboratory (PNL) related to defective pressurized water reactor (PWR) steam generator tubing. This program, the Steam Generator Tube Integrity (SGTI) program, is sponsored by the Metallurgy and Materials Research Branch of the NRC Division of Reactor Safety Research. This research and testing program includes an additional task requiring extensive investigation of a degraded, out-of-service steam generator from a commercial nuclear power plant. This comprehensive testing program on an out-of-service generator will provide NRC with timely and valuable information related to pressurized water reactor primary system integrity and degradation with time. This report presents the environmental assessment of the removal, transport, and testing of the steam generator along with decontamination/decommissioning plans

  15. Modeling and Simulation of U-tube Steam Generator

    Science.gov (United States)

    Zhang, Mingming; Fu, Zhongguang; Li, Jinyao; Wang, Mingfei

    2018-03-01

    The U-tube natural circulation steam generator was mainly researched with modeling and simulation in this article. The research is based on simuworks system simulation software platform. By analyzing the structural characteristics and the operating principle of U-tube steam generator, there are 14 control volumes in the model, including primary side, secondary side, down channel and steam plenum, etc. The model depends completely on conservation laws, and it is applied to make some simulation tests. The results show that the model is capable of simulating properly the dynamic response of U-tube steam generator.

  16. Dimensional analysis of small-scale steam explosion experiments

    International Nuclear Information System (INIS)

    Huh, K.; Corradini, M.L.

    1986-01-01

    Dimensional analysis applied to Nelson's small-scale steam explosion experiments to determine the qualitative effect of each relevant parameter for triggering a steam explosion. According to experimental results, the liquid entrapment model seems to be a consistent explanation for the steam explosion triggering mechanism. The three-dimensional oscillatory wave motion of the vapor/liquid interface is analyzed to determine the necessary conditions for local condensation and production of a coolant microjet to be entrapped in fuel. It is proposed that different contact modes between fuel and coolant may involve different initiation mechanisms of steam explosions

  17. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. This phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The ensuing structural damage, inspection and repairs are described. Finally, a list of design, maintenance and operational cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  18. Condensation induced water hammer in steam supply system

    International Nuclear Information System (INIS)

    Andrews, P.B.; Antaki, G.A.; Rawls, G.B.; Gutierrez, B.J.

    1995-01-01

    The accidental mixing of steam and water usually leads to condensation induced water hammer. THis phenomenon is not uncommon in the power and process industries, and is of particular concern due to the high energies which accompany steam transients. The paper discusses the conditions which lead to a recent condensation induced water hammer in a 150 psig steam supply header. The insuing structural damage, inspection and repairs are described. Finally, a list of design cautions are presented to help minimize the potential for condensation induced water hammer in steam lines

  19. Wastage of Steam Generator Tubes by Sodium-Water Reaction

    International Nuclear Information System (INIS)

    Jeong, Ji Young; Kim, Jong Man; Kim, Tae Joon; Choi, Jong Hyeun; Kim, Byung Ho; Lee, Yong Bum; Park, Nam Cook

    2010-01-01

    The Korea Advanced LIquid MEtal Reactor (KALIMER) steam generator is a helical coil, vertically oriented, shell-and-tube type heat exchanger with fixed tube-sheet. The conceptual design and outline drawing of the steam generator are shown in Figure 1. Flow is counter-current, with sodium on the shell side and water/steam on the tube side. Sodium flow enters the steam generator through the upper inlet nozzles and then flows down through the tube bundle. Feedwater enters the steam generator through the feedwater nozzles at the bottom of steam generator. Therefore, if there is a hole or a crack in a heat transfer tube, a leakage of water/steam into the sodium may occur, resulting in a sodium-water reaction. When such a leak occurs, so-called 'wastage' is the result which may cause damage to or a failure of the adjacent tubes. If a steam generator is operated for some time in this condition, it is possible that it might create an intermediate leak state which would then give rise to the problems of a multi-target wastage in a very short time. Therefore, it is very important to predict these phenomena quantitatively from the view of designing a steam generator and its leak detection systems. For this, multi-target wastage tests for modified 9Cr-1Mo steel tube bundle by intermediate leaks are being prepared

  20. Dismantling of the 50 MW steam generator test facility

    International Nuclear Information System (INIS)

    Nakai, S.; Onojima, T.; Yamamoto, S.; Akai, M.; Isozaki, T.; Gunji, M.; Yatabe, T.

    1997-01-01

    We have been dismantling the 50MW Steam Generator Test Facility (50MWSGTF). The objectives of the dismantling are reuse of sodium components to a planned large scale thermal hydraulics sodium test facility and the material examination of component that have been operated for long time in sodium. The facility consisted of primary sodium loop with sodium heater by gas burner as heat source instead of reactor, secondary sodium loop with auxiliary cooling system (ACS) and water/steam system with steam temperature and pressure reducer instead of turbine. It simulated the 1 loop of the Monju cooling system. The rated power of the facility was 50MWt and it was about 1/5 of the Monju power plant. Several sodium removal methods are applied. As for the components to be dismantled such as piping, intermediate heat exchanger (IHX), air cooled heat exchangers (AC), sodium is removed by steam with nitrogen gas in the air or sodium is burned in the air. As for steam generators which material tests are planned, sodium is removed by steam injection with nitrogen gas to the steam generator. The steam generator vessel is filled with nitrogen and no air in the steam generator during sodium removal. As for sodium pumps, pump internal structure is pulled out from the casing and installed into the tank. After the installation, sodium is removed by the same method of steam generator. As for relatively small reuse components such as sodium valves, electromagnet flow meters (EMFs) etc., sodium is removed by alcohol process. (author)

  1. [Effectiveness and limits of the cleaners steam in hospitals].

    Science.gov (United States)

    Meunier, O; Meistermann, C; Schwebel, A

    2009-05-01

    We assessed bactericidal activity of the cleaners steam used for the bio-cleaning of the hospital surfaces. We performed of samples (Rodac) before and after use of cleaner steam and compared with bactericidal effect of disinfecting detergent used in hospital for surfaces. We studied this effectiveness for different time of steam contact. Finally, we wanted to prove, by air sampling, that aero-bio-contamination was possible generated by using cleaners steam. We show that bactericidal effect of the cleaner steam is superior of some tested disinfecting detergent, for the treatment of one square meter till 2 min. This effectiveness diminishes to be just identical in that some disinfecting detergent when use of the cleaner steam is up to two or four square meters surfaces till 2 min. On the other hand, the cleaner steam is less efficient in terms of bacterial destruction when the time of contact steam-soil is superior in 2 min for six square meter surface. The air bacterial pollution, generated by the use of the cleaner steam, is restricted and not significantly augmented if measured in 44 cm above the soil in the course of cleaning. The cleaner steam is indeed a very good equipment for the cleaning of surfaces but it is necessary to respect a time of minimal contact of 2 min for four square meters surfaces treaties to acquire an antibacterial effect at least so important as that acquired with used disinfecting detergent. The disinfection of surfaces is then user-dependent and the time of requested contact is can be not compatible with hospital obligations.

  2. Steam generators

    International Nuclear Information System (INIS)

    Hayden, R.L.J.

    1979-01-01

    Steam generators for nuclear reactors are designed so that deposition of solids on the surface of the inlet side of the tubesheet or the inlet header with the consequent danger of corrosion and eventual tube failure is obviated or substantially reduced. (U.K.)

  3. Nuclear turbine efficiency improvement by wet steam study

    International Nuclear Information System (INIS)

    Nishikawa, Tsuyoshi; Morson, A.; Markytan, R.

    2000-01-01

    Most of the turbine used at the nuclear power plant are operated at environment of wet steam, which composes of a big factor of its inner loss in comparison with those of the thermal power plant. If an analytical method predictable on behavior of the wet steam is established, it could be upgraded efficiency of the turbine and also reliability against corrosion formed by moisture. This study, therefore, aims at understanding of physical property of the wet steam flow scarcely known at present, development of an optimum turbine cascade design tool reflected by the property, development of a turbine cascade design reducible of steam loss due to wet steam by using the tool, and development on a method of removing moisture in the turbine to its outer portion. For the tool, a new three dimensional flow numerical analysis is necessary to be developed, to aim at accurately and numerically understanding of the behavior of wet steam. As this study is in advancing now, by using a turbine cascade optimized on the wet steam flow and a developed moisture removing apparatus, about 0.6 % of upgrading in turbine efficiency can be predicted in comparison with that of the advanced aero-cascade of the GE Corporation. (G.K.)

  4. Vertical steam generator

    International Nuclear Information System (INIS)

    Cuda, F.; Kondr, M.; Kresta, M.; Kusak, V.; Manek, O.; Turon, S.

    1982-01-01

    A vertical steam generator for nuclear power plants and dual purpose power plants consists of a cylindrical vessel in which are placed heating tubes in the form upside-down U. The heating tubes lead to the jacket of the cylindrical collector placed in the lower part of the steam generator perpendicularly to its vertical axis. The cylindrical collector is divided by a longitudinal partition into the inlet and outlet primary water sections of the heating tubes. One ends of the heating tube leads to the jacket of the collector for primary water feeding and the second ends of the heating tubes into the jacket of the collector which feeds and offtakes primary water from the heating tubes. (B.S.)

  5. 49 CFR 230.108 - Steam locomotive leading and trailing trucks.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Steam locomotive leading and trailing trucks. 230... RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Steam Locomotives and Tenders Trucks, Frames and Equalizing System § 230.108 Steam locomotive leading...

  6. Imitating model of the electronic regulator frequencies of rotation of the automobile diesel engine

    OpenAIRE

    Тырловой, С. И.

    2011-01-01

    The imitating model of an frequency electronic regulator of rotation of high-speed diesel engine an automobile diesel engine with the distributive fuel pump of Bosch company is resulted. Is executed simulation transitive modes of a diesel engine with mechanic and electronic regulators. Deterioration influence plungers steams on dinamic and economic indicators of a diesel engine is analysed. Operational indicators of a diesel engine with mechanic and electronic regulators are compared. The obt...

  7. Sintering of nickel steam reforming catalysts

    DEFF Research Database (Denmark)

    Sehested, Jens; Larsen, Niels Wessel; Falsig, Hanne

    2014-01-01

    . In this paper, particle migration and coalescence in nickel steam reforming catalysts is studied. Density functional theory calculations indicate that Ni-OH dominate nickel transport at nickel surfaces in the presence of steam and hydrogen as Ni-OH has the lowest combined energies of formation and diffusion...

  8. Performance analysis of a potassium-steam two stage vapour cycle

    International Nuclear Information System (INIS)

    Mitachi, Kohshi; Saito, Takeshi

    1983-01-01

    It is an important subject to raise the thermal efficiency in thermal power plants. In present thermal power plants which use steam cycle, the plant thermal efficiency has already reached 41 to 42 %, steam temperature being 839 K, and steam pressure being 24.2 MPa. That is, the thermal efficiency in a steam cycle is facing a limit. In this study, analysis was made on the performance of metal vapour/steam two-stage Rankine cycle obtained by combining a metal vapour cycle with a present steam cycle. Three different combinations using high temperature potassium regenerative cycle and low temperature steam regenerative cycle, potassium regenerative cycle and steam reheat and regenerative cycle, and potassium bleed cycle and steam reheat and regenerative cycle were systematically analyzed for the overall thermal efficiency, the output ratio and the flow rate ratio, when the inlet temperature of a potassium turbine, the temperature of a potassium condenser, and others were varied. Though the overall thermal efficiency was improved by lowering the condensing temperature of potassium vapour, it is limited by the construction because the specific volume of potassium in low pressure section increases greatly. In the combinatipn of potassium vapour regenerative cycle with steam regenerative cycle, the overall thermal efficiency can be 58.5 %, and also 60.2 % if steam reheat and regenerative cycle is employed. If a cycle to heat steam with the bled vapor out of a potassium vapour cycle is adopted, the overall thermal efficiency of 63.3 % is expected. (Wakatsuki, Y.)

  9. Optimum fuel allocation in parallel steam generator systems

    International Nuclear Information System (INIS)

    Bollettini, U.; Cangioli, E.; Cerri, G.; Rome Univ. 'La Sapienza'; Trento Univ.

    1991-01-01

    An optimization procedure was developed to allocate fuels into parallel steam generators. The procedure takes into account the level of performance deterioration connected with the loading history (fossil fuel allocation and maintenance) of each steam generator. The optimization objective function is the system hourly cost, overall steam demand being satisfied. Costs are due to fuel and electric power supply and to plant depreciation and maintenance as well. In order to easily updata the state of each steam generator, particular care was put in the general formulation of the steam production function by adopting a special efficiency-load curve description based on a deterioration scaling parameter. The influence of the characteristic time interval length on the optimum operation result is investigated. A special implementation of the method based on minimum cost paths is suggested

  10. Unsteady coupling effects of wet steam in steam turbines flows

    International Nuclear Information System (INIS)

    Blondel, Frederic

    2014-01-01

    In addition to conventional turbomachinery problems, both the behavior and performances of steam turbines are highly dependent on the vapour thermodynamic state and the presence of a liquid phase. EDF, the main French electricity producer, is interested in further developing its' modelling capabilities and expertise in this area to allow for operational studies and long-term planning. This PhD thesis explores the modelling of wetness formation and growth in a steam turbine and an analysis of the coupling between the liquid phase and the main flow unsteadiness. To this end, the work in this thesis took the following approach. Wetness was accounted for using a homogeneous model coupled with transport equations to take into account the effects of non-equilibrium phenomena, such as the growth of the liquid phase and nucleation. The real gas attributes of the problem demanded adapted numerical methods. Before their implementation in the 3D elsA solver, the accuracy of the chosen models was tested using a developed one-dimensional nozzle code. In this manner, various condensation models were considered, including both poly-dispersed and monodispersed behaviours of the steam. Finally, unsteady coupling effects were observed from several perspectives (1D, 1D - 3D, 3D), demonstrating the ability of the method of moments to sustain unsteady phenomena which were not apparent in a simple monodispersed model. (author)

  11. Steam Digest 2001: Office of Industrial Technologies

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2002-01-01

    Steam Digest 2001 chronicles Best Practices Program's contributions to the industrial trade press for 2001, and presents articles that cover technical, financial and managerial aspects of steam optimization.

  12. Steam turbines for nuclear power plants

    International Nuclear Information System (INIS)

    Stastny, M.

    1983-01-01

    A three-cylinder 220 MW saturated steam turbine was developed for WWER reactors by the Skoda concern. Twenty four of these turbines are currently in operation, in production or have been ordered. A 1000 MW four-cylinder turbine is being developed. The disign of the turbines has had to overcome difficulties connected with the unfavourable effects of wet steam at extreme power values. Great attention had to be devoted to the aerodynamics of control valves and to the prevention of flow separation areas. The problem of corrosion-erosion in guide wheels and the high pressure section was resolved by the use of ferritic stainless steels. For the low pressure section it was necessary to separate the moisture and to reheat the steam in the separator-reheater. Difficulties caused by the generation of wet steam in the low pressure section by spontaneous condensation were removed. Also limited was the erosion caused by droplets resulting from the disintegration of water films on the trailing edges. (A.K.)

  13. Steam generator for pressurized-water reactors

    International Nuclear Information System (INIS)

    Michel, E.

    1971-01-01

    In the steam generator for a PWR the central fall space of a U-tube bundel heat exchanger is used as a preliminary cyclon separator. The steam escaping upwards, which is largely free of water, can flow through the residual heating surface, i.e. the U-tube turns. In this way substantial drying and less superheating by the heat still added becomes possible. In its upper part the central fall space for the water separated in the preliminary separator, enclosed by a cylindrical guide wall and the U-tube bundle, is provided with tangential inlet slots. Through these, the water-steam mixture steams out of the section of the vertical legs of the U-tube bundle into the fall space. Above the inlet slots the rising space is closed by means of a turn-round plate. At the lower end of the guide wall outlet, slots are provided for the water flowing downwards and radially outwards into the unfilled space. (DG/PB) [de

  14. Coupled RELAP5/PANTHER/COBRA steam line break accident analysis in support of licensing DOEL 2 power uprate and steam generator replacement

    International Nuclear Information System (INIS)

    Zhang, J.; Bosso, S.; Henno, X.; Ouliddren, K.; Schneidesch, C.R.; Hove, W. van

    2004-01-01

    The nuclear reactor accident analyses using best estimate codes provide a better understanding and more accurate modeling of the key physical phenomena, which allows a more realistic evaluation of the conservatism and margins in the final safety analysis report (FSAR) accident analysis. The use of the best estimate codes and methods is necessary to meet the increasing technical, licensing and regulatory requirements for major plant changes (e.g. steam generator replacement), power uprate, core design optimization (cycle extension), as well as Periodic Safety Review. Since 1992, Tractebel Engineering (TE) has developed and applied a deterministic bounding approach to FASR accident analysis using the best estimate system thermal hydraulic code RELAP5/MOD2.5 and the subchannel thermal hydraulic code COBRA-3C. This approach has been accepted by the Belgian Safety Authorities, and turned out to be cost effective for most of the non-LOCA transient analyses. Since this approach adapts a decoupled modeling of the core responses, the analysis results often involved too large un-quantified conservatisms, due to either simplistic approximations for asymmetric accidents with strong 3D core neutronics - plant thermal hydraulics interactions, or additional penalties introduced from 'incoherent' initial/boundary conditions for separate plant and core analyses. Therefore, an external dynamic coupling between the RELAP5/MOD2.5 code and the 3-D neutronic code PANTHER was implemented since 1997 via the transient analysis code linkage program TALINK. Furthermore, a static linkage between the PANTHER code and the COBRA-3C code was developed for on-line calculation of (Departure from Nucleate Boiling Ratio (DNBR). TE intends to use the coupled code package for licensing non-symmetric FSAR accident analysis. The TE coupled code package has been applied to develop a main steam line break (MSLB) accident analysis methodology [using the TE deterministic bounding approach. The methodology

  15. Wavelet network controller for nuclear steam generators

    International Nuclear Information System (INIS)

    Habibiyan, H; Sayadian, A; Ghafoori-Fard, H

    2005-01-01

    Poor control of steam generator water level is the main cause of unexpected shutdowns in nuclear power plants. Particularly at low powers, it is a difficult task due to shrink and swell phenomena and flow measurement errors. In addition, the steam generator is a highly complex, nonlinear and time-varying system and its parameters vary with operating conditions. Therefore, it seems that design of a suitable controller is a necessary step to enhance plant availability factor. The purpose of this paper is to design, analyze and evaluate a water level controller for U-tube steam generators using wavelet neural networks. Computer simulations show that the proposed controller improves transient response of steam generator water level and demonstrate its superiority to existing controllers

  16. IAEA activities on steam generator life management

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Lyssakov, V.; Trampus, P.

    2002-01-01

    The International Atomic Energy Agency (IAEA) carries out a set of activities in the field of Nuclear Power Plant (NPP) life management. Main activities within this area are implemented through the Technical Working Group on Life Management of NPPs, and mostly concentrated on studies of understanding mechanisms of degradation and their monitoring, optimisation of maintenance management, economic aspects, proven practices of and approaches to plant life management including decommissioning. The paper covers two ongoing activities related to steam generator life management: the International Database on NPP Steam Generators and the Co-ordinated Research Project on Verification of WWER Steam Generator Tube Integrity (WWER is the Russian designed PWR). The lifetime assessment of main components relies on an ability to assess their condition and predict future degradation trends, which to a large extent is dependent on the availability of relevant data. Effective management of ageing and degradation processes requires a large amount of data. Several years ago the IAEA started to work on the International Database on NPP Life Management. This is a multi-module database consisting of modules such as reactor pressure vessels materials, piping, steam generators, and concrete structures. At present the work on pressure vessel materials, on piping as well as on steam generator is completed. The paper will present the concept and structure of the steam generator module of the database. In countries operating WWER NPPs, there are big differences in the eddy current inspection strategy and practice as well as in the approach to steam generator heat exchanger tube structural integrity assessment. Responding to the need for a co-ordinated research to compare eddy current testing results with destructive testing using pulled out tubes from WWER steam generators, the IAEA launched this project. The main objectives of the project are to summarise the operating experiences of WWER

  17. Reduction of exhaust gas emission for marine diesel engine. Hakuyo engine no taisaku (hakuyo engine no mondaiten to tenbo)

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Y. (Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan))

    1992-05-05

    Since bunker fuel became extremely expensive through the first and second oil crisis, the share of steam turbines having lower thermal efficiency than diesel engines became less, and at present, almost all ships and vessels are equipped with Diesel engines. Also fuel consumption of a diesel engine has successfully been reduced by 24% in about 10 years, but the discharge of air pollutant in the exhaust gas has shown a trend of increase. Air pollutant in exhaust gas of marine engines which has not drawn attention so far has also begun attracting notice, and as marine traffic increases, some control of it will be made sooner or later. Hence economical and effective counter measures against exhaust gas are necessary. In this article, as measures for reducing NO {sub x}, discussions are made on water-emulsion fuel, humidification of air supply, multi-nozzle atomization, injection time delaying and SCR (selective catalitic reduction). Also measures for reducing SO {sub x} is commented upon and the continuation of superiority of Diesel engines in the future is predicted. 5 figs.

  18. Two-Phase Instability Characteristics of Printed Circuit Steam Generator for the Low Pressure Condition

    International Nuclear Information System (INIS)

    Kang, Han-Ok; Han, Hun Sik; Kim, Young-In; Kim, Keung Koo

    2015-01-01

    Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall manufacturing cost for the components. A PCHE(Printed Circuit Heat Exchanger) is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. PCSG(Printed Circuit Steam Generator) is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. For the introduction of new steam generator, design requirement for the two-phase flow instability should be considered. This paper describes two-phase flow instability characteristics of PCSG for the low pressure condition. PCSG is a potential candidate to be applied to the integral reactor with its compactness and mechanical robustness. Interconnecting flow path was developed to mitigate the two-phase flow instability in the cold side. The flow characteristics of two-phase flow instability at the PCSG is examined experimentally in this study

  19. Steam-frothing of milk for coffee

    DEFF Research Database (Denmark)

    Münchow, Morten; Jørgensen, Leif; Amigo Rubio, Jose Manuel

    2015-01-01

    A method for evaluation of the foaming properties of steam-frothed milk, based on image analysis (feature extraction) carried out on a video taken immediately after foam formation, was developed. The method was shown to be able to analyse steam-frothed milk made using a conventional espresso mach...

  20. Impact of flow induced vibration acoustic loads on the design of the Laguna Verde Unit 2 steam dryer

    International Nuclear Information System (INIS)

    Forsyth, D. R.; Wellstein, L. F.; Theuret, R. C.; Han, Y.; Rajakumar, C.; Amador C, C.; Sosa F, W.

    2015-09-01

    Industry experience with Boiling Water Reactors (BWRs) has shown that increasing the steam flow through the main steam lines (MSLs) to implement an extended power up rate (EPU) may lead to amplified acoustic loads on the steam dryer, which may negatively affect the structural integrity of the component. The source of these acoustic loads has been found to be acoustic resonance of the side branches on the MSLs, specifically, coupling of the vortex shedding frequency and natural acoustic frequency of safety relief valves (SRVs). The resonance that results from this coupling can contribute significant acoustic energy into the MSL system, which may propagate upstream into the reactor pressure vessel steam dome and drive structural vibration of steam dryer components. This can lead to high-cycle fatigue issues. Lock-in between the vortex shedding frequency and SRV natural frequency, as well as the ability for acoustic energy to propagate into the MSL system, are a function of many things, including the plant operating conditions, geometry of the MSL/SRV junction, and placement of SRVs with respect to each other on the MSLs. Comision Federal de Electricidad and Westinghouse designed, fabricated, and installed acoustic side branches (ASBs) on the MSLs which effectively act in the system as an energy absorber, where the acoustic standing wave generated in the side-branch is absorbed and dissipated inside the ASB. These ASBs have been very successful in reducing the amount of acoustic energy which propagates into the steam dome. In addition, modifications to the Laguna Verde Nuclear Power Plant Unit 2 steam dryer have been completed to reduce the stress levels in critical locations in the dryer. The objective of this paper is to describe the acoustic side branch concept and the design iterative processes that were undertaken at Laguna Verde Unit 2 to achieve a steam dryer design that meets the guidelines of the American Society of Mechanical Engineers, Boiler and Pressure

  1. Impact of flow induced vibration acoustic loads on the design of the Laguna Verde Unit 2 steam dryer

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, D. R.; Wellstein, L. F.; Theuret, R. C.; Han, Y.; Rajakumar, C. [Westinghouse Electric Company LLC, Cranberry Township, PA 16066 (United States); Amador C, C.; Sosa F, W., E-mail: forsytdr@westinghouse.com [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Km 42.5 Carretera Cardel-Nautla, 91680 Alto Lucero, Veracruz (Mexico)

    2015-09-15

    Industry experience with Boiling Water Reactors (BWRs) has shown that increasing the steam flow through the main steam lines (MSLs) to implement an extended power up rate (EPU) may lead to amplified acoustic loads on the steam dryer, which may negatively affect the structural integrity of the component. The source of these acoustic loads has been found to be acoustic resonance of the side branches on the MSLs, specifically, coupling of the vortex shedding frequency and natural acoustic frequency of safety relief valves (SRVs). The resonance that results from this coupling can contribute significant acoustic energy into the MSL system, which may propagate upstream into the reactor pressure vessel steam dome and drive structural vibration of steam dryer components. This can lead to high-cycle fatigue issues. Lock-in between the vortex shedding frequency and SRV natural frequency, as well as the ability for acoustic energy to propagate into the MSL system, are a function of many things, including the plant operating conditions, geometry of the MSL/SRV junction, and placement of SRVs with respect to each other on the MSLs. Comision Federal de Electricidad and Westinghouse designed, fabricated, and installed acoustic side branches (ASBs) on the MSLs which effectively act in the system as an energy absorber, where the acoustic standing wave generated in the side-branch is absorbed and dissipated inside the ASB. These ASBs have been very successful in reducing the amount of acoustic energy which propagates into the steam dome. In addition, modifications to the Laguna Verde Nuclear Power Plant Unit 2 steam dryer have been completed to reduce the stress levels in critical locations in the dryer. The objective of this paper is to describe the acoustic side branch concept and the design iterative processes that were undertaken at Laguna Verde Unit 2 to achieve a steam dryer design that meets the guidelines of the American Society of Mechanical Engineers, Boiler and Pressure

  2. Effect of Ovality on Maximum External Pressure of Helically Coiled Steam Generator Tubes with a Rectangular Wear

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong In; Lim, Eun Mo; Huh, Nam Su [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Choi, Shin Beom; Yu, Je Yong; Kim, Ji Ho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    A structural integrity of steam generator tubes of nuclear power plants is one of crucial parameters for safe operation of nuclear power plants. Thus, many studies have been made to provide engineering methods to assess integrity of defective tubes of commercial nuclear power plants considering its operating environments and defect characteristics. As described above, the geometric and operating conditions of steam generator tubes in integral reactor are significantly different from those of commercial reactor. Therefore, the structural integrity assessment of defective tubes of integral reactor taking into account its own operating conditions and geometric characteristics, i. e., external pressure and helically coiled shape, should be made to demonstrate compliance with the current design criteria. Also, ovality is very specific characteristics of the helically coiled tube because it is occurred during the coiling processes. The wear, occurring from FIV (Flow Induced Vibration) and so on, is main degradation of steam generator tube. In the present study, maximum external pressure of helically coiled steam generator tube with wear is predicted based on the detailed 3-dimensional finite element analysis. As for shape of wear defect, the rectangular shape is considered. In particular, the effect of ovality on the maximum external pressure of helically coiled tubes with rectangular shaped wear is investigated. In the present work, the maximum external pressure of helically coiled steam generator tube with rectangular shaped wear is investigated via detailed 3-D FE analyses. In order to cover a practical range of geometries for defective tube, the variables affecting the maximum external pressure were systematically varied. In particular, the effect of tube ovality on the maximum external pressure is evaluated. It is expected that the present results can be used as a technical backgrounds for establishing a practical structural integrity assessment guideline of

  3. Analyses in support of installation of steam-dump-to-atmosphere valves at steam lines of the Dukovany NPP

    International Nuclear Information System (INIS)

    Kral, P.

    1998-01-01

    Four conservative analyses were carried out with a view to examining the cooldown capacity of the super-emergency feedwater pump (SEFWP) → steam generator (SG) → steam dump to atmosphere/main steam line (SDA/MSL) chain. This emergency cooldown capacity was investigated for a postulated accident associated with a main steam header break + main feedwater header break + closing of all main steam lines, and for an artificial accident with SCRAM + isolation of all MSLs + loss of feedwater. The RELAP5/MOD3.1 code and a detailed 3-loop input model of the Dukovany plant were employed. Conservative assumptions with respect to the initial reactor power, decay heat evolution, and other input parameters were applied. The results gave evidence that the capacity of both the 2SEFWP → 2SG → 2SDA/SG and 1SEFWP → 1SG → 1SDA/SG chains is sufficient for the decay heat to be removed from the reactor; however, a considerably long time allowing for a sufficient drop of the decay heat is necessary for a deep cooldown of the primary circuit. For the event encompassing main steam header break + main feedwater header break with isolation of all MSLs and with cooling by 2SEFWPs, a time-consuming calculation gave evidence of the feasibility of passing to the water-water regime and primary system cooldown to below 93 deg C in the hot legs

  4. An experimental investigation of the isochoric heat capacity of superheated steam and mixtures of superheated steam and hydrogen gas

    International Nuclear Information System (INIS)

    Nowak, E.S.; Chan, J.S.

    1975-01-01

    Measurements on the specific heat at constant volume of superheated steam and hydrogen gas mixtures at concentrations varying from 1.6 to 0.8 moles of water vapor per mole of hydrogen gas were made for temperatures ranging from 240 to 400 deg C. It was found that the experimental specific heat values of the mixtures are in good agreement with the ideal mixture values only near the saturation temperature of steam. The difference between the measured and the calculated ideal mixture values is a function of temperature, pressure and composition varying from about 11 to 24% at conditions far removed from the saturation temperature of steam. This indicates the heat of mixing is of significance in the steam-hydrogen system

  5. Fast breeder reactors an engineering introduction

    CERN Document Server

    Judd, A M

    1981-01-01

    Fast Breeder Reactors: An Engineering Introduction is an introductory text to fast breeder reactors and covers topics ranging from reactor physics and design to engineering and safety considerations. Reactor fuels, coolant circuits, steam plants, and control systems are also discussed. This book is comprised of five chapters and opens with a brief summary of the history of fast reactors, with emphasis on international and the prospect of making accessible enormous reserves of energy. The next chapter deals with the physics of fast reactors and considers calculation methods, flux distribution,

  6. Study on thermal-hydraulic behavior in supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Yutaka; Fukuichi, Akira; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    2007-01-01

    Supersonic steam injector is the one of the most possible devices aiming at simplifying system and improving the safety and the credibility for next-generation nuclear reactor systems. The supersonic steam injector has dual functions of a passive jet pump without rotating machine and a compact and high efficiency heat exchanger, because it is operated by the direct contact condensation between supersonic steam and subcooled water jet. It is necessary to clarify the flow behavior in the supersonic steam injector which is governed by the complicated turbulent flow with a great shear stress of supersonic steam. However, in previous study, there is little study about the turbulent heat transfer and flow behavior under such a great shear stress at the gas-liquid interface. In the present study, turbulent flow behavior including the effect of the interface between water jet and supersonic steam is developed based on the eddy viscosity model. Radial velocity distributions and the turbulent heat transfer are calculated with the model. The calculation results are compared with the experimental results done with the transparent steam injector. (author)

  7. Review of steam jet condensation in a water pool

    International Nuclear Information System (INIS)

    Kim, Y. S.; Song, C. H.; Park, C. K.; Kang, H. S.; Jeon, H. G.; Yoon, Y. J.

    2002-01-01

    In the advanced nuclear power plants including APR1400, the SDVS is adopted to increase the plant safety using the concept of feed-and-bleed operation. In the case of the TLOFW, the POSRV located at the top of the pressurizer is expected to open due to the pressurization of the reactor coolant system and discharges steam and/or water mixture into the water pool, where the mixture is condensed. During the condensation of the mixture, thermal-hydraulic loads such as pressure and temperature variations are induced to the pool structure. For the pool structure design, such thermal-hydraulic aspects should be considered. Understanding the phenomena of the submerged steam jet condensation in a water pool is helpful for system designers to design proper pool structure, sparger, and supports etc. This paper reviews and evaluates the steam jet condensation in a water pool on the physical phenomena of the steam condensation including condensation regime map, heat transfer coefficient, steam plume, steam jet condensation load, and steam jet induced flow

  8. Method for operating a steam turbine of the nuclear type with electronic reheat control of a cycle steam reheater

    International Nuclear Information System (INIS)

    Luongo, M.C.

    1975-01-01

    An electronic system is provided for operating a nuclear electric power plant with electronic steam reheating control applied to the nuclear turbine system in response to low pressure turbine temperatures, and the control is adapted to operate in a plurality of different automatic control modes to control reheating steam flow and other steam conditions. Each of the modes of control permit turbine temperature variations within predetermined constraints and according to predetermined functions of time. (Official Gazette)

  9. High pressure oxidation of sponge-Zr in steam/hydrogen mixtures

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1997-01-01

    A thermogravimetric apparatus for operation in 1 and 70 atm steam-hydrogen or steam-helium mixtures was used to investigate the oxidation kinetics of sponge-Zr containing 215 ppm Fe. Weight-gain rates, reflecting both oxygen and hydrogen uptake, were measured in the temperature range 350-400 C. The specimens consisted of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk. The edges of the disk specimens were coated with a thin layer of pure gold to avoid the deleterious effect of corners. Following each experiment, the specimens were examined metallographically to reveal the morphology of the oxide and/or hydride formed. Two types of oxide, one black and uniform and the other white and nodular, were observed on sponge-Zr surfaces oxidized in steam environments at 70 atm. The oxidation rate when white-nodular oxide formed was a factor of two higher than that of black-uniform oxide at 400 C for steam contents above 1 mol%. The oxidation rate was independent of total pressure, the carrier gas (H 2 or He) and steam content above ∝1 mol%. The oxidation kinetics of sponge-Zr follows a linear law for maximum reaction times up to ∝6 days. The oxidation rate in steam-hydrogen mixtures at 70 atm total pressure decreases when the steam content approaches the steam-starved region (∝0.5 mol% steam at 400 C and ∝0.02 mol% steam at 350 C). Lower steam concentrations cause massive hydriding of the specimens. Even at steam concentrations above the critical value, direct hydrogen absorption from the gas was manifest by hydrogen pickup fractions greater than unity. (orig.)

  10. Dynamic modelling of nuclear steam generators

    International Nuclear Information System (INIS)

    Kerlin, T.W.; Katz, E.M.; Freels, J.; Thakkar, J.

    1980-01-01

    Moving boundary, nodal models with dynamic energy balances, dynamic mass balances, quasi-static momentum balances, and an equivalent single channel approach have been developed for steam generators used in nuclear power plants. The model for the U-tube recirculation type steam generator is described and comparisons are made of responses from models of different complexity; non-linear versus linear, high-order versus low order, detailed modeling of the control system versus a simple control assumption. The results of dynamic tests on nuclear power systems show that when this steam generator model is included in a system simulation there is good agreement with actual plant performance. (author)

  11. Steam Generator Inspection Planning Expert System

    International Nuclear Information System (INIS)

    Rzasa, P.

    1987-01-01

    Applying Artificial Intelligence technology to steam generator non-destructive examination (NDE) can help identify high risk locations in steam generators and can aid in preparing technical specification compliant eddy current test (ECT) programs. A steam Generator Inspection Planning Expert System has been developed which can assist NDE or utility personnel in planning ECT programs. This system represents and processes its information using an object oriented declarative knowledge base, heuristic rules, and symbolic information processing, three artificial intelligence based techniques incorporated in the design. The output of the system is an automated generation of ECT programs. Used in an outage inspection, this system significantly reduced planning time

  12. Mechanical design of a sodium heated steam generator

    International Nuclear Information System (INIS)

    Chetal, S.C.

    1975-01-01

    FBTR steam generator is a once through type unit consisting of four 12.5 MW thermal modules generating a total of 74 tons per hour of steam at 125 bar and 480 0 C. This paper outlines the mechanical design of such type of steam generator with emphasis on special design problems associated with this type of sodium to water steam heat exchanger, namely, thermal cycling of transition zone where nucleate boiling changes over to film boiling, application of pressure vessel design criteria for transient pressures, thermal stress evaluation resulting from differential expansion between shell and tube in this typical configuration, sodium headers support design, thermal sleeve, design, thermal shock analysis in thick tubes, thermal stress resulting from stratification and stability of expansion bends against vibration. Some of the possible design changes for the future large size steam generator are outlined. (author)

  13. Emergency makeup of nuclear steam generators in blackout conditions

    International Nuclear Information System (INIS)

    Korolev, A.V.; Derevyanko, O.V.

    2014-01-01

    The paper describes an original solution for using steam energy to organize makeup of NPP steam generators in blackout conditions. The proposed solution combines a disk friction turbine and an axial turbine in a single housing to provide a high overall technical effect enabling the replenishment of nuclear steam generators with steam using the pump turbine drive assembly. The application of the design is analyzed and its efficiency and feasibility are shown

  14. Analysis of performance for centrifugal steam compressor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seung Hwan; Ryu, Chang Kook; Ko, Han Seo [Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    In this study, mean streamline and Computational fluid dynamics (CFD) analyses were performed to investigate the performance of a small centrifugal steam compressor using a latent heat recovery technology. The results from both analysis methods showed good agreement. The compression ratio and efficiency of steam were found to be related with those of air by comparing the compression performances of both gases. Thus, the compression performance of steam could be predicted by the compression performance of air using the developed dimensionless parameters.

  15. Analysis of performance for centrifugal steam compressor

    International Nuclear Information System (INIS)

    Kang, Seung Hwan; Ryu, Chang Kook; Ko, Han Seo

    2016-01-01

    In this study, mean streamline and Computational fluid dynamics (CFD) analyses were performed to investigate the performance of a small centrifugal steam compressor using a latent heat recovery technology. The results from both analysis methods showed good agreement. The compression ratio and efficiency of steam were found to be related with those of air by comparing the compression performances of both gases. Thus, the compression performance of steam could be predicted by the compression performance of air using the developed dimensionless parameters

  16. Development of technologies on innovative-simplified nuclear power plant using high-efficiency steam injectors (5) operating characteristics of center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Abe, Y.; Kawamoto, Y.; Iwaki, C.; Narabayashi, T.; Mori, M.; Ohmori, S.

    2005-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. And from temperature measuring results, it is supposed that the steam temperature at the mixing nozzle is changed between about 80 degree centigrade and about 60 degree centigrade. Then from the pressure measuring results, it is confirmed that the pressure at the diffuser depends on each the throat diameter and

  17. Steam generator tube rupture effects on a LOCA

    International Nuclear Information System (INIS)

    LaChance, J.L.

    1979-01-01

    A problem currently experienced in commercial operating pressurized water reactors (PWR) in the United States is the degradation of steam generator tubes. Safety questions have arisen concerning the effect of these degraded tubes rupturing during a postulated loss-of-coolant accident (LOCA). To determine the effect of a small number of tube ruptures on the behavior of a large PWR during a postulated LOCA, a series of computer simulations was performed. The primary concern of the study was to determine whether a small number (10 or less of steam generator tubes rupturing at the beginning surface temperatures. Additional reflood analyses were performed to determine the system behavior when from 10 to 60 tubes rupture at the beginning of core reflood. The FLOOD4 code was selected as being the most applicable code for use in this study after an extensive analysis of the capabilities of existing codes to perform simulations of a LOCA with concurrent steam generator tube ruptures. The results of the study indicate that the rupturing of 10 or less steam generator tubes in any of the steam generators during a 200% cold leg break will not result in a significant increase in the peak cladding temperature. However, because of the vaporization of the steam generator secondary water in the primary side of the steam generator, a significant increase in the core pressure occurs which retards the reflooding process

  18. Darlington steam generator life assurance program

    International Nuclear Information System (INIS)

    Jelinski, E.; Dymarski, M.; Maruska, C.; Cartar, E.

    1995-01-01

    The Darlington Nuclear Generating Station belonging to Ontario Hydro is one of the most modern and advanced nuclear generating stations in the world. Four reactor units each generate 881 net MW, enough to provide power to a major city, and representing approximately 20% of the Ontario grid. The nuclear generating capacity in Ontario represents approximately 60% of the grid. In order to look after this major asset, many proactive preventative and predictive maintenance programs are being put in place. The steam generators are a major component in any power plant. World wide experience shows that nuclear steam generators require specialized attention to ensure reliable operation over the station life. This paper describes the Darlington steam generator life assurance program in terms of degradation identification, monitoring and management. The requirements for chemistry control, surveillance of process parameters, surveillance of inspection parameters, and the integration of preventative and predictive maintenance programs such as water lancing, chemical cleaning, RIHT monitoring, and other diagnostics to enhance our understanding of life management issues are identified and discussed. We conclude that we have advanced proactive activities to avoid and to minimize many of the problems affecting other steam generators. An effective steam generator maintenance program must expand the knowledge horizon to understand life limiting processes and to analyze and synthesize observations with theory. (author)

  19. Aeroderivative Gas Turbo engine in CHP Plant. Compatibility Problems

    Directory of Open Access Journals (Sweden)

    Sorinel-Gicu TALIF

    2010-12-01

    Full Text Available The paper presents the possibilities to develop Combined Cycle Units based onaeroderivative Gas Turbo engines and on existing Steam Turbines. The specific compatibilityproblems of these components and the thermodynamic performances of the analyzed Combined CycleUnits are also presented.

  20. A steam separator-superheater apparatus

    International Nuclear Information System (INIS)

    Androw, Jean; Bessouat, Roger; Peyrelongue, J.-P.

    1973-01-01

    Description is given of a separator-superheater apparatus comprising an outer enclosure containing a separating-unit and a steam superheating unit according to the main patent. The present addition relates to an improvement in that apparatus, characterized in that the separating unit and the superheating unit, mounted in two distinct portions of the outer enclosure, are divided into the same number of sub-units of each unit being identical and operating in parallel, and in that to each separator sub-unit is associated a superheater sub-unit, said sub-units being mounted in series and located in one in the other of the enclosure two portions, respectively. This can be applied to the treatment of the exhaust steam of a turbine high pressure body, prior to re-injecting said steam into the low pressure body [fr

  1. Modeling of steam distillation mechanism during steam injection process using artificial intelligence.

    Science.gov (United States)

    Daryasafar, Amin; Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods.

  2. Modeling of Steam Distillation Mechanism during Steam Injection Process Using Artificial Intelligence

    Science.gov (United States)

    Ahadi, Arash; Kharrat, Riyaz

    2014-01-01

    Steam distillation as one of the important mechanisms has a great role in oil recovery in thermal methods and so it is important to simulate this process experimentally and theoretically. In this work, the simulation of steam distillation is performed on sixteen sets of crude oil data found in the literature. Artificial intelligence (AI) tools such as artificial neural network (ANN) and also adaptive neurofuzzy interference system (ANFIS) are used in this study as effective methods to simulate the distillate recoveries of these sets of data. Thirteen sets of data were used to train the models and three sets were used to test the models. The developed models are highly compatible with respect to input oil properties and can predict the distillate yield with minimum entry. For showing the performance of the proposed models, simulation of steam distillation is also done using modified Peng-Robinson equation of state. Comparison between the calculated distillates by ANFIS and neural network models and also equation of state-based method indicates that the errors of the ANFIS model for training data and test data sets are lower than those of other methods. PMID:24883365

  3. Containments for consolidated nuclear steam systems

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    A containment system for a consolidated nuclear steam system incorporating a nuclear core, steam generator and reactor coolant pumps within a single pressure vessel is described which is designed to provide radiation shielding and pressure suppression. Design details, including those for the dry well and wet well of the containment, are given. (UK)

  4. LMR steam generator blowdown with RETRAN

    International Nuclear Information System (INIS)

    Wei, T.Y.C.

    1985-01-01

    One of the transients being considered in the FSAR Chapter 15 analyses of anticipated LMR transients is the fast blowdown of a steam generator upon inadvertent actuation of the liquid metal/water reaction mitigation system. For the blowdown analysis, a stand-alone steam generator model for the IFR plant was constructed using RETRAN

  5. Steam turbine chemistry in light water reactor plants

    International Nuclear Information System (INIS)

    Svoboda, Robert; Haertel, Klaus

    2008-01-01

    Steam turbines in boiling water reactor (BWR) and pressurized water reactor (PWR) power plants of various manufacturers have been affected by corrosion fatigue and stress corrosion cracking. Steam chemistry has not been a prime focus for related research because the water in nuclear steam generating systems is considered to be of high purity. Steam turbine chemistry however addresses more the problems encountered in fossil fired power plants on all volatile treatment, where corrosive environments can be formed in zones where wet steam is re-evaporated and dries out, or in the phase transition zone, where superheated steam starts to condense in the low-pressure (LP) turbine. In BWR plants the situation is aggravated by the fact that no alkalizing agents are used in the cycle, thus making any anionic impurity immediately acidic. This is illustrated by case studies of pitting corrosion of a 12 % Cr steel gland seal and of flow-oriented corrosion attack on LP turbine blades in the phase transition zone. In PWR plants, volatile alkalizing agents are used that provide some buffering of acidic impurities, but they also produce anionic decomposition products. (orig.)

  6. Study of the combined plant for the generator diesel engine; Hatsudenki diesel engine no combined plant no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y [Kumamoto Institute of Technology, Kumamoto (Japan); Hanada, S; Watase, M; Nakajima, T

    1997-10-01

    It is intended to recover more effectively thermal energy currently discharged from marine vessels into air. This paper describes a diesel engine combined power generation system in which medium-order waste heat energy from a diesel engine for power generation in a marine vessel is recovered and utilized to operate a Rankine cycle system (using the waste gas as the high temperature source and sea water as the low temperature source), thus the thermal energy is recovered as a motive force. Two kinds of fluorocarbons and steam were discussed as a working fluid. Due to fluorocarbons making the whole system ultra-high in pressure, and from a viewpoint of high-temperature thermal stability, the temperature was remained at levels from 100 to 200 degC, and a single-stage expansion cycle was used. With the use of steam, a two-stage reheating cycle was employed, by which the temperature is raised fully up to 300 degC and effective head of fluid was taken largely. Ceramic paint was used as a means to prevent sulfur oxide corrosion when the system is used down to the dew point, and its effectiveness was verified. Motive force recovered by combining the steam two-stage reheating cycle and the ceramic painted heat collector was calculated, whereas electric power output of about 45 kW was obtained from a main generator with 450 PS. The derived thermal efficiency was about 26%. 2 refs., 24 figs., 2 tabs.

  7. Steam line break analysis in CAREM-25 reactor

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo O.; Vertullo, Alicia; Schlamp, Miguel A.; Garcia, Alicia E.

    2000-01-01

    The main objective of this report is to analyze the reactor response during a steam line break postulated accident with RELAP5, a plant code using a separated flow model. The steam line break caused a rapid blowdown of the secondary coolant increasing the heat removal in the steam generator. As a consequence and due to reactor features the core power is also increased. As maximum removed power in the secondary side is highly dependant on the total water volume evaporated during the accident a detailed model of feed water and outlet steam pipes is provided. Different cases are analyzed with and without feedwater system and considering the fail or success of the First Shutdown System. In all the sequences the DNBR and CPR remain above the minimum safety values established by design. Further calculations concerning depressurization ramps and steam generator feed water pumps response during depressurization are advised. (author)

  8. Steam Line Break Analysis in CAREM-25 Reactor

    International Nuclear Information System (INIS)

    Zanocco, Pablo; Gimenez, Marcelo; Vertullo, Alicia; Garcia, A; Schlamp, Miguel

    2000-01-01

    The main objective of this report is to analyze the reactor response during a steam line break postulated accident with RELAP5, a plant code using a separated flow model.The steam line break caused a rapid blowdown of the secondary coolant increasing the heat removal in the steam generator.As a consequence and due to reactor features the core power is also increased.As maximum removed power in the secondary side is highly dependant on the total water volume evaporated during the accident a detailed model of feed water and outlet steam pipes is provided.Different cases are analyzed with and without feedwater system and considering the fail or success of the First Shutdown System.In all the sequences the DNBR and CPR remain above the minimum safety values established by design.Further calculations concerning depressurization ramps and steam generator feed water pumps response during depressurization are advised

  9. Issues in the selection of the LMFBR steam cycle

    International Nuclear Information System (INIS)

    Buschman, H.W.; McConnell, R.J.

    1983-01-01

    Unlike the light-water reactor, the liquid-metal fast breeder reactor (LMFBR) allows the designer considerable latitude in the selection of the steam cycle. This latitude in selection has been exercised by both foreign and domestic designers, and thus, despite the fact that over 25 LMFBR's have been built or are under construction, a consensus steam cycle has not yet evolved. This paper discusses the LMFBR steam cycles of interest to the LMFBR designer, reviews which of these cycles have been employed to date, discusses steam-cycle selection factors, discusses why a consensus has not evolved, and finally, concludes that the LMFBR steam-cycle selection is primarily one of technical philosophy with several options available

  10. The steam pressure effect on high temperature corrosion of zircaloy-4

    International Nuclear Information System (INIS)

    Kim, K. P.; Park, G. H.

    1998-01-01

    To find the effect of pressure on the high temperature oxidation of zircaloy-4, an autoclave capable of measuring the degree of oxidation at high temperatures and high pressure was manufactured. The degree of high temperature oxidation of zircaloy-4 was measured at three different conditions, high pressure steam, high pressure Ar gas with small amount of steam, and 1 atm steam. All the measurements were done at 750 deg C. The oxide thickness is much thicker in high pressure steam, comparing to that in the 1 atm steam. And, the higher is the steam pressure, the thicker becomes the oxide. No effect was observed in the case of high pressure Ar containing small amount of steam. Many cracks exist on the surface of specimens oxidized at high pressure steam, which come from the enhanced tetragonal to monoclinic phase transformation due to high pressure steam. The enhanced oxidation seems to oxide cracking

  11. Steam distribution and energy delivery optimization using wireless sensors

    Science.gov (United States)

    Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.

    2011-05-01

    The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.

  12. Steam Reformer With Fibrous Catalytic Combustor

    Science.gov (United States)

    Voecks, Gerald E.

    1987-01-01

    Proposed steam-reforming reactor derives heat from internal combustion on fibrous catalyst. Supplies of fuel and air to combustor controlled to meet demand for heat for steam-reforming reaction. Enables use of less expensive reactor-tube material by limiting temperature to value safe for material yet not so low as to reduce reactor efficiency.

  13. 9 CFR 319.81 - Roast beef parboiled and steam roasted.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Roast beef parboiled and steam roasted... beef parboiled and steam roasted. “Roast Beef Parboiled and Steam Roasted” shall be prepared so that... “Roast Beef Parboiled and Steam Roasted.” When beef cheek meat, beef head meat, or beef heart meat is...

  14. Steam generator tube fitness-for-service guidelines

    International Nuclear Information System (INIS)

    Gorman, J.A.; Harris, J.E.; Lowenstein, D.B.

    1995-07-01

    The objectives of this project were to characterize defect mechanisms which could affect the integrity of steam generator tubes, to review and critique state-of-the-art Canadian and international steam generator tube fitness-for-service criteria and guidelines, and to obtain recommendations for criteria that could be used to assess fitness-for service guidelines for steam generator tubes containing defects in Canadian power plant service. Degradation mechanisms, that could affect CANDU steam generator tubes in Canada, have been characterized. The design standards and safety criteria that apply to steam generator tubing in nuclear power plant service in Canada and in Belgium, France, Japan, Spain, Sweden, and the USA have been reviewed and described. The fitness-for-service guidelines used for a variety of specific defect types in Canada and internationally have been evaluated and described in detail in order to highlight the considerations involved in developing such defect specific guidelines. Existing procedures for defect assessment and disposition have been identified, including inspection and examination practices. The approaches used in Canada and in Belgium, France, Japan, Spain, Sweden, and the USA for fitness-for-service guidelines were compared and contrasted for a variety of defect mechanisms. The strengths and weaknesses of the various approaches have been assessed. The report presents recommendations on approaches that may be adopted in the development of fitness-for-service guidelines for use in the dispositioning of steam generator tubing defects in Canada. (author). 175 refs., 2 tabs., 28 figs

  15. Acoustic noises of the BOR-60 reactor steam generators when simulating leaks with argon and steam

    International Nuclear Information System (INIS)

    Sokolov, V.M.; Golushko, V.V.; Afanas'ev, V.A.; Grebenkin, Yu.P.; Muralev, A.B.

    1985-01-01

    Background acoustic noises of stea generators in different operational regimes and noises of argon and steam small leads (about 0.1 g/s) are studied to determine the possibility of designing the acoustic system for leak detection in sodium-water steamgenerators. Investigations are carried out at the 30 MW micromodule steam generator being in operation at the BOR-60 reactor as well as at the 20 MW tank type steam generator. Immersed ransduceres made of lithium niobate 6 mm in-diameter and waveguide transducers made of a stainless steel in the form of rods 10 mm in-diameter and 500 mm long are used as acoustic monitors. It is shown that the leak noise is more wide-band than the background noise of the steam generator and both high and low frequencies appear in the spectrum. The use of monitors of different types results in similar conslusions inrelation to the character of background noises and leak signals (spectral density, signal to-noise ratio) in the ase of similar bandroidths of the transduceres. A conclusion is made that the change of operational regimes leads to changes of background noise level, which can be close to the reaction of

  16. Coal fired steam generation for heavy oil recovery

    International Nuclear Information System (INIS)

    Firmin, K.

    1992-01-01

    In Alberta, some 21,000 m 3 /d of heavy oil and bitumen are produced by in-situ recovery methods involving steam injection. The steam generation requirement is met by standardized natural-gas-fired steam generators. While gas is in plentiful supply in Alberta and therefore competitively priced, significant gas price increases could occur in the future. A 1985 study investigating the alternatives to natural gas as a fuel for steam generation concluded that coal was the most economic alternative, as reserves of subbituminous coal are not only abundant in Alberta but also located relatively close to heavy oil and bitumen production areas. The environmental performance of coal is critical to its acceptance as an alternate fuel to natural gas, and proposed steam generator designs which could burn Alberta coal and control emissions satisfactorily are assessed. Considerations for ash removal, sulfur dioxide sorption, nitrogen oxides control, and particulate emission capture are also presented. A multi-stage slagging type of coal-fired combustor has been developed which is suitable for application with oilfield steam generators and is being commissioned for a demonstration project at the Cold Lake deposit. An economic study showed that the use of coal for steam generation in heavy oil in-situ projects in the Peace River and Cold Lake areas would be economic, compared to natural gas, at fuel price projections and design/cost premises for a project timing in the mid-1990s. 7 figs., 3 tabs

  17. TWR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  18. TWR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  19. Development of knowledge-based operator support system for steam generator water leak events in FBR plants

    International Nuclear Information System (INIS)

    Arikawa, Hiroshi; Ida, Toshio; Matsumoto, Hiroyuki; Kishida, Masako

    1991-01-01

    A knowledge engineering approach to operation support system would be useful in maintaining safe and steady operation in nuclear plants. This paper describes a knowledge-based operation support system which assists the operators during steam generator water leak events in FBR plants. We have developed a real-time expert system. The expert system adopts hierarchical knowledge representation corresponding to the 'plant abnormality model'. A technique of signal validation which uses knowledge of symptom propagation are applied to diagnosis. In order to verify the knowledge base concerning steam generator water leak events in FBR plants, a simulator is linked to the expert system. It is revealed that diagnosis based on 'plant abnormality model' and signal validation using knowledge of symptom propagation could work successfully. Also, it is suggested that the expert system could be useful in supporting FBR plants operations. (author)

  20. Energy and exergy analysis of the turbo-generators and steam turbine for the main feed water pump drive on LNG carrier

    International Nuclear Information System (INIS)

    Mrzljak, Vedran; Poljak, Igor; Mrakovčić, Tomislav

    2017-01-01

    Highlights: • Two low-power steam turbines in the LNG carrier propulsion plant were investigated. • Energy and exergy efficiencies of both steam turbines vary between 46% and 62%. • The ambient temperature has a low impact on exergy efficiency of analyzed turbines. • The maximum efficiencies area of both turbines was investigated. • A method for increasing the turbo-generator efficiencies by 1–3% is presented. - Abstract: Nowadays, marine propulsion systems are mainly based on internal combustion diesel engines. Despite this fact, a number of LNG carriers have steam propulsion plants. In such plants, steam turbines are used not only for ship propulsion, but also for electrical power generation and main feed water pump drive. Marine turbo-generators and steam turbine for the main feed water pump drive were investigated on the analyzed LNG carrier with steam propulsion plant. The measurements of various operating parameters were performed and obtained data were used for energy and exergy analysis. All the measurements and calculations were performed during the ship acceleration. The analysis shows that the energy and exergy efficiencies of both analyzed low-power turbines vary between 46% and 62% what is significantly lower in comparison with the high-power steam turbines. The ambient temperature has a low impact on exergy efficiency of analyzed turbines (change in ambient temperature for 10 °C causes less than 1% change in exergy efficiency). The highest exergy efficiencies were achieved at the lowest observed ambient temperature. Also, the highest efficiencies were achieved at 71.5% of maximum developed turbo-generator power while the highest efficiencies of steam turbine for the main feed water pump drive were achieved at maximum turbine developed power. Replacing the existing steam turbine for the main feed water pump drive with an electric motor would increase the turbo-generator energy and exergy efficiencies for at least 1–3% in all analyzed

  1. Water box for steam generator

    International Nuclear Information System (INIS)

    Lecomte, Robert; Viaud, Michel.

    1975-01-01

    This invention relates to a water box for connecting an assembly composed of a vertical steam generator and a vertical pump to the vessel of the nuclear reactor, the assembly forming the primary cooling system of a pressurised water reactor. This invention makes it easy to dismantle the pump on the water box without significant loss of water in the primary cooling system of the reactor and particularly without it being necessary to drain the water contained in the steam generator beforehand. It makes it possible to shorten the time required for dismantling the primary pump in order to service or repair it and makes dismantling safer in that the dismantling does not involve draining the steam generator and therefore the critical storage of a large amount of cooling water that has been in contact with the fuel assemblies of the nuclear reactor core [fr

  2. Water jet behavior in center water jet type supersonic steam injector

    International Nuclear Information System (INIS)

    Kawamoto, Y.; Abe, Y.

    2005-01-01

    Next-generation reactor systems have been under development aiming at simplified system and improvement of safety and credibility. A steam injector has a function of a passive pump without large motor or turbo-machinery, and has been investigated as one of the most important component of the next-generation reactor. Its performance as a pump depends on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. As previous studies of the steam injector, there are studies about formulation of operating characteristic of steam injector and analysis of jet structure in steam injector by Narabayashi etc. And as previous studies of the direct contact condensation, there is the study about the direct contact condensation in steam atmosphere. However the study about the turbulent heat transfer under the great shear stress is not enough investigated. Therefore it is necessary to examine in detail about the operating characteristic of the steam injector. The present paper reports the observation results of the water jet behavior in the super sonic steam injector by using the video camera and the high-speed video camera. And the measuring results of the temperature and the pressure distribution in the steam injector are reported. From observation results by video camera, it is cleared that the water jet is established at the center of the steam injector right after steam supplied and the operation of the steam injector depends on the throat diameter. And from observation results by high-speed video camera, it is supposed that the columned water jet surface is established in the mixing nozzle and the water jet surface movement exists. Furthermore and effect of the non-condensable gas on the steam injector is investigated by measuring the radial temperature distributions in the water jet. From measuring results, it is supposed the more the air included in the steam, the more the temperature fluctuation of both steam and discharge water

  3. Steam generator leak detection using acoustic method

    International Nuclear Information System (INIS)

    Goluchko, V.V.; Sokolov, B.M.; Bulanov, A.N.

    1982-05-01

    The main requirements to meet by a device for leak detection in sodium - water steam generators are determined. The potentialities of instrumentation designed based on the developed requirements have been tested using a model of a 550 kw steam generator [fr

  4. Improvement of steam separator in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Jan Peter; Cremer, Ingo; Lorenz, Maik [AREVA GmbH, Erlangen (Germany)

    2013-07-01

    The potential to improve the function of the steam separator is identified and explored by scaled air-water tests and validated CFD calculations. It can be outlined that requirements on a modern steam separator for BWR plants will be fulfilled, combined with very good operational experience of the existing separator designs (e.g. material, layout). With the new steam separator design, modern high performance fuel assembly designs can be used for various core loading strategies (e.g. low leakage). This allows an increased thermal power of up to +50 % for the fuel element clusters in the center of the core with high radial peaking factors. In addition, any problems with unallowable high moisture at the turbine are solved with the new design, which have been identified for running BWR plants with the old steam separator design after applying new core loading patterns (e.g. after power uprates). A compatible steam separator design for all running BWRs is ready to launch. (orig.)

  5. Development of Technologies on Innovative-Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (12) Evaluations of Spatial Distributions of Flow and Heat Transfer in Steam Injector

    International Nuclear Information System (INIS)

    Yutaka Abe; Yujiro Kawamoto; Chikako Iwaki; Tadashi Narabayashi; Michitsugu Mori; Shuichi Ohmori

    2006-01-01

    Next-generation nuclear reactor systems have been under development aiming at simplified system and improvement of safety and credibility. One of the innovative technologies is the supersonic steam injector, which has been investigated as one of the most important component of the next-generation nuclear reactor. The steam injector has functions of a passive pump without large motor or turbo-machinery and a high efficiency heat exchanger. The performances of the supersonic steam injector as a pump and a heat exchanger are dependent on direct contact condensation phenomena between a supersonic steam and a sub-cooled water jet. In previous studies of the steam injector, there are studies about the operating characteristics of steam injector and about the direct contact condensation between static water pool and steam in atmosphere. However, there is a little study about the turbulent heat transfer and flow behavior under the great shear stress. In order to examine the heat transfer and flow behavior in supersonic steam injector, it is necessary to measure the spatial temperature distribution and velocity in detail. The present study, visible transparent supersonic steam injector is used to obtain the axial pressure distributions in the supersonic steam injector, as well as high speed visual observation of water jet and steam interface. The experiments are conducted with and without non-condensable gas. The experimental results of the interfacial flow behavior between steam and water jet are obtained. It is experimentally clarified that an entrainment exists on the water jet surface. It is also clarified that discharge pressure is depended on the steam supply pressure, the inlet water flow rate, the throat diameter and non-condensable flow rate. Finally a heat flux is estimated about 19 MW/m 2 without non-condensable gas condition in steam. (authors)

  6. Cheaper power generation from surplus steam generating capacities

    International Nuclear Information System (INIS)

    Gupta, K.

    1996-01-01

    Prior to independence most industries had their own captive power generation. Steam was generated in own medium/low pressure boilers and passed through extraction condensing turbines for power generation. Extraction steam was used for process. With cheaper power made available in Nehru era by undertaking large hydro power schemes, captive power generation in industries was almost abandoned except in sugar and large paper factories, which were high consumers of steam. (author)

  7. Effects of phase transformation of steam-water relative permeabilities

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A.K.

    1986-03-01

    A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

  8. Babcock and Wilcox Canada steam generators past, present and future

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.C. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada)

    1998-07-01

    The steam generators in all of the domestic CANDU Plants, and most of the foreign CANDU plants, were supplied by Babcock and Wilcox Canada, either on their own or in co-operation with local manufacturers. More than 200 steam generators have been supplied. In addition, Babcock and Wilcox Canada has taken the technology which evolved out of the CANDU steam generators and has adapted the technology to supply of replacement steam generators for PWR's. There is enough history and operating experience, plus laboratory experience, to point to the future directions which will be taken in steam generator design. This paper documents the steam generators which have been supplied, the experience in operation and maintenance, what has worked and not worked, and how the design, materials, and operating and maintenance philosophy have evolved. The paper also looks at future requirements in the market, and the continuing research and product development going on at Babcock and Wilcox to address the future steam generator requirements. (author)

  9. Babcock and Wilcox Canada steam generators past, present and future

    International Nuclear Information System (INIS)

    Smith, J.C.

    1998-01-01

    The steam generators in all of the domestic CANDU Plants, and most of the foreign CANDU plants, were supplied by Babcock and Wilcox Canada, either on their own or in co-operation with local manufacturers. More than 200 steam generators have been supplied. In addition, Babcock and Wilcox Canada has taken the technology which evolved out of the CANDU steam generators and has adapted the technology to supply of replacement steam generators for PWR's. There is enough history and operating experience, plus laboratory experience, to point to the future directions which will be taken in steam generator design. This paper documents the steam generators which have been supplied, the experience in operation and maintenance, what has worked and not worked, and how the design, materials, and operating and maintenance philosophy have evolved. The paper also looks at future requirements in the market, and the continuing research and product development going on at Babcock and Wilcox to address the future steam generator requirements. (author)

  10. Conceptual design of once-through helical steam generator for SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Wan; Kim, J. I.; Kim, J. H. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    Conceptual design of once-through helical steam generator for the integral reactor SMART is developed. The once-through helical steam generator requires quite different design concepts from the steam generators used in loop type commercial reactors. In this study the design requirements satisfying the operating conditions of the steam generator are derived, and the arrangements and the dimensions of the major parts are determined. By describing the design procedure, the cost of redesign and the costs of developments of similar new steam generators are minimized. The three dimensional models developed make it possible to preview the interferences of the steam generator components and to minimize the possibility of significant design changes in the next design stage by the preliminary strength analysis of the major parts. A methodology for evaluation of flow induced vibration of steam generator tubes has been developed and a preliminary flow induced vibration analysis has been performed. 24 refs., 54 figs., 9 tabs. (Author)

  11. Method of determining the enthalpy and moisture content of wet steam

    International Nuclear Information System (INIS)

    Silvestri, G.J. Jr.

    1991-01-01

    This patent describes a nuclear powered multi-stage steam turbine system wherein steam at higher than atmospheric pressure is introduced into the turbine system at a high pressure turbine element and thereafter flows through a series of turbine elements at successively decreasing pressures, wherein portions of the steam are extracted from the turbine elements at a plurality of lower pressure points and the steam is finally exhausted at a lowest pressure point, the method of determining moisture content and enthalpy of steam at a selected pressure point. It comprises sampling a small quantity of steam at the selected pressure point; super heating the steam sample to a single-phase state by reducing its pressure and bottling it in a closed measuring chamber whereby the flow energy of the sample is converted into internal energy; measuring the pressure of the steam sample within the chamber; determining the sonic velocity of the steam sample by passing a sound wave through the sample from a transmitter to a receiver located at a known distance from the transmitter and measuring the time required for the sound wave to travel from transmitter to receiver; and utilizing the measured pressure and sonic velocity of the steam sample to calculate the moisture content and enthalpy of the steam at the selected pressure point

  12. CATHENA analysis of CANDU 6 steam generators for steam main break at a remote location

    Energy Technology Data Exchange (ETDEWEB)

    Liu, T. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2009-07-01

    CATHENA (Canadian Algorithm for THErmalhydraulic Network Analysis) is a nonequilibrium, two-phase, two fluid network analysis code that has been in use for over two decades by various groups in Canada and around the world. It is the primary Thermalhydraulics network analysis tool used by Atomic Energy Canada Ltd. (AECL) in the design, safety and licensing analysis of power and research reactors as well as test facilities. In the thermalhydraulic model, the liquid and vapor phases may have different pressures, velocities, and temperatures. The objective of the present paper is to present the detailed modeling of a CANDU 6 Steam Generator (SG) using the transient, thermalhydraulics network code CATHENA. The model represents the secondary side, primary side and the main steam system including the main steam line up to the assumed break location. The present model is designed such that the transient pressure drops across Tube Support Plates (TSP) could be extracted. The resistances of degraded/fouled TSPs were modeled by using the increased/reduced flow area of the TSPs. CATHENA then calculates the flow resistance in two-phase flow based on the area contraction/expansion at the TSPs. Three sets of simulations were performed; one with the degraded steam generator data provided by the utility users, and the other two with waterlanced (cleaned with high pressure water jet) TSPs. One run assumed the flow area increased by 25 percent, the other run assumed the flow area increased by 50 percent. on the hot side of the SG. No significant changes in the break discharge rates were observed between the runs. However, the steam generator downcomer flow for the waterlanced case did not reverse during the blowdown as was calculated for the degraded case. As expected, the pressure drop across the TSPs was decreased in the waterlanced cases comparing with degraded cases. The CATHENA simulation provides estimates of the velocity, density, and quality in the tube bundle as well as

  13. Steam-cured stabilised soil blocks for masonry construction

    Energy Technology Data Exchange (ETDEWEB)

    Venkatarama Reddy, B.V. [Indian Inst. of Science, Bangalore (India). Dept. of Civil Engineering; Lokras, S.S. [Indian Inst. of Science, Bangalore (India). ASTRA

    1998-12-01

    Energy-efficient, economical and durable building materials are essential for sustainable construction practices. The paper deals with production and properties of energy-efficient steam-cured stabilised soil blocks used for masonry construction. Problems of mixing expansive soil and lime, and production of blocks using soil-lime mixtures have been discussed briefly. Details of steam curing of stabilised soil blocks and properties of such blocks are given. A comparison of energy content of steam-cured soil blocks and burnt bricks is presented. It has been shown that energy-efficient steam cured soil blocks (consuming 35% less thermal energy compared to burnt clay bricks) having high compressive strength can be easily produced in a decentralised manner. (orig.)

  14. Technology of turbine plant operating with wet steam

    International Nuclear Information System (INIS)

    1989-01-01

    The technology of turbine plant operating with wet steam is a subject of continuing interest and importance, notably in view of the widespread use of wet steam cycles in nuclear power plants and the recent developments of advanced low pressure blading for both conventional and wet steam turbines. The nature of water formation in expanding steam has an important influence on the efficiency of turbine blading and on the integrity and safe operating life of blading and associated turbine and plant components. The subjects covered in this book include research, flow analysis and measurement, development and design of turbines and ancillary plant, selection of materials of construction, manufacturing methods and operating experience. (author)

  15. Steam generator tube integrity program. Phase I report

    International Nuclear Information System (INIS)

    Alzheimer, J.M.; Clark, R.A.; Morris, C.J.; Vagins, M.

    1979-09-01

    The results are presented of the pressure tests performed as part of Phase I of the Steam Generator Tube Integrity (SGTI) program at Battelle Pacific Northwest Laboratory. These tests were performed to establish margin-to-failure predictions for mechanically defected Pressurized Water Reactor (PWR) steam generator tubing under operating and accident conditions. Defect geometries tested were selected because they simulate known or expected defects in PWR steam generators. These defect geometries are Electric Discharge Machining (EDM) slots, elliptical wastage, elliptical wastage plus through-wall slot, uniform thinning, denting, denting plus uniform thinning, and denting plus elliptical wastage. All defects were placed in tubing representative of that currently used in PWR steam generators

  16. An investigation of condensation from steam-gas mixtures flowing downward inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, S.Z.; Schrock, V.E.; Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1995-09-01

    Previous experiments have been carried out by Vierow, Ogg, Kageyama and Siddique for condensation from steam/gas mixtures in vertical tubes. In each case the data scatter relative to the correlation was large and there was not close agreement among the three investigations. A new apparatus has been designed and built using the lessons learned from the earlier studies. Using the new apparatus, an extensive new data base has been obtained for pure steam, steam-air mixtures and steam-helium mixtures. Three different correlations, one implementing the degradation method initially proposed by Vierow and Schrock, a second diffusion layer theory initially proposed by Peterson, and third mass transfer conductance model are presented in this paper. The correlation using the simple degradation factor method has been shown, with some modification, to give satisfactory engineering accuracy when applied to the new data. However, this method is based on very simplified arguments that do not fully represent the complex physical phenomena involved. Better representation of the data has been found possible using modifications of the more complex and phenomenologically based method which treats the heat transfer conductance of the liquid film in series with the conductance on the vapor-gas side with the latter comprised of mass transfer and sensible heat transfer conductance acting in parallel. The mechanistic models, based on the modified diffusion layer theory or classical mass transfer theory for mass transfer conductance with transpiration successfully correlate the data for the heat transfer of vapor-gas side. Combined with the heat transfer of liquid film model proposed by Blangetti, the overall heat transfer coefficients predicted by the correlations from mechanistic models are in close agreement with experimental values.

  17. Steam injection : analysis of a typical application.

    NARCIS (Netherlands)

    Penning, F.M.; Lange, de H.C.

    1996-01-01

    A cardboard factory requires steam and electricity, which are produced in its own powerplant. Conventional cogeneration systems cannot cope with the large fluctuations in steam demand, inherent to the cardboard production process, while power demand remains almost constant. For this reason, two

  18. Evaluation of a dryer in a steam generator

    International Nuclear Information System (INIS)

    Xue Yunkui; Liu Shixun; Guandao, Xie; Chen Junliang

    1998-01-01

    The hooked-vane-type dryer is used in vertical, natural circulation steam generators used in PWR-type nuclear power stations. it separates the fine droplets of water carried by steam so that the steam generator outlet steam moisture is below 0.25%. Such low moisture is demanded to ensure a safe and economic operation of the unit. The dryer is composed of hooked vanes and a draining structure. A series of tests to screen different designs were performed using air-water mixture. The paper presents the results of the investigation of the effect of the number of drainage hooks , the bending angle , distance between two adjacent vanes, and other geometrical parameters on the performance of a hooked-vane-type steam dryer. It indicates that the dryer still works effectively when the moisture of the steam at the dryer inlet changes in a wide range, and that the performance of the dryer is closely related to the geometry of the draining structure . On the basis of the results of this program, a draining structure with an original design was selected and it is presented in the paper. The performance of the selected draining structure is better than that of similar structures in China and abroad. (author)

  19. Condensate polisher application for PWR steam generator corrosion control

    International Nuclear Information System (INIS)

    Sawochka, S.G.; Leibovitz, J.; Siegwarth, D.P.; Pearl, W.L.

    1981-01-01

    The evolution of corrosion attack modes particularly in recirculating U-tube PWR steam generators has dictated a thorough review of the advantages and disadvantages of condensate polishing. Analytical modeling techniques to qualitatively predict crevice chemistry variations resulting from steam generator bulk water variations have allowed valuable insights to be developed. Modeling results complemented by steam generator and laboratory corrosion data will be employed to set condensate demineralizer effluent specifications consistent with control of steam generator corrosion. Laboratory and plant studies are being performed to demonstrate achievability of necessary effluent specifications. (author)

  20. Steam Turbine Control Valve Stiction Effect on Power System Stability

    International Nuclear Information System (INIS)

    Halimi, B.

    2010-01-01

    One of the most important problems in power system dynamic stability is low frequency oscillations. This kind of oscillation has significant effects on the stability and security of the power system. In some previous papers, a fact was introduced that a steam pressure continuous fluctuation in turbine steam inlet pipeline may lead to a kind of low frequency oscillation of power systems. Generally, in a power generation plant, steam turbine system composes of some main components, i.e. a boiler or steam generator, stop valves, control valves and turbines that are connected by piping. In the conventional system, the turbine system is composed with a lot of stop and control valves. The steam is provided by a boiler or steam generator. In an abnormal case, the stop valve shuts of the steal flow to the turbine. The steam flow to the turbine is regulated by controlling the control valves. The control valves are provided to regulate the flow of steam to the turbine for starting, increasing or decreasing the power, and also maintaining speed control with the turbine governor system. Unfortunately, the control valve has inherent static friction (stiction) nonlinearity characteristics. Industrial surveys indicated that about 20-30% of all control loops oscillate due to valve problem caused by this nonlinear characteristic. In this paper, steam turbine control valve stiction effect on power system oscillation is presented. To analyze the stiction characteristic effect, firstly a model of control valve and its stiction characteristic are derived by using Newton's laws. A complete tandem steam prime mover, including a speed governing system, a four-stage steam turbine, and a shaft with up to for masses is adopted to analyze the performance of the steam turbine. The governor system consists of some important parts, i.e. a proportional controller, speed relay, control valve with its stiction characteristic, and stem lift position of control valve controller. The steam turbine has