WorldWideScience

Sample records for steady-state tokamak reactor

  1. Contour analysis of steady state tokamak reactor performance

    International Nuclear Information System (INIS)

    Devoto, R.S.; Fenstermacher, M.E.

    1990-01-01

    A new method of analysis for presenting the possible operating space for steady state, non-ignited tokamak reactors is proposed. The method uses contours of reactor performance and plasma characteristics, fusion power gain, wall neutron flux, current drive power, etc., plotted on a two-dimensional grid, the axes of which are the plasma current I p and the normalized beta, β n = β/(I p /aB 0 ), to show possible operating points. These steady state operating contour plots are called SOPCONS. This technique is illustrated in an application to a design for the International Thermonuclear Experimental Reactor (ITER) with neutral beam, lower hybrid and bootstrap current drive. The utility of the SOPCON plots for pointing out some of the non-intuitive considerations in steady state reactor design is shown. (author). Letter-to-the-editor. 16 refs, 3 figs, 1 tab

  2. Conceptual design of the steady state tokamak reactor (SSTR)

    International Nuclear Information System (INIS)

    Oikawa, A.; Kikuchi, M.; Seki, Y.; Nishio, S.; Ando, T.; Ohara, Y.; Takizuka, Tani, K.; Ozeki, T.; Koizumi, K.; Ikeda, B.; Suzuki, Y.; Ueda, N.; Kageyama, T.; Yamada, M.; Mizoguchi, T.; Iida, F.; Ozawa, Y.; Mori, S.; Yamazaki, S.; Kobayashi, T.; Adachi, H.J.; Shinya, K.; Ozaki, A.; Asahara, M.; Konishi, K.; Yokogawa, N.

    1992-01-01

    This paper reports that on the basis of a high bootstrap current fraction observation with JT-60, the concept of steady state tokamak reactor , the SSTR, was conceived and was evolved with the design activity of the SSTR at JAERI. Also results of ITER/FER design activities has enhanced the SSTR design. Moreover the remarkable progress of R and D for fusion reactor engineering, especially in the development of superconducting coils and negative ion based NBI at JAERI have promoted the SSTR conceptual design as a realistic power reactor. Although present fusion power reactor designs are currently considered to be too large and costly, results of the SSTR conceptual design suggest that an efficient and promising tokamak reactor will be feasible. The conceptual design of the SSTR provides a realistic reference for a demo tokamak reactor

  3. Concept study of the Steady State Tokamak Reactor (SSTR)

    International Nuclear Information System (INIS)

    1991-06-01

    The Steady State Tokamak Reactor (SSTR) concept has been proposed as a realistic fusion power reactor to be built in the near future. An overall concept of SSTR is introduced which is based on a small extension of the present day physics and technologies. The major feature of SSTR is the maximum utilization of a bootstrap current in order to reduce the power required for the steady state operation. This requirement leads to the choice of moderate current (12 MA), and high βp (2.0) for the device, which are achieved by selecting high aspect ratio (A=4) and high toroidal magnetic field (16.5 T). A negative-ion-based neutral beam injection system is used both for heating and central current drive. Notable engineering features of SSTR are: the use of a uniform vacuum vessel and periodical replacements of the first wall and blanket layers and significant reduction of the electromagnetic force with the use of functionally gradient material. It is shown that a tokamak machine comparable to ITER in size can become a power reactor capable of generating about 1 GW of electricity with a plant efficiency of ∼30%. (author)

  4. Steady-state operation requirements of tokamak fusion reactor concepts

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1991-06-01

    In the last two decades tokamak conceptual reactor design studies have been deriving benefit from progressing plasma physics experiments, more depth in theory and increasing detail in technology and engineering. Recent full-scale reactor extrapolations such as the US ARIES-I and the EC Reference Reactor study provide information on rather advanced concepts that are called for when economic boundary conditions are imposed. The ITER international reactor design activity concentrated on defining the next step after the JET generation of experiments. For steady-state operation as required for any future commercial tokamak fusion power plants it is essential to have non-inductive current drive. The current drive power and other internal power requirements specific to magnetic confinement fusion have to be kept as low as possible in order to attain a competitive overall power conversion efficiency. A high plasma Q is primarily dependent on a high current drive efficiency. Since such conditions have not yet been attained in practice, the present situation and the degree of further development required are characterized. Such development and an appropriately designed next-step tokamak reactor make the gradual realization of high-Q operation appear feasible. (orig.)

  5. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    Moreau, D.

    2001-01-01

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  6. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    Moreau, D.; Voitsekhovitch, I.

    1999-01-01

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  7. Burn cycle requirements comparison of pulsed and steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ehst, D.A.

    1983-12-01

    Burn cycle parameters and energy transfer system requirements were analyzed for an 8-m commercial tokamak reactor using four types of cycles: conventional, hybrid, internal transformer, and steady state. Not surprisingly, steady state is the best burn mode if it can be achieved. The hybrid cycle is a promising alternative to the conventional. In contrast, the internal transformer cycle does not appear attractive for the size tokamak in question

  8. Steady-state tokamak reactor with non-divertor impurity control: STARFIRE

    International Nuclear Information System (INIS)

    Baker, C.C.

    1980-01-01

    STARFIRE is a conceptual design study of a commercial tokamak fusion electric power plant. Particular emphasis has been placed on simplifying the reactor concept by developing design concepts to produce a steady-state tokamak with non-divertor impurity control and helium ash removal. The concepts of plasma current drive using lower hybrid rf waves and a limiter/vacuum system for reactor applications are described

  9. Wave-driver options for low-aspect-ratio steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1981-02-01

    Low aspect ratio designs are proposed for steady-state tokamak reactors. Benefits stem from reduced major radius and lessened stresses in the toroidal field coils, resulting in possible cost savings in the tokamak construction. In addition, a low aspect ratio (A = 2.6) permits the application of a bundle divertor capable of diverting 3-T fields to a power reactor using STARFIRE technology. Such a low aspect ratio is possible with the elimination of poloidal field coils in the central hole of the tokamak, which implies a need for noninductive current drive. Several plasma waves are considered for this application, and it appears likely that a candidate can be found which reduces the electric power for current maintenance to an acceptable value

  10. Vulcan: A steady-state tokamak for reactor-relevant plasma–material interaction science

    International Nuclear Information System (INIS)

    Olynyk, G.M.; Hartwig, Z.S.; Whyte, D.G.; Barnard, H.S.; Bonoli, P.T.; Bromberg, L.; Garrett, M.L.; Haakonsen, C.B.; Mumgaard, R.T.; Podpaly, Y.A.

    2012-01-01

    Highlights: ► A new scaling for obtaining reactor similarity in the divertor of scaled tokamaks. ► Conceptual design for a tokamak (“Vulcan”) to implement this new scaling. ► Demountable superconducting coils and compact neutron shielding. ► Helium-cooled high-temperature vacuum vessel and first wall. ► High-field-side lower hybrid current drive for non-inductive operation. - Abstract: An economically viable magnetic-confinement fusion reactor will require steady-state operation and high areal power density for sufficient energy output, and elevated wall/blanket temperatures for efficient energy conversion. These three requirements frame, and couple to, the challenge of plasma–material interaction (PMI) for fusion energy sciences. Present and planned tokamaks are not designed to simultaneously meet these criteria. A new and expanded set of dimensionless figures of merit for PMI have been developed. The key feature of the scaling is that the power flux across the last closed flux surface P/S ≃ 1 MW m −2 is to be held constant, while scaling the core volume-averaged density weakly with major radius, n ∼ R −2/7 . While complete similarity is not possible, this new “P/S” or “PMI” scaling provides similarity for the most critical reactor PMI issues, compatible with sufficient current drive efficiency for non-inductive steady-state core scenarios. A conceptual design is developed for Vulcan, a compact steady-state deuterium main-ion tokamak which implements the P/S scaling rules. A zero-dimensional core analysis is used to determine R = 1.2 m, with a conventional reactor aspect ratio R/a = 4.0, as the minimum feasible size for Vulcan. Scoping studies of innovative fusion technologies to support the Vulcan PMI mission were carried out for three critical areas: a high-temperature, helium-cooled vacuum vessel and divertor design; a demountable superconducting toroidal field magnet system; and a steady-state lower hybrid current drive system

  11. The steady-state tokamak program

    International Nuclear Information System (INIS)

    Politzer, D.A.; Nevins, W.M.

    1992-01-01

    This paper reports on a steady-state tokamak experiment (STE) needed to develop the technology and physics data base required for construction of a steady-state fusion power demonstration reactor in the early 21st century. The STE will provide an integrated facility for the development and demonstration of steady-state and particle handling, low-activation high-heat-flux components and materials, efficient current drive, and continuous plasma performance in steady-state, with reactor-like plasma conditions under severe conditions of heat and particle bombardment of the wall. The STE facility will also be used to develop operation and control scenarios for ITER

  12. Steady-state resistive toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Kalnavarns, J.; Jassby, D.L.

    1979-12-01

    If spatially-averaged values of the beta ratio can reach 5 to 10% in tokamaks, as now seems likely, resistive toroidal-field coils may be advantageous for use in reactors intended for fusion-neutron applications. The present investigation has parameterized the design of steady-state water-cooled copper coils of rectangular cross section in order to maximize figures of merit such as the ratio of fusion neutron wall loading to coil power dissipation. Four design variations distinguished by different ohmic-heating coil configurations have been examined. For a wall loading of 0.5 MW/m 2 , minimum TF-coil lifetime costs (including capital and electricity costs) are found to occur with coil masses in the range 2400 to 4400 tons, giving 200 to 250 MW of resistive dissipation, which is comparable with the total power drain of the other reactor subsystems

  13. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    International Nuclear Information System (INIS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-01-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  14. Tokamak burn cycle study: a data base for comparing long pulse and steady-state power reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1983-11-01

    Several distinct operating modes (conventional ohmic, noninductive steady state, internal transformer, etc.) have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics (current drive efficiency) and engineering (superior materials) which will help achieve these goals for different burn cycles

  15. Comparative study of pulsed and steady-state tokamak reactor burn cycles

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K.; Hassanein, A.M.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1984-05-01

    Four distinct operating modes have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue in pulsed poloidal field coils; out-of-plant fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics and engineering which will help achieve these goals for different burn cycles

  16. Design constraints for rf-driven steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1979-02-01

    Plasma current density profiles are computed due to electron Landau damping of lower hybrid waves launched into model tokamak density and temperature profiles. The total current and current profile shape are chosen consistent with magnetohydrodynamic equilibrium for a variety of temperature and density distributions and plasma beta values. Surface current equilibria appear attractive and are accessible to waves with n/sub z/ as low as 1.2. By suitably choosing the spectrum location and width it is possible to drive the 9.8 MA current of a 7.0-m reactor with as little as 2.8% of the fusion power recirculated as rf input from the waveguides

  17. Current drive studies for the ARIES steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Mau, T.K.; Ehst, D.A.; Mandrekas, J.

    1994-01-01

    Steady-state plasma operating scenarios are designed for three versions of the ARIES reactor, using non-inductive current drive techniques that have an established database. R.f. waves, including fast and lower hybrid waves, are the reference drivers for the D-T burning ARIES-I and ARIES-II/IV, while neutral beam injection is employed for ARIES-III which burns D- 3 He. Plasma equilibria with a high bootstrap-current component have been used, in order to minimize the recirculating power fraction and cost of electricity. To maintain plasma stability, the driven current profile has been aligned with that of equilibrium by proper choices of the plasma profiles and power launch parameters. Except for ARIES-III, the current-drive power requirements and the relevant technology developments are found to be quite reasonable. The wave-power spectrum and launch requirements are also considered achievable with a modest development effort. Issues such as an improved database for fast-wave current drive, lower-hybrid power coupling to the plasma edge, profile control in the plasma core, and access to the design point of operation remain to be addressed. ((orig.))

  18. Steady State Advanced Tokamak (SSAT): The mission and the machine

    International Nuclear Information System (INIS)

    Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.

    1992-03-01

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO

  19. Prospects for steady-state tokamak reactor operation through feedback control of the current density profile

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, D

    1994-12-31

    A brief overview of the most relevant experiments on current profile modifications, strong improvements with respect to the usual L-mode scaling laws and Troyon beta limit is presented, as relevant issues for most tokamaks. Practical means and scenarios for producing and maintaining the optimum current profiles in the various phases of the thermonuclear discharge (profile formation, current ramp-up, burn phase) are proposed. (author). 34 refs., 3 figs.

  20. Physics design of advanced steady-state tokamak reactor A-SSTR2

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Ushigusa, Kenkichi

    2000-10-01

    Based on design studies on the fusion power reactor such as the DEMO reactor SSTR, the compact power reactor A-SSTR and the DREAM reactor with a high environmental safety and high availability, a new concept of compact and economic fusion power reactor (A-SSTR2) with high safety and high availability is proposed. Employing high temperature superconductor, the toroidal filed coils supplies the maximum field of 23T on conductor which corresponds to 11T at the magnetic axis. A-SSTR2 (R p =6.2m, a p =1.5m, I p =12MA) has a fusion power of 4GW with β N =4. For an easy maintenance and for an enough support against a strong electromagnetic force on coils, a poloidal coils system has no center solenoid coils and consists of 6 coils located on top and bottom of the machine. Physics studies on the plasma equilibrium, controllability of the configuration, the plasma initiation and non-inductive current ramp-up, fusion power controllability and the diverter have shown the validity of the A-SSTR2 concept. (author)

  1. Magnetic sensor for steady state tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-06-01

    A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).

  2. A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution

    Directory of Open Access Journals (Sweden)

    Mitsuru Kikuchi

    2010-11-01

    Full Text Available Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fundamentals of fusion and plasma confinement, and the concepts and research on current drive and MHD stability of advanced tokamaks towards realization of a steady-state tokamak reactor are reviewed, with an emphasis on the contributions of the JAEA. Finally, a view of fusion energy utilization in the 21st century is introduced.

  3. Steady State versus Pulsed Tokamak DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Orsitto, F.P., E-mail: francesco.orsitto@enea.it [Associazione EURATOM-ENEA Unita Tecnica Fusione, Frascati (Italy); Todd, T. [CCFE/Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2012-09-15

    Full text: The present report deals with a Review of problems for a Steady state(SS) DEMO, related argument is treated about the models and the present status of comparison between the characteristics of DEMO pulsed versus a Steady state device.The studied SS DEMO Models (SLIM CS, PPCS model C EU-DEMO, ARIES-RS) are analyzed from the point of view of the similarity scaling laws and critical issues for a steady state DEMO. A comparison between steady state and pulsed DEMO is therefore carried out: in this context a new set of parameters for a pulsed (6 - 8 hours pulse) DEMO is determined working below the density limit, peak temperature of 20 keV, and requiring a modest improvement in the confinement factor(H{sub IPBy2} = 1.1) with respect to the H-mode. Both parameters density and confinement parameter are lower than the DEMO models presently considered. The concept of partially non-inductive pulsed DEMO is introduced since a pulsed DEMO needs heating and current drive tools for plasma stability and burn control. The change of the main parameter design for a DEMO working at high plasma peak temperatures T{sub e} {approx} 35 keV is analyzed: in this range the reactivity increases linearly with temperature, and a device with smaller major radius (R = 7.5 m) is compatible with high temperature. Increasing temperature is beneficial for current drive efficiency and heat load on divertor, being the synchrotron radiation one of the relevant components of the plasma emission at high temperatures and current drive efficiency increases with temperature. Technology and engineering problems are examined including efficiency and availability R&D issues for a high temperature DEMO. Fatigue and creep-fatigue effects of pulsed operations on pulsed DEMO components are considered in outline to define the R&D needed for DEMO development. (author)

  4. Realizing steady-state tokamak operation for fusion energy

    International Nuclear Information System (INIS)

    Luce, T. C.

    2011-01-01

    Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.

  5. Steady-state spheromak reactor studies

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported

  6. Steady-state plasma and reactor parameters for elliptical cross section tokamaks with very large power ratings

    International Nuclear Information System (INIS)

    Usher, J.L.; Powell, J.R.

    1975-06-01

    In previous studies only circular cross section reactor plasmas were considered. The purpose of this research is to examine the effects of elliptical plasma cross sections. Several technological benefits have been determined. Maximum magnetic field strength requirements are 30 to 65 percent less than for 5000 MW (th) reactors and may be as much as 40 percent less than for circular cross section reactors of comparable size. Very large n tau values are found (10 15 to 10 17 sec/cm 3 ), which produce large burn-up fractions (15 to 60 percent). There is relatively little problem with impurity build-up. Long confinement times (60 to 500 seconds) are found. Finally, the elliptical cross section reactors exhibit a major toroidal radius reduction of as large as 30 percent over circular reactors operating at comparable power levels

  7. Technology and physics in the Tokamak Program: The need for an integrated, steady-state RandD tokamak experiment

    International Nuclear Information System (INIS)

    1988-05-01

    The Steady-state Tokamak (STE) Experiment is a proposed superconducting-coil, hydrogen-plasma tokamak device intended to address the integrated non-nuclear issues of steady state, high-power tokamak physics and technology. Such a facility has been called for in the US program plan for the mid 1990's, and will play a unique role in the world-wide fusion effort. Information from STE on steady-state current drive, plasma control, and high power technology will contribute significantly to the operating capabilities of future steady-state devices. This paper reviews preliminary designs and expected technological contributions to the US and world fusion reactor research from each of the above mentioned reactor systems. This document is intended as a proposal and feasibility discussion and does not include exhaustive technical reviews. 12 figs., 3 tabs

  8. The software-defined fast post-processing for GEM soft x-ray diagnostics in the Tungsten Environment in Steady-state Tokamak thermal fusion reactor

    Science.gov (United States)

    Krawczyk, Rafał Dominik; Czarski, Tomasz; Linczuk, Paweł; Wojeński, Andrzej; Kolasiński, Piotr; GÄ ska, Michał; Chernyshova, Maryna; Mazon, Didier; Jardin, Axel; Malard, Philippe; Poźniak, Krzysztof; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol

    2018-06-01

    This article presents a novel software-defined server-based solutions that were introduced in the fast, real-time computation systems for soft X-ray diagnostics for the WEST (Tungsten Environment in Steady-state Tokamak) reactor in Cadarache, France. The objective of the research was to provide a fast processing of data at high throughput and with low latencies for investigating the interplay between the particle transport and magnetohydrodynamic activity. The long-term objective is to implement in the future a fast feedback signal in the reactor control mechanisms to sustain the fusion reaction. The implemented electronic measurement device is anticipated to be deployed in the WEST. A standalone software-defined computation engine was designed to handle data collected at high rates in the server back-end of the system. Signals are obtained from the front-end field-programmable gate array mezzanine cards that acquire and perform a selection from the gas electron multiplier detector. A fast, authorial library for plasma diagnostics was written in C++. It originated from reference offline MATLAB implementations. They were redesigned for runtime analysis during the experiment in the novel online modes of operation. The implementation allowed the benchmarking, evaluation, and optimization of plasma processing algorithms with the possibility to check the consistency with reference computations written in MATLAB. The back-end software and hardware architecture are presented with data evaluation mechanisms. The online modes of operation for the WEST are discussed. The results concerning the performance of the processing and the introduced functionality are presented.

  9. System studies for quasi-steady-state advanced physics tokamak

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y.K.M.

    1983-11-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated

  10. Reactor kinetics - pulse and steady state

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B F; Morris, F M [Sandia Laboratories (United States)

    1974-07-01

    An analytical model has been developed which couples the nuclear and thermal characteristics of the Annular Core Pulse Reactor (ACPR) into a solution which describes both the neutron kinetics of the reactor and the temperature behavior of a fuel-moderator element. The model describes both pulse and steady state operations. This paper describes the important aspects of the reactor, the fuel- moderator elements, the neutron kinetic equations of the reactor, and the time-temperature behavior of a fuel-moderator element that is being subjected to the maximum power density in the core. The parameters which are utilized in the equations are divided into two classes, those that can be measured directly and those that are assumed to be known (each is described briefly). Some of the solutions which demonstrate the versatility of the analytical model are described. (author)

  11. Internal transport barrier physics for steady state operation in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Wakatani, Masahiro [Kyoto Univ., Graduate School of Engineering, Uji, Kyoto (Japan); Fukuda, Takeshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Connor, Jack W. [Culham Science Centre, EURATOM/UKAEA Association (United Kingdom); Garbet, Xavier [Culham Science Centre, EFDA-JET CSU (United Kingdom); Gormezano, Claude [Associazone EURATOM-ENEA sulla Fusione C.R. Frascati (Italy); Mukhovatov, Vladimir [ITER Naka Joint Work Site, ITER Physics Unit, Naka, Ibaraki (Japan)

    2003-07-01

    Experimental results for the ITB (Internal Transport Barrier) formation and sustainment are compiled in a unified manner to find common features of ITBs in tokamaks. Global scaling laws for threshold power to obtain the ITBs are discussed. Theoretical models for plasmas with ITBs are summarized from stability and transport point of view. Finally possibility to obtain steady-state ITBs will be discussed in addition to extrapolation to ITER. (author)

  12. A steady state tokamak operation by use of magnetic monopoles

    International Nuclear Information System (INIS)

    Narihara, K.

    1991-12-01

    A steady state tokamak operation based on a magnetic monopole circuit is considered. Circulation of a chain of iron cubes which trap magnetic monopoles generates the needed loop voltage. The monopole circuit is enclosed by a series of solenoid coils in which magnetic field is feedback controlled so that the force on the circuit balance against the mechanical friction. The driving power is supplied through the current sources of poloidal, ohmic and solenoid coils. The current drive efficiency is same as that of the ohmic current drive. (author)

  13. On the minimum circulating power of steady state tokamaks

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.

    1995-07-01

    Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author)

  14. MHD stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-02-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed

  15. Magnetohydrodynamic stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-01-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 left angle p right angle /B 2 that is compatible with magnetohydrodynamic (MHD) stability. This value depends on the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near unity, I BS /I P ∼1, which constrains the product of the inverse aspect ratio and the plasma poloidal β to be near unity, arepsilonβ P ∼1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during ARIES I, II/IV, and III and PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements in the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies, is also discussed. ((orig.))

  16. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  17. Operating tokamaks with steady-state toroidal current

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-04-01

    Continuous operation of a tokamak requires, among other things, a means of continuously providing the toroidal current. Various methods have been proposed to provide this current including methods which utilize radio-frequency waves in any of several frequency regimes. Here we elaborate on the prospects of incorporating these current-drive techniques in tokamak reactors, concentrating on the theoretical minimization of the power requirements

  18. Preliminary design study of a steady state tokamak device

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Nakajima, Shinji; Ushigusa, Kenkichi; and athors)

    1992-09-01

    Preliminary design study has been made for a steady tokamak with the plasma current of 10MA, as the next to the JT-60U experimental programs. The goal of the research program is the integrated study of steady state, high-power physics and technology. Present candidate design is to use superconducting TF and PF magnet systems and long pulse operation of 100's-1000's of sec with non inductive current drive mainly by 500keV negative ion beam injection of 60MW. Low activation material such as titanium alloy is chosen for the water tank type vacuum vessel, which is also the nuclear shield for the superconducting coils. The present preliminary design study shows that the device can meet the existing JT-60U facility capability. (author)

  19. High-β steady-state advanced tokamak regimes for ITER and FIRE

    International Nuclear Information System (INIS)

    Meade, D.M.; Sauthoff, N.R.; Kessel, C.E.; Budny, R.V.; Gorelenkov, N.; Jardin, S.C.; Schmidt, J.A.; Navratil, G.A.; Bialek, J.; Ulrickson, M.A.; Rognlein, T.; Mandrekas, J.

    2005-01-01

    An attractive tokamak-based fusion power plant will require the development of high-β steady-state advanced tokamak regimes to produce a high-gain burning plasma with a large fraction of self-driven current and high fusion-power density. Both ITER and FIRE are being designed with the objective to address these issues by exploring and understanding burning plasma physics both in the conventional H-mode regime, and in advanced tokamak regimes with β N ∼ 3 - 4, and f bs ∼50-80%. ITER has employed conservative scenarios, as appropriate for its nuclear technology mission, while FIRE has employed more aggressive assumptions aimed at exploring the scenarios envisioned in the ARIES power-plant studies. The main characteristics of the advanced scenarios presently under study for ITER and FIRE are compared with advanced tokamak regimes envisioned for the European Power Plant Conceptual Study (PPCS-C), the US ARIES-RS Power Plant Study and the Japanese Advanced Steady-State Tokamak Reactor (ASSTR). The goal of the present work is to develop advanced tokamak scenarios that would fully exploit the capability of ITER and FIRE. This paper will summarize the status of the work and indicate critical areas where further R and D is needed. (author)

  20. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  1. Machine Control System of Steady State Superconducting Tokamak-1

    Energy Technology Data Exchange (ETDEWEB)

    Masand, Harish, E-mail: harish@ipr.res.in; Kumar, Aveg; Bhandarkar, M.; Mahajan, K.; Gulati, H.; Dhongde, J.; Patel, K.; Chudasma, H.; Pradhan, S.

    2016-11-15

    Highlights: • Central Control System. • SST-1. • Machine Control System. - Abstract: Central Control System (CCS) of the Steady State Superconducting Tokamak-1 (SST-1) controls and monitors around 25 plant and experiment subsystems of SST-1 located remotely from the Central-Control room. Machine Control System (MCS) is a supervisory system that sits on the top of the CCS hierarchy and implements the CCS state diagram. MCS ensures the software interlock between the SST-1 subsystems with the CCS, any subsystem communication failure or its local error does not prohibit the execution of the MCS and in-turn the CCS operation. MCS also periodically monitors the subsystem’s status and their vital process parameters throughout the campaign. It also provides the platform for the Central Control operator to visualize and exchange remotely the operational and experimental configuration parameters with the sub-systems. MCS remains operational 24 × 7 from the commencement to the termination of the SST-1 campaign. The developed MCS has performed robustly and flawlessly during all the last campaigns of SST-1 carried out so far. This paper will describe various aspects of the development of MCS.

  2. Implications of rf current drive theory for next step steady-state tokamak design

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1985-06-01

    Two missions have been identified for a next-step tokamak experiment in the United States. The more ambitious Mission II device would be a superconducting tokamak, capable of doing long-pulse ignition demonstrations, and hopefully capable of also being able to achieve steady-state burn. A few interesting lines of approach have been identified, using a combination of logical design criteria and parametric system scans [SC85]. These include: (1) TIBER: A point-design suggested by Lawrence Livermore, that proposes a machine with the capability of demonstrating ignition, high beta (10%) and high Q (=10), using high frequency, fast-wave current drive. The TIBER topology uses moderate aspect ratio and high triangularity to achieve high beta. (2) JET Scale-up. (3) Magic5: It is argued here that an aspect ratio of 5 is a magic number for a good steady-state current drive experiment. A moderately-sized machine that achieves ignition and is capable of high Q, using either fast wave or slow wave current drive is described. (4) ET-II: The concept of a highly elongated tokamak (ET) was first proposed as a low-cost approach to Mission I, because of the possibility of achieving ohmic ignition with low-stress copper magnets. We propose that its best application is really for commercial tokamaks, using fast-wave current drive, and suggest a Mission II experiment that would be prototypical of such a reactor

  3. Progress on advanced tokamak and steady-state scenario development on DIII-D and NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, E J [Department of Electrical Engineering and PSTI, University of California, Los Angeles, California 90095 (United States); Garofalo, A M [Columbia University, New York, New York 10027 (United States); Greenfield, C M [General Atomics, San Diego, California 92186-5608 (United States); Kaye, S M [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Menard, J E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Murakami, M [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sabbagh, S A [Columbia University, New York, New York 10027 (United States); Austin, M E [University of Texas-Austin, Austin, Texas 78712 (United States); Bell, R E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Burrell, K H [General Atomics, San Diego, California 92186-5608 (United States); Ferron, J R [General Atomics, San Diego, California 92186-5608 (United States); Gates, D A [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Groebner, R J; Hyatt, A W; Luce, T C; Petty, C C; Wade, M R; Waltz, R E [General Atomics, San Diego, California 92186-5608 (United States); Jayakumar, R J [Lawrence Livermore National Lab., Livermore, California 94550 (United States); Kinsey, J E [Lehigh Univ., Bethlehem, Pennsylvania 18015 (United States); LeBlanc, B P [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); McKee, G R [Univ. of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Okabayashi, M [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Peng, Y-K M [Oak Ridge National Lab., Oak Ridge, Tennessee 37831 (United States); Politzer, P A [General Atomics, San Diego, California 92186-5608 (United States); Rhodes, T L [Dept. of Electrical Engineering and PSTI, Univ. of California, Los Angeles, California 90095 (United States)

    2006-12-15

    Advanced tokamak (AT) research seeks to develop steady-state operating scenarios for ITER and other future devices from a demonstrated scientific basis. Normalized target parameters for steady-state operation on ITER are 100% non-inductive current operation with a bootstrap current fraction f{sub BS} {>=} 60%, q{sub 95} {approx} 4-5 and G {identical_to}{beta}{sub N}H{sub scaling}/q{sub 95}{sup 2} {>=}0.3. Progress in realizing such plasmas is considered in terms of the development of plasma control capabilities and scientific understanding, leading to improved AT performance. NSTX has demonstrated active resistive wall mode stabilization with low, ITER-relevant, rotation rates below the critical value required for passive stabilization. On DIII-D, experimental observations and GYRO simulations indicate that ion internal transport barrier (ITB) formation at rational-q surfaces is due to equilibrium zonal flows generating high local E ? B shear levels. In addition, stability modelling for DIII-D indicates a path to operation at {beta}{sub N} {>=} 4 with q{sub min} {>=} 2, using broad, hollow current profiles to increase the ideal wall stability limit. Both NSTX and DIII-D have optimized plasma performance and expanded AT operational limits. NSTX now has long-pulse, high performance discharges meeting the normalized targets for an spherical torus-based component test facility. DIII-D has developed sustained discharges combining high beta and ITBs, with performance approaching levels required for AT reactor concepts, e.g. {beta}{sub N} = 4, H{sub 89} = 2.5, with f{sub BS} > 60%. Most importantly, DIII-D has developed ITER steady-state demonstration discharges, simultaneously meeting the targets for steady-state Q {>=} 5 operation on ITER set out above, substantially increasing confidence in ITER meeting its steady-state performance objective.

  4. On the optimization of a steady-state bootstrap-reactor

    International Nuclear Information System (INIS)

    Polevoy, A.R.; Martynov, A.A.; Medvedev, S.Yu.

    1993-01-01

    A commercial fusion tokamak-reactor may be economically acceptable only for low recirculating power fraction r 0 ≡ P CD /P α BS ≡I BS /I > 0.9 to sustain the steady-state operation mode for high plasma densities > 1.5 10 20 m -3 , fulfilled the divertor conditions. This paper presents the approximate expressions for the optimal set of reactor parameters for r BS /I∼1, based on the self-consistent plasma simulations by 1.5D ASTRA code. The linear MHD stability analysis for ideal n=1 kink and ballooning modes has been carried out to determine the conditions of stabilization for bootstrap steady state tokamak reactor BSSTR configurations. (author) 10 refs., 1 tab

  5. Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime

    Science.gov (United States)

    Ren, Q.

    2015-11-01

    Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA

  6. Steady state operation of the superconducting tokamak TRIAM-1M

    International Nuclear Information System (INIS)

    Hanada, K.; Itoh, S.; Sato, K.; Nakamura, K.; Zushi, H.; Sakamoto, M.; Jotaki, E.; Makino, K.

    2000-01-01

    A 2-hour limiter discharge in circular configuration was successfully maintained using both Hall generators to be free from the drift of integrator and position control by TV image to avoid the concentration of heat load. The property of wall saturation is discussed as the serious issue for steady state operation, which strongly depends on electron density. In the high density region, the discharges sometimes terminate due to uncontrollable increase in electron density caused by wall saturation. The plasmas with high k ∼1.5 can be demonstrated for longer than 1 min. The duration of discharge is limited by vertical displacement event (VDE). The avoidance of VDE is a crucial point to achieve long discharges with high k. A new technique to monitor the accurate magnetic field with high time resolution for a long time is required to achieve the longer discharge with high k. A high ion temperature (HIT) discharge characterized by high ion temperature up to 5 keV and by steep temperature gradient up to 85 keV/m is successfully sustained for longer than 30 sec by 2.45 GHz LHCD on single null divertor configuration. This indicates that the transport barrier of ion temperature can be maintained in steady state. (author)

  7. Anisotropic plasma with flows in tokamak: Steady state and stability

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.

    1996-01-01

    An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics

  8. A comparison of steady-state ARIES and pulsed PULSAR tokamak power plants

    International Nuclear Information System (INIS)

    Bathke, C.G.

    1994-01-01

    The multi-institutional ARIES study has completed a series of three steady-state and two pulsed cost-optimized conceptual designs of commercial tokamak fusion power plants that vary the level of assumed advances in technology and physics. The cost benefits of various design options are compared quantitatively. Possible means to improve the economic competitiveness of fusion are suggested

  9. Steady state operation of tokamaks. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-10-01

    The first IAEA Technical Committee Meeting (TCM) on Steady State Operation of Tokamaks was organized to discuss the operations of present long-pulse tokamaks (TRIAM-1M, TORE SUPRA, MT-7, HT-7M, HL-1M) and the plans for future steady-state tokamaks such as SST-1, CIEL, and HT-7U. This meeting, held from 13-15 October 1998, was hosted by the Academia Sinica Institute of Plasma Physics (ASIPP), Hefei, China. Participants from China, France, India, Japan, the Russian Federation, and the IAEA participated in the meeting. There were 18 individual presentations plus general discussions on many topics, including superconducting magnet systems, cryogenics, plasma position control, non-inductive current drive, auxiliary heating, plasma-wall interactions, high heat flux components, particle control, and data acquisition

  10. A simulation study on burning profile tailoring of steady state, high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Nakamura, Y.; Takei, N.; Tobita, K.; Sakamoto, Y.; Fujita, T.; Fukuyama, A.; Jardin, S.C.

    2007-01-01

    From the aspect of fusion burn control in steady state DEMO plant, the significant challenges are to maintain its high power burning state of ∝3-5 GW without burning instability, hitherto well-known as ''thermal stability'', and also to keep its desired burning profile relevant with internal transport barrier (ITB) that generates high bootstrap current. The paper presents a simulation modeling of the burning stability coupled with the self-ignited fusion burn and the structure-formation of the ITB. A self-consistent simulation, including a model for improved core energy confinement, has pointed out that in the high power fusion DEMO plant there is a close, nonlinear interplay between the fusion burnup and the current source of non-inductive, ITB-generated bootstrap current. Consequently, as much distinct from usual plasma controls under simulated burning conditions with lower power (<<1 GW), the selfignited fusion burn at a high power burning state of ∝3-5 GW becomes so strongly selforganized that any of external means except fuelling can not provide the effective control of the stable fusion burn.It is also demonstrated that externally applied, inductive current perturbations can be used to control both the location and strength of ITB in a fully noninductive tokamak discharge. We find that ITB structures formed with broad noninductive current sources such as LHCD are more readily controlled than those formed by localized sources such as ECCD. The physics of the inductive current is well known. Consequently, we believe that the controllability of the ITB is generic, and does not depend on the details of the transport model (as long as they can form an ITB for sufficiently reversed magnetic shear q-profile). Through this external control of the magnetic shear profile, we can maintain the ITB strength that is otherwise prone to deteriorate when the bootstrap current increases. These distinguishing capabilities of inductive current perturbation provide steady

  11. BR2 reactor core steady state transient modeling

    International Nuclear Information System (INIS)

    Makarenko, A.; Petrova, T.

    2000-01-01

    A coupled neutronics/hydraulics/heat-conduction model of the BR2 reactor core is under development at SCK-CEN. The neutron transport phenomenon has been implemented as steady state and time dependent nodal diffusion. The non-linear heat conduction equation in-side fuel elements is solved with a time dependent finite element method. To allow coupling between functional modules and to simulate subcooled regimes, a simple single-phase hydraulics has been introduced, while the two-phase hydraulics is under development. Multiple tests, general benchmark cases as well as calculation/experiment comparisons demonstrated a good accuracy of both neutronic and thermal hydraulic models, numerical reliability and full code portability. A refinement methodology has been developed and tested for better neutronic representation in hexagonal geometry. Much effort is still needed to complete the development of an extended cross section library with kinetic data and two-phase flow representation. (author)

  12. Very high flux steady state reactor and accelerator based sources

    International Nuclear Information System (INIS)

    Ludewig, H.; Todosow, M.; Simos, N.; Shapiro, S.; Hastings, J.

    2004-01-01

    With the number of steady state neutron sources in the US declining (including the demise of the Bnl HFBR) the remaining intense sources are now in Europe (i.e. reactors - ILL and FMR, accelerator - PSI). The intensity of the undisturbed thermal flux for sources currently in operation ranges from 10 14 n/cm 2 *s to 10 15 n/cm 2 *s. The proposed Advanced Neutron Source (ANS) was to be a high power reactor (about 350 MW) with a projected undisturbed thermal flux of 7*10 15 n/cm 2 *s but never materialized. The objective of the current study is to explore the requirements and implications of two source concepts with an undisturbed flux of 10 16 n/cm 2 *s. The first is a reactor based concept operating at high power density (10 MW/l - 15 MW/l) and a total power of 100 MW - 250 MW, depending on fissile enrichment. The second is an accelerator based concept relying on a 1 GeV - 1.5 GeV proton Linac with a total beam power of 40 MW and a liquid lead-bismuth eutectic target. In the reactor source study, the effects of fissile material enrichment, coolant temperature and pressure drop, and estimates of pressure vessel stress levels will be investigated. The fuel form for the reactor will be different from all other operating source reactors in that it is proposed to use an infiltrated graphitic structure, which has been developed for nuclear thermal propulsion reactor applications. In the accelerator based source the generation of spallation products and their activation levels, and the material damage sustained by the beam window will be investigated. (authors)

  13. COOLOD, Steady-State Thermal Hydraulics of Research Reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1997-01-01

    1 - Description of program or function: The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is a revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode. A 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is a subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. 2 - Method of solution: The 'Heat Transfer Package' is a subprogram for calculating heat transfer coefficients, ONB temperature, heat flux at onset of flow instability and DNB heat flux. The 'Heat transfer package' was especially developed for research reactors which are operated under low pressure and low temperature conditions using plate-type fuel, just like the JRR-3M. Heat transfer correlations adopted in the 'Heat Transfer Package' were obtained or estimated based on the heat transfer experiments in which thermal-hydraulic features of the upgraded JRR-3 core were properly reflected. The 'Heat Transfer Package' is applicable to upward and downward flow

  14. Continuous cryopump for steady state mirror fusion reactors

    International Nuclear Information System (INIS)

    Batzer, T.H.; Call, W.R.

    1983-01-01

    The characteristics of mirror fusion reactors, i.e., steady state operation, a low neutral gas density, and a large gas throughput require unique vacuum pumping capabilities. One approach that appears to meet these requirements is a liquid helium-cooled cryopump system in which a fixed portion can be isolated and degassed while the remainder continues to pump. The time to degas a rotating, fixed portion of the pumping area and the ratio of that area to the total area fixes the gas inventory in the chamber. It follows that the active pump area maintains the required neutral gas density and the time-averaged degassing rate equals the gas throughput. We have built such a cryopump whereby the gas condensed (deuterium) on the liquid helium-cooled panel can be transferred to a collector pump and subsequently to an exterior mechanical pump and exhausted. At panel loadings as high as 0.55 Torr-/lcm 2 the gas leakage during degassing is less than 8% and the degassing time is less than 10 min. Scaling to reactor size appears to be feasible

  15. Physical design of MW-class steady-state spherical tokamak, QUEST

    International Nuclear Information System (INIS)

    Hanada, K.; Sato, K.N.; Zushi, H.; Nakamura, K.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Higashizono, Y.; Yoshida, N.; Takase, Y.; Ejiri, A.; Ogawa, Y.; Ono, Y.; Yoshida, Z.; Mitarai, O.; Maekawa, T.; Kishimoto, Y.; Ishiguro, M.; Yoshinaga, T.; Igami, H.; Hirooka, Y.; Komori, A.; Motojima, O.; Sudo, S.; Yamada, H.; Ando, A.; Asakura, Nobuyuki; Matsukawa, Makoto; Ishida, A.; Ohno, N.; Peng, M.

    2008-10-01

    QUEST (R=0.68 m, a=0.4 m) focuses on the steady state operation of the spherical tokamak (ST) by controlled PWI and electron Bernstain wave (EBW) current drive (CD). The QUEST project will be developed along two phases, phase I: steady state operation with plasma current, I p =20-30 kA on open divertor configuration and phase II: steady state operation with I p = 100 kA and β of 10% in short pulse on closed divertor configuration. Feasibility of the missions on QUEST was investigated and the suitable machine size of QUEST was decided based on the physical view of plasma parameters. Electron Bernstein wave (EBW) current drive are planned to establish the maintenance of plasma current in steady state. Mode conversion efficiency to EBW was calculated and the conversion of 95% will be expected. A new type antenna for QUEST has been fabricated to excite EBW effectively. The situation of heat and particle handling is challenging, and W and high temperature wall is adopted. The start-up scenario of plasma current was investigated based on the driven current by energetic electron and the most favorable magnetic configuration for start-up is proposed. (author)

  16. Loss less real-time data compression based on LZO for steady-state Tokamak DAS

    International Nuclear Information System (INIS)

    Pujara, H.D.; Sharma, Manika

    2008-01-01

    The evolution of data acquisition system (DAS) for steady-state operation of Tokamak has been technology driven. Steady-state Tokamak demands a data acquisition system which is capable enough to acquire data losslessly from diagnostics. The needs of loss less continuous acquisition have a significant effect on data storage and takes up a greater portion of any data acquisition systems. Another basic need of steady state of nature of operation demands online viewing of data which loads the LAN significantly. So there is strong demand for something that would control the expansion of both these portion by a way of employing compression technique in real time. This paper presents a data acquisition systems employing real-time data compression technique based on LZO. It is a data compression library which is suitable for data compression and decompression in real time. The algorithm used favours speed over compression ratio. The system has been rigged up based on PXI bus and dual buffer mode architecture is implemented for loss less acquisition. The acquired buffer is compressed in real time and streamed to network and hard disk for storage. Observed performance of measure on various data type like binary, integer float, types of different type of wave form as well as compression timing overheads has been presented in the paper. Various software modules for real-time acquiring, online viewing of data on network nodes have been developed in LabWindows/CVI based on client server architecture

  17. Investigation of component failure rates for pulsed versus steady state tokamak operation

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-07-01

    This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments

  18. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    Science.gov (United States)

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-06

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  19. Compact tokamak reactors

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1997-01-01

    The possible use of tokamaks for thermonuclear power plants is discussed, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First, the existing literature is reviewed and summarized. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamaks power plant, by including the power required to drive the toroidal field and by considering two extremes of plasma current drive efficiency. Third, the analytic results are augmented by a numerical calculation that permits arbitrary plasma current drive efficiency and different confinement scaling relationships. Throughout, the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculation of electric power. The latest published reactor studies show little advantage in using low aspect ratios to obtain a more compact device (and a low cost of electricity) unless either remarkably high efficiency plasma current drive and low safety factor are combined, or unless confinement (the H factor), the permissible elongation and the permissible neutron wall loading increase as the aspect ratio is reduced. These results are reproduced with the analytic model. (author). 22 refs, 3 figs

  20. Progress of design studies on an LHD-type steady-state reactor

    International Nuclear Information System (INIS)

    Motojima, O.; Komori, A.; Sagara, A.

    2007-01-01

    Helical Heliotrons such as the Large Helical Device (LHD) and Stellarators (H and S systems) have a high potential to realize a current-less steady-state and stable magnetic fusion energy reactor as an alternative to the tokamak DEMO-reactor. H and S systems ideally have an intrinsic property of Q=infinite. Here it is very important to remember that the understanding of the physics of 3-D toroidal magnetic confinement system is naturally extended to tokamak systems. The physics is universal among these two types of systems and the technology is common. We present our recent results from LHD experiments and reactor studies of a next generation LHD-type DEMO Reactor called FFHR. (1) Development of 3-D superconducting (SC) coil technology Due to the successful results of the LHD construction from 1990 to 2007, and steady operation over 8 years from 1998 to 2007, more than 2,000 hrs/year at a high field of around 3 Tesla, we have a large enough data base to demonstrate that 3D coil technology has become the standard technology for a fusion energy reactor. LHD is the largest SC fusion device in the world, contributing to the development of the SC technology necessary for fusion research. The poloidal coils of LHD adopted a super critical forced flow cooling system and their dimensions are almost the same as the ITER toroidal coils. (2) Extended physics understanding of high beta, high T, high n τT , and steady state operation Recent LHD experiments have demonstrated the broad and advanced capabilities of LHD as a toroidal magnetic confinement device, which are highlighted by the achievements of 5% volume averaged beta, electron and ion temperatures of 10 keV, super high density of 10E15/cc and 1 hr discharges. We plan to increase the heating power up to 35 MW, and to use deuterium gas for confinement improvement. The n τT will be improved to the design nominal value of Q=0.3 within several years and ultimately would approach unity. The key issue for this is the

  1. Mass transport and the bootstrap current from Ohm's law in steady-state tokamaks

    International Nuclear Information System (INIS)

    Kim, J.-S.; Greene, J.M.

    1989-01-01

    The consequences of mass conservation and Ohm's law are examined for steady state Tokamaks. In a Tokamak, magnetofluid-dynamic waves rapidly equilibrate pressure and toroidal field along magnetic surfaces. As a result, the detailed current distribution is determined by the flux surface averaged poloidal and toroidal currents. The electrons that carry the plasma current are impeded in their motion by interactions with ions, which is resistivity and its generalizations, and by interactions with electrons, which is viscosity and its generalizations. The important viscous terms arise from the interaction between trapped and untrapped electrons, and so viscosity acts by impeding poloidal current. properly chosen, the results of neoclassical theory are The neoclassical viscous coefficient is here regarded as less likely than Spitzer conductivity to be experimentally relevant in a turbulent Tokamak. Thus, the toroidal Ohm's law is regarded as being more reliable than the poloidal Ohm's law. A combination of toroidal and poloidal Ohm's law, namely the component parallel to the magnetic field, eliminates the influence of plasma fueling, and directly relates the bootstrap current and the pressure gradient. The latter is the usual relation, but, since i

  2. Steady state technologies for tokamak based fusion neutron sources and hybrids

    International Nuclear Information System (INIS)

    Azizov, E.A.; Kuteev, B.V.

    2015-01-01

    Full text of publication follows. The development of demonstration fusion neutron sources for fusion nuclear science activity and hybrid applications has reached the stage of conceptual design on the basis of tokamak device in Russia. The conceptual design of FNS-ST has been completed in details (plasma current 1.5 MA, magnetic field 1.5 T, major radius 0.5 m, aspect ratio 1.67 and auxiliary heating power up to 15 MW) [1, 2]. A comparison of physical plasma parameters and economics for FNS-ST and a conventional tokamak FNS-CT (plasma current 1.5 MA, magnetic field 6.7 T, major radius 2.25 m, aspect ratio 3 and auxiliary heating power up to 30 MW) has been fulfilled [3]. This study suggested the feasibility to reach 1-20 MW of fusion power using these magnetic configuration options. Nevertheless, the efficiency of neutron production Q remains comparable for both due to the beam fusion input. The total ST-economics for the full project including operation and utilization costs is by a factor of 2 better than of CT. Zero [4] and one-dimensional [5] models have been developed and used in this system analysis. The characteristics of plasma confinement, stability and current drive in operation have been confirmed by numerous benchmarking simulations of modern experiments. Scenarios allowing us to reach and maintain steady state operation have been considered and optimized. The results of these studies will be presented. Prospective technical solutions for SSO-technology systems have been evaluated, and the choice of enabling technologies and materials of the basic FNS options has been made. A conceptual design of a thin-wall water cooled vacuum chamber for heat loadings up to 1.5 MW/m 2 has been fulfilled. The chamber consists of 2 mm Be tiles, pre-shaped CuCrZr 1 mm shell and 1 mm of stainless steel shell as a structural material. A concept of double-null divertor for FNS-ST has been offered that is capable to withstand heat fluxes up to 6 MW/m 2 . Lithium dust

  3. Overview of steady-state tokamak operation and current drive experiments in TRIAM-1M

    International Nuclear Information System (INIS)

    Zushi, H.; Nakamura, K.; Hanada, K.

    2005-01-01

    Experiments aiming at 'day long operation at high performance' have been carried out. The record value of the discharge duration was updated to 5 h and 16 min. Steady-state tokamak operation (SSTO) is studied under the localized PWI conditions. The distributions of the heat load, the particle recycling flux and impurity source are investigated to understand the co-deposition and wall pumping. Formation and sustainment of an internal transport barrier ITB in enhanced current drive mode (ECD) has been investigated by controlling the lower hybrid driven current profile by changing the phase spectrum. An ITER relevant remote steering antenna for electron cyclotron wave ECW injection was installed and a relativistic Doppler resonance of the oblique propagating extraordinary wave with energetic electrons driven by lower hybrid waves was studied. (author)

  4. Recent progresses on high performance steady-state plasmas in the superconducting tokamak TRIAM-1M

    International Nuclear Information System (INIS)

    Itoh, Satoshi; Sato, Kohnosuke; Nakamura, Kazuo

    1999-01-01

    The overview of TRIAM-1M experiments is described. The up-to-date issues for steady-state operation are presented through the experience of the achievement of super ultra long tokamak discharges (SULD) sustained by lower hybrid current drive (LHCD) over 2 hours. The importance of the control of an initial phase of plasma, the avoidance of the concentration of huge heat load, the wall conditioning, and abrupt stop of the long discharges are proposed as the indispensable issues for the achievement of the steady-state operation of tokamak. A high ion temperature (HIT) discharge fully sustained by 2.45 GHz LHCD with both high ion temperature and steep temperature gradient is successfully demonstrated for longer than 1 min in the limiter configuration. The HIT discharges can be obtained in the narrow window of density and position. Moreover, the avoidance of the concentration of heat load on a limiter is the key point for the achievement and its long sustainment. As the effective thermal insulation between the wall and the plasma is improved on the single null configuration, HIT discharges with peak ion temperature > 5keV and steeper gradient up to 85 keV/m can be achieved by the exquisite control of density and position. The plasmas with high κ ∼1.5 can be also demonstrated for longer than 1 min. The current profile is also well-controlled for about 2 orders in magnitude longer than the current diffusion time using combined LHCD. The serious damage to the material of the first wall caused by energetic neutral particles produced via charge exchange process is also described. As the neutral particles cannot be affected by magnetic field, this damage by neutral particles must be avoided by the new technique. (author)

  5. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  6. Diagnostics and control for the steady state and pulsed tokamak DEMO

    Czech Academy of Sciences Publication Activity Database

    Orsitto, F.P.; Villari, R.; Moro, F.; Todd, T.N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; Rzadkiewicz, J.; Ďuran, Ivan; Tardocchi, M.; Gorini, G.; Morlock, C.; Federici, G.; Litnovsky, A.

    2016-01-01

    Roč. 56, č. 2 (2016), č. článku 026009. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : measurement systems, fusion reactor, fusion plasma diagnostics * fusion reactor * fusion plasma diagnostics * DEMO * Hall sensors * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/2/026009

  7. Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation

    Science.gov (United States)

    Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team

    2014-10-01

    It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER

  8. Overview of time synchronization system of steady state superconducting tokamak SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A., E-mail: aveg@ipr.res.in; Masand, H.; Dhongde, J.; Patel, K.; Mahajan, K.; Gulati, H.; Bhandarkar, M.; Chudasama, H.; Pradhan, S.

    2016-11-15

    The Steady State Superconducting Tokamak (SST-1) consists of many distributed and heterogeneous plant/experiment systems viz. Water-Cooling, Power Supplies, Cryogenics, Vacuum, Magnets, Auxiliary-Heating sources, Diagnostics, Front End Electronics (FEE) & Data Acquisition systems, having their own data acquisition & control systems and control & monitor by Central Control System (CCS) during the machine operation. With distributed computing and interdependent systems, it is essential that all the data/event acquired must be with disciplined & precise time-base, so as to make the co-relation of the data/event from various plant and experiment systems easy. Hence it is important to have accurate and precise Time Synchronization in place. The two systems fulfill the requirement of the time synchronization in SST-1. The VME based Timing System (TS) provides synchronization amongst various experiment systems during the plasma discharges and works as discharge control system (DCS) while the GPS based Time Synchronization System (TSS) caters the requirement of synchronization during the continuous operation of various plant systems by feeding a central clock to all the plant systems. This paper presents the Time Synchronization System of SST-1, the results of the integrated testing and engineering validation with various SST-1 subsystems.

  9. Recent developments towards steady state physics and technology of tokamaks in Cadarache

    International Nuclear Information System (INIS)

    Jacquinot, J.G.

    2002-01-01

    Recently, Tore Supra has undergone a total change of internal components in order to upgrade the heat extraction capability to 25 MW for 1000 s, and address long pulse operation of a tokamak at a level of power density owing through the separatrix relevant for next step. The present paper will both give an overview of the experimental results obtained during the last campaigns and highlight the related technology developments: industrial realisation and tests with plasma of about 600 actively cooled plasma limiter components, new experimental results concerning heating and current drive systems (ECRH, ICRH, LHCD), injection of matter for long pulses (supersonic injection, high repetition rate pellet injection), stability and control of high confinement steady-state discharges sustained by the LH wave, theoretical and experimental investigations of electron heat transport. Highlights of technology developments directly applicable to ITER are also presented. Finally, a brief account is given of the European studies for validating Cadarache as a possible site for ITER, concluding that all ITER technical site requests are fully met. (author)

  10. Current drive efficiency requirements for an attractive steady-state reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tonon, G

    1994-12-31

    The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs.

  11. Current drive efficiency requirements for an attractive steady-state reactor

    International Nuclear Information System (INIS)

    Tonon, G.

    1994-01-01

    The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs

  12. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    International Nuclear Information System (INIS)

    Villar Colome, J.

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  13. Study of heat and synchrotron radiation transport in fusion tokamak plasmas. Application to the modelling of steady state and fast burn termination scenarios for the international experimental fusion reactor ITER

    Energy Technology Data Exchange (ETDEWEB)

    Villar Colome, J. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee]|[Universitat Polytechnica de Catalunya (Spain)

    1997-12-01

    The aim of this thesis is to give a global scope of the problem of energy transport within a thermonuclear plasma in the context of its power balance and the implications when modelling ITER operating scenarios. This is made in two phases. First, by furnishing new elements to the existing models of heat and synchrotron radiation transport in a thermonuclear plasma. Second, by applying the improved models to plasma engineering studies of ITER operating scenarios. The scenarios modelled are the steady state operating point and the transient that appears to have the biggest technological implications: the fast burn termination. The conduction-convection losses are modelled through the energy confinement time. This parameter is empirically obtained from the existing experimental data, since the underlying mechanisms are not well understood. In chapter 2 an expression for the energy confinement time is semi-analytically deduced from the Rebut-Lallia-Watkins local transport model. The current estimates of the synchrotron radiation losses are made with expressions of the dimensionless transparency factor deduced from a 0-dimensional cylindrical model proposed by Trubnikov in 1979. In chapter 3 realistic hypothesis for the cases of cylindrical and toroidal geometry are included in the model to deduce compact explicit expressions for the fast numerical computation of the synchrotron radiation losses. Numerical applications are provided for the cylindrical case. The results are checked against the existing models. In chapter 4, the nominal operating point of ITER and its thermal stability is studied by means of a 0-dimensional burn model of the thermonuclear plasma in ignition. This model is deduced by the elements furnished by the plasma particle and power balance. Possible heat overloading on the plasma facing components may provoke severe structural damage, implying potential safety problems related to tritium inventory and metal activation. In chapter 5, the assessment

  14. Overview of JT-60U progress towards steady-state advanced tokamak

    International Nuclear Information System (INIS)

    Ide, S.

    2005-01-01

    Recent experimental results on steady state advanced tokamak (AT) research on JT-60U are presented with emphasis on longer time scale in comparison with characteristics time scales in plasmas. Towards this, modification on control in operation, heating and diagnostics systems have been done. As the results, ∼ 60 s I p flat top and an ∼ 30 s H-mode are obtained. The long pulse modification has opened a door into a new domain for JT-60U. The high normalized beta (β N ) of 2.3 is maintained for 22.3 s and 2.5 for 16.5 s in a high β p H-mode plasma. A standard ELMy H-mode plasma is also extended and change in wall recycling in such a longer time scale has been unveiled. Development and investigation of plasmas relevant to AT operation has been continued in former 15 s discharges as well in which higherNB power (≤ 10 s) is available. Higher β N ∼ 3 is maintained for 6.2 s in high β p H-mode plasmas. High bootstrap current fraction (f BS ) of ∼ 75% is sustained for 7.4 s in an RS plasma. On NTM suppression by localized ECCD, ECRF injection preceding the mode saturation is found to be more effective to suppress the mode with less power compared to the injection after the mode saturated. The domain of the NTM suppression experiments is extended to the high β N regime, and effectiveness of m/n=3/2 mode suppression by ECCD is demonstrated at β N ∼ 2.5-3. Genuine center-solenoid less tokamak plasma start up is demonstrated. In a current hole region, it is shown that no scheme drives a current in any direction. Detailed measurement in both spatial and energy spaces of energetic ions showed dynamic change in the energetic ion profile at collective instabilities. Impact of toroidal plasma rotation on ELM behaviors is clarified in grassy ELM and QH domains. (author)

  15. Advanced control scenario of high-performance steady-state operation for JT-60 superconducting tokamak

    International Nuclear Information System (INIS)

    Tamai, H.; Kurita, G.; Matsukawa, M.; Urata, K.; Sakurai, S.; Tsuchiya, K.; Morioka, A.; Miura, Y.M.; Kizu, K.; Kamada, Y.; Sakasai, A.; Ishida, S.

    2004-01-01

    Plasma control on high-β N steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-β N exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected. (authors)

  16. Overview of data acquisition and central control system of steady state superconducting Tokamak (SST-1)

    International Nuclear Information System (INIS)

    Pradhan, S.; Mahajan, K.; Gulati, H.K.; Sharma, M.; Kumar, A.; Patel, K.; Masand, H.; Mansuri, I.; Dhongde, J.; Bhandarkar, M.; Chudasama, H.

    2016-01-01

    Highlights: • The paper gives overview on SST-1 data acquisition and central control system and future upgrade plans. • The lossless PXI based data acquisition of SST-1 is capable of acquiring around 130 channels with sampling frequency ranging from 10 KHz to 1 MHz sampling frequency. • Design, architecture and technologies used for central control system (CCS) of SST-1. • Functions performed by CCS. - Abstract: Steady State Superconducting Tokamak (SST-1) has been commissioned successfully and has been carrying out limiter assisted ohmic plasma experiments since the beginning of 2014 achieving a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼500 ms. In near future, SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1 s. The data acquisition and central control system (CCS) for SST-1 are distributed, modular, hierarchical and scalable in nature The CCS has been indigenously designed, developed, implemented, tested and validated for the operation of SST-1. The CCS has been built using well proven technologies like Redhat Linux, vxWorks RTOS for deterministic control, FPGA based hardware implementation, Ethernet, fiber optics backbone for network, DSP for real-time computation & Reflective memory for high-speed data transfer etc. CCS in SST-1 controls & monitors various heterogeneous SST-1 subsystems dispersed in the same campus. The CCS consists of machine control system, basic plasma control system, GPS time synchronization system, storage area network (SAN) for centralize data storage, SST-1 networking system, real-time networks, SST-1 control room infrastructure and many other supportive systems. Machine Control System (MCS) is a multithreaded event driven system running on Linux based servers, where each thread of the software communicates to a unique subsystem for monitoring and control from SST-1 central control room through network programming. The CCS hardware

  17. Overview of data acquisition and central control system of steady state superconducting Tokamak (SST-1)

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, S., E-mail: pradhan@ipr.res.in; Mahajan, K.; Gulati, H.K.; Sharma, M.; Kumar, A.; Patel, K.; Masand, H.; Mansuri, I.; Dhongde, J.; Bhandarkar, M.; Chudasama, H.

    2016-11-15

    Highlights: • The paper gives overview on SST-1 data acquisition and central control system and future upgrade plans. • The lossless PXI based data acquisition of SST-1 is capable of acquiring around 130 channels with sampling frequency ranging from 10 KHz to 1 MHz sampling frequency. • Design, architecture and technologies used for central control system (CCS) of SST-1. • Functions performed by CCS. - Abstract: Steady State Superconducting Tokamak (SST-1) has been commissioned successfully and has been carrying out limiter assisted ohmic plasma experiments since the beginning of 2014 achieving a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼500 ms. In near future, SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1 s. The data acquisition and central control system (CCS) for SST-1 are distributed, modular, hierarchical and scalable in nature The CCS has been indigenously designed, developed, implemented, tested and validated for the operation of SST-1. The CCS has been built using well proven technologies like Redhat Linux, vxWorks RTOS for deterministic control, FPGA based hardware implementation, Ethernet, fiber optics backbone for network, DSP for real-time computation & Reflective memory for high-speed data transfer etc. CCS in SST-1 controls & monitors various heterogeneous SST-1 subsystems dispersed in the same campus. The CCS consists of machine control system, basic plasma control system, GPS time synchronization system, storage area network (SAN) for centralize data storage, SST-1 networking system, real-time networks, SST-1 control room infrastructure and many other supportive systems. Machine Control System (MCS) is a multithreaded event driven system running on Linux based servers, where each thread of the software communicates to a unique subsystem for monitoring and control from SST-1 central control room through network programming. The CCS hardware

  18. Status of fusion technology development in JAERI stressing steady-state operation for future reactors

    International Nuclear Information System (INIS)

    Matsuda, Shinzaburo

    2000-01-01

    This paper reports on the progress of the fusion reactor technologies developed at the Japan Atomic Energy Research Institute (JAERI) and expected to lead to a future steady state operation reactor. In particular, superconducting coil technology for plasma confinement, NBI and RF systems technology for plasma control and current drive, fueling and pumping systems technology for particle control, heat removal technology, and development of long life materials are highlighted as the important key elements for the future steady state operation. It will be discussed how these key technologies have already been developed by the ITER (International Thermonuclear Experimental Reactor) technology R and D as well as by the Japanese domestic program, and which technologies are planned for the near future

  19. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma

  20. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Bers, A.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma

  1. Steady-state and loss-of-pumping accident analyses of the Savannah River new production reactor representative design

    International Nuclear Information System (INIS)

    Pryor, R.J.; Maloney, K.J.

    1990-10-01

    This document contains the steady-state and loss-of-pumping accident analysis of the representative design for the Savannah River heavy water new production reactor. A description of the reactor system and computer input model, the results of the steady-state analysis, and the results of four loss-of-pumping accident calculations are presented. 5 refs., 37 figs., 4 tabs

  2. The primary results for the mixed carbon material used for high flux steady-state tokamak operation in China

    International Nuclear Information System (INIS)

    Guo, Q.G.; Li, J.G.; Zhai, G.T.; Liu, L.; Song, J.R.; Zhang, L.F.; He, Y.X.; Chen, J.L.

    2001-01-01

    Several types of carbon mixed materials have been developed in China to be used for high flux steady-state tokamak operation. Performance evaluation of these materials is necessary to determine their applicability as PFCs for high flux steady state. This paper describes the primary results of carbon mixed materials and the effects of dopants on properties are primarily discussed. Test results reveal that bulk boronized graphite has excellent physical and mechanical properties while their thermal conductivity is no more than 73 W/m K due to the formation of a uniform boron-carbon solid solution. In case of multi-element doped graphite, titanium dopant or a decreased boron content is favorable to enhance thermal conductivity. A kind of doped graphite has been developed with thermal conductivity as high as 278 W/m K by optimizing the compositions. Correlations among compositions, microstructure and properties of such doped graphite are discussed

  3. Steady state characteristics of acclimated hydrogenotrophic methanogens on inorganic substrate in continuous chemostat reactors.

    Science.gov (United States)

    Ako, Olga Y; Kitamura, Y; Intabon, K; Satake, T

    2008-09-01

    A Monod model has been used to describe the steady state characteristics of the acclimated mesophilic hydrogenotrophic methanogens in experimental chemostat reactors. The bacteria were fed with mineral salts and specific trace metals and a H(2)/CO(2) supply was used as a single limited substrate. Under steady state conditions, the growth yield (Y(CH4)) reached 11.66 g cells per mmol of H(2)/CO(2) consumed. The daily cells generation average was 5.67 x 10(11), 5.25 x 10(11), 4.2 x 10(11) and 2.1 x 10(11) cells/l-culture for the dilutions 0.071/d, 0.083/d, 0.1/d and 0.125/d, respectively. The maximum specific growth rate (mu(max)) and the Monod half-saturation coefficient (K(S)) were 0.15/d and 0.82 g/L, respectively. Using these results, the reactor performance was simulated. During the steady state, the simulation predicts the dependence of the H(2)/CO(2) concentration (S) and the cell concentration (X) on the dilution rate. The model fitted the experimental data well and was able to yield a maximum methanogenic activity of 0.24 L CH(4)/g VSS.d. The dilution rate was estimated to be 0.1/d. At the dilution rate of 0.14/d, the exponential cells washout was achieved.

  4. A method for statistical steady state thermal analysis of reactor cores

    International Nuclear Information System (INIS)

    Whetton, P.A.

    1981-01-01

    In a previous publication the author presented a method for undertaking statistical steady state thermal analyses of reactor cores. The present paper extends the technique to an assessment of confidence limits for the resulting probability functions which define the probability that a given thermal response value will be exceeded in a reactor core. Establishing such confidence limits is considered an integral part of any statistical thermal analysis and essential if such analysis are to be considered in any regulatory process. In certain applications the use of a best estimate probability function may be justifiable but it is recognised that a demonstrably conservative probability function is required for any regulatory considerations. (orig.)

  5. Divertor modeling for the design of the National Centralized Tokamak with high beta steady-state plasmas

    International Nuclear Information System (INIS)

    Kawashima, H.; Sakurai, S.; Shimizu, K.; Takizuka, T.; Tamai, H.; Matsukawa, M.; Fujita, T.; Miura, Y.

    2006-01-01

    The modification of the JT-60U to a fully superconducting coil tokamak, National Centralized Tokamak (NCT) facility, has been programmed to accomplish the high beta steady-state plasma research. A 2D divertor simulation code, SOLDOR/NEUT2D, is applied to the construction of a database for optimum design of the divertor. A semi-closed divertor configuration with vertical target is adopted as the first conceptual divertor design on NCT. With an anticipated SOL power flux of 12 MW at the high beta steady-state operation, the peak heat load on the divertor target is evaluated to be ∼16 MW/m 2 . Effects of divertor geometry and intense gas puffing are demonstrated with a view to reduce the heat load. For the simulation of divertor pumping, we find that the pumping efficiency increases by a factor of 2∼3 by narrowing the divertor gap from 20 to 5 cm. An attractive feature in reducing the heat load and improving the particle controllability has been obtained for a new divertor design due to a recent progress in NCT design

  6. Calculations of steady-state and reactivity insertion transients in a research reactor simulating the PWR

    International Nuclear Information System (INIS)

    Mladin, Mirea; Mladin, Daniela; Prodea, Ilie

    2010-01-01

    In 2008, IAEA started a Coordinated Research Project for benchmarking the thermalhydraulic and neutronic computer codes for research reactor analysis against the experimental data. In this framework, for the first year of research contract, the Institute for Nuclear Research engaged in steady-state analysis of SPERT-III reactor and also in the simulation of the reactivity insertion tests performed in this reactor during mid sixties. In the first part, the paper describes a Monte Carlo input model of the oxide core selected for investigation and the results of the steady-state neutronic calculations with respect to hot and cold core reactivity excess and control rods worth. Also, prompt neutron life and reactivity feed-back coefficients were examined. These results were compared with the data provided in the reactor specification document concerning neutronic design calculated data. The second part of the paper is dedicated to calculation of the reactivity insertion transients with RELAP5 and CATHARE2 thermalhydraulic codes, both including point reactor kinetics models, and to comparison with experimental data. (authors)

  7. Economic comparison of MHD equilibrium options for advanced steady state tokamak power plants

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kessel, C.E.; Jardin, S.C.; Krakowski, R.A.; Bathke, C.G.; Mau, T.K.; Najmabadi, F.

    1998-01-01

    Progress in theory and in tokamak experiments leads to questions of the optimal development path for commercial tokamak power plants. The economic prospects of future designs are compared for several tokamak operating modes: (high poloidal beta) first stability, second stability and reverse shear. Using a simplified economic model and selecting uniform engineering performance parameters, this comparison emphasizes the different physics characteristics - stability and non- inductive current drive - of the various equilibria. The reverse shear mode of operation is shown to offer the lowest cost of electricity for future power plants. (author)

  8. Characterization of the TRIGA Mark II reactor full-power steady state

    Energy Technology Data Exchange (ETDEWEB)

    Cammi, Antonio, E-mail: antonio.cammi@polimi.it [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Zanetti, Matteo [Politecnico di Milano – Department of Energy, CeSNEF (Enrico Fermi Center for Nuclear Studies), via La Masa 34, 20156 Milano (Italy); Chiesa, Davide; Clemenza, Massimiliano; Pozzi, Stefano; Previtali, Ezio; Sisti, Monica [University of Milano-Bicocca, Physics Department “G. Occhialini” and INFN Section, Piazza dell’Ateneo Nuovo, 20126 Milan (Italy); Magrotti, Giovanni; Prata, Michele; Salvini, Andrea [University of Pavia, Applied Nuclear Energy Laboratory (L.E.N.A.), Via Gaspare Aselli 41, 27100 Pavia (Italy)

    2016-04-15

    Highlights: • Full-power steady state characterization of the TRIGA Mark II reactor. • Monte Carlo and Multiphysics simulation of the TRIGA Mark II reactor. • Sub-cooled boiling effects in the TRIGA Mark II reactor. • Thermal feedback effects in the TRIGA Mark II reactor. • Experimental data based validation. - Abstract: In this paper, the characterization of the full-power steady state of the TRIGA Mark II nuclear reactor at the University of Pavia is achieved by coupling the Monte Carlo (MC) simulation for neutronics with the “Multiphysics” model for thermal-hydraulics. Neutronic analyses have been carried out with a MCNP5 based MC model of the entire reactor system, already validated in fresh fuel and zero-power configurations (in which thermal effects are negligible) and using all available experimental data as a benchmark. In order to describe the full-power reactor configuration, the temperature distribution in the core must be established. To evaluate this, a thermal-hydraulic model has been developed, using the power distribution results from the MC simulation as input. The thermal-hydraulic model is focused on the core active region and takes into account sub-cooled boiling effects present at full reactor power. The obtained temperature distribution is then entered into the MC model and a benchmark analysis is carried out to validate the model in fresh fuel and full-power configurations. An acceptable correspondence between experimental data and simulation results concerning full-power reactor criticality proves the reliability of the adopted methodology of analysis, both from the perspective of neutronics and thermal-hydraulics.

  9. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  10. ACHIEVING AND SUSTAINING STEADY-STATE ADVANCED TOKAMAK CONDITIONS ON DIII-D

    International Nuclear Information System (INIS)

    WADE, MR; MURAKAMI, M; BRENNAN, DP; CASPER, TA; FERRON, JR; GAROFALO, AM; GREENFIELD, CM; HYATT, AW; JAYAKUMAR, R; KINSEY, JE; LAHAYE, RJ; LAO, LL; LAZARUS, EA; LOHR, J; LUCE, TC; PETTY, CC; POLITZER, PA; PRATER, R; STRAIT, EJ; TURNBULL, AD; WATKINS, JG; WEST, WP

    2002-01-01

    Recent experiments on the DIII-D tokamak have demonstrated the feasibility of sustaining advanced tokamak conditions that combine high fusion power density (β > 4%), high bootstrap current fraction (f BS ∼ 65%), and high non-inductive current fractions (f NI ∼ 85%) for several energy confinement times. The duration of such conditions is limited only by resistive relaxation of the current density profile. Modeling studies indicate that the application of off-axis ECCD will be able to maintain a favorable current density profile for several seconds

  11. Achieving and sustaining steady-state advanced tokamak conditions on DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Murakami, M.; Brennan, D.P.

    2003-01-01

    Recent experiments on the DIII-D tokamak have demonstrated the feasibility of sustaining advanced tokamak conditions that combine high fusion power density (β > 4%), high bootstrap current fraction (f BS ∼ 65%), and high non-inductive current fractions (f NI ∼85%) for several energy confinement times. The duration of such conditions is limited only by resistive relaxation of the current density profile. Modeling studies indicate that the application of off-axis ECCD will be able to maintain a favorable current density profile for several seconds. (author)

  12. Steady-state and transient simulations of gas cooled reactor with the computer code CATHARE

    International Nuclear Information System (INIS)

    Tauveron, N.; Saez, M.; Marchand, M.; Chataing, T.; Geffraye, G.; Cherel, J. M.

    2003-01-01

    This work concerns the design and safety analysis of Gas Cooled Reactors. The CATHARE code is used to test the design and safety of two different concepts, a High Temperature Gas Reactor concept (HTGR) and a Gas Fast Reactor concept (GFR). Relative to the HTGR concept, three transient simulations are performed and described in this paper: loss of electrical load without turbomachine trip, 10 inch cold duct break, 10 inch cold duct break combined with a tube rupture of a cooling exchanger. A second step consists in modelling a GFR concept. A nominal steady state situation at a power of 600 MW is obtained and first transient simulations are carried out to study decay heat removal situations after primary loop depressurisation

  13. Characteristics of steady-state plasma flow in the tokamak limiter scrape-off layer

    International Nuclear Information System (INIS)

    Petrov, V.G.

    1984-01-01

    Steady state plasma flow in the scrape-off layer of a toroidal limiter is discussed. The force balance along the torus minor radius is taken into account, from which follows that the plasma pressure gradient is balanced by the ponderomotive force (1/c) j-vectorxB-vector, which arises in the presence of a current density component perpendicular to the magnetic field. The limiter has an important effect on the electric current flow in the scrape-off layer. It is shown that the electric potential and plasma density values differ from one side of the limiter to the other; this leads to plasma drift along the minor radius. The characteristic length of change in the plasma density is found to be of the order of the ion cyclotron radius calculated for a poloidal magnetic field. (author)

  14. Major progress on tore supra toward steady state operation of tokamaks

    International Nuclear Information System (INIS)

    Saoutic, Y.

    2003-01-01

    During winter 2000-2001, a major upgrade of the internal components of Tore Supra has been completed that increased the heat extraction capability to 25 MW in steady state. Operating Tore Supra in this new configuration has produced a wealth of new results. The highlights of the 2002 long duration discharges campaign are: 4 minutes 25 seconds long discharges with an integrated energy of 0.75 GJ, which is three time higher than the old Tore Supra world record; recharge of the primary transformer by Lower Hybrid Current Drive (LHCD) for about 1 minute; 4 minutes long LHCD pulses; 1 minute long Ion Cyclotron Resonant Heating (ICRH) pulse (0.11 GJ of ICRH injected energy). Beyond the quantitative step, significant qualitative progress in the steady state nature of the discharge has been accomplished: contrary to the situation in the old Tore Supra configuration, the plasma density is perfectly controlled by active pumping over the overall shot duration. The duration of Tore Supra discharges is sufficient to allow the complete diffusion of the resistive current. Surprising new physics is revealed in such discharges when approaching zero loop voltage. Slow central electron temperature oscillations have been observed in a variety of situations. Such oscillations are not likely to be linked to any MHD instabilities and probably results from an interplay between current profile shape, LHCD power deposition and transport. Analysis of the temperature gradient in the core region shows a very interesting behaviour and the normalised temperature gradient length is compared to the critical thresholds. Finally, the performance of heating and current drive systems and the observations made of the interior of Tore Supra after the long duration discharges campaign are reported. (author)

  15. Parametric study of the primary and secondary systems of the CAREM-25 reactor on steady state

    International Nuclear Information System (INIS)

    Halpert, Silvia; Vazquez, Luis

    2000-01-01

    In the CAREM-25 reactor the primary coolant flows by natural convection that's why the flow is established when the balance between the buoyancy force and friction pressure drop through circuit is obtained. This paper presents a parametric study on primary and secondary systems of the reactor on steady state, for different values of some thermohydraulics parameters: safety factor on friction loss pressure calculations (f), steam generator heat transfer area (A T ) and primary pressure (P P ). The ESCAREM 2.08 thermohydraulic code, which calculates the primary system behavior for steady state conditions, was used for this study. The conclusions of this study are: -) There was a variation of the 15% on the primary coolant flow when the safety factor was changed a 50 %; -) The primary and secondary systems conditions do not change when the power is less than 100 MW; -) Between 100 and 110 MW the decrease of the heat transfer area produces an important change on the secondary systems conditions: the outlet steam generator temperature decrease and there is an important rice in the flow; -) The primary pressure could decrease up to 11.4 MPa without violating turbine requirements. (author)

  16. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures.

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R; Crowhurst, Jonathan C; Weisz, David G; Zaug, Joseph M; Dai, Zurong; Radousky, Harry B; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L; Cappelli, Mark A; Rose, Timothy P

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  17. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    Science.gov (United States)

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  18. Small-angle scattering at a pulsed neutron source: comparison with a steady-state reactor

    Energy Technology Data Exchange (ETDEWEB)

    Borso, C S; Carpenter, J M; Williamson, F S; Holmblad, G L; Mueller, M H; Faber, J Jr; Epperson, J E; Danyluk, S S [Argonne National Lab., IL (USA)

    1982-08-01

    A time-of-flight small-angle diffractometer employing seven tapered collimator elements and a two-dimensional gas proportional counter was successfully utilized to collect small-angle scattering data from a solution sample of the lipid salt cetylpyridinium chloride, C/sub 21/H/sub 38/N/sup +/.Cl/sup -/, at the Argonne National Laboratory prototype pulsed spallation neutron source, ZING-P'. Comparison of the small-angle scattering observed from the same compound at the University of Missouri Research Reactor corroborated the ZING-P' results. The results are used to compare the neutron flux available from the ZING-P' source relative to the well characterized University of Missouri source. Calculations based on experimentally determined parameters indicated the time-averaged rate of detected neutrons at the ZING-P' pulsed spallation source to have been at least 33% higher than the steady-state count rate from the same sample. Differences between time-of-flight techniques and conventional steady-state techniques are discussed.

  19. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  20. Thermal Hydraulic Fortran Program for Steady State Calculations of Plate Type Fuel Research Reactors

    International Nuclear Information System (INIS)

    Khedr, H.

    2008-01-01

    The safety assessment of Research and Power Reactors is a continuous process over their life and that requires verified and validated codes. Power Reactor codes all over the world are well established and qualified against a real measuring data and qualified experimental facilities. These codes are usually sophisticated, require special skills and consume much more running time. On the other hand, most of the Research Reactor codes still requiring more data for validation and qualification. Therefore it is benefit for a regulatory body and the companies working in the area of Research Reactor assessment and design to have their own program that give them a quick judgment. The present paper introduces a simple one dimensional Fortran program called THDSN for steady state best estimate Thermal Hydraulic (TH) calculations of plate type fuel RRs. Beside calculating the fuel and coolant temperature distribution and pressure gradient in an average and hot channel the program calculates the safety limits and margins against the critical phenomena encountered in RR such as the burnout heat flux and the onset of flow instability. Well known TH correlations for calculating the safety parameters are used. THDSN program is verified by comparing its results for 2 and 10 MW benchmark reactors with that published in IAEA publications and good agreement is found. Also the program results are compared with those published for other programs such as PARET and TERMIC. An extension for this program is underway to cover the transient TH calculations

  1. Identification of Plasma Parameters and Optimization of Magnetic Sensors in the Superconducting Steady-State Tokamak-1 Using Neural Networks

    International Nuclear Information System (INIS)

    Sengupta, A.; Ranjan, P.

    2001-01-01

    In this paper, we examine the possibility of using a multilayered feedforward neural network to extract tokamak plasma parameters from magnetic measurements as an improvement over the traditional methodology of function parametrization. It is also used to optimize the number and locations of the magnetic diagnostics designed for the tokamak. This work has been undertaken with the specific purpose of application of the neural network technique to the newly designed (and currently under fabrication) Superconducting Steady-State Tokamak-1 (SST-1). The magnetic measurements will be utilized to achieve real-time control of plasma shape, position, and some global profiles. A trained neural network is tested, and the results of parameter identification are compared with function parametrization. Both techniques appear well suited for the purpose, but a definite improvement with neural networks is observed. Although simulated measurements are used in this work, confidence regarding the network performance with actual experimental data is ensured by testing the network's noise tolerance with Gaussian noise of up to 10%. Finally, three possible methods of ranking the diagnostics in decreasing order of importance are suggested, and the neural network is used to optimize the number and locations of the magnetic sensors designed for SST-1. The results from the three methods are compared with one another and also with function parametrization. Magnetic probes within the plasma-facing side of the outboard limiter have been ranked high. Function parametrization and one of the neural network methods show a distinct tendency to favor the probes in the remote regions of the vacuum vessel, proving the importance of redundancy. Fault tolerance of the optimized network is tested. The results obtained should, in the long run, help in the decision regarding the final effective set of magnetic diagnostics to be used in SST-1 for reconstruction of the control parameters

  2. Steady-state operation of tokamaks: Key physics and technology developments on Tore Supra

    International Nuclear Information System (INIS)

    Jacquinot, J.

    2005-01-01

    Important technological and physics issues related to long pulse operation required for a reactor are now being addressed in Tore Supra. experimental results in conditions where all the plasma facing components are actively cooled during pulses exceeding six minutes. Important physics issues related to continuous operation are observed in non inductively driven plasmas. (author)

  3. Vibration analysis of primary inlet pipe line during steady state and transient conditions of Pakistan research reactor-1

    International Nuclear Information System (INIS)

    Ayazuddin, S.K.; Qureshi, A.A.; Hayat, T.

    1997-11-01

    The Primary Water Inlet Pipeline (PW-IPL) is of stainless steel conveying demineralized water from hold-up tank to the reactor pool of Pakistan Research Reactor-1 (PARR-1). The section of the pipeline from heat exchangers to the valve pit is hanger supported in the pump room and the rest of the section from valve pit to the reactor pool is embedded. The PW-IPL is subjected to steady state and transient vibrations. The reactor pumps, which drive the coolant through various circuits mainly contribute the steady state vibrations, while transient vibrations arise due to instant closure of the check valve (water hammer). The ASME Boiler and Pressure Vessel code provides data about the acceptable limits of stresses related to the primary static stress due to steady state vibrations. However, due to complexity in the pipe structure, stresses related to the transient vibrations are neglected in the code. In this report attempt has been made to analyzed both steady state and transient vibrations of PW-IPL of PARR-1. Since, both the steady state and transient vibrations affect the hanger-supported section of the PW-IPL, therefore, it was selected for vibration test measurements. In the analysis vibration data was compared with the allowable limits and estimations of maximum pressure build-up, eflection, natural frequency, tensile and shear load on hanger support, and the ratio of maximum combine stress to the allowable load were made. (author)

  4. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  5. Coupled MCNP - SAS-SFR calculations for sodium fast reactor core at steady-state - 15460

    International Nuclear Information System (INIS)

    Ponomarev, A.; Travleev, A.; Pfrang, W.; Sanchez, V.

    2015-01-01

    The prediction of core parameters at steady state is the first step when studying core accident transient behaviour. At this step thermal hydraulics (TH) and core geometry parameters are calculated corresponding to initial operating conditions. In this study we present the coupling of the SAS-SFR code to the Monte-Carlo neutron transport code MCNP at steady state together with application to the European Sodium Fast Reactor (ESFR). The SAS-SFR code employs a multi-channel core representation where each channel represents subassemblies with similar power, thermal-hydraulics and pin mechanics conditions. For every axial node of every channel the individual geometry and material compositions parameters are calculated in accord with power and cooling conditions. This requires supplying the SAS-SFR-code with nodal power values which should be calculated by neutron physics code with given realistic core parameters. In the conventional approach the neutron physics model employs some core averaged TH and geometry data (fuel temperature, coolant density, core axial and radial expansion). In this study we organize a new approach coupling the MCNP neutron physics models and the SAS-SFR models, so that calculations of power can be improved by using distributed core parameters (TH and geometry) taken from SAS-SFR. The MCNP code is capable to describe cores with distributed TH parameters and even to model non-uniform axial expansion of fuel subassemblies. In this way, core TH and geometrical data calculated by SAS-SFR are taken into account accurately in the neutronics model. The coupling implementation is done by data exchange between two codes with help of processing routines managed by driver routine. Currently it is model-specific and realized for the ESFR 'Reference Oxide' core. The Beginning-Of-Life core state is considered with 10 channel representation for fuel subassemblies. For this model several sets of coupled calculations are performed, in which different

  6. New steady-state microbial community compositions and process performances in biogas reactors induced by temperature disturbances

    DEFF Research Database (Denmark)

    Luo, Gang; De Francisci, Davide; Kougias, Panagiotis

    2015-01-01

    that stochastic factors had a minor role in shaping the profile of the microbial community composition and activity in biogas reactors. On the contrary, temperature disturbance was found to play an important role in the microbial community composition as well as process performance for biogas reactors. Although...... three different temperature disturbances were applied to each biogas reactor, the increased methane yields (around 10% higher) and decreased volatile fatty acids (VFAs) concentrations at steady state were found in all three reactors after the temperature disturbances. After the temperature disturbance...... in shaping the profile of the microbial community composition and activity in biogas reactors. New steady-state microbial community profiles and reactor performances were observed in all the biogas reactors after the temperature disturbance....

  7. Physics design of an ultra-long pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Ogawa, Y.; Inoue, N.; Wang, J.; Yamamoto, T.; Okano, K.

    1993-01-01

    A pulsed tokamak reactor driven only by inductive current drive has recently revived, because the non-inductive current drive efficiency seems to be too low to realize a steady-state tokamak reactor with sufficiently high energy gain Q. Essential problems in pulsed operation mode is considered to be material fatigue due to cyclic operation and expensive energy storage system to keep continuous electric output during a dwell time. To overcome these problems, we have proposed an ultra-long pulsed tokamak reactor called IDLT (abbr. Inductively operated Day-Long Tokamak), which has the major and minor radii of 10 m and 1.87 m, respectively, sufficiently to ensure the burning period of about ten hours. Here we discuss physical features of inductively operated tokamak plasmas, employing the similar constraints with ITER CDA design for engineering issues. (author) 9 refs., 2 figs., 1 tab

  8. Radial profiles of hard X-ray emission during steady state current drive in the TRIAM-1M tokamak

    International Nuclear Information System (INIS)

    Nakamura, Y.; Takabatake, Y.; Jotaki, E.; Moriyama, S.; Nagao, A.; Nakamura, K.; Hiraki, N.; Itoh, S.

    1990-01-01

    The hard X-ray emission from the TRIAM-1M tokamak plasma during steady state lower hybrid current drive with a discharge duration of a few minutes was measured with sodium iodide scintillation spectrometers. The radial profiles of the X-ray emission were also measured and indicate that, in the low density regime (n e =(1-3)x10 12 cm -3 ), the current carrying high energy electrons are mainly in the inner region of the plasma column and their radial profile remains unchanged during current drive. On the other hand, high density discharges (n e =(3-6)x10 12 cm -3 ) are always accompanied by an abrupt drop of the plasma current, and the X-ray emission profile changes from peaked to broad. This change can be attributed to the conditions of wave accessibility. As the electron density increases, the accessibility of the plasma to lower hybrid waves with low values of the parallel wave number n parallel is significantly reduced and high energy electrons resonating with the waves are produced at the plasma periphery. Interaction of these electrons with the limiters causes an increase of the electron density in this region; waves with low n parallel then become completely excluded from the inner part of the plasma column. This interpretation is supported by measurements of the density profile and impurity radiation, and has been confirmed in an investigation of discharges with additional gas puffing. (author). 17 refs, 21 figs

  9. A method for statistical steady state thermal analysis of reactor cores

    International Nuclear Information System (INIS)

    Whetton, P.A.

    1980-01-01

    This paper presents a method for performing a statistical steady state thermal analysis of a reactor core. The technique is only outlined here since detailed thermal equations are dependent on the core geometry. The method has been applied to a pressurised water reactor core and the results are presented for illustration purposes. Random hypothetical cores are generated using the Monte-Carlo method. The technique shows that by splitting the parameters into two types, denoted core-wise and in-core, the Monte Carlo method may be used inexpensively. The idea of using extremal statistics to characterise the low probability events (i.e. the tails of a distribution) is introduced together with a method of forming the final probability distribution. After establishing an acceptable probability of exceeding a thermal design criterion, the final probability distribution may be used to determine the corresponding thermal response value. If statistical and deterministic (i.e. conservative) thermal response values are compared, information on the degree of pessimism in the deterministic method of analysis may be inferred and the restrictive performance limitations imposed by this method relieved. (orig.)

  10. Pellet acceleration studies relating to the refuelling of a steady-state fusion reactor

    International Nuclear Information System (INIS)

    Dimock, D.; Jensen, K.; Jensen, V.O.; Joergensen, L.W.; Pecseli, H.L.; Soerensen, H.; Oester, F.

    1975-11-01

    Several methods for refuelling a steady state-fusion reactor have been proposed, and the pellet method seems advantageous if the pellet can be accelerated to the necessary velocity. A study group was formed to analyze this acceleration problem. Two pellet velocity values were considered: 10 4 m/s and 300 m/s. A pellet velocity of 10 4 m/s may be suitable in the case of a reactor, whereas 300 m/s is believed to be a reasonable velocity at which to perform realistic ablation experiments in the near future. A pneumatic acceleration method was found promising. The pressure is either supplied separately or by evaporation of a part of the pellet. In the latter case, a spark behind the pellet should provide the evoporation and the necessary heating of the driving gas. A preliminary test at room temperature with pellets made of beeswax (the density being ten times that of solid hydrogen, and plastic properties similar to those of solid hydrogen) resulted in a pellet velocity of 100 m/s at a modest value of the energy supplied to the spark. (Auth.)

  11. HESTER: a hot-electron superconducting tokamak experimental reactor at M.I.T

    International Nuclear Information System (INIS)

    Schultz, J.H.; Montgomery, D.B.

    1983-04-01

    HESTER is an experimental tokamak, designed to resolve many of the central questions in the tokamak development program in the 1980's. It combines several unique features with new perspectives on the other major tokamak experiments scheduled for the next decade. The overall objectives of HESTER, in rough order of their presently perceived importance, are the achievement of reactor-like wall-loadings and plasma parameters for long pulse periods, determination of a good, reactor-relevant method of steady-state or very long pulse tokamak current drive, duplication of the planned very high temperature neutral injection experiments using only radio frequency heating, a demonstration of true steady-state tokamak operation, integration of a high-performance superconducting magnet system into a tokamak experiment, determination of the best methods of long term impurity control, and studies of transport and pressure limits in high field, high aspect ratio tokamak plasmas. These objectives are described

  12. TRANP - a computer code for digital simulation of steady - state and transient behavior of a pressurizer water reactor primary circuit

    International Nuclear Information System (INIS)

    Chalhoub, E.S.

    1980-09-01

    A digital computer code TRANP was developed to simulate the steady-state and transient behavior of a pressurizer water reactor primary circuit. The development of this code was based on the combining of three codes already developed for the simulation of a PWR core, a pressurizer, a steam generator and a main coolant pump, representing the primary circuit components. (Author) [pt

  13. The behaviour of impurities in a steady-state DT gas-blanket reactor

    International Nuclear Information System (INIS)

    Markvoort, J.A.

    1975-11-01

    A four-fluid model of a cylindrical steady-state DT gas-blanket reactor is analysed. The four fluids are electrons, deuterium-tritium, helium and a high -Z impurity. The behaviour of the plasma is described by the multifluid MHD-equations which are numerically solved with the aid of a Runge Kutta method. Whether impurities tend to concentrate on the axis is found to depend on how, in the collision term, the Nernst effect is taken into account. In order to show the influence of the Nernst terms arising from electron-ion collisions and the Nernst terms due to ion-ion collisions separately, the thermal force is dealt with in two ways. In model A, only the contribution from electron-ion collisions was considered. The computer calculations show that the impurities have their maximum concentration on the axis. A theoretical analysis explains this result. In model B, which is more realistic, these ion-ion collisions are included. The computer calculations as well as the theoretical analysis show that the influence of the thermoforce due to ion-ion collisions on the density profiles dominates over the force due to electron collisions, and lead to a minimum in the impurity density on the axis. As in model A, the analytical analysis yields relationships between the various density profiles and the temperature profile

  14. HEATHYD, Steady-State Thermal Hydraulic Analysis of Low-Enriched U Fuel Reactor

    International Nuclear Information System (INIS)

    NABBI, R.

    1989-01-01

    1 - Description of program or function: HEATHYD is a code for the steady-state heat transfer calculation of research nuclear reactors with forced convection. It models heat transfer and coolant flow for assemblies of parallel fuel plates of MTR type with any axial power distribution. The thermodynamic model accounts for single phase cooling and sub- cooled boiling condition using the transition criterion of Bergeles-Rosenow. In addition to the calculation of the channel flow velocities and coolant pressure drops, HEATHYD calculates axial distribution of the coolant and clad-surface temperatures. Safety margins to the critical heat flux as a result of burnout condition or flow instability are determined. 2 - Method of solution: Applying the finite difference method, HEATHYD solves the equations of heat conduction and heat transfer to the coolant. For the physical properties of the coolant as a function of the coolant temperature polynomials of degree 6 are used. Depending on the coolant condition, different correlations for the heat transfer coefficient can be applied. The analysis of the critical cooling conditions resulting in burnout or flow instability, is performed according to the correlations developed by Mirshak/ Labuntsov and Forgan/Whittle

  15. The ARIES tokamak fusion reactor study

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Beecraft, W.R.; Hogan, J.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Whitson, J.C.; Blanchard, J.P.; Emmert, G.A.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1989-01-01

    The ARIES study is a community effort to develop several visions of the tokamak as fusion power reactors. The aims are to determine their potential economics, safety, and environmental features and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak in 2nd stability regime and employs both potential advances in the physics and expected advances in technology and engineering; and ARIES-III is a conceptual D 3 He reactor. This paper focuses on the ARIES-I design. Parametric systems studies show that the optimum 1st stability tokamak has relatively low plasma current (∼ 12 MA), high plasma aspect ratio (∼ 4-6), and high magnetic field (∼ 24 T at the coil). ARIES-I is 1,000 MWe (net) reactor with a plasma major radius of 6.5 m, a minor radius of 1.4 m, a neutron wall loading of about 2.8 MW/m 2 , and a mass power density of about 90 kWe/ton. The ARIES-I reactor operates at steady state using ICRF fast waves to drive current in the plasma core and lower-hybrid waves for edge-plasma current drive. The current-drive system supplements a significant (∼ 57%) bootstrap current contribution. The impurity control system is based on high-recycling poloidal divertors. Because of the high field and large Lorentz forces in the toroidal-field magnets, innovative approaches with high-strength materials and support structures are used. 24 refs., 4 figs., 1 tab

  16. A highly efficient autothermal microchannel reactor for ammonia decomposition: Analysis of hydrogen production in transient and steady-state regimes

    Science.gov (United States)

    Engelbrecht, Nicolaas; Chiuta, Steven; Bessarabov, Dmitri G.

    2018-05-01

    The experimental evaluation of an autothermal microchannel reactor for H2 production from NH3 decomposition is described. The reactor design incorporates an autothermal approach, with added NH3 oxidation, for coupled heat supply to the endothermic decomposition reaction. An alternating catalytic plate arrangement is used to accomplish this thermal coupling in a cocurrent flow strategy. Detailed analysis of the transient operating regime associated with reactor start-up and steady-state results is presented. The effects of operating parameters on reactor performance are investigated, specifically, the NH3 decomposition flow rate, NH3 oxidation flow rate, and fuel-oxygen equivalence ratio. Overall, the reactor exhibits rapid response time during start-up; within 60 min, H2 production is approximately 95% of steady-state values. The recommended operating point for steady-state H2 production corresponds to an NH3 decomposition flow rate of 6 NL min-1, NH3 oxidation flow rate of 4 NL min-1, and fuel-oxygen equivalence ratio of 1.4. Under these flows, NH3 conversion of 99.8% and H2 equivalent fuel cell power output of 0.71 kWe is achieved. The reactor shows good heat utilization with a thermal efficiency of 75.9%. An efficient autothermal reactor design is therefore demonstrated, which may be upscaled to a multi-kW H2 production system for commercial implementation.

  17. Compact tokamak reactors. Part 1 (analytic results)

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1996-01-01

    We discuss the possible use of tokamaks for thermonuclear power plants, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First we review and summarize the existing literature. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamak power plant, by including the power required to drive the toroidal field, and considering two extremes of plasma current drive efficiency. The analytic results will be augmented by a numerical calculation which permits arbitrary plasma current drive efficiency; the results of which will be presented in Part II. Third, a scaling from any given reference reactor design to a copper toroidal field coil device is discussed. Throughout the paper the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculating electric power. We conclude that the latest published reactor studies, which show little advantage in using low aspect ratio unless remarkably high efficiency plasma current drive and low safety factor are combined, can be reproduced with the analytic model

  18. STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Anthony L. Alberti; Todd S. Palmer; Javier Ortensi; Mark D. DeHart

    2016-05-01

    With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.

  19. Theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor

    International Nuclear Information System (INIS)

    Gou Junli; Qiu Suizheng; Su Guanghui; Jia Dounan

    2006-01-01

    This article presents a theoretical investigation on the steady-state natural circulation characteristics of a new type of pressurized water reactor. Through numerically solving the one-dimensional steady-state single-phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the steam generator, the natural circulation characteristics were studied. On the basis of the preliminary calculation analysis, it was found that natural circulation mass flow rate was proportional to the exponential function of the power and that the value of the exponent is related to the operating conditions of the secondary side of the steam generator. The higher the outlet pressure of the secondary side of the steam generator, the higher the primary natural circulation mass flow rate. The larger height difference between the core center and the steam generator center is favorable for the heat removal capacity of the natural circulation. (authors)

  20. Dynamical and technological consequences of multiple isolas of steady states in a catalytic fluidised-bed reactor

    Directory of Open Access Journals (Sweden)

    Bizon Katarzyna

    2017-09-01

    Full Text Available Steady-state characteristics of a catalytic fluidised bed reactor and its dynamical consequences are analyzed. The occurrence of an untypical steady-state structure manifesting in a form of multiple isolas is described. A two-phase bubbling bed model is used for a quantitative description of the bed of catalyst. The influence of heat exchange intensity and a fluidisation ratio onto the generation of isolated solution branches is presented for two kinetic schemes. Dynamical consequences of the coexistence of such untypical branches of steady states are presented. The impact of linear growth of the fluidisation ratio and step change of the cooling medium temperature onto the desired product yield is analyzed. The results presented in this study confirm that the identification of a region of the occurrence of multiple isolas is important due to their strong impact both on the process start-up and its control.

  1. Resistive demountable toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments

  2. Conceptual analysis of a tokamak reactor with lithium dust jet

    International Nuclear Information System (INIS)

    Kuteev, B.V.; Krylov, S.V.; Sergeev, V.Yu.; Skokov, V.G.; Timokhin, V.M.

    2010-01-01

    The steady-state operation of tokamak reactors requires radiating a substantial part of the fusion energy dissipated in plasma to make more uniform the heat loads onto the first wall and to reduce the erosion of the divertor plates. One of the approaches to realize this goal uses injection of lithium dust jet into the scrape-off layer (SOL). A quantitative conceptual analysis of the reactor parameters with lithium dust jet injection is presented here. The effects of the lithium on the core and SOL plasma are considered. The first results of developing the lithium jet injection technology and its application to the T-10 tokamak are also presented.

  3. Tokamak reactor startup power

    International Nuclear Information System (INIS)

    Weldon, D.M.; Murray, J.G.

    1983-01-01

    Tokamak startup with ohmic heating (OH)-induced voltages requires rather large voltages and power supplies. On present machines, with no radiofrequency (rf)-assist provisions, hundreds of volts have been specified for their designs. With the addition of electron cyclotron resonant heating (ECRH) assist, the design requirements have been lowered. To obtain information on the cost and complexity associated with this ECRH-assisted, OH-pulsed startup voltage for ignition-type machines, a trade-off study was completed. The Fusion Engineering Device (FED) configuration was selected as a model because information was available on the structure. The data obtained are applicable to all tokamaks of this general size and complexity, such as the Engineering Test Reactor

  4. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    Harrison, M.F.A.; Harbour, P.J.; Hotston, E.S.

    1981-08-01

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  5. Plasma startup patterns in tokamak reactors

    International Nuclear Information System (INIS)

    Maki, Koichi; Tone, Tatsuzo.

    1983-01-01

    Plasma startup patterns are studied from the viewpoint of net power loss represented by the total power loss less the α-particle heating power. The existence is shown of a critical temperature of plasma at which the net power loss becomes independent of plasma density. Observations are made which indicate that the net power loss decreases with lowering plasma density in the range below the critical temperature and vice versa, whether governed by empirical or trapped-ion scaling laws. A startup pattern is presented which minimizes the net power loss during startup, and which prescribes that: (1) The plasma density should be kept as low as possible until the plasma is heated up to the critical temperature; (2) thereafter, the plasma density should be increased to its steady state value while retaining the critical temperature; and (3) finally, with the density kept constant, the temperature should be further raised to its steady state value. The net power loss at critical temperature represents the lower limit of heating power required to bring the plasma to steady state in tokamak reactors. (author)

  6. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    International Nuclear Information System (INIS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Arimoto, H.; Shoji, T.; Garcia, J.

    2009-01-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO 2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO 2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  7. Steady state and LOCA analysis of Kartini reactor using RELAP5/SCDAP code: The role of passive system

    Science.gov (United States)

    Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim

    2018-02-01

    Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.

  8. Radioactivity computation of steady-state and pulsed fusion reactors operation

    International Nuclear Information System (INIS)

    Attaya, H.

    1994-06-01

    Different mathematical methods are used to calculate the nuclear transmutation in steady-state and pulsed neutron irradiation. These methods are the Schuer decomposition, the eigenvector decomposition, and the Pade approximation of the matrix exponential function. In the case of the linear decay chain approximation, a simple algorithm is used to evaluate the transition matrices

  9. Study of critical beta non-circular tokamak equilibria sustained in steady state by beam driven currents

    International Nuclear Information System (INIS)

    Okano, K.; Ogawa, Y.; Naitou, H.

    1988-07-01

    A new MHD-equilibrium/current-drive analysis code was developed to analyse the high beta tokamak equilibria consistent with the beam driven current profiles. In this new code, the critical beta equilibrium, which is stable against the ballooning mode, the kink mode and the Mercier mode, is determined first using MHD equilibrium and stability analysis codes (EQLAUS/ERATO). Then, the current drive parameters and the plasma parameters, required to sustain this critical beta equilibrium, are determined by iterative calculations. The beam driven current profiles are evaluated by the Fokker-Planck calculations on individual flux surfaces, where the toroidal effects on the beam ion and plasma electron trajectories are considered. The pressure calculation takes into account the beam ion and fast alpha components. A peculiarity of our new method is that the obtained solution is not only consistent with the MHD equilibrium but also consistent with the critical beta limit conditions, in the current profile and the pressure profile. Using this new method, β ∼ 21 % bean and β ∼ 6 % D-type critical beta equilibria were scanned for various parameters; the major radius, magnetic field, temperature, injection energy, etc. It was found that the achievable Q value for the bean type was always about 30 % larger than for the D-type cases, where Q = fusion power/beam power. With strong beanness, Q ∼ 6 for DEMO type tokamaks (∼500 MWth) and Q ∼ 20 for power reactor size (4.5 GWth) are achievable. On the other hand, the Q value would not exceed sixteen for the D-type machines. (author)

  10. The tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Kelly, J.L.; Rose, R.P.

    1981-01-01

    At a time when the potential benefits of various energy options are being seriously evaluated in many countries through-out the world, it is both timely and important to evaluate the practical application of fusion reactors for their economical production of nuclear fissile fuels from fertile fuels. The fusion hybrid reactor represents a concept that could assure the availability of adequate fuel supplies for a proven nuclear technology and have the potential of being an electrical energy source as opposed to an energy consumer as are the present fuel enrichment processes. Westinghouse Fusion Power Systems Department, under Contract No. EG-77-C-02-4544 with the Department of Energy, Office of Fusion Energy, has developed a preliminary conceptual design for an early twenty-first century fusion hybrid reactor called the commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) Plants. To the depth this study has been performed, no insurmountable technical problems have been identified. The study has provided a basis for reasonable cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources. A nearer-term concept is also defined using a beam driven fusion driver in lieu of the longer term ignited operating mode. (orig.)

  11. Factors affecting the minimum capital cost of a tokamak reactor

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The Mk IIA Culham conceptual tokamak reactor design is a 2500 MWe steady-state reactor developed on the basis of a cost optimisation. A revised 1200 MWe conceptual design, the Mk IIB, used a lower wall loading and lower thermodynamic efficiency. A detailed costing of the Mk IIB design, however, showed it to have an unacceptably high capital cost. Since this high cost is a common characteristic of many fusion reactor designs, the cost optimisation of the Mk II design has been reconsidered. (author)

  12. Mathematical Modeling and Simulation of the Dehydrogenation of Ethyl Benzene to Form Styrene Using Steady-State Fixed Bed Reactor

    Directory of Open Access Journals (Sweden)

    Zaidon M. Shakoor

    2013-05-01

    Full Text Available In this research, two models are developed to simulate the steady state fixed bed reactor used for styrene production by ethylbenzene dehydrogenation. The first is one-dimensional model, considered axial gradient only while the second is two-dimensional model considered axial and radial gradients for same variables.The developed mathematical models consisted of nonlinear simultaneous equations in multiple dependent variables. A complete description of the reactor bed involves partial, ordinary differential and algebraic equations (PDEs, ODEs and AEs describing the temperatures, concentrations and pressure drop across the reactor was given. The model equations are solved by finite differences method. The reactor models were coded with Mat lab 6.5 program and various numerical techniques were used to obtain the desired solution.The simulation data for both models were validated with industrial reactor results with a very good concordance.

  13. Compact tokamak reactors part 2 (numerical results)

    International Nuclear Information System (INIS)

    Wiley, J.C.; Wootton, A.J.; Ross, D.W.

    1996-01-01

    The authors describe a numerical optimization scheme for fusion reactors. The particular application described is to find the smallest copper coil spherical tokamak, although the numerical scheme is sufficiently general to allow many other problems to be solved. The solution to the steady state energy balance is found by first selecting the fixed variables. The range of all remaining variables is then selected, except for the temperature. Within the specified ranges, the temperature which satisfies the power balance is then found. Tests are applied to determine that remaining constraints are satisfied, and the acceptable results then stored. Results are presented for a range of auxiliary current drive efficiencies and different scaling relationships; for the range of variables chosen the machine encompassing volume increases or remains approximately unchanged as the aspect ratio is reduced

  14. Tokamak engineering test reactor

    International Nuclear Information System (INIS)

    Conn, R.W.; Jassby, D.L.

    1975-07-01

    The design criteria for a tokamak engineering test reactor can be met by operating in the two-component mode with reacting ion beams, together with a new blanket-shield design based on internal neutron spectrum shaping. A conceptual reactor design achieving a neutron wall loading of about 1 MW/m 2 is presented. The tokamak has a major radius of 3.05 m, the plasma cross-section is noncircular with a 2:1 elongation, and the plasma radius in the midplane is 55 cm. The total wall area is 149 m 2 . The plasma conditions are T/sub e/ approximately T/sub i/ approximately 5 keV, and ntau approximately 8 x 10 12 cm -3 s. The plasma temperature is maintained by injection of 177 MW of 200-keV neutral deuterium beams; the resulting deuterons undergo fusion reactions with the triton-target ions. The D-shaped toroidal field coils are extended out to large major radius (7.0 m), so that the blanket-shield test modules on the outer portion of the torus can be easily removed. The TF coils are superconducting, using a cryogenically stable TiNb design that permits a field at the coil of 80 kG and an axial field of 38 kG. The blanket-shield design for the inner portion of the torus nearest the machine center line utilizes a neutron spectral shifter so that the first structural wall behind the spectral shifter zone can withstand radiation damage for the reactor lifetime. The energy attenuation in this inner blanket is 8 x 10 -6 . If necessary, a tritium breeding ratio of 0.8 can be achieved using liquid lithium cooling in the []outer blanket only. The overall power consumption of the reactor is about 340 MW(e). A neutron wall loading greater than 1 MW/m 2 can be achieved by increasing the maximum magnetic field or the plasma elongation. (auth)

  15. New directions in tokamak reactors

    International Nuclear Information System (INIS)

    Baker, C.C.

    1985-01-01

    New directions for tokamak research are briefly mentioned. Some of the areas for new considerations are the following: reactor size, beta ratio, current drivers, blankets, impurity control, and modular designs

  16. Review of tokamak power reactor and blanket designs in the United States

    International Nuclear Information System (INIS)

    Baker, C.; Brooks, J.; Ehst, D.; Gohar, Y.; Smith, D.; Sze, D.

    1986-01-01

    The last major conceptual design study of a tokamak power reactor in the United States was STARFIRE which was carried out in 1979-1980. Since that time US studies have concentrated on engineering test reactors, demonstration reactors, parametric systems studies, scoping studies, and studies of selected critical issues such as pulsed vs. steady-state operation and blanket requirements. During this period, there have been many advancements in tokamak physics and reactor technology, and there has also been a recognition that it is desirable to improve the tokamak concept as a commercial power reactor candidate. During 1984-1985 several organizations participated in the Tokamak Power Systems Study (TPSS) with the objective of developing ideas for improving the tokamak as a power reactor. Also, the US completed a comprehensive Blanket Comparison and Selection Study which formed the basis for further studies on improved blankets for fusion reactors

  17. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Brooks, J.N.

    1978-01-01

    A tokamak experimental power reactor has been designed that is capable of producing net electric power over a wide range of possible operating conditions. A net production of 81 MW of electricity is expected from the design reference conditions that assume a value of 0.07 for beta-toroidal, a maximum toroidal magnetic field of 9 T and a thermal conversion efficiency of 30%. Impurity control is achieved through the use of a low-Z first wall coating. This approach allows a burn time of 60 seconds without the incorporation of a divertor. The system is cooled by a dual pressurized water/steam system that could potentially provide thermal efficiencies as high as 39%. The first surface facing the plasma is a low-Z coated water cooled panel that is attached to a 20 cm thick blanket module. The vacuum boundary is removed a total of 22 cm from the plasma, thereby minimizing the amount of radiation damage in this vital component. Consideration is given in the design to the possible use of the EPR as a materials test reactor. It is estimated that the total system could be built for less than 550 million dollars

  18. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Kalcheva, S [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Sikik, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-09-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).

  19. The behaviour of water-cooled reactor fuel rods in steady state and transient conditions

    International Nuclear Information System (INIS)

    Strupczewski, A.; Marks, P.

    1997-01-01

    In this report, the results of temperature field and filling gas pressure calculations by means of contemporary calculational models for a WWER-440 and WWER-1000 type fuel rod at low and high burnup operating under steady-state conditions are presented. A review of in-core temperature and pressure measurements for various types of LWR fuel is also included. Basing on calculational and collected measured data, the behaviour of fuel cladding during large and small break LOCA, is estimated with special emphasis on their oxidation and failure resistance. (author)

  20. Comparative study of cost models for tokamak DEMO fusion reactors

    International Nuclear Information System (INIS)

    Oishi, Tetsutarou; Yamazaki, Kozo; Arimoto, Hideki; Ban, Kanae; Kondo, Takuya; Tobita, Kenji; Goto, Takuya

    2012-01-01

    Cost evaluation analysis of the tokamak-type demonstration reactor DEMO using the PEC (physics-engineering-cost) system code is underway to establish a cost evaluation model for the DEMO reactor design. As a reference case, a DEMO reactor with reference to the SSTR (steady state tokamak reactor) was designed using PEC code. The calculated total capital cost was in the same order of that proposed previously in cost evaluation studies for the SSTR. Design parameter scanning analysis and multi regression analysis illustrated the effect of parameters on the total capital cost. The capital cost was predicted to be inside the range of several thousands of M$s in this study. (author)

  1. Study on small long-life LBE cooled fast reactor with CANDLE burn-up. Part 1. Steady state research

    International Nuclear Information System (INIS)

    Yan, Mingyu; Sekimoto, Hiroshi

    2008-01-01

    Small long-life reactor is required for some local areas. CANDLE small long-life fast reactor which does not require control rods, mining, enrichment and reprocessing plants can satisfy this demand. In a CANDLE reactor, the shapes of neutron flux, nuclide number densities and power density distributions remain constant and only shift in axial direction. The core with 1.0 m radius, 2.0 m length can realize CANDLE burn-up with nitride (enriched N-15) natural uranium as fresh fuel. Lead-Bismuth is used as coolant. From steady state analysis, we obtained the burn-up velocity, output power distribution, core temperature distribution, etc. The burn-up velocity is less than 1.0 cm/year that enables a long-life design easily. The core averaged discharged fuel burn-up is about 40%. (author)

  2. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [SCK CEN (Belgium); Kalcheva, S. [SCK CEN (Belgium); Sikik, E. [SCK CEN (Belgium); Koonen, E. [SCK CEN (Belgium)

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.

  3. Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Bertoncini, P.J.

    1976-01-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 yr. The EPR operates in a pulsed mode at a frequency of approximately 1/min, with approximately 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2 cm thick stainless steel, and has 2 cm thick detachable, beryllium-coated coolant panels mounted on the interior. A 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H 2 O. Sixteen niobium-titanium superconducting toroidal field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic heating and equilibrium field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam injectors which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-convertors

  4. TIBER II: an upgraded tokamak igntion/burn experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Perkins, L.J.

    1986-01-01

    We are disIgning a minimum-size Tokamak ignition/Burn Reactor (TIBER II). This design incorporates physics requirements, neutron wall loading and fluence parameters that will make it compatible with a nuclear testing mission. Reactor relevant physics will be tested by using current drive and steady-state operation. Although the design accommodates several current drive options, including neutral beams, the base case uses a combination of lower hybrid and electron-cyclotron radio frequency power. Minimum neutron shielding, compact structures, high magnet-current densities, and remotely maintainable vacuum seals, all contribute to the compact size

  5. TIBER (Tokamak Ignition/Burn Experimental Reactor) II as a precursor to an international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Gilleland, J.R.

    1988-01-01

    The Tokamak Ignition/Burn Experimental Reactor (TIBER) was pursued in the US as one option for an International Thermonuclear Experimental Reactor (ITER). This concept evolved from earlier work on the Tokamak Fusion Core Experiment (TFCX) to develop a small, ignited tokamak. While the copper-coil versions of TFCX became the short-pulsed, 1.23-m radius, Compact Ignition Tokamak (CIT), the superconducting TIBER with long pulse or steady state and a 2.6-m radius was considered for international collaboration. Recently the design was updated to TIBER II, to accommodate more conservative confinement scaling, double-poloidal divertors for impurity control, steady-state current drive, and nuclear testing. 18 refs., 1 fig

  6. Thermal-hydraulic Fortran program for steady-state calculations of plate-type fuel research reactors

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2008-01-01

    Full Text Available The safety assessment of research and power reactors is a continuous process covering their lifespan and requiring verified and validated codes. Power reactor codes all over the world are well established and qualified against real measuring data and qualified experimental facilities. These codes are usually sophisticated, require special skills and consume a lot of running time. On the other hand, most research reactor codes still require much more data for validation and qualification. It is, therefore, of benefit to any regulatory body to develop its own codes for the review and assessment of research reactors. The present paper introduces a simple, one-dimensional Fortran program called THDSN for steady-state thermal-hydraulic calculations of plate-type fuel research reactors. Besides calculating the fuel and coolant temperature distributions and pressure gradients in an average and hot channel, the program calculates the safety limits and margins against the critical phenomena encountered in research reactors, such as the onset of nucleate boiling, critical heat flux and flow instability. Well known thermal-hydraulic correlations for calculating the safety parameters and several formulas for the heat transfer coefficient have been used. The THDSN program was verified by comparing its results for 2 and 10 MW benchmark reactors with those published in IAEA publications and a good agreement was found. Also, the results of the program are compared with those published for other programs, such as the PARET and TERMIC.

  7. The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D 3 He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions

  8. Safety analysis on tokamak helium cooling slab fuel fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Jian Hongbing

    1992-01-01

    The thermal analyses for steady state, depressurization and total loss of flow in the tokamak helium cooling slab fuel element fusion-fission hybrid reactor are presented. The design parameters, computed results of HYBRID program and safety evaluation for conception design are given. After all, it gives some recommendations for developing the design

  9. Conceptual design of a Tokamak hybrid power reactor (THPR)

    International Nuclear Information System (INIS)

    Matsuoka, F.; Imamura, Y.; Inoue, M.; Asami, N.; Kasai, M.; Yanagisawa, I.; Ida, T.; Takuma, T.; Yamaji, K.; Akita, S.

    1987-01-01

    A conceptual design of a fusion-fission hybrid tokamak reactor has been carried out to investigate the engineering feasibility and promising scale of a commercial hybrid reactor power plant. A tokamak fusion driver based on the recent plasma scaling law is introduced in this design study. The major parameters and features of the reactor are R=6.06 m, a=1.66 m, Ip=11.8 MA, Pf=668 MW, double null divertor plasma and steady state burning with RF current drive. The fusion power has been determined with medium energy multiplication in the blanket so as to relieve thermal design problems and produce electric power around 1000 MW. Uranium silicide is used for the fast fission blanket material to promise good nuclear performance. The coolant of the blanket is FLIBE and the tritium breeding blanket material is Li 2 O ceramics providing breeding ratio above unity

  10. NATBWR: a steady-state model for natural circulation in boiling-water reactors

    International Nuclear Information System (INIS)

    Healzer, J.M.; Abdollahian, D.

    1983-02-01

    This report documents the NATBWR steady-state BWR natural-circulation model and activities under EPRI Project RP1561-1 to gather data and predict the natural-circulation operation of the BWR. The report is organized into two parts, with the first part describing the NATBWR model and applications of the model to available BWR natural-circulation data and the second part providing user and programming information about the model. Five different operating BWR's were selected to demonstrate the application of the NATBWR model, one of each type from BWR/1 through BWR/4. For each operating plant, the available natural circulation data has been compared to model predictions. In addition to the data predictions, the behavior of the BWR system at reduced inventory, where the system is isolated and scrammed, and cooling provided by natural circulation has been analyzed. Finally, included as an appendix to Part 1 of this report is a discussion of the stability of the BWR system at natural-circulation conditions

  11. Conceptual design study of quasi-steady state fusion experimental reactor (FEQ-Q), part 1

    International Nuclear Information System (INIS)

    1985-12-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. Starting from 1984 JER design is being reviewed and redesigned. This report is a part of the interim report which describes the results obtained in the review and redesign activities in FY 1984. The results of the following design items are included; core plasma, reactor structure, reactor core components, magnets. (author)

  12. STARFIRE: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    1979-12-01

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor

  13. How much does a tokamak reactor cost?

    Science.gov (United States)

    Freidberg, J.; Cerfon, A.; Ballinger, S.; Barber, J.; Dogra, A.; McCarthy, W.; Milanese, L.; Mouratidis, T.; Redman, W.; Sandberg, A.; Segal, D.; Simpson, R.; Sorensen, C.; Zhou, M.

    2017-10-01

    The cost of a fusion reactor is of critical importance to its ultimate acceptability as a commercial source of electricity. While there are general rules of thumb for scaling both overnight cost and levelized cost of electricity the corresponding relations are not very accurate or universally agreed upon. We have carried out a series of scaling studies of tokamak reactor costs based on reasonably sophisticated plasma and engineering models. The analysis is largely analytic, requiring only a simple numerical code, thus allowing a very large number of designs. Importantly, the studies are aimed at plasma physicists rather than fusion engineers. The goals are to assess the pros and cons of steady state burning plasma experiments and reactors. One specific set of results discusses the benefits of higher magnetic fields, now possible because of the recent development of high T rare earth superconductors (REBCO); with this goal in mind, we calculate quantitative expressions, including both scaling and multiplicative constants, for cost and major radius as a function of central magnetic field.

  14. Very low frequency oscillations of heat load and recycling flux in steady-state tokamak discharge in TRIAM-1M

    International Nuclear Information System (INIS)

    Zushi, H.; Sakamoto, M.; Hanada, K.; Iyomasa, A.; Nakamura, K.; Sato, K.N.; Idei, H.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Hasegawa, M.; Matsuo, Y.; Kuramoto, K.; Sugata, T.; Maezono, N.; Hoshika, H.; Sasaki, K.

    2004-01-01

    Plasma wall interaction (PWI) driven relaxation oscillations are investigated in the steady state discharge for 5 hours. The oscillation frequency was about 10 -3 Hz and each perturbation lasted for about 300 s. The heat load, recycling flux and impurity influx were varied from a few % to several tens of %. The largest variation of 70% was seen on the Mo XIII (molybdenum), although the influx of Mo I was only 20 %. Although the input rf power is kept constant during the discharge, the coupling between the rf and plasma was increased by about 10%. The current drive efficiency is decreased by 24 % in spite of current ramp. The toroidal and poloidal profiles of the recycling flux were also changed. During the last relaxation phase, the plasma was finally terminated. The current reduction (> 4 kA) was not recovered by intense local perturbation of the recycling superposed on the relaxation oscillation. (authors)

  15. Very low frequency oscillations of heat load and recycling flux in steady-state tokamak discharge in TRIAM-1M

    Energy Technology Data Exchange (ETDEWEB)

    Zushi, H.; Sakamoto, M.; Hanada, K.; Iyomasa, A.; Nakamura, K.; Sato, K.N.; Idei, H.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Hasegawa, M. [Kyushu Univ., Research Institute for Applied Mechanics (Japan); Matsuo, Y.; Kuramoto, K.; Sugata, T.; Maezono, N.; Hoshika, H.; Sasaki, K. [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences (Japan)

    2004-07-01

    Plasma wall interaction (PWI) driven relaxation oscillations are investigated in the steady state discharge for 5 hours. The oscillation frequency was about 10{sup -3} Hz and each perturbation lasted for about 300 s. The heat load, recycling flux and impurity influx were varied from a few % to several tens of %. The largest variation of 70% was seen on the Mo XIII (molybdenum), although the influx of Mo I was only 20 %. Although the input rf power is kept constant during the discharge, the coupling between the rf and plasma was increased by about 10%. The current drive efficiency is decreased by 24 % in spite of current ramp. The toroidal and poloidal profiles of the recycling flux were also changed. During the last relaxation phase, the plasma was finally terminated. The current reduction (> 4 kA) was not recovered by intense local perturbation of the recycling superposed on the relaxation oscillation. (authors)

  16. Thermal hydraulic core simulation of the MYRRHA Reactor in steady state operation

    International Nuclear Information System (INIS)

    Ferandes, Gustavo H.N.; Ramos, Mário C.; Carvalho, Athos M.S.S.; Cabrera, Carlos E.V.; Costa, Antonella L.; Pereira, Claubia

    2017-01-01

    MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) is a prototype nuclear subcritical reactor driven by a particle accelerator. As a special property, the reactor maintains the nuclear fission chain reaction by means of an external neutron source provided by a particle accelerator. The main aim of this work is to study two types of coolants, LBE (Lead-Bismuth Eutectic) and Na (Sodium) that are two strong candidates to be used in ADS systems as well as in Generation IV (GEN-IV) reactors. Firstly, it was developed a thermal hydraulic model of the MYRRHA core using the RELAP5-3D, considering LBE as coolant (original project). After this, the LBE was substituted by Na coolant to investigate the reactor behavior in such case. Results have demonstrated the high heat transfer capacity of the LBE coolant in this type of system. (author)

  17. Thermal hydraulic core simulation of the MYRRHA Reactor in steady state operation

    Energy Technology Data Exchange (ETDEWEB)

    Ferandes, Gustavo H.N.; Ramos, Mário C.; Carvalho, Athos M.S.S.; Cabrera, Carlos E.V.; Costa, Antonella L.; Pereira, Claubia, E-mail: ghnfernandes@gmail.com, E-mail: marc5663@gmail.com, E-mail: athos1495@yahoo.com.br, E-mail: carlosvelcab@hotmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil)

    2017-07-01

    MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) is a prototype nuclear subcritical reactor driven by a particle accelerator. As a special property, the reactor maintains the nuclear fission chain reaction by means of an external neutron source provided by a particle accelerator. The main aim of this work is to study two types of coolants, LBE (Lead-Bismuth Eutectic) and Na (Sodium) that are two strong candidates to be used in ADS systems as well as in Generation IV (GEN-IV) reactors. Firstly, it was developed a thermal hydraulic model of the MYRRHA core using the RELAP5-3D, considering LBE as coolant (original project). After this, the LBE was substituted by Na coolant to investigate the reactor behavior in such case. Results have demonstrated the high heat transfer capacity of the LBE coolant in this type of system. (author)

  18. Global gas balance and influence of atomic hydrogen irradiation on the wall inventory in steady-state operation of QUEST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, A., E-mail: kuzmin@triam.kyushu-u.ac.jp [RIAM, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Zushi, H. [RIAM, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Takagi, I. [Graduate School of Engineering, Kyoto University (Japan); Sharma, S.K. [Institute for Plasma Research, Ahmadabad, Gujrat (India); Rusinov, A. [RIAM, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Inoue, Y. [IGSES, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hirooka, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Zhou, H. [Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kobayashi, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Sakamoto, M. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Hanada, K.; Yoshida, N.; Nakamura, K.; Fujisawa, A.; Matsuoka, K.; Idei, H.; Nagashima, Y.; Hasegawa, M.; Onchi, T. [RIAM, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Banerjee, S. [IGSES, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); and others

    2015-08-15

    Hydrogen wall pumping is studied in steady state tokamak operation (SSTO) of QUEST with all metal plasma facing materials PFMs at 100 °C. The duration of SSTO is up to 820 s in fully non-inductive plasma. Global gas balance analysis shows that wall pumping at the apparent (retention–release) rate of 1–6 × 10{sup 18} H/s is dominant and 70–80% of injected H{sub 2} can be retained in PFMs. However, immediately after plasma termination the H{sub 2} release rate enhances to ∼10{sup 19} H/s. In order to understand a true retention process the direct measurement of retention flux has been carried out by permeation probes. The comparison between the evaluated wall retention and results from global analysis is discussed.

  19. Global gas balance and influence of atomic hydrogen irradiation on the wall inventory in steady-state operation of QUEST tokamak

    Science.gov (United States)

    Kuzmin, A.; Zushi, H.; Takagi, I.; Sharma, S. K.; Rusinov, A.; Inoue, Y.; Hirooka, Y.; Zhou, H.; Kobayashi, M.; Sakamoto, M.; Hanada, K.; Yoshida, N.; Nakamura, K.; Fujisawa, A.; Matsuoka, K.; Idei, H.; Nagashima, Y.; Hasegawa, M.; Onchi, T.; Banerjee, S.; Mishra, K.

    2015-08-01

    Hydrogen wall pumping is studied in steady state tokamak operation (SSTO) of QUEST with all metal plasma facing materials PFMs at 100 °C. The duration of SSTO is up to 820 s in fully non-inductive plasma. Global gas balance analysis shows that wall pumping at the apparent (retention-release) rate of 1-6 × 1018 H/s is dominant and 70-80% of injected H2 can be retained in PFMs. However, immediately after plasma termination the H2 release rate enhances to ∼1019 H/s. In order to understand a true retention process the direct measurement of retention flux has been carried out by permeation probes. The comparison between the evaluated wall retention and results from global analysis is discussed.

  20. Global gas balance and influence of atomic hydrogen irradiation on the wall inventory in steady-state operation of QUEST tokamak

    International Nuclear Information System (INIS)

    Kuzmin, A.; Zushi, H.; Takagi, I.; Sharma, S.K.; Rusinov, A.; Inoue, Y.; Hirooka, Y.; Zhou, H.; Kobayashi, M.; Sakamoto, M.; Hanada, K.; Yoshida, N.; Nakamura, K.; Fujisawa, A.; Matsuoka, K.; Idei, H.; Nagashima, Y.; Hasegawa, M.; Onchi, T.; Banerjee, S.

    2015-01-01

    Hydrogen wall pumping is studied in steady state tokamak operation (SSTO) of QUEST with all metal plasma facing materials PFMs at 100 °C. The duration of SSTO is up to 820 s in fully non-inductive plasma. Global gas balance analysis shows that wall pumping at the apparent (retention–release) rate of 1–6 × 10 18 H/s is dominant and 70–80% of injected H 2 can be retained in PFMs. However, immediately after plasma termination the H 2 release rate enhances to ∼10 19 H/s. In order to understand a true retention process the direct measurement of retention flux has been carried out by permeation probes. The comparison between the evaluated wall retention and results from global analysis is discussed

  1. High-energy tritium beams as current drivers in tokamak reactors

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams

  2. COOLOD-N2: a computer code, for the analyses of steady-state thermal-hydraulics in research reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1994-03-01

    The COOLOD-N2 code provides a capability for the analyses of the steady-state thermal-hydraulics of research reactors. This code is revised version of the COOLOD-N code, and is applicable not only for research reactors in which plate-type fuel is adopted, but also for research reactors in which rod-type fuel is adopted. In the code, subroutines to calculate temperature distribution in rod-type fuel have been newly added to the COOLOD-N code. The COOLOD-N2 code can calculate fuel temperatures under both forced convection cooling mode and natural convection cooling mode as well as COOLOD-N code. In the COOLOD-N2 code, a 'Heat Transfer package' is used for calculating heat transfer coefficient, DNB heat flux etc. The 'Heat Transfer package' is subroutine program and is especially developed for research reactors in which plate-type fuel is adopted. In case of rod-type fuel, DNB heat flux is calculated by both the 'Heat Transfer package' and Lund DNB heat flux correlation which is popular for TRIGA reactor. The COOLOD-N2 code also has a capability of calculating ONB temperature, the heat flux at onset of flow instability as well as DNB heat flux. (author)

  3. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.

    1994-05-01

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  4. The code DYN3DR for steady-state and transient analyses of light water reactor cores with Cartesian geometry

    International Nuclear Information System (INIS)

    Grundmann, U.

    1995-11-01

    The code DYN3D/M2 was developed for 3-dimensional steady-state and transient analyses of reactor cores with hexagonal fuel assemblies. The neutron kinetics of the new version DYN3DR is based on a nodal method for the solution of the 3-dimensional 2-group neutron diffusion equation for Cartesian geometry. The thermal-hydraulic model FLOCAL simulating the two phase flow of coolant and the fuel rod behaviour is used in the two versions. The fundamentals for the solution of the neutron diffusion equations in DYN3DR are described. The 3-dimensional NEACRP benchmarks for rod ejections in LWR with quadratic fuel assemblies were calculated and the results were compared with the published solutions. The developed algorithm for neutron kinetics are suitable for using parallel processing. The behaviour of speed-up versus the number of processors is demonstrated for calculations of a static neutron flux distribution using a workstation with 4 processors. (orig.) [de

  5. Method for calculating the steady-state distribution of tritium in a molten-salt breeder reactor plant

    International Nuclear Information System (INIS)

    Briggs, R.B.; Nestor, C.W.

    1975-04-01

    Tritium is produced in molten salt reactors primarily by fissioning of uranium and absorption of neutrons by the constituents of the fuel carrier salt. At the operating temperature of a large power reactor, tritium is expected to diffuse from the primary system through pipe and vessel walls to the surroundings and through heat exchanger tubes into the secondary system which contains a coolant salt. Some tritium will pass from the secondary system into the steam power system. This report describes a method for calculating the steady state distribution of tritium in a molten salt reactor plant and a computer program for making the calculations. The method takes into account the effects of various processes for removing tritium, the addition of hydrogen or hydrogenous compounds to the primary and secondary systems, and the chemistry of uranium in the fuel salt. Sample calculations indicate that 30 percent or more of the tritium might reach the steam system in a large power reactor unless special measures are taken to confine the tritium. (U.S.)

  6. Conceptual design study of quasi-steady state fusion experimental reactor (FER-Q), part 2

    International Nuclear Information System (INIS)

    1985-12-01

    Since 1980 the design study has been conducted at JAERI for the Fusion Experimental Reactor (FER) which has been proposed to be the next machine to JT-60 in the Japanese long term program of fusion reactor development. Starting from 1984 FER design is being reviewed and redesigned. This report is a part of the interim report which describes the results obtained in the review and redesign activities in FY 1984. The results of the following design items are included: heating/current drive system, plasma position control, power supply, diagnostics, neutronics, blanket test module, repair and maintenance and safety. (author)

  7. A Singular Perturbation Problem for Steady State Conversion of Methane Oxidation in Reverse Flow Reactor

    Directory of Open Access Journals (Sweden)

    Aang Nuryaman

    2012-11-01

    Full Text Available The governing equations describing the methane oxidation process in reverse flow reactor are given by a set of convective-diffusion equations with a nonlinear reaction term, where temperature and methane conversion are dependent variables. In this study, the process is assumed to be one-dimensional pseudo homogeneous model and takes place with a certain reaction rate in which the whole process of reactor is still workable. Thus, the reaction rate can proceed at a fixed temperature. Under this condition, we restrict ourselves to solve the equations for the conversion only. From the available data, it turns out that the ratio of the diffusion term to the reaction term is small. Hence, this ratio is considered as small parameter in our model and this leads to a singular perturbation problem. In the vicinity of small parameter in front of higher order term, the numerical difficulties will be found. Here, we present an analytical solution by means of matched asymptotic expansions. Result shows that, up to and including the first order of approximation, the solution is in agreement with the exact and numerical solutions of the boundary value problem.

  8. Wildcat: A commercial deuterium-deuterium tokamak reactor

    International Nuclear Information System (INIS)

    Evans, K.; Baker, C.C.; Barry, K.M.

    1983-01-01

    WILDCAT is a conceptual design of a catalyzed deuterium-deuterium tokamak commercial fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing deuterium-tritium (D-T) designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete conceptual design

  9. Study of a compact reversed shear Tokamak reactor

    International Nuclear Information System (INIS)

    Okano, K.; Asaoka, Y.; Tomabechi, K.; Yoshida, T.; Hiwatari, R.; Ogawa, Y.; Tokimatsu, K.; Yamamoto, T.; Inoue, N.; Murakami, Y.

    1998-01-01

    A reversed shear configuration, which was observed recently in some tokamak experiments, might have a possibility to realize compact and cost-competitive tokamak reactors. In this study, a compact (low cost) commercial reactor based on the shear reversed high beta equilibrium with β N =5.5, is considered, namely the compact reversed shear tokamak, CREST-1. The CREST-1 is designed with a moderate aspect ratio (R/a=3.4), which will allow us to experimentally develop this CREST concept by ITER. This will be very advantageous with regard to the fusion development strategy. The current profile for the reversed shear operation is sustained and controlled in steady state by bootstrap (88%), beam and r driven currents, which are calculated by a neo-classical model code in 3D geometry. The MHD stability has been checked by an ideal MHD stability analysis code (ERATO) and it has been confirmed that the ideal low n kink, ballooning and Mercier modes are stable while a closed conductive shell is required for stability. Such a compact tokamak can be cost-competitive as an electric power source in the 21st century and it is one possible scenario in realizing a commercial fusion reactor beyond the ITER project. (orig.)

  10. Starfire: a commercial tokamak reactor

    International Nuclear Information System (INIS)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Graumann, D.; Kokoszenski, J.

    1979-01-01

    The basic objective of the STARFIRE Project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor. The STARFIRE Project was initiated in May 1979, with the goal of completing the design study by October 1980. The purpose of this paper is to present an overview of the major parameters and design features that have been tentatively selected for STARFIRE

  11. Recent QUEST experiments on non-inductive current drive and plasma-wall interaction towards steady state operation of spherical tokamak

    International Nuclear Information System (INIS)

    Hanada, K.; Zushi, H.; Idei, H.; Nakamura, K.; Nagashima, Y.; Hasegawa, M.; Fujisawa, A.; Higashijima, A.; Kawasaki, S.; Nakashima, H.; Ishiguro, M.; Tashima, S.; Kalinnikova, E.I.; Mitarai, O.; Maekawa, T.; Fukuyama, A.; Takase, Y.; Gao, X.; Liu, H.; Qian, J.; Ono, M.; Raman, R.; Peng, M.

    2015-01-01

    Full text of publication follows. Steady state operation (SSO) of magnetic fusion devices is one of the goals for fusion research. Development of non-inductive current drive and investigation of plasma-wall interaction (PWI) are issues to be resolved for SSO. Because of the very limited central solenoid (CS) flux in a spherical tokamak (ST), methods for non-inductive plasma current start-up and sustainment are necessary. Fully non-inductive plasma up to approximately 5 min was successfully demonstrated on the spherical tokamak QUEST. Furthermore, recharging of the center solenoid coil was also achieved in OH+RF plasmas with plasma current feedback using the CS. During the plasma start-up phase, precession motion of trapped electrons can drive some current, which plays an essential role in forming a closed flux surface. On QUEST, the main parts of the plasma facing components (PFCs) are covered by tungsten plates (W) or coated by W plasma spray and are actively cooled by water circulation. The increase in water temperature quantitatively provides the deposited power to each PFC. The power balance during long duration discharges has been studied for various types of magnetic configurations such as limiter, upper and lower single-null divertor discharges. As, the temperature of any PFCs reaches a steady-state condition during long pulse, the power balance can be obtained. It is found that the discharge duration of QUEST is significantly limited by particle imbalance shown by gradual increment of plasma and neutral density. The additional influx of neutrals was provided by recycling of hydrogen, which is still uncontrollable. A point model of particle balance was applied to a long-duration divertor discharge, and it was found that a small increment of particle-influx occurred around the end of the long duration discharge. A post-mortem analysis of surface-attaching specimen during an experimental campaign indicates that the increased amount of neutral influx could be

  12. Tokamak fusion reactor

    International Nuclear Information System (INIS)

    Nohara, Kiyohiko

    2009-01-01

    The structural material is one of key issues for the development of reliable superconducting magnets and peripheral equipments of fusion reactors. Standard stainless steels like SUS 304 and 316 steels available at present do not meet requirements. We are developing a new austenitic steel that has proposed target properties named 'JAERI BOX'. Additions of N and V at different amounts were tested to improve strength and fracture toughness of a base alloy SUS316LN at 4.2 K. Mechanical properties of the developed steel were examined. It is found that the charpy absorbed energy and the fracture toughness of the developed steel at 4.2 K are within JAERI BOX. (T.I.)

  13. Steady-state CFD simulations of an EPR™ reactor pressure vessel: A validation study based on the JULIETTE experiments

    International Nuclear Information System (INIS)

    Puragliesi, R.; Zhou, L.; Zerkak, O.; Pautz, A.

    2016-01-01

    Highlights: • CFD validation of k–ε (RANS model of EPR RPV. • Flat inlet velocity profile is not sufficient to correctly predict the pressure drops. • Swirl is responsible for asymmetric loads at the core barrel. • Parametric study to the turbulent Schmidt number for better predictions of passive-scalar transport. • The optimal turbulent Schmidt number was found to be one order of magnitude smaller than the standard value. - Abstract: Validating computational fluid dynamics (CFD) models against experimental measurements is a fundamental step towards a broader acceptance of CFD as a tool for reactor safety analysis when best-estimate one-dimensional thermal-hydraulic codes present strong modelling limitations. In the present paper numerical results of steady-state RANS analyses are compared to pressure, volumetric flow rate and concentration distribution measurements in different locations of an Areva EPR™ reactor pressure vessel (RPV) mock-up named JULIETTE. Several flow configurations are considered: Three different total volumetric flow rates, cold leg velocity field with or without swirl, three or four reactor coolant pumps functioning. Investigations on the influence of two types of inlet boundary profiles (i.e. flat or 1/7th power-law) and the turbulent Schmidt number have shown that the first affects sensibly the pressure loads at the core barrel whereas the latter parameter strongly affects the transport and the mixing of the tracer (passive scalar) and consequently its distribution at the core inlet. Furthermore, the introduction of an integral parameter as the swirl number has helped to decrease the large epistemic uncertainty associated with the swirling device. The swirl is found to be the cause of asymmetric loads on the walls of the core barrel and also asymmetries are enhanced for the tracer concentration distribution at the core inlet. The k–ϵ CFD model developed with the commercial code STAR-CCM+ proves to be able to predict

  14. Steady-state CFD simulations of an EPR™ reactor pressure vessel: A validation study based on the JULIETTE experiments

    Energy Technology Data Exchange (ETDEWEB)

    Puragliesi, R., E-mail: riccardo.puragliesi@psi.ch [Laboratory for Reactor Physics and Systems Behaviour, PSI, 5232 Villigen (Switzerland); Zhou, L. [Science and Technology on Reactor System Design Technology Laboratory, NPIC, Chengdu (China); Zerkak, O.; Pautz, A. [Laboratory for Reactor Physics and Systems Behaviour, PSI, 5232 Villigen (Switzerland)

    2016-04-15

    Highlights: • CFD validation of k–ε (RANS model of EPR RPV. • Flat inlet velocity profile is not sufficient to correctly predict the pressure drops. • Swirl is responsible for asymmetric loads at the core barrel. • Parametric study to the turbulent Schmidt number for better predictions of passive-scalar transport. • The optimal turbulent Schmidt number was found to be one order of magnitude smaller than the standard value. - Abstract: Validating computational fluid dynamics (CFD) models against experimental measurements is a fundamental step towards a broader acceptance of CFD as a tool for reactor safety analysis when best-estimate one-dimensional thermal-hydraulic codes present strong modelling limitations. In the present paper numerical results of steady-state RANS analyses are compared to pressure, volumetric flow rate and concentration distribution measurements in different locations of an Areva EPR™ reactor pressure vessel (RPV) mock-up named JULIETTE. Several flow configurations are considered: Three different total volumetric flow rates, cold leg velocity field with or without swirl, three or four reactor coolant pumps functioning. Investigations on the influence of two types of inlet boundary profiles (i.e. flat or 1/7th power-law) and the turbulent Schmidt number have shown that the first affects sensibly the pressure loads at the core barrel whereas the latter parameter strongly affects the transport and the mixing of the tracer (passive scalar) and consequently its distribution at the core inlet. Furthermore, the introduction of an integral parameter as the swirl number has helped to decrease the large epistemic uncertainty associated with the swirling device. The swirl is found to be the cause of asymmetric loads on the walls of the core barrel and also asymmetries are enhanced for the tracer concentration distribution at the core inlet. The k–ϵ CFD model developed with the commercial code STAR-CCM+ proves to be able to predict

  15. A pilot application of the RELAP file to the steady state and transient analysis of a test section inside the BR2 reactor

    International Nuclear Information System (INIS)

    Ferri, M. G.; D'Auria, F.; Forasassi, G.; Giot, M.

    2000-01-01

    BR2 is a material test reactor sited in the Belgian Nuclear Research Centre in Mol. The main research programs carried out in BR2 are related to the safety of nuclear reactor structural materials and fuels, in normal and accidental conditions, plant lifetime evaluation and ageing of components. In this framework, a computer program that allows the performance of detailed, steady state analysis of several kinds of in-pile sections with an axisymmetrical geometry has been developed. Furthermore, comparing its results with those of the well known, extensively used, Relap5/Mod 3.2 code on a test problem has validated this program. This was performed in three steps: 1. modalisation development of a subsystem of a typical in-pile section. 2. steady state analysis and comparison with the above-mentioned program. 3. transient simulation of the same system; the considered transient consists of a loss of coolant flow. (author)

  16. Steady-state thermal-hydraulic analysis of the Moroccan TRIGA MARK II reactor by using PARET/ANL and COOLOD-N2 codes

    International Nuclear Information System (INIS)

    Boulaich, Y.; Nacir, B.; El Bardouni, T.; Zoubair, M.; El Bakkari, B.; Merroun, O.; El Younoussi, C.; Htet, A.; Boukhal, H.; Chakir, E.

    2011-01-01

    Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. In order to validate our PARET/ANL and COOLOD-N2 models, the fuel center temperature as function of core power was calculated and compared with the corresponding experimental values. The comparison indicates that the calculated values are in satisfactory agreement with the measurement. The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). Therefore, we have calculated the departure from nucleate boiling ratio (DNBR), fuel center and surface temperature, cladding surface temperature and coolant temperature profiles across the hottest channel. The most important conclusion is that all obtained values are largely far to compromise safety of the reactor.

  17. KIM, Steady-State Transport for Fixed Source in 2-D Thermal Reactor by Monte-Carlo

    International Nuclear Information System (INIS)

    Cupini, E.; De Matteis, A.; Simonini, R.

    1980-01-01

    1 - Description of problem or function: KIM (K-infinite Monte Carlo) is a program which solves the steady-state linear transport equation for a fixed-source problem (or, by successive fixed-source runs, for the eigenvalue problem) in a two-dimensional infinite thermal reactor lattice. The main quantities computed in some broad energy groups are the following: - Fluxes and cross sections averaged over the region (i.e. a space portion that can be unconnected but contains everywhere the same homogeneous material), grouping of regions, the whole element. - Average absorption and fission rates per nuclide. - Average flux, absorption and production distributions versus energy. 2 - Method of solution: Monte Carlo simulation is used by tracing particle histories from fission birth down through the resonance region until absorption in the thermal range. The program is organised in three sections for fast, epithermal and thermal simulation, respectively; each section implements a particular model for both numerical techniques and cross section representation (energy groups in the fast section, groups or resonance parameters in the epithermal section, points in the thermal section). During slowing down (energy above 1 eV) nuclei are considered as stationary, with the exception of some resonance nuclei whose spacing between resonances is much greater than the resonance width. The Doppler broadening of s-wave resonances of these nuclides is taken into account by computing cross sections at the current neutron energy and at the temperature of the nucleus hit. During thermalization (energy below 1 eV) the thermal motion of some nuclides is also considered, by exploiting scattering kernels provided by the library for light water, heavy water and oxygen at several temperatures. KIM includes splitting and Russian roulette. A characteristic feature of the program is its approach to the lattice geometry. In fact, besides the usual continuous treatment of the geometry using the well

  18. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    This report contains an overview of the Aries-I tokamak reactor study. The following topics are discussed on this tokamak: Systems studies; equilibrium, stability, and transport; summary and conclusions; current drive; impurity control system; tritium systems; magnet engineering; fusion-power-core engineering; power conversion; Aries-I safety design and analysis; design layout and maintenance; and start-up and operations

  19. User's manual for ASTERIX-2: A two-dimensional modular code system for the steady state and xenon transient analysis of a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Wu, T.; Cowan, C.L.; Lauer, A.; Schwiegk, H.J.

    1982-03-01

    The ASTERIX modular code package was developed at KFA Laboratory-Juelich for the steady state and xenon transient analysis of a pebble bed high temperature reactor. The code package was implemented on the Stanford Linear Accelerator Center Computer in August, 1980, and a user's manual for the current version of the code, identified as ASTERIX-2, was prepared as a cooperative effort by KFA Laboratory and GE-ARSD. The material in the manual includes the requirements for accessing the program, a description of the major subroutines, a listing of the input options, and a listing of the input data for a sample problem. The material is provided in sufficient detail for the user to carry out a wide range of analysis from steady state operations to the xenon induced power transients in which the local xenon, temperature, buckling and control feedback effects have been incorporated in the problem solution. (orig.)

  20. The ARIES-I tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    This report discusses the following topics on the Aries-I Tokamak: Design description; systems studies and economics; reactor plasma physics; magnet engineering; fusion-power-ore engineering; and environmental and safety features

  1. Blanket concepts for the ARIES commercial tokamak reactor study

    International Nuclear Information System (INIS)

    Grotz, S.P.; Ghoniem, N.M.; Hasan, M.Z.; Martin, R.C.; Najmabadi, F.; Sharafat, S.; Hua, T.; Sze, D.K.; Cheng, E.T.; Creedon, R.L.; Wong, C.P.C.; Herring, J.S.; Klein, A.; Snead, L.; Steiner, D.

    1989-01-01

    The ARIES study is a 3-year effort, started in 1988, exploring the potential of the tokamak to be an attractive and competitive commercial power reactor. Several different versions of the tokamak are being considered, combining different levels of extrapolations in physics and engineering databases. The first version studied in detail, ARIES-I, combines present-day physics (with minimal extrapolation) with aggressive engineering technology such as very high-field, superconducting magnets and low-activation silicon carbide composite materials. The ARIES-I version is designed to meet acceptable safety and environmental criteria. In particular, achieving a passively safe concept that meets Class-C waste disposal is one of the high leverage items in the design. This paper summarizes the scoping analysis and engineering design of the ARIES-I fusion-power-core subsystems. The ARIES-I design is a 1000 MW e power reactor, operating at steady state in the 1 st stability regime and uses a high magnetic field. Typical operating parameters of the ARIES-I strawman design are listed

  2. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    International Nuclear Information System (INIS)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.; Attenberger, S.E.

    1988-01-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor plasma (Tokamak Ignition/Burn Experimental Reactor) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-dimensional transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alpha concentration significantly influence the ignition and steady-state burn capability

  3. Plasma-gun fueling for tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1980-11-01

    In light of the uncertain extrapolation of gas puffing for reactor fueling and certain limitations to pellet injection, the snowplow plasma gun has been studied as a fueling device. Based on current understanding of gun and plasma behavior a design is proposed, and its performance is predicted in a tokamak reactor environment

  4. D-D tokamak reactor assessment

    International Nuclear Information System (INIS)

    Baxter, D.C.; Dabiri, A.E.

    1983-01-01

    A quantitative comparison of the physics and technology requirements, and the cost and safety performance of a d-d tokamak relative to a d-t tokamak has been performed. The first wall/blanket and energy recovery cycle for the d-d tokamak is simpler, and has a higher efficiency than the d-t tokamak. In most other technology areas (such as magnets, RF, vacuum, etc.) d-d requirements are more severe and the systems are more complex, expensive and may involve higher technical risk than d-t tokamak systems. Tritium technology for processing the plasma exhaust, and tritium refueling technology are required for d-d reactors, but no tritium containment around the blanket or heat transport system is needed. Cost studies show that for high plasma beta and high magnetic field the cost of electricity from d-d and d-t tokamaks is comparable. Safety analysis shows less radioactivity in a d-d reactor but larger amounts of stored energy and thus higher potential for energy release. Consequences of all postulated d-d accidents are significantly smaller than those from d-t reactor tritium releases

  5. Magnet design considerations for Tokamak fusion reactors

    International Nuclear Information System (INIS)

    Purcell, J.R.; Chen, W.; Thomas, R.

    1976-01-01

    Design problems for superconducting ohmic heating and toroidal field coils for large Tokamak fusion reactors are discussed. The necessity for making these coils superconducting is explained, together with the functions of these coils in a Tokamak reactor. Major problem areas include materials related aspects and mechanical design and cryogenic considerations. Projections and comparisons are made based on existing superconducting magnet technology. The mechanical design of large-scale coils, which can contain the severe electromagnetic loading and stress generated in the winding, are emphasized. Additional major tasks include the development of high current conductors for pulsed applications to be used in fabricating the ohmic heating coils. It is important to note, however, that no insurmountable technical barriers are expected in the course of developing superconducting coils for Tokamak fusion reactors. (Auth.)

  6. Starlite figures of merit for tokamak current drive - economic analysis of pulsed and steady state power plants with various engineering and physics performance parameters

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1995-09-01

    The physics efficiency of current drive (γ B ∝ n e I o R o /P CD ), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for γ B depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium

  7. STARLITE figures of merit for tokamak current drive -- Economic analysis of pulsed and steady state power plants with various engineering and physics performance parameters

    International Nuclear Information System (INIS)

    Ehst, D.A.; Jardin, S.; Kessel, C.

    1995-10-01

    The physics efficiency of current drive (γ B ∝ n e I 0 R 0 /P CD ), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for γ B depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium

  8. A model for steady-state and transient determination of subcooled boiling for calculations coupling a thermohydraulic and a neutron physics calculation program for reactor core calculation

    International Nuclear Information System (INIS)

    Mueller, R.G.

    1987-06-01

    Due to the strong influence of vapour bubbles on the nuclear chain reaction, an exact calculation of neutron physics and thermal hydraulics in light water reactors requires consideration of subcooled boiling. To this purpose, in the present study a dynamic model is derived from the time-dependent conservation equations. It contains new methods for the time-dependent determination of evaporation and condensation heat flow and for the heat transfer coefficient in subcooled boiling. Furthermore, it enables the complete two-phase flow region to be treated in a consistent manner. The calculation model was verified using measured data of experiments covering a wide range of thermodynamic boundary conditions. In all cases very good agreement was reached. The results from the coupling of the new calculation model with a neutron kinetics program proved its suitability for the steady-state and transient calculation of reactor cores. (orig.) [de

  9. Energy storage for tokamak reactor cycles

    International Nuclear Information System (INIS)

    Buchanan, C.H.

    1979-01-01

    The inherent characteristic of a tokamak reactor requiring periodic plasma quench and reignition introduces the problem of energy storage to permit continuous electrical output to the power grid. The cycle under consideration in this paper is a 1000 second burn followed by a 100 second reignition phase. The physical size of a typical toroidal plasma reaction chamber for a tokamak reactor has been described earlier. The thermal energy storage requirements described in this reference will serve as a basis for much of the ensuing discussion

  10. Long-term ammonia removal in a coconut fiber-packed biofilter: analysis of N fractionation and reactor performance under steady-state and transient conditions.

    Science.gov (United States)

    Baquerizo, Guillermo; Maestre, Juan P; Machado, Vinicius C; Gamisans, Xavier; Gabriel, David

    2009-05-01

    A comprehensive study of long-term ammonia removal in a biofilter packed with coconut fiber is presented under both steady-state and transient conditions. Low and high ammonia loads were applied to the reactor by varying the inlet ammonia concentration from 90 to 260 ppm(v) and gas contact times ranging from 20 to 36 s. Gas samples and leachate measurements were periodically analyzed and used for characterizing biofilter performance in terms of removal efficiency (RE) and elimination capacity (EC). Also, N fractions in the leachate were quantified to both identify the experimental rates of nitritation and nitratation and to determine the N leachate distribution. Results showed stratification in the biofilter activity and, thus, most of the NH(3) removal was performed in the lower part of the reactor. An average EC of 0.5 kg N-NH(3)m(-3)d(-1) was obtained for the whole reactor with a maximum local average EC of 1.7 kg N-NH(3)m(-3)d(-1). Leachate analyses showed that a ratio of 1:1 of ammonium and nitrate ions in the leachate was obtained throughout steady-state operation at low ammonia loads with similar values for nitritation and nitratation rates. Low nitratation rates during high ammonia load periods occurred because large amounts of ammonium and nitrite accumulated in the packed bed, thus causing inhibition episodes on nitrite-oxidizing bacteria due to free ammonia accumulation. Mass balances showed that 50% of the ammonia fed to the reactor was oxidized to either nitrite or nitrate and the rest was recovered as ammonium indicating that sorption processes play a fundamental role in the treatment of ammonia by biofiltration.

  11. Probability analysis of WWER-1000 fuel elements behavior under steady-state, transient and accident conditions of reactor operation

    International Nuclear Information System (INIS)

    Tutnov, A.; Alexeev, E.

    2001-01-01

    'PULSAR-2' and 'PULSAR+' codes make it possible to simulate thermo-mechanical and thermo-physical parameters of WWER fuel elements. The probabilistic approach is used instead of traditional deterministic one to carry out a sensitive study of fuel element behavior under steady-state operation mode. Fuel elements initial parameters are given as a density of the probability distributions. Calculations are provided for all possible combinations of initial data as fuel-cladding gap, fuel density and gas pressure. Dividing values of these parameters to intervals final variants for calculations are obtained . Intervals of permissible fuel-cladding gap size have been divided to 10 equal parts, fuel density and gas pressure - to 5 parts. Probability of each variant realization is determined by multiplying the probabilities of separate parameters, because the tolerances of these parameters are distributed independently. Simulation results are turn out in the probabilistic bar charts. The charts present probability distribution of the changes in fuel outer diameter, hoop stress kinetics and fuel temperature versus irradiation time. A normative safety factor is introduced for control of any criterion realization and for determination of a reserve to the criteria failure. A probabilistic analysis of fuel element behavior under Reactivity Initiating Accident (RIA) is also performed and probability fuel element depressurization under hypothetical RIA is presented

  12. Progress and prospect of true steady state operation with RF

    Directory of Open Access Journals (Sweden)

    Jacquinot Jean

    2017-01-01

    Full Text Available Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.

  13. On steady-state concentrations of ammonia and molecular hydrogen in the primary circuit of the WWER-1000 reactors

    International Nuclear Information System (INIS)

    Arkhipov, O.P.; Bugaenko, V.L.; Kamakchi, S.A.

    1997-01-01

    It is shown that the MORAVA-N2 software package describes well the coolant state in the primary circuit of an actual reactor facility with the WWER-1000 during on-load operation. It permits using the package for analysis of process perturbation effect on the coolant composition. Specific feature of ammonia radiation chemistry in the primary circuit of a reactor facility with the WWER-1000, assuring the rates hydrogen concentration in the coolant with ammonia concentration variation in the coolant within wide limits, when reactor operates on power, can be mentioned by way of example, the fact being ascertained in this study

  14. Application of high temperature ceramic superconductors (CSC) to commercial tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kim, S.; Gohar, Y.; Turner, L.; Smith, D.L.; Mattas, R.

    1987-10-01

    Ceramic superconductors operating near liquid nitrogen temperature may experience higher heating rates without losing stability, compared to conventional superconductors. This will permit cable design with less stabilizer, reducing fabrication costs for large fusion magnets. Magnet performance is studied for different operating current densities in the superconductor, and cost benefits to commercial tokamak reactors are estimated. It appears that 10 kA . cm -2 (at 77 K and ∼10 T) is a target current density which must be achieved in order for the ceramic superconductors to compete with conventional materials. At current densities around 50 kA . cm -2 most potential benefits have already been gained, as magnet structural steel begins to dominate the cost at this point. For a steady state reactor reductions of ∼7% are forecast for the overall capital cost of the power plant in the best case. An additional ∼3% cost saving is possible for pulsed tokamaks. 9 refs., 4 figs., 8 tabs

  15. RF-driven tokamak reactor with sub-ignited, thermally stable operation

    International Nuclear Information System (INIS)

    Harten, L.P.; Bers, A.; Fuchs, V.; Shoucri, M.M.

    1981-02-01

    A Radio-Frequency Driven Tokamak Reactor (RFDTR) can use RF-power, programmed by a delayed temperature measurement, to thermally stabilize a power equilibrium below ignition, and to drive a steady state current. We propose the parameters for such a device generating approx. = 1600 MW thermal power and operating with Q approx. = 40 (= power out/power in). A one temperature zero-dimensional model allows simple analytical formulation of the problem. The relevance of injected impurities for locating the equilibrium is discussed. We present the results of a one-dimensional (radial) code which includes the deposition of the supplementary power, and compare with our zero-dimensional model

  16. COOLOD-N: a computer code, for the analyses of steady-state thermal-hydraulics in plate-type research reactors

    International Nuclear Information System (INIS)

    Kaminaga, Masanori

    1990-02-01

    The COOLOD-N code provides a capability for the analysis of the steady-state thermal-hydraulics of research reactors in which plate-type fuel is employed. This code is revised version of the COOLOD code, and is applicable not only to a forced convection cooling mode, but also to a natural convection cooling mode. In the code, a function to calculate flow rate under a natural convection, and a heat transfer package which was a subroutine program to calculate heat transfer coefficient, ONB temperature and DNB heat flux, and was especially developed for the upgraded JRR-3, have been newly added to the COOLOD code. The COOLOD-N code also has a capability of calculating the heat flux at onset of flow instability as well as DNB heat flux. (author)

  17. A conceptual design of superconducting spherical tokamak reactor

    International Nuclear Information System (INIS)

    Nagayama, Yoshio; Shinya, Kichiro; Tanaka, Yasutoshi

    2012-01-01

    This paper presents a fusion reactor concept named 'JUST (Japanese Universities' Super Tokamak reactor)'. From the plasma confinement system to the power generation system is evaluated in this work. JUST design has features as follows: the superconducting magnet, the steady state operation with high bootstrap current fraction, the easy replacement of neutron damaged first wall, the high heat flux in the divertor, and the low cost (or high β). By winding the OH solenoid over the center stack of toroidal field coil, we have the low aspect ratio and the 80cm thick neutron shield to protect the superconducting center stack. JUST is designed by using the 0-D transport code under the assumption that the energy confinement time is 1.8 times of the IPB98(y,2) scaling. Main parameters are as follows: the major radius of 4.5m, the aspect ratio of 1.8, the elongation ratio of 2.5, the toroidal field of 2.36T, the plasma current of 18MA, the toroidal beta of 22%, the central electron and ion temperature of 15keV and the fusion thermal power of 2.4GW. By using the mercury heat exchanger and the steam turbine, the heat efficiency is 33% and the electric power is 0.74GW. (author)

  18. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1983-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and the USSR, under the auspices of the IAEA, to assess, define, design, construct and operate the next major experiment in the World Tokamak Program beyond the TFTR, JET, JT-60, T-15 generation. During the Zero-Phase (1979), a technical data base assessment was performed, leading to a positive assessment of feasibility. During Phase-I (1/80-6/81), a conceptual design was developed to define the concept. The programmatic objectives are that INTOR should: (1) be the maximum reasonable step beyond the TFTR, JET, JT-60, T-15 generation of tokamaks, (2) demonstrate the plasma performance required for tokamak DEMOs, (3) test the development and integration into a reactor system of those technologies required for a DEMO, (4) serve as a test facility for blanket, tritium production, materials, and plasma engineering technology, (5) test fusion reactor component reliability, (6) test the maintainability of a fusion reactor, and (7) test the factors affecting the reliability, safety and environmental acceptability of a fusion reactor. A conceptual design has been developed to define a device which is consistent with these objectives. The design concept could, with a reasonable degree of confidence, be developed into a workable engineering design of a tokamak that met the performance objectives of INTOR. There is some margin in the design to allow for uncertainty. While design solutions have been found for all of the critical issues, the overall design may not yet be optimal. (author)

  19. Pellet injectors for steady state plasma fuelling

    International Nuclear Information System (INIS)

    Vinyar, I.; Geraud, A.; Yamada, H.; Lukin, A.; Sakamoto, R.; Skoblikov, S.; Umov, A.; Oda, Y.; Gros, G.; Krasilnikov, I.; Reznichenko, P.; Panchenko, V.

    2005-01-01

    Successful steady state operation of a fusion reactor should be supported by repetitive pellet injection of solidified hydrogen isotopes in order to produce high performance plasmas. This paper presents pneumatic pellet injectors and its implementation for long discharge on the LHD and TORE SUPRA, and a new centrifuge pellet injector test results. All injectors are fitted with screw extruders well suited for steady state operation

  20. Steady state thermal hydraulic analysis of a boiling water reactor core, for various power distributions, using computer code THABNA

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Saha, D.

    1976-01-01

    The core of a boiling water reactor may see different power distributions during its operational life. How some of the typical power distributions affect some of the thermal hydraulic parameters such as pressure drop minimum critical heat flux ratio, void distribution etc. has been studied using computer code THABNA. The effect of an increase in the leakage flow has also been analysed. (author)

  1. Alfven wave heating in a tokamak reactor

    International Nuclear Information System (INIS)

    Borg, G.G.; Appert, K.; Knight, A.J.; Lister, J.B.; Vaclavik, J.

    1990-01-01

    A number of features of Alfven wave heating make it potentially attractive for use in large tokamak reactors. Among them are the availability and relativity low cost of the power supplies, the potential ability to act selectively on the current profile, and the probable absence of operational limits in size, fields or density. The physics of Alfven wave heating in a large tokamak is assessed. Present theoretical understanding of mode coupling and antenna loading is extrapolated to a large machine. The problem of a recessed antenna is analysed. Calculations of loading and discussion of various heating scenarios for the particular case of NET are also presented. (author). 23 refs, 18 figs, 4 tabs

  2. Steady-state thermal-hydraulic analysis of the pellet-bed reactor for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Morley, N.J.; Yang, J.Y.

    1992-01-01

    The pellet-bed reactor (PBR) for nuclear thermal propulsion is a hydrogen-cooled, BeO-reflected, fast reactor, consisting of an annular core region filled with randomly packed, spherical fuel pellets. The fuel pellets in the PBR are self-supported, eliminating the need for internal core structure, which simplifies the core design and reduces the size and mass of the reactor. Each spherical fuel pellet is composed of hundreds of fuel microspheres embedded in a zirconium carbide (ZrC) matrix. Each fuel microsphere is composed of a UC-NbC fuel kernel surrounded by two consecutive layers of the NbC and ZrC. Gaseous hydrogen serves both as core coolant and as the propellant for the PBR rocket engine. The cold hydrogen flows axially down the inlet channel situated between the core and the external BeO reflector and radially through the orifices in the cold frit, the core, and the orifices in the hot frit. Finally, the hot hydrogen flows axially out the central channel and exits through converging-diverging nozzle. A thermal-hydraulic analysis of the PBR core was performed with an emphasis on optimizing the size and axial distribution of the orifices in the hot and cold frits to ensure that hot spots would not develop in the core during full-power operation. Also investigated was the validity of the assumptions of neglecting the axial conduction and axial cross flow in the core

  3. Steady State Simulation of Two-Gas Phase Fluidized Bed Reactors in Series for Producing Linear Low Density Polyethylene

    Directory of Open Access Journals (Sweden)

    Ali Farhangiyan Kashani

    2012-12-01

    Full Text Available A linear low density polyethylene (LLDPE production process, including two- fuidized bed reactors in series (FBRS and other process equipment, was completely simulated by Aspen Polymer Plus software. Fluidized bed reactors were considered as continuous stirred tank reactors (CSTR consisted of polymer and gas phases. POLY-SRK and NRTL-RK equations of state were used to describe polymer and non-polymer streams, respectively. In this simulation, a kinetic model, based on a double active site heterogeneous Ziegler-Natta catalyst was used for simulation of LLDPE process consisting of two FBRS. Simulator using this model has the capability to  predict a number of  principal characteristics of LLDPE such as melt fow index (MFI, density, polydispersity index, numerical and weight average molecular weights (Mn,Mw and copolymer molar fraction (SFRAC. The results of the simulation were compared with industrial plant data and a good agreement was observed between the predicted model and plant data. The simulation results show the relative error of about 0.59% for prediction of polymer mass fow and 2.67% and 0.04% for prediction of product MFI and density, respectively.

  4. Steady state investigation on neutronics of a molten salt reactor considering the flow effect of fuel salt

    International Nuclear Information System (INIS)

    Zhang Dalin; Qiu Suizheng; Su Guanghui; Liu Changliang

    2008-01-01

    The Molten Salt Reactor (MSR), one of the 'Generation IV' concepts, is a liquid-fuel reactor, which is different from the conventional reactors using solid fissile materials due to the flow effect of fuel salt. The study on its neutronics considering the fuel salt flow, which is the base of the thermal-hydraulic calculation and safety analysis, must be done. In this paper, the theoretical model on neutronics under steady condition for a single-liquid-fueled MSR is conducted and calculated by numerical method. The neutronics model consists of two group neutron diffusion equations for fast and thermal neutron fluxes, and balance equations for six-group delayed neutron precursors considering the flow effect of fuel salt. The spatial discretization of the above models is based on the finite volume method, and the discretization equations are computed by the source iteration method. The distributions of neutron fluxes and the distributions of the delayed neutron precursors in the core are obtained. The numerical calculated results show that, the fuel salt flow has little effect on the distribution of fast and thermal neutron fluxes and the effective multiplication factor; however, it affects the distribution of the delayed neutron precursors significantly, especially the long-lived one. In addition, it could be found that the delayed neutron precursors influence the neutronics slightly under the steady condition. (authors)

  5. Steady state investigation on neutronics of a molten salt reactor considering the flow effect of fuel salt

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-Lin; QIU Sui-Zheng; LIU Chang-Liang; SU Guang-Hui

    2008-01-01

    The Molten Salt Reactor (MSR),one of the‘Generation Ⅳ'concepts,is a liquid-fuel reactor,which is different from the conventional reactors using solid fissile materials due to the flow effect of fuel salt.The study on its neutronice considering the fuel salt flow,which is the base of the thermal-hydraulic calculation and safety analysis,must be done.In this paper,the theoretical model on neutronics under steady condition for a single-liquid-fueled MSR is conducted and calculated by numerical method.The neutronics model consists of two group neutron diffusion equations for fast and thermal neutron fluxes,and balance equations for six-group delayed neutron precursors considering the flow effect of fuel salt. The spatial discretization of the above models is based on the finite volume method,and the discretization equations are computed by the source iteration method.The distributions of neutron fluxes and the distributions of the delayed neutron precursors in the core are obtained.The numerical calculated results show that,the fuel salt flow has little effect on the distribution of fast and thermal neutron fluxes and the effective multiplication factor;however,it affects the distribution of the delayed neutron precursors significantly,especially the long-lived one.In addition,it could be found that the delayed neutron precursors influence the nentronics slightly under the steady condition.

  6. Tokamak power systems studies, FY 1986: A second stability power reactor

    International Nuclear Information System (INIS)

    Ehst, D.; Baker, C.; Billone, M.

    1987-03-01

    This report presents the results of the work at Argonne National Laboratory (ANL) during FY-1986 on the Tokamak Power Systems Study (TPSS). The purpose of the TPSS is to explore and develop ideas that would lead to improvements in the tokamak as a power reactor concept. The work at ANL concentrated on plasma engineering, impurity control, and the blanket/first wall/shield system. The work in FY-1986 extended these studies and focused them on a reference design point. The key features of the design point include: second stability regime with higher β and larger aspect ratio, steady-state operation with fast wave current drive, impurity control via a self-pumped slot limiter, a self-cooled liquid lithium, vanadium alloy blanket with simplified poloidal flow, and reduced reactor building volume with vertical lift maintenance. Sufficient work was carried out to report a preliminary cost estimate. In addition, reactor implications of steady-state operation in the first stability regime were also studied. 174 refs., 124 figs., 65 tabs

  7. Numerical investigation of the 3-dimensional steady-state temperature- and flow distribution in the core of a pebble bed high temperature reactor

    International Nuclear Information System (INIS)

    Verfondern, K.

    1983-01-01

    This work presents a computer model determining the steady-state temperature- and flow field in 3 dimensions in the core of a pebble bed high temperature reactor. The numerical sprinkler method, basind on the Thermix-model, allows to describe the thermo-hydraulics of a non-rotational-symmetric core-geometry. The AVR-reactor in Juelich, in operation since 1967, represents a suitable investigation-object for the computer model of Thermix-3D. It is in a 3D-mesh-structure to reproduce very precisely the so called ''graphite noses'', in which the shut-down rods are conducted as well as the filling cones in the inner and outer area. The results of the final calculation of the normal operation condition for the AVR-reactor unambiguously show, that within the core reproduced in 3 dimensions there are evident deviations in the flow profile and in the temperatures of the cooling gas in contrast to a 2D-handling. (orig.) [de

  8. Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions.

    Science.gov (United States)

    Cardinali-Rezende, Juliana; Colturato, Luís F D B; Colturato, Thiago D B; Chartone-Souza, Edmar; Nascimento, Andréa M A; Sanz, José L

    2012-09-01

    The prokaryotic diversity of an anaerobic reactor for the treatment of municipal solid waste was investigated over the course of 2 years with the use of 16S rDNA-targeted molecular approaches. The fermentative Bacteroidetes and Firmicutes predominated, and Proteobacteria, Actinobacteria, Tenericutes and the candidate division WWE1 were also identified. Methane production was dominated by the hydrogenotrophic Methanomicrobiales (Methanoculleus sp.) and their syntrophic association with acetate-utilizing and propionate-oxidizing bacteria. qPCR demonstrated the predominance of the hydrogenotrophic over aceticlastic Methanosarcinaceae (Methanosarcina sp. and Methanimicrococcus sp.), and Methanosaetaceae (Methanosaeta sp.) were measured in low numbers in the reactor. According to the FISH and CARD-FISH analyses, Bacteria and Archaea accounted for 85% and 15% of the cells, respectively. Different cell counts for these domains were obtained by qPCR versus FISH analyses. The use of several molecular tools increases our knowledge of the prokaryotic community dynamics from start-up to steady-state conditions in a full-scale MSW reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Experimental and theoretical comparison of fuel temperature and bulk coolant characteristics in the Oregon State TRIGA reactor during steady state operation

    Energy Technology Data Exchange (ETDEWEB)

    Marcum, W.R., E-mail: marcumw@engr.orst.ed [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States); Woods, B.G.; Reese, S.R. [Oregon State University, Department of Nuclear Engineering and Radiation Health Physics, 116 Radiation Center, Corvallis, OR 97330 (United States)

    2010-01-15

    In September of 2008 Oregon State University (OSU) completed its core conversion analysis as part of the Reduced Enrichment for Research and Test Reactors (RERTR) Program. Experimental bulk coolant temperatures were collected in various locations throughout the Oregon State TRIGA Reactor (OSTR) core in order to supplement the validity of the numerical thermal hydraulic results produced in RELAP5-3D Version 2.4.2. Axial bulk coolant temperature distributions were collected by acquiring discrete thermocouple measurements in individual subchannel locations during steady state operation at 1.0 MW{sub th}. The experimental axial temperature distribution collected was compared to one-channel, two-channel, and eight-channel RELAP5-3D models and found to match within 11.94%, 11.69%, and 8.78%, respectively, on average. Comparisons to similar studies were made based on a dimensional analysis of fluid body forces in the discrete core locations, indicating that the chosen approach produces conservative results for use in the OSTR safety analysis.

  10. The STAT7 Code for Statistical Propagation of Uncertainties In Steady-State Thermal Hydraulics Analysis of Plate-Fueled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Nuclear Reactor Lab.; Wilson, Erik [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The STAT code was written to automate many of the steady-state thermal hydraulic safety calculations for the MIT research reactor, both for conversion of the reactor from high enrichment uranium fuel to low enrichment uranium fuel and for future fuel re-loads after the conversion. A Monte-Carlo statistical propagation approach is used to treat uncertainties in important parameters in the analysis. These safety calculations are ultimately intended to protect against high fuel plate temperatures due to critical heat flux or departure from nucleate boiling or onset of flow instability; but additional margin is obtained by basing the limiting safety settings on avoiding onset of nucleate boiling. STAT7 can simultaneously analyze all of the axial nodes of all of the fuel plates and all of the coolant channels for one stripe of a fuel element. The stripes run the length of the fuel, from the bottom to the top. Power splits are calculated for each axial node of each plate to determine how much of the power goes out each face of the plate. By running STAT7 multiple times, full core analysis has been performed by analyzing the margin to ONB for each axial node of each stripe of each plate of each element in the core.

  11. Cryogenic analysis of forced-cooled, superconducting TF magnets for compact tokamak reactors

    International Nuclear Information System (INIS)

    Kerns, J.A.; Slack, D.S.; Miller, J.R.

    1988-01-01

    Current designs for compact tokamak reactors require the toroidal- field (TF) superconducting magnets to produce fields from 10 to 15 T at the winding pack, using high-current densities to high nuclear heat loads (greater than 1 kW/coil in some instances), which are significantly greater than the conduction and radiation heat loads for which cryogenic systems are usually designed. A cryogenic system for the TF winding pack for two such tokamak designs has been verified by performing a detailed, steady-state heat-removal analysis. Helium properties along the forced-cooled conductor flow path for a range of nuclear heat loads have been calculated. The results and implications of this analysis are presented. 12 refs., 6 figs

  12. The ICRH tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Perkins, F.W.

    1976-01-01

    A Tokamak Fusion Test Reactor where the ion are maintained at Tsub(i) approximately 20keV>Tsub(e) approximately 7keV by ion-cyclotron resonance heating is shown to produce an energy amplification of Q>2 provided the principal ion energy loss channel is via collisional transfer to the electrons. Such a reactor produces 19MW of fusion power to the electrons. Such a reactor produces 19MW of fusion power and requires a 50MHz radio-frequency generator capable of 50MW peak power; it is otherwise compatible with the conceptual design for the Princeton TFTR. The required n tausub(E) values for electrons and ions are respectively ntausub(Ee)>1.5.10 13 cm -3 -sec and ntausub(Ei)>4.10 13 cm -3 -sec. The principal areas where research is needed to establish this concept are: tokamak transport calculations, ICRH physics, trapped-particle instability energy losses, tokamak equilibria with high values of βsub(theta), and, of course, impurities

  13. A tokamak reactor with servicing capability

    International Nuclear Information System (INIS)

    Mitchell, J.T.D.; Hollis, A.

    1976-01-01

    A conceptual design for a Tokamak reactor with practical facilities for the regular replacement of blanket components after the inevitable damage from neutron irradiation, and fatigue is described. This essential facility has been largely ignored in published fusion reactor designs. One exception is the inertially-confined Saturn proposal. Tokamak and other toroidal closed-line systems have very complex geometries and sub-system requirements, which result in blanket servicing being a very difficult problem. In the concept described the magnet shield is divided into two structures - an outer permanent one with access doors and an inner shield, part of and supporting the blanket inside. Servicing access is horizontally between the toroidal magnet coils, after moving some outer poloidal magnet coils. The reactor, reactor hall, workshops and remote-handling facilities are described, and the servicing requirements discussed. The important servicing operation is the remote replacement of radiation damaged blanket and shield - divided in this design into 20 sectors, each weighing 75-100 tons and 11-12 metres high. Analysis of the operation indicates that if one sector can be replaced during a single weekend - i.e. a period of low power demand - then the annual reactor-generator availability allowing as well for the general plant servicing should be >0.9. This level of availability should meet the requirements of generating authorities but the facilities, equipment and workshops necessary may be complex and expensive

  14. System assessment of helical reactors in comparison with tokamaks

    International Nuclear Information System (INIS)

    Yamazaki, K.; Imagawa, S.; Muroga, T.; Sagara, A.; Okamura, S.

    2002-10-01

    A comparative assessment of tokamak and helical reactors has been performed using equivalent physics/engineering model and common costing model. Higher-temperature plasma operation is required in tokamak reactors to increase bootstrap current fraction and to reduce current-drive (CD) power. In helical systems, lower-temperature operation is feasible and desirable to reduce helical ripple transport. The capital cost of helical reactor is rather high, however, the cost of electricity (COE) is almost same as that of tokamak reactor because of smaller re-circulation power (no CD power) and less-frequent blanket replacement (lower neutron wall loading). The standard LHD-type helical reactor with 5% beta value is economically equivalent to the standard tokamak with 3% beta. The COE of lower-aspect ratio helical reactor is on the same level of high-β N tokamak reactors. (author)

  15. Steady-state spheromak

    International Nuclear Information System (INIS)

    Jarboe, T.R.

    1982-01-01

    A major effort is being made in the national program to make the operation of axisymmetric, toroidal confinement systems steady state by the application of expensive rf current drive. Described here is a method by which such a confinement system, the spheromak, can be refluxed indefinitely through the application of dc power. As a step towards dc sustainment we have operated the present CTX source in the slow source mode with a longer power application time (approx. 0.1 ms) and successfully generated long-lived spheromaks. If the erosion of the electrodes can be controlled as well as it is with MPD arcs then dc operation should be very clean. If only a small fraction (approx. 10% for an experiment) of the poloidal flux of the spheromak connects to the source then the dc sustainment can be very efficient. The amount of connecting flux that is necessary for sustainment needs to be determined experimentally

  16. International tokamak reactor conceptual design overview

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.

    1981-01-01

    The International Tokamak Reactor (INTOR) Workshop is an unique collaborative effort among Euratom, Japan, the USA and USSR. The Zero-Phase of the INTOR Workshop, which was conducted during 1979, assessed the technical data base that would support the construction of the next major device in the tokamak program to operate in the early 1990s and defined the objectives and characteristics of this device. The INTOR workshop was extended into phase-1, the Definition Phase, in early 1980. The objective of the Phase-1 Workshop was to develop a conceptual design of the INTOR experiment. The purpose of this paper is to give an overview of the work of the Phase-1 INTOR Workshop (January 1980-June 1981, with emphasis upon the conceptual design

  17. Decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Walton, G.R.

    1993-01-01

    The Tokamak Fusion Test Reactor (TFTR) at Princeton Plasma Physics Laboratory (PPPL) will complete its experimental lifetime with a series of deuterium-tritium pulses in 1994. As a result, the machine structures will become radioactive, and vacuum components will also be contaminated with tritium. Dose rate levels will range from less than 1 mr/h for external structures to hundreds of mr/h for the vacuum vessel. Hence, decommissioning operations will range from hands on activities to the use of remotely operated equipment. After 21 months of cool down, decontamination and decommissioning (D and D) operations will commence and continue for approximately 15 months. The primary objective is to render the test cell complex re-usable for the next machine, the Tokamak Physics Experiment (TPX). This paper presents an overview of decommissioning TFTR and discusses the D and D objectives

  18. UCLA program in reactor studies: The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1991-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Four ARIES visions are currently planned for the ARIES program. The ARIES-1 design is a DT-burning reactor based on ''modest'' extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. ARIES-2 and ARIES-4 are DT-burning reactors which will employ potential advances in physics. The ARIES-2 and ARIES-4 designs employ the same plasma core but have two distinct fusion power core designs; ARIES-2 utilize the lithium as the coolant and breeder and vanadium alloys as the structural material while ARIES-4 utilizes helium is the coolant, solid tritium breeders, and SiC composite as the structural material. Lastly, the ARIES-3 is a conceptual D- 3 He reactor. During the period Dec. 1, 1990 to Nov. 31, 1991, most of the ARIES activity has been directed toward completing the technical work for the ARIES-3 design and documenting the results and findings. We have also completed the documentation for the ARIES-1 design and presented the results in various meetings and conferences. During the last quarter, we have initiated the scoping phase for ARIES-2 and ARIES-4 designs

  19. Fractional power operation of tokamak reactors

    International Nuclear Information System (INIS)

    Mau, T.K.; Vold, E.L.; Conn, R.W.

    1986-01-01

    Methods to operate a tokamak fusion reactor at fractions of its rated power, identify the more effective control knobs and assess the impact of the requirements of fractional power operation on full power reactor design are explored. In particular, the role of burn control in maintaining the plasma at thermal equilibrium throughout these operations is studied. As a prerequisite to this task, the critical physics issues relevant to reactor performance predictions are examined and some insight into their impact on fractional power operation is offered. The basic tool of analysis consists of a zero-dimensional (0-D) time-dependent plasma power balance code which incorporates the most advanced data base and models in transport and burn plasma physics relevant to tokamaks. Because the plasma power balance is dominated by the transport loss and given the large uncertainty in the confinement model, the authors have studied the problem for a wide range of energy confinement scalings. The results of this analysis form the basis for studying the temporal behavior of the plasma under various thermal control mechanisms. Scenarios of thermally stable full and fractional power operations have been determined for a variety of transport models, with either passive or active feedback burn control. Important power control parameters, such as gas fueling rate, auxiliary power and other plasma quantities that affect transport losses, have also been identified. The results of these studies vary with the individual transport scaling used and, in particular, with respect to the effect of alpha heating power on confinement

  20. Design studies of Tokamak power reactor in JAERI

    International Nuclear Information System (INIS)

    Tone, T.; Nishikawa, M.; Tanaka, Y.

    1985-01-01

    Recent design studies of tokamak power reactor and related activities conducted in JAERI are presented. A design study of the SPTR (Swimming-Pool Type Reactor) concept was carried out in FY81 and FY82. The reactor design studies in the last two years focus on nuclear components, heat transport and energy conversion systems. In parallel of design studies, tokamak systems analysis code is under development to evaluate reactor performances, cost and net energy balance

  1. A computer code for Tokamak reactor concepts evaluation

    International Nuclear Information System (INIS)

    Rosatelli, F.; Raia, G.

    1985-01-01

    A computer package has been developed which could preliminarily investigate the engineering configuration of a tokamak reactor concept. The code is essentially intended to synthesize, starting from a set of geometrical and plasma physics parameters and the required performances and objectives, three fundamental components of a tokamak reactor core: blanket+shield, TF magnet, PF magnet. An iterative evaluation of the size, power supply and cooling system requirements of these components allows the judgment and the preliminary design optimization on the considered reactor concept. The versatility of the code allows its application both to next generation tokamak devices and power reactor concepts

  2. Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Perry, E.; Chrzanowski, J.; Gentile, C.; Parsells, R.; Rule, K.; Strykowsky, R.; Viola, M.

    2003-01-01

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D and D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D and D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D and D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget

  3. FRESCO: fusion reactor simulation code for tokamaks

    International Nuclear Information System (INIS)

    Mantsinen, M.J.

    1995-03-01

    The study of the dynamics of tokamak fusion reactors, a zero-dimensional particle and power balance code FRESCO (Fusion Reactor Simulation Code) has been developed at the Department of Technical Physics of Helsinki University of Technology. The FRESCO code is based on zero-dimensional particle and power balance equations averaged over prescribed plasma profiles. In the report the data structure of the FRESCO code is described, including the description of the COMMON statements, program input, and program output. The general structure of the code is described, including the description of subprograms and functions. The physical model used and examples of the code performance are also included in the report. (121 tabs.) (author)

  4. Simulation of MHD instability effects on burning plasma transport with ITB in tokamak and helical reactors

    International Nuclear Information System (INIS)

    Yamazaki, K.; Yamada, I.; Taniguchi, S.; Oishi, T.

    2009-01-01

    Full text: The high performance plasma behavior is required to realize economic and environmental-friendly fusion reactors compatible with conventional power plant systems. To improve plasma confinement, the formation of internal transport barrier (ITB) is anticipated, and its behavior is analyzed by the simulation code TOTAL (Toroidal Transport Linkage Analysis). This TOTAL code comprises a 2- or 3-dimensional equilibrium and 1-dimensional predictive transport code for both tokamak and helical systems. In the tokamak code TOTAL-T, the external current drive, bootstrap current, sawtooth oscillation, ballooning mode and neoclassical tearing mode (NTM) analyses are included. The steady-state burning plasma operation is achieved by the feedback control of pellet injection fuelling and external heating power control. The impurity dynamics of iron and tungsten is also included in this code. The NTM effects are evaluated using the modified Rutherford Model with the stabilization of the ECCD current drive. The excitation of m=2/n=1 NTM leads to the 20 % reduction in the central temperature in ITER-like reactors. Recently, the external non-resonant helical field application is analyzed and its stabilization properties are evaluated. The pellet injection effects on ITB formation is also clarified in tokamak and helical plasmas. Relationship between sawtooth oscillation and impurity ejection is recently simulated in comparison with experimental data. In this conference, we will show above-stated new results on MHD instability effects on burning plasma transport. (author)

  5. Important aspects of radiation shielding for fusion reactor tokamaks

    International Nuclear Information System (INIS)

    Abdou, M.A.

    1977-01-01

    Radiation shielding is a key subsystem in tokamak reactors. Design of this shield must evolve from economic and technological trade-off studies that account for the strong interrelations among the various components of the reactor system. These trade-offs are examined for the bulk shield on the inner side of the torus and for the special shields of major penetrations. Results derived are applicable for a large class of tokamak-type reactors

  6. Magnet design approach for pulsed tokamak reactors

    International Nuclear Information System (INIS)

    Kim, S.H.; Evans, K. Jr.; Ehst, D.A.

    1983-12-01

    A choice of various operating modes of a tokamak reactor will have considerable impact on the fatigue lives and cost of ohmic heating (OH), equilibrium field (EF), and toroidal field (TF) coils. OH AND EF coil requirements and their costs, as well as the effects of the fringing fields of the EF coils on the TF coils, have been studied under cyclic operation in the range of N = 10 2 to 10 6 cycles, spanning the range from a noninductively driven reactor (STARFIRE) to a conventional ohmically driven reactor. For a reference design of TF coils the design of the central OH solenoid has been studied as a function of its maximum field, B/sup OH/. Increasing requirements for structural support lead to only negligible increases in volt-seconds for B/sup OH/ greater than or equal to 10.0 T. Fatigue failure of the OH coil is not a concern for N less than or equal to 10 5 ; for N approx. 10 6 fatigue limits the strain to small values, resulting in small increases in structural requirements and modest decreases in volt-seconds. Should noninductive current drive be achievable we note that this not only eliminates the OH coil, but it also permits EF coil placement in the inboard region, which facilitates the creation of highly shaped plasma cross sections (large triangularity, or bean-shaped equilibria). We have computed the stored energy, coil configuration and fringing fields for a number of EF coil design options

  7. Steady states in conformal theories

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.

  8. User's manual for ASTERIX-2: a two-dimensional modular-code system for the steady-state and xenon-transient analysis of a pebble-bed high-temperature reactor

    International Nuclear Information System (INIS)

    Lauer, A.; Schwiegk, H.J.; Wu, T.; Cowan, C.L.

    1982-03-01

    The ASTERIX modular code package was developed at KFA Laboratory-Juelich for the steady state and xenon transient analysis of a pebble bed high temperature reactor. The code package was implemented on the Stanford Linear Accelerator Center Computer in August, 1980, and a user's manual for the current version of the code, identified as ASTERIX-2, was prepared as a cooperative effort by KFA Laboratory and GE-ARSD. The material in the manual includes the requirements for accessing the program, a description of the major subroutines, a listing of the input options, and a listing of the input data for a sample problem. The material is provided in sufficient detail for the user to carry out a wide range of analyses from steady state operations to the xenon induced power transients in which the local xenon, temperature, buckling and control feedback effects have been incorporated in the problem solution

  9. Cryogenic system design for a compact tokamak reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.; Miller, J.R.

    1988-01-01

    The International Tokamak Engineering Reactor (ITER) is a program presently underway to design a next-generation tokamak reactor. The cryogenic system for this reactor must meet unusual and new requirements. Unusually high heat loads (100 kW at 4.5 K) must be handled because neutron shielding has been limited to save space in the reactor core. Also, large variations in the cryogenics loads occur over short periods of time because of the pulsed nature of some of the operating scenarios. This paper describes a workable cryogenic system design for a compact tokamak reactor such as ITER. A design analysis is presented dealing with a system that handles transient loads, coil quenches, reactor cool-down and the effect of variations in helium-supply temperatures on the cryogenic stability of the coils. 5 refs., 4 figs., 1 tab

  10. Summary discussion: An integrated advanced tokamak reactor

    International Nuclear Information System (INIS)

    Sauthoff, N.R.

    1994-01-01

    The tokamak concept improvement workshop addressed a wide range of issues involved in the development of a more attractive tokamak. The agenda for the workshop progressed from a general discussion of the long-range energy context (with the objective being the identification of a set of criteria and ''figures of merit'' for measuring the attractiveness of a tokamak concept) to particular opportunities for the improvement of the tokamak concept. The discussions concluded with a compilation of research program elements leading to an improved tokamak concept

  11. Steady-state leaching of tritiated water from silica gel

    DEFF Research Database (Denmark)

    Das, H.A.; Hou, Xiaolin

    2009-01-01

    Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....

  12. Application of high temperature ceramic superconductors (CSC) to commercial tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kim, S.; Gohar, Y.; Turner, L.; Smith, D.L.; Mattas, R.

    1988-08-01

    Ceramic superconductors operating near liquid nitrogen temperature may experience higher heating rates without losing stability, compared conventional superconductors. This will permit cable design with less stabilizer, reducing fabrication costs for large fusion magnets. Magnet performance is studied for different operating current densities in the superconductor, and cost benefits to commercial tokamak reactors are estimated. It appears that 10 kA /center dot/ cm/sup /minus/2/ (at 77 K and /approximately/10 T) is a target current density which must be achieved in order for the ceramic superconductors to compete with conventional materials. At current densities around 50 kA /center dot/ cm/sup /minus/2/ most potential benefits have already been gained, as magnet structural steel begins to dominate the cost at this point. For a steady state reactor reductions of /approximately/7% are forecast for the overall capital cost of the power plant in the best case. An additional /approximately/3% cost saving is possible for pulsed tokamaks. 9 refs., 4 figs., 8 tabs

  13. The behaviour of water-cooled reactor fuel rods in steady state and transient conditions; Zachowanie sie pretow paliwowych reaktorow chlodzonych woda w stanach ustalonych i nieustalonych

    Energy Technology Data Exchange (ETDEWEB)

    Strupczewski, A.; Marks, P. [Institute of Atomic Energy, Otwock-Swierk (Poland)

    1997-12-31

    In this report, the results of temperature field and filling gas pressure calculations by means of contemporary calculational models for a WWER-440 and WWER-1000 type fuel rod at low and high burnup operating under steady-state conditions are presented. A review of in-core temperature and pressure measurements for various types of LWR fuel is also included. Basing on calculational and collected measured data, the behaviour of fuel cladding during large and small break LOCA, is estimated with special emphasis on their oxidation and failure resistance. (author) 38 refs, 40 figs, 15 tabs

  14. Review of fusion DEMO reactor study

    International Nuclear Information System (INIS)

    Seki, Yasushi

    1996-01-01

    Fusion DEMO Reactor is defined and the Steady State Tokamak Reactor (SSTR) concept is introduced as a typical example of a DEMO reactor. Recent DEMO reactor studies in Japan and abroad are introduced. The DREAM Reactor concept is introduced as an ultimate target of fusion research. (author)

  15. A systems analysis of the ARIES tokamak reactors

    International Nuclear Information System (INIS)

    Bathke, C.G.

    1992-01-01

    The multi-institutional ARIES study has completed a series of cost-of-electricity optimized conceptual designs of commercial tokamak fusion reactors that vary the assumed advances in technology and physics. A comparison of these designs indicates the cost benefit of various design options. A parametric systems analysis suggests a possible means to obtain a marginally competitive fusion reactor

  16. Burnup calculation for a tokamak commercial hybrid reactor

    International Nuclear Information System (INIS)

    Feng Kaiming; Xie Zhongyou

    1990-08-01

    A computer code ISOGEN-III and its associated data library BULIB have been developed for fusion-fission hybrid reactor burnup calculations. These are used to calcuate burnup of a tokamak commercial hybrid reactor. The code and library are introduced briefly, and burnup calculation results are given

  17. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....

  18. Steady-State Operation in Tore Supra

    Science.gov (United States)

    Hoang, G. T.; Tore Supra, Equipe

    1999-11-01

    The Tore Supra superconducting tokamak is devoted to steady-state operation. The CIEL (French acronym for internal component and limiter) project( LIPA, M., et al., Proc. of the 17th IEEE/NPSS Symp. on Fus. Engineering, San Diego, USA, 1997.) consists of a complete upgrade of the inner chamber of Tore Supra, planned to be installed during the year 2000. This project will allow physics scenarios with up to 24 MW of radio frequency heating and current drive (typically 8 - 10 MW of ICRF, 10 - 12 MW of LHCD and 2 MW of ECRF) in stationary plasmas up to 1000 s, with active particle control. This paper presents an overview of the experiments planned to explore the properties, such as the confinement and MHD stability, of various heating and current drive scenarios for long duration discharges. The expected performance for the CIEL phase is also reported.

  19. Simulation of fusion power in tokamak reactor

    International Nuclear Information System (INIS)

    Gaber, F.A.; Elsharif, R.N.; Sayed, Y.A.

    1993-01-01

    The paper deals with the transient response of the fusion power against perturbation in the injection rate of the fuel to ± 10% step change. The steady state results are in good agreement with the references results. The adequacy of these study was tested by assessing the physical plausibility of the obtained result, as well as, comparison with other validated model. 2 fig., 2 tab

  20. Conceptual design of a commercial tokamak reactor using resistive magnets

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-01-01

    The future of the tokamak approach to controlled thermonuclear fusion depends in part on its potential as a commercial electricity-producing device. This potential is continually being evaluated in the fusion community using parametric, system, and conceptual studies of various approaches to improving tokamak reactor design. The potential of tokamaks using resistive magnets as commercial electricity-producing reactors is explored. Parametric studies have been performed to examine the major trade-offs of the system and to identify the most promising configurations for a tokamak using resistive magnets. In addition, a number of engineering issues have been examined including magnet design, blanket/first-wall design, and maintenance. The study indicates that attractive design space does exist and presents a conceptual design for the Resistive Magnet Commercial Tokamak Reactor (RCTR). No issue has been identified, including recirculating power, that would make the overall cost of electricity of RCTR significantly different from that of a comparably sized superconducting tokamak. However, RCTR may have reliability and maintenance advantages over commercial superconducting magnet devices

  1. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  2. Steady State Shift Damage Localization

    DEFF Research Database (Denmark)

    Sekjær, Claus; Bull, Thomas; Markvart, Morten Kusk

    2017-01-01

    The steady state shift damage localization (S3DL) method localizes structural deterioration, manifested as either a mass or stiffness perturbation, by interrogating the damage-induced change in the steady state vibration response with damage patterns cast from a theoretical model. Damage is, thus...... the required accuracy when examining complex structures, an extensive amount of degrees of freedom (DOF) must often be utilized. Since the interrogation matrix for each damage pattern depends on the size of the system matrices constituting the FE-model, the computational time quickly becomes of first......-order importance. The present paper investigates two sub-structuring approaches, in which the idea is to employ Craig-Bampton super-elements to reduce the amount of interrogation distributions while still providing an acceptable localization resolution. The first approach operates on a strict super-element level...

  3. Impurity control in near-term tokamak reactors

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Smith, D.L.; Brooks, J.N.

    1976-10-01

    Several methods for reducing impurity contamination in near-term tokamak reactors by modifying the first-wall surface with a low-Z or low-sputter material are examined. A review of the sputtering data and an assessment of the technological feasibility of various wall modification schemes are presented. The power performance of a near-term tokamak reactor is simulated for various first-wall surface materials, with and without a divertor, in order to evaluate the likely effect of plasma contamination associated with these surface materials

  4. Recent results on steady state and confinement improvement research on JT-60U

    International Nuclear Information System (INIS)

    Ide, Shunsuke

    2000-01-01

    On the JT-60U tokamak, fusion plasma research for realization of a steady state tokamak reactor has been pursued. Towards that goal, confinement improved plasmas such as H-mode, high β p , reversed magnetic shear (RS) and latter two combined with H-mode edge pedestal have been developed and investigated intensively. A key issue to achieve non-inductive current drive relevant to a steady state fusion reactor is to increase the fraction of the bootstrap current and match the spatial profile to the optimum. In 1999, as the result of the optimization, the equivalent deuterium-tritium (D-T) fusion gain (Q DT eq ) of 0.5 was sustained for 0.8 s, which is roughly equal to the energy confinement time, in a RS plasma. In order to achieve a RS plasma in steady state two approach have been explored. One is to use external current driver such as lower hybrid current drive (LHCD), and by optimizing LHCD a quasi-steady RS discharge was obtained. The other approach is to utilize bootstrap current as much as possible, and with highly increased fraction of the bootstrap current, a confinement enhancement factor of 3.6 was maintained for 2.7 s in a RS plasma with H-mode edge. A heating and current drive system in the electron cyclotron range of frequency for localized heating and current drive has been installed on JT-60U, and in initial experiments a clear increase of the central electron temperature in a RS high density central region was confirmed only with injected power of 0.75 MW. (author)

  5. Reactor performance and microbial community dynamics during anaerobic co-digestion of municipal wastewater sludge with restaurant grease waste at steady state and overloading stages.

    Science.gov (United States)

    Razaviarani, Vahid; Buchanan, Ian D

    2014-11-01

    Linkage between reactor performance and microbial community dynamics was investigated during mesophilic anaerobic co-digestion of restaurant grease waste (GTW) with municipal wastewater sludge (MWS) using 10L completely mixed reactors and a 20day SRT. Test reactors received a mixture of GTW and MWS while control reactors received only MWS. Addition of GTW to the test reactors enhanced the biogas production and methane yield by up to 65% and 120%, respectively. Pyrosequencing revealed that Methanosaeta and Methanomicrobium were the dominant acetoclastic and hydrogenotrophic methanogen genera, respectively, during stable reactor operation. The number of Methanosarcina and Methanomicrobium sequences increased and that of Methanosaeta declined when the proportion of GTW in the feed was increased to cause an overload condition. Under this overload condition, the pH, alkalinity and methane production decreased and VFA concentrations increased dramatically. Candidatus cloacamonas, affiliated within phylum Spirochaetes, were the dominant bacterial genus at all reactor loadings. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Steady state neutral beam injector

    International Nuclear Information System (INIS)

    Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.

    2000-01-01

    Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)

  7. Comparison between temperature distributions of an annular fuel rod of circular cross-section and of a hemoglobin shaped cross-section rod for PWR reactors in steady state conditions

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Maria Vitória A. de; Alvim, Antônio Carlos Marques, E-mail: moliveira@con.ufrj.br, E-mail: alvim@nuclear.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2017-07-01

    The objective of this work is to make a comparison between the temperature distributions of an annular fuel rod of circular cross-section and a hemoglobin shaped cross-section for PWR reactors in steady state conditions. The motivation for this article is due to the fact that the symmetric form of the red globules particles allows the O{sub 2} gases to penetrate the center of the cell homogeneously and quickly. The diffusion equation of gases in any environment is very similar to the heat diffusion equation: Diffusion - Fick's Law; Heat Flow - Fourier; where, the temperature (T) replaces the concentration (c). In previous works the comparison between the shape of solid fuel rods with circular section, and a with hemoglobin-shaped cross-section has proved that this new format optimizes the heat transfer, decreasing the thermal resistance between the center of the UO{sub 2} pellets and the clad. With this, a significant increase in the specific power of the reactor was made possible (more precisely a 23% increase). Currently, the advantages of annular fuel rods are being studied and recent works have shown that 12 x 12 arrays of annular fuel rods perform better, increasing the specific power of the reactor by at least 20% in relation to solid fuel rods, without affecting the safety of the reactor. Our proposal is analyzing the temperature distribution in annular fuel rods with cross sections with red blood cell shape and compare with the theoretical results of the annular fuel rods of circular cross section, initially in steady state. (author)

  8. Comparison between temperature distributions of an annular fuel rod of circular cross-section and of a hemoglobin shaped cross-section rod for PWR reactors in steady state conditions

    International Nuclear Information System (INIS)

    Oliveira, Maria Vitória A. de; Alvim, Antônio Carlos Marques

    2017-01-01

    The objective of this work is to make a comparison between the temperature distributions of an annular fuel rod of circular cross-section and a hemoglobin shaped cross-section for PWR reactors in steady state conditions. The motivation for this article is due to the fact that the symmetric form of the red globules particles allows the O 2 gases to penetrate the center of the cell homogeneously and quickly. The diffusion equation of gases in any environment is very similar to the heat diffusion equation: Diffusion - Fick's Law; Heat Flow - Fourier; where, the temperature (T) replaces the concentration (c). In previous works the comparison between the shape of solid fuel rods with circular section, and a with hemoglobin-shaped cross-section has proved that this new format optimizes the heat transfer, decreasing the thermal resistance between the center of the UO 2 pellets and the clad. With this, a significant increase in the specific power of the reactor was made possible (more precisely a 23% increase). Currently, the advantages of annular fuel rods are being studied and recent works have shown that 12 x 12 arrays of annular fuel rods perform better, increasing the specific power of the reactor by at least 20% in relation to solid fuel rods, without affecting the safety of the reactor. Our proposal is analyzing the temperature distribution in annular fuel rods with cross sections with red blood cell shape and compare with the theoretical results of the annular fuel rods of circular cross section, initially in steady state. (author)

  9. Contribution of the association EURATOM-CEA to the international workshop on tokamak concept improvement

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, L; Moreau, D; Tonon, G

    1994-12-31

    The ways of tokamak device improvement are discussed. The topics cover plasma pressure and power density, bootstrap currents, the feedback control of the current density profiles and current drive efficiency for steady-state tokamak reactors. Three items have been separately indexed for the INIS database. (K.A.).

  10. Contribution of the association EURATOM-CEA to the international workshop on tokamak concept improvement

    International Nuclear Information System (INIS)

    Laurent, L.; Moreau, D.; Tonon, G.

    1994-01-01

    The ways of tokamak device improvement are discussed. The topics cover plasma pressure and power density, bootstrap currents, the feedback control of the current density profiles and current drive efficiency for steady-state tokamak reactors. Three items have been separately indexed for the INIS database. (K.A.)

  11. Bootstrap and fast wave current drive for tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1991-09-01

    Using the multi-species neoclassical treatment of Hirshman and Sigmar we study steady state bootstrap equilibria with seed currents provided by low frequency (ICRF) fast waves and with additional surface current density driven by lower hybrid waves. This study applies to reactor plasmas of arbitrary aspect ratio. IN one limit the bootstrap component can supply nearly the total equilibrium current with minimal driving power ( o = 18 MA needs P FW = 15 MW, P LH = 75 MW). A computational survey of bootstrap fraction and current drive efficiency is presented. 11 refs., 8 figs

  12. An accelerator based steady state neutron source

    International Nuclear Information System (INIS)

    Burke, R.J.; Johnson, D.L.

    1985-01-01

    Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  13. Steady-state Operational Characteristics of Ghana Research ...

    African Journals Online (AJOL)

    Steady state operational characteristics of the 30 kW tank-in-pool type reactor named Ghana Research Reactor-1 were investigated after a successful on-site zero power critical experiments. The steadystate operational character-istics determined were the thermal neutron fluxes, maximum period of operation at nominal ...

  14. Gas blanket fueling of a tokamak reactor

    International Nuclear Information System (INIS)

    Gralnick, S.L.

    1978-01-01

    The purpose of this paper is a speculative investigation of the potential of fueling a Tokamak by introducing a sufficiently large quantity of gaseous deuterium and tritium at the vacuum wall boundary. It is motivated by two factors: current generation tokamaks are, in a manner of speaking, fueled from the edge quite successfully as is evidenced by pulse lengths that are long compared to particle recycling times, and by rapid plasma density increase produced by gas puffing, alternative, deep penetration fueling techniques that have been proposed possess severe technological problems and large costs

  15. Fast wave current drive in reactor scale tokamaks

    International Nuclear Information System (INIS)

    Moreau, D.

    1992-01-01

    The IAEA Technical Committee Meeting on Fast Wave Current Drive in Reactor Scale Tokamaks, hosted by the Commissariat a l'Energie Atomique (CEA), Departement de Recherches sur la Fusion Controlee (Centres d'Etudes de Cadarache, under the Euratom-CEA Association for fusion) aimed at discussing the physics and the efficiency of non-inductive current drive by fast waves. Relevance to reactor size tokamaks and comparison between theory and experiment were emphasized. The following topics are described in the summary report: (i) theory and modelling of radiofrequency current drive (theory, full wave modelling, ray tracing and Fokker-Planck calculations, helicity injection and ponderomotive effects, and alternative radio-frequency current drive effects), (ii) present experiments, (iii) reactor applications (reactor scenarios including fast wave current drive; and fast wave current drive antennas); (iv) discussion and summary. 32 refs

  16. Revised design for the Tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Stacey, W.M. Jr.; Abdou, M.A.; Brooks, J.N.

    1977-03-01

    A new, preliminary design has been identified for the tokamak experimental power reactor (EPR). The revised EPR design is simpler, more compact, less expensive and has somewhat better performance characteristics than the previous design, yet retains many of the previously developed design concepts. This report summarizes the principle features of the new EPR design, including performance and cost

  17. Neutronic scoping studies for the tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Santoro, R.T.; Bettis, E.S.; McAlees, D.G.; Watts, H.L.; Williams, M.L.

    1976-02-01

    One-dimensional neutron and photon radiation transport methods have been used to investigate candidate blanket configurations and compositions for use in the Tokamak Experimental Power Reactor. Seven blanket designs are compared in terms of energy recovery, radiation attenuation, potential radiation damage, and, where applicable, tritium breeding

  18. Tokamak Fusion Test Reactor neutral beam injection system vacuum chamber

    International Nuclear Information System (INIS)

    Pedrotti, L.R.

    1977-01-01

    Most of the components of the Neutral Beam Lines of the Tokamak Fusion Test Reactor (TFTR) will be enclosed in a 50 cubic meter box-shaped vacuum chamber. The chamber will have a number of unorthodox features to accomodate both neutral beam and TFTR requirements. The design constraints, and the resulting chamber design, are presented

  19. In-vessel maintenance concepts for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Kelly, V.P.; Berger, J.D.; Yount, J.A.

    1983-01-01

    Concepts for rail-mounted and guided in-vessel handling machines (IVM) for remote maintenance inside tokamak fusion reactors are described. The IVM designs are based on concepts for tethered remotely operated vehicles and feature the use of multiple manipulator arms for remote handling and remote-controlled TV cameras for remote viewing. The concepts include IVMs for both single or dual rail systems located in the top or bottom of the reactor vessel

  20. Feasibility study of steady state magnetic field measurement

    International Nuclear Information System (INIS)

    Kawahata, Kazuo; Fujita, Junji; Matsuura, Kiyokata; Sakata, Masataka; Fujiwaka, Setsuya; Matoba, Tohru.

    1995-08-01

    A rotating magnetic probe testing system has been designed and constructed for the purpose of establishing a technique of the plasma current measurement on a steady state tokamak. An air turbine is employed to drive the rotating magnetic coil from the viewpoint of avoiding the use of an electric motor in the vicinity of the tokamak device. The signal induced on the rotating probe is transmitted to the amplifier through a transformer coupling. A long term testing on mechanical as well as electrical characteristics has been carried out to find key technical issues on this system. A continuous operation for more than one week has successfully been achieved. (author)

  1. Tokamak fusion test reactor. Final design report

    International Nuclear Information System (INIS)

    1978-08-01

    Detailed data are given for each of the following areas: (1) system requirements, (2) the tokamak system, (3) electrical power systems, (4) experimental area systems, (5) experimental complex, (6) neutral beam injection system, (7) diagnostic system, and (8) central instrumentation control and data acquisition system

  2. Commercial tokamak reactors with resistive toroidal field magnets

    International Nuclear Information System (INIS)

    Bombery, L.; Cohn, D.R.; Jassby, D.L.

    1984-01-01

    Scaling relations and design concepts are developed for commercial tokamak reactors that use watercooled copper toroidal field (TF) magnets. Illustrative parameters are developed for reactors that are scaled up in size from LITE test reactor designs, which use quasi-continuous copper plate magnets. Acceptably low magnet power requirements may be attainable in a moderate beta (β = 0.065) commercial reactor with a major radius of 6.2 m. The shielding thickness and magnet size are substantially reduced relative to values in commercial reactors with superconducting magnets. Operation at high beta (β = 0.14) leads to a reduction in reactor size, magnet-stored energy, and recirculating power. Reactors using resistive TF magnets could provide advantages of physically smaller devices, improved maintenance features, and increased ruggedness and reliability

  3. Technology issues for decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Walton, G.R.

    1994-01-01

    The approach for decommissioning the Tokamak Fusion Test Reactor has evolved from a conservative plan based on cutting up and burying all of the systems, to one that considers the impact tritium contamination will have on waste disposal, how large size components may be used as their own shipping containers, and even the possibility of recycling the materials of components such as the toroidal field coils and the tokamak structure. In addition, the project is more carefully assessing the requirements for using remotely operated equipment. Finally, valuable cost database is being developed for future use by the fusion community

  4. Transients and burn dynamics in advanced tokamak fusion reactors

    International Nuclear Information System (INIS)

    Mantsinen, M.J.; Salomaa, R.R.E.

    1994-01-01

    Transient behavior of D 3 He-tokamak reactors is investigated numerically using a zero-dimensional code with prescribed profiles. Pure D 3 He start-up is compared to DT-assisted and DT-ignited start-ups. We have considered two categories of transients which could extinguish steady fusion burn: fuelling interruptions and sudden confinement changes similar to the L → H transients occurring in present-day tokamaks. Shutdown with various current and density ramp-down scenarios are studied, too. (author)

  5. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  6. Engineering aspects of a D-D commercial tokamak reactor

    International Nuclear Information System (INIS)

    Evans, K. Jr.; Baker, C.C.; Brooks, J.N.

    1981-01-01

    This paper presents some of the engineering aspects of WILDCAT, a conceptual design of a D-D tokamak, fusion reactor. This conceptual design has evolved from initial studies of D-D tokamak reactors, and is intended to be a study of a later-model, commerical fusion reactor in the same sense that STARFIRE was such a study for D-T fuel cycle. The major guidelines of the study have been to utilize as fully as possible the advantages of the D-D fuel cycle but to avoid unnecessary extrapolations of parameters from existing D-T designs, in particular STARFIRE. The paper consists of an overview of the reference design, a description of each of the major engineering systems (rf current drive, burn cycle, impurity control, first wall, blanket/shield, TF magnets, and tritium system, and a summary of conclusions)

  7. The technology and science of steady-state operation in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Becoulet, A; Hoang, G T

    2008-01-01

    The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a

  8. Tritium experience in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Skinner, C.H.; Blanchard, W.; Hosea, J.; Mueller, D.; Nagy, A.; Hogan, J.

    1998-01-01

    Tritium management is a key enabling element in fusion technology. Tritium fuel was used in 3.5 years of successful deuterium-tritium (D-T) operations in the Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory. The D-T campaign enabled TFTR to explore the transport, alpha physics, and MHD stability of a reactor core. It also provided experience with tritium retention and removal that highlighted the importance of these issues in future D-T machines. In this paper, the authors summarize the tritium retention and removal experience in TFTR and its implications for future reactors

  9. Minerals resource implications of a tokamak fusion reactor economy

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, E; Conn, R W; Kulcinski, G L; Sviatoslavsky, I

    1979-09-01

    The mineral resource implications of an economy of tokamak-type fusion reactors are assessed based upon the recent conceptual reactor design study, NUWMAK, developed at the University of Wisconsin. For comparative purposes, various structural alloys of vanadium and steel are assumed to be usable in the NUWMAK design in place of the titanium alloy originally selected. In addition, the inner blanket core and magnet system of the conceptual reactor, HFCTR, developed at the Massachusetts Institute of Technology, are assumed to be interchangeable with the comparable components in NUWMAK. These variations permit a range of likely requirements to be assessed.

  10. Minerals resource implications of a tokamak fusion reactor economy

    International Nuclear Information System (INIS)

    Cameron, E.; Conn, R.W.; Kulcinski, G.L.; Sviatoslavsky, I.

    1979-09-01

    The mineral resource implications of an economy of tokamak-type fusion reactors are assessed based upon the recent conceptual reactor design study, NUWMAK, developed at the University of Wisconsin. For comparative purposes, various structural alloys of vanadium and steel are assumed to be usable in the NUWMAK design in place of the titanium alloy originally selected. In addition, the inner blanket core and magnet system of the conceptual reactor, HFCTR, developed at the Massachusetts Institute of Technology, are assumed to be interchangeable with the comparable components in NUWMAK. These variations permit a range of likely requirements to be assessed

  11. Progress Towards High Performance, Steady-state Spherical Torus

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D.S.; Diem, S.J.; Doerner, R.; Efthimion, P.C.; Ferron, J.R.; Fonck, R.J.; Fredrickson, E.D.; Garstka, G.D.; Gates, D.A.; Gray, T.; Grisham, L.R.; Heidbrink, W.; Hill, K.W.; Hoffman, D.; Jarboe, T.R.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kessel, C.; Kim, J.H.; Kissick, M.W.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Lee, K.; Lee, S.G.; Lewicki, B.T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T.K.; Mazzucato, E.; Medley, S.S.; Menard, J.; Mueller, D.; Nelson, B.A.; Neumeyer, C.; Nishino, N.; Ostrander, C.N.; Pacella, D.; Paoletti, F.; Park, H.K.; Park, W.; Paul, S.F.; Peng, Y.-K. M.; Phillips, C.K.; Pinsker, R.; Probert, P.H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A.L.; Rosenberg, A.; Ryan, P.M.; Sabbagh, S.A.; Schaffer, M.; Schooff, R.J.; Seraydarian, R.; Skinner, C.H.; Sontag, A.C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D.W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K.L.; Unterberg, E.A.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J.R.; Xu, X.; Zweben, S.J.; Akers, R.; Barry, R.E.; Beiersdorfer, P.; Bialek, J.M.; Blagojevic, B.; Bonoli, P.T.; Carter, M.D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R.J.; Hatcher, R.E.; Hawryluk, R.J.; Houlberg, W.; Harvey, R.; Jardin, S.C.; Hosea, J.C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L.L.; Levinton, F.M.; Luhmann, N.C.; Marsala, R.; Mastravito, D.; Menon, M.M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G.D.; Ram, A.K.; Rensink, M.; Rewoldt, G.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B.C.; Vero, R.; Wampler, W.R.; Wurden, G.A.

    2003-01-01

    Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction (∼60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted

  12. Development of Tokamak reactor system code and conceptual studies of DEMO with He Cooled Molten Li blanket

    International Nuclear Information System (INIS)

    Hong, B.G.; Lee, Dong Won; Kim, Yong Hi

    2007-01-01

    To develop the concepts of fusion power plants and identify the design parameters, we have been developing the tokamak reactor system code. The system code can take into account a wide range of plasma physics and technology effects simultaneously and it can be used to find design parameters which optimize the given figure of merits. The outcome of the system studies using the system code is to identify which areas of plasma physics and technologies and to what extent should be developed for realization of a given fusion power plant concepts. As an application of the tokamak reactor system code, we investigate the performance of DEMO for early realization with a limited extension from the plasma physics and technology used in the design of the ITER. Main requirements for DEMO are selected as: 1) to demonstrate tritium self-sufficiency, 2) to generate net electricity, and 3) for steady-state operation. The size of plasma is assumed to be same as that of ITER and the plasma parameters which characterize the performance, i.e. normalized β value, β N , confinement improvement factor for the H-mode, H and the ratio of the Greenwald density limit n/n G are assumed to be improved beyond those of ITER: β N >2.0, H>1.0 and n/n G >1.0. Tritium self-sufficiency is provided by the He Cooled Molten Lithium (HCML) blanket with the total thickness of 2.5 m including the shield. With n/n G >1.2, net electric power bigger than 500 MW is possible with β N >4.0 andH>1.2. To access operation space for higher electric power, main restrictions are given by the divertor heat load and the steady-state operation requirements. Developments in both plasma physics and technology are required to handle high heat load and to increase the current drive efficiency. (orig.)

  13. A steady-state axisymmetric toroidal system

    International Nuclear Information System (INIS)

    Hirano, K.

    1984-01-01

    Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)

  14. Study of design parameters for minimizing the cost of electricity of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Tokimatsu, K.; Yamaji, K.; Katsurai, M.; Okano, K.; Yoshida, T.

    1998-01-01

    The impact of the design parameters on the cost of electricity (COE) is studied through a parameter survey in order to minimize the COE. Three kinds of operating modes are considered; first stability (FS), second stability (SS) and reversed shear (RS). The COE is calculated by a coupled physics-engineering-cost computer system code. Deuterium-tritium type, 1000 MW(e) at electric bus bar, steady state tokamak reactors with aspect ratios A from 3 to 4.5 are assumed. Several criteria are used for the parameter survey; for example, (a) the thermal to electrical conversion efficiency is assumed to be 34.5% using water as a coolant; (b) the average neutron wall load must not exceed 5 MW/m 2 for plasma major radius R p >5 m; (c) a 2 MeV neutral beam injector (NBI) is applied. It is found that the RS operating mode most minimizes the COE among the three operating modes by reducing the cost of the current drive and the coils and structures. The cost-minimized RS reactor can attain high f bs , high β N and low q 95 at the same time, which results in a short R p of 5.1 m, a low B max of the maximum magnetic toroidal field (TF) of the TF coils of 13 T and a low A of 3.0. It can be concluded that this cost-minimized RS reactor is the most cost-minimized within the frameworks of this study. This cost-minimized RS reactor has two advantages: one is that a B max =13 T TF coil can be made by use of ITER coil technology and the other is that the same cooling technology as that of ITER (water cooling) can be used. (author)

  15. Current generation by helicons and LH waves in modern tokamaks and reactors FNSF-AT, ITER and DEMO. Scenarios, modeling and antennae

    Science.gov (United States)

    Vdovin, V.

    2014-02-01

    The Innovative concept and 3D full wave code modeling Off-axis current drive by RF waves in large scale tokamaks, reactors FNSF-AT, ITER and DEMO for steady state operation with high efficiency was proposed [1] to overcome problems well known for LH method [2]. The scheme uses the helicons radiation (fast magnetosonic waves at high (20-40) IC frequency harmonics) at frequencies of 500-1000 MHz, propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by Helicons will help to have regimes with negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure βN > 3 (the so-called Advanced scenarios) of interest for FNSF and the commercial reactor. Modeling with full wave three-dimensional codes PSTELION and STELEC2 showed flexible control of the current profile in the reactor plasmas of ITER, FNSF-AT and DEMO [2,3], using multiple frequencies, the positions of the antennae and toroidal waves slow down. Also presented are the results of simulations of current generation by helicons in tokamaks DIII-D, T-15MD and JT-60SA [3]. In DEMO and Power Plant antenna is strongly simplified, being some analoge of mirrors based ECRF launcher, as will be shown. For spherical tokamaks the Helicons excitation scheme does not provide efficient Off-axis CD profile flexibility due to strong coupling of helicons with O-mode, also through the boundary conditions in low aspect machines, and intrinsic large amount of trapped electrons, as is shown by STELION modeling for the NSTX tokamak. Brief history of Helicons experimental and modeling exploration in straight plasmas, tokamaks and tokamak based fusion Reactors projects is given, including planned joint DIII-D - Kurchatov Institute experiment on helicons CD [1].

  16. Current generation by helicons and LH waves in modern tokamaks and reactors FNSF-AT, ITER and DEMO. Scenarios, modeling and antennae

    Energy Technology Data Exchange (ETDEWEB)

    Vdovin, V. [NRC Kurchatov Institute Tokamak Physics Institute, Moscow (Russian Federation)

    2014-02-12

    The Innovative concept and 3D full wave code modeling Off-axis current drive by RF waves in large scale tokamaks, reactors FNSF-AT, ITER and DEMO for steady state operation with high efficiency was proposed [1] to overcome problems well known for LH method [2]. The scheme uses the helicons radiation (fast magnetosonic waves at high (20–40) IC frequency harmonics) at frequencies of 500–1000 MHz, propagating in the outer regions of the plasmas with a rotational transform. It is expected that the current generated by Helicons will help to have regimes with negative magnetic shear and internal transport barrier to ensure stability at high normalized plasma pressure β{sub N} > 3 (the so-called Advanced scenarios) of interest for FNSF and the commercial reactor. Modeling with full wave three-dimensional codes PSTELION and STELEC2 showed flexible control of the current profile in the reactor plasmas of ITER, FNSF-AT and DEMO [2,3], using multiple frequencies, the positions of the antennae and toroidal waves slow down. Also presented are the results of simulations of current generation by helicons in tokamaks DIII-D, T-15MD and JT-60SA [3]. In DEMO and Power Plant antenna is strongly simplified, being some analoge of mirrors based ECRF launcher, as will be shown. For spherical tokamaks the Helicons excitation scheme does not provide efficient Off-axis CD profile flexibility due to strong coupling of helicons with O-mode, also through the boundary conditions in low aspect machines, and intrinsic large amount of trapped electrons, as is shown by STELION modeling for the NSTX tokamak. Brief history of Helicons experimental and modeling exploration in straight plasmas, tokamaks and tokamak based fusion Reactors projects is given, including planned joint DIII-D – Kurchatov Institute experiment on helicons CD [1].

  17. Design features of HTMR-Hybrid Toroidal Magnet Tokamak Reactor

    International Nuclear Information System (INIS)

    Rosatelli, F.; Avanzini, P.G.; Brunelli, B.; Derchi, D.; Magnasco, M.; Grattarola, M.; Peluffo, M.; Raia, G.; Zampaglione, V.

    1985-01-01

    The HTMR (Hybrid Toroidal Magnet Tokamak Reactor) conceptual design is aimed to demonstrate the feasibility of a Tokamak reactor which could fulfill the scientific and technological objectives expected from next generation devices (e.g. INTOR-NET) with size and costs as small as possible. An hybrid toroidal field magnet, made up by copper and superconducting coils, seems to be a promising solution, allowing a considerable flexibility in machine performances, so as to gain useful margins in front of the uncertainties in confinement time scaling laws and beta and plasma density limits. In this paper the authors describe the optimization procedure for the hybrid magnet configuration, the main design features of HTMR and the preliminary mechanical calculations of the superconducting toroidal coils

  18. Design features of HTMR-hybrid toroidal magnet tokamak reactor

    International Nuclear Information System (INIS)

    Rosatelli, F.; Avanzini, P.G.; Derchi, D.; Magnasco, M.; Grattarola, M.; Peluffo, M.; Raia, G.; Brunelli, B.; Zampaglione, V.

    1984-01-01

    The HTMR (Hybrid Toroidal Magnet Tokamak Reactor) conceptual design is aimed to demonstrate the feasibility of a Tokamak reactor which could fulfil the scientific and technological objectives expected from next generation devices with size and costs as small as possible. A hybrid toroidal field magnet, made up by copper and superconducting coils, seems to be a promising solution, allowing a considerable flexibility in machine performances, so as to gain useful margins in front of the uncertainties in confinement time scaling laws and beta and plasma density limits. The optimization procedure for the hybrid magnet, configuration, the main design features of HTMR and the preliminary mechanical calculations of the superconducting toroidal coils are described. (author)

  19. Tokamak fusion reactors with less than full tritium breeding

    International Nuclear Information System (INIS)

    Evans, K. Jr.; Gilligan, J.G.; Jung, J.

    1983-05-01

    A study of commercial, tokamak fusion reactors with tritium concentrations and tritium breeding ratios ranging from full deuterium-tritium operation to operation with no tritium breeding is presented. The design basis for these reactors is similar to those of STARFIRE and WILDCAT. Optimum operating temperatures, sizes, toroidal field strengths, and blanket/shield configurations are determined for a sequence of reactor designs spanning the range of tritium breeding, each having the same values of beta, thermal power, and first-wall heat load. Additional reactor parameters, tritium inventories and throughputs, and detailed costs are calculated for each reactor design. The disadvantages, advantages, implications, and ramifications of tritium-depleted operation are presented and discussed

  20. Conceptual designs of power tokamak-type thermonuclear reactors

    International Nuclear Information System (INIS)

    Shejndlin, A.E.; Nedospasov, A.V.

    1978-01-01

    Physico-technical and ecological aspects of conceptual designing power tokamak-type reactors have been briefly considered. Only ''pure'' (''non-hybride'') reactors are discussed. Presented are main plasma-physical parameters, characteristics of blankets and magnetic systems of the following projects: PPPL; V-2; V-3; Culham-2, JAERI; TBEh-2500; TFTR. Two systems of the first wall protection have been considered: divertor one and by means of a layer of a cool turbulent plasma. Examined are the following problems: fuel loading, choice of the first wall material, blanket structure, magnetic system, environmental contamination. The comparison of relative hazards of fast neutron reactors and fusion reactors has shown that in respect of fusion reactors the biological hazard potential value is less by one-two orders

  1. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    International Nuclear Information System (INIS)

    Kobori, Hikaru; Kasada, Ryuta; Hiwatari, Ryoji; Konishi, Satoshi

    2016-01-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO_2 emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO_2 emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO_2 emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  2. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  3. Operation and control of high density tokamak reactors

    International Nuclear Information System (INIS)

    Attenberger, S.E.; McAlees, D.G.

    1976-01-01

    The incentive for high density operation of a tokamak reactor is discussed. The plasma size required to attain ignition is determined. Ignition is found to be possible in a relatively small system provided other design criteria are met. These criteria are described and the technology developments and operating procedures required by them are outlined. The parameters for such a system and its dynamic behavior during the operating cycle are also discussed

  4. Startup and shutdown of the PULSAR Tokamak Reactor

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.

    1994-01-01

    Start-up conditions are examined for a pulsed tokamak reactor that uses only inductive plasma current drive for startup, burn and shutdown. A zero-dimensional (profile-averaged) model that describes plasma power and particle balance equations is used to study several aspects of plasma startup and shutdown, including optimization of the startup pathway tradeoff of auxiliary startup heating power versus startup time, volt-second consumtion, thermal stability and partial-power operations

  5. Computer modelling of radioactive source terms at a tokamak reactor

    International Nuclear Information System (INIS)

    Meide, A.

    1984-12-01

    The Monte Carlo code MCNP has been used to create a simple three-dimensional mathematical model representing 1/12 of a tokamak fusion reactor for studies of the exposure rate level from neutrons as well as gamma rays from the activated materials, and for later estimates of the consequences to the environment, public, and operating personnel. The model is based on the recommendations from the NET/INTOR workshops. (author)

  6. Tokamak fusion test reactor FELIX plate experiment

    International Nuclear Information System (INIS)

    Hua, T.O.; Nygren, R.E.; Turner, L.R.

    1986-01-01

    For a conducting material exposed to both a time-varying and a static magnetic field, such as a limiter blade in a tokamak, the induced eddy currents and the deflection arising from those eddy currents can be strongly coupled. The coupling effects reduce the currents and deflections markedly, sometimes an order of magnitude, from the values predicted if coupling is neglected. A series of experiments to study current-deflection coupling were performed using the Fusion Electromagnetic Inductance Experiment (FELIX) facility at Argonne National Laboratory. Magnetic damping and magnetic stiffness resulting from the coupling are discussed, and analytical expressions for induced eddy current and rigid body rotation in the FELIX plate experiment are compared with the experimental results. Predictions for the degree of coupling based on various parameters are made using the analytical model

  7. LANSCE steady state unperturbed thermal neutron fluxes at 100 μA

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    The ''maximum'' unperturbed, steady state thermal neutron flux for LANSCE is calculated to be 2 /times/ 10 13 n/cm 2 -s for 100 μA of 800-MeV protons. This LANSCE neutron flux is a comparable entity to a steady state reactor thermal neutron flux. LANSCE perturbed steady state thermal neutron fluxes have also been calculated. Because LANSCE is a pulsed neutron source, much higher ''peak'' (in time) neutron fluxes can be generated than at a steady state reactor source. 5 refs., 5 figs

  8. DEALS: a maintainable superconducting magnet system for tokamak fusion reactors

    International Nuclear Information System (INIS)

    Hseih, S.Y.; Danby, G.; Powell, J.R.

    1979-01-01

    The feasibility of demountable superconducting magnet systems has been examined in a design study of a DEALS [Demountable Externally Anchored Low Stress] TF magnet for an HFITR [High Field Ignition Test Reactor] Tokamak device. All parts of the system appear feasible, including the demountable superconducting joints. Measurements on small scale prototype joints indicate that movable pressure contact joints exhibit acceptable electrical, mechanical, and cryogenic performance. Such joints permit a relatively simple support structure and are readily demountable. Assembly and disassembly sequences are described whereby any failed portion of the magnet, or any part of the reactor inside the TF coils can be removed and replaced if necessary

  9. Resistive toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Kalnavarns, J.; Jassby, D.L.

    1980-11-01

    This paper analyzes the optimization of the geometry of resistive TF coils of rectangular bore for tokamak fusion test reactors and practical neutron generators. In examining the trade-offs between geometric parameters and magnetic field for reactors giving a specified neutron wall loading, either the resistive power loss or the lifetime coil cost can be minimized. Aspects of cooling, magnetic stress, and construction are addressed for several reference designs. Bending moment distributions in closed form have been derived for rectangular coils on the basis of the theory of rigid frames. Candidate methods of fabrication and of implementing demountable joints are summarized

  10. Tight aspect ratio tokamak power reactor with superconducting TF coils

    International Nuclear Information System (INIS)

    Nishio, S.; Tobita, K.; Konishi, S.; Ando, T.; Hiroki, S.; Kuroda, T.; Yamauchi, M.; Azumi, M.; Nagata, M.

    2003-01-01

    Tight aspect ratio tokamak power reactor with super-conducting toroidal field (TF) coils has been proposed. A center solenoid coil system and an inboard blanket were discarded. The key point was how to find the engineering design solution of the TF coil system with the high field and high current density. The coil system with the center post radius of less than 1 m can generate the maximum field of ∼ 20 T. This coil system causes a compact reactor concept, where the plasma major and minor radii of 3.75 m and 1.9 m, respectively and the fusion power of 1.8 GW. (author)

  11. Tritium production and processing in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-09-01

    Important aspects of the tritium system in Tokamak reactors that have to be controlled are overviewed in this paper. The doubling time is one of them, that is to say the time required to produce, in addition to the tritium burned enough tritium to be able to supply the initial tritium inventory. Another one is the tritium permeation through walls. In addition to the permeation phenomena, large tritium inventories are trapped in the reactor structural material. Finally, the different atmospheres of halls, etc.., that can be contaminated with tritium, have to be reprocessed

  12. Development of large insulator rings for the TOKAMAK Fusion Test Reactor

    International Nuclear Information System (INIS)

    Brown, T.; Tobin, A.

    1977-01-01

    Research and development leading to the manufacture of large ceramic insulator rings for the TFTR (TOKAMAK Fusion Test Reactor). Material applictions, fabrication approach and testing activities are highlighted

  13. Directions for attractive tokamak reactors: The ARIES-II and ARIES-IV second-stability designs

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.

    1993-01-01

    ARIES is a research program to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. The ARIES study has developed four visions for tokamaks. All four designs are steady-state, 1000-MWe (net) power reactors. The ARIES-II and ARIES-IV designs assume potential advances in plasma physics (such as second-stability operation) predicted by theory but not yet established experimentally. The two designs have the same fusion plasma but different fusion-power-core. There are only minor differences between the ARIES-II and ARIES-IV plasma parameters. ARIES-IV is a 1000-MWe reactor with an average neutron wall loading of 3 MW/m 2 , and a mass power density of about 120 kWe/tonne of fusion power core. The reactor major radius is 6.1 m, the plasma minor radius is 1.5 m and the plasma elongation is 2, and the plasma triangularity is 0.67. The plasma current is low (6.8 MA), B on-axis is 7.7 T (corresponding to a maximum field at the coil of 16T), and the toroidal beta is 3.4% (Troyon coefficient = 6). The operating regime is optimized such that most of the plasma current (∼ 90%) is provided by the bootstrap current. ARIES-II uses liquid lithium as the coolant and tritium breeder. V-5Cr-5Ti is used as the structural material so that the potential of low-activation metallic blankets can be studied. ARIES-IV uses helium as the coolant, a solid tritium-breeding material (Li 2 O), and silicon carbide composite as structural material. The waste produced by neutron activation in both designs is found to meet the criteria allowing shallow-land burial under U.S. regulations. The cost of electricity for the ARIES-II-IV class of reactors is estimated to be about 20% lower than comparable, steady-state first-stability reactors (e.g. ARIES-I). 25 refs, 2 figs, 1 tab

  14. Tandem mirror and tokamak reactor maintainability comparison

    International Nuclear Information System (INIS)

    Zahn, H.S.

    1981-01-01

    The analysis proceeds through estimates of downtime and resources required for selected maintenance actions and optimization of the replacement fraction, availability and cost of electricity. Scheduled downtime estimates and availability goals provide a basis for determining allowable forced outage downtimes. These analyses have been conducted with the assumption of redundancy wherever feasible but without the impact of maintenance equipment outages. Annual maintenance cost estimates and availabilities for both reactors are found to be approximately equal. However, the tandem mirror reactor capital costs are higher. Reduction of these costs appears feasible with the trend of current design studies toward smaller and more accessible machines

  15. Insulator applications in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-06-01

    Insulators, among which insulators ceramics, have great potential applications in fusion reactors. They will be used for all plasma-facing components as protection and, magnetic fusion devices being subject to large electrical currents flowing in any parts of the device, for their electrical insulating properties

  16. Preconceptual design and assessment of a Tokamak Hybrid Reactor

    International Nuclear Information System (INIS)

    Teofilo, V.L.; Leonard, B.R. Jr.; Aase, D.T.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant has been performed. The tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb 3 Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs have been made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis has been made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered

  17. Preconceptual design and assessment of a Tokamak Hybrid Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Teofilo, V.L.; Leonard, B.R. Jr.; Aase, D.T.

    1980-09-01

    The preconceptual design of a commercial Tokamak Hybrid Reactor (THR) power plant has been performed. The tokamak fusion driver for this hybrid is operated in the ignition mode. The D-T fusion plasma, which produces 1140 MW of power, has a major radius of 5.4 m and a minor radius of 1.0 m with an elongation of 2.0. Double null poloidal divertors are assumed for impurity control. The confining toroidal field is maintained by D-shaped Nb/sub 3/Sn superconducting magnets with a maximum field of 12T at the coil. Three blankets with four associated fuel cycle alternatives have been combined with the ignited tokamak fusion driver. The engineering, material, and balance of plant design requirements for the THR are briefly described. Estimates of the capital, operating and maintenance, and fuel cycle costs have been made for the various driver/blanket combinations and an assessment of the market penetrability of hybrid systems is presented. An analysis has been made of the nonproliferation aspects of the hybrid and its associated fuel cycles relative to fission reactors. The current and required level of technology for both the fusion and fission components of the hybrid system has been reviewed. Licensing hybrid systems is also considered.

  18. Diamond Wire Cutting of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Keith Rule; Erik Perry; Robert Parsells

    2003-01-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. As a result, decommissioning commenced in October 1999. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The deuterium-tritium experiments resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 MeV neutrons. The total tritium content within the vessel is in excess of 7,000 Curies, while dose rates approach 50 mRem/hr. These radiological hazards along with the size of the tokamak present a unique and challenging task for dismantling. Engineers at the Princeton Plasma Physics Laboratory (PPPL) decided to investigate an alternate, innovative approach for dismantlement of the TFTR vacuum vessel: diamond wire cutting technology. In August 1999, this technology was successfully demonstrated and evaluated on vacuum vessel surrogates. Subsequently, the technology was improved and redesigned for the actual cutting of the vacuum vessel. Ten complete cuts were performed in a 6-month period to complete the removal of this unprecedented type of DandD (Decontamination and Decommissioning) activity

  19. Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Perry, E.; Chrzanowski, J.; Rule, K.; Viola, M.; Williams, M.; Strykowsky, R.

    1999-01-01

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a-kind, tritium-fueled fusion research reactor that ceased operation in April 1997. The Decontamination and Decommissioning (D and D) of the TFTR is scheduled to occur over a period of three years beginning in October 1999. This is not a typical Department of Energy D and D Project where a facility is isolated and cleaned up by ''bulldozing'' all facility and hardware systems to a greenfield condition. The mission of TFTR D and D is to: (a) surgically remove items which can be re-used within the DOE complex, (b) remove tritium contaminated and activated systems for disposal, (c) clear the test cell of hardware for future reuse, (d) reclassify the D-site complex as a non-nuclear facility as defined in DOE Order 420.1 (Facility Safety) and (e) provide data on the D and D of a large magnetic fusion facility. The 100 cubic meter volume of the donut-shaped reactor makes it the second largest fusion reactor in the world. The record-breaking deuterium-tritium experiments performed on TFTR resulted in contaminating the vacuum vessel with tritium and activating the materials with 14 Mev neutrons. The total tritium content within the vessel is in excess of 7,000 Curies while dose rates approach 75 mRem/hr. These radiological hazards along with the size and shape of the Tokamak present a unique and challenging task for dismantling

  20. Present status of Tokamak research

    International Nuclear Information System (INIS)

    Basu, Jayanta

    1991-01-01

    The scenario of thermonuclear fusion research is presented, and the tokamak which is the most promising candidate as a fusion reactor is introduced. A brief survey is given of the most noteworthy tokamaks in the global context, and fusion programmes relating to Next Step devices are outlined. Supplementary heating of tokamak plasma by different methods is briefly reviewed; the latest achievements in heating to fusion temperatures are also reported. The progress towards the high value of the fusion product necessary for ignition is described. The improvement in plasma confinement brought about especially by the H-mode, is discussed. The latest situation in pushing up Β for increasing the efficiency of a tokamak is elucidated. Mention is made of the different types of wall treatment of the tokamak vessel for impurity control, which has led to a significant improvement in tokamak performance. Different methods of current drive for steady state tokamak operation are reviewed, and the issue of current drive efficiency is addressed. A short resume is given of the various diagnostic methods which are employed on a routine basis in the major tokamak centres. A few diagnostics recently developed or proposed in the context of the advanced tokamaks as well as the Next Step devices are indicated. The important role of the interplay between theory, experiment and simulation is noted, and the areas of investigation requiring concerted effort for further progress in tokamak research are identified. (author). 17 refs

  1. New Tore Supra steady state operating scenario

    International Nuclear Information System (INIS)

    Martin, G.; Parlange, F.; van Houtte, D.; Wijnands, T.

    1995-01-01

    This document deals with plasma control in steady state conditions. A new plasma control systems enabling feedback control of global plasma equilibrium parameters has been developed. It also enables to operate plasma discharge in steady state regime. (TEC). 4 refs., 5 figs

  2. Plasma features and alpha particle transport in low-aspect ratio tokamak reactor

    International Nuclear Information System (INIS)

    Xu Qiang; Wang Shaojie

    1997-06-01

    The results of the experiment and theory from low-aspect ratio tokamak devices have proved that the MHD stability will be improved. Based on present plasma physics and extrapolation to reduced aspect ratio, the feature of physics of low-aspect ratio tokamak reactor is discussed primarily. Alpha particle confinement and loss in the self-justified low-aspect ratio tokamak reactor parameters and the effect of alpha particle confinement and loss for different aspect ratio are calculated. The results provide a reference for the feasible research of compact tokamak reactor. (9 refs., 2 figs., 3 tabs.)

  3. Reactor similarity for plasma–material interactions in scaled-down tokamaks as the basis for the Vulcan conceptual design

    International Nuclear Information System (INIS)

    Whyte, D.G.; Olynyk, G.M.; Barnard, H.S.; Bonoli, P.T.; Bromberg, L.; Garrett, M.L.; Haakonsen, C.B.; Hartwig, Z.S.; Mumgaard, R.T.; Podpaly, Y.A.

    2012-01-01

    Highlights: ► Discussion of similarity scalings for reduced-size tokamaks. ► Proposal of a new set of scaling laws for divertor similarity. ► Discussion of how the new scaling provides fidelity to a reactor. ► The new scaling is used as the basis for the Vulcan conceptual design. - Abstract: Dimensionless parameter scaling techniques are a powerful tool in the study of complex physical systems, especially in tokamak fusion experiments where the cost of full-size devices is high. It is proposed that dimensionless similarity be used to study in a small-scale device the coupled issues of the scrape-off layer (SOL) plasma, plasma–material interactions (PMI), and the plasma-facing material (PFM) response expected in a tokamak fusion reactor. Complete similarity is not possible in a reduced-size device. In addition, “hard” technological limits on the achievable magnetic field and peak heat flux, as well as the necessity to produce non-inductive scenarios, must be taken into account. A practical approach is advocated, in which the most important dimensionless parameters are matched to a reactor in the reduced-size device, while relaxing those parameters which are far from a threshold in behavior. “Hard” technological limits are avoided, so that the reduced-size device is technologically feasible. A criticism on these grounds is offered of the “P/R” model, in which the ratio of power crossing the last closed flux surface (LCFS), P, to the device major radius, R, is held constant. A new set of scaling rules, referred to as the “P/S” scaling (where S is the LCFS area) or the “PMI” scaling, is proposed: (i) non-inductive, steady-state operation; (ii) P is scaled with R 2 so that LCFS areal power flux P/S is constant; (iii) magnetic field B constant; (iv) geometry (elongation, safety factor q * , etc.) constant; (v) volume-averaged core density scaled as n≈n ¯ e ∼R −2/7 ; and (vi) ambient wall material temperature T W,0 constant. It is

  4. Solution of generalized control system equations at steady state

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1987-01-01

    Although a number of reactor systems codes feature generalized control system models, none of the models offer a steady-state solution finder. Indeed, if a transient is to begin from steady-state conditions, the user must provide estimates for the control system initial conditions and run a null transient until the plant converges to steady state. Several such transients may have to be run before values for control system demand signals are found that produce the desired plant steady state. The intent of this paper is (a) to present the control system equations assumed in the SASSYS reactor systems code and to identify the appropriate set of initial conditions, (b) to describe the generalized block diagram approach used to represent these equations, and (c) to describe a solution method and algorithm for computing these initial conditions from the block diagram. The algorithm has been installed in the SASSYS code for use with the code's generalized control system model. The solution finder greatly enhances the effectiveness of the code and the efficiency of the user in running it

  5. Engineering feasibility of tight aspect ratio Tokamak (spherical torus) reactors

    International Nuclear Information System (INIS)

    Peng, Y-K.M.; Hicks, J.B.

    1990-01-01

    Engineering solutions are identified and analyzed for key high-power-density components of tight aspect ratio tokamak reactors (spherical torus reactors). The potentially extreme divertor heat loads can be reduced to about 3 MW/m 2 in expanded divertors using coils inside the demountable toroidal field coils. Given the long and narrow divertor channels, gaseous divertor targets become possible, which eliminate sputtering and increase the divertor life. The unshielded centre conductor post (CCP) of the toroidal field coil can be made of a single dispersion strengthened copper conductor cooled by high-velocity pressurized water to maintain acceptable copper temperature and strength. Damage and activation of the CCP at a neutron fluence of 10 MW-a/m 2 are also tolerable. Annual replacement of the centre post, the divertor assemblies and the blanket can be accomplished with vertical access for all torus components, which are modularized to reduce size and weight. The technical requirements of these solutions are shown to be comparable with, if not less demanding than, those estimated for conventional tokamak reactors. (author)

  6. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    Science.gov (United States)

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  7. The ARIES-III D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Bathke, C.G.; Werley, K.A.; Miller, R.L.; Krakowski, R.A.; Santarius, J.F.

    1992-01-01

    The multi-institutional ARIES study has generated a conceptual design of another tokamak fusion reactor in a series that varies the assumed advances in technology and physics. The ARIES-III design uses a D- 3 He fuel cycle and requires advances in technology and physics for economical attractiveness. The optimal design was characterized through systems analyses for eventual conceptual engineering design. In this paper, results from the systems analysis are summarized, and a comparison with the high-field, D-T fueled ARIES-I is included

  8. Plasma engineering analyses of tokamak reactor operating space

    International Nuclear Information System (INIS)

    Houlberg, W.; Attenberger, S.E.

    1981-01-01

    A comprehensive method is presented for analyzing the potential physics operating regime of fusion reactor plasmas with detailed transport codes. Application is made to the tokamak Fusion Engineering Device (FED). The relationships between driven and ignited operation and supplementary heating requirements are examined. The reference physics models give a finite range of density and temperature over which physics objectives can be reached. Uncertainties in the confinement scaling and differences in supplementary heating methods can expand or contract this operating regime even to the point of allowing ignition with the more optimistic models

  9. Plasma driving system requirements for commercial tokamak fusion reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.C.; Stacey, W.M. Jr.

    1978-01-01

    The plasma driving system for a tokamak reactor is composed of an ohmic heating (OH) coil, equilibrium field (EF) coil, and their respective power supplies. Conceptual designs of an Experimental Power Reactor (EPR) and scoping studies of a Demonstration Power Reactor have shown that the driving system constitutes a significant part of the overall reactor cost. The capabilities of the driving system also set or help set important parameters of the burn cycle, such as the startup time, and the net power output. Previous detailed studies on driving system dynamics have helped to define the required characteristics for fast-pulsed superconducting magnets, homopolar generators, and very high power (GVA) power supplies for an EPR. This paper summarizes results for a single reactor configuration together with several design concepts for the driving system. Both the reactor configuration and the driving system concepts are natural extensions from the EPR. Thus, the new results presented in this paper can be compared with the previous EPR results to obtain a consistent picture of how the driving system requirements will evolve--for one particular design configuration

  10. Plasma driving system requirements for commercial tokamak fusion reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.C.; Stacey, W.M. Jr.

    1977-01-01

    The plasma driving system for a tokamak reactor is composed of an ohmic heating (OH) coil, equilibrium field (EF) coil, and their respective power supplies. Conceptual designs of an Experimental Power Reactor (EPR) and scoping studies of a Demonstration Power Reactor have shown that the driving system constitutes a significant part of the overall reactor cost. The capabilities of the driving system also set or help set important parameters of the burn cycle, such as the startup time, and the net power output. Previous detailed studies on driving system dynamics have helped to define the required characteristics for fast-pulsed superconducting magnets, homopolar generators, and very high power (GVA) power supplies for an EPR. This paper summarizes results for a single reactor configuration together with several design concepts for the driving system. Both the reactor configuration and the driving system concepts are natural extensions from the EPR. Thus, the new results can be compared with the previous EPR results to obtain a consistent picture of how the driving system requirements will evolve--for one particular design configuration

  11. Advanced commercial Tokamak optimization studies

    International Nuclear Information System (INIS)

    Whitley, R.H.; Berwald, D.H.; Gordon, J.D.

    1985-01-01

    Our recent studies have concentrated on developing optimal high beta (bean-shaped plasma) commercial tokamak configurations using TRW's Tokamak Reactor Systems Code (TRSC) with special emphasis on lower net electric power reactors that are more easily deployable. A wide range of issues were investigated in the search for the most economic configuration: fusion power, reactor size, wall load, magnet type, inboard blanket and shield thickness, plasma aspect ratio, and operational β value. The costs and configurations of both steady-state and pulsed reactors were also investigated. Optimal small and large reactor concepts were developed and compared by studying the cost of electricity from single units and from multiplexed units. Multiplexed units appear to have advantages because they share some plant equipment and have lower initial capital investment as compared to larger single units

  12. Poloidal field distribution studies in tokamak reactor

    International Nuclear Information System (INIS)

    Ueda, Kojyu; Nishio, Satoshi; Fujisawa, Noboru; Sugihara, Masayoshi; Saito, Seiji

    1983-01-01

    On the design studies with the INTOR plasma equilibrium and poloidal field coil configuration (PFCC) from the Phase I to the Phase II A have been obtained the following main results. Three optimized PFCCs have been obtained: the INTOR-J ''Universal'' with the optimized PFCC for the divertor configuration, the optimized PFCC for the pump limiter, and the INTOR ''Universal'' with the PFCC defined as the INTOR reference. These PFCCs satisfy with the requirements for the porthole size for the remote assembly and maintenance of the device, and the maximum flux swing and current densities of the solenoidal coils. The INTOR-J ''Universal'' will be almost the same as the INTOR ''Universal'' in the reactor size. But the optimized PFCC for the pump limiter will be a little larger than the above two configuration because of being in need of slightly larger radii on the two large coils if the plasma with 1.5 in elongation is unconditionally necessary. The total sum of absolute currents with PFCC, which is used as a parameter for its figure of merit, is found to be given in a range of 80 -- 90 MAT at high beta for the divertor configuration for both of the INTOR-J ''Universal'' and the INTOR ''Universal''. The optimized PFCC for pump limiter has 70 -- 80 MAT in its range. The INTOR-J ''Universal'' and the INTOR ''Universal'' for the pump limiter will have its larger sum than one optimized for pump limiter by several MAT. The ''EF only'' method, where the flux, psi sub(P), necessary for maintaining the plasma current on high beta is provided only by EF coils, seems to give the total sum a little less than the ''EF + OH'' method using EF and OH coils for psi sub(P). (J.P.N.)

  13. Electromagnetic effects involving a tokamak reactor first wall and blanket

    International Nuclear Information System (INIS)

    Turner, L.R.; Evans, K. Jr.; Gelbard, E.; Prater, R.

    1980-01-01

    Four electromagnetic effects experienced by the first wall and blanket of a tokamak reactor are considered. First, the first wall provides reduction of the growth rate of vertical axisymmetric instability and stabilization of low mode number interval kink modes. Second, if a rapid plasma disruption occurs, a current will be induced on the first wall, tending to maintain the field formerly produced by the plasma. Third, correction of plasma movement can begin on a time scale much faster than the L/R time of the first wall and blanket. Fourth, field changes, especially those from plasma disruption or from rapid discharge of a toroidal field coil, can cause substantial eddy current forces on elements of the first wall and blanket. These effects are considered specifically for the first wall and blanket of the STARFIRE commercial reactor design study

  14. Systems study of tokamak fusion--fission reactors

    International Nuclear Information System (INIS)

    Tenney, F.H.; Bathke, C.G.; Price, W.G. Jr.; Bohlke, W.H.; Mills, R.G.; Johnson, E.F.; Todd, A.M.M.; Buchanan, C.H.; Gralnick, S.L.

    1978-11-01

    This publication reports the results of a two to three year effort at a systematic analysis of a wide variety of tokamak-driven fissioning blanket reactors, i.e., fusion--fission hybrids. It addresses the quantitative problems of determining the economically most desirable mix of the two products: electric power and fissionable fuel and shows how the price of electric power can be minimized when subject to a variety of constraints. An attempt has been made to avoid restricting assumptions, and the result is an optimizing algorithm that operates in a six-dimensional parameter space. Comparisons are made on sets of as many as 100,000 distinct machine models, and the principal results of the study have been derived from the examination of several hundred thousand possible reactor configurations

  15. Power supply requirements for a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.L.

    1979-01-01

    The power supply requirements for a 7-m major radius commerical tokamak reactor have been examined, using a system approach combining models of the reactor and poloidal coil set, plasma burn cycle and magnetohydrodynamics calculations, and power supply characteristics and cost data. A conventional system using a motor-generator flywheel set and solid-state rectifier-inverter power supplies was studied in addition to systems using a homopolar generator, superconducting energy storage inductor, and dump resistors. The requirements and cost of the power supplies depend on several factors but most critically on the ohmic heating ramp time used for startup. Long ramp times (greater than or equal to 8 s) seem to be feasible, from the standpoint of resistive volt-second losses, and would appear to make conventional systems quite competitive with nonconventional ones, which require further research and development

  16. Dynamic stabilization of D—T burn in Tokamak reactors

    Institute of Scientific and Technical Information of China (English)

    ShiBing-Ren; LongYong-Xing

    1997-01-01

    A simple,engineeringly feasible dynamic method is supposed to control the deuterium-tritium burn process in Tokamak reactors operated in an advanced scenario.The thermal transport of the D-T plasma is described by an anomalous thermal conduction which is a radially increasing function and the central conduction value is proportional to the central temperature of the plasma.The dynamic external heating power is selected to be inversely proportional to certain power function of this temperature,As a result,the D-T burn can undergo in controllable way in different temperature regimes with different power output.Anomalous alpha particle transport effect is taken into account.It can affect the resultant plasma equilibrium ,the reactor efficency,the operation mode and so on.

  17. Maintenance features of the Compact Ignition Tokamak fusion reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Hager, E.R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is envisaged to be the next experimental machine in the US Fusion Program. Its use of deuterium/tritium fuel requires the implementation of remote handling technology for maintenance and disassembly operations. The reactor is surrounded by a close-proximity nuclear shield which is designed to permit personnel access within the test cell, one day after shutdown. With the shield in place, certain maintenance activities in the cell may be done hands-on. Maintenance on the reactor is accomplished remotely using a boom-mounted manipulator after disassembling the shield. Maintenance within the plasma chamber is accomplished with two articulated boom manipulators that are capable of operating in a vacuum environment. They are stored in a vacuum enclosure behind movable shield plugs

  18. Neutronics design for a spherical tokamak fusion-transmutation reactor

    International Nuclear Information System (INIS)

    Deng Meigen; Feng Kaiming; Yang Bangchao

    2002-01-01

    Based on studies of the spherical tokamak fusion reactors, a concept of fusion-transmutation reactor is put forward. By using the one-dimension transport and burn-up code BISON3.0 to process optimized design, a set of plasma parameters and blanket configuration suitable for the transmutation of MA (Minor Actinides) nuclear waste is selected. Based on the one-dimension calculation, two-dimension calculation has been carried out by using two-dimension neutronics code TWODANT. Combined with the neutron flux given by TWODANT calculation, burn-up calculation has been processed by using the one-dimension radioactivity calculation code FDKR and some useful and reasonable results are obtained

  19. Power supply requirements for a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Brooks, J.N.; Kustom, R.L.

    1979-02-01

    The power supply requirements for a 7-M major radius commercial tokamak reactor have been examined, using a system approach combining models of the reactor and poloidal coil set, plasma burn cycle and MHD calculations, and power supply characteristics and cost data. A conventional system using an MGF set and solid-state rectifier/inverter power supplies was studied in addition to systems using a homopolar generator, superconducting energy storage inductor, and dump resistors. The requirements and cost of the power supplies depend on several factors but most critically on the ohmic heating ramp time used for startup. Long ramp times (approx. > 8 s) seems to be feasible, from the standpoint of resistive volt-second losses, and would appear to make conventional systems quite competitive with nonconventional ones, which require further research and development

  20. Neutral-beam-injected tokamak fusion reactors: a review

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1976-08-01

    The theories of energetic-ion velocity distributions, stability, injection, and orbits were summarized. The many-faceted role of the energetic ions in plasma heating, fueling, and current maintenance, as well as in the direct enhancement of fusion power multiplication and power density, is discussed in detail for three reactor types. The relevant implications of recent experimental results on several beam-injected tokamaks are examined. The behavior of energetic ions is found to be in accordance with classical theory, large total ion energy densities are readily achieved, and plasma equilibrium and stability are maintained. The status of neutral-beam injectors and of conceptual design studies of beam-driven reactors are briefly reviewed. The principal plasma-engineering problems are those associated directly with achieving quasi-stationary operation

  1. The Steady State Calculation for SMART with MIDAS/SMR

    International Nuclear Information System (INIS)

    Park, Jong Hwa; Kim, Dong Ha; Chung, Young Jong; Park, Sun Hee; Cho, Seong Won

    2010-01-01

    KAERI is developing a new concept of reactor that all the main components such as the steam generator, the coolant pumps and the pressurizer are located inside the reactor vessel. Before the severe accident sequences are estimated, it is prerequisite that MIDAS code predicts the steady state conditions properly. But MIDAS code does not include the heat transfer model for the helical tube. Therefore, the heat transfer models for the helical tube from TASS/SMR-S were implemented into MIDAS code. To estimate the validity of the implemented heat transfer correlations for the helical tube and the input data, the steady state was recalculated with MIDAS/SMR based on design level 2 and compared with the design values

  2. Application of mineral insulated cable (MIC) in Tokamak fusion reactor

    International Nuclear Information System (INIS)

    Luo Tianyong; Jiang Jiaming; Cen Yishun

    2014-01-01

    To avoid the instability of plasma and achieve some experimental tasks in Tokamak fusion reactor, many in-vessel coils are designed such as the coils to mitigate the effect of Edge Localized Modes (ELMs coils) and the coils to provide vertical stabilization (VS coils). The in-vessel location presents special challenges in terms of nuclear radiation and temperature, and requires the use of mineral-insulated conductors. The in-vessel coils in ITER are designed to be Mineral-insulated Cable (MIC) with three-layer structures. The inner is hollow-core tube made by OFHC or CuCrZr, the middle is the insulation layer made by Mgo and the outer is the jacket by SS316L or Inconel 718. To control the effect of Edge Localized Modes and vertical instability of plasma, the MIC in-vessel coils shall be used in HL-2M. More details about the application of MIC in Tokamak fusion reactor will be shown in this report. (authors)

  3. Simulations of KSTAR high performance steady state operation scenarios

    International Nuclear Information System (INIS)

    Na, Yong-Su; Kessel, C.E.; Park, J.M.; Yi, Sumin; Kim, J.Y.; Becoulet, A.; Sips, A.C.C.

    2009-01-01

    We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; β N above 3, H 98 (y, 2) up to 2.0, f BS up to 0.76 and f NI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q min is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work

  4. Concept design on RH maintenance of CFETR Tokamak reactor

    International Nuclear Information System (INIS)

    Song, Yuntao; Wu, Songtao; Wan, Yuanxi; Li, Jiangang; Ye, Minyou; Zheng, Jinxing; Cheng, Yong; Zhao, Wenlong; Wei, Jianghua

    2014-01-01

    Highlights: •We discussed the concept design of the RH maintenance system based on the main design work of the key components for CFETR. •The main design work for RH maintenance in this paper was carried out including the divertor RH system, the blanket RH system and the transfer cask system. •The technical problems encountered in the design process were discussed. •The present concept design of remote maintenance system in this paper can meet the physical and engineering requirement of CFETR. -- Abstract: CFETR which stands for Chinese Fusion Engineering Testing Reactor is a superconducting Tokamak device. The concept design on RH maintenance of CFETR has been done in the past year. It is known that, the RH maintenance is one of the most important parts for Tokamak reactor. The fusion power was designed as 50–200 MW and its duty cycle time (or burning time) was estimated as 30–50%. The center magnetic field strength on the TF magnet is 5.0 T, the maximum capacity of the volt seconds provided by center solenoid winding will be about 160 VS. The plasma current will be 10 MA and its major radius and minor radius is 5.7 m and 1.6 m respectively. All the components of CFETR which provide their basic functions must be maintained and inspected during the reactor lifetime. Thus, the remote handling (RH) maintenance system should be a key component, which must be detailedly designed during the concept design processing of CFETR, for the operation of reactor. The main design work for RH maintenance in this paper was carried out including the divertor RH system, the blanket RH system and the transfer cask system. What is more, the technical problems encountered in the design process will also be discussed

  5. A design of steady state fusion burner

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Hatori, Tadatsugu; Itoh, Kimitaka; Ikuta, Takashi; Kodama, Yuji.

    1975-01-01

    We present a brief design of a steady state fusion burner in which a continuous burning of nuclear fuel may be achieved with output power of a gigawatt. The laser fusion is proposed to ignite the fuel. (auth.)

  6. Reactor costs and maintenance, with reference to the Culham Mark II conceptual tokamak reactor design

    International Nuclear Information System (INIS)

    Hancox, R.; Mitchell, J.T.D.

    1977-01-01

    Published designs of tokamak reactors have proposed conceptual solutions for most of the technological problems encountered. Two areas which remain uncertain, however, are the capital cost of the reactor and the practicability of reactor maintenance. A cost estimate for the Culham Conceptual Tokamak Reactor (Mk I) is presented. The capital cost of a power station incorporating this reactor would be significantly higher than that of an equivalent fast breeder fission power station, mainly because of the low power density of the fusion reactor which affects both the reactor and building costs. To reduce the fusion station capital costs a new conceptual design is proposed (Mk II) which incorporates a shaped plasma cross-section to give a higher plasma pressure ratio, βsub(t) approximately 0.1. Since the higher power density implies more severe radiation damage of the blanket structure, the question of reactor maintenance assumes greater importance. With the proposed scheme for regular replacement of the blanket, a fusion power station availability around 0.9 should be achievable. (author)

  7. Reactor costs and maintenance, with reference to the Culham Mark II conceptual Tokamak reactor design

    International Nuclear Information System (INIS)

    Hancox, R.; Mitchell, J.T.D.

    1976-01-01

    Published designs of tokamak reactors have proposed conceptual solutions for most of the technological problems encountered. Two areas which remain uncertain, however, are capital cost of the reactor and the practicability of reactor maintenance. A cost estimate for the Culham Conceptual Tokamak Reactor (Mk I) is presented. The capital cost of a power station incorporating this reactor would be significantly higher than that of an equivalent fast breeder fission power station, due mainly to the low power density of the fusion reactor which affects both the reactor and building costs. In order to reduce the fusion station capital costs a new conceptual design is proposed (Mk II) which incorporates a shaped plasma cross-section to give a higher plasma pressure ratio, βsub(t) approximately 0.1. Since the higher power density implies more severe radiation damage of the blanket structure, the question of reactor maintenance assumes greater importance. With the proposed scheme for regular replacement of the blanket, a fusion power station availability around 0.9 should be achievable. (orig.) [de

  8. Power conversion and balance of plant considerations for the STARFIRE commercial tokamak reactor

    International Nuclear Information System (INIS)

    Barry, K.; Graumann, D.

    1981-01-01

    The power conversion and balance of plant facilities for this tenth-of-a-kind tokamak fusion power plant are a combination of both features common to any large power plant, and elements peculiar to the fusion technology. For example, the steam generators, turbine-generator and main condenser components of the power conversion system and the natural draft cooling towers that are used for heat rejection at sites not close to a large body of water are generic to power plants. The tritium reprocessing facilities that minimize the tritium inventory in the plant, the Electrical and RF Power Supply Building that contains the coil and rf power supplies, the cryogenic facilities that provide liquid helium coolant for the superconducting coils, and the Hot Cell in which fully remote repair and maintenance functions are performed are unique to a fusion power plant. One of the major features of the STARFIRE design is steady state operation that maximizes overall facility reliability and eliminates both thermal storage requirements and potential power fluctuations on the grid. The reference reactor power is 4000 MWt with a gross electric power generation of 1440 MW. For STARFIRE, water is the preferred coolant and is utilized in both the first wall/blanket and limiter cooling circuits. Dual parallel primary coolant loops cool the twenty-four first-wall/blanket sectors. The power deposited in the limiter, approximately 5% of the total thermal power, is removed by the separate limiter/feedwater loop and is used for feedwater heating in the steam power conversion system

  9. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  10. Tokamak reactor designs as a function of aspect ratio

    International Nuclear Information System (INIS)

    Wong, C.P.C.; Stambaugh, R.D.

    2000-01-01

    This paper assesses the technical and economic potential of tokamak power plants which utilize superconducting coil (SC) or normal conducting coil (NC) designs as a function of aspect ratio (A). Based on the results from plasma equilibrium calculations, the key physics design parameters of β N , β p , β T , and κ were fitted to parametric equations covering A in the range of 1.2-6. By using ARIES-RS and ARIES-ST as reference design points, a fusion reactor system code was used to project the performance and cost of electricity (COE) of SC and NC reactor designs over the same range of A. The principle difference between the SC and the NC designs are the inboard standoff distance between the coil and the inboard first wall, and the maximum central column current density used for respective coil types. Results show that at an output power of 2 GWe both NC and SC designs can project COE in the respectable range of 62-65 mill/kW h at gross thermal efficiency of 46%, with neutron wall loading (Γ n ) ∼7 MW/m 2 . More importantly, we have learned that based on the present knowledge of equilibrium physics and fusion power core components and system design we can project the performance and COE of reactor designs at least for the purpose of comparative assessment. Tokamak design points can then be selected and optimized for testing or commercial devices as a function of output power, A and Γ n for both SC and NC design options

  11. UWMAK-II: a conceptual tokamak reactor design

    International Nuclear Information System (INIS)

    1975-10-01

    This report describes the conceptual design of a Tokamak fusion power reactor, UWMAK-II. The aim of this study is to perform a self consistent and thorough analysis of a probable future fusion power reactor in order to assess the technological problems posed by such a system and to examine feasible solutions. UWMAK-II is a conceptual Tokamak fusion reactor designed to deliver 1716 MWe continuously and to generate 5000 MW(th) during the plasma burn. The structural material is 316 stainless steel and the primary coolant is helium. UWMAK-II is a low aspect ratio, low field design and includes a double null, axisymmetric poloidal field divertor for impurity control. In addition, a carbon curtain, made of two dimensional woven carbon fiber, is mounted on the first vacuum chamber wall to protect the plasma from high Z impurities and to protect the first wall from erosion by charged particle bombardment. The blanket is designed to minimize the inventory of both tritium and lithium while achieving a breeding ratio greater than one. This has led to a blanket design based on the use of a solid breeding material (LiAlO 2 ) with beryllium as a neutron multiplier. The lithium is enriched to 90 percent 6 Li and the blanket coolant is helium at a maximum pressure of 750 psia (5.2 x 10 6 N/m 2 ). A cell of the UWMAK-II blanket design is shown. The breeding ratio is between 1.11 and 1.19 based on one-dimensional discrete ordinates transport calculations, depending on the method of homogenization. Detailed Monte Carlo calculations, which take into account the more complicated geometry, give a breeding ratio of 1.06. The total energy per fusion is 21.56 MeV, which is fairly high

  12. Compact Commercial Tokamak Reactor (CCTR): a concept for a 500-MWe commercial-tokamak fusion system

    International Nuclear Information System (INIS)

    Gillen, T.J.

    1980-11-01

    A detailed set of self-consistent parameters and costs for the conceptual design of a Compact Commercial Tokamak Reactor (CCTR) is given. Several of the basic design features are the following: an ignited plasma with a major radius of 4.9 m and minor radius of 1.4 m; a net electrical output of 500 MW; a borated-water-cooled, stainless steel shield; and a toroidal field of 12 T at the coil. The design, which utilizes the Westinghouse computer code for the COsting And Sizing of D-T burning Tokamaks (COAST), mainly provides the sizes and geometries associated with the definition of the main component features for which a detailed engineering design can be effectively undertaken. Design study alternatives, including a neutral beam driven design option, a design option with a toroidal field of 13 T at the coil, and a tungsten-shielded option are considered for the CCTR. Also included is the conceptual design of a Compact Fusion Engineering Device

  13. Liquid tin limiter for FTU tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Vertkov, A., E-mail: avertkov@yandex.ru [JSC “Red Star”, Moscow (Russian Federation); Lyublinski, I. [JSC “Red Star”, Moscow (Russian Federation); NRNU MEPhI, Moscow (Russian Federation); Zharkov, M. [JSC “Red Star”, Moscow (Russian Federation); Mazzitelli, G.; Apicella, M.L.; Iafrati, M. [Associazione EURATOM-ENEA sulla Fusione, C. R. Frascati, Frascati, Rome, Italy, (Italy)

    2017-04-15

    Highlights: • First steady state operating liquid tin limiter TLL is under study on FTU tokamak. • The cooling system with water spray coolant for TLL has been developed and tested. • High corrosion resistance of W and Mo in molten Sn confirmed up to 1000 °C. • Wetting process with Sn has been developed for Mo and W. - Abstract: The liquid Sn in a matrix of Capillary Porous System (CPS) has a high potential as plasma facing material in steady state operating fusion reactor owing to its physicochemical properties. However, up to now it has no experimental confirmation in tokamak conditions. First steady state operating limiter based on the CPS with liquid Sn installed on FTU tokamak and its experimental study is in progress. Several aspects of the design, structural materials and operation parameters of limiter based on tungsten CPS with liquid Sn are considered. Results of investigation of corrosion resistance of Mo and W in Sn and their wetting process are presented. The heat removal for limiter steady state operation is provided by evaporation of flowing gaswater spray. The effectiveness of such heat removal system is confirmed in modelling tests with power flux up to 5 MW/m2.

  14. Tokamak Fusion Test Reactor D-T results

    International Nuclear Information System (INIS)

    Meade, D.M.

    1995-01-01

    Temperatures, densities and confinement of deuterium plasmas confined in tokamaks have been achieved within the last decade that are approaching those required for a D-T reactor. As a result, the unique phenomena present in a D-T reactor plasma (D-T plasma confinement, α confinement, α heating and possible α-driven instabilities) can now be studied in the laboratory. Recent experiments on the Tokamak Fusion Test Reactor (TFTR) have been the first magnetic fusion experiments to study plasmas with reactor fuel concentrations of tritium. The injection of about 20MW of tritium and 14MW of deuterium neutral beams into the TFTR produced a plasma with a T-to-D density ratio of about 1 and yielding a maximum fusion power of about 9.2MW. The fusion power density in the core of the plasma was about 1.8MWm -3 , approximating that expected in a D-T fusion reactor. A TFTR plasma with a T-to-D density ratio of about 1 was found to have about 20% higher energy confinement time than a comparable D plasma, indicating a confinement scaling with average ion mass A of τ E ∝A 0.6 . The core ion temperature increased from 30 to 37keV owing to a 35% improvement of ion thermal conductivity. Using the electron thermal conductivity from a comparable deuterium plasma, about 50% of the electron temperature increase from 9 to 10.6keV can be attributed to electron heating by the α particles. The approximately 5% loss of α particles, as observed on detectors near the bottom edge of the plasma, was consistent with classical first orbit loss without anomalous effects. Initial measurements have been made of the confined high energy α particles and the resultant α ash density. At fusion power levels of 7.5MW, fluctuations at the toroidal Alfven eigen-mode frequency were observed by the fluctuation diagnostics. However, no additional α loss due to the fluctuations was observed. (orig.)

  15. Overview of the STARFIRE reference commercial tokamak fusion power reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Graumann, D.; Barry, K.

    1980-01-01

    The purpose of the STARFIRE study is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The major features for STARFIRE include a steady-state operating mode based on a continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup, superconducting EF coils outside the TF superconducting coils, fully remote maintenance, and a low-activation shield

  16. Controlled thermonuclear fusion in TOKAMAK type reactors, the European example: Joint European Torus (JET)

    International Nuclear Information System (INIS)

    Paris, P.J.; Yassen, F.; Assis, A.S. de; Raposo, C.

    1988-07-01

    The development of controlled thermonuclear reaction in TOKAMAK type reactors, and the main projects in the world are presented. The main characteristics of the JET (Joint European Torus) program, the perspectives for energy production, and the international cooperation for viable use of the TOKAMAK are analysed. (M.C.K.) [pt

  17. Tokamak power reactor ignition and time dependent fractional power operation

    International Nuclear Information System (INIS)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-06-01

    A flexible time-dependent and zero-dimensional plasma burn code with radial profiles was developed and employed to study the fractional power operation and the thermal burn control options for an INTOR-sized tokamak reactor. The code includes alpha thermalization and a time-dependent transport loss which can be represented by any one of several currently popular scaling laws for energy confinement time. Ignition parameters were found to vary widely in density-temperature (n-T) space for the range of scaling laws examined. Critical ignition issues were found to include the extent of confinement time degradation by alpha heating, the ratio of ion to electron transport power loss, and effect of auxiliary heating on confinement. Feedback control of the auxiliary power and ion fuel sources are shown to provide thermal stability near the ignition curve

  18. Analysis of Confinement Strategies for a Tokamak Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Christian; Gaillard, Jean-Philippe; Marbach, Gabriel; Cambi, Gilio; Cook, Ian; Johansson, Lise-Lotte; Meyder, Rainer; Mustoe, Julian; Pinna, Tonio

    2001-01-15

    The Safety and Environmental Assessment of Fusion Power (SEAFP) was performed in the framework of the European fusion program, whose results have already been published. The European Commission decided to continue this program for some identified issues that required development. One of these issues was the analysis and specification of the containment concepts that minimize accidental releases to the environment.To perform such an assessment, a methodology was followed to identify the most challenging accidental sequences in terms of containment integrity.The results of the accident selection and analysis that were performed during the extension of the SEAFP-2 program are given. Preliminary recommendations for the definition of a confinement strategy for tokamak fusion reactors are established.

  19. Analysis of Confinement Strategies for a Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Girard, Christian; Gaillard, Jean-Philippe; Marbach, Gabriel; Cambi, Gilio; Cook, Ian; Johansson, Lise-Lotte; Meyder, Rainer; Mustoe, Julian; Pinna, Tonio

    2001-01-01

    The Safety and Environmental Assessment of Fusion Power (SEAFP) was performed in the framework of the European fusion program, whose results have already been published. The European Commission decided to continue this program for some identified issues that required development. One of these issues was the analysis and specification of the containment concepts that minimize accidental releases to the environment.To perform such an assessment, a methodology was followed to identify the most challenging accidental sequences in terms of containment integrity.The results of the accident selection and analysis that were performed during the extension of the SEAFP-2 program are given. Preliminary recommendations for the definition of a confinement strategy for tokamak fusion reactors are established

  20. Tritium pellet injector design for tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Fisher, P.W.; Baylor, L.R.; Bryan, W.E.

    1985-01-01

    A tritium pellet injector (TPI) system has been designed for the Tokamak Fusion Test Reactor (TFTR) Q approx. 1 phase of operation. The injector gun utilizes a radial design with eight independent barrels and a common extruder to minimize tritium inventory. The injection line contains guide tubes with intermediate vacuum pumping stations and fast valves to minimize propellant leakage to the torus. The vacuum system is designed for tritium compatibility. The entire injector system is contained in a glove box for secondary containment protection against tritium release. Failure modes and effects have been analyzed, and structural analysis has been performed for most intense predicted earthquake conditions. Details of the design and operation of this system are presented in this paper

  1. Physics analysis of the Apollo D-3He tokamak reactor

    International Nuclear Information System (INIS)

    Santarius, J.F.; Emmert, G.A.

    1990-01-01

    Recent developments in the analysis and conceptual design of Apollo, a D- 3 He Tokamak Reactor are presented. Encouraging experimental results on TEXT motivated a key change in the Apollo concept utilization of an ergodic magnetic limiter for impurity control instead of a divertor. Parameters for the updated Apollo design and an analysis of the ergoidc magnetic limiter are given. The Apollo reference case uses direct conversion of synchrotron radiation to electricity by rectifying antennas (rectennas) for its power conversion system. Previous analyses of this concept are expanded, including further details of the rectennas and of the loss of synchrotron power to the waveguides and walls. Although Apollo will burn D- 3 He fuel, a significant amount of unburned tritium will be generated by D4D reactions. The possibility of operating a short, dedicated, T+ 3 He burn phase to eliminate this tritium will be examined

  2. Locking mechanism for in-vessel components of tokamak reactor

    International Nuclear Information System (INIS)

    Nishio, S.; Shimizu, K.; Koizumi, K.; Tada, E.

    1992-01-01

    The locking and unlocking mechanism for in-vessel replaceable components such as blanket modules, is one of the most critical issues of the tokamak fusion reactor, since the sufficient stiffness against the enormous electromagnetic loads and the easy replaceability are required. In this paper, the authors decide that a caulking cotter joint is worth initiating the R and D from veiwpoints of an effective use of space, a replaceability, a removability of nuclear heating, and a reliability. In this approach, the cotter driving (thrusting and plucking) mechanism is a critical technology. A flexible tube concept has been developed as the driving mechanism, where the stroke and driving force are obtained by a fat shape by the hydraulic pressure. The original normal tube is subjected to the working percentage of more than several hundreds percentage (from thickness of 1.2 mm to 0.2 mm) for plastically forming the flexible tube

  3. Blanket design study for a Commercial Tokamak Hybrid Reactor (CTHR)

    International Nuclear Information System (INIS)

    Chapin, D.L.; Green, L.; Lee, A.Y.; Culbert, M.E.; Kelly, J.L.

    1979-09-01

    The results are presented of a study on two blanket design concepts for application in a Commercial Tokamak Hybrid Reactor (CTHR). Both blankets operate on the U-Pu cycle and are designed to achieve tritium self-sufficiency while maximizing the fissile fuel production within thermal and mechanical design constraints. The two blanket concepts that were evaluated were: (1) a UC fueled, stainless steel clad and structure, helium cooled blanket; and (2) a UO 2 fueled, zircaloy clad, stainless steel structure, boiling water cooled blanket. Two different tritium breeding media, Li 2 O and LiH, were evaluated for use in both blanket concepts. The use of lead as a neutron multiplier or reflector and graphite as a reflector was also considered for both blankets

  4. Start-up simulations of the PULSAR pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Werley, K.A.; Bathke, C.G.

    1993-01-01

    Start-up conditions are examined for a pulsed tokamak reactor that uses only inductively driven plasma current (and bootstrap current). A zero-dimensional (profile-averaged) model containing plasma power and particle balance equations is used to study several aspects of plasma start-up, including: (1) optimization of the start-up pathway; (2) tradeoffs of auxiliary start-up heating power versus start-up time; (3) volt-second consumption; (4) thermal stability of the operating point; (5) estimates of the diverter heat flux and temperature during the start-up transient; (6) the sensitivity of the available operating space to allowed values of the H confinement factor; and (7) partial-power operations

  5. Plan for decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Walton, G.R.

    1993-01-01

    The Tokamak Fusion Test Reactor (TFTR) Project is in the planning phase of developing a decommissioning project. A Preliminary Decontamination and Decommissioning (D ampersand D) Plan has been developed which provides a framework for the baseline approach, and the cost and schedule estimates. TFTR will become activated and contaminated with tritium after completion of the deuterium-tritium (D-T) experiments. Hence some of the D ampersand D operations will require remote handling. It is expected that all of the waste generated will be low level radioactive waste (LLW). The objective of the D ampersand D Project is to make TFTR Test Cell available for use by a new fusion experiment. This paper discusses the D ampersand D objectives, the facility to be decommissioned, estimates of activation, the technical (baseline) approach, and the assumptions used to develop cost and schedule estimates

  6. Tests of vacuum interrupters for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Warren, R.; Parsons, M.; Honig, E.; Lindsay, J.

    1979-04-01

    The Tokamak Fusion Test Reactor (TFTR) project at Princeton University requires the insertion of a resistor in an excited ohmic-heating coil circuit to produce a plasma initiation pulse (PIP). It is expected that the maximum duty for the switching system will be an interruption of 24 kA with an associated recovery voltage of 25 kV. Vacuum interrupters were selected as the most economical means to satisfy these requirements. However, it was felt that some testing of available systems should be performed to determine their reliability under these conditions. Two interrupter systems were tested for over 1000 interruptions each at 24 kA and 25 kV. One system employed special Westinghouse type WL-33552 interrupters in a circuit designed by LASL. This circuit used a commercially available actuator and a minimum size counterpulse bank and saturable reactor. The other used Toshiba type VGB2-D20 interrupters actuated by a Toshiba mechanism in a Toshiba circuit using a larger counterpulse bank and saturable reactor

  7. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  8. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  9. Generalized saddle point condition for ignition in a tokamak reactor with temperature and density profiles

    International Nuclear Information System (INIS)

    Mitari, O.; Hirose, A.; Skarsgard, H.M.

    1989-01-01

    In this paper, the concept of a generalized ignition contour map, is extended to the realistic case of a plasma with temperature and density profiles in order to study access to ignition in a tokamak reactor. The generalized saddle point is found to lie between the Lawson and ignition conditions. If the height of the operation path with Goldston L-mode scaling is higher than the generalized saddle point, a reactor can reach ignition with this scaling for the case with no confinement degradation effect due to alpha-particle heating. In this sense, the saddle point given in a general form is a new criterion for reaching ignition. Peaking the profiles for the plasma temperature and density can lower the height of the generalized saddle point and help a reactor to reach ignition. With this in mind, the authors can judge whether next-generation tokamaks, such as Compact Ignition Tokamak, Tokamak Ignition/Burn Experimental Reactor, Next European Torus, Fusion Experimental Reactor, International Tokamak Reactor, and AC Tokamak Reactor, can reach ignition with realistic profile parameters and an L-mode scaling law

  10. Safety analyses of the ARIES tokamak reactor designs

    International Nuclear Information System (INIS)

    Herring, J.S.; McCarthy, K.A.; Dolan, T.J.

    1994-01-01

    The ARIES design has sought to maximize environmental and safety advantages of fusion through careful selection of materials and design. The ARIES-I tokamak reactor design consists of an SiC composite structure for the first wall and blanket, cooled by 10MPa helium. The breeder is Li 2 ZrO 3 . The divertor consists of SiC composite tubes coated with 2mm tungsten. Loss-of-cooling accident (LOCA) calculations indicate maximum temperatures will not cause damage if the plasma is promptly extinguished. The ARIES-II design includes liquid lithium and vanadium, both of which have low activation, multiple barriers between the lithium and air and an inert cover gas to prevent lithium-air reactions. The ARIES-II reactor is passively safe with a total 1km early dose of about 88rem (0.88Sv). ARIES-III was an extensive examination of the viability of a D- 3 He fueled tokamak power reactor. Because neutrons are produced only through side reactions (D+D→ 3 He+n, and D+D→T+p followed by D+T→ 4 He+n), the reactor has a reduced activation of the first wall and shield, low afterheat and class A or C low level waste disposal. Since no tritium is required for operation, no lithium-containing breeding blanket is necessary. We modeled a LOCA in which the organic coolant was burning in order to estimate the amount of radionuclides released from the first wall. Because the maximum temperature is low, below 600 C, release fractions are small. We analyzed the disposition of the 20g per day of tritium that is produced by D-D reactions and removed by vacuum pumps. The ARIES-IV coolant is helium and the breeder is lithium oxide. The structure is silicon carbide. Since the neutron multiplier, beryllium metal, is combustible, releasing about 60MJkg -1 , beryllium is the chief source of chemical energy. Less than 10% of the 24 Na inventory is likely to diffuse out of the SiC during a fire in which the beryllium is consumed. Therefore, the offsite dose would be less than 200rem. ((orig.))

  11. Tokamak

    International Nuclear Information System (INIS)

    Wesson, John.

    1996-01-01

    This book is the first compiled collection about tokamak. At first chapter tokamak is represented from fusion point of view and also the necessary conditions for producing power. The following chapters are represent plasma physics, the specifications of tokamak, plasma heating procedures and problems related to it, equilibrium, confinement, magnetohydrodynamic stability, instabilities, plasma material interaction, plasma measurement and experiments regarding to tokamak; an addendum is also given at the end of the book

  12. Development of large insulator rings for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Brown, T.; Tobin, A.

    1978-01-01

    This paper discusses research and development leading to the manufacture of large ceramic insulator rings for the TFTR (TOKAMAK Fusion Test Reactor). Material applications, fabrication approach and testing activities are highlighted

  13. Source-to-incident flux relation for a tokamak fusion test reactor blanket module

    International Nuclear Information System (INIS)

    Imel, G.R.

    1982-01-01

    The source-to-incident 14-MeV flux relation for a blanket module on the Tokamak Fusion Test Reactor is derived. It is shown that assumptions can be made that allow an analytical expression to be derived, using point kernel methods. In addition, the effect of a nonuniform source distribution is derived, again by relatively simple point kernel methods. It is thought that the methodology developed is valid for a variety of blanket modules on tokamak reactors

  14. Increase in beta limit in tokamak plasmas

    International Nuclear Information System (INIS)

    Kamada, Yutaka

    2003-01-01

    This paper reviews recent studies of tokamak MHD stability towards the achievement of a high beta steady-state, where the profile control of current, pressure, and rotation, and the optimization of the plasma shape play fundamental roles. The key instabilities include the neoclassical tearing mode, the resistive wall mode, the edge localized mode, etc. In order to demonstrate an economically attractive tokamak reactor, it is necessary to increase the beta value simultaneously with a sufficiently high integrated plasma performance. Towards this goal, studies of stability control in self-regulating plasma systems are essential. (author)

  15. JET steady state ITB operation with active control of the pressure profile

    Energy Technology Data Exchange (ETDEWEB)

    Crisanti, F.; Litaudon, X.; Mailloux, J. [and others

    2002-07-01

    Stationary operations have been achieved at JET in ITBs scenarios, with the discharge time limited only by plant constraints. Full current drive was obtained, all over the high performance phase, with the current density profile frozen by using Lower Hybrid current drive. For the first time a feed-back control on the total pressure and on the electron temperature profile was implemented by using respectively the Neutral Beams and the Ion Cyclotron waves. Although impurity accumulation could be a problem in steady state ITBs, these experiments bring some elements to answer to it. Tokamak operation in enhanced confinement regimes, characterized by edge and/or Internal Transport Barriers (respectively known as H-mode and ITB), is attractive as it represents an important step towards the approach of ignition conditions. Moreover, the necessity of steady state operation in a Tokamak reactor, has led to the concept of the Advanced Tokamak, in which the current density profile is no longer tied to the plasma conductivity and is non inductively driven. Since the bootstrap current is a consequence of the pressure gradient, one of the primary goal of the Advanced Tokamak studies is to maximize the bootstrap fraction, with a proper alignment, both in H mode and in ITB regimes. However, for several reasons, it is difficult to envisage an operational situation in which the bootstrap fraction is close to 100%: for instance, there are few chances of pressure or/and current profile control to optimize the MHD stability. So far, various experiments have been performed with improved confinement regimes lasting up to tens of the confinement time and up to some current relaxation times. In some experiments a large non inductive plasma current (< 75%) was obtained with about 50% from bootstrap and 25% from Neutral Beam Injection (NBI); however, no full current drive operation was achieved and, moreover, with the available heating systems, no active feedback control of the current

  16. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  17. Deuterium-tritium experiments on the Tokamak Fusion Test reactor

    International Nuclear Information System (INIS)

    Hosea, J.; Adler, J.H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Ashcroft, D.

    1994-09-01

    The deuterium-tritium (D-T) experimental program on the Tokamak Fusion Test Reactor (TFTR) is underway and routine tritium operations have been established. The technology upgrades made to the TFTR facility have been demonstrated to be sufficient for supporting both operations and maintenance for an extended D-T campaign. To date fusion power has been increased to ∼9 MW and several physics results of importance to the D-T reactor regime have been obtained: electron temperature, ion temperature, and plasma stored energy all increase substantially in the D-T regime relative to the D-D regime at the same neutral beam power and comparable limiter conditioning; possible alpha electron heating is indicated and energy confinement improvement with average ion mass is observed; and alpha particle losses appear to be classical with no evidence of TAE mode activity up to the PFUS ∼6 MW level. Instability in the TAE mode frequency range has been observed at PFUS > 7 MW and its effect on performance in under investigation. Preparations are underway to enhance the alpha particle density further by increasing fusion power and by extending the neutral beam pulse length to permit alpha particle effects of relevance to the ITER regime to be more fully explored

  18. New tritium monitor for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Jalbert, R.A.

    1985-01-01

    At DT-fueled fusion reactors, there will be a need for tritium monitors that can simultaneously measure in real time the concentrations of HTO, HT and the activated air produced by fusion neutrons. Such a monitor has been developed, tested and delivered to the Princeton Plasma Physics Laboratory for use at the Tokamak Fusion Test Reactor (TFTR). It uses semipermeable membranes to achieve the removal of HTO from the sampled air for monitoring and a catalyst to convert the HT to HTO, also for removal and monitoring. The remaining air, devoid of tritium, is routed to a third detector for monitoring the activated air. The sensitivities are those that would be expected from tritium instruments employing conventional flow-through ionization chambers: 1 to 3 μCi/m 3 . Its discriminating ability is approximately 10 -3 for any of the three components (HTO, HT and activated air) in any of the other two channels. For instance, the concentration of HT in the HTO channel is 10 -3 times its original concentration in the sampled air. This will meet the needs of TFTR

  19. Oak Ridge Tokamak experimental power reactor study scoping report

    International Nuclear Information System (INIS)

    Roberts, M.

    1977-03-01

    This report presents the scoping studies performed as the initial part of the program to produce a conceptual design for a Tokamak Experimental Power Reactor (EPR). The EPR as considered in this study is to employ all systems necessary for significant electric power production at continuous high duty cycle operation; it is presently scheduled to be the final technological step before a Demonstration Reactor Plant (Demo). The scoping study tasks begin with an exploration and identification of principal problem areas and then concentrate on consideration and evaluation of alternate design choices for each of the following major systems: Plasma Engineering and Physics, Nuclear, Electromagnetics, Neutral Beam Injection, and Tritium Handling. In addition, consideration has been given to the integration of these systems and requirements arising out of their incorporation into an EPR. One intent of this study is to document the paths explored in search of the appropriate EPR characteristics. To satisfy this intent, the explorations are presented in chart form outlining possible options in key areas with extensive supporting footnotes. An important result of the scoping study has been the development and definition of an EPR reference design to serve as (1) a common focus for the continuing design study and (2) a guide for associated development programs. In addition, the study has identified research and development requirements essential to facilitate the successful conceptual design, construction, and operation of an EPR

  20. Decontamination and decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Walton, G.R.; Perry, E.D.; Commander, J.C.; Spampinato, P.T.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) is scheduled to complete its end-of-life deuterium-tritium (D-T) experiments in September 1994. The D-T operation will result in the TFTR machine structure becoming activated, and plasma facing and vacuum components will be contaminated with tritium. The resulting machine activation levels after a two year cooldown period will allow hands on dismantling for external structures, but require remote dismantling for the vacuum vessel. The primary objective of the Decontamination and Decommissioning (D ampersand D) Project is to provide a facility for construction of a new Department of Energy (DOE) experimental fusion reactor by March 1998. The project schedule calls for a two year shutdown period when tritium decontamination of the vacuum vessel, neutral beam injectors and other components will occur. Shutdown will be followed by an 18 month period of D ampersand D operations. The technical objectives of the project are to: safely dismantle and remove components from the test cell complex; package disassembled components in accordance with applicable regulations; ship packages to a DOE approved disposal or material recycling site; and develop expertise using remote disassembly techniques on a large scale fusion facility. This paper discusses the D ampersand D objectives, the facility to be decommissioned, and the technical plan that will be implemented

  1. HTMR: an experimental tokamak reactor with hybrid copper/superconductor toroidal field magnet

    International Nuclear Information System (INIS)

    Avanzini, P.G.; Raia, G.; Rosatelli, F.; Zampaglione, V.

    1985-01-01

    The feasibility of a hybrid configuration superconducting coils/copper coils for a next generation tokamak TF magnet has been investigated. On the basis of this hybrid solution, the conceptual design has been developed for a medium-high toroidal field tokamak reactor (HTMR). The results of this study show the possibility of designing a tokamak reactor with reduced size in comparison with other INTOR like devices, still gaining some margins in front of the uncertainties in the scaling laws for plasma physics parameters and retaining the presence of a blanket with a tritium breeding ratio of about 1

  2. Fueling Requirements for Steady State high butane current fraction discharges

    International Nuclear Information System (INIS)

    R.Raman

    2003-01-01

    The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs

  3. First wall/blanket/shield design and power conversion for the ARIES-IV tokamak fusion reactor

    International Nuclear Information System (INIS)

    Hasan, M.Z.; Conn, R.W.; Najmabadi, F.

    1994-01-01

    ARIES-IV is a conceptual, D-T burning, steady-state tokamak fusion reactor producing 1000 MWe net. It operates in the second plasma stability regime. The structural material is SiC composite and the primary coolant is helium at 10 MPa base pressure. The coolant flows poloidally in two loops, one inboard and one outboard. The coolant channels are circular tubes that form shells and are placed between two purge plates; the space between two adjacent tubes and the plate is purge gas flow area. The solid breeder is Li 2 O, and Be is used as neutron multiplier to ensure adequate TBR. Beryllium and Li 2 O are placed in between the adjacent tube shells. A computer code was developed to perform and optimize thermal-hydraulic design. Minimization of blanket thickness and the amount of Be, and the maximization of breeder zone thickness were done by iteration with neutronics. The gross thermal efficiency is 49%. The cost of electricity is 68 mills/kWh. The use of low activation SiC composite as the structural material, Li 2 O as the solid breeder, and avoidance of tungsten in the divertor has resulted in a good safety performance, and LSA rating of 1. Overall, SiC/He/Li 2 O ARIES-IV design is expected to have attractive economic and safety advantages

  4. 7. IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices - Booklet of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts

  5. TOKMINA, Toroidal Magnetic Field Minimization for Tokamak Fusion Reactor. TOKMINA-2, Total Power for Tokamak Fusion Reactor

    International Nuclear Information System (INIS)

    Hatch, A.J.

    1975-01-01

    1 - Description of problem or function: TOKMINA finds the minimum magnetic field, Bm, required at the toroidal coil of a Tokamak type fusion reactor when the input is beta(ratio of plasma pressure to magnetic pressure), q(Kruskal-Shafranov plasma stability factor), and y(ratio of plasma radius to vacuum wall radius: rp/rw) and arrays of PT (total thermal power from both d-t and tritium breeding reactions), Pw (wall loading or power flux) and TB (thickness of blanket), following the method of Golovin, et al. TOKMINA2 finds the total power, PT, of such a fusion reactor, given a specified magnetic field, Bm, at the toroidal coil. 2 - Method of solution: TOKMINA: the aspect ratio(a) is minimized, giving a minimum value for Bm. TOKMINA2: a search is made for PT; the value of PT which minimizes Bm to the required value within 50 Gauss is chosen. 3 - Restrictions on the complexity of the problem: Input arrays presently are dimensioned at 20. This restriction can be overcome by changing a dimension card

  6. High Beta Steady State Research and Future Directions on JT-60U and JFT-2M

    Science.gov (United States)

    Ishida, Shinichi

    2003-10-01

    JT-60U and JFT-2M research is focused on high beta steady state operation towards economically and environmentally attractive reactors. In JT-60U, a high-βp H-mode plasma was sustained with βN 2.7 for 7.4 s in which neoclassical tearing modes (NTMs) limited the attainable β_N. Real-time tracking NTM stabilization system using ECCD demonstrated complete suppression of NTM leading to recovery of βN before onset of NTM. Performance in a fully non-inductive H-mode plasma was improved up to n_i(0) τE T_i(0) = 3.1 x 10^20 keV s m-3 using N-NBCD with βN 2.4, HH_y,2=1.2 and bootstrap fraction f_BS 0.5. ECH experiments extended the confinement enhancement for dominantly electron heated reversed shear plasmas up to HH_y,2 2 at T_e/Ti 1.25. A world record ECCD efficiency, 4.2 x 10^18 A/W/m^2, was achieved at Te 23 keV with a highly localized central current density. Innovative initiation and current build-up without center solenoid currents were established by LHCD/ECH and bootstrap current up to f_BS 0.9. In JFT-2M, the inside of the vacuum vessel wall was fully covered with low-activation ferritic steel plates to investigate their use in plasmas near fusion conditions. High βN plasmas were produced up to βN = 3.3 with an internal transport barrier (ITB) and a steady H-mode edge. A new H-mode regime with steady high recycling (HRS) and an ITB was exploited leading to βN H_89P 6.2 at n_e/nG 0.7. In 2003, JT-60U will be able to operate for the duration up to 65 s at 1 MA/2.7 T and the heating/current-drive duration up to 30 s at 17 MW to prolong high-βN and/or high-f_BS discharges with feedback controls. JFT-2M is planning to implement wall stabilization experiments in 2004 to pursue plasmas above the ideal no-wall limit using a ferritic wall. The modification of JT-60 to a fully superconducting tokamak is under discussion to explore high-β steady state operation in collision-less plasmas well above no-wall limit with ferritic wall in a steady state.

  7. On the possibility of a steady state tokamak

    International Nuclear Information System (INIS)

    Dawson, J.M.; Nunan, W.J.; Ma, S.

    1994-01-01

    This symposium is particularly honoring Tom for his guiding of the graduate program in plasma physics at Princeton. For this reason I thought it would be appropriate for me to speak about some work a graduate student of mine, Bill Nunan, is doing, at UCLA. In a real sense the UCLA graduate program in Plasma Physics has many roots in the Princeton program which Tom so skillfully guided. copyright American Institute of Physics 1994

  8. MARS input data for steady-state calculation of ATLAS

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Euh, D. J.; Choi, K. Y.; Kwon, T. S.; Jeong, J. J.; Baek, W. P.

    2004-12-01

    An integral effect test loop for Pressurized Water Reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is under construction by Thermal-Hydraulics Safety Research Division in Korea Atomic Energy Research Institute (KAERI). This report includes calculation sheets of the input for the best-estimate system analysis code, the MARS code, based on the ongoing design features of ATLAS. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400. The contents of this report are divided into three parts: (1) core and reactor vessel, (2) steam generator and steam line, and (3) primary piping, pressurizer and reactor coolant pump. The steady-state analysis for the ATLAS facility will be performed based on these calculation sheets, and its results will be applied to the detailed design of ATLAS. Additionally, the calculation results will contribute to getting optimum test conditions and preliminary operational test conditions for the steady-state and transient experiments

  9. Improving the tokamak fusion reactor concept: workshop summary

    International Nuclear Information System (INIS)

    1978-11-01

    Attention focused on two particular problem areas: (1) maintainability and complexity, and (2) pulsed vs steady-state operation. A general conclusion was that a variety of conceptual solutions have emerged in these areas and that engineering development would almost surely result in an acceptable and attractive commercial product. A number of specific improvements were identified for detailed design work and/or experimentation

  10. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  11. Steady state of tapped granular polygons

    International Nuclear Information System (INIS)

    Carlevaro, Carlos M; Pugnaloni, Luis A

    2011-01-01

    The steady state packing fraction of a tapped granular bed is studied for different grain shapes via a discrete element method. Grains are monosized regular polygons, from triangles to icosagons. Comparisons with disc packings show that the steady state packing fraction as a function of the tapping intensity presents the same general trends in polygon packings. However, better packing fractions are obtained, as expected, for shapes that can tessellate the plane (triangles, squares and hexagons). In addition, we find a sharp transition for packings of polygons with more than 13 vertices signaled by a discontinuity in the packing fraction at a particular tapping intensity. Density fluctuations for most shapes are consistent with recent experimental findings in disc packing; however, a peculiar behavior is found for triangles and squares

  12. On Steady-State Tropical Cyclones

    Science.gov (United States)

    2014-01-01

    Press: London. Marks FD, Black PG, Montgomery MT, Burpee RW. 2008. Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Weather Rev. 136: 1237... hurricanes ; tropical cyclones; typhoons; steady-state Received 18 April 2013; Revised 25 November 2013; Accepted 29 December 2013; Published online in Wiley...the concept of the ‘mature stage’ of a hurricane vortex. The definition of the ‘mature stage’ is commonly based on the time period in which the maximum

  13. Probabilistic analysis of divertor plate lifetime in tokamak reactors

    International Nuclear Information System (INIS)

    Golinescu, R.P.; Kazimi, M.S.

    1994-01-01

    Defining a methodology for a reliability estimate of the International Tokamak Experimental Reactor (ITER) divertor is the objective of the study summarized in this paper. If ITER could be designed such that no transients of any type occurred, the divertor reliability would be controlled by erosion of material during normal operation. The occurrence of several transient events results in important contribution to the expected divertor failure rate. Some transients cause the temperature in the divertor plate (DP) to rise; if these temperatures get too high, the structural elements in the DP will weaken and subsequently suffer structural failure and possibly reach the melting temperature. Using the limited data available leads to the result that there is a high probability that the DP will reliably withstand a peak heat flux of 11 MW/m 2 . However, transient events will lead to a much shorter lifetime than desirable for DP's, mainly due to the expected severe effects of plasma disruptions. If transients occurred, but the shutdown mechanism succeeded to perform without inducing a disruption, divertor reliability could be significantly improved. Improved characterization of the disruption conditions, and enlarged scope of failure modes should be pursued to gain confidence in the present conclusions

  14. Conceptual design of a commercial tokamak hybrid reactor fueling system

    International Nuclear Information System (INIS)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system

  15. Conceptual design of a commercial tokamak hybrid reactor fueling system

    International Nuclear Information System (INIS)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron temperature is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system

  16. High-field, high-density tokamak power reactor

    International Nuclear Information System (INIS)

    Cohn, D.R.; Cook, D.L.; Hay, R.D.; Kaplan, D.; Kreischer, K.; Lidskii, L.M.; Stephany, W.; Williams, J.E.C.; Jassby, D.L.; Okabayashi, M.

    1977-11-01

    A conceptual design of a compact (R 0 = 6.0 m) high power density (average P/sub f/ = 7.7 MW/m 3 ) tokamak demonstration power reactor has been developed. High magnetic field (B/sub t/ = 7.4 T) and moderate elongation (b/a = 1.6) permit operation at the high density (n(0) approximately 5 x 10 14 cm -3 ) needed for ignition in a relatively small plasma, with a spatially-averaged toroidal beta of only 4%. A unique design for the Nb 3 Sn toroidal-field magnet system reduces the stress in the high-field trunk region, and allows modularization for simpler disassembly. The modest value of toroidal beta permits a simple, modularized plasma-shaping coil system, located inside the TF coil trunk. Heating of the dense central plasma is attained by the use of ripple-assisted injection of 120-keV D 0 beams. The ripple-coil system also affords dynamic control of the plasma temperature during the burn period. A FLIBE-lithium blanket is designed especially for high-power-density operation in a high-field environment, and gives an overall tritium breeding ratio of 1.05 in the slowly pumped lithium

  17. Ion cyclotron transmission spectroscopy in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Greene, G.J.

    1993-09-01

    The propagation of waves in the ion cyclotron range of frequencies has been investigated experimentally in the Tokamak Fusion Test Reactor. A small, broadband, radiofrequency (rf) magnetic probe located outside the plasma limiter, at a major radius near that of the plasma center, was excited with a low power, frequency swept source (1--200 MHz). Waves propagating to a distant location were detected with a second, identical probe. The rf transmission spectrum revealed a region of attenuation over a band of frequencies for which the minority fundamental resonance was located between the outer plasma edge and the major radius of the probe location. Distinct, non-overlapping attenuation bands were observed from hydrogen and helium-3 minority species; a distinct tritium band should be observed in future DT experiments. Rapid spectrum acquisition during a helium-3 gas puff experiment showed that the wave attenuation involved the plasma core and was not a surface effect. A model in which the received power varied exponentially with the minority density, averaged over the resonance region, fit the time evolution of the probe signal relatively well. Estimation of a 1-d tunneling parameter from the experimental observations is discussed. Minority concentrations of less than 0.5 % can be resolved with this measurement.

  18. Conceptual design of a commercial tokamak hybrid reactor fueling system

    Energy Technology Data Exchange (ETDEWEB)

    Matney, K.D.; Donnert, H.J.; Yang, T.F.

    1979-12-01

    A conceptual design of a fuel injection system for CTHR (Commercial Tokamak Hybrid Reactor) is discussed. Initially, relative merits of the cold-fueling concept are compared with those of the hot-fueling concept; that is, fueling where the electron is below 1 eV is compared with fueling where the electron temperature exceeds 100 eV. It is concluded that cold fueling seems to be somewhat more free of drawbacks than hot fueling. Possible implementation of the cold-fueling concept is exploited via frozen-pellet injection. Several methods of achieving frozen-pellet injection are discussed and the light-gas-gun approach is chosen from these possibilities. A modified version of the ORNL Neutral Gas Shielding Model is used to simulate the pellet injection process. From this simulation, the penetration-depth dependent velocity requirement is determined. Finally, with the velocity requirement known, a gas-pressure requirement for the proposed conceptual design is established. The cryogenic fuel-injection and fuel-handling systems are discussed. A possible way to implement the conceptual device is examined along with the attendant effects on the total system.

  19. Enhancement of Tokamak Fusion Test Reactor performance by lithium conditioning

    International Nuclear Information System (INIS)

    Mansfield, D.K.; Hill, K.W.; Strachan, J.D.; Bell, M.G.; Scott, S.D.; Budny, R.; Marmar, E.S.; Snipes, J.A.; Terry, J.L.; Batha, S.; Bell, R.E.; Bitter, M.; Bush, C.E.; Chang, Z.; Darrow, D.S.; Ernst, D.; Fredrickson, E.; Grek, B.; Herrmann, H.W.; Janos, A.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Johnson, L.C.; Levinton, F.M.; Mikkelsen, D.R.; Mueller, D.; Owens, D.K.; Park, H.; Ramsey, A.T.; Roquemore, A.L.; Skinner, C.H.; Stevenson, T.; Stratton, B.C.; Synakowski, E.; Taylor, G.; von Halle, A.; von Goeler, S.; Wong, K.L.; Zweben, S.J.

    1996-01-01

    Wall conditioning in the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] by injection of lithium pellets into the plasma has resulted in large improvements in deuterium endash tritium fusion power production (up to 10.7 MW), the Lawson triple product (up to 10 21 m -3 s keV), and energy confinement time (up to 330 ms). The maximum plasma current for access to high-performance supershots has been increased from 1.9 to 2.7 MA, leading to stable operation at plasma stored energy values greater than 5 MJ. The amount of lithium on the limiter and the effectiveness of its action are maximized through (1) distributing the Li over the limiter surface by injection of four Li pellets into Ohmic plasmas of increasing major and minor radius, and (2) injection of four Li pellets into the Ohmic phase of supershot discharges before neutral-beam heating is begun. copyright 1996 American Institute of Physics

  20. Design study of toroidal magnets for tokamak experimental power reactors

    International Nuclear Information System (INIS)

    Stekly, Z.J.J.; Lucas, E.J.

    1976-12-01

    This report contains the results of a six-month study of superconducting toroidal field coils for a Tokamak Experimental Power Reactor to be built in the late 1980s. The designs are for 8 T and 12 T maximum magnetic field at the superconducting winding. At each field level two main concepts were generated; one in which each of the 16 coils comprising the system has an individual vacuum vessel and the other in which all the coils are contained in a single vacuum vessel. The coils have a D shape and have openings of 11.25 m x 7.5 m for the 8 T coils and 10.2 m x 6.8 m for the 12 T coils. All the designs utilize rectangular cabled conductor made from copper stabilized Niobium Titanium composite which operates at 4.2 K for the 8 T design and at 2.5 K for the 12 T design. Manufacturing procedures, processes and schedule estimates are also discussed

  1. Plasma position control in a tokamak reactor around ignition

    International Nuclear Information System (INIS)

    Carretta, U.; Minardi, E.; Bacelli, N.

    1986-01-01

    Plasma position control in a tokamak reactor in the phase approaching ignition is closely related to burn control. If ignited burn corresponds to a thermally unstable situation the plasma becomes sensitive to the thermal instability already in the phase when ignition is approached so that the trajectory in the position-pressure (R,p) space becomes effectively unpredictable. For example, schemes involving closed cycles around ignition can be unstable in the heating-cooling phases, and the deviations may be cumulative in time. Reliable plasma control in pressure-position (p, R) space is achieved by beforehand constraining the p, R trajectory rigidly with suitable feedback vertical field stabilization, which is to be established already below ignition. A scheme in which ignition is approached in a stable and automatic way by feedback stabilization on the vertical field is proposed and studied in detail. The values of the gain coefficient ensuring stabilization and the associated p and R excursions are discussed both analytically, with a 0-D approximation including non-linear effects, and numerically with a 1-D code in cylindrical geometry. Profile effects increase the excursions, in particular above ignition. (author)

  2. Ion cyclotron transmission spectroscopy in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Greene, G.J.

    1993-09-01

    The propagation of waves in the ion cyclotron range of frequencies has been investigated experimentally in the Tokamak Fusion Test Reactor. A small, broadband, radiofrequency (rf) magnetic probe located outside the plasma limiter, at a major radius near that of the plasma center, was excited with a low power, frequency swept source (1--200 MHz). Waves propagating to a distant location were detected with a second, identical probe. The rf transmission spectrum revealed a region of attenuation over a band of frequencies for which the minority fundamental resonance was located between the outer plasma edge and the major radius of the probe location. Distinct, non-overlapping attenuation bands were observed from hydrogen and helium-3 minority species; a distinct tritium band should be observed in future DT experiments. Rapid spectrum acquisition during a helium-3 gas puff experiment showed that the wave attenuation involved the plasma core and was not a surface effect. A model in which the received power varied exponentially with the minority density, averaged over the resonance region, fit the time evolution of the probe signal relatively well. Estimation of a 1-d tunneling parameter from the experimental observations is discussed. Minority concentrations of less than 0.5 % can be resolved with this measurement

  3. Beam heating requirements for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Bertoncini, P.J.; Brooks, J.N.; Fasolo, J.A.; Stacey, W.M. Jr.

    1976-01-01

    Typical beam heating requirements for effective tokamak experimental power reactor (TEPR) operation have been studied in connection with the Argonne preliminary conceptual TEPR design. For an ignition level plasma (approximately 100 MWt fusion power) for the nominal case envisioned, the neutral beam is only used to heat the plasma to ignition. This typically requires a beam power output of 40 MW at 180 keV for about 3 sec with a total energy of 114 MJ supplied to the plasma. The beam requirements for an ignition device are not very sensitive to changes in wall-sputtered impurity levels or plasma resistivity. For a plasma that must be driven due to poor confinement, the beam must remain on for most of the burn cycle. For representative cases, beam powers of approximately 23 MW are required for a total on-time of 20 to 50 sec. Reqirements on power level, beam energy, on-time, and beam-generation efficiency all represent considerable advances over present technology. For the Argonne TEPR design, a total of 16 to 32 beam injectors is envisioned. For a 40-MW, 180-keV, one-component beam, each injector supplies about 7 to 14 A of neutrals to the plasma. For positive ion sources, about 50 to 100 A of ions are required per injector and some form of particle and/or energy recycling appears to be essential in order to meet the power and efficiency requirements

  4. Tokamak experimental power reactor conceptual design. Volume I

    International Nuclear Information System (INIS)

    1976-08-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 years. The EPR operates in a pulsed mode at a frequency of approximately 1/min., with an approximate 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2-cm thick stainless steel, and has 2-cm thick detachable, beryllium-coated coolant panels mounted on the interior. An 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H 2 O. Sixteen niobium-titanium superconducting toroidal-field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic-heating and equilibrium-field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam-injectors, which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-converters

  5. Operation and control of high density tokamak reactors

    International Nuclear Information System (INIS)

    Attenberger, S.E.; McAlees, D.G.

    1976-01-01

    The incentive for high density operation of a tokamak reactor was discussed. It is found that high density permits ignition in a relatively small, moderately elongated plasma with a moderate magnetic field strength. Under these conditions, neutron wall loadings approximately 4 MW/m 2 must be tolerated. The sensitivity analysis with respect to impurity effects shows that impurity control will most likely be necessary to achieve the desired plasma conditions. The charge exchange sputtered impurities are found to have an important effect so that maintaining a low neutral density in the plasma is critical. If it is assumed that neutral beams will be used to heat the plasma to ignition, high energy injection is required (approximately 250 keV) when heating is accompished at full density. A scenario is outlined where the ignition temperature is established at low density and then the fueling rate is increased to attain ignition. This approach may permit beams with energies being developed for use in TFTR to be successfully used to heat a high density device of the type described here to ignition

  6. Design of the TFTR [Tokamak Fusion Test Reactor] maintenance manipulator

    International Nuclear Information System (INIS)

    Loesser, G. D.; Heitzenroeder, P.; Bohme, G.; Selig, M.

    1987-01-01

    The Tokamak Fusion Test Reactor (TFTR) plans to generate a total of 3 x 10 21 neutrons during its deuterium-tritium run period in 1900. This will result in high levels of radiation, especially within the TFTR vacuum vessel. The maintenance manipulator's mission is to assist TFTR in meeting Princeton Plasma Physics Laboratory's personnel radiation exposure criteria and in maintaining as-low-as-reasonably-achievable principals by limiting the radiation exposure received by operating and maintenance personnel. The manipulator, which is currently being fabricated and tested by Kernforschungszentrum Karlsruhe, is designed to perform limited, but routine and necessary, functions within the TFTR vacuum torus after activation levels within the torus preclude such functions being performed by personnel. These functions include visual inspection, tile replacement, housekeeping tasks, diagnostic calibrations, and leak detection. To meet its functional objectives, the TFTR maintenance manipulator is required to be operable in TFTR's very high vacuum environment (typically 2 x 10 -8 Torr). It must also be bakeable at 150 degree C and able to withstand the radiation environment

  7. Remote maintenance considerations for swimming pool tokamak reactor

    International Nuclear Information System (INIS)

    Niikura, S.; Yamada, M.; Kasai, M.

    1983-01-01

    Swimming Pool Tokamak Reactor (SPTR) is one of the candidate devices which are expected to demonstrate physical and engineering feasibility for fusion power reactors. In SPTR, water shield is adopted instead of solid shield structures. Among the advantages of SPTR are, from viewpoint of remote maintenance, small handling weight and high space availability between TF coils and a vacuum vessel. On the other hand, high dose rate during reactor repair and adverse effects on remote maintenance equipment by the shielding water might be the disadvantage of SPTR, where it is assumed that the shielding water is drained during reactor repair. Since the design of SPTR is still at the preliminary stage, for remote maintenance, much effort has been directed to clarification of design conditions such as environment and handling weight. As for the remote maintenance system concepts, studies have been focussed on those for a vacuum vessel and its internal structure (blanket, divertor and protection walls) expected to be repaired more frequently. The vacuum vessel assembly is divided into 21 sectors and number of TF coils is 14. A pair of TF coils are connected with each other by antitorque beams on the whole side surface. Vacuum vessel cassettes and associated blanket, divertor and protection walls are replaced through seven windows between TF coils pairs. Therefore each vacuum vessel cassette is required moving mechanisms in toroidal and radial directions. Options for slide mechanisms are wheels, balls, rollers and water bearings. Options for driving the cassette are self-driving by hydraulic motors and external driving by rack-pinion, wires or specific vehicles. As a result of studies, the moving mechanism with wheels and hydraulic motors has been selected for the reference design, and the system with water bearings and rack-pinion as an alternative. Furthermore typical concepts have been obtained for remote maintenance equipment such as wall-mounted manipulators, tools for

  8. Apollo-L2, an advanced fuel tokamak reactor utilizing direct conversion

    International Nuclear Information System (INIS)

    Emmert, G.A.; Kulcinski, G.L.; Blanchard, J.P.; El-Guebaly, L.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.E.; Sviatoslavsky, I.N.; Wittenberg, L.J.; Witt, R.J.

    1989-01-01

    A scoping study of a tokamak reactor fueled by a D- 3 He plasma is presented. The Apollo D- 3 He tokamak capitalizes on recent advances in high field magnets (20 T) and utilizes rectennas to convert the synchrotron radiation directly to electricity. The low neutron wall loading (0.1 MW/m 2 ) permits a first wall lasting the life of the plant and enables the reactor to be classified as inherently safe. The cost of electricity is less than that from a similar power level DT reactor. 10 refs., 1 fig., 4 tabs

  9. Design study of a fusion-driven tokamak hybrid reactor for fissile fuel production. Final report

    International Nuclear Information System (INIS)

    Rose, R.P.

    1979-05-01

    This study evaluated conceptual approaches for a tokamak fusion-driven fuel producing reactor. The conceptual design of this hybrid reactor was based on using projected state-of-the-art technology for the late 1980s. This reactor would be a demonstration plant and, therefore, first-of-a-kind considerations have been included. The conceptual definitions of two alternatives for the fusion driver were evaluated. A Two-Component Tokamak (TCT) concept, based on the TFTR plasma physics parameters, was compared to a Beam-Driven Thermonuclear (BDTN) concept, based on the USSR T-20 plasma physics parameters

  10. Analysis of toroidal vacuum vessels for use in demonstration sized tokamak reactors

    International Nuclear Information System (INIS)

    Culbert, M.E.

    1978-07-01

    The vacuum vessel component of the tokamak fusion reactor is the subject of this study. The main objective of this paper was to provide guidance for the structural design of a thin wall externally pressurized toroidal vacuum vessel. The analyses are based on the available state-of-the-art analytical methods. The shortcomings of these analytical methods necessitated approximations and assumptions to be made throughout the study. A principal result of the study has been the identification of a viable vacuum vessel design for the Demonstration Tokamak Hybrid Reactor (DTHR) and The Next Step (TNS) Reactor

  11. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities.

    Science.gov (United States)

    Rowan, D J

    2013-07-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any

  12. Status of fusion reactor concept development in Japan

    International Nuclear Information System (INIS)

    Tsuji-Iio, Shunji

    1996-01-01

    Fusion power reactor studies in Japan based on magnetic confinement schemes are reviewed. As D-T fusion reactors, a steady-state tokamak reactor (SSTR) was proposed and extensively studied at the Japan Atomic Energy Research Institute (JAERI) and an inductively operated day-long tokamak reactor (IDLT) was proposed by a group at the University of Tokyo. The concept of a drastically easy maintenance (DREAM) tokamak reactor is being developed at JAERI. A high-field tokamak reactor with force-balanced coils as a volumetric neutron source is being studied by our group at Tokyo Institute of Technology. The conceptual design of a force-free helical reactor (FFHR) is under way at the National Institute for Fusion Science. A design study of a D- 3 He field-reversed configuration (FRC) fusion reactor called ARTEMIS was conducted by the FRC fusion working group of research committee of lunar base an lunar resources. (author)

  13. Tokamak Physics Experiment (TPX) power supply design and development

    International Nuclear Information System (INIS)

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-01-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes

  14. Tritium pellet injector for the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Gouge, M.J.; Baylor, L.R.; Combs, S.K.; Fisher, P.W.; Foust, C.R.; Milora, S.L.

    1992-01-01

    The tritium pellet injector (TPI) for the Tokamak Fusion Test Reactor (TFTR) will provide a tritium pellet fueling capability with pellet speeds in the 1- to 3-km/s range for the TFTR deuterium-tritium (D-T) plasma phase. An existing deuterium pellet injector (DPI) was modified at Oak Ridge National Laboratory (ORNL) to provide a four-shot, tritium-compatible, pipe-gun configuration with three upgraded single-stage pneumatic guns and a two-stage light gas gun driver. The TPI was designed for frozen pellets ranging in size from 3 to 4 mm in diameter in arbitrarily programmable firing sequences at tritium pellet speeds up to approximately 1.5 km/s for the three single-stage drivers and 2.5 to 3 km/s for the two-stage driver. Injector operation is controlled by a programmable logic controller (PLC). The new pipe-gun injector assembly was installed in the modified DPI guard vacuum box, and modifications were also made to the internals of the DPI vacuum injection line, including a new pellet diagnostics package. Assembly of these modified parts with existing DPI components was then completed and the TPI was tested at ORNL with deuterium pellets. Results of the testing program at ORNL are described. The TPI has been installed and operated on TFTR in support of the CY-92 deuterium plasma run period. In 1993, the tritium pellet injector will be retrofitted with a D-T fuel manifold and tritium gloveboxes and integrated into TFTR tritium processing systems to provide full tritium pellet capability

  15. Oak Ridge Tokamak experimental power reactor study reference design

    International Nuclear Information System (INIS)

    Roberts, M.; Bettis, E.S.

    1975-11-01

    A Tokamak EPR Reference Design is presented as a basis for further design study leading to a Conceptual Design. The set of basic plasma parameters selected--minor radius of 2.25 m, major radius of 6.75 m, magnetic field on axis of 4.8 T and plasma current of 7.2 MA--should produce a reactor-grade plasma with a significant neutron flux, even with the great uncertainty in plasma physics scaling from present experience to large sizes. Neutronics and heat transfer calculations coupled with mechanical design and materials considerations were used to develop a blanket and shield capable of operating at high temperature, protecting the surrounding coils, being maintained remotely and, in a few experimental modules, breeding tritium. Nb 3 Sn and NbTi superconductors are used in the toroidal field coil design. The coil system was developed for a maximum field of 11 T at the winding (to give a field on axis of 4.8 T), and combines multifilamentary superconducting cable with forced flow of supercritical helium enclosed in a steel conduit. The structural system uses a stainless steel center bucking ring and intercoil box beam bracing to provide rigid support for coils against the centering force, overturning moments from poloidal fields and faults, other external forces, and thermal stresses. The poloidal magnetics system is specially designed both to reduce the total volt-second energy requirements and to reduce the magnitude of the rate of field change at the toroidal field coils. The rate of field change imposed upon the toroidal field coils is reduced by at least a factor of 3.3 compared to that due to the plasma alone. Tritium processing, tritium containment and vacuum systems employ double containment and atmospheric cleanup to minimize releases. The document also contains discussions of systems integration and assembly, key research and development needs, and schedule considerations

  16. Steady state plasma operation in RF dominated regimes on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N., E-mail: bnwan@ipp.ac.cn; Li, J. G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-12-10

    Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.

  17. Safety and deterministic failure analyses in high-beta D-D tokamak reactors

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1984-01-01

    Safety and deterministic failure analyses were performed to compare major component failure characteristics for different high-beta D-D tokamak reactors. The primary focus was on evaluating damage to the reactor facility. The analyses also considered potential hazards to the general public and operational personnel. Parametric designs of high-beta D-D tokamak reactors were developed, using WILDCAT as the reference. The size, and toroidal field strength were reduced, and the fusion power increased in an independent manner. These changes were expected to improve the economics of D-D tokamaks. Issues examined using these designs were radiation induced failurs, radiation safety, first wall failure from plasma disruptions, and toroidal field magnet coil failure

  18. Statistical steady states in turbulent droplet condensation

    Science.gov (United States)

    Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph

    2017-11-01

    We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.

  19. Burn cycle study of tokamak power plants by the Effective Management Method

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Inoue, Nobuyuki; Ogawa, Yuichi; Yoshida, Zensho

    1995-01-01

    The Effective Management Method is an action decision manner to work out the strategy of enterprises, which was developed in Japan on the base of the Kepner and Trigoe Method developed in the USA. The authors applied this method with a small modification to a burn cycle study of tokamak power plants. The numerical figure of merit for the pulsed and steady state operations are visually shown. Steady state, 1 hour pulse (with and without energy reservoir) and half-day long pulse reactor are compared. The EM method provides a common base for such comparing study. The highest score is given to an 1 hour pulsed operated reactor with an energy reservoir for the continuous electric output. However it is also pointed out that there is no 'significant' superiority in both of the steady state and pulse reactors. (author)

  20. Packed-fluidized-bed blanket concept for a thorium-fueled commercial tokamak hybrid reactor

    International Nuclear Information System (INIS)

    Chi, J.W.H.; Miller, J.W.; Karbowski, J.S.; Chapin, D.L.; Kelly, J.L.

    1980-09-01

    A preliminary design of a thorium blanket was carried out as a part of the Commercial Tokamak Hybrid Reactor (CTHR) study. A fixed fuel blanket concept was developed as the reference CTHR blanket with uranium carbide fuel and helium coolant. A fixed fuel blanket was initially evaluated for the thorium blanket study. Subsequently, a new type of hybrid blanket, a packed-fluidized bed (PFB), was conceived. The PFB blanket concept has a number of unique features that may solve some of the problems encountered in the design of tokamak hybrid reactor blankets. This report documents the thorium blanket study and describes the feasibility assessment of the PFB blanket concept

  1. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  2. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries

  3. Modelling 'steady-state' water radiolysis in nuclear reactors: status of the reaction set, rate constants and g-Values for 20o - 350oC

    International Nuclear Information System (INIS)

    Elliot, J.

    2010-01-01

    This paper gives a review of water radiolysis in reactor circuits. The discussion is illustrated with experimental results from the radiolysis of water under high temperature, high dose conditions in a re-circulating water loop in a reactor. It also gives the status of the database for modeling radiation chemistry under power reactor conditions.

  4. Magnetic confinement experiment. I: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM'y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nTτ's ∼ 2.5x greater than ELM'ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices

  5. Lessons learned from the tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-01-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety, and health (ES ampersand H) characteristics of projected tokamak power plants. Summarized herein are the composite conclusions and lessons developed in the course of four conceptual tokamak power-plant designs. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances in both physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advances in materials are also needed for the exploitation of environmental advantages otherwise inherent in fusion power

  6. Limitations of power conversion systems under transient loads and impact on the pulsed tokamak power reactor

    International Nuclear Information System (INIS)

    Sager, G.T.; Wong, C.P.C.; Kapich, D.D.; McDonald, C.F.; Schleicher, R.W.

    1993-11-01

    The impact of cyclic loading of the power conversion system of a helium-cooled, pulsed tokamak power plant is assessed. Design limits of key components of heat transport systems employing Rankie and Brayton thermodynamic cycles are quantified based on experience in gas-cooled fission reactor design and operation. Cyclic loads due to pulsed tokamak operation are estimated. Expected performance of the steam generator is shown to be incompatible with pulsed tokamak operation without load leveling thermal energy storage. The close cycle gas turbine is evaluated qualitatively based on performance of existing industrial and aeroderivative gas turbines. Advances in key technologies which significantly improve prospects for operation with tokamak fusion plants are reviewed

  7. Lessons learned from the Tokamak Advanced Reactor Innovation and Evaluation Study (ARIES)

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Bathke, C.G.; Miller, R.L.; Werley, K.A.

    1994-01-01

    Lessons from the four-year ARIES (Advanced Reactor Innovation and Evaluation Study) investigation of a number of commercial magnetic-fusion-energy (MFE) power-plant embodiments of the tokamak are summarized. These lessons apply to physics, engineering and technology, and environmental, safety and health (ES ampersand H) characteristics of projected tokamak power plants. A general conclusion from this extensive investigation of the commercial potential of tokamak power plants is the need for combined, symbiotic advances relative to present understanding in physics, engineering, and materials before economic competitiveness with developing advanced energy sources can be realized. Advanced tokamak plasmas configured in the second-stability regime that achieve both high β and bootstrap fractions near unity through strong profile control offer high promise in this regard

  8. Energy balance and efficiency of power stations with a pulsed Tokamak reactor

    International Nuclear Information System (INIS)

    Davenport, P.A.; Mitchell, J.T.D.; Darvas, J.; Foerster, S.; Sack, B.

    1976-06-01

    The energy balance of a fusion power station based on the TOKAMAK concept is examined with the aid of a model comprising three distinct elements: the reactor, the energy converter and the reactor operation equipment. The efficiency of each element is expressed in terms of the various energy flows and the product of these efficiencies gives the net station efficiency. The analysis takes account of pulsed operation and has general applicability. Numerical values for the net station efficiency are derived from detailed estimates of the energy flows for a TOKAMAK reactor and its auxiliary equipment operating with advanced energy converters. The derivation of these estimates is given in eleven appendices. The calculated station efficiencies span ranges similar to those quoted for the current generation of fission reactors, though lower than those predicted for HTGR and LMFBR stations. Credible parameter domains for pulsed TOKAMAK operation are firmly delineated and factors inimical to improved performance are indicated. It is concluded that the net thermal efficiency of a TOKAMAK reactor power station based on present designs and using advanced thermal converters will be approximately 0.3 and is unlikely to exceed 0.33. (orig.) [de

  9. Producing a steady-state population inversion

    International Nuclear Information System (INIS)

    Richards, R.K.; Griffin, D.C.

    1986-03-01

    An observed steady-state transition at 17.5 nm is identified as the 2p 5 3s3p 4 S/sub 3/2/ → 2p 6 3p 2 P/sub 3/2/ transition in Na-like aluminum. The upper level is populated by electron inner shell ionization of metastable Mg-like aluminum. From the emission intensity, the rate coefficient for populating the upper level is calculated to be approximately 5 x 10 -10 ) cm 3 /sec. Since the upper level is quasimetastable with a lifetime 22 times longer than the lower level, it may be possible to produce a population inversion, if a competing process to populate the lower level can be reduced

  10. Progress towards Steady State on NSTX

    International Nuclear Information System (INIS)

    Gates, D.A.; Kessel, C.; Menard, J.; Taylor, G.; Wilson, J.R.

    2005-01-01

    In order to reduce recirculating power fraction to acceptable levels, the spherical torus concept relies on the simultaneous achievement of high toroidal β and high bootstrap fraction in steady state. In the last year, as a result of plasma control system improvements, the achievable plasma elongation on the National Spherical Torus Experiment (NSTX) has been raised from κ ∼ 2.1 to κ ∼ 2.6--approximately a 25% increase. This increase in elongation has lead to a doubling increase in the toroidal β for long-pulse discharges. The increase in β is associated with an increase in plasma current at nearly fixed poloidal β, which enables higher β t with nearly constant bootstrap fraction. As a result, for the first time in a spherical torus, a discharge with a plasma current of 1 MA has been sustained for 1 second. Data is presented from NSTX correlating the increase in performance with increased plasma shaping capability. In addition to improved shaping, H-modes induced during the current ramp phase of the plasma discharge have been used to reduce flux consumption during and to delay the onset of MHD instabilities. A modeled integrated scenario, which has 100% non-inductive current drive with very high toroidal β, will also be presented. The NSTX poloidal field coils are currently being modified to produce the plasma shape which is required for this scenario, which requires high triangularity ((delta) ∼ 0.8) at elevated elongation (κ ∼ 2.5). The other main requirement for steady state on NSTX is the ability to drive a fraction of the total plasma current with radio-frequency waves. The results of High Harmonic Fast Wave heating and current drive studies as well as electron Bernstein Wave emission studies will be presented

  11. Near-term tokamak-reactor designs with high-performance resistive magnets

    International Nuclear Information System (INIS)

    Cohn, D.R.; Bromberg, L.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

    1981-10-01

    Advanced Fusion Test Reactors (AFTR) designs have been developed using BITTER type magnets which are capable of steady state operation. The goals of compact AFTR designs (with major radii R approx. 2.5 - 4 m), include DT ignition with large physics margins; high duty cycle, long pulse operation; and DD-DT operation with low tritium concentration. Larger AFTR designs (R approx. 5 m), have the additional goal of early demonstration of self sufficiency in tritium production. The AFTR devices could also serve as prototypes for commercial reactors. Compact ignition test reactors have also been designed (R approx. 1 - 2 m). These designs use BITTER magnets that are inertially cooled starting at liquid nitrogen temperature. A detailed engineering design was developed for ZEPHYR

  12. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    International Nuclear Information System (INIS)

    Lee, W.W.; Ethier, S.; Kolesnikov, R.; Wang, W.X.; Tang, W.M.

    2007-01-01

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers

  13. Direct energy conversion and neutral beam injection for catalyzed D and D-3He tokamak reactors

    International Nuclear Information System (INIS)

    Blum, A.S.; Moir, R.W.

    1977-01-01

    The calculated performance of single stage and Venetian blind direct energy converters for Catalyzed D and D- 3 He Tokamak reactors are discussed. Preliminary results on He pumping are outlined. The efficiency of D and T neutral beam injection is reviewed

  14. Studies of tokamak fusion reactor dynamics. Progress report, June 1, 1975--February 15, 1976

    International Nuclear Information System (INIS)

    Mills, R.G.; Gralnick, S.L.

    1976-01-01

    An investigation of the effect of plasma shape and position on the inductive coupling between the plasma and the external poloidal field coils is briefly described. Research on a multi-node time-dependent point kinetics code with which to study the operating dynamics of a tokamak reactor is also mentioned

  15. Evaluation of a nonevaporable getter pump for tritium handling in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Singleton, M.F.; Griffith, C.M.

    1978-01-01

    Lawrence Livermore Laboratory has tested and evaluated a commercially available getter pump for use with tritium in the Tokamak Fusion Test Reactor (TFTR). The pump contains Zr(84%)--Al in cartridge form with a concentric heating unit. It performed well in all tests, except for frequent heater failures

  16. Some technical constraints on possible Tokamak machines from next generation to reactor size

    International Nuclear Information System (INIS)

    Knobloch, A.

    1975-11-01

    A simplified consistent scaling of possible Tokamak reactors is set up in the power range of 0.1 - 10 GW. The influence of some important parameters on the scaling is shown and the role of some technical constraints is discussed. The scaling is evaluated for the two cases of a circular and a strongly elongated plasma section. (orig.) [de

  17. Design of the shield door and transporter for the Culham Conceptual Tokamak Reactor Mark II

    International Nuclear Information System (INIS)

    Guthrie, J.A.S.

    1980-04-01

    In the Culham Conceptual Tokamak Reactor MK II access to the interior for blanket maintenance is through large openings in the fixed shield structure closed by removable shield doors when the reactor is operational. This report describes the design of the 200 tonne doors and the associated special-purpose remote operating transporter manipulator. The design, which has not been optimised, generally uses available commercial equipment and state-of-the-art techniques. (U.K.)

  18. Lifetime evaluation for thermal fatigue: application at the first wall of a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Merola, M.; Biggio, M.

    1989-01-01

    Thermal fatigue seems to be the most lifetime limiting phenomenon for the first wall of the next generation Tokamak fusion reactors. This work deals with the problem of the thermal fatigue in relation to the lifetime prediction of the fusion reactor first wall. The aim is to compare different lifetime methodologies among them and with experimental results. To fulfil this purpose, it has been necessary to develop a new numerical methodology, called reduced-3D, especially suitable for thermal fatigue problems

  19. Computational model for superconducting toroidal-field magnets for a tokamak reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Abdou, M.A.

    1978-01-01

    A computational model for predicting the performance characteristics and cost of superconducting toroidal-field (TF) magnets in tokamak reactors is presented. The model can be used to compare the technical and economic merits of different approaches to the design of TF magnets for a reactor system. The model has been integrated into the ANL Systems Analysis Program. Samples of results obtainable with the model are presented

  20. A programmatic framework for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Thomassen, K.I.; Goldston, R.J.; Neilson, G.H.

    1993-01-01

    Significant advances have been made in the confinement of reactor-grade plasmas, so that the authors are now preparing for experiments at the open-quotes power breakevenclose quotes level in the JET and TFTR experiments. In ITER the authors will extend the performance of tokamaks into the burning plasma regime, develop the technology of fusion reactors, and produce over a gigawatt of fusion power. Besides taking these crucial steps toward the technical feasibility of fusion, the authors must also take steps to ensure its economic acceptability. The broad requirements for economically attractive tokamak reactors based on physics advancements have been set forth in a number of studies. An advanced physics data base is emerging from a physics program of concept improvement using existing tokamaks around the world. This concept improvements program is emerging as the primary focus of the US domestic tokamak program, and a key element of that program is the proposed Tokamak Physics Experiment (TPX). With TPX the authors can develop the scientific data base for compact, continuously-operating fusion reactors, using advanced steady-state control techniques to improve plasma performance. The authors can develop operating techniques needed to ensure the success of ITER and provide first-time experience with several key fusion reactor technologies. This paper explains the relationships of TPX to the current US fusion physics program, to the ITER program, and to the development of an attractive tokamak demonstration plant for this next stage in the fusion program

  1. Tokamak Physics Experiment (TPX) design

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1995-01-01

    TPX is a national project involving a large number of US fusion laboratories, universities, and industries. The element of the TPX requirements that is a primary driver for the hardware design is the fact that TPX tokamak hardware is being designed to accommodate steady state operation if the external systems are upgraded from the 1,000 second initial operation. TPX not only incorporates new physics, but also pioneers new technologies to be used in ITER and other future reactors. TPX will be the first tokamak with fully superconducting magnetic field coils using advanced conductors, will have internal nuclear shielding, will use robotics for machine maintenance, and will remove the continuous, concentrated heat flow from the plasma with new dispersal techniques and with special materials that are actively cooled. The Conceptual Design for TPX was completed during Fiscal Year 1993. The Preliminary Design formally began at the beginning of Fiscal Year 1994. Industrial contracts have been awarded for the design, with options for fabrication, of the primary tokamak hardware. A large fraction of the design and R and D effort during FY94 was focused on the tokamak and in turn on the tokamak magnets. The reason for this emphasis is because the magnets require a large design and R and D effort, and are critical to the project schedule. The magnet development is focused on conductor development, quench protection, and manufacturing R and D. The Preliminary Design Review for the Magnets is planned for fall, 1995

  2. Pseudo Steady-State Free Precession for MR-Fingerprinting.

    Science.gov (United States)

    Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen

    2017-03-01

    This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  3. Modeling steady state and transient fission gas behaviour with the Karlsruhe code LAKU

    International Nuclear Information System (INIS)

    Vaeth, L.

    1984-08-01

    The programme LAKU models the behaviour of gaseous fission products in reactor fuel under steady state and transient conditions, including molten fuel. A presentation of the full model is given, starting with gas behaviour in the grains and on grain faces and including the treatment of release from porosity. The results of some recent calculations are presented. (orig.) [de

  4. Fluctuations When Driving Between Nonequilibrium Steady States

    Science.gov (United States)

    Riechers, Paul M.; Crutchfield, James P.

    2017-08-01

    Maintained by environmental fluxes, biological systems are thermodynamic processes that operate far from equilibrium without detailed-balanced dynamics. Yet, they often exhibit well defined nonequilibrium steady states (NESSs). More importantly, critical thermodynamic functionality arises directly from transitions among their NESSs, driven by environmental switching. Here, we identify the constraints on excess heat and dissipated work necessary to control a system that is kept far from equilibrium by background, uncontrolled "housekeeping" forces. We do this by extending the Crooks fluctuation theorem to transitions among NESSs, without invoking an unphysical dual dynamics. This and corresponding integral fluctuation theorems determine how much work must be expended when controlling systems maintained far from equilibrium. This generalizes thermodynamic feedback control theory, showing that Maxwellian Demons can leverage mesoscopic-state information to take advantage of the excess energetics in NESS transitions. We also generalize an approach recently used to determine the work dissipated when driving between functionally relevant configurations of an active energy-consuming complex system. Altogether, these results highlight universal thermodynamic laws that apply to the accessible degrees of freedom within the effective dynamic at any emergent level of hierarchical organization. By way of illustration, we analyze a voltage-gated sodium ion channel whose molecular conformational dynamics play a critical functional role in propagating action potentials in mammalian neuronal membranes.

  5. Triple echo steady-state (TESS) relaxometry.

    Science.gov (United States)

    Heule, Rahel; Ganter, Carl; Bieri, Oliver

    2014-01-01

    Rapid imaging techniques have attracted increased interest for relaxometry, but none are perfect: they are prone to static (B0 ) and transmit (B1 ) field heterogeneities, and commonly biased by T2 /T1 . The purpose of this study is the development of a rapid T1 and T2 relaxometry method that is completely (T2 ) or partly (T1 ) bias-free. A new method is introduced to simultaneously quantify T1 and T2 within one single scan based on a triple echo steady-state (TESS) approach in combination with an iterative golden section search. TESS relaxometry is optimized and evaluated from simulations, in vitro studies, and in vivo experiments. It is found that relaxometry with TESS is not biased by T2 /T1 , insensitive to B0 heterogeneities, and, surprisingly, that TESS-T2 is not affected by B1 field errors. Consequently, excellent correspondence between TESS and reference spin echo data is observed for T2 in vitro at 1.5 T and in vivo at 3 T. TESS offers rapid T1 and T2 quantification within one single scan, and in particular B1 -insensitive T2 estimation. As a result, the new proposed method is of high interest for fast and reliable high-resolution T2 mapping, especially of the musculoskeletal system at high to ultra-high fields. Copyright © 2013 Wiley Periodicals, Inc.

  6. Tokamak and RFP ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (nτ E ) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the nτ E transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab

  7. Initial testing of the tritium systems at the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Anderson, J.L.; Sissingh, R.A.P.; Gentile, C.A.; Rossmassler, R.L.; Walters, R.T.; Voorhees, D.R.

    1993-01-01

    The Tokamak Fusion Test Reactor (TFTR) at Princeton will start its D-T experiments in late 1993, introducing and operating the tokamak with tritium in order to begin the study of burning plasma physics in D-T. Trace tritium injection experiments, using small amounts of tritium will begin in the fall of 1993. In preparation for these experiments, a series of tests with low concentrations of tritium inn deuterium have been performed as an initial qualification of the tritium systems. These tests began in April 1993. This paper describes the initial testing of the equipment in the TFTR tritium facility

  8. A cryogenic system for TIBER II [Tokamak Ignition/Burn Experimental Reactor

    International Nuclear Information System (INIS)

    Slack, D.S.; Kerns, J.A.

    1987-01-01

    Phase II of the Tokamak Ignition/Burn Experimental Reactor (TIBER II) study describes one option for a small, economical, next-generation tokamak [1,2]. Because of its small size, minimum shielding is used between the plasma and the toroidal-field (TF) coils. Consequently, a large cryogenic system (approximately 70 kW at 4.5 K) capable of delivering forced-flow helium is required. This paper describes a cryogenic system that meets this requirement and includes TIBER-II requirements. 3 refs

  9. Remote servicing considerations for near term tokamak power reactors (TNS). Final summary

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1977-01-01

    Next generation Tokamaks require special consideration for remote servicing. Three major problems are highlighted: (1) movement of heavy components, (2) remote connection/disconnection of joints, and (3) remote cutting, welding, and leak detection. The first problem is assumed to be handled with existing expertise and is not considered. The remaining problems are thought to be minimized by considering two engineering departures from conventional tokamak design; locating the field shaping coils outside of the toroidal coils and enclosing the total device within an evacuated reactor cell. Five topics under this vacuum building concept are discussed: incremental cost, vacuum pumping, tritium containment, activation topology, and first year operations

  10. Nonideal, helical, vortical magnetohydrodynamic steady states

    International Nuclear Information System (INIS)

    Agim, Y.Z.; Montgomery, D.

    1991-01-01

    The helically-deformed profiles of driven, dissipative magnetohydrodynamic equilibria are constructed through second order in helical amplitude. The resultant plasma configurations are presented in terms of contour plots of magnetic flux function, pressure, current flux function and the mass flux function, along with the stability boundary at which they are expected to appear. For the Wisconsin Phaedrus-T Tokamak, plasma profiles with significant m = 3, n = 1 perturbation seem feasible; for these, the plasma pressure peaks off-axis. For the smaller aspect ratio case, the configuration with m 1,n =1 is thought to be relevant to the density perturbation observed in JET after a pellet injection. (author)

  11. S3C: EBT Steady-State Shooting code description and user's guide

    International Nuclear Information System (INIS)

    Downum, W.B.

    1983-09-01

    The Oak Ridge National Laboratory (ORNL) one-dimensional (1-D) Steady-State Shooting code (S3C) for ELMO Bumpy Torus (EBT) plasmas is described. Benchmark calculations finding the steady-state density and electron and ion temperature profiles for a known neutral density profile and known external energy sources are carried out. Good agreement is obtained with results from the ORNL Radially Resolved Time Dependent 1-D Transport code for an EBT-Q type reactor. The program logic is described, along with the physics models in each code block and the variable names used. Sample input and output files are listed, along with the main code

  12. Capabilities of a DT tokamak fusion neutron source for driving a spent nuclear fuel transmutation reactor

    International Nuclear Information System (INIS)

    Stacey, W.M.

    2001-01-01

    The capabilities of a DT fusion neutron source for driving a spent nuclear fuel transmutation reactor are characterized by identifying limits on transmutation rates that would be imposed by tokamak physics and engineering limitations on fusion neutron source performance. The need for spent nuclear fuel transmutation and the need for a neutron source to drive subcritical fission transmutation reactors are reviewed. The likely parameter ranges for tokamak neutron sources that could produce an interesting transmutation rate of 100s to 1000s of kg/FPY (where FPY stands for full power year) are identified (P fus ∼ 10-100 MW, β N ∼ 2-3, Q p ∼ 2-5, R ∼ 3-5 m, I ∼ 6-10 MA). The electrical and thermal power characteristics of transmutation reactors driven by fusion and accelerator spallation neutron sources are compared. The status of fusion development vis-a-vis a neutron source is reviewed. (author)

  13. Internal transport barrier formation and pellet injection simulation in helical and tokamak reactors

    International Nuclear Information System (INIS)

    Higashiyama, You; Yamazaki, Kozo; Arimoto, Hideki; Garcia, Jeronimo

    2008-01-01

    In the future fusion reactor, plasma density peaking is important for increase in the fusion power gain and for achievement of confinement improvement mode. Density control and internal transport barrier (ITB) formation due to pellet injection have been simulated in tokamak and helical reactors using the toroidal transport linkage code TOTAL. First, pellet injection simulation is carried out, including the neutral gas shielding model and the mass relocation model in the TOTAL code, and the effectiveness of high-field side (HFS) pellet injection is clarified. Second, ITB simulation with pellet injection is carried out with the confinement improvement model based on the E x B shear effects, and it is found that deep pellet penetration is helpful for ITB formation as well as plasma core fuelling in the reversed-shear tokamak and helical reactors. (author)

  14. The ARIES-II and ARIES-IV second-stability tokamak reactors

    International Nuclear Information System (INIS)

    Najmabadi, F.; Conn, R.W.; Hasan, M.Z.; Mau, T.-K.; Sharafat, S.; Baxi, C.B.; Leuer, J.A.; McQuillan, B.W.; Puhn, F.A.; Schultz, K.R.; Wong, C.P.C.; Brooks, J.; Ehst, D.A.; Hassanein, A.; Hua, T.; Hull, A.; Mattis, R.; Picologlou, B.; Sze, D.-K.; Dolan, T.J.; Herring, J.S.; Bathke, C.G.; Krakowski, R.A.; Werley, K.A.; Bromberg, L.; Schultz, J.; Davis, F.; Holmes, J.A.; Lousteau, D.C.; Strickler, D.J.; Jardin, S.C.; Kessel, C.; Snead, L.; Steiner, D.; Valenti, M.; El-Guebaly, L.A.; Emmert, G.A.; Khater, H.Y.; Santarius, J.F.; Sawan, M.; Sviatoslavsky, I.N.; Cheng, E.T.

    1992-01-01

    The ARIES research program is a multi-institutional effort to develop several visions of tokamak reactors with enhanced economic, safety, and environmental features. Four ARIES visions are currently planned for the ARIES program. The ARIES-I design is a DT-burning reactor based on modest extrapolations from the present tokamak physics database and relies on either existing technology or technology for which trends are already in place, often in programs outside fusion. The ARIES-III study focuses on the potential of tokamaks to operate with D- 3 He fuel system as an alternative to deuterium and tritium. The ARIES-II and ARIES-IV designs have the same fusion plasma but different fusion-power-core designs. The ARIES-II reactor uses liquid lithium as the coolant and tritium breeder and vanadium alloy as the structural material in order to study the potential of low-activation metallic blankets. The ARIES-IV reactor uses helium as the coolant, a solid tritium-breeding material, and silicon carbide composite as the structural material in order to achieve the safety and environmental characteristic of fusion. In this paper the authors describe the trade-off leading to the optimum regime of operation for the ARIES-II and ARIES-IV second-stability reactors and review the engineering design of the fusion power cores

  15. What is past is prologue: future directions in tokamak power reactor design research

    International Nuclear Information System (INIS)

    Conn, R.W.

    1976-01-01

    Conceptual tokamak power reactor designs over the last five years have provided us with many fundamental insights regarding tokamaks as fusion reactors. This first generation of studies has helped lay the groundwork upon which to build improvements in reactor design and begin a process of optimization. After reviewing the first generation of studies and the primary conclusions they produced, we discuss four current designs that are representative of present trends in this area of research. In particular, we discuss the trends towards reduced reactor size and higher neutron wall loadings. Moving in this direction requires new approaches to many subsystem designs. We describe new approaches and future directions in first wall and blanket designs that can achieve reliable operation and reasonable lifetime, the use of cryogenic but normal aluminum magnets for the pulsed coils in a tokamak, blanket designs that allow elimination of the intermediate loop, and low activity shields and toroidal field magnets. We close with a discussion of the future role of conceptual reactor design research and the need for close interaction with ongoing experiments in fusion technology

  16. A conceptual design of a negative-ion-grounded advanced tokamak reactor

    International Nuclear Information System (INIS)

    Yamamoto, Shin; Ohara, Yoshihiro; Tani, Keiji

    1988-05-01

    The NAVIGATOR concept is based on the negative-ion-grounded 500 keV 20 MW neutral beam injection system (NBI system), which has been proposed and studied at JAERI. The NAVIGATOR concept contains two categories; one is the NAVIGATOR machine as a tokamak reactor, and the other is the NAVIGATOR philosophy as a guiding principle in fusion research. The NAVIGATOR machine implies an NBI heated and full inductive ramped-up reactor. The NAVIGATOR concept should be applied in a phased approach to and beyond the operating goal for the FER (Fusion Experimental Reactor, the next generation tokamak machine in Japan). The mission of the FER is to realize self-ignition and a long controlled burn of about 800 seconds and to develop and test fusion technologies, including the tritium fuel cycle, superconducting magnet, remote maintenance and breeding blanket test modules. The NAVIGATOR concept is composed of three major elements, that is, reliable operation scenarios, reliable maintenability and sufficient flexibility of the reactor. The NAVIGATOR concept well supports the ideas of phased operation and phased construction of the FER, which will result in the reduction of technological risk. The NAVIGATOR concept is expected to bring forth the fruits growing up in the present large tokamak machines in the form of next generation machines. In addition, the NAVIGATOR concept will supply many required databases for the DEMO reactor. The details of the NAVIGATOR concept is described in this paper, and the concept may indicate a feasible strategy for developing fusion research. (author)

  17. Fast-ion transport in qmin>2, high-β steady-state scenarios on DIII-D

    International Nuclear Information System (INIS)

    Holcomb, C. T.; Heidbrink, W. W.; Collins, C.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Bass, E. M.; Luce, T. C.; Pace, D. C.; Solomon, W. M.; Mueller, D.; Grierson, B.; Podesta, M.; Gong, X.; Ren, Q.; Park, J. M.; Kim, K.; Turco, F.

    2015-01-01

    Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q min confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min >2 that target the typical range of q 95 = 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N . In contrast, similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min >3 plasmas to higher β P with q 95 = 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast , and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N , and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95 , high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes

  18. Engineering parameters for four ignition TNS tokamak reactor systems

    International Nuclear Information System (INIS)

    Varljen, T.C.; Gibson, G.; French, J.W.; Heck, F.M.

    1977-01-01

    The ORNL/Westinghouse program for The Next Step (TNS) tokamak beyond TFTR has examined a large number of potential configurations for D-T burning ignition tokamak systems. An objective of this work has been to quantify the trade-offs associated with the assumption of certain plasma physics criteria and toroidal field coil technologies. Four tokamak system point designs are described, each representative of the TF coil technologies considered, to illustrate the engineering features associated with each concept. Point designs, such as the ones discussed herein, have been used to develop component size, performance and cost scaling relationships which have been incorporated in a digital computer code to facilitate an examination of the total design and cost impact of candidate design approaches. The point designs which are described are typical, however, they have not been individually optimized. The options are distinguished by the TF coil technology chosen and include: (1) a high field water-cooled copper TF system, (2) a moderate field NbTi superconducting TF system, (3) a high field Nb 3 Sn superconducting TF system, and (4) a high field hybrid TF system with outer NbTi superconducting windings and inner water-cooled copper windings. Descriptions are provided for the major device components and all major support systems including power supplies, vacuum systems, fuel systems, heat transport and facility systems

  19. An equation oriented approach to steady state flowsheeting of methanol synthesis loop

    International Nuclear Information System (INIS)

    Fathikalajahi, J.; Baniadam, M.; Rahimpour, M.R.

    2008-01-01

    An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model

  20. On some interesting properties of the working temperature in a Tokamak reactor

    International Nuclear Information System (INIS)

    Brunelli, B.

    1987-01-01

    A D,T burning plasma has two equilibrium temperatures T/sub 1/ and T/sub 2/ wherein power-in equals power-out. At marginal ignition: T/sub 2/ = T/sub 1/ = T/sub 0/. It is shown that, under hypothesis usually satisfied in a Tokamak reactor, the temperature T/sub 0/ has a peculiar behaviour with respect to the reactor parameters. Simple expressions are given for T/sub 0/ T/sub 1/ and T/sub 2/ which have been found quite straightforward for a well-grounded discussion of the thermal reactor dynamics. Typical cases of interest are discussed

  1. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1986-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  2. Radiation transport effects in divertor plasmas generated during a tokamak reactor disruption

    International Nuclear Information System (INIS)

    Peterson, R.R.; MacFarlane, J.J.; Wang, P.

    1994-01-01

    Vaporization of material from tokamak divertors during disruptions is a critical issue for tokamak reactors from ITER to commercial power plants. Radiation transport from the vaporized material onto the remaining divertor surface plays an important role in the total mass loss to the divertor. Radiation transport in such a vapor is very difficult to calculate in full detail, and this paper quantifies the sensitivity of the divertor mass loss to uncertainties in the radiation transport. Specifically, the paper presents the results of computer simulations of the vaporization of a graphite coated divertor during a tokamak disruption with ITER CDA parameters. The results show that a factor of 100 change in the radiation conductivity changes the mass loss by more than a factor of two

  3. Electron density measurement for steady state plasmas

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira

    2000-01-01

    Electron density of a large tokamak has been measured successfully by the tangential CO 2 laser polarimeter developed in JT-60U. The tangential Faraday rotation angles of two different wavelength of 9.27 and 10.6 μm provided the electron density independently. Two-color polarimeter concept for elimination of Faraday rotation at vacuum windows is verified for the first time. A system stability for long time operation up to ∼10 hours is confirmed. A fluctuation of a signal baseline is observed with a period of ∼3 hours and an amplitude of 0.4 - 0.7deg. In order to improve the polarimeter, an application of diamond window for reduction of the Faraday rotation at vacuum windows and another two-color polarimeter concept for elimination of mechanical rotation component are proposed. (author)

  4. Plasma-material interactions in current tokamaks and their implications for next step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next step DT fusion reactor will give rise to important plasma-material effects that will critically in influence its operation, safety and performance. Erosion will increase to a scale of several centimetres from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma facing components. Controlling plasma-wall interactions is critical to achieving high performance in present day tokamaks, and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena stimulated an internationally co-ordinated effort in the part of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor project (ITER), and significant progress has been made in better understanding these issues. The paper reviews the underlying physical processes and the existing experimental database of plasma-material inter actions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next step fusion reactors. Two main topical groups of interaction are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation and (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (author)

  5. Plasma-material interactions in current tokamaks and their implications for next-step fusion reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety and performance. Erosion will increase to a scale of several cm from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally co-ordinated effort in the field of plasma-surface interactions supporting the engineering design activities of the international thermonuclear experimental reactor project (ITER) and significant progress has been made in better understanding these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/re-deposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modelling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D avenues for their resolution are presented. (orig.)

  6. Low temperature plasma near a tokamak reactor limiter

    International Nuclear Information System (INIS)

    Braams, B.J.; Singer, C.E.

    1985-01-01

    Analytic and two-dimensional computational solutions for the plasma parameters near a toroidally symmetric limiter are illustrated for the projected parameters of a Tokamak Fusion Core Experiment (TFCX). The temperature near the limiter plate is below 20 eV, except when the density 10 cm inside the limiter contact is 8 x 10 13 cm -3 or less and the thermal diffusivity in the edge region is 2 x 10 4 cm 2 /s or less. Extrapolation of recent experimental data suggests that neither of these conditions is likely to be met near ignition in TFCX, so a low plasma temperature near the limiter should be considered a likely possibility

  7. Elements of a method to scale ignition reactor Tokamak

    International Nuclear Information System (INIS)

    Cotsaftis, M.

    1984-08-01

    Due to unavoidable uncertainties from present scaling laws when projected to thermonuclear regime, a method is proposed to minimize these uncertainties in order to figure out the main parameters of ignited tokamak. The method mainly consists in searching, if any, a domain in adapted parameters space which allows Ignition, but is the least sensitive to possible change in scaling laws. In other words, Ignition domain is researched which is the intersection of all possible Ignition domains corresponding to all possible scaling laws produced by all possible transports

  8. Conceptual designs of tokamak reactor and R D

    International Nuclear Information System (INIS)

    Fukai, Yuzo; Yamato, Harumi; Sawada, Yoshio

    1983-01-01

    The conceptual design of both FER (Fusion Experimental Reactor) and R-project is now under way as the new step of JT-60. From the engineering viewpoint, these reactors, requiring D-T operation, have the challenge, such as the handling of tritium and components irradiated by neutron bombardment. Toshiba's design team is participating to these projects in order to realize the reactor and plant concept coping with the above objectives. This paper represents the conceptual design contributions of the FER and R-project as well as R D technology which are now under development, such as tritium handling app aratus, reactor materials, etc. (author)

  9. Application of internally cooled superconductors to tokamak fusion reactors

    International Nuclear Information System (INIS)

    Materna, P.A.

    1986-01-01

    Recent proposals for ignition tokamaks containing superconductors are reviewed. As the funding prospects for the U.S. fusion program have worsened, the proposed designs have been shrinking to smaller machines with less ambitious goals. The most recent proposal, the Tokamak Fusion Core Experiment (TFCX), was based on internally cooled cabled Nb 3 Sn conductors for the options which used superconductors. Internally cooled conductors are particularly advantageous in their electrical insulating properties and in the similarity of their winding procedures to those of conventional copper coils. Epoxy impregnation is possible and is advantageous both structurally and electrically. The allowable current density for this type of conductor was shown to be larger than the current density for more conventional superconducting technology. The TFCX effort identified research and development needed in advance of TFCX or any other large ignition machine. These topics include the metal used for the conduit; nuclear effects on materials; properties of electrical and thermal insulators; extension of superconducting technology to the sizes of coils envisioned and to the field level envisioned; pulsed coil superconducting technology; joints and insulating breaks in conductors; heat removal or flow path length limitations; mechanical behavior of potted conductor bundles; instrumentation; and fault modes and various questions integrated with overall machine design

  10. Design and Structural Analysis for the Vacuum Vessel of Superconducting Tokamak JT-60SC

    International Nuclear Information System (INIS)

    Kudo, Y.; Sakurai, S.; Masaki, K.; Urata, K.; Sasajima, T.; Matsukawa, M.; Sakasai, A.; Ishida, S.

    2003-01-01

    A modification of the JT-60 is planned to be a superconducting tokamak (JT-60SC) in order to establish steady-state operation of high beta plasma for 100 s, and to ensure the applicability of ferritic steel as a reduced activation material for reactor relevant break-even class plasmas. This paper describes the detailed design of the vacuum vessel, which has a unique structure for cost effective manufacturing, as well as structural analysis results for a feasibility study

  11. Scoping and sensitivity analyses for the Demonstration Tokamak Hybrid Reactor (DTHR)

    International Nuclear Information System (INIS)

    Sink, D.A.; Gibson, G.

    1979-03-01

    The results of an extensive set of parametric studies are presented which provide analytical data of the effects of various tokamak parameters on the performance and cost of the DTHR (Demonstration Tokamak Hybrid Reactor). The studies were centered on a point design which is described in detail. Variations in the device size, neutron wall loading, and plasma aspect ratio are presented, and the effects on direct hardware costs, fissile fuel production (breeding), fusion power production, electrical power consumption, and thermal power production are shown graphically. The studies considered both ignition and beam-driven operations of DTHR and yielded results based on two empirical scaling laws presently used in reactor studies. Sensitivity studies were also made for variations in the following key parameters: the plasma elongation, the minor radius, the TF coil peak field, the neutral beam injection power, and the Z/sub eff/ of the plasma

  12. Evaluation of potential blanket concepts for a Demonstration Tokamak Hybrid Reactor

    International Nuclear Information System (INIS)

    Chapin, D.L.; Chi, J.W.H.; Kelly, J.L.

    1978-01-01

    An evaluation has been made of several different blanket concepts for use in a near-term Demonstration Tokamak Hybrid Reactor (DTHR), whose main objective would be to produce a significant amount of fissile fuel while demonstrating the feasibility of the tokamak hybrid reactor concept. The desirability of a simple design using proven technology plus a proliferation resistant fuel cycle led to the selection of a low temperature and pressure water-cooled, zircaloy clad ThO 2 blanket concept to breed 233 U. The nuclear performance and thermal-hydraulics characteristics of the blanket were evaluated to arrive at a consistent design. The blanket was found to be feasible for producing a significant amount of fissile fuel even with the limited operating conditions and blanket coverage in the DTHR

  13. The ARIES-I high-field-tokamak reactor: Design-point determination and parametric studies

    International Nuclear Information System (INIS)

    Miller, R.L.

    1989-01-01

    The multi-institutional ARIES study has examined the physics, technology, safety, and economic issues associated with the conceptual design of a tokamak magnetic-fusion reactor. The ARIES-I variant envisions a DT-fueled device based on advanced superconducting coil, blanket, and power-conversion technologies and a modest extrapolation of existing tokamak physics. A comprehensive systems and trade study has been conducted as an integral and ongoing part of the reactor assessment in order to identify an acceptable design point to be subjected to detailed analysis and integration as well as to characterize the ARIES-I operating space. Results of parametric studies leading to the identification of such a design point are presented. 15 refs., 6 figs., 2 tabs

  14. The Tokamak Fusion Test Reactor D-T modifications and operations

    International Nuclear Information System (INIS)

    1992-01-01

    This Environmental Assessment (EA) was prepared in accordance with the National Environmental Policy Act (NEPA) of 1969, as amended, in support of the Department of Energy's proposal for the Tokamak Fusion Test Reactor (TFTR) D-T program. The objective of the proposed D-T program is to take the initial step in studying the effects of alpha particle heating and transport in a magnetic fusion device. These studies would enable the successful completion of the original TFTR program objectives, and would support the research and development needs of the Burning Plasma Experiment, BPX (formerly the Compact Ignition Tokamak (CIT)) and International Thermonuclear Experimental Reactor (ITER) in the areas of alpha particle physics, tritium retention, alpha particle diagnostic development, and tritium handling

  15. Repair/maintenance design for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1978-10-01

    Repair and maintenance design for JXFR has been studied. The reactor is in eight modules so that a damaged module alone can be separated from the other modules and transferred from the reactor room to a repair shop. Design work covers overhaul procedure, dismounting equipments (overhead cranes, auto welder/cutter and remote handling equipments), transport system of a module (module mounting carriages and rotating carriage), repair equipment for blanket, earthquake-proof analysis of the reactor, reactor room structure, repair shop layout, management of radioactive wastes, time and the number of persons required for overhaul etc. Though the repair and maintenance system is almost complete, there still remain problems for further study in joints of blanket cooling piping, auto welder/cutter and earthquake-proof strength in reactor disassemblage. More detailed studies and R and D are necessary for engineering perfection. (author)

  16. Conceptual design of a Demonstration Tokamak Hybrid Reactor (DTHR), September 1978

    International Nuclear Information System (INIS)

    Kelley, J.L.

    1978-12-01

    The flexibility of the fusion hybrid reactor to function as a fuel production facility, power plant, waste disposal burner or combinations of all of these, as well as the reactor's ability to use proliferation resistant fuel cycles, has provided the incentive to assess the feasibility of a near-term demonstration plant. The goals for a Demonstration Tokamak Hybrid Reactor (DTHR) were established and an initial conceptual design was selected. Reactor performance and economics were evaluated and key developmental issues were assessed. The study has shown that a DTHR is feasible in the late 1980's, a significant quantity of fissile fuel could be produced from fertile thorium using present day fission reactor blanket technology, and a large number of commercially prototypical components and systems could be developed and operationally verified. The DTHR concept would not only serve as proof-of-principle for hybrid technology, but could be operated in the ignited mode and provide major advancements for pure fusion technology

  17. Steady-State Performance of Kalman Filter for DPLL

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming

    2009-01-01

    For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.

  18. Observation of neoclassical transport in reverse shear plasmas on the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Goeler, S. von; Houlberg, W.A.

    2001-01-01

    Perturbative experiments on the Tokamak Fusion Test Reactor (TFTR) have investigated the transport of multiple ion species in reverse shear plasmas. The profile evolution of trace tritium and helium, and intrinsic carbon indicate the formation of core particle transport barriers in ERS plasmas. There is an order of magnitude reduction in the particle diffusivity inside the reverse shear region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  19. Observation of neoclassical transport in reverse shear plasmas on the tokamak fusion test reactor

    International Nuclear Information System (INIS)

    Efthimion, P.C.; Von Goeler, S.; Houlberg, W.A.

    1999-01-01

    Perturbative experiments on the Tokamak Fusion Test Reactor (TFTR) have investigated the transport of multiple ion species in reverse shear plasmas. The profile evolution of trace tritium and helium, and intrinsic carbon indicate the formation of core particle transport barriers in ERS plasmas. There is an order of magnitude reduction in the particle diffusivity inside the reverse shear region. The diffusivities for these species in ERS plasmas agree with neoclassical theory. (author)

  20. Maximum attainable power density and wall load in tokamaks underlying reactor relevant constraints

    International Nuclear Information System (INIS)

    Borrass, K.; Buende, R.

    1979-09-01

    The characteristic data of tokamaks optimized with respect to their power density or wall load are determined. Reactor relevant constraints are imposed, such as a fixed plant net power output, a fixed blanket thickness and the dependence of the maximum toroidal field on the geometry and conductor material. The impact of finite burn times is considered. Various scaling laws of the toroidal beta with the aspect ratio are discussed. (orig.) 891 GG/orig. 892 RDG [de

  1. Advanced tokamak reactors based on the spherical torus (ATR/ST). Preliminary design considerations

    International Nuclear Information System (INIS)

    Miller, R.L.; Krakowski, R.A.; Bathke, C.G.; Copenhaver, C.; Schnurr, N.M.; Engelhardt, A.G.; Seed, T.J.; Zubrin, R.M.

    1986-06-01

    Preliminary design results relating to an advanced magnetic fusion reactor concept based on the high-beta, low-aspect-ratio, spherical-torus tokamak are summarized. The concept includes resistive (demountable) toroidal-field coils, magnetic-divertor impurity control, oscillating-field current drive, and a flowing liquid-metal breeding blanket. Results of parametric tradeoff studies, plasma engineering modeling, fusion-power-core mechanical design, neutronics analyses, and blanket thermalhydraulics studies are described. The approach, models, and interim results described here provide a basis for a more detailed design. Key issues quantified for the spherical-torus reactor center on the need for an efficient drive for this high-current (approx.40 MA) device as well as the economic desirability to increase the net electrical power from the nominal 500-MWe(net) value adopted for the baseline system. Although a direct extension of present tokamak scaling, the stablity and transport of this high-beta (approx.0.3) plasma is a key unknown that is resoluble only by experiment. The spherical torus generally provides a route to improved tokamak reactors as measured by considerably simplified coil technology in a configuration that allows a realistic magnetic divertor design, both leading to increased mass power density and reduced cost

  2. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    International Nuclear Information System (INIS)

    Conn, R.W.; Ghoniem, N.M.; Firestone, M.A.

    1986-09-01

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m 2 and a surface heat flux of 1 MW/m 2 . The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO 2 rods. The helium coolant pressure is 5 MPa, entering the module at 297 0 C and exiting at 550 0 C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter

  3. A consistency analysis on the tokamak reactor plasmas

    International Nuclear Information System (INIS)

    Fukuyama, A.; Itoh, S.-I.; Itoh, K.

    1990-12-01

    The parameter regime which simultaneously fulfills the various physics constraints are looked for in the case of ITER grade tokamaks. The consistency analysis code is applied. It is found that, if the energy confinement time reaches 1.6 times of the prediction of the L-mode scaling law, the Q-value of about 4 is possible for the full current drive operation at the input power P in of 100MW (Q is the ratio of fusion output and P in ). In the ignition mode, where half of the current is inductively sustained, Q approaches to 15 for this circulating power. If only the L-mode is realized, Q is about 1.5 for P in ≅100 MW. (author)

  4. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus haloalkane dehalogenase

    NARCIS (Netherlands)

    Bosma, T; Pikkemaat, MG; Kingma, Jacob; Dijk, J; Janssen, DB

    2003-01-01

    Haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064 (DhaA) catalyzes the hydrolysis of carbon-halogen bonds in a wide range of haloalkanes. We examined the steady-state and pre-steady-state kinetics of halopropane conversion by DhaA to illuminate mechanistic details of the

  5. Criteria of the efficiency for radiation protection of tokamak reactor superconducting magnet coils

    International Nuclear Information System (INIS)

    Zimin, S.A.

    1988-01-01

    Factors determining serviceability of the main elements (superconductor, stabilizing conductor, insulation) of superconducting magnet coils for tokamak reactors are discussed. It is suggested that the limiting values of total and specific energy release in the material of superconducting coils, increase in electric resistance of the stabilizing conductor, decrease in the superconductor critical current and damage of the superconducting magnet insulation should be used as criteria of the reactor internal radiation protection efficiency. The conclusion is made that neutron fluence in the magnet coil components considered can be used as a generalized criterion of the first approximation for the evaluation of the protection efficiency

  6. Ignition and time-dependent fractional power operation of tokamak reactors

    International Nuclear Information System (INIS)

    Vold, E.L.; Mau, T.K.; Conn, R.W.

    1986-01-01

    The eventual utilization of a tokamak fusion reactor for commercial power necessitates a thorough understanding of the operational requirements at full and fractional power levels and during transitions from one operating level to another. In this study we examine the role of burn control in maintaining the reactor plasma at equilibrium to avoid thermal runaway during fractional power operation. Because these requirements rely so heavily on the assumptions that govern the plasma transport, this study focuses on time-dependent analyses and a comparison of ignition requirements using a range of energy confinement

  7. Neutronics calculations for the Oak Ridge National Laboratory Tokamak Reactor Studies

    International Nuclear Information System (INIS)

    Santoro, R.T.; Baker, V.C.; Barnes, J.M.

    1976-01-01

    Neutronics calculations have been carried out to analyze the nuclear performance of conceptual blanket and shield designs for the Tokamak Experimental Power Reactor (EPR) and the Tokamak Demonstration Reactor Plant (DRP) being considered at the Oak Ridge National Laboratory. These reactor designs represent a sequence in the commercialization of fusion-generated electrical power. All of the calculations were carried out using the one-dimensional discrete ordinates code ANISN and the latest available ENDF/B-IV coupled neutron-gamma-ray transport cross-section data, fluence-to-kerma conversion factors, and radiation damage cross-section data. The calculations include spatial and integral heating-rate estimates in the reactor with emphasis on the recovery of fusion neutron energy in the blanket and limiting the heat-deposition rate in the superconducting toroidal field coils. Radiation damage due to atomic displacements and gas production produced in the reactor structural material and in the toroidal field coil windings were also estimated. The tritium-breeding ratio when natural lithium is used as the fertile material in the DRP blanket and in the experimental breeding modules in the EPR is also given

  8. Tokamak experiments

    International Nuclear Information System (INIS)

    Robinson, D.C.

    1987-01-01

    With the advent of the new large tokamaks JET, JT-60 and TFTR important advances in magnetic confinement have been made. These include the exploitation of radio frequency and neutral beam heating on a much larger scale than previously, the demonstration of regimes of improved confinement and the demonstration of current drive at the Megamp level. A number of small and medium sized tokamaks have also come into operation recently such as WT-3 in Japan with an emphasis on radio frequency current drive and HL-1 a medium sized tokamak in China. Each of these new tokamaks is addressing specific problems which remain for the future development of the system. Of these particular problems: β, density and q limits remain important issues for the future development of the tokamak. β limits are being addressed on the DIII-D device in the USA. The anomalous confinement that the tokamak displays is being explored in detail on the TEXT device in the USA. Two other problems are impurity control and current drive. There is significant emphasis on divertor configurations at the present time with their enhanced confinement in the so called H mode. Due to improved discharge cleaning techniques and the ability to repetitively refuel using pellets, purer plasmas can be obtained even without divertors. Current drive remains a crucial issue for quasi of near steady state operation of the tokamak in the future and many current drive schemes are being investigated. (author) [pt

  9. Measurement of non-steady-state free fatty acid turnover

    International Nuclear Information System (INIS)

    Jensen, M.D.; Heiling, V.; Miles, J.M.

    1990-01-01

    The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with [ 14 C]-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra [( 14 C]oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra

  10. Design study of superconducting inductive energy storages for tokamak fusion reactor

    International Nuclear Information System (INIS)

    1977-08-01

    Design of the superconducting inductive energy storages (SC-IES) has been studied. One SC-IES is for the power supply system in a experimental tokamak fusion reactor, and the other in a future practical reactor. Study started with definition of the requirements of SC-IES, followed by optimization of the coil shape and determination of major parameters. Then, the coil and the vessel were designed, including the following: for SC-IES of the experimental reactor, stored energy 10 GJ, B max 8 T, conductor NbTi and size 18 m diameter x 10 m height; for SC-IES of the practical reactor, stored energy 56 GJ, B max 10.5 T, conductor Nb 3 Sn and size 26 m diameter x 15 m height. Design of the coil protection system and an outline of the auxiliary systems (for refrigeration and evacuation) are also given, and further, problems and usefullness of SC-IES. (auth.)

  11. Physics design requirements for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Neilson, G.H.; Goldston, R.J.; Jardin, S.C.; Reiersen, W.T.; Porkolab, M.; Ulrickson, M.

    1993-01-01

    The design of TPX is driven by physics requirements that follow from its mission. The tokamak and heating systems provide the performance and profile controls needed to study advanced steady state tokamak operating modes. The magnetic control systems provide substantial flexibility for the study of regimes with high beta and bootstrap current. The divertor is designed for high steady state power and particle exhaust

  12. Steady State and Transient Fuel Rod Performance Analyses by Pad and Transuranus Codes

    International Nuclear Information System (INIS)

    Slyeptsov, O.; Slyeptsov, S.; Kulish, G.; Ostapov, A.; Chernov, I.

    2013-01-01

    The report performed under IAEA research contract No.15370/L2 describes the analysis results of WWER and PWR fuel rod performance at steady state operation and transients by means of PAD and TRANSURANUS codes. The code TRANSURANUS v1m1j09 developed by Institute for of Transuranium Elements (ITU) was used based on the Licensing Agreement N31302. The code PAD 4.0 developed by Westinghouse Electric Company was utilized in the frame of the Ukraine Nuclear Fuel Qualification Project for safety substantiation for the use of Westinghouse fuel assemblies in the mixed core of WWER-1000 reactor. The experimental data for the Russian fuel rod behavior obtained during the steady-state operation in the WWER-440 core of reactor Kola-3 and during the power transients in the core of MIR research reactor were taken from the IFPE database of the OECD/NEA and utilized for assessing the codes themselves during simulation of such properties as fuel burnup, fuel centerline temperature (FCT), fuel swelling, cladding strain, fission gas release (FGR) and rod internal pressure (RIP) in the rod burnup range of (41 - 60) GWD/MTU. The experimental data of fuel behavior at steady-state operation during seven reactor cycles presented by AREVA for the standard PWR fuel rod design were used to examine the code FGR model in the fuel burnup range of (37 - 81) GWD/MTU. (author)

  13. Reactor aspects of counterstreaming-ion tokamak plasmas

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1975-06-01

    Toroidal DT plasmas in which the D and T ions make up two distinct, quasi-thermal velocity distributions, oppositely displaced in velocity along the magnetic axis, are discussed. Such counterstreaming distributions can be set up by introducing all ions by tangential injection of neutral beams, and by removing ions from the plasma shortly after they have decelerated to an energy approximate to or less than 2T/sub e/ by Coulomb drag on the plasma electrons. A simple physical model for counterstreaming-ion operation is postulated, which allows one to deduce the ion velocity distributions and required energy and particle confinement times that are in good agreement with the results of previous Fokker-Planck calculations. The variations of fusion reactivity, power gain, and power density with injection energy and electron temperature are presented. The practical problems of implementing counter-streaming operation in a tokamak, such as charge-exchange losses, the prompt removal of cold ions, and the effect of impurities are discussed. (U.S.)

  14. Spectra of heliumlike krypton from tokamak fusion test reactor plasmas

    International Nuclear Information System (INIS)

    Bitter, M.; Hsuan, H.; Bush, C.; Cohen, S.; Cummings, C.J.; Grek, B.; Hill, K.W.; Schivell, J.; Zarnstorff, M.; Smith, A.; Fraenkel, B.

    1993-04-01

    Krypton has been injected into ohmically-heated TFTR plasmas with peak electron temperatures of 6 key to study the effects of krypton on the plasma performance and to investigate the emitted krypton line radiation, which is of interest for future-generation tokamaks such as ITER, both as a diagnostic of the central ion temperature and for the control of energy release from the plasma by radiative cooling. The emitted radiation was monitored with a bolometer array, an X-ray pulse height analysis system, and a high-resolution Johann-type crystal spectrometer; and it was found to depend very sensitively on the electron temperature profile. Satellite spectra of heliumlike krypton, KrXXXV, near 0.95 Angstrom including lithiumlike, berylliumlike and boronlike features were recorded in second order Bragg reflection. Radiative cooling and reduced particle recycling at the plasma edge region were observed as a result of the krypton injection for all investigated discharges. The observations are in reasonable agreement with modeling calculations of the krypton ion charge state distribution including radial transport

  15. Effect of the poloidal current from the classical diffusion in the steady-state neo-classical transport

    International Nuclear Information System (INIS)

    Igna Junior, A.D.

    1984-01-01

    The relevant parameters of two steady-state models of a plasma column, in fusion regime, were analyzed for an ideal Tokamak. The neo-classical transport theory was considered in the banana regime and in the Pfirsch-Schlueter regime. The first model proposes a correction in the numerical coefficients of the transport equations. In the other one, a poloidal current from Pfirsch-Schlueter classical diffusion is considered aiming to satisfy the pressure balance. (M.C.K.) [pt

  16. Tokamak Fusion Test Reactor. Final conceptual design report

    International Nuclear Information System (INIS)

    1976-02-01

    The TFTR is the first U.S. magnetic confinement device planned to demonstrate the fusion of D-T at reactor power levels. This report addresses the physics objectives and the engineering goals of the TFTR project. Technical, cost, and schedule aspects of the project are included

  17. Recent developments in engineering and technology concepts for prospective tokamak fusion reactors

    International Nuclear Information System (INIS)

    Ford, G.W.K.

    1987-01-01

    The tokamak has become the most developed magnetic fusion system and it appears likely that break-even and possibly ignition will first be demonstrated in existing machines of this type. Yet larger tokamaks could also demonstrate the essential technologies for the production of useful power. World-wide, well over a hundred tritium-breeder/heat-removal blanket concepts have been devised and preliminary engineering design studies undertaken, but the effort deployed on breeding and power recovery systems has been very small compared with that assigned to plasma research and development. The European Communities' NET (Next European Torus) project may offer an opportunity to redress this imbalance. The NET pre-design stage now in progress for some three years has selected many of the best features of plasma and nuclear design from the world's total efforts in these fields, and the NET concept is described in this paper as exemplifying where magnetic fusion power reactor technology stands today. It is concluded that although there are numerous more advanced types of magnetic confinement fusion reactor at early stages of their physics development, the tokamak offers the best opportunity for the early demonstration of fusion power

  18. Steady-state and transient fission gas release and swelling model for LIFE-4

    International Nuclear Information System (INIS)

    Villalobos, A.; Liu, Y.Y.; Rest, J.

    1984-06-01

    The fuel-pin modeling code LIFE-4 and the mechanistic fission gas behavior model FASTGRASS have been coupled and verified against gas release data from mixed-oxide fuels which were transient tested in the TREAT reactor. Design of the interface between LIFE-4 and FASTGRASS is based on an earlier coupling between an LWR version of LIFE and the GRASS-SST code. Fission gas behavior can significantly affect steady-state and transient fuel performance. FASTGRASS treats fission gas release and swelling in an internally consistent manner and simultaneously includes all major mechanisms thought to influence fission gas behavior. The FASTGRASS steady-state and transient analysis has evolved through comparisons of code predictions with fission-gas release and swelling data from both in- and ex-reactor experiments. FASTGRASS was chosen over other fission-gas behavior models because of its availability, its compatibility with the LIFE-4 calculational framework, and its predictive capability

  19. Tokamak hybrid thermonuclear reactor for the production of fissionable fuel and electric power

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Glukhikh, V.A.; Gur'ev, V.V.

    1978-01-01

    The results of feasibility studies of a tokamak- based hybrid reactor concept are presented. The system selected has a D-T plasma volume of 575 m 3 with additional plasma heating by injection of fast neutral particles. The method of heating makes it possible to achieve an economical two-component tokamak regime at ntau=(4-6)x10 13 sxcm -3 , i e. far below the Lawson criterion. Plasma and vacuum chamber are surrounded by a blanket where fissionable plutonium is produced and heat transformed into electric power is generated. Major plasma-neutron-physical characteristics of the 6905 MWth (2500 MWe) reactor and its electromagnetic system are presented. Evaluations show that the hybrid reactor can produce about 800 kg of Pu per 1GWth/yr as compared to 70-150 kg of Pu for fast breeder reactors. The increased Pu production rate is the major merit of the concept promising for both power generation and fuelling thermal fission reactions

  20. Feedback stabilization of the resistive shell mode in a tokamak fusion reactor

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1997-01-01

    Stabilization of the 'resistive shell mode' is vital to the success of the 'advanced tokamak' concept. The most promising reactor relevant approach is to apply external feedback using, for instance, the previously proposed 'fake rotating shell' scheme [R. Fitzpatrick and T. H. Jensen, Phys. Plasmas 3, 2641 (1996)]. This scheme, like other simple feedback schemes, only works if the feedback controlled conductors are located inside the 'critical radius' at which a perfectly conducting shell is just able to stabilize the ideal external kink mode. In general, this is not possible in a reactor, since engineering constraints demand that any feedback controlled conductors be placed outside the neutron shielding blanket (i.e., relatively far from the edge of the plasma). It is demonstrated that the fake rotating shell feedback scheme can be modified so that it works even when the feedback controlled conductors are located well beyond the critical radius. The gain, bandwidth, current, and total power requirements of such a feedback system for a reactor sized plasma are estimated to be less than 100, a few Hz, a fews tens of kA, and a few MW, respectively. These requirements could easily be met using existing technology. It is concluded that feedback stabilization of the resistive shell mode is possible in a tokamak fusion reactor. copyright 1997 American Institute of Physics

  1. Tore-Supra infrared thermography system, a real steady-state diagnostic

    International Nuclear Information System (INIS)

    Guilhem, D.; Bondil, J.L.; Bertrand, B.; Desgranges, C.; Lipa, M.; Messina, P.; Missirlian, M.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.

    2005-01-01

    Tore-Supra Tokamak (I p = 1.5 MA, B t = 4 T) has been constructed with a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components (PFCs) for high-performance long pulse plasma discharges. When not actively cooled, plasma facing components can only accumulate a limited amount of energy since the temperature increases continuously during the discharge until radiation cooling equals the incoming heat flux. Such an environment is found in the JET Tokamak [JET Team, IAEA-CN-60/A1-3, Seville, 1994] and on TRIAM [M. Sakamoto, H. Nakashima, S. Kawasaki, A. Iyomasa, S.V. Kulkarni, M. Hasegawa, E. Jotaki, H. Zushi, K. Nakamura, K. Hanada, S. Itoh, Static and dynamic properties of wall recycling in TRIAM-1M, J. Nucl. Mater. 313-316 (2003) 519-523] [Y. Kamada, et al., Nucl. Fusion 3 (1999) 1845]. In Tore-Supra, the surface temperature of the actively cooled plasma facing components reach steady state within a second. We present here the Tore-Supra thermographic system, made of seven endoscope bodies equipped so far with eight infrared (IR) cameras. It has to be noted that this diagnostic is the first diagnostic to be actively cooled, as required for steady state. The main purpose of such a diagnostic is to prevent the plasma to damage the actively cooled plasma facing components (ACPFCs), which consist of the toroidal pumped limiter (TPL), 7 m 2 , and of five radio-frequency antennae, 1.5 m 2 each

  2. Quantum thermodynamics of nanoscale steady states far from equilibrium

    Science.gov (United States)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  3. Steady-state coupled transport of HNO3 through a hollow-fiber supported liquid membrane

    International Nuclear Information System (INIS)

    Noble, R.D.; Danesi, P.R.

    1987-01-01

    Nitric acid removal from an aqueous stream was accomplished by continuously passing the fluid through a hollow fiber supported liquid membrane (SLM). The nitric acid was extracted through the membrane wall by coupled transport. The system was modeled as a series of (SLM)-continuous stirred tank reactor (CSTR) pairs. An approximate technique was used to predict the steady state nitric acid concentration in the system. The comparison with experimental data was very good

  4. Some stress-related issues in tokamak fusion reactor first walls

    International Nuclear Information System (INIS)

    Majumdar, S.; Pai, B.; Ryder, R.H.

    1987-01-01

    Recent design studies of a tokamak fusion power reactor and of various blankets have envisioned surface heat fluxes on the first wall ranging from 0.1 to 1.0 MW/m 2 , and end-of-life irradiation fluences ranging from 100 dpa for the austenitic stainless steels to as high as 250 dpa for postulated vanadium alloys. Some tokamak blankets, particularly those using helium or liquid metal as coolant/breeder, may have to operate at relatively high coolant pressures so that the first wall may be subjected to high primary stress in addition to high secondary stresses such as thermal stresses or stresses due to constrained swelling. The present paper focusses on the various problems that may arise in the first wall because of stress and high neutron fluence, and discusses some of the design solutions that have been proposed to overcome these problems

  5. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    International Nuclear Information System (INIS)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C.

    2001-01-01

    The major increase in discharge duration and plasma energy in a next-step DT (deuterium-tritium) fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D (Research and Development) avenues for their resolution are presented

  6. Generation of net electric power with a tokamak reactor under foreseeable physical and engineering conditions

    International Nuclear Information System (INIS)

    Hiwatari, R.; Asaoka, Y.; Okano, K.; Yoshida, T.; Tomabechi, K.

    2004-01-01

    This study reveals for the first time the plasma performance required for a tokamak reactor to generate net electric power under foreseeable engineering conditions. It was found that the reference plasma performance of the ITER inductive operation mode with β N = 1.8, HH = 1.0, andf nGW 0.85 had sufficient potential to achieve the electric break-even condition (net electric power P e net = 0MW) under the following engineering conditions: machine major radius 6.5m ≤ R p ≤ 8.5m, the maximum magnetic field on TF coils B tmax = 16 T, thermal efficiency η e 30%, and NBI system efficiency η NBI = 50%. The key parameters used in demonstrating net electric power generation in tokamak reactors are β N and fη GW . ≥ 3.0 is required for P e net ∼ 600MW with fusion power P f ∼ 3000MW. On the other hand, fη GW ≥ 1.0 is inevitable to demonstrate net electric power generation, if high temperatures, such as average temperatures of T ave > 16 keV, cannot be selected for the reactor design. To apply these results to the design of a tokamak reactor for demonstrating net electric power generation, the plasma performance diagrams on the Q vs P f (energy multiplication factor vs fusion power) space for several major radii (i.e. 6.5, 7.5, and 8.5 m) were depicted. From these figures, we see that a design with a major radius R p ∼ 7.5m seems preferable for demonstrating net electric power generation when one aims at early realization of fusion energy. (author)

  7. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  8. Design study of blanket structure for tokamak experimental fusion reactor

    International Nuclear Information System (INIS)

    1979-11-01

    Design study of the blanket structure for JAERI Experimental Fusion Reactor (JXFR) has been carried out. Studied here were fabrication and testing of the blanket structure (blanket cells, blanket rings, piping and blanket modules), assembly and disassembly of the blanket module, and monitering and testing technique. Problems in design and fabrication of the blanket structure could be revealed. Research and development problems for the future were also disclosed. (author)

  9. Steady state and transient critical heat flux examinations

    International Nuclear Information System (INIS)

    Szabados, L.

    1978-02-01

    In steady state conditions within the P.W.R. parameter range the critical heat flux correlations based on local parameters reproduce the experimental data with less deviations than those based on system parameters. The transient experiments were restricted for the case of power transients. A data processing method for critical heat flux measurements has been developed and the applicability of quasi steady state calculation has been verified. (D.P.)

  10. Calculation analysis on steady state natural circulation characteristics

    International Nuclear Information System (INIS)

    Wang Fei; Nie Changhua; Huang Yanping

    2005-01-01

    The calculation results of single-phase steady state natural circulation characteristics by using Retran02 code have been presented, good agreement is achieved between the verified calculation result and the experimental data which were conducted at a test facility. Based on the calculation model, some sensibility analyses were made and much deeper understanding for single-phase steady state natural circulation characteristics was obtained. (author)

  11. Selection of steady states in planar Darcy convection

    International Nuclear Information System (INIS)

    Tsybulin, V.G.; Karasoezen, B.; Ergenc, T.

    2006-01-01

    The planar natural convection of an incompressible fluid in a porous medium is considered. We study the selection of steady states under temperature perturbations on the boundary. A selection map is introduced in order to analyze the selection of a steady state from a continuous family of equilibria which exists under zero boundary conditions. The results of finite-difference modeling for a rectangular enclosure are presented

  12. Tokamaks with high-performance resistive magnets: advanced test reactors and prospects for commercial applications

    International Nuclear Information System (INIS)

    Bromberg, L.; Cohn, D.R.; Williams, J.E.C.; Becker, H.; Leclaire, R.; Yang, T.

    1981-10-01

    Scoping studies have been made of tokamak reactors with high performance resistive magnets which maximize advantages gained from high field operation and reduced shielding requirements, and minimize resistive power requirements. High field operation can provide very high values of fusion power density and n tau/sub e/ while the resistive power losses can be kept relatively small. Relatively high values of Q' = Fusion Power/Magnet Resistive Power can be obtained. The use of high field also facilitates operation in the DD-DT advanced fuel mode. The general engineering and operational features of machines with high performance magnets are discussed. Illustrative parameters are given for advanced test reactors and for possible commercial reactors. Commercial applications that are discussed are the production of fissile fuel, electricity generation with and without fissioning blankets and synthetic fuel production

  13. Status report on the conceptual design of a commercial tokamak hybrid reactor (CTHR)

    International Nuclear Information System (INIS)

    1979-09-01

    A preliminary conceptual design is presented for an early twenty-first century fusion hybrid reactor called the Commercial Tokamak Hybrid Reactor (CTHR). This design was developed as a first generation commercial plant producing fissile fuel to support a significant number of client Light Water Reactor (LWR) plants. The study has been made in sufficient depth to indicate no insurmountable technical problems exist and has provided a basis for valid cost estimates of the hybrid plants as well as the hybrid/LWR system busbar electricity costs. This energy system can be optimized to have a net cost of busbar electricity that is equivalent to the conventional LWR plant, yet is not dependent on uranium ore prices or standard enrichment costs, since the fusion hybrid can be fueled by numerous fertile fuel resources

  14. Tokamak reactor for treating fertile material or waste nuclear by-products

    Science.gov (United States)

    Kotschenreuther, Michael T.; Mahajan, Swadesh M.; Valanju, Prashant M.

    2012-10-02

    Disclosed is a tokamak reactor. The reactor includes a first toroidal chamber, current carrying conductors, at least one divertor plate within the first toroidal chamber and a second chamber adjacent to the first toroidal chamber surrounded by a section that insulates the reactor from neutrons. The current carrying conductors are configured to confine a core plasma within enclosed walls of the first toroidal chamber such that the core plasma has an elongation of 1.5 to 4 and produce within the first toroidal chamber at least one stagnation point at a perpendicular distance from an equatorial plane through the core plasma that is greater than the plasma minor radius. The at least one divertor plate and current carrying conductors are configured relative to one another such that the current carrying conductors expand the open magnetic field lines at the divertor plate.

  15. Radiation shielding considerations for the repair and maintenance of a swimming pool-type tokamak reactor

    International Nuclear Information System (INIS)

    Seki, Y.; Mori, S.

    1984-01-01

    The radiation shielding relevant to the repair and maintenance of a swimming pool-type tokamak reactor is considered. The dose rate during the reactor operation can be made low enough for personnel access into the reactor room if a 2m thick water layer is installed above the magnet cryostat. The dose rate 24 h after shutdown is such that the human access is allowed above the magnet cryostat. Sufficient water layer thickness is provided in the inboard space for the operation of automatic welder/cutter while retaining the magnet shielding capability. Some forced cooling is required for the decay heat removal in the first wall. The penetration shield thickness around the neutral beam injector port is estimated to be barely sufficient in terms of the magnet radiation damage. (orig.)

  16. A commercial tokamak reactor using super high field superconducting magnets

    International Nuclear Information System (INIS)

    Schwartz, J.; Bromberg, L.; Cohn, D.R.; Williams, J.E.C.

    1988-01-01

    This paper explores the range of possibilities for producing super high fields with advanced superconducting magnets. Obtaining magnetic fields greater than about 18 T at the coil in a large superconducting magnet system will require advances in many areas of magnet technology. These needs are discussed and potential solutions (advanced superconductors, structural materials and design methods) evaluated. A point design for a commercial reactor with magnetic field at the coil of 24 T and fusion power of 1800 MW is presented. Critical issues and parameters for magnet design are identified. 20 refs., 9 figs., 4 tabs

  17. Conception of divertorless tokamak reactor with turbulent plasma blanket

    International Nuclear Information System (INIS)

    Nedospasov, A.V.; Tokar, M.Z.

    1980-01-01

    The results of the calculations presented here demonstrate that, with technically reasonable degree of the magnetic field stochastisation, the turbulent plasma blanket can take the place of a divertor. It performs the three main functions of the divertor: (a) the exhaust of the helium and unburned fuel; (b) weakening of the fast particle flux to the wall surface; and (c) essential reduction of the impurity content in the active zone of the reactor. Taking into account that plasma flows to the first wall along field lines, we may figuratively say that the first wall plays the role of a divertor in our conception. (orig.)

  18. Utilization of fusion neutrons in the tokamak fusion test reactor for blanket performance testing and other nuclear engineering experiments

    International Nuclear Information System (INIS)

    Caldwell, C.S.; Pettus, W.G.; Schmotzer, J.K.; Welfare, F.; Womack, R.

    1979-01-01

    In addition to developing a set of reacting-plasma/blanket-neutronics benchmark data, the TFTR fusion application experiments would provide operational experience with fast-neutron dosimetry and the remote handling of blanket modules in a tokamak reactor environment; neutron streaming and hot-spot information invaluable for the optimal design of penetrations in future fusion reactors; and the identification of the most damage-resistant insulators for a variety of fusion-reactor components

  19. Potential minimum cost of electricity of superconducting coil tokamak power reactors

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y-K. M.

    1989-01-01

    The potential minimum cost of electricity (COE) for superconducting tokamak power reactors is estimated by increasing the physics (confinement, beta limit, bootstrap current fraction) and technology [neutral beam energy, toroidal field (TF) coil allowable stresses, divertor heat flux, superconducting coil critical field, critical temperature, and quench temperature rise] constraints far beyond those assumed for ITER until the point of diminishing returns is reached. A version of the TETRA systems code, calibrated with the ITER design and modified for power reactors, is used for this analysis, limiting this study to reactors with the same basic device configuration and costing algorithms as ITER. A minimum COE is reduced from >200 to about 80 mill/kWh when the allowable design constraints are raised to 2 times those of ITER. At 4 times the ITER allowables, a minimum COE of about 60 mill/kWh is obtained. The corresponding tokamak has a major radius of approximately 4 m, a plasma current close to 10 MA, an aspect ratio of 4, a confinement H- factor ≤3, a beta limit of approximately 2 times the first stability regime, a divertor heat flux of about 20 MW/m 2 , a Β max ≤ 18 T, and a TF coil average current density about 3 times that of ITER. The design constraints that bound the minimum COE are the allowable stresses in the TF coil, the neutral beam energy, and the 99% bootstrap current (essentially free current drive). 14 refs., 4 figs., 2 tabs

  20. An advanced conceptual Tokamak fusion power reactor utilizing closed cycle helium gas turbines

    International Nuclear Information System (INIS)

    Conn, R.W.

    1976-01-01

    UWMAK-III is a conceptual Tokamak reactor designed to study the potential and the problems associated with an advanced version of Tokamaks as power reactors. Design choices have been made which represent reasonable extrapolations of present technology. The major features are the noncircular plasma cross section, the use of TZM, a molybdenum based alloy, as the primary structural material, and the incorporation of a closed-cycle helium gas turbine power conversion system. A conceptual design of the turbomachinery is given together with a preliminary heat exchanger analysis that results in relatively compact designs for the generator, precooler, and intercooler. This paper contains a general description of the UWMAK-III system and a discussion of those aspects of the reactor, such as the burn cycle, the blanket design and the heat transfer analysis, which are required to form the basis for discussing the power conversion system. The authors concentrate on the power conversion system and include a parametric performance analysis, an interface and trade-off study and a description of the reference conceptual design of the closed-cycle helium gas turbine power conversion system. (Auth.)