WorldWideScience

Sample records for steady-state tokamak issues

  1. Technology and physics in the Tokamak Program: The need for an integrated, steady-state RandD tokamak experiment

    International Nuclear Information System (INIS)

    1988-05-01

    The Steady-state Tokamak (STE) Experiment is a proposed superconducting-coil, hydrogen-plasma tokamak device intended to address the integrated non-nuclear issues of steady state, high-power tokamak physics and technology. Such a facility has been called for in the US program plan for the mid 1990's, and will play a unique role in the world-wide fusion effort. Information from STE on steady-state current drive, plasma control, and high power technology will contribute significantly to the operating capabilities of future steady-state devices. This paper reviews preliminary designs and expected technological contributions to the US and world fusion reactor research from each of the above mentioned reactor systems. This document is intended as a proposal and feasibility discussion and does not include exhaustive technical reviews. 12 figs., 3 tabs

  2. The steady-state tokamak program

    International Nuclear Information System (INIS)

    Politzer, D.A.; Nevins, W.M.

    1992-01-01

    This paper reports on a steady-state tokamak experiment (STE) needed to develop the technology and physics data base required for construction of a steady-state fusion power demonstration reactor in the early 21st century. The STE will provide an integrated facility for the development and demonstration of steady-state and particle handling, low-activation high-heat-flux components and materials, efficient current drive, and continuous plasma performance in steady-state, with reactor-like plasma conditions under severe conditions of heat and particle bombardment of the wall. The STE facility will also be used to develop operation and control scenarios for ITER

  3. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    Moreau, D.

    2001-01-01

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  4. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    Moreau, D.; Voitsekhovitch, I.

    1999-01-01

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  5. Steady State Advanced Tokamak (SSAT): The mission and the machine

    International Nuclear Information System (INIS)

    Thomassen, K.; Goldston, R.; Nevins, B.; Neilson, H.; Shannon, T.; Montgomery, B.

    1992-03-01

    Extending the tokamak concept to the steady state regime and pursuing advances in tokamak physics are important and complementary steps for the magnetic fusion energy program. The required transition away from inductive current drive will provide exciting opportunities for advances in tokamak physics, as well as important impetus to drive advances in fusion technology. Recognizing this, the Fusion Policy Advisory Committee and the US National Energy Strategy identified the development of steady state tokamak physics and technology, and improvements in the tokamak concept, as vital elements in the magnetic fusion energy development plan. Both called for the construction of a steady state tokamak facility to address these plan elements. Advances in physics that produce better confinement and higher pressure limits are required for a similar unit size reactor. Regimes with largely self-driven plasma current are required to permit a steady-state tokamak reactor with acceptable recirculating power. Reliable techniques of disruption control will be needed to achieve the availability goals of an economic reactor. Thus the central role of this new tokamak facility is to point the way to a more attractive demonstration reactor (DEMO) than the present data base would support. To meet the challenges, we propose a new ''Steady State Advanced Tokamak'' (SSAT) facility that would develop and demonstrate optimized steady state tokamak operating mode. While other tokamaks in the world program employ superconducting toroidal field coils, SSAT would be the first major tokamak to operate with a fully superconducting coil set in the elongated, divertor geometry planned for ITER and DEMO

  6. Realizing steady-state tokamak operation for fusion energy

    International Nuclear Information System (INIS)

    Luce, T. C.

    2011-01-01

    Continuous operation of a tokamak for fusion energy has clear engineering advantages but requires conditions beyond those sufficient for a burning plasma. The fusion reactions and external sources must support both the pressure and the current equilibrium without inductive current drive, leading to demands on stability, confinement, current drive, and plasma-wall interactions that exceed those for pulsed tokamaks. These conditions have been met individually, and significant progress has been made in the past decade to realize scenarios where the required conditions are obtained simultaneously. Tokamaks are operated routinely without disruptions near pressure limits, as needed for steady-state operation. Fully noninductive sustainment with more than half of the current from intrinsic currents has been obtained for a resistive time with normalized pressure and confinement approaching those needed for steady-state conditions. One remaining challenge is handling the heat and particle fluxes expected in a steady-state tokamak without compromising the core plasma performance.

  7. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  8. High-β steady-state advanced tokamak regimes for ITER and FIRE

    International Nuclear Information System (INIS)

    Meade, D.M.; Sauthoff, N.R.; Kessel, C.E.; Budny, R.V.; Gorelenkov, N.; Jardin, S.C.; Schmidt, J.A.; Navratil, G.A.; Bialek, J.; Ulrickson, M.A.; Rognlein, T.; Mandrekas, J.

    2005-01-01

    An attractive tokamak-based fusion power plant will require the development of high-β steady-state advanced tokamak regimes to produce a high-gain burning plasma with a large fraction of self-driven current and high fusion-power density. Both ITER and FIRE are being designed with the objective to address these issues by exploring and understanding burning plasma physics both in the conventional H-mode regime, and in advanced tokamak regimes with β N ∼ 3 - 4, and f bs ∼50-80%. ITER has employed conservative scenarios, as appropriate for its nuclear technology mission, while FIRE has employed more aggressive assumptions aimed at exploring the scenarios envisioned in the ARIES power-plant studies. The main characteristics of the advanced scenarios presently under study for ITER and FIRE are compared with advanced tokamak regimes envisioned for the European Power Plant Conceptual Study (PPCS-C), the US ARIES-RS Power Plant Study and the Japanese Advanced Steady-State Tokamak Reactor (ASSTR). The goal of the present work is to develop advanced tokamak scenarios that would fully exploit the capability of ITER and FIRE. This paper will summarize the status of the work and indicate critical areas where further R and D is needed. (author)

  9. A Review of Fusion and Tokamak Research Towards Steady-State Operation: A JAEA Contribution

    Directory of Open Access Journals (Sweden)

    Mitsuru Kikuchi

    2010-11-01

    Full Text Available Providing a historical overview of 50 years of fusion research, a review of the fundamentals and concepts of fusion and research efforts towards the implementation of a steady state tokamak reactor is presented. In 1990, a steady-state tokamak reactor (SSTR best utilizing the bootstrap current was developed. Since then, significant efforts have been made in major tokamaks, including JT-60U, exploring advanced regimes relevant to the steady state operation of tokamaks. In this paper, the fundamentals of fusion and plasma confinement, and the concepts and research on current drive and MHD stability of advanced tokamaks towards realization of a steady-state tokamak reactor are reviewed, with an emphasis on the contributions of the JAEA. Finally, a view of fusion energy utilization in the 21st century is introduced.

  10. Burn cycle requirements comparison of pulsed and steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ehst, D.A.

    1983-12-01

    Burn cycle parameters and energy transfer system requirements were analyzed for an 8-m commercial tokamak reactor using four types of cycles: conventional, hybrid, internal transformer, and steady state. Not surprisingly, steady state is the best burn mode if it can be achieved. The hybrid cycle is a promising alternative to the conventional. In contrast, the internal transformer cycle does not appear attractive for the size tokamak in question

  11. Vulcan: A steady-state tokamak for reactor-relevant plasma–material interaction science

    International Nuclear Information System (INIS)

    Olynyk, G.M.; Hartwig, Z.S.; Whyte, D.G.; Barnard, H.S.; Bonoli, P.T.; Bromberg, L.; Garrett, M.L.; Haakonsen, C.B.; Mumgaard, R.T.; Podpaly, Y.A.

    2012-01-01

    Highlights: ► A new scaling for obtaining reactor similarity in the divertor of scaled tokamaks. ► Conceptual design for a tokamak (“Vulcan”) to implement this new scaling. ► Demountable superconducting coils and compact neutron shielding. ► Helium-cooled high-temperature vacuum vessel and first wall. ► High-field-side lower hybrid current drive for non-inductive operation. - Abstract: An economically viable magnetic-confinement fusion reactor will require steady-state operation and high areal power density for sufficient energy output, and elevated wall/blanket temperatures for efficient energy conversion. These three requirements frame, and couple to, the challenge of plasma–material interaction (PMI) for fusion energy sciences. Present and planned tokamaks are not designed to simultaneously meet these criteria. A new and expanded set of dimensionless figures of merit for PMI have been developed. The key feature of the scaling is that the power flux across the last closed flux surface P/S ≃ 1 MW m −2 is to be held constant, while scaling the core volume-averaged density weakly with major radius, n ∼ R −2/7 . While complete similarity is not possible, this new “P/S” or “PMI” scaling provides similarity for the most critical reactor PMI issues, compatible with sufficient current drive efficiency for non-inductive steady-state core scenarios. A conceptual design is developed for Vulcan, a compact steady-state deuterium main-ion tokamak which implements the P/S scaling rules. A zero-dimensional core analysis is used to determine R = 1.2 m, with a conventional reactor aspect ratio R/a = 4.0, as the minimum feasible size for Vulcan. Scoping studies of innovative fusion technologies to support the Vulcan PMI mission were carried out for three critical areas: a high-temperature, helium-cooled vacuum vessel and divertor design; a demountable superconducting toroidal field magnet system; and a steady-state lower hybrid current drive system

  12. System studies for quasi-steady-state advanced physics tokamak

    International Nuclear Information System (INIS)

    Reid, R.L.; Peng, Y.K.M.

    1983-11-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of veriation in physics parameters and technology limits on the performance and cost of a low q/sub psi/, high beta, quasi-steady-state tokamak for the purpose of fusion engineering experimentation. The features and characteristics chosen from each study were embodied into a single Advanced Physics Tokamak design for which a self-consistent set of parameters was generated and a value of capital cost was estimated

  13. Magnetic sensor for steady state tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-06-01

    A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).

  14. Steady state operation of tokamaks. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-10-01

    The first IAEA Technical Committee Meeting (TCM) on Steady State Operation of Tokamaks was organized to discuss the operations of present long-pulse tokamaks (TRIAM-1M, TORE SUPRA, MT-7, HT-7M, HL-1M) and the plans for future steady-state tokamaks such as SST-1, CIEL, and HT-7U. This meeting, held from 13-15 October 1998, was hosted by the Academia Sinica Institute of Plasma Physics (ASIPP), Hefei, China. Participants from China, France, India, Japan, the Russian Federation, and the IAEA participated in the meeting. There were 18 individual presentations plus general discussions on many topics, including superconducting magnet systems, cryogenics, plasma position control, non-inductive current drive, auxiliary heating, plasma-wall interactions, high heat flux components, particle control, and data acquisition

  15. Contour analysis of steady state tokamak reactor performance

    International Nuclear Information System (INIS)

    Devoto, R.S.; Fenstermacher, M.E.

    1990-01-01

    A new method of analysis for presenting the possible operating space for steady state, non-ignited tokamak reactors is proposed. The method uses contours of reactor performance and plasma characteristics, fusion power gain, wall neutron flux, current drive power, etc., plotted on a two-dimensional grid, the axes of which are the plasma current I p and the normalized beta, β n = β/(I p /aB 0 ), to show possible operating points. These steady state operating contour plots are called SOPCONS. This technique is illustrated in an application to a design for the International Thermonuclear Experimental Reactor (ITER) with neutral beam, lower hybrid and bootstrap current drive. The utility of the SOPCON plots for pointing out some of the non-intuitive considerations in steady state reactor design is shown. (author). Letter-to-the-editor. 16 refs, 3 figs, 1 tab

  16. Steady-state tokamak reactor with non-divertor impurity control: STARFIRE

    International Nuclear Information System (INIS)

    Baker, C.C.

    1980-01-01

    STARFIRE is a conceptual design study of a commercial tokamak fusion electric power plant. Particular emphasis has been placed on simplifying the reactor concept by developing design concepts to produce a steady-state tokamak with non-divertor impurity control and helium ash removal. The concepts of plasma current drive using lower hybrid rf waves and a limiter/vacuum system for reactor applications are described

  17. Conceptual design of the steady state tokamak reactor (SSTR)

    International Nuclear Information System (INIS)

    Oikawa, A.; Kikuchi, M.; Seki, Y.; Nishio, S.; Ando, T.; Ohara, Y.; Takizuka, Tani, K.; Ozeki, T.; Koizumi, K.; Ikeda, B.; Suzuki, Y.; Ueda, N.; Kageyama, T.; Yamada, M.; Mizoguchi, T.; Iida, F.; Ozawa, Y.; Mori, S.; Yamazaki, S.; Kobayashi, T.; Adachi, H.J.; Shinya, K.; Ozaki, A.; Asahara, M.; Konishi, K.; Yokogawa, N.

    1992-01-01

    This paper reports that on the basis of a high bootstrap current fraction observation with JT-60, the concept of steady state tokamak reactor , the SSTR, was conceived and was evolved with the design activity of the SSTR at JAERI. Also results of ITER/FER design activities has enhanced the SSTR design. Moreover the remarkable progress of R and D for fusion reactor engineering, especially in the development of superconducting coils and negative ion based NBI at JAERI have promoted the SSTR conceptual design as a realistic power reactor. Although present fusion power reactor designs are currently considered to be too large and costly, results of the SSTR conceptual design suggest that an efficient and promising tokamak reactor will be feasible. The conceptual design of the SSTR provides a realistic reference for a demo tokamak reactor

  18. Concept study of the Steady State Tokamak Reactor (SSTR)

    International Nuclear Information System (INIS)

    1991-06-01

    The Steady State Tokamak Reactor (SSTR) concept has been proposed as a realistic fusion power reactor to be built in the near future. An overall concept of SSTR is introduced which is based on a small extension of the present day physics and technologies. The major feature of SSTR is the maximum utilization of a bootstrap current in order to reduce the power required for the steady state operation. This requirement leads to the choice of moderate current (12 MA), and high βp (2.0) for the device, which are achieved by selecting high aspect ratio (A=4) and high toroidal magnetic field (16.5 T). A negative-ion-based neutral beam injection system is used both for heating and central current drive. Notable engineering features of SSTR are: the use of a uniform vacuum vessel and periodical replacements of the first wall and blanket layers and significant reduction of the electromagnetic force with the use of functionally gradient material. It is shown that a tokamak machine comparable to ITER in size can become a power reactor capable of generating about 1 GW of electricity with a plant efficiency of ∼30%. (author)

  19. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    International Nuclear Information System (INIS)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit

    2012-01-01

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  20. Physical design of MW-class steady-state spherical tokamak, QUEST

    International Nuclear Information System (INIS)

    Hanada, K.; Sato, K.N.; Zushi, H.; Nakamura, K.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Higashizono, Y.; Yoshida, N.; Takase, Y.; Ejiri, A.; Ogawa, Y.; Ono, Y.; Yoshida, Z.; Mitarai, O.; Maekawa, T.; Kishimoto, Y.; Ishiguro, M.; Yoshinaga, T.; Igami, H.; Hirooka, Y.; Komori, A.; Motojima, O.; Sudo, S.; Yamada, H.; Ando, A.; Asakura, Nobuyuki; Matsukawa, Makoto; Ishida, A.; Ohno, N.; Peng, M.

    2008-10-01

    QUEST (R=0.68 m, a=0.4 m) focuses on the steady state operation of the spherical tokamak (ST) by controlled PWI and electron Bernstain wave (EBW) current drive (CD). The QUEST project will be developed along two phases, phase I: steady state operation with plasma current, I p =20-30 kA on open divertor configuration and phase II: steady state operation with I p = 100 kA and β of 10% in short pulse on closed divertor configuration. Feasibility of the missions on QUEST was investigated and the suitable machine size of QUEST was decided based on the physical view of plasma parameters. Electron Bernstein wave (EBW) current drive are planned to establish the maintenance of plasma current in steady state. Mode conversion efficiency to EBW was calculated and the conversion of 95% will be expected. A new type antenna for QUEST has been fabricated to excite EBW effectively. The situation of heat and particle handling is challenging, and W and high temperature wall is adopted. The start-up scenario of plasma current was investigated based on the driven current by energetic electron and the most favorable magnetic configuration for start-up is proposed. (author)

  1. Wave-driver options for low-aspect-ratio steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1981-02-01

    Low aspect ratio designs are proposed for steady-state tokamak reactors. Benefits stem from reduced major radius and lessened stresses in the toroidal field coils, resulting in possible cost savings in the tokamak construction. In addition, a low aspect ratio (A = 2.6) permits the application of a bundle divertor capable of diverting 3-T fields to a power reactor using STARFIRE technology. Such a low aspect ratio is possible with the elimination of poloidal field coils in the central hole of the tokamak, which implies a need for noninductive current drive. Several plasma waves are considered for this application, and it appears likely that a candidate can be found which reduces the electric power for current maintenance to an acceptable value

  2. Internal transport barrier physics for steady state operation in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Wakatani, Masahiro [Kyoto Univ., Graduate School of Engineering, Uji, Kyoto (Japan); Fukuda, Takeshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Connor, Jack W. [Culham Science Centre, EURATOM/UKAEA Association (United Kingdom); Garbet, Xavier [Culham Science Centre, EFDA-JET CSU (United Kingdom); Gormezano, Claude [Associazone EURATOM-ENEA sulla Fusione C.R. Frascati (Italy); Mukhovatov, Vladimir [ITER Naka Joint Work Site, ITER Physics Unit, Naka, Ibaraki (Japan)

    2003-07-01

    Experimental results for the ITB (Internal Transport Barrier) formation and sustainment are compiled in a unified manner to find common features of ITBs in tokamaks. Global scaling laws for threshold power to obtain the ITBs are discussed. Theoretical models for plasmas with ITBs are summarized from stability and transport point of view. Finally possibility to obtain steady-state ITBs will be discussed in addition to extrapolation to ITER. (author)

  3. Implications of rf current drive theory for next step steady-state tokamak design

    International Nuclear Information System (INIS)

    Schultz, J.H.

    1985-06-01

    Two missions have been identified for a next-step tokamak experiment in the United States. The more ambitious Mission II device would be a superconducting tokamak, capable of doing long-pulse ignition demonstrations, and hopefully capable of also being able to achieve steady-state burn. A few interesting lines of approach have been identified, using a combination of logical design criteria and parametric system scans [SC85]. These include: (1) TIBER: A point-design suggested by Lawrence Livermore, that proposes a machine with the capability of demonstrating ignition, high beta (10%) and high Q (=10), using high frequency, fast-wave current drive. The TIBER topology uses moderate aspect ratio and high triangularity to achieve high beta. (2) JET Scale-up. (3) Magic5: It is argued here that an aspect ratio of 5 is a magic number for a good steady-state current drive experiment. A moderately-sized machine that achieves ignition and is capable of high Q, using either fast wave or slow wave current drive is described. (4) ET-II: The concept of a highly elongated tokamak (ET) was first proposed as a low-cost approach to Mission I, because of the possibility of achieving ohmic ignition with low-stress copper magnets. We propose that its best application is really for commercial tokamaks, using fast-wave current drive, and suggest a Mission II experiment that would be prototypical of such a reactor

  4. Steady State versus Pulsed Tokamak DEMO

    Energy Technology Data Exchange (ETDEWEB)

    Orsitto, F.P., E-mail: francesco.orsitto@enea.it [Associazione EURATOM-ENEA Unita Tecnica Fusione, Frascati (Italy); Todd, T. [CCFE/Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

    2012-09-15

    Full text: The present report deals with a Review of problems for a Steady state(SS) DEMO, related argument is treated about the models and the present status of comparison between the characteristics of DEMO pulsed versus a Steady state device.The studied SS DEMO Models (SLIM CS, PPCS model C EU-DEMO, ARIES-RS) are analyzed from the point of view of the similarity scaling laws and critical issues for a steady state DEMO. A comparison between steady state and pulsed DEMO is therefore carried out: in this context a new set of parameters for a pulsed (6 - 8 hours pulse) DEMO is determined working below the density limit, peak temperature of 20 keV, and requiring a modest improvement in the confinement factor(H{sub IPBy2} = 1.1) with respect to the H-mode. Both parameters density and confinement parameter are lower than the DEMO models presently considered. The concept of partially non-inductive pulsed DEMO is introduced since a pulsed DEMO needs heating and current drive tools for plasma stability and burn control. The change of the main parameter design for a DEMO working at high plasma peak temperatures T{sub e} {approx} 35 keV is analyzed: in this range the reactivity increases linearly with temperature, and a device with smaller major radius (R = 7.5 m) is compatible with high temperature. Increasing temperature is beneficial for current drive efficiency and heat load on divertor, being the synchrotron radiation one of the relevant components of the plasma emission at high temperatures and current drive efficiency increases with temperature. Technology and engineering problems are examined including efficiency and availability R&D issues for a high temperature DEMO. Fatigue and creep-fatigue effects of pulsed operations on pulsed DEMO components are considered in outline to define the R&D needed for DEMO development. (author)

  5. On the minimum circulating power of steady state tokamaks

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.

    1995-07-01

    Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author)

  6. Preliminary design study of a steady state tokamak device

    International Nuclear Information System (INIS)

    Miya, Naoyuki; Nakajima, Shinji; Ushigusa, Kenkichi; and athors)

    1992-09-01

    Preliminary design study has been made for a steady tokamak with the plasma current of 10MA, as the next to the JT-60U experimental programs. The goal of the research program is the integrated study of steady state, high-power physics and technology. Present candidate design is to use superconducting TF and PF magnet systems and long pulse operation of 100's-1000's of sec with non inductive current drive mainly by 500keV negative ion beam injection of 60MW. Low activation material such as titanium alloy is chosen for the water tank type vacuum vessel, which is also the nuclear shield for the superconducting coils. The present preliminary design study shows that the device can meet the existing JT-60U facility capability. (author)

  7. Steady-state operation requirements of tokamak fusion reactor concepts

    International Nuclear Information System (INIS)

    Knobloch, A.F.

    1991-06-01

    In the last two decades tokamak conceptual reactor design studies have been deriving benefit from progressing plasma physics experiments, more depth in theory and increasing detail in technology and engineering. Recent full-scale reactor extrapolations such as the US ARIES-I and the EC Reference Reactor study provide information on rather advanced concepts that are called for when economic boundary conditions are imposed. The ITER international reactor design activity concentrated on defining the next step after the JET generation of experiments. For steady-state operation as required for any future commercial tokamak fusion power plants it is essential to have non-inductive current drive. The current drive power and other internal power requirements specific to magnetic confinement fusion have to be kept as low as possible in order to attain a competitive overall power conversion efficiency. A high plasma Q is primarily dependent on a high current drive efficiency. Since such conditions have not yet been attained in practice, the present situation and the degree of further development required are characterized. Such development and an appropriately designed next-step tokamak reactor make the gradual realization of high-Q operation appear feasible. (orig.)

  8. A comparison of steady-state ARIES and pulsed PULSAR tokamak power plants

    International Nuclear Information System (INIS)

    Bathke, C.G.

    1994-01-01

    The multi-institutional ARIES study has completed a series of three steady-state and two pulsed cost-optimized conceptual designs of commercial tokamak fusion power plants that vary the level of assumed advances in technology and physics. The cost benefits of various design options are compared quantitatively. Possible means to improve the economic competitiveness of fusion are suggested

  9. A steady state tokamak operation by use of magnetic monopoles

    International Nuclear Information System (INIS)

    Narihara, K.

    1991-12-01

    A steady state tokamak operation based on a magnetic monopole circuit is considered. Circulation of a chain of iron cubes which trap magnetic monopoles generates the needed loop voltage. The monopole circuit is enclosed by a series of solenoid coils in which magnetic field is feedback controlled so that the force on the circuit balance against the mechanical friction. The driving power is supplied through the current sources of poloidal, ohmic and solenoid coils. The current drive efficiency is same as that of the ohmic current drive. (author)

  10. Recent progresses on high performance steady-state plasmas in the superconducting tokamak TRIAM-1M

    International Nuclear Information System (INIS)

    Itoh, Satoshi; Sato, Kohnosuke; Nakamura, Kazuo

    1999-01-01

    The overview of TRIAM-1M experiments is described. The up-to-date issues for steady-state operation are presented through the experience of the achievement of super ultra long tokamak discharges (SULD) sustained by lower hybrid current drive (LHCD) over 2 hours. The importance of the control of an initial phase of plasma, the avoidance of the concentration of huge heat load, the wall conditioning, and abrupt stop of the long discharges are proposed as the indispensable issues for the achievement of the steady-state operation of tokamak. A high ion temperature (HIT) discharge fully sustained by 2.45 GHz LHCD with both high ion temperature and steep temperature gradient is successfully demonstrated for longer than 1 min in the limiter configuration. The HIT discharges can be obtained in the narrow window of density and position. Moreover, the avoidance of the concentration of heat load on a limiter is the key point for the achievement and its long sustainment. As the effective thermal insulation between the wall and the plasma is improved on the single null configuration, HIT discharges with peak ion temperature > 5keV and steeper gradient up to 85 keV/m can be achieved by the exquisite control of density and position. The plasmas with high κ ∼1.5 can be also demonstrated for longer than 1 min. The current profile is also well-controlled for about 2 orders in magnitude longer than the current diffusion time using combined LHCD. The serious damage to the material of the first wall caused by energetic neutral particles produced via charge exchange process is also described. As the neutral particles cannot be affected by magnetic field, this damage by neutral particles must be avoided by the new technique. (author)

  11. Loss less real-time data compression based on LZO for steady-state Tokamak DAS

    International Nuclear Information System (INIS)

    Pujara, H.D.; Sharma, Manika

    2008-01-01

    The evolution of data acquisition system (DAS) for steady-state operation of Tokamak has been technology driven. Steady-state Tokamak demands a data acquisition system which is capable enough to acquire data losslessly from diagnostics. The needs of loss less continuous acquisition have a significant effect on data storage and takes up a greater portion of any data acquisition systems. Another basic need of steady state of nature of operation demands online viewing of data which loads the LAN significantly. So there is strong demand for something that would control the expansion of both these portion by a way of employing compression technique in real time. This paper presents a data acquisition systems employing real-time data compression technique based on LZO. It is a data compression library which is suitable for data compression and decompression in real time. The algorithm used favours speed over compression ratio. The system has been rigged up based on PXI bus and dual buffer mode architecture is implemented for loss less acquisition. The acquired buffer is compressed in real time and streamed to network and hard disk for storage. Observed performance of measure on various data type like binary, integer float, types of different type of wave form as well as compression timing overheads has been presented in the paper. Various software modules for real-time acquiring, online viewing of data on network nodes have been developed in LabWindows/CVI based on client server architecture

  12. Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime

    Science.gov (United States)

    Ren, Q.

    2015-11-01

    Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA

  13. Computation of tokamak equilibria with steady flow

    International Nuclear Information System (INIS)

    Kerner, W.; Tokuda, Shinji

    1987-08-01

    The equations for ideal MHD equilibria with stationary flow are reexamined and addressed as numerically applied to tokamak configurations with a free plasma boundary. Both the isothermal (purely toroidal flow) and the poloidal flow cases are treated. Experiment-relevant states with steady flow (so far only in the toroidal direction) are computed by the modified SELENE40 code. (author)

  14. Steady-state resistive toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Kalnavarns, J.; Jassby, D.L.

    1979-12-01

    If spatially-averaged values of the beta ratio can reach 5 to 10% in tokamaks, as now seems likely, resistive toroidal-field coils may be advantageous for use in reactors intended for fusion-neutron applications. The present investigation has parameterized the design of steady-state water-cooled copper coils of rectangular cross section in order to maximize figures of merit such as the ratio of fusion neutron wall loading to coil power dissipation. Four design variations distinguished by different ohmic-heating coil configurations have been examined. For a wall loading of 0.5 MW/m 2 , minimum TF-coil lifetime costs (including capital and electricity costs) are found to occur with coil masses in the range 2400 to 4400 tons, giving 200 to 250 MW of resistive dissipation, which is comparable with the total power drain of the other reactor subsystems

  15. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  16. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    International Nuclear Information System (INIS)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems

  17. Divertor modeling for the design of the National Centralized Tokamak with high beta steady-state plasmas

    International Nuclear Information System (INIS)

    Kawashima, H.; Sakurai, S.; Shimizu, K.; Takizuka, T.; Tamai, H.; Matsukawa, M.; Fujita, T.; Miura, Y.

    2006-01-01

    The modification of the JT-60U to a fully superconducting coil tokamak, National Centralized Tokamak (NCT) facility, has been programmed to accomplish the high beta steady-state plasma research. A 2D divertor simulation code, SOLDOR/NEUT2D, is applied to the construction of a database for optimum design of the divertor. A semi-closed divertor configuration with vertical target is adopted as the first conceptual divertor design on NCT. With an anticipated SOL power flux of 12 MW at the high beta steady-state operation, the peak heat load on the divertor target is evaluated to be ∼16 MW/m 2 . Effects of divertor geometry and intense gas puffing are demonstrated with a view to reduce the heat load. For the simulation of divertor pumping, we find that the pumping efficiency increases by a factor of 2∼3 by narrowing the divertor gap from 20 to 5 cm. An attractive feature in reducing the heat load and improving the particle controllability has been obtained for a new divertor design due to a recent progress in NCT design

  18. Investigation of component failure rates for pulsed versus steady state tokamak operation

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-07-01

    This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments

  19. Mass transport and the bootstrap current from Ohm's law in steady-state tokamaks

    International Nuclear Information System (INIS)

    Kim, J.-S.; Greene, J.M.

    1989-01-01

    The consequences of mass conservation and Ohm's law are examined for steady state Tokamaks. In a Tokamak, magnetofluid-dynamic waves rapidly equilibrate pressure and toroidal field along magnetic surfaces. As a result, the detailed current distribution is determined by the flux surface averaged poloidal and toroidal currents. The electrons that carry the plasma current are impeded in their motion by interactions with ions, which is resistivity and its generalizations, and by interactions with electrons, which is viscosity and its generalizations. The important viscous terms arise from the interaction between trapped and untrapped electrons, and so viscosity acts by impeding poloidal current. properly chosen, the results of neoclassical theory are The neoclassical viscous coefficient is here regarded as less likely than Spitzer conductivity to be experimentally relevant in a turbulent Tokamak. Thus, the toroidal Ohm's law is regarded as being more reliable than the poloidal Ohm's law. A combination of toroidal and poloidal Ohm's law, namely the component parallel to the magnetic field, eliminates the influence of plasma fueling, and directly relates the bootstrap current and the pressure gradient. The latter is the usual relation, but, since i

  20. Feasibility study of steady state magnetic field measurement

    International Nuclear Information System (INIS)

    Kawahata, Kazuo; Fujita, Junji; Matsuura, Kiyokata; Sakata, Masataka; Fujiwaka, Setsuya; Matoba, Tohru.

    1995-08-01

    A rotating magnetic probe testing system has been designed and constructed for the purpose of establishing a technique of the plasma current measurement on a steady state tokamak. An air turbine is employed to drive the rotating magnetic coil from the viewpoint of avoiding the use of an electric motor in the vicinity of the tokamak device. The signal induced on the rotating probe is transmitted to the amplifier through a transformer coupling. A long term testing on mechanical as well as electrical characteristics has been carried out to find key technical issues on this system. A continuous operation for more than one week has successfully been achieved. (author)

  1. Machine Control System of Steady State Superconducting Tokamak-1

    Energy Technology Data Exchange (ETDEWEB)

    Masand, Harish, E-mail: harish@ipr.res.in; Kumar, Aveg; Bhandarkar, M.; Mahajan, K.; Gulati, H.; Dhongde, J.; Patel, K.; Chudasma, H.; Pradhan, S.

    2016-11-15

    Highlights: • Central Control System. • SST-1. • Machine Control System. - Abstract: Central Control System (CCS) of the Steady State Superconducting Tokamak-1 (SST-1) controls and monitors around 25 plant and experiment subsystems of SST-1 located remotely from the Central-Control room. Machine Control System (MCS) is a supervisory system that sits on the top of the CCS hierarchy and implements the CCS state diagram. MCS ensures the software interlock between the SST-1 subsystems with the CCS, any subsystem communication failure or its local error does not prohibit the execution of the MCS and in-turn the CCS operation. MCS also periodically monitors the subsystem’s status and their vital process parameters throughout the campaign. It also provides the platform for the Central Control operator to visualize and exchange remotely the operational and experimental configuration parameters with the sub-systems. MCS remains operational 24 × 7 from the commencement to the termination of the SST-1 campaign. The developed MCS has performed robustly and flawlessly during all the last campaigns of SST-1 carried out so far. This paper will describe various aspects of the development of MCS.

  2. New steady-state quiescent high-confinement plasma in an experimental advanced superconducting tokamak.

    Science.gov (United States)

    Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q

    2015-02-06

    A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.

  3. Progress on advanced tokamak and steady-state scenario development on DIII-D and NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Doyle, E J [Department of Electrical Engineering and PSTI, University of California, Los Angeles, California 90095 (United States); Garofalo, A M [Columbia University, New York, New York 10027 (United States); Greenfield, C M [General Atomics, San Diego, California 92186-5608 (United States); Kaye, S M [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Menard, J E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Murakami, M [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Sabbagh, S A [Columbia University, New York, New York 10027 (United States); Austin, M E [University of Texas-Austin, Austin, Texas 78712 (United States); Bell, R E [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451 (United States); Burrell, K H [General Atomics, San Diego, California 92186-5608 (United States); Ferron, J R [General Atomics, San Diego, California 92186-5608 (United States); Gates, D A [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Groebner, R J; Hyatt, A W; Luce, T C; Petty, C C; Wade, M R; Waltz, R E [General Atomics, San Diego, California 92186-5608 (United States); Jayakumar, R J [Lawrence Livermore National Lab., Livermore, California 94550 (United States); Kinsey, J E [Lehigh Univ., Bethlehem, Pennsylvania 18015 (United States); LeBlanc, B P [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); McKee, G R [Univ. of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Okabayashi, M [Princeton Plasma Physics Lab., Princeton, New Jersey 08543-0451 (United States); Peng, Y-K M [Oak Ridge National Lab., Oak Ridge, Tennessee 37831 (United States); Politzer, P A [General Atomics, San Diego, California 92186-5608 (United States); Rhodes, T L [Dept. of Electrical Engineering and PSTI, Univ. of California, Los Angeles, California 90095 (United States)

    2006-12-15

    Advanced tokamak (AT) research seeks to develop steady-state operating scenarios for ITER and other future devices from a demonstrated scientific basis. Normalized target parameters for steady-state operation on ITER are 100% non-inductive current operation with a bootstrap current fraction f{sub BS} {>=} 60%, q{sub 95} {approx} 4-5 and G {identical_to}{beta}{sub N}H{sub scaling}/q{sub 95}{sup 2} {>=}0.3. Progress in realizing such plasmas is considered in terms of the development of plasma control capabilities and scientific understanding, leading to improved AT performance. NSTX has demonstrated active resistive wall mode stabilization with low, ITER-relevant, rotation rates below the critical value required for passive stabilization. On DIII-D, experimental observations and GYRO simulations indicate that ion internal transport barrier (ITB) formation at rational-q surfaces is due to equilibrium zonal flows generating high local E ? B shear levels. In addition, stability modelling for DIII-D indicates a path to operation at {beta}{sub N} {>=} 4 with q{sub min} {>=} 2, using broad, hollow current profiles to increase the ideal wall stability limit. Both NSTX and DIII-D have optimized plasma performance and expanded AT operational limits. NSTX now has long-pulse, high performance discharges meeting the normalized targets for an spherical torus-based component test facility. DIII-D has developed sustained discharges combining high beta and ITBs, with performance approaching levels required for AT reactor concepts, e.g. {beta}{sub N} = 4, H{sub 89} = 2.5, with f{sub BS} > 60%. Most importantly, DIII-D has developed ITER steady-state demonstration discharges, simultaneously meeting the targets for steady-state Q {>=} 5 operation on ITER set out above, substantially increasing confidence in ITER meeting its steady-state performance objective.

  4. Review of tokamak power reactor and blanket designs in the United States

    International Nuclear Information System (INIS)

    Baker, C.; Brooks, J.; Ehst, D.; Gohar, Y.; Smith, D.; Sze, D.

    1986-01-01

    The last major conceptual design study of a tokamak power reactor in the United States was STARFIRE which was carried out in 1979-1980. Since that time US studies have concentrated on engineering test reactors, demonstration reactors, parametric systems studies, scoping studies, and studies of selected critical issues such as pulsed vs. steady-state operation and blanket requirements. During this period, there have been many advancements in tokamak physics and reactor technology, and there has also been a recognition that it is desirable to improve the tokamak concept as a commercial power reactor candidate. During 1984-1985 several organizations participated in the Tokamak Power Systems Study (TPSS) with the objective of developing ideas for improving the tokamak as a power reactor. Also, the US completed a comprehensive Blanket Comparison and Selection Study which formed the basis for further studies on improved blankets for fusion reactors

  5. 7. IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices - Booklet of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts

  6. A simulation study on burning profile tailoring of steady state, high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Nakamura, Y.; Takei, N.; Tobita, K.; Sakamoto, Y.; Fujita, T.; Fukuyama, A.; Jardin, S.C.

    2007-01-01

    From the aspect of fusion burn control in steady state DEMO plant, the significant challenges are to maintain its high power burning state of ∝3-5 GW without burning instability, hitherto well-known as ''thermal stability'', and also to keep its desired burning profile relevant with internal transport barrier (ITB) that generates high bootstrap current. The paper presents a simulation modeling of the burning stability coupled with the self-ignited fusion burn and the structure-formation of the ITB. A self-consistent simulation, including a model for improved core energy confinement, has pointed out that in the high power fusion DEMO plant there is a close, nonlinear interplay between the fusion burnup and the current source of non-inductive, ITB-generated bootstrap current. Consequently, as much distinct from usual plasma controls under simulated burning conditions with lower power (<<1 GW), the selfignited fusion burn at a high power burning state of ∝3-5 GW becomes so strongly selforganized that any of external means except fuelling can not provide the effective control of the stable fusion burn.It is also demonstrated that externally applied, inductive current perturbations can be used to control both the location and strength of ITB in a fully noninductive tokamak discharge. We find that ITB structures formed with broad noninductive current sources such as LHCD are more readily controlled than those formed by localized sources such as ECCD. The physics of the inductive current is well known. Consequently, we believe that the controllability of the ITB is generic, and does not depend on the details of the transport model (as long as they can form an ITB for sufficiently reversed magnetic shear q-profile). Through this external control of the magnetic shear profile, we can maintain the ITB strength that is otherwise prone to deteriorate when the bootstrap current increases. These distinguishing capabilities of inductive current perturbation provide steady

  7. Progress and prospect of true steady state operation with RF

    Directory of Open Access Journals (Sweden)

    Jacquinot Jean

    2017-01-01

    Full Text Available Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.

  8. Steady state technologies for tokamak based fusion neutron sources and hybrids

    International Nuclear Information System (INIS)

    Azizov, E.A.; Kuteev, B.V.

    2015-01-01

    Full text of publication follows. The development of demonstration fusion neutron sources for fusion nuclear science activity and hybrid applications has reached the stage of conceptual design on the basis of tokamak device in Russia. The conceptual design of FNS-ST has been completed in details (plasma current 1.5 MA, magnetic field 1.5 T, major radius 0.5 m, aspect ratio 1.67 and auxiliary heating power up to 15 MW) [1, 2]. A comparison of physical plasma parameters and economics for FNS-ST and a conventional tokamak FNS-CT (plasma current 1.5 MA, magnetic field 6.7 T, major radius 2.25 m, aspect ratio 3 and auxiliary heating power up to 30 MW) has been fulfilled [3]. This study suggested the feasibility to reach 1-20 MW of fusion power using these magnetic configuration options. Nevertheless, the efficiency of neutron production Q remains comparable for both due to the beam fusion input. The total ST-economics for the full project including operation and utilization costs is by a factor of 2 better than of CT. Zero [4] and one-dimensional [5] models have been developed and used in this system analysis. The characteristics of plasma confinement, stability and current drive in operation have been confirmed by numerous benchmarking simulations of modern experiments. Scenarios allowing us to reach and maintain steady state operation have been considered and optimized. The results of these studies will be presented. Prospective technical solutions for SSO-technology systems have been evaluated, and the choice of enabling technologies and materials of the basic FNS options has been made. A conceptual design of a thin-wall water cooled vacuum chamber for heat loadings up to 1.5 MW/m 2 has been fulfilled. The chamber consists of 2 mm Be tiles, pre-shaped CuCrZr 1 mm shell and 1 mm of stainless steel shell as a structural material. A concept of double-null divertor for FNS-ST has been offered that is capable to withstand heat fluxes up to 6 MW/m 2 . Lithium dust

  9. Relaxed states of tokamak plasmas

    International Nuclear Information System (INIS)

    Kucinski, M.Y.; Okano, V.

    1993-01-01

    The relaxed states of tokamak plasmas are studied. It is assumed that the plasma relaxes to a quasi-steady state which is characterized by a minimum entropy production rate, compatible with a number of prescribed conditions and pressure balance. A poloidal current arises naturally due to the anisotropic resistivity. The minimum entropy production theory is applied, assuming the pressure equilibrium as fundamental constraint on the final state. (L.C.J.A.)

  10. On the optimization of a steady-state bootstrap-reactor

    International Nuclear Information System (INIS)

    Polevoy, A.R.; Martynov, A.A.; Medvedev, S.Yu.

    1993-01-01

    A commercial fusion tokamak-reactor may be economically acceptable only for low recirculating power fraction r 0 ≡ P CD /P α BS ≡I BS /I > 0.9 to sustain the steady-state operation mode for high plasma densities > 1.5 10 20 m -3 , fulfilled the divertor conditions. This paper presents the approximate expressions for the optimal set of reactor parameters for r BS /I∼1, based on the self-consistent plasma simulations by 1.5D ASTRA code. The linear MHD stability analysis for ideal n=1 kink and ballooning modes has been carried out to determine the conditions of stabilization for bootstrap steady state tokamak reactor BSSTR configurations. (author) 10 refs., 1 tab

  11. Operating tokamaks with steady-state toroidal current

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-04-01

    Continuous operation of a tokamak requires, among other things, a means of continuously providing the toroidal current. Various methods have been proposed to provide this current including methods which utilize radio-frequency waves in any of several frequency regimes. Here we elaborate on the prospects of incorporating these current-drive techniques in tokamak reactors, concentrating on the theoretical minimization of the power requirements

  12. The primary results for the mixed carbon material used for high flux steady-state tokamak operation in China

    International Nuclear Information System (INIS)

    Guo, Q.G.; Li, J.G.; Zhai, G.T.; Liu, L.; Song, J.R.; Zhang, L.F.; He, Y.X.; Chen, J.L.

    2001-01-01

    Several types of carbon mixed materials have been developed in China to be used for high flux steady-state tokamak operation. Performance evaluation of these materials is necessary to determine their applicability as PFCs for high flux steady state. This paper describes the primary results of carbon mixed materials and the effects of dopants on properties are primarily discussed. Test results reveal that bulk boronized graphite has excellent physical and mechanical properties while their thermal conductivity is no more than 73 W/m K due to the formation of a uniform boron-carbon solid solution. In case of multi-element doped graphite, titanium dopant or a decreased boron content is favorable to enhance thermal conductivity. A kind of doped graphite has been developed with thermal conductivity as high as 278 W/m K by optimizing the compositions. Correlations among compositions, microstructure and properties of such doped graphite are discussed

  13. Tokamak burn cycle study: a data base for comparing long pulse and steady-state power reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1983-11-01

    Several distinct operating modes (conventional ohmic, noninductive steady state, internal transformer, etc.) have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics (current drive efficiency) and engineering (superior materials) which will help achieve these goals for different burn cycles

  14. Overview of steady-state tokamak operation and current drive experiments in TRIAM-1M

    International Nuclear Information System (INIS)

    Zushi, H.; Nakamura, K.; Hanada, K.

    2005-01-01

    Experiments aiming at 'day long operation at high performance' have been carried out. The record value of the discharge duration was updated to 5 h and 16 min. Steady-state tokamak operation (SSTO) is studied under the localized PWI conditions. The distributions of the heat load, the particle recycling flux and impurity source are investigated to understand the co-deposition and wall pumping. Formation and sustainment of an internal transport barrier ITB in enhanced current drive mode (ECD) has been investigated by controlling the lower hybrid driven current profile by changing the phase spectrum. An ITER relevant remote steering antenna for electron cyclotron wave ECW injection was installed and a relativistic Doppler resonance of the oblique propagating extraordinary wave with energetic electrons driven by lower hybrid waves was studied. (author)

  15. Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation

    Science.gov (United States)

    Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team

    2014-10-01

    It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER

  16. Recent developments towards steady state physics and technology of tokamaks in Cadarache

    International Nuclear Information System (INIS)

    Jacquinot, J.G.

    2002-01-01

    Recently, Tore Supra has undergone a total change of internal components in order to upgrade the heat extraction capability to 25 MW for 1000 s, and address long pulse operation of a tokamak at a level of power density owing through the separatrix relevant for next step. The present paper will both give an overview of the experimental results obtained during the last campaigns and highlight the related technology developments: industrial realisation and tests with plasma of about 600 actively cooled plasma limiter components, new experimental results concerning heating and current drive systems (ECRH, ICRH, LHCD), injection of matter for long pulses (supersonic injection, high repetition rate pellet injection), stability and control of high confinement steady-state discharges sustained by the LH wave, theoretical and experimental investigations of electron heat transport. Highlights of technology developments directly applicable to ITER are also presented. Finally, a brief account is given of the European studies for validating Cadarache as a possible site for ITER, concluding that all ITER technical site requests are fully met. (author)

  17. Steady state operation of the superconducting tokamak TRIAM-1M

    International Nuclear Information System (INIS)

    Hanada, K.; Itoh, S.; Sato, K.; Nakamura, K.; Zushi, H.; Sakamoto, M.; Jotaki, E.; Makino, K.

    2000-01-01

    A 2-hour limiter discharge in circular configuration was successfully maintained using both Hall generators to be free from the drift of integrator and position control by TV image to avoid the concentration of heat load. The property of wall saturation is discussed as the serious issue for steady state operation, which strongly depends on electron density. In the high density region, the discharges sometimes terminate due to uncontrollable increase in electron density caused by wall saturation. The plasmas with high k ∼1.5 can be demonstrated for longer than 1 min. The duration of discharge is limited by vertical displacement event (VDE). The avoidance of VDE is a crucial point to achieve long discharges with high k. A new technique to monitor the accurate magnetic field with high time resolution for a long time is required to achieve the longer discharge with high k. A high ion temperature (HIT) discharge characterized by high ion temperature up to 5 keV and by steep temperature gradient up to 85 keV/m is successfully sustained for longer than 30 sec by 2.45 GHz LHCD on single null divertor configuration. This indicates that the transport barrier of ion temperature can be maintained in steady state. (author)

  18. Recent QUEST experiments on non-inductive current drive and plasma-wall interaction towards steady state operation of spherical tokamak

    International Nuclear Information System (INIS)

    Hanada, K.; Zushi, H.; Idei, H.; Nakamura, K.; Nagashima, Y.; Hasegawa, M.; Fujisawa, A.; Higashijima, A.; Kawasaki, S.; Nakashima, H.; Ishiguro, M.; Tashima, S.; Kalinnikova, E.I.; Mitarai, O.; Maekawa, T.; Fukuyama, A.; Takase, Y.; Gao, X.; Liu, H.; Qian, J.; Ono, M.; Raman, R.; Peng, M.

    2015-01-01

    Full text of publication follows. Steady state operation (SSO) of magnetic fusion devices is one of the goals for fusion research. Development of non-inductive current drive and investigation of plasma-wall interaction (PWI) are issues to be resolved for SSO. Because of the very limited central solenoid (CS) flux in a spherical tokamak (ST), methods for non-inductive plasma current start-up and sustainment are necessary. Fully non-inductive plasma up to approximately 5 min was successfully demonstrated on the spherical tokamak QUEST. Furthermore, recharging of the center solenoid coil was also achieved in OH+RF plasmas with plasma current feedback using the CS. During the plasma start-up phase, precession motion of trapped electrons can drive some current, which plays an essential role in forming a closed flux surface. On QUEST, the main parts of the plasma facing components (PFCs) are covered by tungsten plates (W) or coated by W plasma spray and are actively cooled by water circulation. The increase in water temperature quantitatively provides the deposited power to each PFC. The power balance during long duration discharges has been studied for various types of magnetic configurations such as limiter, upper and lower single-null divertor discharges. As, the temperature of any PFCs reaches a steady-state condition during long pulse, the power balance can be obtained. It is found that the discharge duration of QUEST is significantly limited by particle imbalance shown by gradual increment of plasma and neutral density. The additional influx of neutrals was provided by recycling of hydrogen, which is still uncontrollable. A point model of particle balance was applied to a long-duration divertor discharge, and it was found that a small increment of particle-influx occurred around the end of the long duration discharge. A post-mortem analysis of surface-attaching specimen during an experimental campaign indicates that the increased amount of neutral influx could be

  19. Overview of time synchronization system of steady state superconducting tokamak SST-1

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A., E-mail: aveg@ipr.res.in; Masand, H.; Dhongde, J.; Patel, K.; Mahajan, K.; Gulati, H.; Bhandarkar, M.; Chudasama, H.; Pradhan, S.

    2016-11-15

    The Steady State Superconducting Tokamak (SST-1) consists of many distributed and heterogeneous plant/experiment systems viz. Water-Cooling, Power Supplies, Cryogenics, Vacuum, Magnets, Auxiliary-Heating sources, Diagnostics, Front End Electronics (FEE) & Data Acquisition systems, having their own data acquisition & control systems and control & monitor by Central Control System (CCS) during the machine operation. With distributed computing and interdependent systems, it is essential that all the data/event acquired must be with disciplined & precise time-base, so as to make the co-relation of the data/event from various plant and experiment systems easy. Hence it is important to have accurate and precise Time Synchronization in place. The two systems fulfill the requirement of the time synchronization in SST-1. The VME based Timing System (TS) provides synchronization amongst various experiment systems during the plasma discharges and works as discharge control system (DCS) while the GPS based Time Synchronization System (TSS) caters the requirement of synchronization during the continuous operation of various plant systems by feeding a central clock to all the plant systems. This paper presents the Time Synchronization System of SST-1, the results of the integrated testing and engineering validation with various SST-1 subsystems.

  20. Overview of JT-60U progress towards steady-state advanced tokamak

    International Nuclear Information System (INIS)

    Ide, S.

    2005-01-01

    Recent experimental results on steady state advanced tokamak (AT) research on JT-60U are presented with emphasis on longer time scale in comparison with characteristics time scales in plasmas. Towards this, modification on control in operation, heating and diagnostics systems have been done. As the results, ∼ 60 s I p flat top and an ∼ 30 s H-mode are obtained. The long pulse modification has opened a door into a new domain for JT-60U. The high normalized beta (β N ) of 2.3 is maintained for 22.3 s and 2.5 for 16.5 s in a high β p H-mode plasma. A standard ELMy H-mode plasma is also extended and change in wall recycling in such a longer time scale has been unveiled. Development and investigation of plasmas relevant to AT operation has been continued in former 15 s discharges as well in which higherNB power (≤ 10 s) is available. Higher β N ∼ 3 is maintained for 6.2 s in high β p H-mode plasmas. High bootstrap current fraction (f BS ) of ∼ 75% is sustained for 7.4 s in an RS plasma. On NTM suppression by localized ECCD, ECRF injection preceding the mode saturation is found to be more effective to suppress the mode with less power compared to the injection after the mode saturated. The domain of the NTM suppression experiments is extended to the high β N regime, and effectiveness of m/n=3/2 mode suppression by ECCD is demonstrated at β N ∼ 2.5-3. Genuine center-solenoid less tokamak plasma start up is demonstrated. In a current hole region, it is shown that no scheme drives a current in any direction. Detailed measurement in both spatial and energy spaces of energetic ions showed dynamic change in the energetic ion profile at collective instabilities. Impact of toroidal plasma rotation on ELM behaviors is clarified in grassy ELM and QH domains. (author)

  1. Recent results on steady state and confinement improvement research on JT-60U

    International Nuclear Information System (INIS)

    Ide, Shunsuke

    2000-01-01

    On the JT-60U tokamak, fusion plasma research for realization of a steady state tokamak reactor has been pursued. Towards that goal, confinement improved plasmas such as H-mode, high β p , reversed magnetic shear (RS) and latter two combined with H-mode edge pedestal have been developed and investigated intensively. A key issue to achieve non-inductive current drive relevant to a steady state fusion reactor is to increase the fraction of the bootstrap current and match the spatial profile to the optimum. In 1999, as the result of the optimization, the equivalent deuterium-tritium (D-T) fusion gain (Q DT eq ) of 0.5 was sustained for 0.8 s, which is roughly equal to the energy confinement time, in a RS plasma. In order to achieve a RS plasma in steady state two approach have been explored. One is to use external current driver such as lower hybrid current drive (LHCD), and by optimizing LHCD a quasi-steady RS discharge was obtained. The other approach is to utilize bootstrap current as much as possible, and with highly increased fraction of the bootstrap current, a confinement enhancement factor of 3.6 was maintained for 2.7 s in a RS plasma with H-mode edge. A heating and current drive system in the electron cyclotron range of frequency for localized heating and current drive has been installed on JT-60U, and in initial experiments a clear increase of the central electron temperature in a RS high density central region was confirmed only with injected power of 0.75 MW. (author)

  2. Tokamak experiments

    International Nuclear Information System (INIS)

    Robinson, D.C.

    1987-01-01

    With the advent of the new large tokamaks JET, JT-60 and TFTR important advances in magnetic confinement have been made. These include the exploitation of radio frequency and neutral beam heating on a much larger scale than previously, the demonstration of regimes of improved confinement and the demonstration of current drive at the Megamp level. A number of small and medium sized tokamaks have also come into operation recently such as WT-3 in Japan with an emphasis on radio frequency current drive and HL-1 a medium sized tokamak in China. Each of these new tokamaks is addressing specific problems which remain for the future development of the system. Of these particular problems: β, density and q limits remain important issues for the future development of the tokamak. β limits are being addressed on the DIII-D device in the USA. The anomalous confinement that the tokamak displays is being explored in detail on the TEXT device in the USA. Two other problems are impurity control and current drive. There is significant emphasis on divertor configurations at the present time with their enhanced confinement in the so called H mode. Due to improved discharge cleaning techniques and the ability to repetitively refuel using pellets, purer plasmas can be obtained even without divertors. Current drive remains a crucial issue for quasi of near steady state operation of the tokamak in the future and many current drive schemes are being investigated. (author) [pt

  3. Demonstration tokamak power plant

    International Nuclear Information System (INIS)

    Abdou, M.; Baker, C.; Brooks, J.; Ehst, D.; Mattas, R.; Smith, D.L.; DeFreece, D.; Morgan, G.D.; Trachsel, C.

    1983-01-01

    A conceptual design for a tokamak demonstration power plant (DEMO) was developed. A large part of the study focused on examining the key issues and identifying the R and D needs for: (1) current drive for steady-state operation, (2) impurity control and exhaust, (3) tritium breeding blanket, and (4) reactor configuration and maintenance. Impurity control and exhaust will not be covered in this paper but is discussed in another paper in these proceedings, entitled Key Issues of FED/INTOR Impurity Control System

  4. Method and apparatus for steady-state magnetic measurement of poloidal magnetic field near a tokamak plasma

    Science.gov (United States)

    Woolley, Robert D.

    1998-01-01

    A method and apparatus for the steady-state measurement of poloidal magnetic field near a tokamak plasma, where the tokamak is configured with respect to a cylindrical coordinate system having z, phi (toroidal), and r axes. The method is based on combining the two magnetic field principles of induction and torque. The apparatus includes a rotor assembly having a pair of inductive magnetic field pickup coils which are concentrically mounted, orthogonally oriented in the r and z directions, and coupled to remotely located electronics which include electronic integrators for determining magnetic field changes. The rotor assembly includes an axle oriented in the toroidal direction, with the axle mounted on pivot support brackets which in turn are mounted on a baseplate. First and second springs are located between the baseplate and the rotor assembly restricting rotation of the rotor assembly about its axle, the second spring providing a constant tensile preload in the first spring. A strain gauge is mounted on the first spring, and electronic means to continually monitor strain gauge resistance variations is provided. Electronic means for providing a known current pulse waveform to be periodically injected into each coil to create a time-varying torque on the rotor assembly in the toroidal direction causes mechanical strain variations proportional to the torque in the mounting means and springs so that strain gauge measurement of the variation provides periodic magnetic field measurements independent of the magnetic field measured by the electronic integrators.

  5. Development of steady-state scenarios compatible with ITER-like wall conditions

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X [Association Euratom-CEA, CEA/DSM/DRFC-Cadarache 13108, St Paul Durance (France); Arnoux, G [Association Euratom-CEA, CEA/DSM/DRFC-Cadarache 13108, St Paul Durance (France); Beurskens, M [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)] (and others)

    2007-12-15

    A key issue for steady-state tokamak operation is to determine the edge conditions that are compatible both with good core confinement and with the power handling and plasma exhaust capabilities of the plasma facing components (PFCs) and divertor systems. A quantitative response to this open question will provide a robust scientific basis for reliable extrapolation of present regimes to an ITER compatible steady-state scenario. In this context, the JET programme addressing steady-state operation is focused on the development of non-inductive, high confinement plasmas with the constraints imposed by the PFCs. A new beryllium main chamber wall and tungsten divertor together with an upgrade of the heating/fuelling capability are currently in preparation at JET. Operation at higher power with this ITER-like wall will impose new constraints on non-inductive scenarios. Recent experiments have focused on the preparation for this new phase of JET operation. In this paper, progress in the development of advanced tokamak (AT) scenarios at JET is reviewed keeping this long-term objective in mind. The approach has consisted of addressing various critical issues separately during the 2006-2007 campaigns with a view to full scenario integration when the JET upgrades are complete. Regimes with internal transport barriers (ITBs) have been developed at q{sub 95} {approx} 5 and high triangularity, {delta} (relevant to the ITER steady-state demonstration) by applying more than 30 MW of additional heating power reaching {beta}{sub N} {approx} 2 at B{sub o} {approx} 3.1 T. Operating at higher {delta} has allowed the edge pedestal and core densities to be increased pushing the ion temperature closer to that of the electrons. Although not yet fully integrated into a performance enhancing ITB scenario, Neon seeding has been successfully explored to increase the radiated power fraction (up to 60%), providing significant reduction of target tile power fluxes (and hence temperatures) and

  6. Tore-Supra infrared thermography system, a real steady-state diagnostic

    International Nuclear Information System (INIS)

    Guilhem, D.; Bondil, J.L.; Bertrand, B.; Desgranges, C.; Lipa, M.; Messina, P.; Missirlian, M.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.

    2005-01-01

    Tore-Supra Tokamak (I p = 1.5 MA, B t = 4 T) has been constructed with a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components (PFCs) for high-performance long pulse plasma discharges. When not actively cooled, plasma facing components can only accumulate a limited amount of energy since the temperature increases continuously during the discharge until radiation cooling equals the incoming heat flux. Such an environment is found in the JET Tokamak [JET Team, IAEA-CN-60/A1-3, Seville, 1994] and on TRIAM [M. Sakamoto, H. Nakashima, S. Kawasaki, A. Iyomasa, S.V. Kulkarni, M. Hasegawa, E. Jotaki, H. Zushi, K. Nakamura, K. Hanada, S. Itoh, Static and dynamic properties of wall recycling in TRIAM-1M, J. Nucl. Mater. 313-316 (2003) 519-523] [Y. Kamada, et al., Nucl. Fusion 3 (1999) 1845]. In Tore-Supra, the surface temperature of the actively cooled plasma facing components reach steady state within a second. We present here the Tore-Supra thermographic system, made of seven endoscope bodies equipped so far with eight infrared (IR) cameras. It has to be noted that this diagnostic is the first diagnostic to be actively cooled, as required for steady state. The main purpose of such a diagnostic is to prevent the plasma to damage the actively cooled plasma facing components (ACPFCs), which consist of the toroidal pumped limiter (TPL), 7 m 2 , and of five radio-frequency antennae, 1.5 m 2 each

  7. Global gas balance and influence of atomic hydrogen irradiation on the wall inventory in steady-state operation of QUEST tokamak

    Science.gov (United States)

    Kuzmin, A.; Zushi, H.; Takagi, I.; Sharma, S. K.; Rusinov, A.; Inoue, Y.; Hirooka, Y.; Zhou, H.; Kobayashi, M.; Sakamoto, M.; Hanada, K.; Yoshida, N.; Nakamura, K.; Fujisawa, A.; Matsuoka, K.; Idei, H.; Nagashima, Y.; Hasegawa, M.; Onchi, T.; Banerjee, S.; Mishra, K.

    2015-08-01

    Hydrogen wall pumping is studied in steady state tokamak operation (SSTO) of QUEST with all metal plasma facing materials PFMs at 100 °C. The duration of SSTO is up to 820 s in fully non-inductive plasma. Global gas balance analysis shows that wall pumping at the apparent (retention-release) rate of 1-6 × 1018 H/s is dominant and 70-80% of injected H2 can be retained in PFMs. However, immediately after plasma termination the H2 release rate enhances to ∼1019 H/s. In order to understand a true retention process the direct measurement of retention flux has been carried out by permeation probes. The comparison between the evaluated wall retention and results from global analysis is discussed.

  8. Physics design of an ultra-long pulsed tokamak reactor

    International Nuclear Information System (INIS)

    Ogawa, Y.; Inoue, N.; Wang, J.; Yamamoto, T.; Okano, K.

    1993-01-01

    A pulsed tokamak reactor driven only by inductive current drive has recently revived, because the non-inductive current drive efficiency seems to be too low to realize a steady-state tokamak reactor with sufficiently high energy gain Q. Essential problems in pulsed operation mode is considered to be material fatigue due to cyclic operation and expensive energy storage system to keep continuous electric output during a dwell time. To overcome these problems, we have proposed an ultra-long pulsed tokamak reactor called IDLT (abbr. Inductively operated Day-Long Tokamak), which has the major and minor radii of 10 m and 1.87 m, respectively, sufficiently to ensure the burning period of about ten hours. Here we discuss physical features of inductively operated tokamak plasmas, employing the similar constraints with ITER CDA design for engineering issues. (author) 9 refs., 2 figs., 1 tab

  9. Steady state neutral beam injector

    International Nuclear Information System (INIS)

    Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.

    2000-01-01

    Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)

  10. Global gas balance and influence of atomic hydrogen irradiation on the wall inventory in steady-state operation of QUEST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmin, A., E-mail: kuzmin@triam.kyushu-u.ac.jp [RIAM, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Zushi, H. [RIAM, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Takagi, I. [Graduate School of Engineering, Kyoto University (Japan); Sharma, S.K. [Institute for Plasma Research, Ahmadabad, Gujrat (India); Rusinov, A. [RIAM, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Inoue, Y. [IGSES, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Hirooka, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Zhou, H. [Graduate School for Advanced Studies, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kobayashi, M. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Sakamoto, M. [Plasma Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 (Japan); Hanada, K.; Yoshida, N.; Nakamura, K.; Fujisawa, A.; Matsuoka, K.; Idei, H.; Nagashima, Y.; Hasegawa, M.; Onchi, T. [RIAM, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); Banerjee, S. [IGSES, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka 816-8580 (Japan); and others

    2015-08-15

    Hydrogen wall pumping is studied in steady state tokamak operation (SSTO) of QUEST with all metal plasma facing materials PFMs at 100 °C. The duration of SSTO is up to 820 s in fully non-inductive plasma. Global gas balance analysis shows that wall pumping at the apparent (retention–release) rate of 1–6 × 10{sup 18} H/s is dominant and 70–80% of injected H{sub 2} can be retained in PFMs. However, immediately after plasma termination the H{sub 2} release rate enhances to ∼10{sup 19} H/s. In order to understand a true retention process the direct measurement of retention flux has been carried out by permeation probes. The comparison between the evaluated wall retention and results from global analysis is discussed.

  11. Global gas balance and influence of atomic hydrogen irradiation on the wall inventory in steady-state operation of QUEST tokamak

    International Nuclear Information System (INIS)

    Kuzmin, A.; Zushi, H.; Takagi, I.; Sharma, S.K.; Rusinov, A.; Inoue, Y.; Hirooka, Y.; Zhou, H.; Kobayashi, M.; Sakamoto, M.; Hanada, K.; Yoshida, N.; Nakamura, K.; Fujisawa, A.; Matsuoka, K.; Idei, H.; Nagashima, Y.; Hasegawa, M.; Onchi, T.; Banerjee, S.

    2015-01-01

    Hydrogen wall pumping is studied in steady state tokamak operation (SSTO) of QUEST with all metal plasma facing materials PFMs at 100 °C. The duration of SSTO is up to 820 s in fully non-inductive plasma. Global gas balance analysis shows that wall pumping at the apparent (retention–release) rate of 1–6 × 10 18 H/s is dominant and 70–80% of injected H 2 can be retained in PFMs. However, immediately after plasma termination the H 2 release rate enhances to ∼10 19 H/s. In order to understand a true retention process the direct measurement of retention flux has been carried out by permeation probes. The comparison between the evaluated wall retention and results from global analysis is discussed

  12. Current drive studies for the ARIES steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Mau, T.K.; Ehst, D.A.; Mandrekas, J.

    1994-01-01

    Steady-state plasma operating scenarios are designed for three versions of the ARIES reactor, using non-inductive current drive techniques that have an established database. R.f. waves, including fast and lower hybrid waves, are the reference drivers for the D-T burning ARIES-I and ARIES-II/IV, while neutral beam injection is employed for ARIES-III which burns D- 3 He. Plasma equilibria with a high bootstrap-current component have been used, in order to minimize the recirculating power fraction and cost of electricity. To maintain plasma stability, the driven current profile has been aligned with that of equilibrium by proper choices of the plasma profiles and power launch parameters. Except for ARIES-III, the current-drive power requirements and the relevant technology developments are found to be quite reasonable. The wave-power spectrum and launch requirements are also considered achievable with a modest development effort. Issues such as an improved database for fast-wave current drive, lower-hybrid power coupling to the plasma edge, profile control in the plasma core, and access to the design point of operation remain to be addressed. ((orig.))

  13. Improvement of the tokamak concept

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, L

    1994-12-31

    Improvement of the tokamak concept is highly desirable to reduce the size and capital cost of a device able to ignite to increase the plasma pressure, i.e. the power density to reduce the cost of electricity, and to increase the fraction of bootstrap current to render the tokamak compatible with continuous operation. The most important results obtained in this field are summarized, and the options are shown which are still open and explored by the various experiments. Various effects of the plasma shaping are discussed, plasma configurations with both high {beta}{sub N} and H{sub G} are explored, and the issues of stable steady state and of the plasma edge are briefly discussed. (R.P.). 65 refs., 2 tabs.

  14. Physics design requirements for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Neilson, G.H.; Goldston, R.J.; Jardin, S.C.; Reiersen, W.T.; Porkolab, M.; Ulrickson, M.

    1993-01-01

    The design of TPX is driven by physics requirements that follow from its mission. The tokamak and heating systems provide the performance and profile controls needed to study advanced steady state tokamak operating modes. The magnetic control systems provide substantial flexibility for the study of regimes with high beta and bootstrap current. The divertor is designed for high steady state power and particle exhaust

  15. The technology and science of steady-state operation in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Becoulet, A; Hoang, G T

    2008-01-01

    The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a

  16. Physics issues of high bootstrap current tokamaks

    International Nuclear Information System (INIS)

    Ozeki, T.; Azumi, M.; Ishii, Y.

    1997-01-01

    Physics issues of a tokamak plasma with a hollow current profile produced by a large bootstrap current are discussed based on experiments in JT-60U. An internal transport barrier for both ions and electrons was obtained just inside the radius of zero magnetic shear in JT-60U. Analysis of the toroidal ITG microinstability by toroidal particle simulation shows that weak and negative shear reduces the toroidal coupling and suppresses the ITG mode. A hard beta limit was observed in JT-60U negative shear experiments. Ideal MHD mode analysis shows that the n = 1 pressure-driven kink mode is a plausible candidate. One of the methods to improve the beta limit against the kink mode is to widen the negative shear region, which can induce a broader pressure profile resulting in a higher beta limit. The TAE mode for the hollow current profile is less unstable than that for the monotonic current profile. The reason is that the continuum gaps near the zero shear region are not aligned when the radius of q min is close to the region of high ∇n e . Finally, a method for stable start-up for a plasma with a hollow current profile is describe, and stable sustainment of a steady-state plasma with high bootstrap current is discussed. (Author)

  17. Present status of Tokamak research

    International Nuclear Information System (INIS)

    Basu, Jayanta

    1991-01-01

    The scenario of thermonuclear fusion research is presented, and the tokamak which is the most promising candidate as a fusion reactor is introduced. A brief survey is given of the most noteworthy tokamaks in the global context, and fusion programmes relating to Next Step devices are outlined. Supplementary heating of tokamak plasma by different methods is briefly reviewed; the latest achievements in heating to fusion temperatures are also reported. The progress towards the high value of the fusion product necessary for ignition is described. The improvement in plasma confinement brought about especially by the H-mode, is discussed. The latest situation in pushing up Β for increasing the efficiency of a tokamak is elucidated. Mention is made of the different types of wall treatment of the tokamak vessel for impurity control, which has led to a significant improvement in tokamak performance. Different methods of current drive for steady state tokamak operation are reviewed, and the issue of current drive efficiency is addressed. A short resume is given of the various diagnostic methods which are employed on a routine basis in the major tokamak centres. A few diagnostics recently developed or proposed in the context of the advanced tokamaks as well as the Next Step devices are indicated. The important role of the interplay between theory, experiment and simulation is noted, and the areas of investigation requiring concerted effort for further progress in tokamak research are identified. (author). 17 refs

  18. Liquid tin limiter for FTU tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Vertkov, A., E-mail: avertkov@yandex.ru [JSC “Red Star”, Moscow (Russian Federation); Lyublinski, I. [JSC “Red Star”, Moscow (Russian Federation); NRNU MEPhI, Moscow (Russian Federation); Zharkov, M. [JSC “Red Star”, Moscow (Russian Federation); Mazzitelli, G.; Apicella, M.L.; Iafrati, M. [Associazione EURATOM-ENEA sulla Fusione, C. R. Frascati, Frascati, Rome, Italy, (Italy)

    2017-04-15

    Highlights: • First steady state operating liquid tin limiter TLL is under study on FTU tokamak. • The cooling system with water spray coolant for TLL has been developed and tested. • High corrosion resistance of W and Mo in molten Sn confirmed up to 1000 °C. • Wetting process with Sn has been developed for Mo and W. - Abstract: The liquid Sn in a matrix of Capillary Porous System (CPS) has a high potential as plasma facing material in steady state operating fusion reactor owing to its physicochemical properties. However, up to now it has no experimental confirmation in tokamak conditions. First steady state operating limiter based on the CPS with liquid Sn installed on FTU tokamak and its experimental study is in progress. Several aspects of the design, structural materials and operation parameters of limiter based on tungsten CPS with liquid Sn are considered. Results of investigation of corrosion resistance of Mo and W in Sn and their wetting process are presented. The heat removal for limiter steady state operation is provided by evaporation of flowing gaswater spray. The effectiveness of such heat removal system is confirmed in modelling tests with power flux up to 5 MW/m2.

  19. Identification of Plasma Parameters and Optimization of Magnetic Sensors in the Superconducting Steady-State Tokamak-1 Using Neural Networks

    International Nuclear Information System (INIS)

    Sengupta, A.; Ranjan, P.

    2001-01-01

    In this paper, we examine the possibility of using a multilayered feedforward neural network to extract tokamak plasma parameters from magnetic measurements as an improvement over the traditional methodology of function parametrization. It is also used to optimize the number and locations of the magnetic diagnostics designed for the tokamak. This work has been undertaken with the specific purpose of application of the neural network technique to the newly designed (and currently under fabrication) Superconducting Steady-State Tokamak-1 (SST-1). The magnetic measurements will be utilized to achieve real-time control of plasma shape, position, and some global profiles. A trained neural network is tested, and the results of parameter identification are compared with function parametrization. Both techniques appear well suited for the purpose, but a definite improvement with neural networks is observed. Although simulated measurements are used in this work, confidence regarding the network performance with actual experimental data is ensured by testing the network's noise tolerance with Gaussian noise of up to 10%. Finally, three possible methods of ranking the diagnostics in decreasing order of importance are suggested, and the neural network is used to optimize the number and locations of the magnetic sensors designed for SST-1. The results from the three methods are compared with one another and also with function parametrization. Magnetic probes within the plasma-facing side of the outboard limiter have been ranked high. Function parametrization and one of the neural network methods show a distinct tendency to favor the probes in the remote regions of the vacuum vessel, proving the importance of redundancy. Fault tolerance of the optimized network is tested. The results obtained should, in the long run, help in the decision regarding the final effective set of magnetic diagnostics to be used in SST-1 for reconstruction of the control parameters

  20. Fusion technology applications of the spherical tokamak

    International Nuclear Information System (INIS)

    Robinson, D.C.; Akers, R.; Allfrey, S.J.

    1999-01-01

    Fusion technology applications of the spherical tokamak are presented, exploiting its high β capability, normal conducting TF coils, compact core, high natural elongation, disruption resilience and low capital cost. We concentrate here on two particular applications: a volume neutron source (VNS) for component testing and a power plant, addressing engineering and physics issues for steady state operation. The prospect of nearer term burning plasma ST devices are discussed in the conclusions. (author)

  1. Fusion technology applications of the spherical tokamak

    International Nuclear Information System (INIS)

    Robinson, D.C.; Akers, R.; Allfrey, S.J.

    2001-01-01

    Fusion technology applications of the spherical tokamak are presented, exploiting its high β capability, normal conducting TF coils, compact core, high natural elongation, disruption resilience and low capital cost. We concentrate here on two particular applications: a volume neutron source (VNS) for component testing and a power plant, addressing engineering and physics issues for steady state operation. The prospect of nearer term burning plasma ST devices are discussed in the conclusions. (author)

  2. Tokamak reactor studies

    International Nuclear Information System (INIS)

    Baker, C.C.

    1981-01-01

    This paper presents an overview of tokamak reactor studies with particular attention to commercial reactor concepts developed within the last three years. Emphasis is placed on DT fueled reactors for electricity production. A brief history of tokamak reactor studies is presented. The STARFIRE, NUWMAK, and HFCTR studies are highlighted. Recent developments that have increased the commercial attractiveness of tokamak reactor designs are discussed. These developments include smaller plant sizes, higher first wall loadings, improved maintenance concepts, steady-state operation, non-divertor particle control, and improved reactor safety features

  3. Advanced commercial Tokamak optimization studies

    International Nuclear Information System (INIS)

    Whitley, R.H.; Berwald, D.H.; Gordon, J.D.

    1985-01-01

    Our recent studies have concentrated on developing optimal high beta (bean-shaped plasma) commercial tokamak configurations using TRW's Tokamak Reactor Systems Code (TRSC) with special emphasis on lower net electric power reactors that are more easily deployable. A wide range of issues were investigated in the search for the most economic configuration: fusion power, reactor size, wall load, magnet type, inboard blanket and shield thickness, plasma aspect ratio, and operational β value. The costs and configurations of both steady-state and pulsed reactors were also investigated. Optimal small and large reactor concepts were developed and compared by studying the cost of electricity from single units and from multiplexed units. Multiplexed units appear to have advantages because they share some plant equipment and have lower initial capital investment as compared to larger single units

  4. Prospects for steady-state tokamak reactor operation through feedback control of the current density profile

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, D

    1994-12-31

    A brief overview of the most relevant experiments on current profile modifications, strong improvements with respect to the usual L-mode scaling laws and Troyon beta limit is presented, as relevant issues for most tokamaks. Practical means and scenarios for producing and maintaining the optimum current profiles in the various phases of the thermonuclear discharge (profile formation, current ramp-up, burn phase) are proposed. (author). 34 refs., 3 figs.

  5. ACHIEVING AND SUSTAINING STEADY-STATE ADVANCED TOKAMAK CONDITIONS ON DIII-D

    International Nuclear Information System (INIS)

    WADE, MR; MURAKAMI, M; BRENNAN, DP; CASPER, TA; FERRON, JR; GAROFALO, AM; GREENFIELD, CM; HYATT, AW; JAYAKUMAR, R; KINSEY, JE; LAHAYE, RJ; LAO, LL; LAZARUS, EA; LOHR, J; LUCE, TC; PETTY, CC; POLITZER, PA; PRATER, R; STRAIT, EJ; TURNBULL, AD; WATKINS, JG; WEST, WP

    2002-01-01

    Recent experiments on the DIII-D tokamak have demonstrated the feasibility of sustaining advanced tokamak conditions that combine high fusion power density (β > 4%), high bootstrap current fraction (f BS ∼ 65%), and high non-inductive current fractions (f NI ∼ 85%) for several energy confinement times. The duration of such conditions is limited only by resistive relaxation of the current density profile. Modeling studies indicate that the application of off-axis ECCD will be able to maintain a favorable current density profile for several seconds

  6. Achieving and sustaining steady-state advanced tokamak conditions on DIII-D

    International Nuclear Information System (INIS)

    Wade, M.R.; Murakami, M.; Brennan, D.P.

    2003-01-01

    Recent experiments on the DIII-D tokamak have demonstrated the feasibility of sustaining advanced tokamak conditions that combine high fusion power density (β > 4%), high bootstrap current fraction (f BS ∼ 65%), and high non-inductive current fractions (f NI ∼85%) for several energy confinement times. The duration of such conditions is limited only by resistive relaxation of the current density profile. Modeling studies indicate that the application of off-axis ECCD will be able to maintain a favorable current density profile for several seconds. (author)

  7. Advanced control scenario of high-performance steady-state operation for JT-60 superconducting tokamak

    International Nuclear Information System (INIS)

    Tamai, H.; Kurita, G.; Matsukawa, M.; Urata, K.; Sakurai, S.; Tsuchiya, K.; Morioka, A.; Miura, Y.M.; Kizu, K.; Kamada, Y.; Sakasai, A.; Ishida, S.

    2004-01-01

    Plasma control on high-β N steady-state operation for JT-60 superconducting modification is discussed. Accessibility to high-β N exceeding the free-boundary limit is investigated with the stabilising wall of reduced-activated ferritic steel and the active feedback control of the in-vessel non-axisymmetric field coils. Taking the merit of superconducting magnet, advanced plasma control for steady-state high performance operation could be expected. (authors)

  8. Economic comparison of MHD equilibrium options for advanced steady state tokamak power plants

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kessel, C.E.; Jardin, S.C.; Krakowski, R.A.; Bathke, C.G.; Mau, T.K.; Najmabadi, F.

    1998-01-01

    Progress in theory and in tokamak experiments leads to questions of the optimal development path for commercial tokamak power plants. The economic prospects of future designs are compared for several tokamak operating modes: (high poloidal beta) first stability, second stability and reverse shear. Using a simplified economic model and selecting uniform engineering performance parameters, this comparison emphasizes the different physics characteristics - stability and non- inductive current drive - of the various equilibria. The reverse shear mode of operation is shown to offer the lowest cost of electricity for future power plants. (author)

  9. Development in Diagnostics Application to Control Advanced Tokamak Plasma

    International Nuclear Information System (INIS)

    Koide, Y.

    2008-01-01

    For continuous operation expected in DEMO, all the plasma current must be non-inductively driven, with self-generated neoclassical bootstrap current being maximized. The control of such steady state high performance tokamak plasma (so-called 'Advanced Tokamak Plasma') is a challenge because of the strong coupling between the current density, the pressure profile and MHD stability. In considering diagnostic needs for the advanced tokamak research, diagnostics for MHD are the most fundamental, since discharges which violate the MHD stability criteria either disrupt or have significantly reduced confinement. This report deals with the development in diagnostic application to control advanced tokamak plasma, with emphasized on recent progress in active feedback control of the current profile and the pressure profile under DEMO-relevant high bootstrap-current fraction. In addition, issues in application of the present-day actuators and diagnostics for the advanced control to DEMO will be briefly addressed, where port space for the advanced control may be limited so as to keep sufficient tritium breeding ratio (TBR)

  10. HESTER: a hot-electron superconducting tokamak experimental reactor at M.I.T

    International Nuclear Information System (INIS)

    Schultz, J.H.; Montgomery, D.B.

    1983-04-01

    HESTER is an experimental tokamak, designed to resolve many of the central questions in the tokamak development program in the 1980's. It combines several unique features with new perspectives on the other major tokamak experiments scheduled for the next decade. The overall objectives of HESTER, in rough order of their presently perceived importance, are the achievement of reactor-like wall-loadings and plasma parameters for long pulse periods, determination of a good, reactor-relevant method of steady-state or very long pulse tokamak current drive, duplication of the planned very high temperature neutral injection experiments using only radio frequency heating, a demonstration of true steady-state tokamak operation, integration of a high-performance superconducting magnet system into a tokamak experiment, determination of the best methods of long term impurity control, and studies of transport and pressure limits in high field, high aspect ratio tokamak plasmas. These objectives are described

  11. Prospects for Tokamak Fusion Reactors

    International Nuclear Information System (INIS)

    Sheffield, J.; Galambos, J.

    1995-01-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant

  12. HT-7U superconducting tokamak: Physics design, engineering progress and schedule

    International Nuclear Information System (INIS)

    Wan Yuanxi

    2002-01-01

    The superconducting tokamak research program begun in China in ASIPP since 1994. The program is included in existent superconducting tokamak HT-7 and the next new superconducting tokamak HT-7U which is one of national key research projects in China. With the elongation cross-section, divertor and higher plasma parameter the main objectives of HT-7U are widely investigation both of the physics and technology for steady state advanced tokamak as well as the investigation of power and particle handle under steady-state operation condition. The physics and engineering design have been completed and significant progresses on R and D and fabrication have been achieved. HT-7U will begin assembly at 2003 and possible to get first plasma around 2004. (author)

  13. Progress of design studies on an LHD-type steady-state reactor

    International Nuclear Information System (INIS)

    Motojima, O.; Komori, A.; Sagara, A.

    2007-01-01

    Helical Heliotrons such as the Large Helical Device (LHD) and Stellarators (H and S systems) have a high potential to realize a current-less steady-state and stable magnetic fusion energy reactor as an alternative to the tokamak DEMO-reactor. H and S systems ideally have an intrinsic property of Q=infinite. Here it is very important to remember that the understanding of the physics of 3-D toroidal magnetic confinement system is naturally extended to tokamak systems. The physics is universal among these two types of systems and the technology is common. We present our recent results from LHD experiments and reactor studies of a next generation LHD-type DEMO Reactor called FFHR. (1) Development of 3-D superconducting (SC) coil technology Due to the successful results of the LHD construction from 1990 to 2007, and steady operation over 8 years from 1998 to 2007, more than 2,000 hrs/year at a high field of around 3 Tesla, we have a large enough data base to demonstrate that 3D coil technology has become the standard technology for a fusion energy reactor. LHD is the largest SC fusion device in the world, contributing to the development of the SC technology necessary for fusion research. The poloidal coils of LHD adopted a super critical forced flow cooling system and their dimensions are almost the same as the ITER toroidal coils. (2) Extended physics understanding of high beta, high T, high n τT , and steady state operation Recent LHD experiments have demonstrated the broad and advanced capabilities of LHD as a toroidal magnetic confinement device, which are highlighted by the achievements of 5% volume averaged beta, electron and ion temperatures of 10 keV, super high density of 10E15/cc and 1 hr discharges. We plan to increase the heating power up to 35 MW, and to use deuterium gas for confinement improvement. The n τT will be improved to the design nominal value of Q=0.3 within several years and ultimately would approach unity. The key issue for this is the

  14. Steady state plasma operation in RF dominated regimes on EAST

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X. J.; Zhao, Y. P.; Gong, X. Z.; Hu, C. D.; Liu, F. K.; Hu, L. Q.; Wan, B. N., E-mail: bnwan@ipp.ac.cn; Li, J. G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-12-10

    Significant progress has recently been made on EAST in the 2014 campaign, including the enhanced CW H&CD system over 20MW heating power (LHCD, ICRH and NBI), more than 70 diagnostics, ITER-like W-monoblock on upper divertor, two inner cryo-pumps and RMP coils, enabling EAST to investigate long pulse H mode operation with dominant electron heating and low torque to address the critical issues for ITER. H-mode plasmas were achieved by new H&CD system or 4.6GHz LHCD alone for the first time. Long pulse high performance H mode has been obtained by LHCD alone up to 28s at H{sub 98}∼1.2 or by combing of ICRH and LHCD, no or small ELM was found in RF plasmas, which is essential for steady state operation in the future Tokamak. Plasma operation in low collision regimes were implemented by new 4.6GHz LHCD with core Te∼4.5keV. The non-inductive scenarios with high performance at high bootstrap current fraction have been demonstrated in RF dominated regimes for long pulse operation. Near full non-inductive CD discharges have been achieved. In addition, effective heating and decoupling method under multi-transmitter for ICRF system were developed in this campaign, etc. EAST could be in operation with over 30MW CW heating and current drive power (LHCD ICRH NBI and ECRH), enhanced diagnostic capabilities and full actively-cooled metal wall from 2015. It will therefore allow to access new confinement regimes and to extend these regimes towards to steady state operation.

  15. Magnetic confinement experiment. I: Tokamaks

    International Nuclear Information System (INIS)

    Goldston, R.J.

    1995-08-01

    Reports were presented at this conference of important advances in all the key areas of experimental tokamak physics: Core Plasma Physics, Divertor and Edge Physics, Heating and Current Drive, and Tokamak Concept Optimization. In the area of Core Plasma Physics, the biggest news was certainly the production of 9.2 MW of fusion power in the Tokamak Fusion Test Reactor, and the observation of unexpectedly favorable performance in DT plasmas. There were also very important advances in the performance of ELM-free H- (and VH-) mode plasmas and in quasi-steady-state ELM'y operation in JT-60U, JET, and DIII-D. In all three devices ELM-free H-modes achieved nTτ's ∼ 2.5x greater than ELM'ing H-modes, but had not been sustained in quasi-steady-state. Important progress has been made on the understanding of the physical mechanism of the H-mode in DIII-D, and on the operating range in density for the H-mode in Compass and other devices

  16. Presheath profiles in simulated tokamak edge plasmas

    International Nuclear Information System (INIS)

    LaBombard, B.; Conn, R.W.; Hirooka, Y.; Lehmer, R.; Leung, W.K.; Nygren, R.E.; Ra, Y.; Tynan, G.

    1988-04-01

    The PISCES plasma surface interaction facility at UCLA generates plasmas with characteristics similar to those found in the edge plasmas of tokamaks. Steady state magnetized plasmas produced by this device are used to study plasma-wall interaction phenomena which are relevant to tokamak devices. We report here progress on some detailed investigations of the presheath region that extends from a wall surface into these /open quotes/simulated tokamak/close quotes/ edge plasma discharges along magnetic field lines

  17. Simulations of KSTAR high performance steady state operation scenarios

    International Nuclear Information System (INIS)

    Na, Yong-Su; Kessel, C.E.; Park, J.M.; Yi, Sumin; Kim, J.Y.; Becoulet, A.; Sips, A.C.C.

    2009-01-01

    We report the results of predictive modelling of high performance steady state operation scenarios in KSTAR. Firstly, the capabilities of steady state operation are investigated with time-dependent simulations using a free-boundary plasma equilibrium evolution code coupled with transport calculations. Secondly, the reproducibility of high performance steady state operation scenarios developed in the DIII-D tokamak, of similar size to that of KSTAR, is investigated using the experimental data taken from DIII-D. Finally, the capability of ITER-relevant steady state operation is investigated in KSTAR. It is found that KSTAR is able to establish high performance steady state operation scenarios; β N above 3, H 98 (y, 2) up to 2.0, f BS up to 0.76 and f NI equals 1.0. In this work, a realistic density profile is newly introduced for predictive simulations by employing the scaling law of a density peaking factor. The influence of the current ramp-up scenario and the transport model is discussed with respect to the fusion performance and non-inductive current drive fraction in the transport simulations. As observed in the experiments, both the heating and the plasma current waveforms in the current ramp-up phase produce a strong effect on the q-profile, the fusion performance and also on the non-inductive current drive fraction in the current flattop phase. A criterion in terms of q min is found to establish ITER-relevant steady state operation scenarios. This will provide a guideline for designing the current ramp-up phase in KSTAR. It is observed that the transport model also affects the predictive values of fusion performance as well as the non-inductive current drive fraction. The Weiland transport model predicts the highest fusion performance as well as non-inductive current drive fraction in KSTAR. In contrast, the GLF23 model exhibits the lowest ones. ITER-relevant advanced scenarios cannot be obtained with the GLF23 model in the conditions given in this work

  18. Experimental and theoretical basis for advanced tokamaks

    International Nuclear Information System (INIS)

    Chan, V.S.

    1994-09-01

    In this paper, arguments will be presented to support the attractiveness of advanced tokamaks as fusion reactors. The premise that all improved confinement regimes obtained to date were limited by magnetohydrodynamic stability will be established from experimental results. Accessing the advanced tokamak regime, therefore, requires means to overcome and enhance the beta limit. We will describe a number of ideas involving control of the plasma internal profiles, e.g. to achieve this. These approaches will have to be compatible with the underlying mechanisms for confinement improvement, such as shear rotation suppression of turbulence. For steady-state, there is a trade-off between full bootstrap current operation and the ability to control current profiles. The coupling between current drive and stability dictates the choice of sources and suggests an optimum for the bootstrap fraction. We summarize by presenting the future plans of the US confinement devices, DIII-D, PBX-M, C-Mod, to address the advanced tokamak physics issues and provide a database for the design of next-generation experiments

  19. Issues for the electric utilities posed by DT tokamak fusion powerplants

    International Nuclear Information System (INIS)

    Roth, J.R.

    1990-01-01

    The DT tokamak is the mainline approach to magnetic fusion energy in all industrialized countries with a major commitment to fusion research. It achieved this status largely through historical accident and not as the result of considered choice among alternatives. After twenty-five years of intensive tokamak research, it is appropriate to ask whether the path down which the tokamak concept is leading the fusion community is the way to an acceptable powerplant for the electric utilities, or an aberration which should be replaced with an approach more promising in the long term. Issues surrounding the DT tokamak can be grouped in three broad areas: physics; safety/environmental; and engineering/economic. In addition to these problems, detailed engineering design studies of DT tokamak fusion powerplants over a twenty year period have revealed a number of additional problems. Most of thee are related to the presence of tritium and energetic neutron fluxes, which tend to make the cost of electricity of DT tokamaks higher than that of fossil or fission powerplants. These safety and economic issues of the DT tokamak powerplant also appear to be intractable, and have not been made to go away by twenty years of progressively more detailed and extensive engineering design studies

  20. Steady-State Operation in Tore Supra

    Science.gov (United States)

    Hoang, G. T.; Tore Supra, Equipe

    1999-11-01

    The Tore Supra superconducting tokamak is devoted to steady-state operation. The CIEL (French acronym for internal component and limiter) project( LIPA, M., et al., Proc. of the 17th IEEE/NPSS Symp. on Fus. Engineering, San Diego, USA, 1997.) consists of a complete upgrade of the inner chamber of Tore Supra, planned to be installed during the year 2000. This project will allow physics scenarios with up to 24 MW of radio frequency heating and current drive (typically 8 - 10 MW of ICRF, 10 - 12 MW of LHCD and 2 MW of ECRF) in stationary plasmas up to 1000 s, with active particle control. This paper presents an overview of the experiments planned to explore the properties, such as the confinement and MHD stability, of various heating and current drive scenarios for long duration discharges. The expected performance for the CIEL phase is also reported.

  1. TIBER (Tokamak Ignition/Burn Experimental Reactor) II as a precursor to an international thermonuclear experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Gilleland, J.R.

    1988-01-01

    The Tokamak Ignition/Burn Experimental Reactor (TIBER) was pursued in the US as one option for an International Thermonuclear Experimental Reactor (ITER). This concept evolved from earlier work on the Tokamak Fusion Core Experiment (TFCX) to develop a small, ignited tokamak. While the copper-coil versions of TFCX became the short-pulsed, 1.23-m radius, Compact Ignition Tokamak (CIT), the superconducting TIBER with long pulse or steady state and a 2.6-m radius was considered for international collaboration. Recently the design was updated to TIBER II, to accommodate more conservative confinement scaling, double-poloidal divertors for impurity control, steady-state current drive, and nuclear testing. 18 refs., 1 fig

  2. Design constraints for rf-driven steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1979-02-01

    Plasma current density profiles are computed due to electron Landau damping of lower hybrid waves launched into model tokamak density and temperature profiles. The total current and current profile shape are chosen consistent with magnetohydrodynamic equilibrium for a variety of temperature and density distributions and plasma beta values. Surface current equilibria appear attractive and are accessible to waves with n/sub z/ as low as 1.2. By suitably choosing the spectrum location and width it is possible to drive the 9.8 MA current of a 7.0-m reactor with as little as 2.8% of the fusion power recirculated as rf input from the waveguides

  3. Towards steady-state operational design for the data and PF control systems of the HT-7U

    International Nuclear Information System (INIS)

    Luo, J.R.; Zhu, L.; Wang, H.Z.; Ji, Z.S.; Wang, F.

    2003-01-01

    Fusion energy is an ultimate and inexhaustible source of energy for mankind and is expected to be obtained in controlled operation within this century. Among various possible candidates for fusion, the tokamak is presently the most qualified one, and since it uses superconducting magnetic coils, it will be adequate for steady-state operation. The HT-7U superconducting tokamak is a part of national project in China on fusion research, scheduled to become available on-line by the end of 2004 (Wan Y.X. and HT-7 and HT-7U Groups 2000 Overview of steady state operation of HT-7 and present status of the HT-7U project Nucl. Fusion 40 1057). The control system of the HT-7U is designed as a distributed control system (HT7UDCS), including many subsystems that provide the various functions of supervision, remote control, real-time monitoring, data acquisition and data handling. The major features of the HT-7U tokamak, which make long-pulse (∼1000 s) operation possible are the flexible poloidal field (PF) system, an auxiliary heating system, the current-driving system and a divertor system. In order to realize these features simultaneously, real-time data handling and analysis, along with a significant control capability is required. This paper discusses the design of the HT7UDCS. (author)

  4. Proceeding of A3 foresight program seminar on critical physics issues specific to steady state sustainment of high-performance plasmas 2014

    International Nuclear Information System (INIS)

    Morita, Shigeru; Hu Liqun; Oh, Yeong-Kook

    2014-10-01

    The A3 Foresight Program titled by 'Critical Physics Issues Specific to Steady State Sustainment of High-Performance Plasmas', based on the scientific collaboration among China, Japan and Korea in the field of plasma physics, has been started from August 2012 under the auspice of the Japan Society for the Promotion of Science (JSPS, Japan), the National Research Foundation of Korea (NRF, Korea) and the National Natural Science Foundation of China (NSFC, China). The main purpose of this project is to enhance joint experiments on three Asian advanced fully superconducting fusion devices (EAST in China, LHD in Japan and KSTAR in Korea) and other magnetic confinement devices to several key physics issues on steady state sustainment of high-performance plasmas. The fourth seminar on the A3 collaboration, as the fifth meeting of A3 program, took place in Kagoshima, Japan, 23-26 June 2014, which was hosted by National Institute for Fusion Science, to discuss achievement during past two years and to summarize intermediate report. New collaborative research was also encouraged as well as participation of young scientists. The topics include steady state sustainment of magnetic configuration, edge and divertor plasma control and confinement of alpha particles. This issue is the collection of 41 papers presented at the entitled meeting. All the 41 of the presented papers are indexed individually. (J.P.N.)

  5. Advanced tokamak burning plasma experiment

    International Nuclear Information System (INIS)

    Porkolab, M.; Bonoli, P.T.; Ramos, J.; Schultz, J.; Nevins, W.N.

    2001-01-01

    A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.34 m relative to ITER and limiting the burn mode of operation to pulse lengths as allowed by the TF coil warming up to the current sharing temperature. High gain (Q≅10) burn physics studies in a reversed shear equilibrium, sustained by RF and NB current drive techniques, may be obtained. (author)

  6. First experiments with SST-1 tokamak

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2005-01-01

    SST-1, a steady state superconducting tokamak, is undergoing commissioning tests at the Institute for Plasma Research. The objectives of SST-1 include studying the physics of the plasma processes in a tokamak under steady state conditions and learning technologies related to the steady state operation of the tokamak. These studies are expected to contribute to the tokamak physics database for very long pulse operations. Superconducting (SC) magnets are deployed for both the toroidal and poloidal field coils in SST-1. An Ohmic transformer is provided for plasma breakdown and initial current ramp up. SST-1 deploys a fully welded ultra high vacuum vessel. Liquid nitrogen cooled radiation shield are deployed between the vacuum vessel and SC magnets as well as SC magnets and cryostat, to minimize the radiation losses at the SC magnets. The auxiliary current drive is based on 1.0 MW of Lower Hybrid current drive (LHCD) at 3.7 GHz. Auxiliary heating systems include 1 MW of Ion Cyclotron Resonance Frequency system (ICRF) at 22 MHz to 91 MHz, 0.2 MW of Electron Cyclotron Resonance heating at 84 GHz and a Neutral Beam Injection (NBI) system with peak power of 0.8 MW (at 80 keV) with variable beam energy in range of 10-80 keV. The ICRF system would also be used for initial breakdown and wall conditioning experiments. Detailed commissioning tests on the cryogenic system and experiments on the hydraulic characters and cool down features of single TF coils have been completed prior to the cool down of the entire superconducting system. Results of the single TF magnet cool down, and testing of the magnet system are presented. First experiments related to the breakdown and the current ramp up will subsequently be carried out. (author)

  7. Advanced tokamak physics in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Petty, C.C.; Luce, T.C.; Politzer, P.A.; Bray, B.; Burrell, K.H.; Chu, M.S.; Ferron, J.R.; Gohil, P.; Greenfield, C.M.; Hsieh, C.-L.; Hyatt, A.W.; La Haye, R.J.; Lao, L.L.; Leonard, A.W.; Lin-Liu, Y.R.; Lohr, J.; Mahdavi, M.A.; Petrie, T.W.; Pinsker, R.I.; Prater, R.; Scoville, J.T.; Staebler, G.M.; Strait, E.J.; Taylor, T.S.; West, W.P. [General Atomics, PO Box 85608, San Diego, CA (United States); Wade, M.R.; Lazarus, E.A.; Murakami, M. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Allen, S.L.; Casper, T.A.; Jayakumar, R.; Lasnier, C.J.; Makowski, M.A.; Rice, B.W.; Wolf, N.S. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Austin, M.E. [University of Texas, Austin, TX (United States); Fredrickson, E.D.; Gorelov, I.; Johnson, L.C.; Okabayashi, M.; Wong, K.-L. [Princeton Plasma Physics Laboratory, Princeton, NJ (United States); Garofalo, A.M.; Navratil, G.A. [Columbia University, New York (United States); Heidbrink, W. [University of California, Irvine, CA (United States); Kinsey, J.E. [Leheigh University, Bethlehem, PA (United States); McKee, G.R. [University of Wisconsin, Madison, WI (United States); Rettig, C.L.; Rhodes, T.L. [University of California, Los Angeles, CA (United States); Watkins, J.G. [Sandia National Laboratories, Albuquerque, NM (United States)

    2000-12-01

    Advanced tokamaks seek to achieve a high bootstrap current fraction without sacrificing fusion power density or fusion gain. Good progress has been made towards the DIII-D research goal of demonstrating a high-{beta} advanced tokamak plasma in steady state with a relaxed, fully non-inductive current profile and a bootstrap current fraction greater than 50%. The limiting factors for transport, stability, and current profile control in advanced operating modes are discussed in this paper. (author)

  8. Economic analyses of alpha channeling in tokamak power plants

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1998-01-01

    The hot-ion-mode of operation [1] has long been thought to offer optimized performance for long-pulse or steady-state magnetic fusion power plants. This concept was revived in recent years when theoretical considerations suggested that nonthermal fusion alpha particles could be made to channel their power density preferentially to the fuel ions [2,3]. This so-called anomalous alpha particle slowing down can create plasmas with fuel ion temperate T i somewhat larger than the electron temperature T e , which puts more of the beta-limited plasma pressure into the useful fuel species (rather than non-reacting electrons). As we show here, this perceived benefit may be negligible or nonexistent for tokamaks with steady state current drive. It has likewise been argued [2,3] that alpha channeling could be arranged such that little or no external power would be needed to generate the steady state toroidal current. Under optimistic assumptions we show that such alpha-channeling current drive would moderately improve the economic performance of a first stability tokamak like ARIES-I [4], however a reversed-shear (advanced equilibrium) tokamak would likely not benefit since traditional radio-wave (rf) electron-heating current drive power would already be quite small

  9. Design and construction of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, G.S.

    2001-01-01

    The extensive design effort has been focused on two major aspects of the KSTAR project mission, steady-state operation capability and 'advanced tokamak' physics. The steady-state aspect of mission is reflected in the choice of superconducting magnets, provision of actively cooled in-vessel components, and long-pulse current-drive and heating systems. The 'advanced tokamak' aspect of the mission is incorporated in the design features associated with flexible plasma shaping, double-null divertor and passive stabilizers, internal control coils , and a comprehensive set of diagnostics. Substantial progress in engineering has been made on superconducting magnets, vacuum vessel, plasma facing components, and power supplies. The new KSTAR experimental facility with cryogenic system and de-ionized water-cooling and main power systems has been designed, and the construction work has been on-going for completion in year 2004. (author)

  10. Major progress on tore supra toward steady state operation of tokamaks

    International Nuclear Information System (INIS)

    Saoutic, Y.

    2003-01-01

    During winter 2000-2001, a major upgrade of the internal components of Tore Supra has been completed that increased the heat extraction capability to 25 MW in steady state. Operating Tore Supra in this new configuration has produced a wealth of new results. The highlights of the 2002 long duration discharges campaign are: 4 minutes 25 seconds long discharges with an integrated energy of 0.75 GJ, which is three time higher than the old Tore Supra world record; recharge of the primary transformer by Lower Hybrid Current Drive (LHCD) for about 1 minute; 4 minutes long LHCD pulses; 1 minute long Ion Cyclotron Resonant Heating (ICRH) pulse (0.11 GJ of ICRH injected energy). Beyond the quantitative step, significant qualitative progress in the steady state nature of the discharge has been accomplished: contrary to the situation in the old Tore Supra configuration, the plasma density is perfectly controlled by active pumping over the overall shot duration. The duration of Tore Supra discharges is sufficient to allow the complete diffusion of the resistive current. Surprising new physics is revealed in such discharges when approaching zero loop voltage. Slow central electron temperature oscillations have been observed in a variety of situations. Such oscillations are not likely to be linked to any MHD instabilities and probably results from an interplay between current profile shape, LHCD power deposition and transport. Analysis of the temperature gradient in the core region shows a very interesting behaviour and the normalised temperature gradient length is compared to the critical thresholds. Finally, the performance of heating and current drive systems and the observations made of the interior of Tore Supra after the long duration discharges campaign are reported. (author)

  11. Diagnostics and control for the steady state and pulsed tokamak DEMO

    Czech Academy of Sciences Publication Activity Database

    Orsitto, F.P.; Villari, R.; Moro, F.; Todd, T.N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; Rzadkiewicz, J.; Ďuran, Ivan; Tardocchi, M.; Gorini, G.; Morlock, C.; Federici, G.; Litnovsky, A.

    2016-01-01

    Roč. 56, č. 2 (2016), č. článku 026009. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : measurement systems, fusion reactor, fusion plasma diagnostics * fusion reactor * fusion plasma diagnostics * DEMO * Hall sensors * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/2/026009

  12. JET steady state ITB operation with active control of the pressure profile

    Energy Technology Data Exchange (ETDEWEB)

    Crisanti, F.; Litaudon, X.; Mailloux, J. [and others

    2002-07-01

    Stationary operations have been achieved at JET in ITBs scenarios, with the discharge time limited only by plant constraints. Full current drive was obtained, all over the high performance phase, with the current density profile frozen by using Lower Hybrid current drive. For the first time a feed-back control on the total pressure and on the electron temperature profile was implemented by using respectively the Neutral Beams and the Ion Cyclotron waves. Although impurity accumulation could be a problem in steady state ITBs, these experiments bring some elements to answer to it. Tokamak operation in enhanced confinement regimes, characterized by edge and/or Internal Transport Barriers (respectively known as H-mode and ITB), is attractive as it represents an important step towards the approach of ignition conditions. Moreover, the necessity of steady state operation in a Tokamak reactor, has led to the concept of the Advanced Tokamak, in which the current density profile is no longer tied to the plasma conductivity and is non inductively driven. Since the bootstrap current is a consequence of the pressure gradient, one of the primary goal of the Advanced Tokamak studies is to maximize the bootstrap fraction, with a proper alignment, both in H mode and in ITB regimes. However, for several reasons, it is difficult to envisage an operational situation in which the bootstrap fraction is close to 100%: for instance, there are few chances of pressure or/and current profile control to optimize the MHD stability. So far, various experiments have been performed with improved confinement regimes lasting up to tens of the confinement time and up to some current relaxation times. In some experiments a large non inductive plasma current (< 75%) was obtained with about 50% from bootstrap and 25% from Neutral Beam Injection (NBI); however, no full current drive operation was achieved and, moreover, with the available heating systems, no active feedback control of the current

  13. Burning plasma simulation and environmental assessment of tokamak, spherical tokamak and helical reactors

    International Nuclear Information System (INIS)

    Yamazaki, K.; Uemura, S.; Oishi, T.; Arimoto, H.; Shoji, T.; Garcia, J.

    2009-01-01

    Reference 1-GWe DT reactors (tokamak TR-1, spherical tokamak ST-1 and helical HR-1 reactors) are designed using physics, engineering and cost (PEC) code, and their plasma behaviours with internal transport barrier operations are analysed using toroidal transport analysis linkage (TOTAL) code, which clarifies the requirement of deep penetration of pellet fuelling to realize steady-state advanced burning operation. In addition, economical and environmental assessments were performed using extended PEC code, which shows the advantage of high beta tokamak reactors in the cost of electricity (COE) and the advantage of compact spherical tokamak in life-cycle CO 2 emission reduction. Comparing with other electric power generation systems, the COE of the fusion reactor is higher than that of the fission reactor, but on the same level as the oil thermal power system. CO 2 reduction can be achieved in fusion reactors the same as in the fission reactor. The energy payback ratio of the high-beta tokamak reactor TR-1 could be higher than that of other systems including the fission reactor.

  14. Radial profiles of hard X-ray emission during steady state current drive in the TRIAM-1M tokamak

    International Nuclear Information System (INIS)

    Nakamura, Y.; Takabatake, Y.; Jotaki, E.; Moriyama, S.; Nagao, A.; Nakamura, K.; Hiraki, N.; Itoh, S.

    1990-01-01

    The hard X-ray emission from the TRIAM-1M tokamak plasma during steady state lower hybrid current drive with a discharge duration of a few minutes was measured with sodium iodide scintillation spectrometers. The radial profiles of the X-ray emission were also measured and indicate that, in the low density regime (n e =(1-3)x10 12 cm -3 ), the current carrying high energy electrons are mainly in the inner region of the plasma column and their radial profile remains unchanged during current drive. On the other hand, high density discharges (n e =(3-6)x10 12 cm -3 ) are always accompanied by an abrupt drop of the plasma current, and the X-ray emission profile changes from peaked to broad. This change can be attributed to the conditions of wave accessibility. As the electron density increases, the accessibility of the plasma to lower hybrid waves with low values of the parallel wave number n parallel is significantly reduced and high energy electrons resonating with the waves are produced at the plasma periphery. Interaction of these electrons with the limiters causes an increase of the electron density in this region; waves with low n parallel then become completely excluded from the inner part of the plasma column. This interpretation is supported by measurements of the density profile and impurity radiation, and has been confirmed in an investigation of discharges with additional gas puffing. (author). 17 refs, 21 figs

  15. Development of DEMO-FNS tokamak for fusion and hybrid technologies

    Science.gov (United States)

    Kuteev, B. V.; Azizov, E. A.; Alexeev, P. N.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-07-01

    The history of fusion-fission hybrid systems based on a tokamak device as an extremely efficient DT-fusion neutron source has passed through several periods of ample research activity in the world since the very beginning of fusion research in the 1950s. Recently, a new roadmap of the hybrid program has been proposed with the goal to build a pilot hybrid plant (PHP) in Russia by 2030. Development of the DEMO-FNS tokamak for fusion and hybrid technologies, which is planned to be built by 2023, is the key milestone on the path to the PHP. This facility is in the phase of conceptual design aimed at providing feasibility studies for a full set of steady state tokamak technologies at a fusion energy gain factor Q ˜ 1, fusion power of ˜40 MW and opportunities for testing a wide range of hybrid technologies with the emphasis on continuous nuclide processing in molten salts. This paper describes the project motivations, its current status and the key issues of the design.

  16. Tokamak power plant burn cycle options

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1994-06-01

    Experiments show that tokamaks can operate in various fashions. Economic analyses show that steady state is most attractive provided the physics and technology of current drive (CD) can be modestly improved. Even with very conservative CD assumptions a hybrid operating mode seems superior to conventional, simple inductive operation

  17. Proceedings of A3 foresight program seminar on critical physics issues specific to steady state sustainment of high-performance plasmas

    International Nuclear Information System (INIS)

    Morita, Shigeru; Hu Liqun; Oh, Yeong-Kook

    2013-06-01

    The A3 Foresight Program titled by 'Critical Physics Issues Specific to Steady State Sustainment of High-Performance Plasmas', based on the scientific collaboration among China, Japan and Korea in the field of plasma physics, has been newly started from August 2012 under the auspice of the Japan Society for the Promotion of Science (JSPS, Japan), the National Research Foundation of Korea (NRF, Korea) and the National Natural Science Foundation of China (NSFC, China). A seminar on the A3 collaboration took place in Hotel Gozensui, Kushiro, Japan, 22-25 January 2013. This seminar was organized by National Institute for Fusion Science. One special talk and 36 oral talks were presented in the seminar including 13 Chinese, 14 Japanese and 9 Korean attendees. Steady state sustainment of high-performance plasmas is a crucial issue for realizing a nuclear fusion reactor. This seminar was motivated along the issues. Results on fusion experiments and theory obtained through A3 foresight program during recent two years were discussed and summarized. Possible direction of future collaboration and further encouragement of scientific activity of younger scientists were also discussed in this seminar with future experimental plans in three countries. This issue is the collection of 29 papers presented at the entitled meeting. All the 29 of the presented papers are indexed individually. (J.P.N.)

  18. Analysis of the steady-state operation of vacuum systems for fusion machines

    International Nuclear Information System (INIS)

    Roose, T.R.; Hoffman, M.A.; Carlson, G.A.

    1975-01-01

    A computer code named GASBAL was written to calculate the steady-state vacuum system performance of multi-chamber mirror machines as well as rather complex conventional multichamber vacuum systems. Application of the code, with some modifications, to the quasi-steady tokamak operating period should also be possible. Basically, GASBAL analyzes free molecular gas flow in a system consisting of a central chamber (the plasma chamber) connected by conductances to an arbitrary number of one- or two-chamber peripheral tanks. Each of the peripheral tanks may have vacuum pumping capability (pumping speed), sources of cold gas, and sources of energetic atoms. The central chamber may have actual vacuum pumping capability, as well as a plasma capable of ionizing injected atoms and impinging gas molecules and ''pumping'' them to a peripheral chamber. The GASBAL code was used in the preliminary design of a large mirror machine experiment--LLL's MX

  19. Measurement of the energy balance in ATC Tokamak

    International Nuclear Information System (INIS)

    Hsuan, H.; Bol, K.; Ellis, R.A.

    1975-01-01

    Gross properties of the energy balance in the ATC tokamak have been investigated. During the quasi-steady state phase of a normal discharge, the major part of the energy loss was found to be the limiters. Radiation and charge-exchange play minor roles during this quasi-steady state phase, but are nevertheless the dominant loss mechanisms at the termination of a discharge; and account for a substantial portion of the stored poloidal magnetic energy associated with the plasma current. (auth)

  20. Contribution of the association EURATOM-CEA to the international workshop on tokamak concept improvement

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, L; Moreau, D; Tonon, G

    1994-12-31

    The ways of tokamak device improvement are discussed. The topics cover plasma pressure and power density, bootstrap currents, the feedback control of the current density profiles and current drive efficiency for steady-state tokamak reactors. Three items have been separately indexed for the INIS database. (K.A.).

  1. Contribution of the association EURATOM-CEA to the international workshop on tokamak concept improvement

    International Nuclear Information System (INIS)

    Laurent, L.; Moreau, D.; Tonon, G.

    1994-01-01

    The ways of tokamak device improvement are discussed. The topics cover plasma pressure and power density, bootstrap currents, the feedback control of the current density profiles and current drive efficiency for steady-state tokamak reactors. Three items have been separately indexed for the INIS database. (K.A.)

  2. MHD stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-02-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed

  3. Magnetohydrodynamic stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-01-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 left angle p right angle /B 2 that is compatible with magnetohydrodynamic (MHD) stability. This value depends on the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near unity, I BS /I P ∼1, which constrains the product of the inverse aspect ratio and the plasma poloidal β to be near unity, arepsilonβ P ∼1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during ARIES I, II/IV, and III and PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements in the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies, is also discussed. ((orig.))

  4. The spherical tokamak fusion power plant

    International Nuclear Information System (INIS)

    Wilson, H.R.; Voss, G.; Ahn, J.W.

    2003-01-01

    The design of a 1GW(e) steady state fusion power plant, based on the spherical tokamak concept, has been further iterated towards a fully self-consistent solution taking account of plasma physics, engineering and neutronics constraints. In particular a plausible solution to exhaust handling is proposed and the steam cycle refined to further improve efficiency. The physics design takes full account of confinement, MHD stability and steady state current drive. It is proposed that such a design may offer a fusion power plant which is easy to maintain: an attractive feature for the power plants following ITER. (author)

  5. Maximum entropy tokamak configurations

    International Nuclear Information System (INIS)

    Minardi, E.

    1989-01-01

    The new entropy concept for the collective magnetic equilibria is applied to the description of the states of a tokamak subject to ohmic and auxiliary heating. The condition for the existence of steady state plasma states with vanishing entropy production implies, on one hand, the resilience of specific current density profiles and, on the other, severe restrictions on the scaling of the confinement time with power and current. These restrictions are consistent with Goldston scaling and with the existence of a heat pinch. (author)

  6. Effect of the poloidal current from the classical diffusion in the steady-state neo-classical transport

    International Nuclear Information System (INIS)

    Igna Junior, A.D.

    1984-01-01

    The relevant parameters of two steady-state models of a plasma column, in fusion regime, were analyzed for an ideal Tokamak. The neo-classical transport theory was considered in the banana regime and in the Pfirsch-Schlueter regime. The first model proposes a correction in the numerical coefficients of the transport equations. In the other one, a poloidal current from Pfirsch-Schlueter classical diffusion is considered aiming to satisfy the pressure balance. (M.C.K.) [pt

  7. Is steady-state capitalism viable? A review of the issues and an answer in the affirmative.

    Science.gov (United States)

    Lawn, Philip

    2011-02-01

    Most ecological economists believe that the transition to a steady-state economy is necessary to ensure ecological sustainability and to maximize a nation's economic welfare. While some observers agree with the necessity of the steady-state economy, they are nonetheless critical of the suggestion made by ecological economists-in particular, Herman Daly-that a steady-state economy is compatible with a capitalist system. First, they believe that steady-state capitalism is based on the untenable assumption that growth is an optional rather than in-built element of capitalism. Second, they argue that capitalist notions of efficient resource allocation are too restrictive to facilitate the transition to an "ecological" or steady-state economy. I believe these observers are outright wrong with their first criticism and, because they misunderstand Daly's vision of a steady-state economy, are misplaced with their second criticism. The nature of a capitalist system depends upon the institutional framework that supports and shapes it. Hence, a capitalist system can exist in a wide variety of forms. Unfortunately, many observers fail to recognize that the current "growth imperative" is the result of capitalist systems everywhere being institutionally designed to grow. They need not be designed this way to survive and thrive. Indeed, because continued growth is both existentially undesirable and ecologically unsustainable, redesigning capitalist systems through the introduction of Daly-like institutions would prove to be capitalism's savior. What's more, it would constitute humankind's best hope of achieving sustainable development. © 2011 New York Academy of Sciences.

  8. Design of plasma facing components for the SST-1 tokamak

    International Nuclear Information System (INIS)

    Jacob, S.; Chenna Reddy, D.; Choudhury, P.; Khirwadkar, S.; Pragash, R.; Santra, P.; Saxena, Y.C.; Sinha, P.

    2000-01-01

    Steady state Superconducting Tokamak, SST-1, is a medium sized tokamak with major and minor radii of 1.10 m and 0.20 m respectively. Elongated plasma operation with double null poloidal divertor is planned with a maximum input power of 1 MW. The Plasma Facing Components (PFC) like Divertors and Baffles, Poloidal limiters and Passive stabilizers form the first material boundary around the plasma and hence receive high heat and particle fluxes. The PFC design should ensure efficient heat and particle removal during steady state tokamak operation. A closed divertor geometry is adopted to ensure high neutral pressure in the divertor region (and hence high recycling) and less impurity influx into the core plasma. A set of poloidal limiters are provided to assist break down, current ramp-up and current ramp down phases and for the protection of the in-vessel components. Two pairs of Passive stabilizers, one on the inboard and the other on the outboard side of the plasma, are provided to slow down the vertical instability growth rates of the shaped plasma column. All PFCs are actively cooled to keep the plasma facing surface temperature within the design limits. The PFCs have been shaped/profiled so that maximum steady state heat flux on the surface is less than 1 MW/m 2 . (author)

  9. Progress Towards High Performance, Steady-state Spherical Torus

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D.S.; Diem, S.J.; Doerner, R.; Efthimion, P.C.; Ferron, J.R.; Fonck, R.J.; Fredrickson, E.D.; Garstka, G.D.; Gates, D.A.; Gray, T.; Grisham, L.R.; Heidbrink, W.; Hill, K.W.; Hoffman, D.; Jarboe, T.R.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kessel, C.; Kim, J.H.; Kissick, M.W.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Lee, K.; Lee, S.G.; Lewicki, B.T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T.K.; Mazzucato, E.; Medley, S.S.; Menard, J.; Mueller, D.; Nelson, B.A.; Neumeyer, C.; Nishino, N.; Ostrander, C.N.; Pacella, D.; Paoletti, F.; Park, H.K.; Park, W.; Paul, S.F.; Peng, Y.-K. M.; Phillips, C.K.; Pinsker, R.; Probert, P.H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A.L.; Rosenberg, A.; Ryan, P.M.; Sabbagh, S.A.; Schaffer, M.; Schooff, R.J.; Seraydarian, R.; Skinner, C.H.; Sontag, A.C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D.W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K.L.; Unterberg, E.A.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J.R.; Xu, X.; Zweben, S.J.; Akers, R.; Barry, R.E.; Beiersdorfer, P.; Bialek, J.M.; Blagojevic, B.; Bonoli, P.T.; Carter, M.D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R.J.; Hatcher, R.E.; Hawryluk, R.J.; Houlberg, W.; Harvey, R.; Jardin, S.C.; Hosea, J.C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L.L.; Levinton, F.M.; Luhmann, N.C.; Marsala, R.; Mastravito, D.; Menon, M.M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G.D.; Ram, A.K.; Rensink, M.; Rewoldt, G.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B.C.; Vero, R.; Wampler, W.R.; Wurden, G.A.

    2003-01-01

    Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction (∼60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted

  10. Increase in beta limit in tokamak plasmas

    International Nuclear Information System (INIS)

    Kamada, Yutaka

    2003-01-01

    This paper reviews recent studies of tokamak MHD stability towards the achievement of a high beta steady-state, where the profile control of current, pressure, and rotation, and the optimization of the plasma shape play fundamental roles. The key instabilities include the neoclassical tearing mode, the resistive wall mode, the edge localized mode, etc. In order to demonstrate an economically attractive tokamak reactor, it is necessary to increase the beta value simultaneously with a sufficiently high integrated plasma performance. Towards this goal, studies of stability control in self-regulating plasma systems are essential. (author)

  11. Comparative study of pulsed and steady-state tokamak reactor burn cycles

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K.; Hassanein, A.M.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1984-05-01

    Four distinct operating modes have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue in pulsed poloidal field coils; out-of-plant fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics and engineering which will help achieve these goals for different burn cycles

  12. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.; Murakami, M.; England, A.C.; Wilgen, J.B.; Jaeger, E.F.; Wang, C.; Batchelor, D.B.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7-AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  13. ICRF heating on helical devices

    International Nuclear Information System (INIS)

    Rasmussen, D.A.; Lyon, J.F.; Hoffman, D.J.

    1995-01-01

    Ion cyclotron range of frequency (ICRF) heating is currently in use on CHS and W7AS and is a major element of the heating planned for steady state helical devices. In helical devices, the lack of a toroidal current eliminates both disruptions and the need for ICRF current drive, simplifying the design of antenna structures as compared to tokamak applications. However the survivability of plasma facing components and steady state cooling issues are directly applicable to tokamak devices. Results from LHD steady state experiments should be available on a time scale to strongly influence the next generation of steady state tokamak experiments. The helical plasma geometry provides challenges not faced with tokamak ICRF heating, including the potential for enhanced fast ion losses, impurity accumulation, limited access for antenna structures, and open magnetic field lines in the plasma edge. The present results and near term plans provide the basis for steady state ICRF heating of larger helical devices. An approach which includes direct electron, mode conversion, ion minority and ion Bernstein wave heating addresses these issues

  14. Fast-ion transport in qmin>2, high-β steady-state scenarios on DIII-D

    International Nuclear Information System (INIS)

    Holcomb, C. T.; Heidbrink, W. W.; Collins, C.; Ferron, J. R.; Van Zeeland, M. A.; Garofalo, A. M.; Bass, E. M.; Luce, T. C.; Pace, D. C.; Solomon, W. M.; Mueller, D.; Grierson, B.; Podesta, M.; Gong, X.; Ren, Q.; Park, J. M.; Kim, K.; Turco, F.

    2015-01-01

    Results from experiments on DIII-D [J. L. Luxon, Fusion Sci. Technol. 48, 828 (2005)] aimed at developing high β steady-state operating scenarios with high-q min confirm that fast-ion transport is a critical issue for advanced tokamak development using neutral beam injection current drive. In DIII-D, greater than 11 MW of neutral beam heating power is applied with the intent of maximizing β N and the noninductive current drive. However, in scenarios with q min >2 that target the typical range of q 95 = 5–7 used in next-step steady-state reactor models, Alfvén eigenmodes cause greater fast-ion transport than classical models predict. This enhanced transport reduces the absorbed neutral beam heating power and current drive and limits the achievable β N . In contrast, similar plasmas except with q min just above 1 have approximately classical fast-ion transport. Experiments that take q min >3 plasmas to higher β P with q 95 = 11–12 for testing long pulse operation exhibit regimes of better than expected thermal confinement. Compared to the standard high-q min scenario, the high β P cases have shorter slowing-down time and lower ∇β fast , and this reduces the drive for Alfvénic modes, yielding nearly classical fast-ion transport, high values of normalized confinement, β N , and noninductive current fraction. These results suggest DIII-D might obtain better performance in lower-q 95 , high-q min plasmas using broader neutral beam heating profiles and increased direct electron heating power to lower the drive for Alfvén eigenmodes

  15. Overview on the progress of tokamak experimental research in China

    International Nuclear Information System (INIS)

    Xie Jikang . E-mail; Liu Yong; Wen Yizhi; Wang Long

    2001-01-01

    Tokamak experimental research in China has made important progress. The main efforts were related to quasi-steady-state operation, LHCD, plasma heating with ICRF, IBW, NBI and ECRH, fuelling with pellets and supersonic molecular beams, and first wall conditioning techniques. Plasma parameters in the experiments were much improved, for example n e =8x10 19 m -3 and a plasma pulse length of >10 s were achieved. ICRF boronization and conditioning resulted in Z eff close to unity. Steady state full LH wave current drive has been achieved for more than 3 s. LHCD ramp-up and recharge have also been demonstrated. The best η CD exp ∼0.5(1+0.085exp(4.8(B T -1.45)))n e I CD R p /P LH =10 19 m -2 A W -1 . Quasi-steady-state H-mode-like plasmas with a density close to the Greenwald limit were obtained by LHCD, where the energy confinement time was nearly five times longer than in the ohmic case. The synergy between IBW, pellet and LHCD was tested. Research on the mechanism of macroturbulence has been extensively carried out experimentally. AC tokamak operation has been successfully demonstrated. (author)

  16. Recent advancement in research and planning toward high beta steady state operation in KSTAR

    International Nuclear Information System (INIS)

    Park, Hyeon Keo; Hong, S.; Humphreys, D.

    2015-01-01

    The goal of Korean Superconducting Tokamak Advanced Research (KSTAR) research is to explore stable improved confinement regimes and technical challenge for superconducting tokamak operation and thus, to establish the basis for predictable high beta steady state tokamak plasma operation. To fulfil the goal, the current KSTAR research program is composed of three elements: 1) Exploration of anticipated engineering and technology for a stable long pulse operation of high beta plasmas including Edge Localized Mode (ELM) control with the low n (=1, 2) Resonant Magnetic Perturbation (RMP) using in-vessel control coils and innovative non-inductive current drives. The achieved long pulse operation up to ∼50s and fully non-inductive current drive will be combined in the future. Study of efficient heat exhaust will be combined with an innovative divertor design/operation. 2) Exploration of the operation boundary through establishment of true stability limits of the harmful MagnetoHydroDynamic (MHD) instabilities and confinement of the tokamak plasmas in KSTAR, making use of the lowest error field and magnetic ripple simultaneously achieved among all tokamaks ever built. The intrinsic machine error field has a long history of research as the source of MHD instabilities and magnetic ripple is known to be a cause of energy loss in the plasma. The achieved high beta discharges at β N ∼4 and stable discharges at q 95 (∼2) will be further improved. 3) Validation of theoretical modeling of MHD instabilities and turbulence toward predictive capability of stable high beta plasmas. In support of these research goals, the state of the art diagnostic systems, such as Electron Cyclotron Emission Imaging (ECEI) system in addition to accurate profile diagnostics, are deployed not only to provide precise 2D/3D information of the MHD instabilities and turbulence but also to challenge unresolved physics problems such as the nature of ELMs, ELM-crash dynamics and the role of the core

  17. Anisotropic plasma with flows in tokamak: Steady state and stability

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.

    1996-01-01

    An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics

  18. Fueling Requirements for Steady State high butane current fraction discharges

    International Nuclear Information System (INIS)

    R.Raman

    2003-01-01

    The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs

  19. Design optimization of JT-60SU for steady-state advanced operation

    International Nuclear Information System (INIS)

    Ushigusa, K.; Kurita, G.; Toyoshima, N.

    2001-01-01

    Design optimization of JT-60SU has been done for a steady-state advanced operation. A transport code simulation indicates that a fully non-inductive reversed shear plasmas with fractions of 70% of the bootstrap current and 30% of beam driven current can be sustained for more than 1,000s without any additional control. Investigations have been progressed on MHD stability, vertical positional stability and dynamics of the vertical displacement events. Significant progress has been achieved in the R and D of Nb 3 Al superconducting wires, low induced activation material (Fe-Cr-Mn steel). A design improvement has been made in TF coils to reduce a local stress on radial disk. Dynamic behaviors of the tokamak machine have been analyzed at emergency events such as an earthquake. (author)

  20. Tokamak Physics Experiment (TPX) power supply design and development

    International Nuclear Information System (INIS)

    Neumeyer, C.; Bronner, G.; Lu, E.; Ramakrishnan, S.

    1995-01-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This new feature requires a departure from the traditional tokamak power supply schemes. This paper describes the plan for the adaptation of the PPPL/FTR power system facilities to supply TPX. Five major areas are addressed, namely the AC power system, the TF, PF and Fast Plasma Position Control (FPPC) power supplies, and quench protection for the TF and PF systems. Special emphasis is placed on the development of new power supply and protection schemes

  1. A steady-state axisymmetric toroidal system

    International Nuclear Information System (INIS)

    Hirano, K.

    1984-01-01

    Conditions for achieving a steady state in an axisymmetric toroidal system are studied with emphasis on a very-high-beta field-reversed configuration. The analysis is carried out for the electromotive force produced by the Ohkawa current that is induced by neutral-beam injection. It turns out that, since the perpendicular component of the current j-vectorsub(perpendicular) to the magnetic field can be generated automatically by the diamagnetic effect, only the parallel component j-vectorsub(parallel) must be driven by the electromotive force. The drive of j-vectorsub(parallel) generates shear in the field line so that the pure toroidal field on the magnetic axis is rotated towards the plasma boundary and matched to the external field lines. This matching condition determines the necessary amount of injection beam current and power. It is demonstrated that a very-high-beta field-reversed configuration requires only a small amount of current-driving beam power because almost all the toroidal current except that close to the magnetic axis is carried by the diamagnetic current due to high beta. A low-beta tokamak, on the other hand, needs very high current-driving power since most of the toroidal current is composed of j-vectorsub(parallel) which must be driven by the beam. (author)

  2. Predictions of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1994-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve these objectives requires compatibility and flexibility in the use of available heating and current drive systems--ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various roles of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The authors have addressed these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX

  3. Fast-wave current drive modelling for large non-circular tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Goldfinger, R.C.; Jaeger, E.F.; Carter, M.D.; Swain, D.W.; Ehst, D.; Karney, C.F.F.

    1990-01-01

    It is widely recognized that a key element in the development of an attractive tokamak reactor, and in the successful achievement of the mission of ITER, is the development of an efficient steady-state current drive technique. Fast waves in the ion cyclotron range of frequencies hold the promise to drive steady-state currents with the required efficiency and to effectively heat the plasma to ignition. Advantages over other heating and current drive techniques include low cost per watt and the ability to penetrate to the center of high-density plasmas. The primary issues that must be resolved are: can an antenna array be designed to radiate the required spectrum of waves and have adequate coupling properties? Will the rf power be efficiently absorbed by electrons in the desired velocity range without unacceptable parasitic damping by fuel ions or α particles? What will the efficiency of current drive be when toroidal effects such as trapped particles are included? Can a practical rf system be designed and integrated into the device? We have addressed these issues by performing extensive calculations with ORION, a 2-D code, and the ray tracing code RAYS, which calculate wave propagation, absorption and current drive in tokamak geometry, and with RIP, a 2-D code that self-consistently calculates current drive with MHD equilibrium. An important figure of merit in this context is the integrated, normalized current drive efficiency. The calculations that we present here emphasize the ITER device. We consider a low-frequency scenario such that no ion resonances appear in the machine, and a high-frequency scenario such that the deuterium second harmonic resonance is just outside the plasma and the tritium second harmonic is in the plasma, midway between the magnetic axis and the inside edge. In both cases electron currents are driven by combined TTMP and Landau damping of the fast waves

  4. steadystate performance of induction and transfer state

    African Journals Online (AJOL)

    eobe

    This paper presents paper presents paper presents the steady the steady the steady–state performance state performance state performance comparison comparison comparison between polyphase induction motor and polyphase between polyphase induction motor and polyphase. TF motor operating in. TF motor ...

  5. Three novel tokamak plasma regimes in TFTR

    International Nuclear Information System (INIS)

    Furth, H.P.

    1985-10-01

    Aside from extending ''standard'' ohmic and neutral beam heating studies to advanced plasma parameters, TFTR has encountered a number of special plasma regimes that have the potential to shed new light on the physics of tokamak confinement and the optimal design of future D-T facilities: (1) High-powered, neutral beam heating at low plasma densities can maintain a highly reactive hot-ion population (with quasi-steady-state beam fueling and current drive) in a tokamak configuration of modest bulk-plasma confinement requirements. (2) Plasma displacement away from limiter contact lends itself to clarification of the role of edge-plasma recycling and radiation cooling within the overall pattern of tokamak heat flow. (3) Noncentral auxiliary heating (with a ''hollow'' power-deposition profile) should serve to raise the central tokamak plasma temperature without deterioration of central region confinement, thus facilitating the study of alpha-heating effects in TFTR. The experimental results of regime (3) support the theory that tokamak profile consistency is related to resistive kink stability and that the global energy confinement time is determined by transport properties of the plasma edge region

  6. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    International Nuclear Information System (INIS)

    Lee, W.W.; Ethier, S.; Kolesnikov, R.; Wang, W.X.; Tang, W.M.

    2007-01-01

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers

  7. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus haloalkane dehalogenase

    NARCIS (Netherlands)

    Bosma, T; Pikkemaat, MG; Kingma, Jacob; Dijk, J; Janssen, DB

    2003-01-01

    Haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064 (DhaA) catalyzes the hydrolysis of carbon-halogen bonds in a wide range of haloalkanes. We examined the steady-state and pre-steady-state kinetics of halopropane conversion by DhaA to illuminate mechanistic details of the

  8. Pseudo Steady-State Free Precession for MR-Fingerprinting.

    Science.gov (United States)

    Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen

    2017-03-01

    This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  10. Predictions of of fast wave heating, current drive, and current drive antenna arrays for advanced tokamaks

    International Nuclear Information System (INIS)

    Batchelor, D.B.; Baity, F.W.; Carter, M.D.

    1995-01-01

    The objective of the advanced tokamak program is to optimize plasma performance leading to a compact tokamak reactor through active, steady state control of the current profile using non-inductive current drive and profile control. To achieve this objective requires compatibility and flexibility in the use of available heating and current drive systems - ion cyclotron radio frequency (ICRF), neutral beams, and lower hybrid. For any advanced tokamak, the following are important challenges to effective use of fast waves in various role of direct electron heating, minority ion heating, and current drive: (1) to employ the heating and current drive systems to give self-consistent pressure and current profiles leading to the desired advanced tokamak operating modes; (2) to minimize absorption of the fast waves by parasitic resonances, which limit current drive; (3) to optimize and control the spectrum of fast waves launched by the antenna array for the required mix of simultaneous heating and current drive. The paper addresses these issues using theoretical and computational tools developed at a number of institutions by benchmarking the computations against available experimental data and applying them to the specific case of TPX. (author). 6 refs, 3 figs

  11. On steady poloidal and toroidal flows in tokamak plasmas

    International Nuclear Information System (INIS)

    McClements, K. G.; Hole, M. J.

    2010-01-01

    The effects of poloidal and toroidal flows on tokamak plasma equilibria are examined in the magnetohydrodynamic limit. ''Transonic'' poloidal flows of the order of the sound speed multiplied by the ratio of poloidal magnetic field to total field B θ /B can cause the (normally elliptic) Grad-Shafranov (GS) equation to become hyperbolic in part of the solution domain. It is pointed out that the range of poloidal flows for which the GS equation is hyperbolic increases with plasma beta and B θ /B, thereby complicating the problem of determining spherical tokamak plasma equilibria with transonic poloidal flows. It is demonstrated that the calculation of the hyperbolicity criterion can be easily modified when the assumption of isentropic flux surfaces is replaced with the more tokamak-relevant one of isothermal flux surfaces. On the basis of the latter assumption, a simple expression is obtained for the variation of density on a flux surface when poloidal and toroidal flows are simultaneously present. Combined with Thomson scattering measurements of density and temperature, this expression could be used to infer information on poloidal and toroidal flows on the high field side of a tokamak plasma, where direct measurements of flows are not generally possible. It is demonstrated that there are four possible solutions of the Bernoulli relation for the plasma density when the flux surfaces are assumed to be isothermal, corresponding to four distinct poloidal flow regimes. Finally, observations and first principles-based theoretical modeling of poloidal flows in tokamak plasmas are briefly reviewed and it is concluded that there is no clear evidence for the occurrence of supersonic poloidal flows.

  12. Compact tokamak reactors

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1997-01-01

    The possible use of tokamaks for thermonuclear power plants is discussed, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First, the existing literature is reviewed and summarized. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamaks power plant, by including the power required to drive the toroidal field and by considering two extremes of plasma current drive efficiency. Third, the analytic results are augmented by a numerical calculation that permits arbitrary plasma current drive efficiency and different confinement scaling relationships. Throughout, the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculation of electric power. The latest published reactor studies show little advantage in using low aspect ratios to obtain a more compact device (and a low cost of electricity) unless either remarkably high efficiency plasma current drive and low safety factor are combined, or unless confinement (the H factor), the permissible elongation and the permissible neutron wall loading increase as the aspect ratio is reduced. These results are reproduced with the analytic model. (author). 22 refs, 3 figs

  13. Helicity content and tokamak applications of helicity

    International Nuclear Information System (INIS)

    Boozer, A.H.

    1986-05-01

    Magnetic helicity is approximately conserved by the turbulence associated with resistive instabilities of plasmas. To generalize the application of the concept of helicity, the helicity content of an arbitrary bounded region of space will be defined. The definition has the virtues that both the helicity content and its time derivative have simple expressions in terms of the poloidal and toroidal magnetic fluxes, the average toroidal loop voltage and the electric potential on the bounding surface, and the volume integral of E-B. The application of the helicity concept to tokamak plasmas is illustrated by a discussion of so-called MHD current drive, an example of a stable tokamak q profile with q less than one in the center, and a discussion of the possibility of a natural steady-state tokamak due to the bootstrap current coupling to tearing instabilities

  14. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  15. Plasma startup patterns in tokamak reactors

    International Nuclear Information System (INIS)

    Maki, Koichi; Tone, Tatsuzo.

    1983-01-01

    Plasma startup patterns are studied from the viewpoint of net power loss represented by the total power loss less the α-particle heating power. The existence is shown of a critical temperature of plasma at which the net power loss becomes independent of plasma density. Observations are made which indicate that the net power loss decreases with lowering plasma density in the range below the critical temperature and vice versa, whether governed by empirical or trapped-ion scaling laws. A startup pattern is presented which minimizes the net power loss during startup, and which prescribes that: (1) The plasma density should be kept as low as possible until the plasma is heated up to the critical temperature; (2) thereafter, the plasma density should be increased to its steady state value while retaining the critical temperature; and (3) finally, with the density kept constant, the temperature should be further raised to its steady state value. The net power loss at critical temperature represents the lower limit of heating power required to bring the plasma to steady state in tokamak reactors. (author)

  16. Linear and nonlinear kinetic-stability studies in tokamaks

    International Nuclear Information System (INIS)

    Tang, W.M.; Chance, M.S.; Chen, L.; Krommes, J.A.; Lee, W.W.; Rewoldt, G.

    1982-09-01

    This paper presents results of theoretical investigations on important linear kinetic properties of low frequency instabilities in toroidal systems and on nonlinear processes which could significantly influence their impact on anomalous transport. Analytical and numerical methods and also particle simulations have been employed to carry out these studies. In particular, the following subjects are considered: (1) linear stability analysis of kinetic instabilities for realistic tokamak equilibria and the application of such calculations to the PDX and PLT tokamak experiments including the influence of a hot beam-ion component; (2) determination of nonlinearly saturated, statistically steady states of three interacting drift modes; and (3) gyrokinetic particle simulation of drift instabilities

  17. Resistive demountable toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments

  18. Trade studies of plasma elongation for next-step tokamaks

    International Nuclear Information System (INIS)

    Galambos, J.D.; Strickler, D.J.; Peng, Y.K.M.; Reid, R.L.

    1988-09-01

    The effect of elongation on minimum-cost devices is investigated for elongations ranging from 2 to 3. The analysis, carried out with the TETRA tokamak systems code, includes the effects of elongation on both physics (plasma beta limit) and engineering (poloidal field coil currents) issues. When ignition is required, the minimum cost occurs for elongations from 2.3 to 2.9, depending on the plasma energy confinement scaling used. Scalings that include favorable plasma current dependence and/or degradation with fusion power tend to have minimum cost at higher elongation (2.5-2.9); scalings that depend primarily on size result in lower elongation (/approximately/2.3) for minimum cost. For design concepts that include steady-state current-driven operation, minimum cost occurs at an elongation of 2.3. 12 refs., 13 figs

  19. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  20. Characteristics of steady-state plasma flow in the tokamak limiter scrape-off layer

    International Nuclear Information System (INIS)

    Petrov, V.G.

    1984-01-01

    Steady state plasma flow in the scrape-off layer of a toroidal limiter is discussed. The force balance along the torus minor radius is taken into account, from which follows that the plasma pressure gradient is balanced by the ponderomotive force (1/c) j-vectorxB-vector, which arises in the presence of a current density component perpendicular to the magnetic field. The limiter has an important effect on the electric current flow in the scrape-off layer. It is shown that the electric potential and plasma density values differ from one side of the limiter to the other; this leads to plasma drift along the minor radius. The characteristic length of change in the plasma density is found to be of the order of the ion cyclotron radius calculated for a poloidal magnetic field. (author)

  1. Accessibility of high β tokamak states

    International Nuclear Information System (INIS)

    Hogan, J.T.

    1978-05-01

    Encouraging results with neutral beam heating and adiabatic compression of tokamak plasmas have prompted new experiments which will study the approach to high β states. As projected tokamak β values become nonnegligible (average β of 4% is the goal), the models previously used for transport calculations will become inadequate. These models will be required to account for the evolution of the magnetic geometry, along with the change in plasma parameters. We present an axisymmetric transport model which should be useful for studying the approach to higher β values in tokamak experiments. Results from transport calculations with this model allow us to draw a parallel between observed behavior in seemingly unrelated experiments: electron heating by neutral injection in the ORMAK device and adiabatic compression in the ATC experiment. Finally, we find that the nature of cross-field transport may be expected to change as significant β values are reached. Enhanced transport from ballooning instabilities is likely to play a role as important as that now played by sawtooth (m = 1) and saturated (m = 2) instabilities. New techniques for describing this transport are required

  2. Steady-State Performance of Kalman Filter for DPLL

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming

    2009-01-01

    For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.

  3. New Tore Supra steady state operating scenario

    International Nuclear Information System (INIS)

    Martin, G.; Parlange, F.; van Houtte, D.; Wijnands, T.

    1995-01-01

    This document deals with plasma control in steady state conditions. A new plasma control systems enabling feedback control of global plasma equilibrium parameters has been developed. It also enables to operate plasma discharge in steady state regime. (TEC). 4 refs., 5 figs

  4. Physics parameter space of tokamak ignition devices

    International Nuclear Information System (INIS)

    Selcow, E.C.; Peng, Y.K.M.; Uckan, N.A.; Houlberg, W.A.

    1985-01-01

    This paper describes the results of a study to explore the physics parameter space of tokamak ignition experiments. A new physics systems code has been developed to perform the study. This code performs a global plasma analysis using steady-state, two-fluid, energy-transport models. In this paper, we discuss the models used in the code and their application to the analysis of compact ignition experiments. 8 refs., 8 figs., 1 tab

  5. Tokamak Physics Experiment (TPX) design

    International Nuclear Information System (INIS)

    Schmidt, J.A.

    1995-01-01

    TPX is a national project involving a large number of US fusion laboratories, universities, and industries. The element of the TPX requirements that is a primary driver for the hardware design is the fact that TPX tokamak hardware is being designed to accommodate steady state operation if the external systems are upgraded from the 1,000 second initial operation. TPX not only incorporates new physics, but also pioneers new technologies to be used in ITER and other future reactors. TPX will be the first tokamak with fully superconducting magnetic field coils using advanced conductors, will have internal nuclear shielding, will use robotics for machine maintenance, and will remove the continuous, concentrated heat flow from the plasma with new dispersal techniques and with special materials that are actively cooled. The Conceptual Design for TPX was completed during Fiscal Year 1993. The Preliminary Design formally began at the beginning of Fiscal Year 1994. Industrial contracts have been awarded for the design, with options for fabrication, of the primary tokamak hardware. A large fraction of the design and R and D effort during FY94 was focused on the tokamak and in turn on the tokamak magnets. The reason for this emphasis is because the magnets require a large design and R and D effort, and are critical to the project schedule. The magnet development is focused on conductor development, quench protection, and manufacturing R and D. The Preliminary Design Review for the Magnets is planned for fall, 1995

  6. Measurement of non-steady-state free fatty acid turnover

    International Nuclear Information System (INIS)

    Jensen, M.D.; Heiling, V.; Miles, J.M.

    1990-01-01

    The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with [ 14 C]-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra [( 14 C]oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra

  7. Numerical simulations of the radio-frequency-driven toroidal current in tokamaks

    International Nuclear Information System (INIS)

    Peysson, Y.; Decker, J.

    2014-01-01

    Radio-frequency (rf) waves are a powerful tool for improving the performance and stability of tokamak plasmas through heating and current drive mechanisms, allowing current density profile control and steady-state operation. From first principles, and taking advantage from the ordering between the various time and space scales, fast and powerful numerical tools have been developed to calculate the rf-driven current. The current drive problem in tokamaks is first introduced with the purpose of maintaining a steady-state self-organized toroidal magnetohydrodynamic equilibrium, such that a minimal amount of the fusion power has to be recycled to control the plasma current. The strict criterion that characterizes a steady-state discharge is derived from the response of the tokamak, considered as a transformer, and of the plasma, when an external source of current is applied. The calculation of a rf-driven source of current requires solving self-consistently a set of equations describing the dynamics of wave fields and charged particles in an inhomogeneous magnetized plasma. The range of applicability of these equations is discussed, as well as numerical methods developed to solve them, such as the ray-tracing code C3PO and the three-dimensional linearized relativistic bounce-averaged electron Fokker-Planck solver LUKE. Simulations of current drive by lower-hybrid waves are presented to illustrate the applications of our numerical tools. Current drive modeling includes the effect of electron density fluctuations at the plasma edge, and the case of electron cyclotron waves used for stabilization of the 3/2 neoclassical tearing modes in ITER is studied in detail. Finally, ongoing developments, including cross effects between momentum and configuration spaces, aiming at improving current drive calculations are discussed. (authors)

  8. The design of the KSTAR tokamak

    International Nuclear Information System (INIS)

    Lee, G.S.; Kim, J.; Hwang, S.M.

    1999-01-01

    The Korea superconducting tokamak advanced research (KSTAR) project is the major effort of the Korean national fusion program (KNFP) to develop a steady-state-capable advanced superconducting tokamak to establish a scientific and technological basis for an attractive fusion reactor. Major parameters of the tokamak are: major radius 1.8 m, minor radius 0.5 m, toroidal field 3.5 Tesla, and plasma current 2 MA with a strongly shaped plasma cross-section and double-null divertor. The initial pulse length provided by the poloidal magnet system is 20 s, but the pulse length can be increased to 300 s through non-inductive current drive. The plasma heating and current drive system consists of neutral beam, ion cyclotron waves, lower hybrid waves, and electron-cyclotron waves for flexible profile control. A comprehensive set of diagnostics is planned for plasma control and performance evaluation and physics understanding. The project has completed its conceptual design phase and moved to the engineering design phase. The target date of the first plasma is set for year 2002. (orig.)

  9. Tokamak power systems studies, FY 1986: A second stability power reactor

    International Nuclear Information System (INIS)

    Ehst, D.; Baker, C.; Billone, M.

    1987-03-01

    This report presents the results of the work at Argonne National Laboratory (ANL) during FY-1986 on the Tokamak Power Systems Study (TPSS). The purpose of the TPSS is to explore and develop ideas that would lead to improvements in the tokamak as a power reactor concept. The work at ANL concentrated on plasma engineering, impurity control, and the blanket/first wall/shield system. The work in FY-1986 extended these studies and focused them on a reference design point. The key features of the design point include: second stability regime with higher β and larger aspect ratio, steady-state operation with fast wave current drive, impurity control via a self-pumped slot limiter, a self-cooled liquid lithium, vanadium alloy blanket with simplified poloidal flow, and reduced reactor building volume with vertical lift maintenance. Sufficient work was carried out to report a preliminary cost estimate. In addition, reactor implications of steady-state operation in the first stability regime were also studied. 174 refs., 124 figs., 65 tabs

  10. Safety analysis on tokamak helium cooling slab fuel fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Wei Renjie; Jian Hongbing

    1992-01-01

    The thermal analyses for steady state, depressurization and total loss of flow in the tokamak helium cooling slab fuel element fusion-fission hybrid reactor are presented. The design parameters, computed results of HYBRID program and safety evaluation for conception design are given. After all, it gives some recommendations for developing the design

  11. Tokamak and RFP ignition requirements

    International Nuclear Information System (INIS)

    Werley, K.A.

    1991-01-01

    A plasma model is applied to calculate numerically transport- confinement (nτ E ) requirements and steady-state operation tokamak. The CIT tokamak and RFP ignition conditions are examined. Physics differences between RFP and tokamaks, and their consequences for a DT ignition machine, are discussed. The ignition RFP, compared to a tokamak, has many physics advantages, including ohmic heating to ignition (no need for auxiliary heating systems), higher beta, low ignition current, less sensitivity of ignition requirements to impurity effects, no hard disruptions (associated with beta or density limits), and successful operation with high radiation fractions (f RAD ∼ 0.95). These physics advantages, coupled with important engineering advantages associated with lower external magnetic fields, larger aspect ratios, and smaller plasma cross sections translate into significant cost reductions for both ignition and power reactor. The primary drawback of the RFP is the uncertainty that the present confinement scaling will extrapolate to reactor regimes. The 4-MA ZTH was expected to extend the nτ E transport scaling data three order of magnitude above ZT-40M results, and if the present scaling held, to achieve a DT-equivalent scientific energy breakeven, Q=1. A basecase RFP ignition point is identified with a plasma current of 8.1 MA and no auxiliary heating. 16 refs., 4 figs., 1 tab

  12. Comparative study of cost models for tokamak DEMO fusion reactors

    International Nuclear Information System (INIS)

    Oishi, Tetsutarou; Yamazaki, Kozo; Arimoto, Hideki; Ban, Kanae; Kondo, Takuya; Tobita, Kenji; Goto, Takuya

    2012-01-01

    Cost evaluation analysis of the tokamak-type demonstration reactor DEMO using the PEC (physics-engineering-cost) system code is underway to establish a cost evaluation model for the DEMO reactor design. As a reference case, a DEMO reactor with reference to the SSTR (steady state tokamak reactor) was designed using PEC code. The calculated total capital cost was in the same order of that proposed previously in cost evaluation studies for the SSTR. Design parameter scanning analysis and multi regression analysis illustrated the effect of parameters on the total capital cost. The capital cost was predicted to be inside the range of several thousands of M$s in this study. (author)

  13. Conceptual analysis of a tokamak reactor with lithium dust jet

    International Nuclear Information System (INIS)

    Kuteev, B.V.; Krylov, S.V.; Sergeev, V.Yu.; Skokov, V.G.; Timokhin, V.M.

    2010-01-01

    The steady-state operation of tokamak reactors requires radiating a substantial part of the fusion energy dissipated in plasma to make more uniform the heat loads onto the first wall and to reduce the erosion of the divertor plates. One of the approaches to realize this goal uses injection of lithium dust jet into the scrape-off layer (SOL). A quantitative conceptual analysis of the reactor parameters with lithium dust jet injection is presented here. The effects of the lithium on the core and SOL plasma are considered. The first results of developing the lithium jet injection technology and its application to the T-10 tokamak are also presented.

  14. Design and thermal-hydraulic analysis of PFC baking for SST-1 Tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Reddy, D. Chenna; Khirwadkar, S.; Prakash, N. Ravi; Santra, P.; Saxena, Y.C.

    2001-01-01

    The Steady-State Superconducting Tokamak (SST-1) is a medium-size tokamak with super-conducting magnetic field coils. Plasma facing components (PFC) of the SST-1, consisting of divertors, passive stabilisers, baffles, and poloidal limiters, are designed to be compatible for steady-state operation. Except for the poloidal limiters, all other PFC are structurally continuous in the toroidal direction. As SST-1 is designed to run double-null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. The passive stabilisers are located close to the plasma to provide stability against the vertical instability of the elongated plasma. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m 2 . In addition to removing high heat fluxes, the PFC are also designed to be compatible for baking at 350 deg. C. Different flow parameters and various tube layouts have been examined to select the optimum thermal-hydraulic parameters and tube layout for different PFC of SST-1. Thermal response of the PFC during baking has been performed analytically (using a Fortran code) and two-dimensional finite element analysis using ANSYS. The detailed thermal hydraulics and thermal responses of PFC baking is presented in this paper

  15. Design and thermal-hydraulic analysis of PFC baking for SST-1 Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhuri, Paritosh E-mail: paritosh@ipr.res.in; Reddy, D. Chenna; Khirwadkar, S.; Prakash, N. Ravi; Santra, P.; Saxena, Y.C

    2001-09-01

    The Steady-State Superconducting Tokamak (SST-1) is a medium-size tokamak with super-conducting magnetic field coils. Plasma facing components (PFC) of the SST-1, consisting of divertors, passive stabilisers, baffles, and poloidal limiters, are designed to be compatible for steady-state operation. Except for the poloidal limiters, all other PFC are structurally continuous in the toroidal direction. As SST-1 is designed to run double-null divertor plasmas, these components also have up-down symmetry. A closed divertor configuration is chosen to produce high recycling and high pumping speed in the divertor region. The passive stabilisers are located close to the plasma to provide stability against the vertical instability of the elongated plasma. The main consideration in the design of the PFC is the steady-state heat removal of up to 1 MW/m{sup 2}. In addition to removing high heat fluxes, the PFC are also designed to be compatible for baking at 350 deg. C. Different flow parameters and various tube layouts have been examined to select the optimum thermal-hydraulic parameters and tube layout for different PFC of SST-1. Thermal response of the PFC during baking has been performed analytically (using a Fortran code) and two-dimensional finite element analysis using ANSYS. The detailed thermal hydraulics and thermal responses of PFC baking is presented in this paper.

  16. Development of LHCD launcher for next stage tokamak

    International Nuclear Information System (INIS)

    Seki, M.; Obara, K.; Maebara, S.

    1994-01-01

    In next stage LHCD experiment, long pulse RF injection is required for studying quasi-steady state tokamaks. The suppression of outgassing from waveguides is one of the main issues for LHCD launchers to transmit RF power in the waveguides continuously and stably. In order to know the parameters which control outgassing rate and to investigate how to reduce outgassing rate, JAERI and CEA have performed outgassing experiment by using four divided waveguides. The experimental setup and the results are reported. Steady state outgassing was observed in long duration up to 1800s when RF heat was removed by water cooling. In next generation LHCD launchers, it should be demanded to launch the high directive and sharp spectra, and to make the structure simple and compact. But these spectra require many waveguides in front of plasma, and this situation is not compatible with the compact structure which is necessary for low cost and easy maintenance. Moreover, the launchers are advantageous if the controllability is wide, and the low RF power density at grill mouth makes power launching easy. In order to realize the above features, a new launcher was devised. The conceptual structure is shown. The main R and D item is to divide RF power into three waveguides lined in poloidal direction. The RF property is discussed. (K.I.)

  17. Spherical tokamak power plant design issues

    International Nuclear Information System (INIS)

    Hender, T.C.; Bond, A.; Edwards, J.; Karditsas, P.J.; McClements, K.G.; Mustoe, J.; Sherwood, D.V.; Voss, G.M.; Wilson, H.R.

    2000-01-01

    The very high β potential of the spherical tokamak has been demonstrated in the START experiment. Systems code studies show the cost of electricity from spherical tokamak power plants, operating at high β in second ballooning mode stable regime, is comparable with fossil fuels and fission. Outline engineering designs are presented based on two concepts for the central rod of the toroidal field (TF) circuit - a room temperature water cooled copper rod or a helium cooled cryogenic aluminium rod. For the copper rod case the TF return limbs are supported by the vacuum vessel, while for the aluminium rod the TF coils form an independent structure. In both cases thermohydraulic and stress calculations indicate the viability of the design. Two-dimensional neutronics calculations show the feasibility of tritium self-sufficiency without an inboard blanket. The spherical tokamak has unique maintenance possibilities based on lowering major component structures into a hot cell beneath the device and these are discussed

  18. Experiments on steady state particle control in Tore Supra and DIII-D

    International Nuclear Information System (INIS)

    Mioduszewski, P.K.; Hogan, J.T.; Owen, L.W.; Maingi, R.; Lee, D.K.; Hillis, D.L.; Klepper, C.C.; Menon, M.M.; Thomas, C.E.; Uckan, T.; Wade, M.R.; Chatelier, M.; Grisolia, C.; Ghendrih, P.; Grosman, A.; Hutter, T.; Loarer, T.; Pegourie, B.; Mahdavi, M.A.; Schaffer, M.

    1995-01-01

    Particle control is playing an increasingly important role in tokamak plasma performance. The present paper discusses particle control of hydogen/deuterium by wall pumping on graphite or carbonized surfaces, as well as by external exhaust with pumped limiters and pumped divertors. Wall pumping is ultimately a transient effect and by itself not suitable for steady state particle exhaust. Therefore, external exhaust techniques with pumped divertors and limiters are being developed. How wall pumping phenomena interact and correlate with these inherently steady state, external exhaust techniques, is not well known to date. In the present paper, the processes involved in wall pumping and in external pumping are investigated in an attempt to evaluate the effect of external exhaust on wall pumping. Some of the key elements of this analysis are: (1) charge-exchange fluxes to the wall play a crucial role in the core-wall particle dynamics, (2) the recycling fluxes of thermal molecules have a high probability of ionization in the scrape-off layer, (3) thermal particles originating from the wall, which are ionized within the scrape-off layer, can be directly exhausted, thus providing a direct path between wall and exhaust which can be used to control the wall inventory. This way, the wall can be kept in a continuous pumping state in the sense that it continuously absorbs energetic particles and releases thermal molecules which are then removed by the external exhaust mechanism. While most of the ingredients of this analysis have been observed individually before, the present evaluation is an attempt to correlate effects of wall recycling and external exhaust. ((orig.))

  19. Burn cycle study of tokamak power plants by the Effective Management Method

    International Nuclear Information System (INIS)

    Okano, Kunihiko; Inoue, Nobuyuki; Ogawa, Yuichi; Yoshida, Zensho

    1995-01-01

    The Effective Management Method is an action decision manner to work out the strategy of enterprises, which was developed in Japan on the base of the Kepner and Trigoe Method developed in the USA. The authors applied this method with a small modification to a burn cycle study of tokamak power plants. The numerical figure of merit for the pulsed and steady state operations are visually shown. Steady state, 1 hour pulse (with and without energy reservoir) and half-day long pulse reactor are compared. The EM method provides a common base for such comparing study. The highest score is given to an 1 hour pulsed operated reactor with an energy reservoir for the continuous electric output. However it is also pointed out that there is no 'significant' superiority in both of the steady state and pulse reactors. (author)

  20. Implications of steady-state operation on divertor design

    International Nuclear Information System (INIS)

    Sevier, D.L.; Reis, E.E.; Baxi, C.B.; Silke, G.W.; Wong, C.P.C.; Hill, D.N.

    1996-01-01

    As fusion experiments progress towards long pulse or steady state operation, plasma facing components are undergoing a significant change in their design. This change represents the transition from inertially cooled pulsed systems to steady state designs of significant power handling capacity. A limited number of Plasma Facing Component (PFC) systems are in operation or planning to address this steady state challenge at low heat flux. However in most divertor designs components are required to operate at heat fluxes at 5 MW/m 2 or above. The need for data in this area has resulted in a significant amount of thermal/hydraulic and thermal fatigue testing being done on prototypical elements. Short pulse design solutions are not adequate for longer pulse experiments and the areas of thermal design, structural design, material selection, maintainability, and lifetime prediction are undergoing significant changes. A prudent engineering approach will guide us through the transitional phase of divertor design to steady-state power plant components. This paper reviews the design implications in this transition to steady state machines and the status of the community efforts to meet evolving design requirements. 54 refs., 5 figs., 2 tabs

  1. Overview of data acquisition and central control system of steady state superconducting Tokamak (SST-1)

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, S., E-mail: pradhan@ipr.res.in; Mahajan, K.; Gulati, H.K.; Sharma, M.; Kumar, A.; Patel, K.; Masand, H.; Mansuri, I.; Dhongde, J.; Bhandarkar, M.; Chudasama, H.

    2016-11-15

    Highlights: • The paper gives overview on SST-1 data acquisition and central control system and future upgrade plans. • The lossless PXI based data acquisition of SST-1 is capable of acquiring around 130 channels with sampling frequency ranging from 10 KHz to 1 MHz sampling frequency. • Design, architecture and technologies used for central control system (CCS) of SST-1. • Functions performed by CCS. - Abstract: Steady State Superconducting Tokamak (SST-1) has been commissioned successfully and has been carrying out limiter assisted ohmic plasma experiments since the beginning of 2014 achieving a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼500 ms. In near future, SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1 s. The data acquisition and central control system (CCS) for SST-1 are distributed, modular, hierarchical and scalable in nature The CCS has been indigenously designed, developed, implemented, tested and validated for the operation of SST-1. The CCS has been built using well proven technologies like Redhat Linux, vxWorks RTOS for deterministic control, FPGA based hardware implementation, Ethernet, fiber optics backbone for network, DSP for real-time computation & Reflective memory for high-speed data transfer etc. CCS in SST-1 controls & monitors various heterogeneous SST-1 subsystems dispersed in the same campus. The CCS consists of machine control system, basic plasma control system, GPS time synchronization system, storage area network (SAN) for centralize data storage, SST-1 networking system, real-time networks, SST-1 control room infrastructure and many other supportive systems. Machine Control System (MCS) is a multithreaded event driven system running on Linux based servers, where each thread of the software communicates to a unique subsystem for monitoring and control from SST-1 central control room through network programming. The CCS hardware

  2. Overview of data acquisition and central control system of steady state superconducting Tokamak (SST-1)

    International Nuclear Information System (INIS)

    Pradhan, S.; Mahajan, K.; Gulati, H.K.; Sharma, M.; Kumar, A.; Patel, K.; Masand, H.; Mansuri, I.; Dhongde, J.; Bhandarkar, M.; Chudasama, H.

    2016-01-01

    Highlights: • The paper gives overview on SST-1 data acquisition and central control system and future upgrade plans. • The lossless PXI based data acquisition of SST-1 is capable of acquiring around 130 channels with sampling frequency ranging from 10 KHz to 1 MHz sampling frequency. • Design, architecture and technologies used for central control system (CCS) of SST-1. • Functions performed by CCS. - Abstract: Steady State Superconducting Tokamak (SST-1) has been commissioned successfully and has been carrying out limiter assisted ohmic plasma experiments since the beginning of 2014 achieving a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼500 ms. In near future, SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1 s. The data acquisition and central control system (CCS) for SST-1 are distributed, modular, hierarchical and scalable in nature The CCS has been indigenously designed, developed, implemented, tested and validated for the operation of SST-1. The CCS has been built using well proven technologies like Redhat Linux, vxWorks RTOS for deterministic control, FPGA based hardware implementation, Ethernet, fiber optics backbone for network, DSP for real-time computation & Reflective memory for high-speed data transfer etc. CCS in SST-1 controls & monitors various heterogeneous SST-1 subsystems dispersed in the same campus. The CCS consists of machine control system, basic plasma control system, GPS time synchronization system, storage area network (SAN) for centralize data storage, SST-1 networking system, real-time networks, SST-1 control room infrastructure and many other supportive systems. Machine Control System (MCS) is a multithreaded event driven system running on Linux based servers, where each thread of the software communicates to a unique subsystem for monitoring and control from SST-1 central control room through network programming. The CCS hardware

  3. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....

  4. High-energy tritium beams as current drivers in tokamak reactors

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams

  5. Engineering and thermal-hydraulic design of water cooled PFC for SST-1 tokamak

    International Nuclear Information System (INIS)

    Paritosh Chaudhuri; Santra, P.; Rabi Prakash, N.; Khirwadkar, S.; Arun Prakash, A.; Ramash, G.; Dubey, S.; Chenna Reddy, D.; Saxena, Y.C.

    2005-01-01

    Full text of publication follows: Steady state Superconducting Tokamak (SST-1) is a medium size tokamak with superconducting magnetic field coils. It is a large aspect ratio tokamak with a major radius of 1.1 m and minor radius of 0.20 m. SST-1 is designed for plasma discharge duration of ∼1000 seconds to obtain fully steady state plasma with total input power up to 1.0 MW. First Wall or Plasma Facing Components (PFC) is one or the major sub-systems of SST-1 tokamak consisting of divertors, passive stabilizers, baffles, and poloidal limiters are designed to be compatible for steady state operation. All the PFC has the same basic configuration: graphite tiles are mechanically attached to a back plate made of high strength copper alloy, and SS tubes are embedded in the groove made in the back plate. Same tube will be used for cooling during plasma operation and baking during wall conditioning. The main consideration in the design of the PFC is the steady state heat removal of up to 1 MW/m 2 . In addition to remove high heat fluxes, the PFC are also designed to be compatible for high temperature baking at 350 deg. C. Water was chosen as the coolant because of its appropriate thermal properties, and while baking, hot nitrogen gas would flow through these tubes to bake the PFC at high temperature. Extensive studies, involving different flow parameters and various cooling layouts, has been done to select the final cooling parameters and layout, compatible for cooling and baking. During steady state operation, divertor and passive stabilizer heat loads are expected to be 0.6 and 0.25 MW/m 2 . The PFC also has been design to withstand the peak heat fluxes without significant erosion such that frequent replacement is not necessary. Since the tile must be mechanically attached to the back plate (heat sink), the fitting technique must provide the highest mechanical stress so that thermal transfer efficiency is maximized. Proper brazing of cooling tube on the copper back

  6. The software-defined fast post-processing for GEM soft x-ray diagnostics in the Tungsten Environment in Steady-state Tokamak thermal fusion reactor

    Science.gov (United States)

    Krawczyk, Rafał Dominik; Czarski, Tomasz; Linczuk, Paweł; Wojeński, Andrzej; Kolasiński, Piotr; GÄ ska, Michał; Chernyshova, Maryna; Mazon, Didier; Jardin, Axel; Malard, Philippe; Poźniak, Krzysztof; Kasprowicz, Grzegorz; Zabołotny, Wojciech; Kowalska-Strzeciwilk, Ewa; Malinowski, Karol

    2018-06-01

    This article presents a novel software-defined server-based solutions that were introduced in the fast, real-time computation systems for soft X-ray diagnostics for the WEST (Tungsten Environment in Steady-state Tokamak) reactor in Cadarache, France. The objective of the research was to provide a fast processing of data at high throughput and with low latencies for investigating the interplay between the particle transport and magnetohydrodynamic activity. The long-term objective is to implement in the future a fast feedback signal in the reactor control mechanisms to sustain the fusion reaction. The implemented electronic measurement device is anticipated to be deployed in the WEST. A standalone software-defined computation engine was designed to handle data collected at high rates in the server back-end of the system. Signals are obtained from the front-end field-programmable gate array mezzanine cards that acquire and perform a selection from the gas electron multiplier detector. A fast, authorial library for plasma diagnostics was written in C++. It originated from reference offline MATLAB implementations. They were redesigned for runtime analysis during the experiment in the novel online modes of operation. The implementation allowed the benchmarking, evaluation, and optimization of plasma processing algorithms with the possibility to check the consistency with reference computations written in MATLAB. The back-end software and hardware architecture are presented with data evaluation mechanisms. The online modes of operation for the WEST are discussed. The results concerning the performance of the processing and the introduced functionality are presented.

  7. Electron thermal transport barrier and magnetohydrodynamic activity observed in Tokamak plasmas with negative central shear

    NARCIS (Netherlands)

    M.R. de Baar,; Hogeweij, G. M. D.; Cardozo, N. J. L.; Oomens, A. A. M.; Schüller, F. C.

    1997-01-01

    In the Rijnhuizen Tokamak Project, plasmas with steady-state negative central shear (NCS) are made with off-axis electron cyclotron heating. Shifting the power deposition by 2 mm results in a sharp transition of confinement. The good confinement branch features a transport barrier at the off-axis

  8. Pellet injectors for steady state plasma fuelling

    International Nuclear Information System (INIS)

    Vinyar, I.; Geraud, A.; Yamada, H.; Lukin, A.; Sakamoto, R.; Skoblikov, S.; Umov, A.; Oda, Y.; Gros, G.; Krasilnikov, I.; Reznichenko, P.; Panchenko, V.

    2005-01-01

    Successful steady state operation of a fusion reactor should be supported by repetitive pellet injection of solidified hydrogen isotopes in order to produce high performance plasmas. This paper presents pneumatic pellet injectors and its implementation for long discharge on the LHD and TORE SUPRA, and a new centrifuge pellet injector test results. All injectors are fitted with screw extruders well suited for steady state operation

  9. Compact tokamak reactors. Part 1 (analytic results)

    International Nuclear Information System (INIS)

    Wootton, A.J.; Wiley, J.C.; Edmonds, P.H.; Ross, D.W.

    1996-01-01

    We discuss the possible use of tokamaks for thermonuclear power plants, in particular tokamaks with low aspect ratio and copper toroidal field coils. Three approaches are presented. First we review and summarize the existing literature. Second, using simple analytic estimates, the size of the smallest tokamak to produce an ignited plasma is derived. This steady state energy balance analysis is then extended to determine the smallest tokamak power plant, by including the power required to drive the toroidal field, and considering two extremes of plasma current drive efficiency. The analytic results will be augmented by a numerical calculation which permits arbitrary plasma current drive efficiency; the results of which will be presented in Part II. Third, a scaling from any given reference reactor design to a copper toroidal field coil device is discussed. Throughout the paper the importance of various restrictions is emphasized, in particular plasma current drive efficiency, plasma confinement, plasma safety factor, plasma elongation, plasma beta, neutron wall loading, blanket availability and recirculating electric power. We conclude that the latest published reactor studies, which show little advantage in using low aspect ratio unless remarkably high efficiency plasma current drive and low safety factor are combined, can be reproduced with the analytic model

  10. Controlled thermonuclear fusion and the latest progress on China's HT-7 superconducting tokamak

    International Nuclear Information System (INIS)

    Li Jiangang; Yang Yu

    2003-01-01

    After 50 years of research on controlled thermonuclear fusion, a new stage will be reached in 2003, when a site for the International Thermonuclear Experimental Reactor project will be chosen to start the construction. Scientists hope that this project could herald a new era in which the energy problem will be solved completely. The great progress made on the HT-7 superconducting tokamak in China has provided positive and powerful support for fusion research. The HT-7 is one of the only two superconducting tokamaks in the world that can carry out minute-scale high temperature plasma research, and has achieved a duration of 63.95s for the hot plasma discharge. This is a major step towards real steady-state operation of the tokamak configuration. We present an overview of the latest progress on the tokamak experiments in the Institute of Plasma Physics, Chinese Academy of Sciences

  11. Transport simulations of a density limit in radiation-dominated tokamak discharges: Profile effects

    International Nuclear Information System (INIS)

    Stotler, D.P.

    1988-06-01

    The density limit observed in tokamak experiments is thought to be due to a radiative collapse of the current channel. A transport code coupled with an MHD equilibrium routine is used to determine the detailed, self-consistent evolution of the plasma profiles in tokamak discharges with radiated power close to or equalling the input power. The present work is confined to ohmic discharges in steady state. It is found that the shape of the density profile can have a significant impact on the variation of the maximum electron density with plasma current. Analytic calculations confirm this result. 41 refs., 9 figs

  12. Transport simulations of a density limit in radiation-dominated tokamak discharges: profile effects

    International Nuclear Information System (INIS)

    Stotler, D.P.

    1988-01-01

    The density limit observed in tokamak experiments is thought to be due to a radiative collapse of the current channel. A transport code coupled with a magnetohydrodynamic (MHD) equilibrium routine is used to determine the detailed, self-consistent evolution of the plasma profiles in tokamak discharges with radiated power close to or equaling the input power. The present work is confined to Ohmic discharges in steady state. It is found that the shape of the density profile can have a significant impact on the variation of the maximum electron density with plasma current. Analytic calculations confirm this result

  13. Ultra-long pulse operation using lower hybrid waves on the superconducting high field tokamak TRIAM-1M

    International Nuclear Information System (INIS)

    Moriyama, S.; Nakamura, Y.; Nagao, A.; Jotaki, E.; Nakamura, K.; Hiraki, N.; Itoh, S.

    1990-01-01

    Ultra-long pulse operation (>3 min) was achieved on the superconducting high field tokamak TRIAM-1M. In this operation, the plasma current was maintained with a relatively peaked current distribution by the 2.45 GHz radiofrequency power (P RF ≤ 35 kW) alone. A stationary plasma with a driven current of up to 35 kA and a line averaged electron density of up to 3x10 12 cm -3 was produced by precise plasma position and gas feed control. The extremely long discharge showed the interesting characteristics that the high temperatures of about 1 keV for the electrons and about 0.5 keV for the ions were kept almost constant during steady state current drive and that there was no impurity accumulation which could have a fatally adverse effect on steady state tokamak operation. (author). 16 refs, 17 figs

  14. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  15. Steady-state and dynamic models for particle engulfment during solidification

    Science.gov (United States)

    Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.

    2016-06-01

    Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.

  16. Impact of maximum TF magnetic field on performance and cost of an advanced physics tokamak

    International Nuclear Information System (INIS)

    Reid, R.L.

    1983-01-01

    Parametric studies were conducted using the Fusion Engineering Design Center (FEDC) Tokamak Systems Code to investigate the impact of variation in the maximum value of the field at the toroidal field (TF) coils on the performance and cost of a low q/sub psi/, quasi-steady-state tokamak. Marginal ignition, inductive current startup plus 100 s of inductive burn, and a constant value of epsilon (inverse aspect ratio) times beta poloidal were global conditions imposed on this study. A maximum TF field of approximately 10 T was found to be appropriate for this device

  17. Steady State Shift Damage Localization

    DEFF Research Database (Denmark)

    Sekjær, Claus; Bull, Thomas; Markvart, Morten Kusk

    2017-01-01

    The steady state shift damage localization (S3DL) method localizes structural deterioration, manifested as either a mass or stiffness perturbation, by interrogating the damage-induced change in the steady state vibration response with damage patterns cast from a theoretical model. Damage is, thus...... the required accuracy when examining complex structures, an extensive amount of degrees of freedom (DOF) must often be utilized. Since the interrogation matrix for each damage pattern depends on the size of the system matrices constituting the FE-model, the computational time quickly becomes of first......-order importance. The present paper investigates two sub-structuring approaches, in which the idea is to employ Craig-Bampton super-elements to reduce the amount of interrogation distributions while still providing an acceptable localization resolution. The first approach operates on a strict super-element level...

  18. Quantum thermodynamics of nanoscale steady states far from equilibrium

    Science.gov (United States)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  19. Steady states in conformal theories

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.

  20. Bifurcated states of a rotating tokamak plasma in the presence of a static error-field

    International Nuclear Information System (INIS)

    Fitzpatrick, R.

    1998-01-01

    The bifurcated states of a rotating tokamak plasma in the presence of a static, resonant, error-field are strongly analogous to the bifurcated states of a conventional induction motor. The two plasma states are the open-quotes unreconnectedclose quotes state, in which the plasma rotates and error-field-driven magnetic reconnection is suppressed, and the open-quotes fully reconnectedclose quotes state, in which the plasma rotation at the rational surface is arrested and driven magnetic reconnection proceeds without hindrance. The response regime of a rotating tokamak plasma in the vicinity of the rational surface to a static, resonant, error-field is determined by three parameters: the normalized plasma viscosity, P, the normalized plasma rotation, Q 0 , and the normalized plasma resistivity, R. There are 11 distinguishable response regimes. The extents of these regimes are calculated in P endash Q 0 endash R space. In addition, an expression for the critical error-field amplitude required to trigger a bifurcation from the open-quotes unreconnectedclose quotes to the open-quotes fully reconnectedclose quotes state is obtained in each regime. The appropriate response regime for low-density, ohmically heated, tokamak plasmas is found to be the nonlinear constant-ψ regime for small tokamaks, and the linear constant-ψ regime for large tokamaks. The critical error-field amplitude required to trigger error-field-driven magnetic reconnection in such plasmas is a rapidly decreasing function of machine size, indicating that particular care may be needed to be taken to reduce resonant error-fields in a reactor-sized tokamak. copyright 1998 American Institute of Physics

  1. Differences between automatically detected and steady-state fractional flow reserve.

    Science.gov (United States)

    Härle, Tobias; Meyer, Sven; Vahldiek, Felix; Elsässer, Albrecht

    2016-02-01

    Measurement of fractional flow reserve (FFR) has become a standard diagnostic tool in the catheterization laboratory. FFR evaluation studies were based on pressure recordings during steady-state maximum hyperemia. Commercially available computer systems detect the lowest Pd/Pa ratio automatically, which might not always be measured during steady-state hyperemia. We sought to compare the automatically detected FFR and true steady-state FFR. Pressure measurement traces of 105 coronary lesions from 77 patients with intermediate coronary lesions or multivessel disease were reviewed. In all patients, hyperemia had been achieved by intravenous adenosine administration using a dosage of 140 µg/kg/min. In 42 lesions (40%) automatically detected FFR was lower than true steady-state FFR. Mean bias was 0.009 (standard deviation 0.015, limits of agreement -0.02, 0.037). In 4 lesions (3.8%) both methods lead to different treatment recommendations, in all 4 cases instantaneous wave-free ratio confirmed steady-state FFR. Automatically detected FFR was slightly lower than steady-state FFR in more than one-third of cases. Consequently, interpretation of automatically detected FFR values closely below the cutoff value requires special attention.

  2. Plea for stellarator funding raps tokamaks

    International Nuclear Information System (INIS)

    Blake, M.

    1992-01-01

    The funding crunch in magnetic confinement fusion development has moved the editor of a largely technical publication to speak out on a policy issue. James A. Rome, who edits Stellarator News from the Fusion Energy Division at Oak Ridge National Laboratory, wrote an editorial that appeared on the front page of the May 1992 issue. It was titled open-quotes The US Stellarator Program: A Time for Renewal,close quotes and while it focused chiefly on that subject (and lamented the lack of funding for the operation of the existing ATF stellarator at Oak Ridge), it also cited some of the problems inherent in the mainline MCF approach--the tokamak--and stated that if the money can be found for further tokamak design upgrades, it should also be found for stellarators. Rome wrote, open-quotes There is growing recognition in the US, and elsewhere, that the conventional tokamak does not extrapolate to a commercially competitive energy source except with very high field coils ( 1000 MWe).close quotes He pointed up open-quotes the difficulty of simultaneously satisfying conflicting tokamak requirements for efficient current drive, high bootstrap-current fraction, complete avoidance of disruptions, adequate beta limits, and edge-plasma properties compatible with improved (H-mode) confinement and acceptable erosion of divertor plates.close quotes He then called for support for the stellarator as open-quotes the only concept that has performance comparable to that achieved in tokamaks without the plasma-current-related limitations listed above.close quotes

  3. Experiments in the HT-7 Superconducting Tokamak

    International Nuclear Information System (INIS)

    Wan Baonian

    2002-01-01

    The HT-7 tokamak experiment research has made important progress. The main efforts have dealt with quasi-steady-state operation, lower-hybrid (LH) current drive (LHCD), plasma heating with ion cyclotron range of frequencies (ICRF), ion Bernstein waves (IBWs), fueling with pellets and supersonic molecular beams, first-wall conditioning techniques, and plasma and wall interaction. Plasma parameters in the experiments were much improved; for example, n e = 6.5 x 10 19 m -3 , and a plasma pulse length of >10 s was achieved. ICRF boronization and conditioning resulted in Z eff close to unity. Steady-state full LH wave current drive has been achieved for >3 s. LHCD rampup and recharge have also been demonstrated. The best [eta] CD exp of 10 19 m -2 A/W is achieved. Quasi-steady-state H-mode-like plasmas with a density close to the Greenwald limit were obtained by LHCD, where energy confinement time was nearly five times longer than in the ohmic case. The synergy between the IBW, pellet, and LHCD was investigated. New doped graphite as limiter material and ferritic steel used to reduce the ripples have been developed. Research on the mechanism of microturbulence has been extensively carried out experimentally

  4. Study of a compact reversed shear Tokamak reactor

    International Nuclear Information System (INIS)

    Okano, K.; Asaoka, Y.; Tomabechi, K.; Yoshida, T.; Hiwatari, R.; Ogawa, Y.; Tokimatsu, K.; Yamamoto, T.; Inoue, N.; Murakami, Y.

    1998-01-01

    A reversed shear configuration, which was observed recently in some tokamak experiments, might have a possibility to realize compact and cost-competitive tokamak reactors. In this study, a compact (low cost) commercial reactor based on the shear reversed high beta equilibrium with β N =5.5, is considered, namely the compact reversed shear tokamak, CREST-1. The CREST-1 is designed with a moderate aspect ratio (R/a=3.4), which will allow us to experimentally develop this CREST concept by ITER. This will be very advantageous with regard to the fusion development strategy. The current profile for the reversed shear operation is sustained and controlled in steady state by bootstrap (88%), beam and r driven currents, which are calculated by a neo-classical model code in 3D geometry. The MHD stability has been checked by an ideal MHD stability analysis code (ERATO) and it has been confirmed that the ideal low n kink, ballooning and Mercier modes are stable while a closed conductive shell is required for stability. Such a compact tokamak can be cost-competitive as an electric power source in the 21st century and it is one possible scenario in realizing a commercial fusion reactor beyond the ITER project. (orig.)

  5. Status of tokamak research

    International Nuclear Information System (INIS)

    Rawls, J.M.

    1979-10-01

    An overall review of the tokamak program is given with particular emphasis upon developments over the past five years in the theoretical and experimental elements of the program. A summary of the key operating parameters for the principal tokamaks throughout the world is given. Also discussed are key issues in plasma confinement, plasma heating, and tokamak design

  6. A programmatic framework for the Tokamak Physics Experiment (TPX)

    International Nuclear Information System (INIS)

    Thomassen, K.I.; Goldston, R.J.; Neilson, G.H.

    1993-01-01

    Significant advances have been made in the confinement of reactor-grade plasmas, so that the authors are now preparing for experiments at the open-quotes power breakevenclose quotes level in the JET and TFTR experiments. In ITER the authors will extend the performance of tokamaks into the burning plasma regime, develop the technology of fusion reactors, and produce over a gigawatt of fusion power. Besides taking these crucial steps toward the technical feasibility of fusion, the authors must also take steps to ensure its economic acceptability. The broad requirements for economically attractive tokamak reactors based on physics advancements have been set forth in a number of studies. An advanced physics data base is emerging from a physics program of concept improvement using existing tokamaks around the world. This concept improvements program is emerging as the primary focus of the US domestic tokamak program, and a key element of that program is the proposed Tokamak Physics Experiment (TPX). With TPX the authors can develop the scientific data base for compact, continuously-operating fusion reactors, using advanced steady-state control techniques to improve plasma performance. The authors can develop operating techniques needed to ensure the success of ITER and provide first-time experience with several key fusion reactor technologies. This paper explains the relationships of TPX to the current US fusion physics program, to the ITER program, and to the development of an attractive tokamak demonstration plant for this next stage in the fusion program

  7. LANSCE steady state unperturbed thermal neutron fluxes at 100 μA

    International Nuclear Information System (INIS)

    Russell, G.J.

    1989-01-01

    The ''maximum'' unperturbed, steady state thermal neutron flux for LANSCE is calculated to be 2 /times/ 10 13 n/cm 2 -s for 100 μA of 800-MeV protons. This LANSCE neutron flux is a comparable entity to a steady state reactor thermal neutron flux. LANSCE perturbed steady state thermal neutron fluxes have also been calculated. Because LANSCE is a pulsed neutron source, much higher ''peak'' (in time) neutron fluxes can be generated than at a steady state reactor source. 5 refs., 5 figs

  8. Optimization of OH coil recharging scenario of quasi-steady operation in tokamak fusion reactor by lower hybrid wave current drive

    International Nuclear Information System (INIS)

    Sugihara, M.; Fujisawa, N.; Nishio, S.; Iida, H.

    1984-01-01

    Using simple physical model equations optimum plasma and rf parameters for an OH coil recharging scenario of quasi-steady operation in tokamak fusion reactors by lower hybrid wave current drive are studied. In this operation scenario, the minimization of the recharge time of OH coils or stored energy for it will be essential and can be realized by driving sufficient current without increasing the plasma temperature too much. Low density and broad spectrum are shown to be favorable for the minimization. In the case of FER (Fusion Experimental Reactor under design study in JAERI) baseline parameters, the minimum recharge time is 3-5 s/V s. (orig.)

  9. Influence of fast alpha diffusion and thermal alpha buildup on tokamak reactor performance

    International Nuclear Information System (INIS)

    Uckan, N.A.; Tolliver, J.S.; Houlberg, W.A.; Attenberger, S.E.

    1988-01-01

    The effect of fast alpha diffusion and thermal alpha accumulation on the confinement capability of a candidate Engineering Test Reactor plasma (Tokamak Ignition/Burn Experimental Reactor) in achieving ignition and steady-state driven operation has been assessed using both global and 1-1/2-dimensional transport models. Estimates are made of the threshold for radial diffusion of fast alphas and thermal alpha buildup. It is shown that a relatively low level of radial transport, when combined with large gradients in the fast alpha density, leads to a significant radial flow with a deleterious effect on plasma performance. Similarly, modest levels of thermal alpha concentration significantly influence the ignition and steady-state burn capability

  10. Calculation analysis on steady state natural circulation characteristics

    International Nuclear Information System (INIS)

    Wang Fei; Nie Changhua; Huang Yanping

    2005-01-01

    The calculation results of single-phase steady state natural circulation characteristics by using Retran02 code have been presented, good agreement is achieved between the verified calculation result and the experimental data which were conducted at a test facility. Based on the calculation model, some sensibility analyses were made and much deeper understanding for single-phase steady state natural circulation characteristics was obtained. (author)

  11. Selection of steady states in planar Darcy convection

    International Nuclear Information System (INIS)

    Tsybulin, V.G.; Karasoezen, B.; Ergenc, T.

    2006-01-01

    The planar natural convection of an incompressible fluid in a porous medium is considered. We study the selection of steady states under temperature perturbations on the boundary. A selection map is introduced in order to analyze the selection of a steady state from a continuous family of equilibria which exists under zero boundary conditions. The results of finite-difference modeling for a rectangular enclosure are presented

  12. Steady-state oxygen-solubility in niobium

    International Nuclear Information System (INIS)

    Schulze, K.; Jehn, H.

    1977-01-01

    During annealing of niobium in oxygen in certain temperature and pressure ranges steady states are established between the absorption of molecular oxygen and the evaporation of volatile oxides. The oxygen concentration in the niobium-oxygen α-solid solution is a function of oxygen pressure and temperature and has been redetermined in the ranges 10 -5 - 10 -2 Pa O 2 and 2,070 - 2,470 K. It follows differing from former results the equation csub(o) = 9.1 x 10 -6 x sub(po2) x exp (502000/RT) with csub(o) in at.-ppm, sub(po2) in Pa, T in K, R = 8.31 J x mol -1 x K -1 . The existence of steady states is limited to a temperature range from 1870 to 2470 K and to oxygen concentrations below the solubility limit given by solidus and solvus lines in the T-c diagram. In the experiments high-purity niobium wires with a specific electrical ratio rho (273 K)/rho(4.2 K) > 5,000 have been gassed under isothermal-isobaric conditions until the steady state has been reached. The oxygen concentration has been determined analytically by vacuum fusion extraction with platinum-flux technique as well as by electrical residual resistivity measurements at 4.2 K. (orig.) [de

  13. Steady-state entanglement activation in optomechanical cavities

    Science.gov (United States)

    Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio

    2014-02-01

    Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.

  14. Adaptive optimal stochastic state feedback control of resistive wall modes in tokamaks

    International Nuclear Information System (INIS)

    Sun, Z.; Sen, A.K.; Longman, R.W.

    2006-01-01

    An adaptive optimal stochastic state feedback control is developed to stabilize the resistive wall mode (RWM) instability in tokamaks. The extended least-square method with exponential forgetting factor and covariance resetting is used to identify (experimentally determine) the time-varying stochastic system model. A Kalman filter is used to estimate the system states. The estimated system states are passed on to an optimal state feedback controller to construct control inputs. The Kalman filter and the optimal state feedback controller are periodically redesigned online based on the identified system model. This adaptive controller can stabilize the time-dependent RWM in a slowly evolving tokamak discharge. This is accomplished within a time delay of roughly four times the inverse of the growth rate for the time-invariant model used

  15. Explaining Cold-Pulse Dynamics in Tokamak Plasmas Using Local Turbulent Transport Models

    Science.gov (United States)

    Rodriguez-Fernandez, P.; White, A. E.; Howard, N. T.; Grierson, B. A.; Staebler, G. M.; Rice, J. E.; Yuan, X.; Cao, N. M.; Creely, A. J.; Greenwald, M. J.; Hubbard, A. E.; Hughes, J. W.; Irby, J. H.; Sciortino, F.

    2018-02-01

    A long-standing enigma in plasma transport has been resolved by modeling of cold-pulse experiments conducted on the Alcator C-Mod tokamak. Controlled edge cooling of fusion plasmas triggers core electron heating on time scales faster than an energy confinement time, which has long been interpreted as strong evidence of nonlocal transport. This Letter shows that the steady-state profiles, the cold-pulse rise time, and disappearance at higher density as measured in these experiments are successfully captured by a recent local quasilinear turbulent transport model, demonstrating that the existence of nonlocal transport phenomena is not necessary for explaining the behavior and time scales of cold-pulse experiments in tokamak plasmas.

  16. Cryogenic analysis of forced-cooled, superconducting TF magnets for compact tokamak reactors

    International Nuclear Information System (INIS)

    Kerns, J.A.; Slack, D.S.; Miller, J.R.

    1988-01-01

    Current designs for compact tokamak reactors require the toroidal- field (TF) superconducting magnets to produce fields from 10 to 15 T at the winding pack, using high-current densities to high nuclear heat loads (greater than 1 kW/coil in some instances), which are significantly greater than the conduction and radiation heat loads for which cryogenic systems are usually designed. A cryogenic system for the TF winding pack for two such tokamak designs has been verified by performing a detailed, steady-state heat-removal analysis. Helium properties along the forced-cooled conductor flow path for a range of nuclear heat loads have been calculated. The results and implications of this analysis are presented. 12 refs., 6 figs

  17. Progress towards steady-state operation and real time control of internal transport barriers in JET

    International Nuclear Information System (INIS)

    Litaudon, X.

    2002-01-01

    In JET advanced tokamak research mainly focuses on plasmas with internal transport barriers (ITBs), generated by modifications of the current profile. The formerly developed optimised shear regime with low magnetic shear in the plasma center has been extended to deeply reversed magnetic shear configurations. ITBs occur at much lower access powers. The achievement of high fusion performance is reported in deeply reversed magnetic shear configuration. The generation of plasmas with wide ITBs in this configuration has allowed an extension of the accessible normalised toroidal beta at high magnetic field. We report on the successful sustainment and control of the electron and ion ITB in full current drive operation with a large fraction of bootstrap current. Progress towards the steady state capability of ITB plasmas includes techniques to avoid strong ELM activity and the newly developed real time control of the local ITB strength. Thanks to the real time control of the ITB characteristics the improved confinement state is maintained in a more reproducible and stable manner in quasi-stationary conditions. (author)

  18. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  19. Development of synchronous generator saturation model from steady-state operating data

    Energy Technology Data Exchange (ETDEWEB)

    Jadric, Martin; Despalatovic, Marin; Terzic, Bozo [FESB University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split (Croatia)

    2010-11-15

    A new method to estimate and model the saturated synchronous reactances of hydroturbine generators from operating data is presented. For the estimation process, measurements of only the generator steady-state variables are required. First, using a specific procedure, the field to armature turns ratio is estimated from measured steady-state variables at constant power generation and various excitation conditions. Subsequently, for each set of steady-state operating data, saturated synchronous reactances are identified. Fitting surfaces, defined as polynomial functions in two variables, are later used to model these saturated reactances. It is shown that the simpler polynomial functions may be used to model saturation at the steady-state than at the dynamic conditions. The developed steady-state model is validated with measurements performed on the 34 MVA hydroturbine generator. (author)

  20. Steady state and transient critical heat flux examinations

    International Nuclear Information System (INIS)

    Szabados, L.

    1978-02-01

    In steady state conditions within the P.W.R. parameter range the critical heat flux correlations based on local parameters reproduce the experimental data with less deviations than those based on system parameters. The transient experiments were restricted for the case of power transients. A data processing method for critical heat flux measurements has been developed and the applicability of quasi steady state calculation has been verified. (D.P.)

  1. Test-bench for characterization of steady state magnetic sensors parameters in wide temperature range

    International Nuclear Information System (INIS)

    Kovařík, Karel; Ďuran, Ivan; Sentkerestiová, Jana; Šesták, David

    2013-01-01

    Highlights: •Prepared test bench for calibration of steady state magnetic sensors. •Test-bench design optimized for calibration up to 300 °C. •Test-bench is remotely controllable and allows long term measurements. •Construction allows easy manipulation with even irradiated samples. -- Abstract: Magnetic sensors in ITER tokamak and in other future fusion devices will face an environment with temperature often elevated well above 200 °C. Dedicated test benches are needed to allow characterization of performance of magnetic sensors at such elevated temperatures. This contribution describes realization of test bench for calibration of steady state magnetic sensors based on Hall effect. The core of the set-up is the coil providing DC calibration magnetic field. Optimization of coils design to ensure its compatibility with elevated temperature up to 300 °C is described. Optimized coil was manufactured, and calibrated both at room temperature and at temperature of 250 °C. Measured calibration magnetic field of the coil biased by a 30 A commercial laboratory power supplies is 224 mT. The coil is supplemented by PID regulated air cooling system for fine control of sensors temperature during measurements. Data acquisition system is composed from PC A/D converter boards with resolution below 1 μV. The key parameters of the test bench are remotely controllable and the system allows long term continuous measurements including tests of irradiated samples. The performance of the test bench is demonstrated on recent measurements with metal Hall sensors based on thin copper sensing layers

  2. The Markov process admits a consistent steady-state thermodynamic formalism

    Science.gov (United States)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  3. The use of internal transport barriers in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Challis, C D [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2004-12-01

    Internal transport barriers (ITBs) can provide high tokamak confinement at modest plasma current. This is desirable for operation with most of the current driven non-inductively by the bootstrap mechanism, as currently envisaged for steady-state power plants. Maintaining such plasmas in steady conditions with high plasma purity is challenging, however, due to MHD instabilities and impurity transport effects. Significant progress has been made in the control of ITB plasmas: the pressure profile has been varied using the barrier location; q-profile modification has been achieved with non-inductive current drive, and means have been found to affect density peaking and impurity accumulation. All these features are, to some extent, interdependent and must be integrated self-consistently to demonstrate a sound basis for extrapolation to future devices.

  4. Solution of generalized control system equations at steady state

    International Nuclear Information System (INIS)

    Vilim, R.B.

    1987-01-01

    Although a number of reactor systems codes feature generalized control system models, none of the models offer a steady-state solution finder. Indeed, if a transient is to begin from steady-state conditions, the user must provide estimates for the control system initial conditions and run a null transient until the plant converges to steady state. Several such transients may have to be run before values for control system demand signals are found that produce the desired plant steady state. The intent of this paper is (a) to present the control system equations assumed in the SASSYS reactor systems code and to identify the appropriate set of initial conditions, (b) to describe the generalized block diagram approach used to represent these equations, and (c) to describe a solution method and algorithm for computing these initial conditions from the block diagram. The algorithm has been installed in the SASSYS code for use with the code's generalized control system model. The solution finder greatly enhances the effectiveness of the code and the efficiency of the user in running it

  5. Steady-state spheromak reactor studies

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported

  6. Steady state of tapped granular polygons

    International Nuclear Information System (INIS)

    Carlevaro, Carlos M; Pugnaloni, Luis A

    2011-01-01

    The steady state packing fraction of a tapped granular bed is studied for different grain shapes via a discrete element method. Grains are monosized regular polygons, from triangles to icosagons. Comparisons with disc packings show that the steady state packing fraction as a function of the tapping intensity presents the same general trends in polygon packings. However, better packing fractions are obtained, as expected, for shapes that can tessellate the plane (triangles, squares and hexagons). In addition, we find a sharp transition for packings of polygons with more than 13 vertices signaled by a discontinuity in the packing fraction at a particular tapping intensity. Density fluctuations for most shapes are consistent with recent experimental findings in disc packing; however, a peculiar behavior is found for triangles and squares

  7. Who will save the tokamak - Harry Potter, Arnold Schwarzenegger, or Shaquille O'Neil?

    Science.gov (United States)

    Freidberg, J.; Mangiarotti, F.; Minervini, J.

    2014-10-01

    The tokamak is the current leading contender for a fusion power reactor. The reason for the preeminence of the tokamak is its high quality plasma physics performance relative to other concepts. Even so, it is well known that the tokamak must still overcome two basic physics challenges before becoming viable as a DEMO and ultimately a reactor: (1) the achievement of non-inductive steady state operation, and (2) the achievement of robust disruption free operation. These are in addition to the PMI problems faced by all concepts. The work presented here demonstrates by means of a simple but highly credible analytic calculation that a ``standard'' tokamak cannot lead to a reactor - it is just not possible to simultaneously satisfy all the plasma physics plus engineering constraints. Three possible solutions, some more well-known than others, to the problem are analyzed. These visual image generating solutions are defined as (1) the Harry Potter solution, (2) the Arnold Schwarzenegger solution, and (3) the Shaquille O'Neil solution. Each solution will be described both qualitatively and quantitatively at the meeting.

  8. The ARIES tokamak fusion reactor study

    International Nuclear Information System (INIS)

    Bartlit, J.R.; Bathke, C.G.; Krakowski, R.A.; Miller, R.L.; Beecraft, W.R.; Hogan, J.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Whitson, J.C.; Blanchard, J.P.; Emmert, G.A.; Santarius, J.F.; Sviatoslavsky, I.N.; Wittenberg, L.J.

    1989-01-01

    The ARIES study is a community effort to develop several visions of the tokamak as fusion power reactors. The aims are to determine their potential economics, safety, and environmental features and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak in 2nd stability regime and employs both potential advances in the physics and expected advances in technology and engineering; and ARIES-III is a conceptual D 3 He reactor. This paper focuses on the ARIES-I design. Parametric systems studies show that the optimum 1st stability tokamak has relatively low plasma current (∼ 12 MA), high plasma aspect ratio (∼ 4-6), and high magnetic field (∼ 24 T at the coil). ARIES-I is 1,000 MWe (net) reactor with a plasma major radius of 6.5 m, a minor radius of 1.4 m, a neutron wall loading of about 2.8 MW/m 2 , and a mass power density of about 90 kWe/ton. The ARIES-I reactor operates at steady state using ICRF fast waves to drive current in the plasma core and lower-hybrid waves for edge-plasma current drive. The current-drive system supplements a significant (∼ 57%) bootstrap current contribution. The impurity control system is based on high-recycling poloidal divertors. Because of the high field and large Lorentz forces in the toroidal-field magnets, innovative approaches with high-strength materials and support structures are used. 24 refs., 4 figs., 1 tab

  9. High Beta Steady State Research and Future Directions on JT-60U and JFT-2M

    Science.gov (United States)

    Ishida, Shinichi

    2003-10-01

    JT-60U and JFT-2M research is focused on high beta steady state operation towards economically and environmentally attractive reactors. In JT-60U, a high-βp H-mode plasma was sustained with βN 2.7 for 7.4 s in which neoclassical tearing modes (NTMs) limited the attainable β_N. Real-time tracking NTM stabilization system using ECCD demonstrated complete suppression of NTM leading to recovery of βN before onset of NTM. Performance in a fully non-inductive H-mode plasma was improved up to n_i(0) τE T_i(0) = 3.1 x 10^20 keV s m-3 using N-NBCD with βN 2.4, HH_y,2=1.2 and bootstrap fraction f_BS 0.5. ECH experiments extended the confinement enhancement for dominantly electron heated reversed shear plasmas up to HH_y,2 2 at T_e/Ti 1.25. A world record ECCD efficiency, 4.2 x 10^18 A/W/m^2, was achieved at Te 23 keV with a highly localized central current density. Innovative initiation and current build-up without center solenoid currents were established by LHCD/ECH and bootstrap current up to f_BS 0.9. In JFT-2M, the inside of the vacuum vessel wall was fully covered with low-activation ferritic steel plates to investigate their use in plasmas near fusion conditions. High βN plasmas were produced up to βN = 3.3 with an internal transport barrier (ITB) and a steady H-mode edge. A new H-mode regime with steady high recycling (HRS) and an ITB was exploited leading to βN H_89P 6.2 at n_e/nG 0.7. In 2003, JT-60U will be able to operate for the duration up to 65 s at 1 MA/2.7 T and the heating/current-drive duration up to 30 s at 17 MW to prolong high-βN and/or high-f_BS discharges with feedback controls. JFT-2M is planning to implement wall stabilization experiments in 2004 to pursue plasmas above the ideal no-wall limit using a ferritic wall. The modification of JT-60 to a fully superconducting tokamak is under discussion to explore high-β steady state operation in collision-less plasmas well above no-wall limit with ferritic wall in a steady state.

  10. Steady-state propagation of interface corner crack

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre

    2013-01-01

    Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... on the finite element method with iterative adjustment of the crack front to estimate the critical delamination stresses as a function of the fracture criterion and corner angles. The implication of the results on the delamination is discussed in terms of crack front profiles and the critical stresses...... for propagation and the angle of intersection of the crack front with the free edge....

  11. Steady-state leaching of tritiated water from silica gel

    DEFF Research Database (Denmark)

    Das, H.A.; Hou, Xiaolin

    2009-01-01

    Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....

  12. Quasi steady-state aerodynamic model development for race vehicle simulations

    Science.gov (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  13. Diagnostics upgrade and capability available for physics study on EAST tokamak

    International Nuclear Information System (INIS)

    Hu Liqun

    2013-01-01

    As a consequence of employment of many new techniques and upgrade of EAST superconducting tokamak to enhance divertor plasma performance, significant achievement has been realized in 2012, including 400s long pulse plasma, stationary 35s H-mode and 3.45s H-mode with only ion cyclotron resonant heating (ICRH) etc. To approach steady-state (SS) operation of high-performance plasmas and address key physics on fusion reactor-relevent subjects, recently, capability of the plasma heating and current drive of EAST machine are doubled with total auxiliary injection power over 20 MW, including new methodology of neutral beam injection (NBI) and electron cyclotron resonant heating (ECRH). Most diagnostics have been upgraded to be more compact and integrated due to limited port window and space available, and new advanced neutral-beam related diagnostics have been developed as well, to provide profile of all key parameters for study and understanding critical issues specific to SS high performance plasma. (author)

  14. Transient heat transport studies in JET conventional and advanced tokamak plasmas

    International Nuclear Information System (INIS)

    Mantica, P.; Coffey, I.; Dux, R.

    2003-01-01

    Transient transport studies are a valuable complement to steady-state analysis for the understanding of transport mechanisms and the validation of physics-based transport models. This paper presents results from transient heat transport experiments in JET and their modelling. Edge cold pulses and modulation of ICRH (in mode conversion scheme) have been used to provide detectable electron and ion temperature perturbations. The experiments have been performed in conventional L-mode plasmas or in Advanced Tokamak regimes, in the presence of an Internal Transport Barrier (ITB). In conventional plasmas, the issues of stiffness and non-locality have been addressed. Cold pulse propagation in ITB plasmas has provided useful insight into the physics of ITB formation. The use of edge perturbations for ITB triggering has been explored. Modelling of the experimental results has been performed using both empirical models and physics-based models. Results of cold pulse experiments in ITBs have also been compared with turbulence simulations. (author)

  15. Assessing Quasi-Steady State in Evaporation of Sessile Drops by Diffusion Models

    Science.gov (United States)

    Martin, Cameron; Nguyen, Hoa; Kelly-Zion, Peter; Pursell, Chris

    2017-11-01

    The vapor distributions surrounding sessile drops of methanol are modeled as the solutions of the steady-state and transient diffusion equations using Matlab's PDE Toolbox. The goal is to determine how quickly the transient diffusive transport reaches its quasi-steady state as the droplet geometry is varied between a Weber's disc, a real droplet shape, and a spherical cap with matching thickness or contact angle. We assume that the only transport mechanism at work is diffusion. Quasi-steady state is defined using several metrics, such as differences between the transient and steady-state solutions, and change in the transient solution over time. Knowing the vapor distribution, the gradient is computed to evaluate the diffusive flux. The flux is integrated along the surface of a control volume surrounding the drop to obtain the net rate of diffusion out of the volume. Based on the differences between the transient and steady-state diffusive fluxes at the discrete points along the control-volume surface, the time to reach quasi-steady state evaporation is determined and is consistent with other proposed measurements. By varying the dimensions of the control volume, we can also assess what regimes have equivalent or different quasi-steady states for different droplet geometries. Petroleum Research Fund.

  16. TIBER II: an upgraded tokamak igntion/burn experimental reactor

    International Nuclear Information System (INIS)

    Henning, C.D.; Logan, B.G.; Perkins, L.J.

    1986-01-01

    We are disIgning a minimum-size Tokamak ignition/Burn Reactor (TIBER II). This design incorporates physics requirements, neutron wall loading and fluence parameters that will make it compatible with a nuclear testing mission. Reactor relevant physics will be tested by using current drive and steady-state operation. Although the design accommodates several current drive options, including neutral beams, the base case uses a combination of lower hybrid and electron-cyclotron radio frequency power. Minimum neutron shielding, compact structures, high magnet-current densities, and remotely maintainable vacuum seals, all contribute to the compact size

  17. State diagrams of tokamaks and state transitions

    International Nuclear Information System (INIS)

    Minardi, E.

    1992-01-01

    In a simple one-fluid cylindrical model of transport and of dissipative effects, the family of the magnetic states of the Tokamak which correspond to a vanishing entropy production in the confinement region is characterized by a define relation or ''state equation'' involving the relevant parameters of the discharge. An investigation is made as to how the entropy production changes when the current density profile is rearranged by a perturbation which conserves the poloidal magnetic flux. It is shown that for a sufficiently short time interval, that is to say t 2 E τ s where τ E is the energy confinement time and τ s is the resistive time, neighbouring bifurcating equilibria exist which can be reached with a flux-conserving transition and with increase of the magnetic entropy. The family of these new states can also be characterized by a state equation involving the relevant discharge parameters. When the state equations of the two families are simultaneously satisfied by the same set of parameter values, a flux-conserving, entropy-increasing transition may take place between states of the two families. The modifications of the current density and of the temperature profiles involved in the transition and the conditions that the discharge parameters should satisfy in order that the transition could occur are investigated. (author)

  18. Study of critical beta non-circular tokamak equilibria sustained in steady state by beam driven currents

    International Nuclear Information System (INIS)

    Okano, K.; Ogawa, Y.; Naitou, H.

    1988-07-01

    A new MHD-equilibrium/current-drive analysis code was developed to analyse the high beta tokamak equilibria consistent with the beam driven current profiles. In this new code, the critical beta equilibrium, which is stable against the ballooning mode, the kink mode and the Mercier mode, is determined first using MHD equilibrium and stability analysis codes (EQLAUS/ERATO). Then, the current drive parameters and the plasma parameters, required to sustain this critical beta equilibrium, are determined by iterative calculations. The beam driven current profiles are evaluated by the Fokker-Planck calculations on individual flux surfaces, where the toroidal effects on the beam ion and plasma electron trajectories are considered. The pressure calculation takes into account the beam ion and fast alpha components. A peculiarity of our new method is that the obtained solution is not only consistent with the MHD equilibrium but also consistent with the critical beta limit conditions, in the current profile and the pressure profile. Using this new method, β ∼ 21 % bean and β ∼ 6 % D-type critical beta equilibria were scanned for various parameters; the major radius, magnetic field, temperature, injection energy, etc. It was found that the achievable Q value for the bean type was always about 30 % larger than for the D-type cases, where Q = fusion power/beam power. With strong beanness, Q ∼ 6 for DEMO type tokamaks (∼500 MWth) and Q ∼ 20 for power reactor size (4.5 GWth) are achievable. On the other hand, the Q value would not exceed sixteen for the D-type machines. (author)

  19. Theoretical issues in tokamak confinement: (i) Internal/edge transport barriers and (ii) runaway avalanche confinement

    International Nuclear Information System (INIS)

    Connor, J.W.; Helander, P.; Thyagaraja, A.; Andersson, F.; Fueloep, T.; Eriksson, L.-G.; Romanelli, M.

    2001-01-01

    This paper summarises a number of distinct, but related, pieces of work on key confinement issues for tokamaks, in particular the formation of internal and edge transport barriers, both within turbulent and neoclassical models, and radial diffusion of avalanching runaway electrons. First-principle simulations of tokamak turbulence and transport using the two-fluid, electromagnetic, global code CUTIE are described. The code has demonstrated the spontaneous formation of internal transport barriers near mode rational surfaces, in qualitative agreement with observations on JET and RTP. The theory of neoclassical transport in an impure, toroidal plasma has been extended to allow for steeper pressure and temperature gradients than are usually considered, and is then found to become nonlinear under conditions typical of the tokamak edge. For instance, the particle flux is found to be a nonmonotonic function of the gradients, thus allowing for a bifurcation in the ion particle flux. Finally, it is shown that radial diffusion caused by magnetic fluctuations can effectively suppress avalanches of runaway electrons if the fluctuation amplitude exceeds δB/B∼10 -3 . (author)

  20. Current Challenges in the First Principle Quantitative Modelling of the Lower Hybrid Current Drive in Tokamaks

    Science.gov (United States)

    Peysson, Y.; Bonoli, P. T.; Chen, J.; Garofalo, A.; Hillairet, J.; Li, M.; Qian, J.; Shiraiwa, S.; Decker, J.; Ding, B. J.; Ekedahl, A.; Goniche, M.; Zhai, X.

    2017-10-01

    The Lower Hybrid (LH) wave is widely used in existing tokamaks for tailoring current density profile or extending pulse duration to steady-state regimes. Its high efficiency makes it particularly attractive for a fusion reactor, leading to consider it for this purpose in ITER tokamak. Nevertheless, if basics of the LH wave in tokamak plasma are well known, quantitative modeling of experimental observations based on first principles remains a highly challenging exercise, despite considerable numerical efforts achieved so far. In this context, a rigorous methodology must be carried out in the simulations to identify the minimum number of physical mechanisms that must be considered to reproduce experimental shot to shot observations and also scalings (density, power spectrum). Based on recent simulations carried out for EAST, Alcator C-Mod and Tore Supra tokamaks, the state of the art in LH modeling is reviewed. The capability of fast electron bremsstrahlung, internal inductance li and LH driven current at zero loop voltage to constrain all together LH simulations is discussed, as well as the needs of further improvements (diagnostics, codes, LH model), for robust interpretative and predictive simulations.

  1. Conceptual design of a Tokamak hybrid power reactor (THPR)

    International Nuclear Information System (INIS)

    Matsuoka, F.; Imamura, Y.; Inoue, M.; Asami, N.; Kasai, M.; Yanagisawa, I.; Ida, T.; Takuma, T.; Yamaji, K.; Akita, S.

    1987-01-01

    A conceptual design of a fusion-fission hybrid tokamak reactor has been carried out to investigate the engineering feasibility and promising scale of a commercial hybrid reactor power plant. A tokamak fusion driver based on the recent plasma scaling law is introduced in this design study. The major parameters and features of the reactor are R=6.06 m, a=1.66 m, Ip=11.8 MA, Pf=668 MW, double null divertor plasma and steady state burning with RF current drive. The fusion power has been determined with medium energy multiplication in the blanket so as to relieve thermal design problems and produce electric power around 1000 MW. Uranium silicide is used for the fast fission blanket material to promise good nuclear performance. The coolant of the blanket is FLIBE and the tritium breeding blanket material is Li 2 O ceramics providing breeding ratio above unity

  2. Factors affecting the minimum capital cost of a tokamak reactor

    International Nuclear Information System (INIS)

    Hancox, R.

    1981-01-01

    The Mk IIA Culham conceptual tokamak reactor design is a 2500 MWe steady-state reactor developed on the basis of a cost optimisation. A revised 1200 MWe conceptual design, the Mk IIB, used a lower wall loading and lower thermodynamic efficiency. A detailed costing of the Mk IIB design, however, showed it to have an unacceptably high capital cost. Since this high cost is a common characteristic of many fusion reactor designs, the cost optimisation of the Mk II design has been reconsidered. (author)

  3. A dynamic state observer for real-time reconstruction of the tokamak plasma profile state and disturbances

    NARCIS (Netherlands)

    Felici, F.; De Baar, M.; Steinbuch, M.

    2014-01-01

    A dynamic observer is presented which can reconstruct the internal state of a tokamak fusion plasma, consisting of the spatial distribution of current and temperature, from measurements. Today, the internal plasma state is usually reconstructed by solving an ill-conditioned inversion problem using a

  4. Critical Design Issues of Tokamak Cooling Water System of ITER's Fusion Reactor

    International Nuclear Information System (INIS)

    Kim, Seokho H.; Berry, Jan

    2011-01-01

    U.S. ITER is responsible for the design, engineering, and procurement of the Tokamak Cooling Water System (TCWS). The TCWS transfers heat generated in the Tokamak to cooling water during nominal pulsed operation 850 MW at up to 150 C and 4.2 MPa water pressure. This water contains radionuclides because impurities (e.g., tritium) diffuse from in-vessel components and the vacuum vessel by water baking at 200 240 C at up to 4.4MPa, and corrosion products become activated by neutron bombardment. The system is designated as safety important class (SIC) and will be fabricated to comply with the French Order concerning nuclear pressure equipment (December 2005) and the EU Pressure Equipment Directive using ASME Section VIII, Div 2 design codes. The complexity of the TCWS design and fabrication presents unique challenges. Conceptual design of this one-of-a-kind cooling system has been completed with several issues that need to be resolved to move to next stage of the design. Those issues include flow balancing between over hundreds of branch pipelines in parallel to supply cooling water to blankets, determination of optimum flow velocity while minimizing the potential for cavitation damage, design for freezing protection for cooling water flowing through cryostat (freezing) environment, requirements for high-energy piping design, and electromagnetic impact to piping and components. Although the TCWS consists of standard commercial components such as piping with valves and fittings, heat exchangers, and pumps, complex requirements present interesting design challenges. This paper presents a brief description of TCWS conceptual design and critical design issues that need to be resolved.

  5. Steady state theta pinch concept for slow formation of FRC

    International Nuclear Information System (INIS)

    Hirano, K.

    1987-05-01

    A steady state high beta plasma flow through a channel along the magnetic field increasing downstream can be regarded as a ''steady state theta pinch'', because if we see the plasma riding on the flow we should observe very similar process taking place in a theta pinch. Anticipating to produce an FRC without using very high voltage technics such as the ones required in a conventional theta pinch, we have studied after the analogy a ''steady state reversed field theta pinch'' which is brought about by steady head-on collision of counter plasma streams along the channel as ejected from two identical co-axial plasma sources mounted at the both ends of the apparatus. The ideal Poisson and shock adiabatic flow models are employed for the analysis of the steady colliding process. It is demonstrated that an FRC involving large numbers of particles is produced only by the weak shock mode which is achieved in case energetic plasma flow is decelerated almost to be stagnated through Poisson adiabatic process before the streams are collided. (author)

  6. A new perspective on steady-state cosmology: from Einstein to Hoyle

    OpenAIRE

    O'Raifeartaigh, Cormac; Mitton, Simon

    2015-01-01

    We recently reported the discovery of an unpublished manuscript by Albert Einstein in which he attempted a 'steady-state' model of the universe, i.e., a cosmic model in which the expanding universe remains essentially unchanged due to a continuous formation of matter from empty space. The manuscript was apparently written in early 1931, many years before the steady-state models of Fred Hoyle, Hermann Bondi and Thomas Gold. We compare Einstein’s steady-state cosmology with that of Hoyle, Bondi...

  7. Toroidal visco-resistive magnetohydrodynamic steady states contain vortices

    International Nuclear Information System (INIS)

    Bates, J.W.; Montgomery, D.C.

    1998-01-01

    Poloidal velocity fields seem to be a fundamental feature of resistive toroidal magnetohydrodynamic (MHD) steady states. They are a consequence of force balance in toroidal geometry, do not require any kind of instability, and disappear in the open-quotes straight cylinderclose quotes (infinite aspect ratio) limit. If a current density j results from an axisymmetric toroidal electric field that is irrotational inside a torus, it leads to a magnetic field B such that ∇x(jxB) is nonvanishing, so that the Lorentz force cannot be balanced by the gradient of any scalar pressure in the equation of motion. In a steady state, finite poloidal velocity fields and toroidal vorticity must exist. Their calculation is difficult, but explicit solutions can be found in the limit of low Reynolds number. Here, existing calculations are generalized to the more realistic case of no-slip boundary conditions on the velocity field and a circular toroidal cross section. The results of this paper strongly suggest that discussions of confined steady states in toroidal MHD must include flows from the outset. copyright 1998 American Institute of Physics

  8. Transient and steady-state currents in epoxy resin

    International Nuclear Information System (INIS)

    Guillermin, Christophe; Rain, Pascal; Rowe, Stephen W

    2006-01-01

    Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T g = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm -1 with a sample thickness of 0.5 mm. Above T g , transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T g , the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm -1 have been measured

  9. Transient and steady-state currents in epoxy resin

    Energy Technology Data Exchange (ETDEWEB)

    Guillermin, Christophe [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France); Rain, Pascal [Laboratoire d' Electrostatique et de Materiaux Dielectriques (LEMD), CNRS, 25 avenue des Martyrs, 38042 Grenoble Cedex 9 (France); Rowe, Stephen W [Schneider Electric Industries S.A.S., 37 quai Paul-Louis Merlin, 38050 Grenoble Cedex 9 (France)

    2006-02-07

    Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T{sub g} = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm{sup -1} with a sample thickness of 0.5 mm. Above T{sub g}, transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T{sub g}, the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm{sup -1} have been measured.

  10. Tungsten dust remobilization under steady-state and transient plasma conditions

    Directory of Open Access Journals (Sweden)

    S. Ratynskaia

    2017-08-01

    Full Text Available Remobilization is one of the most prominent unresolved fusion dust-relevant issues, strongly related to the lifetime of dust in plasma-wetted regions, the survivability of dust on hot plasma-facing surfaces and the formation of dust accumulation sites. A systematic cross-machine study has been initiated to investigate the remobilization of tungsten micron-size dust from tungsten surfaces implementing a newly developed technique based on controlled pre-adhesion by gas dynamics methods. It has been utilized in a number of devices and has provided new insights on remobilization under steady-state and transient conditions. The experiments are interpreted with contact mechanics theory and heat conduction models.

  11. Efficient steady-state solver for hierarchical quantum master equations

    Science.gov (United States)

    Zhang, Hou-Dao; Qiao, Qin; Xu, Rui-Xue; Zheng, Xiao; Yan, YiJing

    2017-07-01

    Steady states play pivotal roles in many equilibrium and non-equilibrium open system studies. Their accurate evaluations call for exact theories with rigorous treatment of system-bath interactions. Therein, the hierarchical equations-of-motion (HEOM) formalism is a nonperturbative and non-Markovian quantum dissipation theory, which can faithfully describe the dissipative dynamics and nonlinear response of open systems. Nevertheless, solving the steady states of open quantum systems via HEOM is often a challenging task, due to the vast number of dynamical quantities involved. In this work, we propose a self-consistent iteration approach that quickly solves the HEOM steady states. We demonstrate its high efficiency with accurate and fast evaluations of low-temperature thermal equilibrium of a model Fenna-Matthews-Olson pigment-protein complex. Numerically exact evaluation of thermal equilibrium Rényi entropies and stationary emission line shapes is presented with detailed discussion.

  12. Proceeding of A3 foresight program seminar on critical physics issues specific to steady state sustainment of high-performance plasmas 2015

    International Nuclear Information System (INIS)

    Hu Liqun; Morita, Shigeru; Oh, Yeong-Kook

    2015-12-01

    To enhance close collaborations among scientists in three Asian countries (China, Japan and Korea), A3 foresight program on Plasma Physics was launched from August 2012 under the auspice of JSPS (Japan), NRF (Korea) and NSFC (China). The main purpose of this project is to solve several key physics issues through joint experiments on three Asian advanced fully superconducting fusion devices (EAST in China, LHD in Japan and KSTAR in Korea) and other magnetic confinement devices to carry out multi-faceted and complementary physics researches. To summarize the progress and achievement in the second academic year under this A3 foresight program, the 6th workshop hosted by Institute of Plasma Physics, Chinese Academy of Sciences was held in Nanning during 6-9 January, 2015. The research collaboration carried out by young scientists was also encouraged with participation of graduated students. The three topics of steady state sustainment of magnetic configurations, edge and divertor plasma control and confinement of alpha particles are mainly discussed in addition to relevant studies in small devices. This issue is the collection of 41 papers presented at the entitled meeting. The 39 of the presented papers are indexed individually. (J.P.N.)

  13. Steady state flow evaluations for passive auxiliary feedwater system of APR

    International Nuclear Information System (INIS)

    Park, Jongha; Kim, Jaeyul; Seong, Hoje; Kang, Kyoungho

    2012-01-01

    This paper briefly introduces a methodology to evaluate steady state flow of APR+ Passive Auxiliary Feedwater System (PAFS). The PAFS is being developed as a safety grade passive system to completely replace the existing active Auxiliary Feedwater System (AFWS). Natural circulation cooling can be generally classified into the single-phase, two-phase, and boiling-condensation modes. The PAF is designed to be operated in a boiling-condensation natural circulation mode. The steady-state flow rate should be equal to the steady-state boiling/condensation rate determined by the steady-state energy and momentum balances in the PAFS. The determined steady-state flow rate can be used in the design optimization for the natural circulation loop of the PAFS through the steady-state momentum balance. Since the retarding force, which is to be balanced by the driving force in the natural circulation system design depends on the reliable evaluation of the success of a natural circulation system design depends on the reliable evaluation of the pressure loss coefficients. In PAFS, the core decay heat is released by natural circulation flow between the S G secondary side and the Passive Condensation Heat Exchanger (PCHX) that is immersed in the Passive Condensation Cooling Tank (PCCT). The PCCT is located on the top of Auxiliary building The driving force is determined by the difference between the S/G (heat Source) secondary water level and condensation liquid (heat sink) level. It will overcome retarding force at flowrate in the system, which is determined by vaporization and condensation of the steam which is generated at the S/G by the latent heat in system. In this study, the theoretical method to estimate the steady state flow rate in boiling-condensation natural circulation system is developed and compared with test results

  14. LIDAR Thomson scattering for advanced tokamaks. Final report

    International Nuclear Information System (INIS)

    Molvik, A.W.; Lerche, R.A.; Nilson, D.G.

    1996-01-01

    The LIDAR Thomson Scattering for Advanced Tokamaks project made a valuable contribution by combining LLNL expertise from the MFE Program: tokamak design and diagnostics, and the ICF Program and Physics Dept.: short-pulse lasers and fast streak cameras. This multidisciplinary group evaluated issues involved in achieving a factor of 20 higher high spatial resolution (to as small as 2-3 mm) from the present state of the art in LIDAR Thomson scattering, and developed conceptual designs to apply LIDAR Thomson scattering to three tokamaks: Upgraded divertor measurements in the existing DIII-D tokamak; Both core and divertor LIDAR Thomson scattering in the proposed (now cancelled) TPX; and core, edge, and divertor LIDAR Thomson scattering on the presently planned International Tokamak Experimental Reactor, ITER. Other issues were evaluated in addition to the time response required for a few millimeter spatial resolution. These include the optimum wavelength, 100 Hz operation of the laser and detectors, minimizing stray light - always the Achilles heel of Thomson scattering, and time dispersion in optics that could prevent good spatial resolution. Innovative features of our work included: custom short pulsed laser concepts to meet specific requirements, use of a prism spectrometer to maintain a constant optical path length for high temporal and spatial resolution, the concept of a laser focus outside the plasma to ionize gas and form an external fiducial to use in locating the plasma edge as well as to spread the laser energy over a large enough area of the inner wall to avoid laser ablation of wall material, an improved concept for cleaning windows between shots by means of laser ablation, and the identification of a new physics issue - nonlinear effects near a laser focus which could perturb the plasma density and temperature that are to be measured

  15. PXIe based data acquisition and control system for ECRH systems on SST-1 and Aditya tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jatinkumar J., E-mail: jatin@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar (India); Shukla, B.K.; Rajanbabu, N.; Patel, H.; Dhorajiya, P.; Purohit, D. [Institute for Plasma Research, Bhat, Gandhinagar (India); Mankadiya, K. [Optimized Solutions Pvt. Ltd (India)

    2016-11-15

    Highlights: • Data Aquisition and control system (DAQ). • PXIe hardware–(PXI–PCI bus extension for Instrumention Express). • RHVPS–Regulated High Voltage Power supply. • SST1–Steady state superconducting tokamak. - Abstract: In Steady State Superconducting (SST-1) tokamak, various RF heating sub-systems are used for plasma heating experiments. In SST-1, Two Electron Cyclotron Resonance Heating (ECRH) systems have been installed for pre-ionization, heating and current drive experiments. The 42 GHz gyrotron based ECRH system is installed and in operation with SST-1 plasma experiments. The 82.6 GHz gyrotron delivers 200 kW CW power (1000 s) while the 42 GHz gyrotron delivers 500 kW power for 500 ms duration. Each gyrotron system consists of various auxiliary power supplies, the crowbar unit and the water cooling system. The PXIe (PCI bus extension for Instrumentation Express)bus based DAC (Data Acquisition and Control) system has been designed, developed and under implementation for safe and reliable operation of the gyrotron. The Control and Monitoring Software applications have been developed using NI LabView 2014 software with real time support on windows platform.

  16. On the generation of Alfven wave current drive in low aspect ratio Tokamaks with neoclassical conductivity

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.; Komoshvili, K.

    1998-01-01

    Several low aspect ratio (spherical) Tokamaks (ST's) are now in operation or under construction. These devices would permit cost-effective and attractive embodiment of future fusion reactors: they would provide high β, good confinement and steady state operation at modest field values. Now, a steady state reactor has to be sustained by non-inductively driven currents. Recently, the generation of non-inductive current drive by Alfven waves (AWCD) has been investigated theoretically within the framework of ideal (E p arallel=0) MHD and non-ideal, resistive (E p arallel≠0) MHD; however, in all these cases, the tokamak device consisted of a cylindrical plasma with simulated toroidal effects. Rather encouraging results have been obtained. In this work we further investigate AWCD in ST's as follows: (i) we use consistent equilibrium profiles with neoclassical conductivity corresponding to an ohmic START discharge; (ii) incorporate effects due to neoclassical conductivity in the elements of the resistive MHD dielectric tensor, in the solution of the full (E p arallel≠0) wave equation as well as in the calculation of AWCD; and (iii) carry out a systematic search for antenna parameters optimizing the AWCD. (author)

  17. On the generation of Alfven wave current drive in low aspect ratio Tokamaks with neoclassical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Cuperman, S.; Komoshvili, K. [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel)

    1998-08-01

    Several low aspect ratio (spherical) Tokamaks (ST's) are now in operation or under construction. These devices would permit cost-effective and attractive embodiment of future fusion reactors: they would provide high {beta}, good confinement and steady state operation at modest field values. Now, a steady state reactor has to be sustained by non-inductively driven currents. Recently, the generation of non-inductive current drive by Alfven waves (AWCD) has been investigated theoretically within the framework of ideal (E{sub p}arallel=0) MHD and non-ideal, resistive (E{sub p}arallel{ne}0) MHD; however, in all these cases, the tokamak device consisted of a cylindrical plasma with simulated toroidal effects. Rather encouraging results have been obtained. In this work we further investigate AWCD in ST's as follows: (i) we use consistent equilibrium profiles with neoclassical conductivity corresponding to an ohmic START discharge; (ii) incorporate effects due to neoclassical conductivity in the elements of the resistive MHD dielectric tensor, in the solution of the full (E{sub p}arallel{ne}0) wave equation as well as in the calculation of AWCD; and (iii) carry out a systematic search for antenna parameters optimizing the AWCD. (author)

  18. PXIe based data acquisition and control system for ECRH systems on SST-1 and Aditya tokamak

    International Nuclear Information System (INIS)

    Patel, Jatinkumar J.; Shukla, B.K.; Rajanbabu, N.; Patel, H.; Dhorajiya, P.; Purohit, D.; Mankadiya, K.

    2016-01-01

    Highlights: • Data Aquisition and control system (DAQ). • PXIe hardware–(PXI–PCI bus extension for Instrumention Express). • RHVPS–Regulated High Voltage Power supply. • SST1–Steady state superconducting tokamak. - Abstract: In Steady State Superconducting (SST-1) tokamak, various RF heating sub-systems are used for plasma heating experiments. In SST-1, Two Electron Cyclotron Resonance Heating (ECRH) systems have been installed for pre-ionization, heating and current drive experiments. The 42 GHz gyrotron based ECRH system is installed and in operation with SST-1 plasma experiments. The 82.6 GHz gyrotron delivers 200 kW CW power (1000 s) while the 42 GHz gyrotron delivers 500 kW power for 500 ms duration. Each gyrotron system consists of various auxiliary power supplies, the crowbar unit and the water cooling system. The PXIe (PCI bus extension for Instrumentation Express)bus based DAC (Data Acquisition and Control) system has been designed, developed and under implementation for safe and reliable operation of the gyrotron. The Control and Monitoring Software applications have been developed using NI LabView 2014 software with real time support on windows platform.

  19. Einstein's steady-state theory: an abandoned model of the cosmos

    Science.gov (United States)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  20. Internal transport barriers: critical physics issues?

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X [Association Euratom-CEA, DSM, Departement de Recherches sur La Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2006-05-15

    Plasmas regimes with improved core energy confinement properties, i.e. with internal transport barriers (ITB), provide a possible route towards simultaneous high fusion performance and continuous tokamak reactor operation in a non-inductive current drive state. High core confinement regimes should be made compatible with a dominant fraction of the plasma current self-generated (pressure-driven) by the bootstrap effect while operating at high normalized pressure and moderate current. Furthermore, ITB regimes with 'non-stiff' plasma core pressure break the link observed in standard inductive operation between fusion performances and plasma pressure at the edge, thus offering a new degree of freedom in the tokamak operational space. Prospects and critical issues for using plasmas with enhanced thermal core insulation as a basis for steady tokamak reactor operation are reviewed in the light of the encouraging experimental and modelling results obtained recently (typically in the last two years). An extensive set of data from experiments carried out worldwide has been gathered on ITB regimes covering a wide range of parameters (q-profile, T{sub i}/T{sub e}, gradient length, shaping, normalized toroidal Larmor radius, collisionality, Mach number, etc). In the light of the progress made recently, the following critical physics issues relevant to the extrapolation of ITB regimes to next-step experiments, such as ITER, are addressed: 1. conditions for ITB formation and existence of a power threshold,; 2. ITB sustainment at T{sub i} {approx} T{sub e}, with low toroidal torque injection, low central particle fuelling but at high density and low impurity concentration,; 3. control of confinement for sustaining wide ITBs that encompass a large volume at high {beta}{sub N},; 4. real time profile control (q and pressure) with high bootstrap current and large fraction of alpha-heating and; 5. compatibility of core with edge transport barriers or with external core

  1. Energy cost of walking: solving the paradox of steady state in the presence of variable walking speed.

    Science.gov (United States)

    Plasschaert, Frank; Jones, Kim; Forward, Malcolm

    2009-02-01

    Measurement of the energy cost of walking in children with cerebral palsy is used for baseline and outcome assessment. However, such testing relies on the establishment of steady state that is deemed present when oxygen consumption is stable. This is often assumed when walking speed is constant but in practice, speed can and does vary naturally. Whilst constant speed is achievable on a treadmill, this is often impractical clinically, thus rendering an energy cost test to an element of subjectivity. This paper attempts to address this issue by presenting a new method for calculating energy cost of walking that automatically applies a mathematically defined threshold for steady state within a (non-treadmill) walking trial and then strips out all of the non-steady state events within that trial. The method is compared with a generic approach that does not remove non-steady state data but rather uses an average value over a complete walking trial as is often used in the clinical environment. Both methods were applied to the calculation of several energy cost of walking parameters of self-selected walking speed in a cohort of unimpaired subjects and children with cerebral palsy. The results revealed that both methods were strongly correlated for each parameter but showed systematic significant differences. It is suggested that these differences are introduced by the rejection of non-steady state data that would otherwise have incorrectly been incorporated into the calculation of the energy cost of walking indices during self-selected walking with its inherent speed variation.

  2. Hybrid neural network for density limit disruption prediction and avoidance on J-TEXT tokamak

    Science.gov (United States)

    Zheng, W.; Hu, F. R.; Zhang, M.; Chen, Z. Y.; Zhao, X. Q.; Wang, X. L.; Shi, P.; Zhang, X. L.; Zhang, X. Q.; Zhou, Y. N.; Wei, Y. N.; Pan, Y.; J-TEXT team

    2018-05-01

    Increasing the plasma density is one of the key methods in achieving an efficient fusion reaction. High-density operation is one of the hot topics in tokamak plasmas. Density limit disruptions remain an important issue for safe operation. An effective density limit disruption prediction and avoidance system is the key to avoid density limit disruptions for long pulse steady state operations. An artificial neural network has been developed for the prediction of density limit disruptions on the J-TEXT tokamak. The neural network has been improved from a simple multi-layer design to a hybrid two-stage structure. The first stage is a custom network which uses time series diagnostics as inputs to predict plasma density, and the second stage is a three-layer feedforward neural network to predict the probability of density limit disruptions. It is found that hybrid neural network structure, combined with radiation profile information as an input can significantly improve the prediction performance, especially the average warning time ({{T}warn} ). In particular, the {{T}warn} is eight times better than that in previous work (Wang et al 2016 Plasma Phys. Control. Fusion 58 055014) (from 5 ms to 40 ms). The success rate for density limit disruptive shots is above 90%, while, the false alarm rate for other shots is below 10%. Based on the density limit disruption prediction system and the real-time density feedback control system, the on-line density limit disruption avoidance system has been implemented on the J-TEXT tokamak.

  3. Transients and burn dynamics in advanced tokamak fusion reactors

    International Nuclear Information System (INIS)

    Mantsinen, M.J.; Salomaa, R.R.E.

    1994-01-01

    Transient behavior of D 3 He-tokamak reactors is investigated numerically using a zero-dimensional code with prescribed profiles. Pure D 3 He start-up is compared to DT-assisted and DT-ignited start-ups. We have considered two categories of transients which could extinguish steady fusion burn: fuelling interruptions and sudden confinement changes similar to the L → H transients occurring in present-day tokamaks. Shutdown with various current and density ramp-down scenarios are studied, too. (author)

  4. Overview of the STARFIRE reference commercial tokamak fusion power reactor design

    International Nuclear Information System (INIS)

    Baker, C.C.; Abdou, M.A.; DeFreece, D.A.; Trachsel, C.A.; Graumann, D.; Barry, K.

    1980-01-01

    The purpose of the STARFIRE study is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The major features for STARFIRE include a steady-state operating mode based on a continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup, superconducting EF coils outside the TF superconducting coils, fully remote maintenance, and a low-activation shield

  5. A semi-analytical solution to accelerate spin-up of a coupled carbon and nitrogen land model to steady state

    Directory of Open Access Journals (Sweden)

    J. Y. Xia

    2012-10-01

    Full Text Available The spin-up of land models to steady state of coupled carbon–nitrogen processes is computationally so costly that it becomes a bottleneck issue for global analysis. In this study, we introduced a semi-analytical solution (SAS for the spin-up issue. SAS is fundamentally based on the analytic solution to a set of equations that describe carbon transfers within ecosystems over time. SAS is implemented by three steps: (1 having an initial spin-up with prior pool-size values until net primary productivity (NPP reaches stabilization, (2 calculating quasi-steady-state pool sizes by letting fluxes of the equations equal zero, and (3 having a final spin-up to meet the criterion of steady state. Step 2 is enabled by averaged time-varying variables over one period of repeated driving forcings. SAS was applied to both site-level and global scale spin-up of the Australian Community Atmosphere Biosphere Land Exchange (CABLE model. For the carbon-cycle-only simulations, SAS saved 95.7% and 92.4% of computational time for site-level and global spin-up, respectively, in comparison with the traditional method (a long-term iterative simulation to achieve the steady states of variables. For the carbon–nitrogen coupled simulations, SAS reduced computational cost by 84.5% and 86.6% for site-level and global spin-up, respectively. The estimated steady-state pool sizes represent the ecosystem carbon storage capacity, which was 12.1 kg C m−2 with the coupled carbon–nitrogen global model, 14.6% lower than that with the carbon-only model. The nitrogen down-regulation in modeled carbon storage is partly due to the 4.6% decrease in carbon influx (i.e., net primary productivity and partly due to the 10.5% reduction in residence times. This steady-state analysis accelerated by the SAS method can facilitate comparative studies of structural differences in determining the ecosystem carbon storage capacity among biogeochemical models. Overall, the

  6. Steady-state models in electrophoresis: from isotachophoresis to capillary zone electrophoresis

    NARCIS (Netherlands)

    Beckers, J.L.

    1995-01-01

    Although all electrophoretic techniques are closely allied and controlled by the same rules, we often distinguish between steady-state and dynamic models in the modeling of electrophoretic processes, whereby steady-state models are applied for isotachophoresis (ITP) and dynamic models are applied

  7. Summary discussion: An integrated advanced tokamak reactor

    International Nuclear Information System (INIS)

    Sauthoff, N.R.

    1994-01-01

    The tokamak concept improvement workshop addressed a wide range of issues involved in the development of a more attractive tokamak. The agenda for the workshop progressed from a general discussion of the long-range energy context (with the objective being the identification of a set of criteria and ''figures of merit'' for measuring the attractiveness of a tokamak concept) to particular opportunities for the improvement of the tokamak concept. The discussions concluded with a compilation of research program elements leading to an improved tokamak concept

  8. X-Ray Spectral Analysis of the Steady States of GRS1915+105

    Science.gov (United States)

    Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-05-01

    We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.

  9. Energy management in multi stage evaporator through a steady and dynamic state analysis

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Om Prakash; Manik, Gaurav; Mohammed, Toufiq Haji [Indian Institute of Technology Roorkee, Roorkee (India)

    2017-10-15

    Increasing energy demand, high cost of energy and global warming issues across the globe require energy intensive industries, such as paper mills to improve energy efficiency. Multi-stage evaporators used to concentrate the black liquor in such mills form its most energy consuming unit and require a strong understanding of steady and unsteady state behavior to ensure energy savings. The modeling of nonlinear heptads’ effect system yielded a set of complex nonlinear algebraic and differential equations that are analyzed using Interior-point method and state space representation. Dynamic response of product concentration and system vapor temperatures along with system stability and controllability have been explored by disturbing the flow rate, concentration and temperature of feed, and fresh steam flow rate. Simulations predict that steam flow rate, feed flow rate and its concentration invariably are major controlling factors (in decreasing order) of vapor temperature and product concentration. The interactive behavior between different effects translates into slower responses of the effects with increasing separation from disturbance source. This steady state and transient study opens many new explanations to this relatively less explored area and helps to propose and implement industrial PID controllers to reduce steam consumption and control product quality.

  10. Basin stability measure of different steady states in coupled oscillators

    Science.gov (United States)

    Rakshit, Sarbendu; Bera, Bidesh K.; Majhi, Soumen; Hens, Chittaranjan; Ghosh, Dibakar

    2017-04-01

    In this report, we investigate the stabilization of saddle fixed points in coupled oscillators where individual oscillators exhibit the saddle fixed points. The coupled oscillators may have two structurally different types of suppressed states, namely amplitude death and oscillation death. The stabilization of saddle equilibrium point refers to the amplitude death state where oscillations are ceased and all the oscillators converge to the single stable steady state via inverse pitchfork bifurcation. Due to multistability features of oscillation death states, linear stability theory fails to analyze the stability of such states analytically, so we quantify all the states by basin stability measurement which is an universal nonlocal nonlinear concept and it interplays with the volume of basins of attractions. We also observe multi-clustered oscillation death states in a random network and measure them using basin stability framework. To explore such phenomena we choose a network of coupled Duffing-Holmes and Lorenz oscillators which are interacting through mean-field coupling. We investigate how basin stability for different steady states depends on mean-field density and coupling strength. We also analytically derive stability conditions for different steady states and confirm by rigorous bifurcation analysis.

  11. Molecular control of steady-state dendritic cell maturation and immune homeostasis.

    Science.gov (United States)

    Hammer, Gianna Elena; Ma, Averil

    2013-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.

  12. Dark Entangled Steady States of Interacting Rydberg Atoms

    DEFF Research Database (Denmark)

    Dasari, Durga; Mølmer, Klaus

    2013-01-01

    their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...

  13. Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints.

    Science.gov (United States)

    Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan

    2016-08-22

    Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the

  14. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  15. The scrape-off layer of a tokamak during the thermal phase of disruption

    International Nuclear Information System (INIS)

    Konkashbaev, I.K.

    1993-01-01

    The physical processes taking place in the scrape-off layer of a tokamak with a poloidal diverter during disruption are considered. It is shown that the physical processes in the scrape-off layer during disruption differ qualitatively from those in steady state. The main difference is that the plasma parameters in the scrape-off layer changes so as to facilitate transport along the field lines to the diverter plates, increasing the energy flux through the separatrix to disruption by a factor of 10 4 . It is found that for this the plasma in the scrape-off layer must already be hot and collisionless. During the transit time hot ions from the tokamak reach the diverter plates with essentially no energy loss. Because the electron velocity is large, an oppositely directed flux the wall plasma can be treated as infinite, i.e., electron recycling occurs. The energy lost to the scrape-off layer by anomalous thermal conductivity (diffusion) is transferred through turbulence to this cold electron stream by means of the two-stream instability. The mean electron energy ≅ 1 keV is substantially greater than that is steady state, T e ≅ 50 eV. Thus, an ion flux with E i ≅ 10 keV and a collisionless gas with T e ≅ 1 keV interact with the diverter plates. 3 refs., 4 figs

  16. A design of steady state fusion burner

    International Nuclear Information System (INIS)

    Hasegawa, Akira; Hatori, Tadatsugu; Itoh, Kimitaka; Ikuta, Takashi; Kodama, Yuji.

    1975-01-01

    We present a brief design of a steady state fusion burner in which a continuous burning of nuclear fuel may be achieved with output power of a gigawatt. The laser fusion is proposed to ignite the fuel. (auth.)

  17. Interactions of solid and liquid lithium with steady state hydrogen and helium plasmas

    International Nuclear Information System (INIS)

    Hirooka, Y.; Nishikawa, M.; Ohgaki, H.; Ohtsuka, Y.

    2005-01-01

    A variety of innovative Plasma-Facing Component (PFC) concepts, employing moving solid or liquid surfaces, have recently been proposed in order to resolve technical issues, associated with the applications of currently used PFCs in future steady state fusion devices. As the first step to evaluate the concept using flowing-liquids for PFCs, steady state hydrogen and helium plasma interactions with solid and standing liquid lithium have been investigated in the present work, using the H α and He-I spectroscopy at the ion bombarding energies up to 150eV and at the lithium temperatures between room temperature and 480 deg C. Data indicate that hydrogen recycling over liquid lithium is clearly reduced, relative to that over solid lithium, whereas helium recycling does not show the same trend. From the kinetic analysis of these recycling time constant data, the activation energies for the overall recycling processes have been evaluated to be 0.02±0.01eV, both for hydrogen and helium plasmas. Also, it has been found that the activation energy is nearly independent of ion bombarding energy. (author)

  18. Start-up and ramp-up of the PLT tokamak by lower hybrid waves

    International Nuclear Information System (INIS)

    Jobes, F.C.; von Goeler, S.; Bernabei, S.

    1985-01-01

    Lower hybrid current drive (LHCD) is an inherently steady-state means of maintaining the poloidal field of a tokamak reactor. However, the energy losses of LHCD, which are proportional to density, are projected to be too great in a fusion reactor for LHCD to be economically feasible during the burn state of the reaction cycle. The authors maintain that LHCD could be extremely useful in restoring poloidal field energy between burns. In situations not requiring a rapid build up, LHCD appears, by extrapolation from present experiments, to be capable of supplying the full required poloidal field energy. In this paper, experiments have been performed on PLT and other tokamaks to examine the role of LHCD in start-up and ramp-up, as well as to examine the efficiency of stady-state current drice. Both the start-up and the ramp-up experiments were quite successful, with the start-up experiment obtaining currents up to 20% of full current for PLT, and the ramp-up experiments obtaining ramp-up efficiencies of approximately 20%

  19. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  20. Quasi-steady state natural convection in a tilted porous layer

    Energy Technology Data Exchange (ETDEWEB)

    Robillard, L.; Vasseur, P. (Ecole Polytechnique, Montreal, PQ (Canada))

    1992-12-01

    Natural convection in an inclined porous layer heated or cooled on one side, when its other walls are insulated, has several important engineering applications. These include solar power collection, regenerative heat exchangers, and high performance insulation for buildings and cold storage. Although the problem is basically an unsteady state one, it is known that if the heating (or cooling) process is maintained for a sufficiently long time, a quasi-steady state is approached. Quasi-steady state laminar natural convection in an inclined porous layer is studied analytically and numerically. On the basis of the Darcy-Oberbeck-Boussinesq equations, the problem is solved analytically in the limit of a thin porous layer heated on one side by a heat flux while the other boundaries are maintained adiabatic. For quasi-steady state, the flow and temperature fields overall heat transfer rates are obtained in terms of the controlling parameters and the onset of convection in a bottom heated horizantal system is predicted. It is also demonstrated for the case of a bottom-heated layer that for sufficiently small inclinations, multiple unicellular quasi-steady states exist, some of which are unstable. A numerical study of the same phenomenon, obtained by solving the complete set of governing equations, is conducted. Good agreement is found between the analytical predictions and the numerical simulation. 22 refs., 6 figs.

  1. Long pulse neutral beam system for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Grisham, L.R.; Bowen, O.N.; Dahlgren, F.; Edwards, J.W.; Kamperschroer, J.; Newman, R.; O'Connor, T.; Ramakrishnan, S.; Rossi, G.; Stevenson, T.; Halle, A. von; Wright, K.E.

    1995-01-01

    The Tokamak Physics Experiment (TPX) is planned as a long-pulse or steady-state machine to serve as a successor to the Tokamak Fusion Test Reactor (TFTR). The neutral beam component of the heating and current drive systems will be provided by a TFTR beamline modified to allow operation for pulse lengths of 1000s. This paper presents a brief overview of the conceptual design which has been carried out to determine the changes to the beamline and power supply components that will be required to extend the pulse length from its present limitation of 1s at full power. The modified system, like the present one, will be capable of injecting about 8MW of power as neutral deuterium. The initial operation will be with a single beamline oriented co-directional to the plasma current, but the TPX system design is capable of accommodating an additional co-directional beamline and a counter-directional beamline. ((orig.))

  2. Design and Structural Analysis for the Vacuum Vessel of Superconducting Tokamak JT-60SC

    International Nuclear Information System (INIS)

    Kudo, Y.; Sakurai, S.; Masaki, K.; Urata, K.; Sasajima, T.; Matsukawa, M.; Sakasai, A.; Ishida, S.

    2003-01-01

    A modification of the JT-60 is planned to be a superconducting tokamak (JT-60SC) in order to establish steady-state operation of high beta plasma for 100 s, and to ensure the applicability of ferritic steel as a reduced activation material for reactor relevant break-even class plasmas. This paper describes the detailed design of the vacuum vessel, which has a unique structure for cost effective manufacturing, as well as structural analysis results for a feasibility study

  3. On Steady-State Tropical Cyclones

    Science.gov (United States)

    2014-01-01

    Press: London. Marks FD, Black PG, Montgomery MT, Burpee RW. 2008. Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Weather Rev. 136: 1237... hurricanes ; tropical cyclones; typhoons; steady-state Received 18 April 2013; Revised 25 November 2013; Accepted 29 December 2013; Published online in Wiley...the concept of the ‘mature stage’ of a hurricane vortex. The definition of the ‘mature stage’ is commonly based on the time period in which the maximum

  4. STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Or, Ben; Alexander, Tal [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100 (Israel)

    2016-04-01

    A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity, and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity, dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in restricted volumes of phase-space may affect the steady state substantially.

  5. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed engines: (1) The following duty cycle applies for discrete-mode testing: D2 mode number Engine speed...

  6. Analysis of steady state creep of southeastern New Mexico bedded salt

    International Nuclear Information System (INIS)

    Herrmann, W.; Wawersik, W.R.; Lauson, H.S.

    1980-03-01

    Steady state creep rates have been obtained from a large suite of existing experimental creep data relating to bedded rock salt from the Salado formation of S.E. New Mexico. Experimental conditions covered an intermediate temperature range from 22 0 C to 200 0 C, and shear stresses from 1000 psi (7 MPa) to 6000 psi (31 MPa). An expression, based on a single diffusion controlled dislocation climb mechanism, has been found to fit the observed dependence of steady state creep rate on shear stress and temperature, yielding an activation energy of 12 kcal/mole (50 kJ/mole) and a stress exponent of 4.9. Multiple regression analysis revealed a dependence on stratigraphy, but no statistically significant dependence on pressure of specimen size. No consistent dilatancy or compaction associated with steady state creep was found, although some individual specimens dilated or compacted during creep. The steady state creep data were found to agree very well with creep data for both bedded and dome salt from a variety of other locations

  7. Chlorine decay under steady and unsteady-state hydraulic conditions

    DEFF Research Database (Denmark)

    Stoianov, Ivan; Aisopou, Angeliki

    2014-01-01

    This paper describes a simulation framework for the scale-adaptive hydraulic and chlorine decay modelling under steady and unsteady-state flows. Bulk flow and pipe wall reaction coefficients are replaced with steady and unsteady-state reaction coefficients. An unsteady decay coefficient is defined...... which depends upon the absolute value of shear stress and the rate of change of shear stress for quasi-unsteady and unsteady-state flows. A preliminary experimental and analytical investigation was carried out in a water transmission main. The results were used to model monochloramine decay...... and these demonstrate that the dynamic hydraulic conditions have a significant impact on water quality deterioration and the rapid loss of disinfectant residual. © 2013 The Authors....

  8. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1986-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  9. 40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix..., App. II Appendix II to Part 1042—Steady-State Duty Cycles (a) The following duty cycles apply as specified in § 1042.505(b)(1): (1) The following duty cycle applies for discrete-mode testing: E3 mode No...

  10. New Approaches for Very Short-term Steady-State Analysis of An Electrical Distribution System with Wind Farms

    Directory of Open Access Journals (Sweden)

    Antonio Bracale

    2010-04-01

    Full Text Available Distribution networks are undergoing radical changes due to the high level of penetration of dispersed generation. Dispersed generation systems require particular attention due to their incorporation of uncertain energy sources, such as wind farms, and due to the impacts that such sources have on the planning and operation of distribution networks. In particular, the foreseeable, extensive use of wind turbine generator units in the future requires that distribution system engineers properly account for their impacts on the system. Many new technical considerations must be addressed, including protection coordination, steady-state analysis, and power quality issues. This paper deals with the very short-term, steady-state analysis of a distribution system with wind farms, for which the time horizon of interest ranges from one hour to a few hours ahead. Several wind-forecasting methods are presented in order to obtain reliable input data for the steady-state analysis. Both deterministic and probabilistic methods were considered and used in performing deterministic and probabilistic load-flow analyses. Numerical applications on a 17-bus, medium-voltage, electrical distribution system with various wind farms connected at different busbars are presented and discussed.

  11. Emergence of advance waves in a steady-state universe

    Energy Technology Data Exchange (ETDEWEB)

    Hobart, R.H.

    1979-10-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state.

  12. Emergence of advance waves in a steady-state universe

    International Nuclear Information System (INIS)

    Hobart, R.H.

    1979-01-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state

  13. Technology issues for decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Walton, G.R.

    1994-01-01

    The approach for decommissioning the Tokamak Fusion Test Reactor has evolved from a conservative plan based on cutting up and burying all of the systems, to one that considers the impact tritium contamination will have on waste disposal, how large size components may be used as their own shipping containers, and even the possibility of recycling the materials of components such as the toroidal field coils and the tokamak structure. In addition, the project is more carefully assessing the requirements for using remotely operated equipment. Finally, valuable cost database is being developed for future use by the fusion community

  14. An advanced computational algorithm for systems analysis of tokamak power plants

    International Nuclear Information System (INIS)

    Dragojlovic, Zoran; Rene Raffray, A.; Najmabadi, Farrokh; Kessel, Charles; Waganer, Lester; El-Guebaly, Laila; Bromberg, Leslie

    2010-01-01

    A new computational algorithm for tokamak power plant system analysis is being developed for the ARIES project. The objective of this algorithm is to explore the most influential parameters in the physical, technological and economic trade space related to the developmental transition from experimental facilities to viable commercial power plants. This endeavor is being pursued as a new approach to tokamak systems studies, which examines an expansive, multi-dimensional trade space as opposed to traditional sensitivity analyses about a baseline design point. The new ARIES systems code consists of adaptable modules which are built from a custom-made software toolbox using object-oriented programming. The physics module captures the current tokamak physics knowledge database including modeling of the most-current proposed burning plasma experiment design (FIRE). The engineering model accurately reflects the intent and design detail of the power core elements including accurate and adjustable 3D tokamak geometry and complete modeling of all the power core and ancillary systems. Existing physics and engineering models reflect both near-term as well as advanced technology solutions that have higher performance potential. To fully assess the impact of the range of physics and engineering implementations, the plant cost accounts have been revised to reflect a more functional cost structure, supported by an updated set of costing algorithms for the direct, indirect, and financial cost accounts. All of these features have been validated against the existing ARIES-AT baseline case. The present results demonstrate visualization techniques that provide an insight into trade space assessment of attractive steady-state tokamaks for commercial use.

  15. Investigation of steady-state tokamak issues by long pulse experiments on Tore Supra

    Czech Academy of Sciences Publication Activity Database

    Giruzzi, G.; Abgrall, R.; Allegretti, L.; Ané, J.M.; Angelino, P.; Aniel, T.; Argouarch, A.; Artaud, J.F.; Balme, S.; Basiuk, V.; Bayetti, P.; Bécoulet, A.; Bécoulet, M.; Begrambekov, L.; Benkadda, M.S.; Benoit, F.; Berger-by, G.; Bertrand, B.; Beyer, P.; Blum, J.; Boilson, D.; Bottollier-Curtet, H.; Bouchand, C.; Bouquey, F.; Bourdelle, C.; Brémond, F.; Brémond, S.; Brosset, C.; Bucalossi, J.; Buravand, Y.; Cara, P.; Carpentier, S.; Casati, A.; Chaibi, O.; Chantant, M.; Chappuis, P.; Chatelier, M.; Chevet, G.; Ciazynski, D.; Ciraolo, G.; Clairet, F.; Clary, J.; Colas, L.; Corre, Y.; Courtois, X.; Crouseilles, N.; Darmet, G.; Davi, M.; Daviot, R.; De Esch, H.; Decker, J.; Decool, P.; Delchambre, E.; Delmas, E.; Delpech, L.; Desgranges, C.; Devynck, P.; Doceul, L.; Dolgetta, N.; Douai, D.; Dougnac, H.; Duchateau, J.L.; Dumont, R.; Dunand, A.; Durocher, A.; Ekedahl, A.; Elbeze, D.; Eriksson, L.G.; Escarguel, A.; Escourbiac, F.; Faisse, F.; Falchetto, G.; Farge, M.; Farjon, L.J.; Fedorczak, N.; Fenzi-Bonizec, C.; Garbet, X.; Garcia, J.; Gardarein, J.L.; Gargiulo, L.; Garibaldi, P.; Gauthier, E.; Géraud, A.; Gerbaud, T.; Geynet, M.; Ghendrih, P.; Gil, C.; Goniche, M.; Grandgirard, V.; Grisolia, C.; Gros, G.; Grosman, A.; Guigon, R.; Guilhem, D.; Guillerminet, B.; Guirlet, R.; Gunn, J.; Hacquin, S.; Hatchressian, J.C.; Hennequin, P.; Henry, D.; Hernandez, C.; Hertout, P.; Heuraux, S.; Hillairet, J.; Hoang, G.T.; Hong, S.H.; Honore, C.; Hourtoule, J.; Houry, M.; Hutter, T.; Huynh, P.; Huysmans, G.; Imbeaux, F.; Joffrin, E.; Johner, J.; Journeaux, J.Y.; Jullien, F.; Kazarian, F.; Kočan, M.; Lacroix, B.; Lamaison, V.; Lasalle, J.; Latu, G.; Lausenaz, Y.; Laviron, C.; Le Niliot, C.; Lennholm, M.; Leroux, F.; Linez, F.; Lipa, M.; Litaudon, X.; Loarer, T.; Lott, F.; Lotte, P.; Luciani, J.F.; Lütjens, H.; Macor, A.; Madeleine, S.; Magaud, P.; Maget, P.; Magne, R.; Manenc, L.; Marandet, Y.; Marbach, G.; Maréchal, J.L.; Martin, C.; Martin, V.; Martinez, A.; Martins, J.P.; Masset, R.; Mazon, D.; Meunier, L.; Meyer, O.; Million, L.; Missirlian, M.; Mitteau, R.; Mollard, P.; Moncada, V.; Monier-Garbet, P.; Moreau, D.; Moreau, P.; Nannini, M.; Nardon, E.; Nehme, H.; Nguyen, C.; Nicollet, S.; Ottaviani, M.; Pacella, D.; Pamela, S.; Parisot, P.; Parrat, H.; Pastor, P.; Pecquet, A.L.; Pégourié, B.; Petržílka, Václav; Peysson, Y.; Portafaix, C.; Prou, M.; Ravenel, N.; Reichle, R.; Reux, C.; Reynaud, P.; Richou, M.; Rigollet, F.; Rimini, F.; Roche, H.; Rosanvallon, S.; Roth, J.; Roubin, P.; Sabot, R.; Saint-Laurent, F.; Salasca, S.; Salmon, T.; Samaille, F.; Santagiustina, A.; Saoutic, B.; Sarazin, Y.; Schlosser, J.; Schneider, K.; Schneider, M.; Schwander, F.; Ségui, J.L.; Signoret, J.; Simonin, A.; Song, S.; Sonnendruker, E.; Spuig, P.; Svensson, L.; Tamain, P.; Tena, M.; Theis, J.M.; Thonnat, M.; Torre, A.; Travère, J.M.; Trier, E.; Tsitrone, E.; Turco, F.; Vallet, J.C.; Vatry, A.; Vermare, L.; Villecroze, F.; Villegas, D.; Voyer, D.; Vulliez, K.; Xiao, W.; Yu, D.; Zani, L.; Zou, X.L.; Zwingmann, W.

    2009-01-01

    Roč. 49, č. 10 (2009), s. 104010-104010 ISSN 0029-5515 Institutional research plan: CEZ:AV0Z20430508 Keywords : SOL * LH wave * plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.270, year: 2009 http://www.iop.org/EJ/toc/0029-5515/49/10

  16. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  17. Joint DIII-D/EAST research on the development of a high poloidal beta scenario for the steady state missions of ITER and CFETR

    Science.gov (United States)

    Garofalo, A. M.; Gong, X. Z.; Ding, S. Y.; Huang, J.; McClenaghan, J.; Pan, C. K.; Qian, J.; Ren, Q. L.; Staebler, G. M.; Chen, J.; Cui, L.; Grierson, B. A.; Hanson, J. M.; Holcomb, C. T.; Jian, X.; Li, G.; Li, M.; Pankin, A. Y.; Peysson, Y.; Zhai, X.; Bonoli, P.; Brower, D.; Ding, W. X.; Ferron, J. R.; Guo, W.; Lao, L. L.; Li, K.; Liu, H.; Lyv, B.; Xu, G.; Zang, Q.

    2018-01-01

    Experimental and modeling investigations on the DIII-D and EAST tokamaks show the attractive transport and stability properties of fully noninductive, high poloidal-beta (β P ) plasmas, and their suitability for steady-state operating scenarios in ITER and CFETR. A key feature of the high-β P regime is the large-radius (ρ > 0.6) internal transport barrier (ITB), often observed in all channels (ne, Te, Ti, rotation), and responsible for both excellent energy confinement quality and excellent stability properties. Experiments on DIII-D have shown that, with a large-radius ITB, very high β N and β P values (both ≥ 4) can be reached by taking advantage of the stabilizing effect of a nearby conducting wall. Synergistically, higher plasma pressure provides turbulence suppression by Shafranov shift, leading to ITB sustainment independent of the plasma rotation. Experiments on EAST have been used to assess the long pulse potential of the high-β P regime. Using RF-only heating and current drive, EAST achieved minute-long fully noninductive steady state H-mode operation with strike points on an ITER-like tungsten divertor. Improved confinement (relative to standard H-mode) and steady state ITB features are observed with a monotonic q-profile with q min ˜ 1.5. Separately, experiments have shown that increasing the density in plasmas driven by lower hybrid wave broadens the q-profile, a technique that could enable a large radius ITB. These experimental results have been used to validate MHD, current drive, and turbulent transport models, and to project the high-β P regime to a burning plasma. These projections suggest the Shafranov shift alone will not suffice to provide improved confinement (over standard H-mode) without rotation and rotation shear. However, increasing the negative magnetic shear (higher q on axis) provides a similar turbulence suppression mechanism to Shafranov shift, and can help devices such as ITER and CFETR achieve their steady-state fusion

  18. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    Science.gov (United States)

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  19. Multi-field plasma sandpile model in tokamaks and applications

    Science.gov (United States)

    Peng, X. D.; Xu, J. Q.

    2016-08-01

    A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.

  20. Gas Fuelling System for SST-1Tokamak

    Science.gov (United States)

    Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Semwal, Pratibha; George, Siju; Paravastu, Yuvakiran; Thankey, Prashant; Khan, M. S.; Pradhan, Subrata

    2017-04-01

    SST-1 Tokamak, the first Indian Steady-state Superconducting experimental device is at present under operation in the Institute for Plasma Research. For plasma break down & initiation, piezoelectric valve based gas feed system is implemented as a primary requirement due to its precise control, easy handling, low construction and maintenance cost and its flexibility in the selection of the working gas. Hydrogen gas feeding with piezoelectric valve is used in the SST-1 plasma experiments. The piezoelectric valves used in SST-1 are remotely driven by a PXI based platform and are calibrated before each SST-1 plasma operation with precise control. This paper will present the technical development and the results of the gas fuelling system of SST-1.

  1. Blanket concepts for the ARIES commercial tokamak reactor study

    International Nuclear Information System (INIS)

    Grotz, S.P.; Ghoniem, N.M.; Hasan, M.Z.; Martin, R.C.; Najmabadi, F.; Sharafat, S.; Hua, T.; Sze, D.K.; Cheng, E.T.; Creedon, R.L.; Wong, C.P.C.; Herring, J.S.; Klein, A.; Snead, L.; Steiner, D.

    1989-01-01

    The ARIES study is a 3-year effort, started in 1988, exploring the potential of the tokamak to be an attractive and competitive commercial power reactor. Several different versions of the tokamak are being considered, combining different levels of extrapolations in physics and engineering databases. The first version studied in detail, ARIES-I, combines present-day physics (with minimal extrapolation) with aggressive engineering technology such as very high-field, superconducting magnets and low-activation silicon carbide composite materials. The ARIES-I version is designed to meet acceptable safety and environmental criteria. In particular, achieving a passively safe concept that meets Class-C waste disposal is one of the high leverage items in the design. This paper summarizes the scoping analysis and engineering design of the ARIES-I fusion-power-core subsystems. The ARIES-I design is a 1000 MW e power reactor, operating at steady state in the 1 st stability regime and uses a high magnetic field. Typical operating parameters of the ARIES-I strawman design are listed

  2. Application of high temperature ceramic superconductors (CSC) to commercial tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kim, S.; Gohar, Y.; Turner, L.; Smith, D.L.; Mattas, R.

    1988-08-01

    Ceramic superconductors operating near liquid nitrogen temperature may experience higher heating rates without losing stability, compared conventional superconductors. This will permit cable design with less stabilizer, reducing fabrication costs for large fusion magnets. Magnet performance is studied for different operating current densities in the superconductor, and cost benefits to commercial tokamak reactors are estimated. It appears that 10 kA /center dot/ cm/sup /minus/2/ (at 77 K and /approximately/10 T) is a target current density which must be achieved in order for the ceramic superconductors to compete with conventional materials. At current densities around 50 kA /center dot/ cm/sup /minus/2/ most potential benefits have already been gained, as magnet structural steel begins to dominate the cost at this point. For a steady state reactor reductions of /approximately/7% are forecast for the overall capital cost of the power plant in the best case. An additional /approximately/3% cost saving is possible for pulsed tokamaks. 9 refs., 4 figs., 8 tabs

  3. Application of high temperature ceramic superconductors (CSC) to commercial tokamak reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Kim, S.; Gohar, Y.; Turner, L.; Smith, D.L.; Mattas, R.

    1987-10-01

    Ceramic superconductors operating near liquid nitrogen temperature may experience higher heating rates without losing stability, compared to conventional superconductors. This will permit cable design with less stabilizer, reducing fabrication costs for large fusion magnets. Magnet performance is studied for different operating current densities in the superconductor, and cost benefits to commercial tokamak reactors are estimated. It appears that 10 kA . cm -2 (at 77 K and ∼10 T) is a target current density which must be achieved in order for the ceramic superconductors to compete with conventional materials. At current densities around 50 kA . cm -2 most potential benefits have already been gained, as magnet structural steel begins to dominate the cost at this point. For a steady state reactor reductions of ∼7% are forecast for the overall capital cost of the power plant in the best case. An additional ∼3% cost saving is possible for pulsed tokamaks. 9 refs., 4 figs., 8 tabs

  4. Steady-state Operational Characteristics of Ghana Research ...

    African Journals Online (AJOL)

    Steady state operational characteristics of the 30 kW tank-in-pool type reactor named Ghana Research Reactor-1 were investigated after a successful on-site zero power critical experiments. The steadystate operational character-istics determined were the thermal neutron fluxes, maximum period of operation at nominal ...

  5. Evidence for forcing-dependent steady states in a turbulent swirling flow.

    Science.gov (United States)

    Saint-Michel, B; Dubrulle, B; Marié, L; Ravelet, F; Daviaud, F

    2013-12-06

    We study the influence on steady turbulent states of the forcing in a von Karman flow, at constant impeller speed, or at constant torque. We find that the different forcing conditions change the nature of the stability of the steady states and reveal dynamical regimes that bear similarities to low-dimensional systems. We suggest that this forcing dependence may be applicable to other turbulent systems.

  6. Constructive interference in steady-state/FIESTA-C clinical applications in neuroimaging

    International Nuclear Information System (INIS)

    Kulkami, Makarand

    2011-01-01

    Full text: High spatial resolution is one of the major problems in neuroimaging, par ticularly in cranial and spinal nerve imaging. Constructive interference in steady-state/fast imaging employing steady-state acquisition with phase cycling is a robust sequence in imaging the cranial and spinal nerve patholo gies. This pictorial review is a concise article about the applications of this sequence in neuroimaging with clinical examples.

  7. Optimal control of transitions between nonequilibrium steady states.

    Directory of Open Access Journals (Sweden)

    Patrick R Zulkowski

    Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.

  8. The non-local Fisher–KPP equation: travelling waves and steady states

    International Nuclear Information System (INIS)

    Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya

    2009-01-01

    We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large

  9. Current drive efficiency requirements for an attractive steady-state reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tonon, G

    1994-12-31

    The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs.

  10. Current drive efficiency requirements for an attractive steady-state reactor

    International Nuclear Information System (INIS)

    Tonon, G.

    1994-01-01

    The expected values of the figure of merit and the electrical efficiency of various non-inductive current drive methods are considered. The main experimental results achieved today with neutral beams and radiofrequency systems are summarized. Taking into account the simplified energy flow diagram of a steady state reactor, the figure of merit and the electrical efficiency values which are necessary in order to envisage an attractive steady-state reactor are determined. These values are compared to the theoretical predictions. (author). 16 refs., 11 figs., 2 tabs

  11. A preliminary systems assessment of the Starlite Demo candidates

    International Nuclear Information System (INIS)

    Bathke, C.G.

    1995-01-01

    The Starlite project has evaluated the following five tokamaks as candidates for the US Demo Power Plant: (1) steady state, first stability regime; (2) pulsed, first stability regime; (3) steady state, second stability regime; (4) steady state, reversed shear; and (5) steady state, low aspect ratio. Systems analysis of these candidates has played an important role in the selection of a reversed-shear tokamak for further conceptual design as a US Demo Power Plant. The cost-based systems analysis that led to the selection of a reversed-shear tokamak is described herein

  12. Adaptive solution of some steady-state fluid-structure interaction problems

    International Nuclear Information System (INIS)

    Etienne, S.; Pelletier, D.

    2003-01-01

    This paper presents a general integrated and coupled formulation for modeling the steady-state interaction of a viscous incompressible flow with an elastic structure undergoing large displacements (geometric non-linearities). This constitutes an initial step towards developing a sensitivity analysis formulation for this class of problems. The formulation uses velocity and pressures as unknowns in a flow domain and displacements in the structural components. An interface formulation is presented that leads to clear and simple finite element implementation of the equilibrium conditions at the fluid-solid interface. Issues of error estimation and mesh adaptation are discussed. The adaptive formulation is verified on a problem with a closed form solution. It is then applied to a sample case for which the structure undergoes large displacements induced by the flow. (author)

  13. Local transport in Joint European Tokamak edge-localized, high-confinement mode plasmas with H, D, DT, and T isotopes

    International Nuclear Information System (INIS)

    Budny, R. V.; Ernst, D. R.; Hahm, T. S.; McCune, D. C.; Christiansen, J. P.; Cordey, J. G.; Gowers, C. G.; Guenther, K.; Hawkes, N.; Jarvis, O. N.

    2000-01-01

    The edge-localized, high-confinement mode regime is of interest for future Tokamak reactors since high performance has been sustained for long durations. Experiments in the Joint European Tokamak [M. Keilhacker , Nuclear Fusion 39, 209 (1999)] have studied this regime using scans with the toroidal field and plasma current varied together in H, D, DT, and T isotopes. The local energy transport in more than fifty of these plasmas is analyzed, and empirical scaling relations are derived for energy transport coefficients during quasi-steady state conditions using dimensionless parameters. Neither the Bohm nor gyro-Bohm expressions give the shapes of the profiles. The scalings with β and ν * are in qualitative agreement with Ion Temperature Gradient theory

  14. The role of the spherical tokamak in clarifying tokamak physics

    International Nuclear Information System (INIS)

    Morris, A.W.; Akers, R.J.; Connor, J.W.; Counsell, G.F.; Gryaznevich, M.P.; Hender, T.C.; Maddison, G.P.; Martin, T.J.; McClements, K.G.; Roach, C.M.; Robinson, D.C.; Sykes, A.; Valovic, M.; Wilson, H.R.; Fonck, R.J.; Gusev, V.; Kaye, S.M.; Majeski, R.; Peng, Y.-K.M.; Medvedev, S.; Sharapov, S.; Walsh, M.J.

    1999-01-01

    The spherical tokamak (ST) provides a unique environment in which to perform complementary and exacting tests of the tokamak physics required for a burning plasma experiment of any aspect ratio, while also having the potential for long-term fusion applications in its own right. New experiments are coming on-line in the UK (MAST), USA (NSTX, Pegasus), Russia (Globus-M), Brazil (ETE) and elsewhere, and the status of these devices will be reported, along with newly-analysed data from START. Those physics issues where the ST provides an opportunity to remove degeneracy in the databases or clarify one's understanding will be emphasized. (author)

  15. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Discrete-mode steady-state emission... Procedures § 1033.515 Discrete-mode steady-state emission tests of locomotives and locomotive engines. This... a warm-up followed by a sequence of nominally steady-state discrete test modes, as described in...

  16. Influence of longitudinal position on the evolution of steady-state signal in cardiac cine balanced steady-state free precession imaging.

    Science.gov (United States)

    Spear, Tyler J; Stromp, Tori A; Leung, Steve W; Vandsburger, Moriel H

    2017-11-01

    Emerging quantitative cardiac magnetic resonance imaging (CMRI) techniques use cine balanced steady-state free precession (bSSFP) to measure myocardial signal intensity and probe underlying physiological parameters. This correlation assumes that steady-state is maintained uniformly throughout the heart in space and time. To determine the effects of longitudinal cardiac motion and initial slice position on signal deviation in cine bSSFP imaging by comparing two-dimensional (2D) and three-dimensional (3D) acquisitions. Nine healthy volunteers completed cardiac MRI on a 1.5-T scanner. Short axis images were taken at six slice locations using both 2D and 3D cine bSSFP. 3D acquisitions spanned two slices above and below selected slice locations. Changes in myocardial signal intensity were measured across the cardiac cycle and compared to longitudinal shortening. For 2D cine bSSFP, 46% ± 9% of all frames and 84% ± 13% of end-diastolic frames remained within 10% of initial signal intensity. For 3D cine bSSFP the proportions increased to 87% ± 8% and 97% ± 5%. There was no correlation between longitudinal shortening and peak changes in myocardial signal. The initial slice position significantly impacted peak changes in signal intensity for 2D sequences ( P  cine bSSFP that is only restored at the center of a 3D excitation volume. During diastole, a transient steady-state is established similar to that achieved with 3D cine bSSFP regardless of slice location.

  17. Simulations of the operational control of a cryogenic plant for a superconducting burning-plasma tokamak

    CERN Document Server

    Mitchell, N

    2001-01-01

    In recent proposals for next generation superconducting tokamaks, such as the ITER project, the nuclear burning plasma is confined by magnetic fields generated from a large set (up to 100 GJ stored energy) of superconducting magnets. These magnets suffer heat loads in operation from thermal and nuclear radiation from the surrounding components and plasma as well as eddy currents and AC losses generated within the magnets, together with the heat conduction through supports and resistive heat generated at the current lead transitions to room temperature. The initial cryoplant for such a tokamak is expected to have a steady state capacity of up to about 85 kW at 4.5 K, comparable to the system installed for LHC at CERN. Experimental tokamaks are expected to operate at least initially in a pulsed mode with 20-30 short plasma pulses and plasma burn periods each day. A conventional cryoplant, consisting of a cold box and a set of primary heat exchangers, is ill-suited to such a mode of operation as the instantaneou...

  18. RF-driven tokamak reactor with sub-ignited, thermally stable operation

    International Nuclear Information System (INIS)

    Harten, L.P.; Bers, A.; Fuchs, V.; Shoucri, M.M.

    1981-02-01

    A Radio-Frequency Driven Tokamak Reactor (RFDTR) can use RF-power, programmed by a delayed temperature measurement, to thermally stabilize a power equilibrium below ignition, and to drive a steady state current. We propose the parameters for such a device generating approx. = 1600 MW thermal power and operating with Q approx. = 40 (= power out/power in). A one temperature zero-dimensional model allows simple analytical formulation of the problem. The relevance of injected impurities for locating the equilibrium is discussed. We present the results of a one-dimensional (radial) code which includes the deposition of the supplementary power, and compare with our zero-dimensional model

  19. Steady-state spheromak

    International Nuclear Information System (INIS)

    Jarboe, T.R.

    1982-01-01

    A major effort is being made in the national program to make the operation of axisymmetric, toroidal confinement systems steady state by the application of expensive rf current drive. Described here is a method by which such a confinement system, the spheromak, can be refluxed indefinitely through the application of dc power. As a step towards dc sustainment we have operated the present CTX source in the slow source mode with a longer power application time (approx. 0.1 ms) and successfully generated long-lived spheromaks. If the erosion of the electrodes can be controlled as well as it is with MPD arcs then dc operation should be very clean. If only a small fraction (approx. 10% for an experiment) of the poloidal flux of the spheromak connects to the source then the dc sustainment can be very efficient. The amount of connecting flux that is necessary for sustainment needs to be determined experimentally

  20. The Steady State Calculation for SMART with MIDAS/SMR

    International Nuclear Information System (INIS)

    Park, Jong Hwa; Kim, Dong Ha; Chung, Young Jong; Park, Sun Hee; Cho, Seong Won

    2010-01-01

    KAERI is developing a new concept of reactor that all the main components such as the steam generator, the coolant pumps and the pressurizer are located inside the reactor vessel. Before the severe accident sequences are estimated, it is prerequisite that MIDAS code predicts the steady state conditions properly. But MIDAS code does not include the heat transfer model for the helical tube. Therefore, the heat transfer models for the helical tube from TASS/SMR-S were implemented into MIDAS code. To estimate the validity of the implemented heat transfer correlations for the helical tube and the input data, the steady state was recalculated with MIDAS/SMR based on design level 2 and compared with the design values

  1. Configuration and engineering design of the ARIES-RS tokamak power plant

    International Nuclear Information System (INIS)

    Tillack, M.S.; Malang, S.; Waganer, L.; Wang, X.R.; Sze, D.K.; El-Guebaly, L.; Wong, C.P.C.; Crowell, J.A.; Mau, T.K.; Bromberg, L.

    1997-01-01

    ARIES-RS is a conceptual design study which has examined the potential of an advanced tokamak-based power plant to compete with future energy sources and play a significant role in the future energy market. The design is a 1000 MWe, DT-burning fusion power plant based on the reversed-shear tokamak mode of plasma operation, and using moderately advanced engineering concepts such as lithium-cooled vanadium-alloy plasma-facing components. A steady-state reversed shear tokamak currently appears to offer the best combination of good economic performance and physics credibility for a tokamak-based power plant. The ARIES-RS engineering design process emphasized the attainment of the top-level mission requirements developed in the early part of the study in a collaborative effort between the ARIES Team and representatives from U.S. electric utilities and industry. Major efforts were devoted to develop a credible configuration that allows rapid removal of full sectors followed by disassembly in the hot cells during plant operation. This was adopted as the only practical means to meet availability goals. Use of an electrically insulating coating for the self-cooled blanket and divertor provides a wide design window and simplified design. Optimization of the shield, which is one of the larger cost items, significantly reduced the power core cost by using ferritic steel where the power density and radiation levels are low. An additional saving is made by radial segmentation of the blanket, such that large segments can be reused. The overall tokamak configuration is described here, together with each of the major fusion power core components: the first-wall, blanket and shield; divertor; heating, current drive and fueling systems; and magnet systems. (orig.)

  2. Steady-state creep of discontinuous fibre composites

    International Nuclear Information System (INIS)

    Boecker Pedersen, O.

    1975-07-01

    A review is given of the relevant literature on creep of composites, including a presentation of existing models for the steady-state creep of composites containing aligned discontinuous fibres where creep of the matrix and fibres is assumed to follow a power law. A model is suggested for predicting the composite creep law from a matrix creep law given in a general form, in the case where the fibres do not creep. The composite creep law predicted by this model is compared with those predicted by previous models, when these are extended to comprise a general matrix creep law. Experimentally, pure copper and composites consisting of aligned discontinuous tungsten fibres in a copper matrix were creep tested at a temperature of 500 deg C. The results indicate a relatively low stress sensitivity of the steady-state creep-rate for pure copper and relatively high stress sensitivity for the composites. This may be explained by the creep models based upon a general matrix creep law. A quantitative prediction shows promising agreement with the present experimental results. (author)

  3. Steady-state operation of tokamaks: Key physics and technology developments on Tore Supra

    International Nuclear Information System (INIS)

    Jacquinot, J.

    2005-01-01

    Important technological and physics issues related to long pulse operation required for a reactor are now being addressed in Tore Supra. experimental results in conditions where all the plasma facing components are actively cooled during pulses exceeding six minutes. Important physics issues related to continuous operation are observed in non inductively driven plasmas. (author)

  4. Steady state statistical correlations predict bistability in reaction motifs.

    Science.gov (United States)

    Chakravarty, Suchana; Barik, Debashis

    2017-03-28

    Various cellular decision making processes are regulated by bistable switches that take graded input signals and convert them to binary all-or-none responses. Traditionally, a bistable switch generated by a positive feedback loop is characterized either by a hysteretic signal response curve with two distinct signaling thresholds or by characterizing the bimodality of the response distribution in the bistable region. To identify the intrinsic bistability of a feedback regulated network, here we propose that bistability can be determined by correlating higher order moments and cumulants (≥2) of the joint steady state distributions of two components connected in a positive feedback loop. We performed stochastic simulations of four feedback regulated models with intrinsic bistability and we show that for a bistable switch with variation of the signal dose, the steady state variance vs. covariance adopts a signatory cusp-shaped curve. Further, we find that the (n + 1)th order cross-cumulant vs. nth order cross-cumulant adopts a closed loop structure for at least n = 3. We also propose that our method is capable of identifying systems without intrinsic bistability even though the system may show bimodality in the marginal response distribution. The proposed method can be used to analyze single cell protein data measured at steady state from experiments such as flow cytometry.

  5. Understanding void fraction in steady state and dynamic environments

    International Nuclear Information System (INIS)

    Chexal, B.; Maulbetsch, J.; Harrison, J.; Petersen, C.; Jensen, P.; Horowitz, J.

    1997-01-01

    Understanding void fraction behavior in steady-state and dynamic environments is important to accurately predict the thermal-hydraulic behavior of two-phase or two-component systems. The Chexal-Lellouche (C-L) void fraction mode described herein covers the full range of pressures, flows, void fractions, and fluid types (steam-water, air-water, and refrigerants). A drift flux model formulation is used which covers the complete range of concurrent and countercurrent flows. The (1996) model revises the earlier C-L void fraction correlation, improves the capability of the model in countercurrent flow based on the incorporation of additional data, and improves the characteristics of the correlation that are important in transient programs. The model has been qualified with data from a number of steady state two-phase and two-component tests, and has been incorporated into the transient analysis code RELAP5 and RETRAN-3D and evaluated with a variety of transient and steady state tests. A 'plug-in' module for the void fraction correlation has been developed and implemented in RELAP5 and RETRAN-3D. The module is available as source code for inclusion into other thermal-hydraulic programs and can be used in any program that utilizes the same interface variables

  6. Extracting Steady State Components from Synchrophasor Data Using Kalman Filters

    Directory of Open Access Journals (Sweden)

    Farhan Mahmood

    2016-04-01

    Full Text Available Data from phasor measurement units (PMUs may be exploited to provide steady state information to the applications which require it. As PMU measurements may contain errors and missing data, the paper presents the application of a Kalman Filter technique for real-time data processing. PMU data captures the power system’s response at different time-scales, which are generated by different types of power system events; the presented Kalman Filter methods have been applied to extract the steady state components of PMU measurements that can be fed to steady state applications. Two KF-based methods have been proposed, i.e., a windowing-based KF method and “the modified KF”. Both methods are capable of reducing noise, compensating for missing data and filtering outliers from input PMU signals. A comparison of proposed methods has been carried out using the PMU data generated from a hardware-in-the-loop (HIL experimental setup. In addition, a performance analysis of the proposed methods is performed using an evaluation metric.

  7. Analysis of physical properties controlling steady-state infiltration rates on tropical savannah soils

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    1993-10-01

    A knowledge of physical properties influencing the steady-state infiltration rates (ic) of soils is needed for the hydrologic modelling of the infiltration process. In this study evidence is provided to show that effective porosity (Pe) (i.e. the proportion of macro pore spaces with equivalent radius of > 15 μm) and dry bulk density are the most important soil physical properties controlling the steady-state infiltration rates on a tropical savannah with varying land use histories. At a macro porosity value of ≤ 5.0% the steady-state infiltration rate is zero. Total porosity and the proportion of water-retaining pores explained only a small fraction of the variation in this property. Steady-state infiltration rates can also be estimated from either the saturated hydraulic conductivity (Ks) by the equation, i c = 31.1 + 1.06 (Ks), (R 2 = 0.8104, p ≤ 0.001) or the soil water transmissivity (A) by the equation, i c = 30.0 + 29.9(A), (R 2 = 0.8228, ρ ≤ 0.001). The Philip two-parameter model under predicted steady-state infiltration rates generally. Considering the ease of determination and reliability it is suggested that effective porosity be used to estimate the steady-state infiltration rates of these other soils with similar characteristics. The model is, i c 388.7(Pe) - 10.8(R 2 = 0.7265, p ≤ 0.001) where i c is in (cm/hr) and Pe in (cm 3 /cm 3 ). (author). 20 refs, 3 figs, 4 tabs

  8. Plasma Equilibrium Control in Nuclear Fusion Devices 2. Plasma Control in Magnetic Confinement Devices 2.1 Plasma Control in Tokamaks

    Science.gov (United States)

    Fukuda, Takeshi

    The plasma control technique for use in large tokamak devices has made great developmental strides in the last decade, concomitantly with progress in the understanding of tokamak physics and in part facilitated by the substantial advancement in the computing environment. Equilibrium control procedures have thereby been established, and it has been pervasively recognized in recent years that the real-time feedback control of physical quantities is indispensable for the improvement and sustainment of plasma performance in a quasi-steady-state. Further development is presently undertaken to realize the “advanced plasma control” concept, where integrated fusion performance is achieved by the simultaneous feedback control of multiple physical quantities, combined with equilibrium control.

  9. Full transmission modes and steady states in defect gratings,

    NARCIS (Netherlands)

    van Groesen, Embrecht W.C.; Sopaheluwakan, A.; Andonowati, A.; de Ridder, R.M; Altena, G; Geuzebroek, D.H.; Dekker, R

    2003-01-01

    For a symmetric grating structure with a defect, we show that a fully transmitted defect mode in the band gap can be obtained as a superposition of two steady states: an amplified and an attenuated defect state. Without scanning the whole band gap by transmission calculations, this simplifies the

  10. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities.

    Science.gov (United States)

    Rowan, D J

    2013-07-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any

  11. Advanced commercial tokamak study

    International Nuclear Information System (INIS)

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs

  12. Steady states of a diode with counterstreaming electron and positron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ender, A. Ya.; Kuznetsov, V. I., E-mail: victor.kuznetsov@mail.ioffe.ru; Gruzdev, A. A. [Russian Academy of Sciences, Ioffe Institute (Russian Federation)

    2016-10-15

    Steady states of a plasma layer with counterstreaming beams of oppositely charged particles moving without collisions in a self-consistent electric field are analyzed. The study is aimed at clarifying the mechanism of generation and reconstruction of pulsar radiation. Such a layer also models the processes occurring in Knudsen plasma diodes with counterstreaming electron and ion beams. The steady-state solutions are exhaustively classified. The existence of several solutions at the same external parameters is established.

  13. Tokamaks. 2. ed.

    International Nuclear Information System (INIS)

    Wesson, John; Campbell, D.J.; Connor, J.W.

    1997-01-01

    It is interesting to recall the state of tokamak research when the first edition of this book was written. My judgement of the level of real understanding at that time is indicated by the virtual absence of comparisons of experiment with theory in that edition. The need then was for a 'handbook' which collected in a single volume the concepts and models which form the basis of everyday tokamak research. The experimental and theoretical endeavours of the subsequent decade have left almost all of this intact, but have brought a massive development of the subject. Firstly, there are now several areas where the experimental behaviour is described in terms of accepted theory. This is particularly true of currents parallel to the magnetic field, and of the stability limitations on the plasma pressure. Next there has been the research on large tokamaks, hardly started at the writing of the first edition. Now our thinking is largely based on the results from these tokamaks and this work has led to the long awaited achievement of significant amounts of fusion power. Finally, the success of tokamak research has brought us face to face with the problems involved in designing and building a tokamak reactor. The present edition maintains the aim of providing a simple introduction to basic tokamak physics, but also includes an account of the advances outlined above. (Author)

  14. Characterisation of detached plasmas on the MAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, J.R., E-mail: james.harrison@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom); Department of Physics, University of York, Heslington, York, YO10 5DD (United Kingdom); Lisgo, S.W. [ITER Organization, Route de Vinon-sur-Verdon, St.Paul-lez-Durance, Cedex (France); Gibson, K.J. [Department of Physics, University of York, Heslington, York, YO10 5DD (United Kingdom); Tamain, P. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Dowling, J. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2011-08-01

    Divertor detachment is an attractive operating regime for the next generation of tokamak devices, as it offers a means of mitigating the steady-state heat flux to plasma facing components. In order to clarify the dominant physical mechanisms that govern detachment, high quality data from several diagnostics are required to constrain theoretical models. To that end, high spatial ({approx}3 mm) and temporal (5 kHz) resolution measurements have been made of the intensity of deuterium Balmer and carbon emission lines during the onset and evolution of detachment of the lower inner strike point in MAST L-mode discharges. Furthermore, spatially-resolved measurements of the shapes and intensities of high-n Balmer lines have been recorded to infer plasma conditions during the detached phase.

  15. Improvement of confinement characteristics of tokamak plasma by controlling plasma-wall interactions

    International Nuclear Information System (INIS)

    Sengoku, Seio

    1985-08-01

    Relation between plasma-wall interactions and confinement characteristics of a tokamak plasma with respect to both impurity and fuel particle controls is discussed. Following results are obtained from impurity control studies: (1) Ion sputtering is the dominant mechanism of impurity release in a steady state tokamak discharge. (2) By applying carbon coating on entire first wall of DIVA tokamak, dominant radiative region is concentrated more in boundary plasma resulting a hot peripheral plasma with cold boundary plasma. (3) A physical model of divertor functions about impurity control is empilically obtained. By a computer simulation based on above model with respect to divertor functions for JT-60 tokamak, it is found that the allowable electron temperature of the divertor plasma is not restricted by a condition that the impurity release due to ion sputtering does not increase continuously. (4) Dense and cold divertor plasma accompanied with strong remote radiative cooling was diagnosed along the magnetic field line in the simple poloidal divertor of DOUBLET III tokamak. Strong particle recycling region is found to be localized near the divertor plate. by and from particle control studies: (1) The INTOR scaling on energy confinement time is applicable to high density region when a core plasma is fueled directly by solid deuterium pellet injection in DOUBLET III tokamak. (2) As remarkably demonstrated by direct fueling with pellet injection, energy confinement characteristics can be improved at high density range by decreasing particle deposition at peripheral plasma in order to reduce plasma-wall interaction. (3) If the particle deposition at boundary layer is necessarily reduced, the electron temperature at the boundary or divertor region increases due to decrease of the particle recycling and the electron density there. (J.P.N.)

  16. Feasibility study for improved steady-state initialization algorithms for the RELAP5 computer code

    International Nuclear Information System (INIS)

    Paulsen, M.P.; Peterson, C.E.; Katsma, K.R.

    1993-04-01

    A design for a new steady-state initialization method is presented that represents an improvement over the current method used in RELAP5. Current initialization methods for RELAP5 solve the transient fluidflow balance equations simulating a transient to achieve steady-state conditions. Because the transient solution is used, the initial conditions may change from the desired values requiring the use of controllers and long transient running times to obtain steady-state conditions for system problems. The new initialization method allows the user to fix thermal-hydraulic values in volumes and junctions where the conditions are best known and have the code compute the initial conditions in other areas of the system. The steady-state balance equations and solution methods are presented. The constitutive, component, and specialpurpose models are reviewed with respect to modifications required for the new steady-state initialization method. The requirements for user input are defined and the feasibility of the method is demonstrated with a testbed code by initializing some simple channel problems. The initialization of the sample problems using, the old and the new methods are compared

  17. Wildcat: A commercial deuterium-deuterium tokamak reactor

    International Nuclear Information System (INIS)

    Evans, K.; Baker, C.C.; Barry, K.M.

    1983-01-01

    WILDCAT is a conceptual design of a catalyzed deuterium-deuterium tokamak commercial fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing deuterium-tritium (D-T) designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete conceptual design

  18. Compact tokamak reactors part 2 (numerical results)

    International Nuclear Information System (INIS)

    Wiley, J.C.; Wootton, A.J.; Ross, D.W.

    1996-01-01

    The authors describe a numerical optimization scheme for fusion reactors. The particular application described is to find the smallest copper coil spherical tokamak, although the numerical scheme is sufficiently general to allow many other problems to be solved. The solution to the steady state energy balance is found by first selecting the fixed variables. The range of all remaining variables is then selected, except for the temperature. Within the specified ranges, the temperature which satisfies the power balance is then found. Tests are applied to determine that remaining constraints are satisfied, and the acceptable results then stored. Results are presented for a range of auxiliary current drive efficiencies and different scaling relationships; for the range of variables chosen the machine encompassing volume increases or remains approximately unchanged as the aspect ratio is reduced

  19. Proceedings of the third meeting for A3 foresight program workshop on critical physics issues specific to steady state sustainment of high-performance plasmas

    International Nuclear Information System (INIS)

    Hu Liqun; Morita, Shigeru; Oh, Yeong-Kook

    2013-12-01

    To enhance close collaborations among scientists in three Asian countries (China, Japan and Korea), A3 foresight program on Plasma Physics was newly started from August 2012 under the auspice of JSPS (Japan), NRF (Korea) and NSFC (China). The main purpose of this project is to solve several key physics issues through joint experiments on three Asian advanced fully superconducting fusion devices (EAST in China, LHD in Japan and KSTAR in Korea) and other magnetic confinement devices to carry out multi-faceted and complementary physics researches. To summarize the progress and achievement in the first academic year under this A3 foresight program, this workshop was hosted by Institute of Plasma Physics, Chinese Academy of Sciences and held in Beijing during 19-24 May, 2013. Collaborated research and communication with other A3 programs and bilateral programs, as well as participation of young scientists were encouraged in this workshop. The topics include steady state sustainment of magnetic configurations, edge and divertor plasma control and confinement of alpha particles. This issue is the collection of 40 papers presented at the entitled meeting. All the 40 of the presented papers are indexed individually. (J.P.N.)

  20. Time Reversibility, Correlation Decay and the Steady State Fluctuation Relation for Dissipation

    Directory of Open Access Journals (Sweden)

    Denis J. Evans

    2013-04-01

    Full Text Available Steady state fluctuation relations for nonequilibrium systems are under intense investigation because of their important practical implications in nanotechnology and biology. However the precise conditions under which they hold need clarification. Using the dissipation function, which is related to the entropy production of linear irreversible thermodynamics, we show time reversibility, ergodic consistency and a recently introduced form of correlation decay, called T-mixing, are sufficient conditions for steady state fluctuation relations to hold. Our results are not restricted to a particular model and show that the steady state fluctuation relation for the dissipation function holds near or far from equilibrium subject to these conditions. The dissipation function thus plays a comparable role in nonequilibrium systems to thermodynamic potentials in equilibrium systems.

  1. Status of the tokamak program

    Science.gov (United States)

    Sheffield, J.

    1981-08-01

    For a specific configuration of magnetic field and plasma to be economically attractive as a commercial source of energy, it must contain a high-pressure plasma in a stable fashion while thermally isolating the plasma from the walls of the containment vessel. The tokamak magnetic configuration is presently the most successful in terms of reaching the considered goals. Tokamaks were developed in the USSR in a program initiated in the mid-1950s. By the early 1970s tokamaks were operating not only in the USSR but also in the U.S., Australia, Europe, and Japan. The advanced state of the tokamak program is indicated by the fact that it is used as a testbed for generic fusion development - for auxiliary heating, diagnostics, materials - as well as for specific tokamak advancement. This has occurred because it is the most economic source of a large, reproducible, hot, dense plasma. The basic tokamak is considered along with tokamak improvements, impurity control, additional heating, particle and power balance in a tokamak, aspects of microscopic transport, and macroscopic stability.

  2. Efficient decoding with steady-state Kalman filter in neural interface systems.

    Science.gov (United States)

    Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R

    2011-02-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.

  3. The quasi-steady state of the valley wind system

    Directory of Open Access Journals (Sweden)

    Juerg eSchmidli

    2015-12-01

    Full Text Available The quasi-steady-state limit of the diurnal valley wind system is investigated overidealized three-dimensional topography. Although this limit is rarely attained inreality due to ever-changing forcings, the investigation of this limit canprovide valuable insight, in particular on the mass and heat fluxes associatedwith the along-valley wind. We derive a scaling relation for the quasi-steady-state along-valleymass flux as a function of valley geometry, valley size, atmospheric stratification,and surface sensible heat flux forcing. The scaling relation is tested by comparisonwith the mass flux diagnosed from numerical simulations of the valleywind system. Good agreement is found. The results also provide insight into the relationbetween surface friction and the strength of the along-valley pressure gradient.

  4. Finite element modelling of creep process - steady state stresses and strains

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2014-01-01

    Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.

  5. Multiple solutions of steady-state Poisson–Nernst–Planck equations with steric effects

    International Nuclear Information System (INIS)

    Lin, Tai-Chia; Eisenberg, Bob

    2015-01-01

    Experiments measuring currents through single protein channels show unstable currents. Channels switch between ‘open’ or ‘closed’ states in a spontaneous stochastic process called gating. Currents are either (nearly) zero or at a definite level, characteristic of each type of protein, independent of time, once the channel is open. The steady state Poisson–Nernst–Planck equations with steric effects (PNP-steric equations) describe steady current through the open channel quite well, in a wide variety of conditions. Here we study the existence of multiple solutions of steady state PNP-steric equations to see if they themselves, without modification or augmentation, can describe two levels of current. We prove that there are two steady state solutions of PNP-steric equations for (a) three types of ion species (two types of cations and one type of anion) with a positive constant permanent charge, and (b) four types of ion species (two types of cations and their counter-ions) with a constant permanent charge but no sign condition. The excess currents (due to steric effects) associated with these two steady state solutions are derived and expressed as two distinct formulas. Our results indicate that PNP-steric equations may become a useful model to study spontaneous gating of ion channels. Spontaneous gating is thought to involve small structural changes in the channel protein that perhaps produce large changes in the profiles of free energy that determine ion flow. Gating is known to be modulated by external structures. Both can be included in future extensions of our present analysis. (paper)

  6. Dissipative dark matter halos: The steady state solution. II.

    Science.gov (United States)

    Foot, R.

    2018-05-01

    Within the mirror dark matter model and dissipative dark matter models in general, halos around galaxies with active star formation (including spirals and gas-rich dwarfs) are dynamical: they expand and contract in response to heating and cooling processes. Ordinary type II supernovae (SNe) can provide the dominant heat source, which is possible if kinetic mixing interaction exists with strength ɛ ˜10-9- 10-10 . Dissipative dark matter halos can be modeled as a fluid governed by Euler's equations. Around sufficiently isolated and unperturbed galaxies the halo can relax to a steady state configuration, where heating and cooling rates locally balance and hydrostatic equilibrium prevails. These steady state conditions can be solved to derive the physical properties, including the halo density and temperature profiles, for model galaxies. Here, we consider idealized spherically symmetric galaxies within the mirror dark particle model, as in our earlier paper [Phys. Rev. D 97, 043012 (2018), 10.1103/PhysRevD.97.043012], but we assume that the local halo heating in the SN vicinity dominates over radiative sources. With this assumption, physically interesting steady state solutions arise which we compute for a representative range of model galaxies. The end result is a rather simple description of the dark matter halo around idealized spherically symmetric systems, characterized in principle by only one parameter, with physical properties that closely resemble the empirical properties of disk galaxies.

  7. 40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a discrete-mode cycle. 86.1363-2007 Section 86.1363-2007 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Exhaust Test Procedures § 86.1363-2007 Steady-state testing with a discrete-mode cycle. This section...

  8. Herd-Level Modeling and Steady-State Livestock Productivity ...

    African Journals Online (AJOL)

    ... an outline of the scope for applications and addresses the prospects for refinement and model extensions. The algorithms for use in development of steady state derivations include transition of matrices in a Markov Chain approach, continuous differential equations and actuarial approach built on life and fecundity tables.

  9. Principle of Entropy Maximization for Nonequilibrium Steady States

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2002-01-01

    The goal of this contribution is to find out to what extent the principle of entropy maximization, which serves as a basis for the equilibrium thermodynamics, may be generalized onto non-equilibrium steady states. We prove a theorem that, in the system of thermodynamic coordinates, where entropy...

  10. Steady-state operation of spheromaks by inductive techniques

    International Nuclear Information System (INIS)

    Janos, A.

    1984-04-01

    A method to maintain a steady-state spheromak configuration inductively using the S-1 Spheromak device is described. The S-1 Spheromak formation apparatus can be utilized to inject magnetic helicity continuously (C.W., not pulsed or D.C.) into the spheromak configuration after equilibrium is achieved in the linked mode of operation. Oscillation of both poloidal- and toroidal-field currents in the flux core (psi-phi Pumping), with proper phasing, injects a net time-averaged helicity into the plasma. Steady-state maintenance relies on flux conversion, which has been earlier identified. Relevant experimental data from the operation of S-1 are described. Helicity flow has been measured and the proposed injection scheme simulated. In a reasonable time practical voltages and frequencies can inject an amount of helicity comparable to that in the initial plasma. Plasma currents can be maintained or increased. This pumping technique is similar to F-THETA Pumping of a Reversed-Field-Pinch but is applied to this inverse-pinch formation

  11. Steady-state solidification of aqueous ammonium chloride

    Science.gov (United States)

    Peppin, S. S. L.; Huppert, Herbert E.; Worster, M. Grae

    We report on a series of experiments in which a Hele-Shaw cell containing aqueous solutions of NH4Cl was translated at prescribed rates through a steady temperature gradient. The salt formed the primary solid phase of a mushy layer as the solution solidified, with the salt-depleted residual fluid driving buoyancy-driven convection and the development of chimneys in the mushy layer. Depending on the operating conditions, several morphological transitions occurred. A regime diagram is presented quantifying these transitions as a function of freezing rate and the initial concentration of the solution. In general, for a given concentration, increasing the freezing rate caused the steady-state system to change from a convecting mushy layer with chimneys to a non-convecting mushy layer below a relatively quiescent liquid, and then to a much thinner mushy layer separated from the liquid by a region of active secondary nucleation. At higher initial concentrations the second of these states did not occur. At lower concentrations, but still above the eutectic, the mushy layer disappeared. A simple mathematical model of the system is developed which compares well with the experimental measurements of the intermediate, non-convecting state and serves as a benchmark against which to understand some of the effects of convection. Movies are available with the online version of the paper.

  12. Statistical steady states in turbulent droplet condensation

    Science.gov (United States)

    Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph

    2017-11-01

    We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.

  13. ATC calculation with steady-state security constraints using Benders decomposition

    International Nuclear Information System (INIS)

    Shaaban, M.; Yan, Z.; Ni, Y.; Wu, F.; Li, W.; Liu, H.

    2003-01-01

    Available transfer capability (ATC) is an important indicator of the usable amount of transmission capacity accessible by assorted parties for commercial trading, ATC calculation is nontrivial when steady-state security constraints are included. In hie paper, Benders decomposition method is proposed to partition the AC problem with steady-state security constraints into a base case master problem and a series of subproblems relevant to various contingencies to include their impacts on ATC. The mathematical model is formulated and the two solution schemes are presented. Computer testing on the 4-bus system and IEEE 30-bus system shows the effectiveness of the proposed method and the solution schemes. (Author)

  14. Conceptual design of a commercial tokamak reactor using resistive magnets

    International Nuclear Information System (INIS)

    LeClaire, R.J. Jr.

    1988-01-01

    The future of the tokamak approach to controlled thermonuclear fusion depends in part on its potential as a commercial electricity-producing device. This potential is continually being evaluated in the fusion community using parametric, system, and conceptual studies of various approaches to improving tokamak reactor design. The potential of tokamaks using resistive magnets as commercial electricity-producing reactors is explored. Parametric studies have been performed to examine the major trade-offs of the system and to identify the most promising configurations for a tokamak using resistive magnets. In addition, a number of engineering issues have been examined including magnet design, blanket/first-wall design, and maintenance. The study indicates that attractive design space does exist and presents a conceptual design for the Resistive Magnet Commercial Tokamak Reactor (RCTR). No issue has been identified, including recirculating power, that would make the overall cost of electricity of RCTR significantly different from that of a comparably sized superconducting tokamak. However, RCTR may have reliability and maintenance advantages over commercial superconducting magnet devices

  15. Non-inductive current drive and RF heating in SST-1 tokamak

    International Nuclear Information System (INIS)

    2000-01-01

    Steady state superconducting tokamak (SST-1) machine is being developed for 1000 sec operation at different operating parameters. Radio Frequency (RF) and neutral beam injection (NBI) methods are planned in SST-1 for noninductive current drive and heating. In this paper, we describe the non-inductive current drive and RF heating methods that are being developed for this purpose. SST-1 is a large aspect ratio tokamak configured to run double-null divertor plasmas with significant elongation (κ = 1.7-1.9) and triangularity (δ = 0.4-0.7). SST-1 has a major radius of 1.1 in and minor radius of 0.2 m. Circular and shaped plasma experiments would be conducted at 1.5 and 3 T toroidal magnetic field in three different phases with I p = 110 kA and 220 kA. Two main factors have been considered during the development of auxiliary systems, namely, high heat flux (1 MW/m 2 ) incident on the plasma facing antennae components and fast feedback for constant power input due to small energy confinement time (∼ 10 ms). (author)

  16. Exploration of burning plasmas in FIRE

    International Nuclear Information System (INIS)

    Meade, D.M.; Kessel, C.E.; Hammett, G.W.

    2003-01-01

    The Advanced Reactor Innovation Evaluation Studies (ARIES) have identified the key physics and technical issues that must be resolved before attractive fusion reactors can be designed and built. The Fusion Ignition Research Experiment (FIRE) design study has been undertaken to define the lowest cost facility to address the key burning plasma and advanced tokamak physics issues identified in the ARIES studies. The configuration chosen for FIRE is similar to that of ARIES-AT, a steady-state advanced tokamak reactor based on a high-βand high-bootstrap-current operating regime. The key advanced tokamak features of FIRE are: strong plasma shaping, double-null pumping divertors, low toroidal field ripple ( cr ). A longer term goal of FIRE is to explore 'steady-state' high-β advanced tokamak regimes with high bootstrap fractions (f BS ) ∼ 75% at β N ∼ 4 and moderate fusion gain (Q ∼ 5 to 10) under quasi-steady-state conditions for ∼ 3 τ cr . FIRE activities have focused on the physics and engineering assessment of a compact, high-field, cryogenic-copper-coil tokamak with: R o = 2.14 m, a = 0.595 m, B t (R o ) = 6 to 10T, I p = 4.5 to 7.7 MA with a flat top time of 40 to 20 s for 150 MW of fusion power. FIRE will utilize only metal plasma facing components; Be coated tiles for the first wall and W brush divertors to reduce tritium retention as required for fusion reactors. FIRE will be able to test divertor and plasma facing components under reactor relevant power densities since the fusion power density of 6 MWm -3 and neutron wall loading of 2.3 MWm -2 approach those expected in a reactor. (author)

  17. How should we understand non-equilibrium many-body steady states?

    Science.gov (United States)

    Maghrebi, Mohammad; Gorshkov, Alexey

    : Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.

  18. Starlite figures of merit for tokamak current drive - economic analysis of pulsed and steady state power plants with various engineering and physics performance parameters

    International Nuclear Information System (INIS)

    Ehst, D.A.

    1995-09-01

    The physics efficiency of current drive (γ B ∝ n e I o R o /P CD ), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for γ B depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium

  19. STARLITE figures of merit for tokamak current drive -- Economic analysis of pulsed and steady state power plants with various engineering and physics performance parameters

    International Nuclear Information System (INIS)

    Ehst, D.A.; Jardin, S.; Kessel, C.

    1995-10-01

    The physics efficiency of current drive (γ B ∝ n e I 0 R 0 /P CD ), including the bootstrap effect, needs to exceed certain goals in order to provide economical steady state operation compared to pulsed power plants. The goal for γ B depends not only on engineering performance of the current drive system, but also on normalized beta and the effective safety factor of the achievable MHD equilibrium

  20. An implicit steady-state initialization package for the RELAP5 computer code

    International Nuclear Information System (INIS)

    Paulsen, M.P.; Peterson, C.E.; Odar, F.

    1995-08-01

    A direct steady-state initialization (DSSI) method has been developed and implemented in the RELAP5 hydrodynamic analysis program. It provides a means for users to specify a small set of initial conditions which are then propagated through the remainder of the system. The DSSI scheme utilizes the steady-state form of the RELAP5 balance equations for nonequilibrium two-phase flow. It also employs the RELAP5 component models and constitutive model packages for wall-to-phase and interphase momentum and heat exchange. A fully implicit solution of the linearized hydrodynamic equations is implemented. An implicit coupling scheme is used to augment the standard steady-state heat conduction solution for steam generator use. It solves the primary-side tube region energy equations, heat conduction equations, wall heat flux boundary conditions, and overall energy balance equation as a coupled system of equations and improves convergence. The DSSI method for initializing RELAP5 problems to steady-state conditions has been compared with the transient solution scheme using a suite of test problems including; adiabatic single-phase liquid and vapor flow through channels with and without healing and area changes; a heated two-phase test bundle representative of BWR core conditions; and a single-loop PWR model

  1. Very low frequency oscillations of heat load and recycling flux in steady-state tokamak discharge in TRIAM-1M

    International Nuclear Information System (INIS)

    Zushi, H.; Sakamoto, M.; Hanada, K.; Iyomasa, A.; Nakamura, K.; Sato, K.N.; Idei, H.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Hasegawa, M.; Matsuo, Y.; Kuramoto, K.; Sugata, T.; Maezono, N.; Hoshika, H.; Sasaki, K.

    2004-01-01

    Plasma wall interaction (PWI) driven relaxation oscillations are investigated in the steady state discharge for 5 hours. The oscillation frequency was about 10 -3 Hz and each perturbation lasted for about 300 s. The heat load, recycling flux and impurity influx were varied from a few % to several tens of %. The largest variation of 70% was seen on the Mo XIII (molybdenum), although the influx of Mo I was only 20 %. Although the input rf power is kept constant during the discharge, the coupling between the rf and plasma was increased by about 10%. The current drive efficiency is decreased by 24 % in spite of current ramp. The toroidal and poloidal profiles of the recycling flux were also changed. During the last relaxation phase, the plasma was finally terminated. The current reduction (> 4 kA) was not recovered by intense local perturbation of the recycling superposed on the relaxation oscillation. (authors)

  2. Computational multiple steady states for enzymatic esterification of ethanol and oleic acid in an isothermal CSTR.

    Science.gov (United States)

    Ho, Pang-Yen; Chuang, Guo-Syong; Chao, An-Chong; Li, Hsing-Ya

    2005-05-01

    The capacity of complex biochemical reaction networks (consisting of 11 coupled non-linear ordinary differential equations) to show multiple steady states, was investigated. The system involved esterification of ethanol and oleic acid by lipase in an isothermal continuous stirred tank reactor (CSTR). The Deficiency One Algorithm and the Subnetwork Analysis were applied to determine the steady state multiplicity. A set of rate constants and two corresponding steady states are computed. The phenomena of bistability, hysteresis and bifurcation are discussed. Moreover, the capacity of steady state multiplicity is extended to the family of the studied reaction networks.

  3. A quaternionic map for the steady states of the Heisenberg spin-chain

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)

    2014-01-17

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  4. A quaternionic map for the steady states of the Heisenberg spin-chain

    International Nuclear Information System (INIS)

    Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu

    2014-01-01

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  5. Workshop on High Power ICH Antenna Designs for High Density Tokamaks

    Science.gov (United States)

    Aamodt, R. E.

    1990-02-01

    A workshop in high power ICH antenna designs for high density tokamaks was held to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of RF auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made.

  6. Steady state analysis of Boolean molecular network models via model reduction and computational algebra.

    Science.gov (United States)

    Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard

    2014-06-26

    A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for

  7. Determining the Impact of Steady-State PV Fault Current Injections on Distribution Protection

    Energy Technology Data Exchange (ETDEWEB)

    Seuss, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reno, Matthew J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Broderick, Robert Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Grijalva, Santiago [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-05-01

    This report investigates the fault current contribution from a single large PV system and the impact it has on existing distribution overcurrent protection devices. Assumptions are made about the modeling of the PV system under fault to perform exhaustive steady - state fault analyses throughout distribution feeder models. Each PV interconnection location is tested to determine how the size of the PV system affects the fault current measured by each protection device. This data is then searched for logical conditions that indicate whether a protection device has operated in a manner that will cause more customer outages due to the addition of the PV system. This is referred to as a protection issue , and there are four unique types of issues that have been identified in the study. The PV system size at which any issues occur are recorded to determine the feeder's PV hosting capacity limitations due to interference with protection settings. The analysis is carried out on six feeder models. The report concludes with a discussion of the prevalence and cause of each protection issue caused by PV system fault current.

  8. Spreading of wave-driven currents in a tokamak

    International Nuclear Information System (INIS)

    Ignat, D.W.; Kaita, R.; Jardin, S.C.; Okabayashi, M.

    1996-01-01

    Lower hybrid current drive (LHCD) in the tokamak Princeton Beta Experiment-Modification (PBX-M) is computed with a dynamic model in order to understand an actual discharge aimed at raising the central q above unity. Such configurations offer advantages for steady-state operation and plasma stability. For the particular parameters of this PBX-M experiment, the calculation found singular profiles of plasma current density J and safety factor q developing soon after LHCD begins. Smoothing the lower hybrid-driven current and power using a diffusion-Eke equation and a velocity-independent diffusivity for fast-electron current brought the model into reasonable agreement with the measurements if D fast ∼ 1.0 m 2 /s. Such a value for D fast is in the range suggested by other work

  9. Mechanical design and thermo-hydraulic simulation of the infrared thermography diagnostic of the WEST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Micolon, Frédéric, E-mail: frederic.micolon@cea.fr; Courtois, Xavier; Aumeunier, Marie-Hélène; Chenevois, Jean-Pierre; Larroque, Sébastien

    2015-10-15

    The WEST (Tungsten (W) Environment in Steady state Tokamak) project is a partial rebuild of the Tore Supra tokamak to make it an X-point metallic environment machine aimed at testing ITER technologies in relevant plasma environment. For the safe operation of the WEST tokamak, infra-red (IR) thermography is a crucial diagnostic as it is a sound and reliable way to detect hotspots or abnormal heating patterns on the plasma facing components (PFCs). Thus WEST will be fitted with middle/short-IR (1.5–2 μm or 3–5 μm) cameras in the upper port plugs to get a full view of the critical PFCs (in particular the new lower divertor) and radio-frequency (RF) heating antennas and one camera at the equatorial level to monitor the new upper divertor and the first wall. This paper describes the design of the up-to-date optical system along with the hydraulic analysis and the thermal and mechanical finite element analysis conducted to ensure adequate heat extraction capabilities. Boundary conditions and simulation results will be presented and discussed as well as technological solutions retained.

  10. Steady state ion acceleration by a circularly polarized laser pulse

    International Nuclear Information System (INIS)

    Zhang Xiaomei; Shen Baifei; Cang Yu; Li Xuemei; Jin Zhangying; Wang Fengchao

    2007-01-01

    The steady state ion acceleration at the front of a cold solid target by a circularly polarized flat-top laser pulse is studied with one-dimensional particle-in-cell (PIC) simulation. A model that ions are reflected by a steady laser-driven piston is used by comparing with the electrostatic shock acceleration. A stable profile with a double-flat-top structure in phase space forms after ions enter the undisturbed region of the target with a constant velocity

  11. Structural analysis and manufacture for the vacuum vessel of experimental advanced superconducting tokamak (EAST) device

    International Nuclear Information System (INIS)

    Song Yuntao; Yao Damao; Wu Songata; Weng Peide

    2006-01-01

    The experimental advanced superconducting tokamak (EAST) is an advanced steady-state plasma physics experimental device, which has been approved by the Chinese government and is being constructed as the Chinese national nuclear fusion research project. The vacuum vessel, that is one of the key components, will have to withstand not only the electromagnetic force due to the plasma disruption and the Halo current, but also the pressure of boride water and the thermal stress due to the 250 deg. C baking out by the hot pressure nitrogen gas, or the 100 deg. C hot wall during plasma operation. This paper is a report of the mechanical analyses of the vacuum vessel. According to the allowable stress criteria of American Society of Mechanical Engineers, Boiler and Pressure Vessel Committee (ASME), the maximum integrated stress intensity on the vacuum vessel is 396 MPa, less than the allowable design stress intensity 3S m (441 MPa). At the same time, some key R and D issues are presented, which include supporting system, bellows and the assembly of the whole vacuum vessel

  12. A Novel Chronic Opioid Monitoring Tool to Assess Prescription Drug Steady State Levels in Oral Fluid.

    Science.gov (United States)

    Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth

    2017-11-01

    Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  13. Poiseuille flow of soft glasses in narrow channels: from quiescence to steady state.

    Science.gov (United States)

    Chaudhuri, Pinaki; Horbach, Jürgen

    2014-10-01

    Using numerical simulations, the onset of Poiseuille flow in a confined soft glass is investigated. Starting from the quiescent state, steady flow sets in at a time scale which increases with a decrease in applied forcing. At this onset time scale, a rapid transition occurs via the simultaneous fluidization of regions having different local stresses. In the absence of steady flow at long times, creep is observed even in regions where the local stress is larger than the bulk yielding threshold. Finally, we show that the time scale to attain steady flow depends strongly on the history of the initial state.

  14. Steady-state bifurcations of the three-dimensional Kolmogorov problem

    Directory of Open Access Journals (Sweden)

    Zhi-Min Chen

    2000-08-01

    Full Text Available This paper studies the spatially periodic incompressible fluid motion in $mathbb R^3$ excited by the external force $k^2(sin kz, 0,0$ with $kgeq 2$ an integer. This driving force gives rise to the existence of the unidirectional basic steady flow $u_0=(sin kz,0, 0$ for any Reynolds number. It is shown in Theorem 1.1 that there exist a number of critical Reynolds numbers such that $u_0$ bifurcates into either 4 or 8 or 16 different steady states, when the Reynolds number increases across each of such numbers.

  15. Fabrication and Characterization of Ultrathin-ring Electrodes for Pseudo-steady-state Amperometric Detection.

    Science.gov (United States)

    Kitazumi, Yuki; Hamamoto, Katsumi; Noda, Tatsuo; Shirai, Osamu; Kano, Kenji

    2015-01-01

    The fabrication of ultrathin-ring electrodes with a diameter of 2 mm and a thickness of 100 nm is established. The ultrathin-ring electrodes provide a large density of pseudo-steady-state currents, and realize pseudo-steady-state amperometry under quiescent conditions without a Faraday cage. Under the limiting current conditions, the current response at the ultrathin-ring electrode can be well explained by the theory of the microband electrode response. Cyclic voltammograms at the ultrathin-ring electrode show sigmoidal characteristics with some hysteresis. Numerical simulation reveals that the hysteresis can be ascribed to the time-dependence of pseudo-steady-state current. The performance of amperometry with the ultrathin-ring electrode has been verified in its application to redox enzyme kinetic measurements.

  16. Existence and instability of steady states for a triangular cross-diffusion system: A computer-assisted proof

    Science.gov (United States)

    Breden, Maxime; Castelli, Roberto

    2018-05-01

    In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.

  17. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1987-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during stead-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K steam generator inlet plenum fluid temperatures, 6.2 MPa secondary pressure). The Semiscale (MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  18. Very low frequency oscillations of heat load and recycling flux in steady-state tokamak discharge in TRIAM-1M

    Energy Technology Data Exchange (ETDEWEB)

    Zushi, H.; Sakamoto, M.; Hanada, K.; Iyomasa, A.; Nakamura, K.; Sato, K.N.; Idei, H.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Hasegawa, M. [Kyushu Univ., Research Institute for Applied Mechanics (Japan); Matsuo, Y.; Kuramoto, K.; Sugata, T.; Maezono, N.; Hoshika, H.; Sasaki, K. [Kyushu Univ., Interdisciplinary Graduate School of Engineering Sciences (Japan)

    2004-07-01

    Plasma wall interaction (PWI) driven relaxation oscillations are investigated in the steady state discharge for 5 hours. The oscillation frequency was about 10{sup -3} Hz and each perturbation lasted for about 300 s. The heat load, recycling flux and impurity influx were varied from a few % to several tens of %. The largest variation of 70% was seen on the Mo XIII (molybdenum), although the influx of Mo I was only 20 %. Although the input rf power is kept constant during the discharge, the coupling between the rf and plasma was increased by about 10%. The current drive efficiency is decreased by 24 % in spite of current ramp. The toroidal and poloidal profiles of the recycling flux were also changed. During the last relaxation phase, the plasma was finally terminated. The current reduction (> 4 kA) was not recovered by intense local perturbation of the recycling superposed on the relaxation oscillation. (authors)

  19. An accelerator based steady state neutron source

    International Nuclear Information System (INIS)

    Burke, R.J.; Johnson, D.L.

    1985-01-01

    Using high current, c.w. linear accelerator technology, a spallation neutron source can achieve much higher average intensities than existing or proposed pulsed spallation sources. With about 100 mA of 300 MeV protons or deuterons, the Accelerator Based Neutron Research Facility (ABNR) would initially achieve the 10 16 n/cm 2 .s thermal flux goal of the advanced steady state neutron source, and upgrading could provide higher steady state fluxes. The relatively low ion energy compared to other spallation sources has an important impact on R and D requirements as well as capital cost, for which a range of $300-450M is estimated by comparison to other accelerator-based neutron source facilities. The source is similar to a reactor source in most respects. It has some higher energy neutrons but fewer gamma rays, and the moderator region is free of many of the design constraints of a reactor, which helps to implement sources for various neutron energy spectra, many beam tubes, etc. With the development of multi-beam concept and the basis for currents greater than 100 mA that is assumed in the R and D plan, the ABNR would serve many additional uses, such as fusion materials development, production of proton-rich isotopes, and other energy and defense program needs

  20. Reliable and Efficient Procedure for Steady-State Analysis of Nonautonomous and Autonomous Systems

    Directory of Open Access Journals (Sweden)

    J. Dobes

    2012-04-01

    Full Text Available The majority of contemporary design tools do not still contain steady-state algorithms, especially for the autonomous systems. This is mainly caused by insufficient accuracy of the algorithm for numerical integration, but also by unreliable steady-state algorithms themselves. Therefore, in the paper, a very stable and efficient procedure for the numerical integration of nonlinear differential-algebraic systems is defined first. Afterwards, two improved methods are defined for finding the steady state, which use this integration algorithm in their iteration loops. The first is based on the idea of extrapolation, and the second utilizes nonstandard time-domain sensitivity analysis. The two steady-state algorithms are compared by analyses of a rectifier and a C-class amplifier, and the extrapolation algorithm is primarily selected as a more reliable alternative. Finally, the method based on the extrapolation naturally cooperating with the algorithm for solving the differential-algebraic systems is thoroughly tested on various electronic circuits: Van der Pol and Colpitts oscillators, fragment of a large bipolar logical circuit, feedback and distributed microwave oscillators, and power amplifier. The results confirm that the extrapolation method is faster than a classical plain numerical integration, especially for larger circuits with complicated transients.

  1. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    Science.gov (United States)

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.

  2. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Science.gov (United States)

    Pathan, F. S.; Khan, Z.; Semwal, P.; Raval, D. C.; Joshi, K. S.; Thankey, P. L.; Dhanani, K. R.

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN2 panels during sniffer test and pressure drop test using helium gas.

  3. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R [Institute for Plasma Research, Bhat, Gandhinagar - 382 428, Gujarat (India)], E-mail: firose@ipr.res.in

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN{sub 2} panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN{sub 2} panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN{sub 2} panels during sniffer test and pressure drop test using helium gas.

  4. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    International Nuclear Information System (INIS)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R

    2008-01-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN 2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN 2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN 2 panels during sniffer test and pressure drop test using helium gas

  5. Advanced statistics for tokamak transport colinearity and tokamak to tokamak variation

    International Nuclear Information System (INIS)

    Riedel, K.S.

    1989-03-01

    This is a compendium of three separate articles on the statistical analysis of tokamak transport. The first article is an expository introduction to advanced statistics and scaling laws. The second analyzes two important problems of tokamak data---colinearity and tokamak to tokamak variation in detail. The third article generalizes the Swamy random coefficient model to the case of degenerate matrices. Three papers have been processed separately

  6. First Results from Tests of High Temperature Superconductor Magnets on Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gryaznevich, M.; Todd, T.T., E-mail: mikhail.gryaznevich@ccfe.ac.uk [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom); Svoboda, V.; Markovic, T.; Ondrej, G. [Czech Technical University, Prague (Czech Republic); Stockel, J.; Duran, I.; Kovarik, K. [IPP Prague, Czech Technical University, Prague (Czech Republic); Sykes, A.; Kingham, D. [Tokamak Solutions, Culham Science Centre, Abingdon (United Kingdom); Melhem, Z.; Ball, S.; Chappell, S. [Oxford Instruments, Abingdon (United Kingdom); Lilley, M. K.; De Grouchy, P.; Kim, H. -T. [Imperial College, London (United Kingdom)

    2012-09-15

    construction of a small fully-HTS low aspect ratio tokamak has started at the Tokamak Solutions UK premises in the Culham Science Centre. It is planned to operate a small tokamak with A = 2 and circular cross section in steady state with plasma currents of 10 - 20 kA driven by Electron Bernstein Wave current drive. In parallel, the design and manufacture of a high-field (5 T) HTS TF coil for a spherical tokamak is carried out. (author)

  7. The ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D 3 He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions

  8. Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil

    2012-01-01

    The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme...... to unveil fundamental reasons for the distinctive variability in hydrolytic activity found in different cellulase-substrate systems....

  9. Dust remobilization in fusion plasmas under steady state conditions

    NARCIS (Netherlands)

    Tolias, P.; Ratynskaia, S.; de Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; I. Bykov,; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-01-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic

  10. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  11. Steady-state equations of even flux and scattering

    International Nuclear Information System (INIS)

    Verwaerde, D.

    1985-11-01

    Some mathematical properties of steady-state equation of even flux are shown in variational formalism. This theoretical frame allows to study the existence of a solution and its asymptotical behavior in opaque media (i.e. the relation with scattering equation). At last it allows to qualify the convergence velocity of resolution iterative processes used practically [fr

  12. Hydrodynamics of stratified epithelium: Steady state and linearized dynamics

    Science.gov (United States)

    Yeh, Wei-Ting; Chen, Hsuan-Yi

    2016-05-01

    A theoretical model for stratified epithelium is presented. The viscoelastic properties of the tissue are assumed to be dependent on the spatial distribution of proliferative and differentiated cells. Based on this assumption, a hydrodynamic description of tissue dynamics at the long-wavelength, long-time limit is developed, and the analysis reveals important insights into the dynamics of an epithelium close to its steady state. When the proliferative cells occupy a thin region close to the basal membrane, the relaxation rate towards the steady state is enhanced by cell division and cell apoptosis. On the other hand, when the region where proliferative cells reside becomes sufficiently thick, a flow induced by cell apoptosis close to the apical surface enhances small perturbations. This destabilizing mechanism is general for continuous self-renewal multilayered tissues; it could be related to the origin of certain tissue morphology, tumor growth, and the development pattern.

  13. Thermal-hydraulic and thermo-mechanical design of plasma facing components for SST-1 tokamak

    International Nuclear Information System (INIS)

    Chaudhuri, Paritosh; Santra, P.; Chenna Reddy, D.; Parashar, S.K.S.

    2014-01-01

    The Plasma Facing Components (PFCs) are one of the major sub-systems of ssT-1 tokamak. PFC of ssT-1 consisting of divertors, passive stabilizers, baffles and limiters are designed to be compatible for steady state operation. The main consideration in the design of the PFC cooling is the steady state heat removal of up to 1 MW/m 2 . The PFC has been designed to withstand the peak heat fluxes and also without significant erosion such that frequent replacement of the armor is not necessary. Design considerations included 2-D steady state and transient tile temperature distribution and resulting thermal loads in PFC during baking, and cooling, coolant parameters necessary to maintain optimum thermal-hydraulic design, and tile fitting mechanism. Finite Element (FE) models using ANSYS have been developed to carry out the heat transfer and stress analyses of the PFC to understand its thermal and mechanical behaviors. The results of the calculation led to a good understanding of the coolant flow behavior and the temperature distribution in the tube wall and the different parts of the PFC. Thermal analysis of the PFC is carried out with the purpose of evaluating the thermal mechanical behavior of PFCs. The detailed thermal-hydraulic and thermo-mechanical designs of PFCs of ssT-1 are discussed in this paper. (authors)

  14. Theory of minimum dissipation of energy for the steady state

    International Nuclear Information System (INIS)

    Chu, T.K.

    1992-02-01

    The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space

  15. Recent developments in Bayesian inference of tokamak plasma equilibria and high-dimensional stochastic quadratures

    International Nuclear Information System (INIS)

    Von Nessi, G T; Hole, M J

    2014-01-01

    We present recent results and technical breakthroughs for the Bayesian inference of tokamak equilibria using force-balance as a prior constraint. Issues surrounding model parameter representation and posterior analysis are discussed and addressed. These points motivate the recent advancements embodied in the Bayesian Equilibrium Analysis and Simulation Tool (BEAST) software being presently utilized to study equilibria on the Mega-Ampere Spherical Tokamak (MAST) experiment in the UK (von Nessi et al 2012 J. Phys. A 46 185501). State-of-the-art results of using BEAST to study MAST equilibria are reviewed, with recent code advancements being systematically presented though out the manuscript. (paper)

  16. Investigation on synergy of IBW and LHCD for integrated high performance operation in HT-7 tokamak

    International Nuclear Information System (INIS)

    Wan Baonian

    2002-01-01

    Control of the current density profile has been realized with off-axis current drive by LHW in the HT-7 tokamak predicted by a 2D FP code simulation and supported by measurements of a vertical HX array. IBW is explored to improve performance through heating electrons in the selected region. Strong synergy effect on driven current profile and increased driven efficiency was observed. Electron temperature shows an ITB-like profile with a significantly improved performance. Operation of IBW and LHCD synergetic discharges was optimized through moving the IBW resonant layer to maximize the plasma performance and to avoid the MHD activities. A variety of high performance discharges indicated by β N *H89=1∼ 4 was produced for several tens energy confinement times. This operation mode utilizing synergy effect of IBW and LHCD provide a new way to obtain steady-state operation in advanced tokamak scenario. (author)

  17. Diagnostic applications of transient synchrotron radiation in tokamak plasmas

    International Nuclear Information System (INIS)

    Fisch, N.J.; Kritz, A.H.

    1990-02-01

    Transient radiation, resulting from a brief, deliberate perturbation of the velocity distribution of superthermal tokamak electrons, can be more informative than the steady background radiation that is present in the absence of the perturbation. It is possible to define a number of interesting inverse problems, which exploit the two-dimensional frequency-time data of the transient radiation signal. 17 refs

  18. Exact steady state manifold of a boundary driven spin-1 Lai–Sutherland chain

    International Nuclear Information System (INIS)

    Ilievski, Enej; Prosen, Tomaž

    2014-01-01

    We present an explicit construction of a family of steady state density matrices for an open integrable spin-1 chain with bilinear and biquadratic interactions, also known as the Lai–Sutherland model, driven far from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the boundary. The steady state solution exhibits n+1 fold degeneracy, for a chain of length n, due to existence of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl 2 and a non-nilpotent radical) and hints to a novel Yang–Baxter integrability structure

  19. Exact steady state manifold of a boundary driven spin-1 Lai–Sutherland chain

    Energy Technology Data Exchange (ETDEWEB)

    Ilievski, Enej; Prosen, Tomaž

    2014-05-15

    We present an explicit construction of a family of steady state density matrices for an open integrable spin-1 chain with bilinear and biquadratic interactions, also known as the Lai–Sutherland model, driven far from equilibrium by means of two oppositely polarizing Markovian dissipation channels localized at the boundary. The steady state solution exhibits n+1 fold degeneracy, for a chain of length n, due to existence of (strong) Liouvillian U(1) symmetry. The latter can be exploited to introduce a chemical potential and define a grand canonical nonequilibrium steady state ensemble. The matrix product form of the solution entails an infinitely-dimensional representation of a non-trivial Lie algebra (semidirect product of sl{sub 2} and a non-nilpotent radical) and hints to a novel Yang–Baxter integrability structure.

  20. Integration of steady-state and temporal gene expression data for the inference of gene regulatory networks.

    Science.gov (United States)

    Wang, Yi Kan; Hurley, Daniel G; Schnell, Santiago; Print, Cristin G; Crampin, Edmund J

    2013-01-01

    We develop a new regression algorithm, cMIKANA, for inference of gene regulatory networks from combinations of steady-state and time-series gene expression data. Using simulated gene expression datasets to assess the accuracy of reconstructing gene regulatory networks, we show that steady-state and time-series data sets can successfully be combined to identify gene regulatory interactions using the new algorithm. Inferring gene networks from combined data sets was found to be advantageous when using noisy measurements collected with either lower sampling rates or a limited number of experimental replicates. We illustrate our method by applying it to a microarray gene expression dataset from human umbilical vein endothelial cells (HUVECs) which combines time series data from treatment with growth factor TNF and steady state data from siRNA knockdown treatments. Our results suggest that the combination of steady-state and time-series datasets may provide better prediction of RNA-to-RNA interactions, and may also reveal biological features that cannot be identified from dynamic or steady state information alone. Finally, we consider the experimental design of genomics experiments for gene regulatory network inference and show that network inference can be improved by incorporating steady-state measurements with time-series data.

  1. Workshop on high power ICH antenna designs for high density tokamaks

    International Nuclear Information System (INIS)

    Aamodt, R.E.

    1990-01-01

    A workshop in high power ICH antenna designs for high density tokamaks was held in Boulder, Colorado on January 31 through February 2, 1990. The purposes of the workshop were to: (1) review the data base relevant to the high power heating of high density tokamaks; (2) identify the important issues which need to be addressed in order to ensure the success of the ICRF programs on CIT and Alcator C-MOD; and (3) recommend approaches for resolving the issues in a timely realistic manner. Some specific performance goals for the antenna system define a successful design effort. Simply stated these goals are: couple the specified power per antenna into the desired ion species; produce no more than an acceptable level of rf auxiliary power induced impurities; and have a mechanical structure which safely survives the thermal, mechanical and radiation stresses in the relevant environment. These goals are intimately coupled and difficult tradeoffs between scientific and engineering constraints have to be made

  2. Diagnostics systems for the TBR-E tokamak

    International Nuclear Information System (INIS)

    Ueda, M.; Ferreira, J.L.; Aso, Y.; Ferreira, J.G.

    1992-08-01

    A general view of the several diagnostics systems proposed for the TBR-E tokamak is given. This project is a joint undertaking of INPE, USP and UNICAMP plasma laboratories. The requirements for the measurements of the plasma produced parameters are described. Special attention is given for diagnostics used to investigate new physical issues on a low aspect ratio tokamak such as TBR-E. (author)

  3. Tokamak power systems studies at ANL

    International Nuclear Information System (INIS)

    Baker, C.C.; Ehst, D.A.; Brooks, J.N.; Evans, K. Jr.

    1986-01-01

    A number of advances in plasma physics and engineering promise to greatly improve the reactor prospects of tokamaks. The following features, in particular, are examined: (a) large aspect ratio (A ≅ 6), which may ease maintenance; (b) high beta (β ≥ 0.20) without indentation, which brings the maximum toroidal field down to about 7 T; (c) low toroidal current (I ≅ 5MA), which reduces the cost of the current drive and equilibrium field system; and (d) steady state operation with current density control via fast and slow wave current drive. The key to high beta operation with low toroidal current lies in utilizing second stability regime equilibria with the required current distributions produced by an appropriate selection of wave driver frequencies and power spectra. The ray tracing and current drive calculation is self-consistent with the actual magnetic fields produced in the plasma. In addition to matching desirable high-beta equilibria, this method is capable of producing a large variety of new equilibria, many of which look attractive. The impurity control activities in TPSS have emphasized the self-pumping concept as applied to using the entire first wall or ''slot'' limiters. The blanket design effort has emphasized liquid metal and Flibe concepts. The reference concept is a liquid lithium/vanadium, self-cooled configuration. Overall, there exists a number of major design improvements which will substantially improve the attractiveness of tokamak reactors

  4. Vaporization Mode and State of the Ablatant of a Deuterium Pellet in Tokamak Discharges

    DEFF Research Database (Denmark)

    Chang, C. T.

    1983-01-01

    The ablation of a deuterium pellet under prevailing tokamak discharge conditions is shown to be a dynamic phase transition process. An alternative boundary condition at the pellet surface is formulated. Computational results based on the new boundary condition showed that the state of the ablatant...

  5. Algorithm for determining two-periodic steady-states in AC machines directly in time domain

    Directory of Open Access Journals (Sweden)

    Sobczyk Tadeusz J.

    2016-09-01

    Full Text Available This paper describes an algorithm for finding steady states in AC machines for the cases of their two-periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain despite of the fact that two-periodic waveforms are not repeated in any finite time interval. The basis for such an algorithm is a discrete differential operator that specifies the temporary values of the derivative of the two-periodic function in the selected set of points on the basis of the values of that function in the same set of points. It allows to develop algebraic equations defining the steady state solution reached in a chosen point set for the nonlinear differential equations describing the AC machines when electrical and mechanical equations should be solved together. That set of those values allows determining the steady state solution at any time instant up to infinity. The algorithm described in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.

  6. Analysis on the steady-state coherent synchrotron radiation with strong shielding

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-01-01

    There are several papers concerning shielding of coherent synchrotron radiation (CSR) emitted by a Gaussian line charge on a circular orbit centered between two parallel conducting plates. Previous asymptotic analyses in the frequency domain show that shielded steady-state CSR mainly arises from harmonics in the bunch frequency exceeding the threshold harmonic for satisfying the boundary conditions at the plates. In this paper the authors extend the frequency-domain analysis into the regime of strong shielding, in which the threshold harmonic exceeds the characteristic frequency of the bunch. The result is then compared to the shielded steady-state CSR power obtained using image charges

  7. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    Science.gov (United States)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  8. On the density limit of Tokamaks

    International Nuclear Information System (INIS)

    Lehnert, B.

    1982-12-01

    Under the conditions of so far performed quasi-steady tokamak experiments near the density limit, the plasma pressure gradient in the outer layers of the plasma body becomes mainly determined by the plasma-neutral gas balance. An earlier analysis of ballooning instabilities driven by this gradient in regions of bad curvature has been extended to deduce an explicit stability criterion which determines the density limit. This criterion is closely related to the empirical Murakami limit. At relevant tokamak data, the deduced limit becomes proportional to J(sub)zR(sup)1/2 where J(sub)z is the average current density and R the major plasma radius. It is further found to be independent of the toroidal magnetic field strength and anomalous transport, as well as to be a slow function of the outer layer temperature and the mass number. The deduced stability criterion is consistent with so far performed experiments. Provided that the present analysis can be extrapolated to a wider range of parameter data and be combined with Alcator scaling, conditions near ignition appear to become realizable in small tokamaks by ohmic heating alone. These conditions can be satisfied at relevant magnetic field strengths and plasma currents, by imposing a high plasma current density. (author)

  9. A displacement based FE formulation for steady state problems

    NARCIS (Netherlands)

    Yu, Y.

    2005-01-01

    In this thesis a new displacement based formulation is developed for elasto-plastic deformations in steady state problems. In this formulation the displacements are the primary variables, which is in contrast to the more common formulations in terms of the velocities as the primary variables. In a

  10. Pneumatic injector of deuterium macroparticles for TORE-SUPRA tokamak

    International Nuclear Information System (INIS)

    Vinyar, I.V.; Umov, A.P.; Lukin, A.Ya.; Skoblikov, S.V.; Reznichenko, P.V.; Krasil'nikov, I.A.

    2006-01-01

    The pneumatic injector for periodic injection of fuel-solid-deuterium pellets into the plasma of the TORE-SUPRA tokamak in a steady-state mode is described. The deuterium pellet injection with an unlimited duration is ensured by a screw extruder in which gaseous deuterium is frozen and squeezed outwards in the form of a rod with a rectangular cross section. A cutter installed on the injector's barrel cuts a cylinder with a diameter of 2 mm and a length of 1.0-3.5 mm out from this rod. The movement of the cutter is controlled by a pulsed electromagnetic drive at a pulse repetition rate of 10 Hz. In the injector's barrel, a compressed gas accelerates a deuterium pellet to a velocity of 100-650 m/s [ru

  11. Importance sampling large deviations in nonequilibrium steady states. I

    Science.gov (United States)

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T.

    2018-03-01

    Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

  12. Importance sampling large deviations in nonequilibrium steady states. I.

    Science.gov (United States)

    Ray, Ushnish; Chan, Garnet Kin-Lic; Limmer, David T

    2018-03-28

    Large deviation functions contain information on the stability and response of systems driven into nonequilibrium steady states and in such a way are similar to free energies for systems at equilibrium. As with equilibrium free energies, evaluating large deviation functions numerically for all but the simplest systems is difficult because by construction they depend on exponentially rare events. In this first paper of a series, we evaluate different trajectory-based sampling methods capable of computing large deviation functions of time integrated observables within nonequilibrium steady states. We illustrate some convergence criteria and best practices using a number of different models, including a biased Brownian walker, a driven lattice gas, and a model of self-assembly. We show how two popular methods for sampling trajectory ensembles, transition path sampling and diffusion Monte Carlo, suffer from exponentially diverging correlations in trajectory space as a function of the bias parameter when estimating large deviation functions. Improving the efficiencies of these algorithms requires introducing guiding functions for the trajectories.

  13. STARFIRE: a commercial tokamak fusion power plant study

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    STARFIRE is a 1200 MWe central station fusion electric power plant that utilizes a deuterium-tritium fueled tokamak reactor as a heat source. Emphasis has been placed on developing design features which will provide for simpler assembly and maintenance, and improved safety and environmental characteristics. The major features of STARFIRE include a steady-state operating mode based on continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup and low vulnerable tritium inventories, superconducting EF coils outside the superconducting TF coils, fully remote maintenance, and a low-activation shield. A comprehensive conceptual design has been developed including reactor features, support facilities and a complete balance of plant. A construction schedule and cost estimate are presented, as well as study conclusions and recommendations.

  14. STARFIRE: a commercial tokamak fusion power plant study

    International Nuclear Information System (INIS)

    1980-09-01

    STARFIRE is a 1200 MWe central station fusion electric power plant that utilizes a deuterium-tritium fueled tokamak reactor as a heat source. Emphasis has been placed on developing design features which will provide for simpler assembly and maintenance, and improved safety and environmental characteristics. The major features of STARFIRE include a steady-state operating mode based on continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup and low vulnerable tritium inventories, superconducting EF coils outside the superconducting TF coils, fully remote maintenance, and a low-activation shield. A comprehensive conceptual design has been developed including reactor features, support facilities and a complete balance of plant. A construction schedule and cost estimate are presented, as well as study conclusions and recommendations

  15. ARIES tokamak reactor study

    International Nuclear Information System (INIS)

    Steiner, D.; Embrechts, M.

    1990-07-01

    This is a status report on technical progress relative to the tasks identified for the fifth year of Grant No. FG02-85-ER52118. The ARIES tokamak reactor study is a multi-institutional effort to develop several visions of the tokamak as an attractive fusion reactor with enhanced economic, safety, and environmental features. The ARIES study is being coordinated by UCLA and involves a number of institutions, including RPI. The RPI group has been pursuing the following areas of research in the context of the ARIES-I design effort: MHD equilibrium and stability analyses; plasma-edge modeling and blanket materials issues. Progress in these areas is summarized herein

  16. A novel multivariate STeady-state index during general ANesthesia (STAN).

    Science.gov (United States)

    Castro, Ana; de Almeida, Fernando Gomes; Amorim, Pedro; Nunes, Catarina S

    2017-08-01

    The assessment of the adequacy of general anesthesia for surgery, namely the nociception/anti-nociception balance, has received wide attention from the scientific community. Monitoring systems based on the frontal EEG/EMG, or autonomic state reactions (e.g. heart rate and blood pressure) have been developed aiming to objectively assess this balance. In this study a new multivariate indicator of patients' steady-state during anesthesia (STAN) is proposed, based on wavelet analysis of signals linked to noxious activation. A clinical protocol was designed to analyze precise noxious stimuli (laryngoscopy/intubation, tetanic, and incision), under three different analgesic doses; patients were randomized to receive either remifentanil 2.0, 3.0 or 4.0 ng/ml. ECG, PPG, BP, BIS, EMG and [Formula: see text] were continuously recorded. ECG, PPG and BP were processed to extract beat-to-beat information, and [Formula: see text] curve used to estimate the respiration rate. A combined steady-state index based on wavelet analysis of these variables, was applied and compared between the three study groups and stimuli (Wilcoxon signed ranks, Kruskal-Wallis and Mann-Whitney tests). Following institutional approval and signing the informed consent thirty four patients were enrolled in this study (3 excluded due to signal loss during data collection). The BIS index of the EEG, frontal EMG, heart rate, BP, and PPG wave amplitude changed in response to different noxious stimuli. Laryngoscopy/intubation was the stimulus with the more pronounced response [Formula: see text]. These variables were used in the construction of the combined index STAN; STAN responded adequately to noxious stimuli, with a more pronounced response to laryngoscopy/intubation (18.5-43.1 %, [Formula: see text]), and the attenuation provided by the analgesic, detecting steady-state periods in the different physiological signals analyzed (approximately 50 % of the total study time). A new multivariate approach for

  17. Diffusion-driven steady states of the Z-pinch

    International Nuclear Information System (INIS)

    Lehnert, B.

    1988-01-01

    Steady states of a Z-pinch where no electric field is imposed along the pinch axis by external means are investigated. In this case, diffusion-driven states become possible when imposed volume sources of particles and heat drive a radial diffusion velocity that, in its turn, generates the electric plasma current. The particle sources can be from pellet injection or a neutral gas blanket, and the heat sources provided by thermonuclear reactions or auxiliary heating. The present analysis and associated kinetic considerations indicate that steady diffusion-driven operation should become possible for certain classes of plasma profiles, without running into singularity problems at the pinch axis. Such operation leads to higher axial currents in a Z-pinch without an axial magnetic field than in a tokamaklike case under similar plasma conditions. The technical difficulty in realizing a volume distribution of particle sinks introduces certain constraints on the plasma and current profiles. This fact has to be taken into account in a stability analysis. Neoclassical or anomalous diffusion will increase the diffusion velocity of the plasma but is not expected to affect the main physical features of the present results

  18. Studies of non-inductive current drive in the CDX-U tokamak

    International Nuclear Information System (INIS)

    Hwang, Y.S.

    1993-01-01

    Two types of novel, non-inductive current drive concepts for starting-up and maintaining tokamak discharges, dc-helicity injection and internally-generated pressure-driven currents, have been developed on the CDX-U tokamak. To study the equilibrium and transport of these plasmas, a full set of magnetic diagnostics was installed. By applying a finite element method and a least squares error fitting technique, internal plasma current distributions are reconstructed from the measurements. Electron density distributions were obtained from 2 mm interferometer measurements by a similar least squares error technique utilizing magnetic flux configurations obtained by the magnetic analysis. Neoclassical pressure-driven currents in ECH plasmas are modeled with the reconstructed magnetic structure, using the electron density distribution and the electron temperature profile measured by a Langmuir probe. In the dc-helicity injection scheme, the need to increase injection current and maintain plasma equilibrium restricts possible arrangements. Several injection configurations were investigated, with the best found to be outside injection with a single divertor configuration, where the cathode is placed at the low field side of the x-point. Both pressure-driven and dc-helicity injected tokamaks show the importance of plasma equilibrium in obtaining high plasma current. Programmed vertical field operation has proven to be very important in achieving high plasma current. These non-inductive current drive techniques show great potential as efficient current drive methods for future steady-state and/or long-pulse fusion reactors

  19. Robust Sliding Mode Control for Tokamaks

    Directory of Open Access Journals (Sweden)

    I. Garrido

    2012-01-01

    Full Text Available Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.

  20. Physics Issues in the Design of Low Aspect-Ratio, High-Beta, Quasi-Axisymmetric Stellarators

    International Nuclear Information System (INIS)

    Zarnstorff, M.C.; Berry, L.A.; Boozer, A.; Brooks, A.; Cooper, W.A.

    2000-01-01

    Compact stellarators have the potential to combine the best features of the stellarator and the advanced tokamak, offering steady state operation without current drive and potentially without disruptions at an aspect ratio similar to tokamaks. A quasi-axisymmetric stellarator is developed that is consistent with the boot-strap current and passively stable to the ballooning, kink, Mercier, vertical, and neoclassical tearing modes at b=4.1 % without need for conducting walls or external feedback. The configuration has good flux surfaces and fast ion confinement. Thermal transport analysis indicates that the confinement should be similar to tokamaks of the same size, allowing access to the b-limit with moderate power. Coils have been designed to reproduce the physics properties. Initial analysis indicates the coils have considerable flexibility to manipulate the configuration properties. Simulations of the current evolution indicate the kink-mode can remain stable during the approach to h igh-beta

  1. A Data Filter for Identifying Steady-State Operating Points in Engine Flight Data for Condition Monitoring Applications

    Science.gov (United States)

    Simon, Donald L.; Litt, Jonathan S.

    2010-01-01

    This paper presents an algorithm that automatically identifies and extracts steady-state engine operating points from engine flight data. It calculates the mean and standard deviation of select parameters contained in the incoming flight data stream. If the standard deviation of the data falls below defined constraints, the engine is assumed to be at a steady-state operating point, and the mean measurement data at that point are archived for subsequent condition monitoring purposes. The fundamental design of the steady-state data filter is completely generic and applicable for any dynamic system. Additional domain-specific logic constraints are applied to reduce data outliers and variance within the collected steady-state data. The filter is designed for on-line real-time processing of streaming data as opposed to post-processing of the data in batch mode. Results of applying the steady-state data filter to recorded helicopter engine flight data are shown, demonstrating its utility for engine condition monitoring applications.

  2. Comparison of pulsed three-dimensional CEST acquisition schemes at 7 tesla : steady state versus pseudosteady state

    NARCIS (Netherlands)

    Khlebnikov, Vitaly; Geades, Nicolas; Klomp, DWJ; Hoogduin, Hans; Gowland, Penny; Mougin, Olivier

    PURPOSE: To compare two pulsed, volumetric chemical exchange saturation transfer (CEST) acquisition schemes: steady state (SS) and pseudosteady state (PS) for the same brain coverage, spatial/spectral resolution and scan time. METHODS: Both schemes were optimized for maximum sensitivity to amide

  3. Three-dimensional stellarator equilibrium as an ohmic steady state

    International Nuclear Information System (INIS)

    Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.

    1985-07-01

    A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations

  4. Implementing a finite-state off-normal and fault response system for disruption avoidance in tokamaks

    Science.gov (United States)

    Eidietis, N. W.; Choi, W.; Hahn, S. H.; Humphreys, D. A.; Sammuli, B. S.; Walker, M. L.

    2018-05-01

    A finite-state off-normal and fault response (ONFR) system is presented that provides the supervisory logic for comprehensive disruption avoidance and machine protection in tokamaks. Robust event handling is critical for ITER and future large tokamaks, where plasma parameters will necessarily approach stability limits and many systems will operate near their engineering limits. Events can be classified as off-normal plasmas events, e.g. neoclassical tearing modes or vertical displacements events, or faults, e.g. coil power supply failures. The ONFR system presented provides four critical features of a robust event handling system: sequential responses to cascading events, event recovery, simultaneous handling of multiple events and actuator prioritization. The finite-state logic is implemented in Matlab®/Stateflow® to allow rapid development and testing in an easily understood graphical format before automated export to the real-time plasma control system code. Experimental demonstrations of the ONFR algorithm on the DIII-D and KSTAR tokamaks are presented. In the most complex demonstration, the ONFR algorithm asynchronously applies ‘catch and subdue’ electron cyclotron current drive (ECCD) injection scheme to suppress a virulent 2/1 neoclassical tearing mode, subsequently shuts down ECCD for machine protection when the plasma becomes over-dense, and enables rotating 3D field entrainment of the ensuing locked mode to allow a safe rampdown, all in the same discharge without user intervention. When multiple ONFR states are active simultaneously and requesting the same actuator (e.g. neutral beam injection or gyrotrons), actuator prioritization is accomplished by sorting the pre-assigned priority values of each active ONFR state and giving complete control of the actuator to the state with highest priority. This early experience makes evident that additional research is required to develop an improved actuator sharing protocol, as well as a methodology to

  5. Comparison of Steady-State SVC Models in Load Flow Calculations

    DEFF Research Database (Denmark)

    Chen, Peiyuan; Chen, Zhe; Bak-Jensen, Birgitte

    2008-01-01

    This paper compares in a load flow calculation three existing steady-state models of static var compensator (SVC), i.e. the generator-fixed susceptance model, the total susceptance model and the firing angle model. The comparison is made in terms of the voltage at the SVC regulated bus, equivalent...... SVC susceptance at the fundamental frequency and the load flow convergence rate both when SVC is operating within and on the limits. The latter two models give inaccurate results of the equivalent SVC susceptance as compared to the generator model due to the assumption of constant voltage when the SVC...... is operating within the limits. This may underestimate or overestimate the SVC regulating capability. Two modified models are proposed to improve the SVC regulated voltage according to its steady-state characteristic. The simulation results of the two modified models show the improved accuracy...

  6. Rapid mixing and short storage timescale in the magma dynamics of a steady-state volcano

    Science.gov (United States)

    Petrone, Chiara Maria; Braschi, Eleonora; Francalanci, Lorella; Casalini, Martina; Tommasini, Simone

    2018-06-01

    Steady-state volcanic activity implies equilibrium between the rate of magma replenishment and eruption of compositionally homogeneous magmas, lasting for tens to thousands of years in an open conduit system. The Present-day activity of Stromboli volcano (Aeolian Islands, Southern Italy) has long been recognised as typical of a steady-state volcano, with a shallow magmatic reservoir (highly porphyritic or hp-magma) continuously refilled by more mafic magma (with low phenocryst content or lp-magma) at a constant rate and accompanied by mixing, crystallisation and eruption. Our aim is to clarify the timescale and dynamics of the plumbing system at the establishment of the Present-day steady-state activity (volcanoes.

  7. Digital control of plasma position in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Emami, M.; Babazadeh, A.R.; Roshan, M.V.; Memarzadeh, M.; Habibi, H. [Atomic Energy Organization of Iran (AEOI), Tehran (Iran, Islamic Republic of). Nuclear Fusion Research Center. Plasma Physics Lab.

    2002-03-01

    Plasma position control is one of the important issues in the design and operation of tokamak fusion research device. Since a tokamak is basically an electrical system consisting of power supplies, coils, plasma and eddy currents, a model in which these components are treated as an electrical circuits is used in designing Damavand plasma position control system. This model is used for the simulation of the digital control system and its parameters have been verified experimentally. In this paper, the performance of a high-speed digital controller as well as a simulation study and its application to the Damavand tokamak is discussed. (author)

  8. Magnetic field structure of experimental high beta tokamak equilibria

    International Nuclear Information System (INIS)

    Deniz, A.V.

    1986-01-01

    The magnetic field structure of several low and high β tokamaks in the Columbia High Beta Tokamak (HBT) was determined by high-impedance internal magnetic probes. From the measurement of the magnetic field, the poloidal flux, toroidal flux, toroidal current, and safety factor are calculated. In addition, the plasma position and cross-sectional shape are determined. The extent of the perturbation of the plasma by the probe was investigated and was found to be acceptably small. The tokamaks have major radii of approx.0.24 m, minor radii of approx.0.05 m, toroidal plasma current densities of approx.10 6 A/m 2 , and line-integrated electron densities of approx.10 20 m -2 . The major difference between the low and high β tokamaks is that the high β tokamak was observed to have an outward shift in major radius of both the magnetic center and peak of the toroidal current density. The magnetic center moves inward in major radius after 20 to 30 μsec, presumably because the plasma maintains major radial equilibrium as its pressure decreases from radiation due to impurity atoms. Both the equilibrium and the production of these tokamaks from a toroidal field stabilized z-pinch are modeled computationally. One tokamak evolves from a state with low β features, through a possibly unstable state, to a state with high β features

  9. Comparing Non-Steady State Emissions under Start-Up and Shut-Down Operating Conditions with Steady State Emissions for Several Industrial Sectors: A Literature Review

    Directory of Open Access Journals (Sweden)

    Juwairia Obaid

    2017-02-01

    Full Text Available This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2 emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.

  10. A steady-state fluid model of the coaxial plasma gun

    International Nuclear Information System (INIS)

    Herziger, G.; Krompholz, H.; Schneider, W.; Schoenbach, K.

    1979-01-01

    The plasma layer in a coaxial plasma gun is considered as a shock front driven by expanding magnetic fields. Analytical steady-state solutions of the fluid equations yield the plasma properties, allowing the scaling of plasma focus devices. (Auth.)

  11. Development of repetitive railgun pellet accelerator and steady-state pellet supply system

    International Nuclear Information System (INIS)

    Oda, Y.; Onozuka, M.; Azuma, K.; Kasai, S.; Hasegawa, K.

    1995-01-01

    A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament

  12. Development of repetitive railgun pellet accelerator and steady-state pellet supply system

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Y.; Onozuka, M.; Azuma, K. [Mitsubishi Heavy Industries, Ltd., Kobe (Japan); Kasai, S.; Hasegawa, K. [Japan Atomic Energy Research Inst., Naka (Japan)

    1995-12-31

    A railgun system for repetitive high-speed pellet acceleration and steady-state pellet supply system has been developed and investigated. Using a 2m-long railgun system, the hydrogen pellet was accelerated to 2.6km/sec by the supplied energy of 1.7kJ. It is expected that the hydrogen pellet can be accelerated to 3km/sec using the present pneumatic pellet accelerator and a 2m-long augment railgun. Screw-driven hydrogen-isotope filament extruding system has been fabricated and will be tested to examine its applicability to the steady-state extrusion of the solid hydrogen-isotope filament.

  13. Local wettability reversal during steady-state two-phase flow in porous media.

    Science.gov (United States)

    Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex

    2011-09-01

    We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.

  14. An equation oriented approach to steady state flowsheeting of methanol synthesis loop

    International Nuclear Information System (INIS)

    Fathikalajahi, J.; Baniadam, M.; Rahimpour, M.R.

    2008-01-01

    An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model

  15. Tokamak

    International Nuclear Information System (INIS)

    Wesson, John.

    1996-01-01

    This book is the first compiled collection about tokamak. At first chapter tokamak is represented from fusion point of view and also the necessary conditions for producing power. The following chapters are represent plasma physics, the specifications of tokamak, plasma heating procedures and problems related to it, equilibrium, confinement, magnetohydrodynamic stability, instabilities, plasma material interaction, plasma measurement and experiments regarding to tokamak; an addendum is also given at the end of the book

  16. Coagulation profile of children with sickle cell anemia in steady state ...

    African Journals Online (AJOL)

    Background: Sickle cell anemia is associated with a hypercoagulable state that may lead to alterations in a coagulation profile. Measurements of coagulation factors are known to have some predictive value for clinical outcome. Objectives: To determine the coagulation profile of children with SCA in steady state and crisis ...

  17. Cycle kinetics, steady state thermodynamics and motors-a paradigm for living matter physics

    International Nuclear Information System (INIS)

    Qian, Hong

    2005-01-01

    An integration of the stochastic mathematical models for motor proteins with Hill's steady state thermodynamics yields a rather comprehensive theory for molecular motors as open systems in the nonequilibrium steady state. This theory, a natural extension of Gibbs' approach to isothermal molecular systems in equilibrium, is compared with other existing theories with dissipative structures and dynamics. The theory of molecular motors might be considered as an archetype for studying more complex open biological systems such as biochemical reaction networks inside living cells

  18. Determination of the Steady State Leakage Current in Structures with Ferroelectric Ceramic Films

    Science.gov (United States)

    Podgornyi, Yu. V.; Vorotilov, K. A.; Sigov, A. S.

    2018-03-01

    Steady state leakage currents have been investigated in capacitor structures with ferroelectric solgel films of lead zirconate titanate (PZT) formed on silicon substrates with a lower Pt electrode. It is established that Pt/PZT/Hg structures, regardless of the PZT film thickness, are characterized by the presence of a rectifying contact similar to p-n junction. The steady state leakage current in the forward direction increases with a decrease in the film thickness and is determined by the ferroelectric bulk conductivity.

  19. steady and dynamic states analysis of induction motor: fea approach

    African Journals Online (AJOL)

    HOD

    The flux levels at these loading conditions were also monitored. Key words: Three phase Induction Motor, Steady state and Dynamic Response, Flux Levels, FEA, Loading conditions. 1. INTRODUCTION ..... Boston: Computational Mechanics Publications;. New York: ... for Electrical Engineers, Cambridge University. Press ...

  20. Post-CHF heat transfer during steady-state and transient conditions

    International Nuclear Information System (INIS)

    Fung, K.K.

    1978-06-01

    This review extends previous reviews of steady-state post-CHF literature by Groeneveld, Gardiner, and Fung by including more recent data. A review of the literature on transient post-CHF data is also included by extending the work of Yadigaroglu

  1. Paracetamol decreases steady-state exposure to lamotrigine by induction of glucuronidation in healthy subjects

    DEFF Research Database (Denmark)

    Gastrup, Sandra; Stage, Tore Bjerregaard; Fruekilde, Palle Bach Nielsen

    2016-01-01

    AIM: Patients receiving lamotrigine therapy frequently use paracetamol concomitantly. While one study suggests a possible, clinically relevant drug-drug interaction, practical recommendations of the concomitant use are inconsistent. We performed a systematic pharmacokinetic study in healthy...... volunteers to quantify the effect of 4-day treatment of paracetamol on the metabolism of steady-state lamotrigine. METHODS: Twelve healthy, male volunteers participated in an open-label, sequential interaction study. Lamotrigine was titrated to steady state (100 mg daily) over 36 days, and blood and urine...... sampling was performed in a non-randomised order with and without paracetamol (1 g four times daily). The primary endpoint was change in steady-state area under the plasma concentration-time curve of lamotrigine. Secondary endpoints were changes in total apparent oral clearance, renal clearance...

  2. Distraction task rather than focal attention modulates gamma activity associated with auditory steady-state responses (ASSRs)

    DEFF Research Database (Denmark)

    Griskova-Bulanova, Inga; Ruksenas, Osvaldas; Dapsys, Kastytis

    2011-01-01

    To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level.......To explore the modulation of auditory steady-state response (ASSR) by experimental tasks, differing in attentional focus and arousal level....

  3. Steady state solution of the Poisson-Nernst-Planck equations

    International Nuclear Information System (INIS)

    Golovnev, A.; Trimper, S.

    2010-01-01

    The exact steady state solution of the Poisson-Nernst-Planck equations (PNP) is given in terms of Jacobi elliptic functions. A more tractable approximate solution is derived which can be used to compare the results with experimental observations in binary electrolytes. The breakdown of the PNP for high concentration and high applied voltage is discussed.

  4. Some stress-related issues in tokamak fusion reactor first walls

    International Nuclear Information System (INIS)

    Majumdar, S.; Pai, B.; Ryder, R.H.

    1987-01-01

    Recent design studies of a tokamak fusion power reactor and of various blankets have envisioned surface heat fluxes on the first wall ranging from 0.1 to 1.0 MW/m 2 , and end-of-life irradiation fluences ranging from 100 dpa for the austenitic stainless steels to as high as 250 dpa for postulated vanadium alloys. Some tokamak blankets, particularly those using helium or liquid metal as coolant/breeder, may have to operate at relatively high coolant pressures so that the first wall may be subjected to high primary stress in addition to high secondary stresses such as thermal stresses or stresses due to constrained swelling. The present paper focusses on the various problems that may arise in the first wall because of stress and high neutron fluence, and discusses some of the design solutions that have been proposed to overcome these problems

  5. Simulation of MHD instability effects on burning plasma transport with ITB in tokamak and helical reactors

    International Nuclear Information System (INIS)

    Yamazaki, K.; Yamada, I.; Taniguchi, S.; Oishi, T.

    2009-01-01

    Full text: The high performance plasma behavior is required to realize economic and environmental-friendly fusion reactors compatible with conventional power plant systems. To improve plasma confinement, the formation of internal transport barrier (ITB) is anticipated, and its behavior is analyzed by the simulation code TOTAL (Toroidal Transport Linkage Analysis). This TOTAL code comprises a 2- or 3-dimensional equilibrium and 1-dimensional predictive transport code for both tokamak and helical systems. In the tokamak code TOTAL-T, the external current drive, bootstrap current, sawtooth oscillation, ballooning mode and neoclassical tearing mode (NTM) analyses are included. The steady-state burning plasma operation is achieved by the feedback control of pellet injection fuelling and external heating power control. The impurity dynamics of iron and tungsten is also included in this code. The NTM effects are evaluated using the modified Rutherford Model with the stabilization of the ECCD current drive. The excitation of m=2/n=1 NTM leads to the 20 % reduction in the central temperature in ITER-like reactors. Recently, the external non-resonant helical field application is analyzed and its stabilization properties are evaluated. The pellet injection effects on ITB formation is also clarified in tokamak and helical plasmas. Relationship between sawtooth oscillation and impurity ejection is recently simulated in comparison with experimental data. In this conference, we will show above-stated new results on MHD instability effects on burning plasma transport. (author)

  6. Spatial variability of steady-state infiltration into a two-layer soil system on burned hillslopes

    Science.gov (United States)

    Kinner, D.A.; Moody, J.A.

    2010-01-01

    Rainfall-runoff simulations were conducted to estimate the characteristics of the steady-state infiltration rate into 1-m2 north- and south-facing hillslope plots burned by a wildfire in October 2003. Soil profiles in the plots consisted of a two-layer system composed of an ash on top of sandy mineral soil. Multiple rainfall rates (18.4-51.2 mm h-1) were used during 14 short-duration (30 min) and 2 long-duration simulations (2-4 h). Steady state was reached in 7-26 min. Observed spatially-averaged steady-state infiltration rates ranged from 18.2 to 23.8 mm h-1 for north-facing and from 17.9 to 36.0 mm h-1 for south-facing plots. Three different theoretical spatial distribution models of steady-state infiltration rate were fit to the measurements of rainfall rate and steady-state discharge to provided estimates of the spatial average (19.2-22.2 mm h-1) and the coefficient of variation (0.11-0.40) of infiltration rates, overland flow contributing area (74-90% of the plot area), and infiltration threshold (19.0-26 mm h-1). Tensiometer measurements indicated a downward moving pressure wave and suggest that infiltration-excess overland flow is the runoff process on these burned hillslope with a two-layer system. Moreover, the results indicate that the ash layer is wettable, may restrict water flow into the underlying layer, and increase the infiltration threshold; whereas, the underlying mineral soil, though coarser, limits the infiltration rate. These results of the spatial variability of steady-state infiltration can be used to develop physically-based rainfall-runoff models for burned areas with a two-layer soil system. ?? 2010 Elsevier B.V.

  7. MARS input data for steady-state calculation of ATLAS

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Euh, D. J.; Choi, K. Y.; Kwon, T. S.; Jeong, J. J.; Baek, W. P.

    2004-12-01

    An integral effect test loop for Pressurized Water Reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is under construction by Thermal-Hydraulics Safety Research Division in Korea Atomic Energy Research Institute (KAERI). This report includes calculation sheets of the input for the best-estimate system analysis code, the MARS code, based on the ongoing design features of ATLAS. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400. The contents of this report are divided into three parts: (1) core and reactor vessel, (2) steam generator and steam line, and (3) primary piping, pressurizer and reactor coolant pump. The steady-state analysis for the ATLAS facility will be performed based on these calculation sheets, and its results will be applied to the detailed design of ATLAS. Additionally, the calculation results will contribute to getting optimum test conditions and preliminary operational test conditions for the steady-state and transient experiments

  8. Special issue: overview and summary reports from the 24th Fusion Energy Conference (San Diego, CA, 8-13 October 2012)

    Science.gov (United States)

    Thomas, Paul

    2013-10-01

    The group of 27 papers published in this special issue of Nuclear Fusion aims to monitor the worldwide progress made in the period 2010-2012 in the field of thermonuclear fusion. Of these papers, 24 are based on overview reports presented at the 24th Fusion Energy Conference (FEC 2012) and three are summary reports. The conference was hosted by the Government of the United States of America and organized by the IAEA in cooperation with the United States Department of Energy and General Atomics. It took place in San Diego on 8-13 October 2012. The overviews presented at the conference have been rewritten and extended for the purpose of this special issue and submitted to the standard double-referee peer-review of Nuclear Fusion . The articles are placed in the following sequence: Overview articles, presented in programme order, are as follows: • Tokamaks DIII-D research towards resolving key issues for ITER and steady-state tokamaks; Overview of the JET results with the ITER-like wall; Overview of ASDEX Upgrade results; Overview of experimental results and code validation activities at Alcator C-Mod; An overview of KSTAR results; Progress of long pulse and H-mode experiments in EAST; Overview of physics results from the National Spherical Torus Experiment; Overview of physics results from MAST towards ITER/DEMO and the MAST Upgrade; An overview of recent HL-2A experiments; Progress of the JT-60SA project; Overview of recent and current research on the TCV tokamak; An overview of FTU results; New developments, plasma physics regimes and issues for the Ignitor experiment; Recent research work on the J-TEXT tokamak. • Other MCF Extension of operation regimes and investigation of three-dimensional current-less plasmas in the Large Helical Device; Dynamics of flows and confinement in the TJ-II stellarator; Overview of results from the MST reversed field pinch experiment; Overview of the RFX Fusion Science Program; An overview of intrinsic torque and momentum

  9. Electron cyclotron heating/current-drive system using high power tubes for QUEST spherical tokamak

    Science.gov (United States)

    Onchi, Takumi; Idei, H.; Hasegawa, M.; Nagata, T.; Kuroda, K.; Hanada, K.; Kariya, T.; Kubo, S.; Tsujimura, T. I.; Kobayashi, S.; Quest Team

    2017-10-01

    Electron cyclotron heating (ECH) is the primary method to ramp up plasma current non-inductively in QUEST spherical tokamak. A 28 GHz gyrotron is employed for short pulses, where the radio frequency (RF) power is about 300 kW. Current ramp-up efficiency of 0.5 A/W has been obtained with focused beam of the second harmonic X-mode. A quasi-optical polarizer unit has been newly installed to avoid arcing events. For steady-state tokamak operation, 8.56 GHz klystron with power of 200 kW is used as the CW-RF source. The high voltage power supply (54 kV/13 A) for the klystron has been built recently, and initial bench test of the CW-ECH system is starting. The array of insulated-gate bipolar transistor works to quickly cut off the input power for protecting the klystron. This work is supported by JSPS KAKENHI (15H04231), NIFS Collaboration Research program (NIFS13KUTR085, NIFS17KUTR128), and through MEXT funding for young scientists associated with active promotion of national university reforms.

  10. Divertor design for the Tokamak Physics Experiment

    International Nuclear Information System (INIS)

    Hill, D.N.; Braams, B.

    1994-05-01

    In this paper we discuss the present divertor design for the planned TPX tokamak, which will explore the physics and technology of steady-state (1000s pulses) heat and particle removal in high confinement (2--4x L-mode), high beta (β N ≥ 3) divertor plasmas sustained by non-inductive current drive. The TPX device will operate in the double-null divertor configuration, with actively cooled graphite targets forming a deep (0.5 m) slot at the outer strike point. The peak heat flux on, the highly tilted (74 degrees from normal) re-entrant (to recycle ions back toward the separatrix) will be in the range of 4--6 MW/m 2 with 18 MW of neutral beams and RF heating power. The combination of active pumping and gas puffing (deuterium plus impurities), along with higher heating power (45 MW maximum) will allow testing of radiative divertor concepts at ITER-like power densities

  11. Continuous tokamak operation with an internal transformer

    International Nuclear Information System (INIS)

    Singer, C.E.; Mikkelsen, D.R.

    1982-10-01

    A large improvement in efficiency of current drive in a tokamak can be obtained using neutral beam injection to drive the current in a plasma which has low density and high resistivity. The current established under such conditions acts as the primary of a transformer to drive current in an ignited high-density plasma. In the context of a model of plasma confinement and fusion reactor costs, it is shown that such transformer action has substantial advantages over strict steady-state current drive. It is also shown that cycling plasma density and fusion power is essential for effective operation of an internal transformer cycle. Fusion power loading must be periodically reduced for intervals whose duration is comparable to the maximum of the particle confinement and thermal inertia timescales for plasma fueling and heating. The design of neutron absorption blankets which can tolerate reduced power loading for such short intervals is identified as a critical problem in the design of fusion power reactors

  12. Steady-state pharmacokinetics of pravastatin in children with familial hypercholesterolaemia

    NARCIS (Netherlands)

    Wiersma, Heleen E.; Wiegman, Albert; Koopmans, Richard P.; Bakker, Henk D.; Kastelein, John J. P.; van Boxtel, Chris J.

    2004-01-01

    Objective: To determine pharmacokinetic data for pravastatin in children, since current data are insufficient in this age group. Subjects and methods: A 2-week, multiple-dose, steady-state pharmacokinetic study was carried out with pravastatin 20mg daily in 24 children with familial

  13. Optimising performance in steady state for a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Green, Torben; Kinnaert, Michel; Razavi-Far, Roozbeh

    2012-01-01

    Using a supermarket refrigeration system as an illustrative example, the paper postulates that by appropriately utilising knowledge of plant operation, the plant wide performance can be optimised based on a small set of variables. Focusing on steady state operations, the total system performance...

  14. Comments on experimental results of energy confinement of tokamak plasmas

    International Nuclear Information System (INIS)

    Chu, T.K.

    1989-04-01

    The results of energy-confinement experiments on steady-state tokamak plasmas are examined. For plasmas with auxiliary heating, an analysis based on the heat diffusion equation is used to define heat confinement time (the incremental energy confinement time). For ohmically sustained plasmas, experiments show that the onset of the saturation regime of energy confinement, marfeing, detachment, and disruption are marked by distinct values of the parameter /bar n//sub e///bar j/. The confinement results of the two types of experiments can be described by a single surface in 3-dimensional space spanned by the plasma energy, the heating power, and the plasma density: the incremental energy confinement time /tau//sub inc/ = ΔW/ΔP is the correct concept for describing results of heat confinement in a heating experiment; the commonly used energy confinement time defined by /tau//sub E/ = W/P is not. A further examination shows that the change of edge parameters, as characterized by the change of the effective collision frequency ν/sub e/*, governs the change of confinement properties. The totality of the results of tokamak experiments on energy confinement appears to support a hypothesis that energy transport is determined by the preservation of the pressure gradient scale length. 70 refs., 6 figs., 1 tab

  15. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-19

    Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.

  16. Progress towards Steady State on NSTX

    International Nuclear Information System (INIS)

    Gates, D.A.; Kessel, C.; Menard, J.; Taylor, G.; Wilson, J.R.

    2005-01-01

    In order to reduce recirculating power fraction to acceptable levels, the spherical torus concept relies on the simultaneous achievement of high toroidal β and high bootstrap fraction in steady state. In the last year, as a result of plasma control system improvements, the achievable plasma elongation on the National Spherical Torus Experiment (NSTX) has been raised from κ ∼ 2.1 to κ ∼ 2.6--approximately a 25% increase. This increase in elongation has lead to a doubling increase in the toroidal β for long-pulse discharges. The increase in β is associated with an increase in plasma current at nearly fixed poloidal β, which enables higher β t with nearly constant bootstrap fraction. As a result, for the first time in a spherical torus, a discharge with a plasma current of 1 MA has been sustained for 1 second. Data is presented from NSTX correlating the increase in performance with increased plasma shaping capability. In addition to improved shaping, H-modes induced during the current ramp phase of the plasma discharge have been used to reduce flux consumption during and to delay the onset of MHD instabilities. A modeled integrated scenario, which has 100% non-inductive current drive with very high toroidal β, will also be presented. The NSTX poloidal field coils are currently being modified to produce the plasma shape which is required for this scenario, which requires high triangularity ((delta) ∼ 0.8) at elevated elongation (κ ∼ 2.5). The other main requirement for steady state on NSTX is the ability to drive a fraction of the total plasma current with radio-frequency waves. The results of High Harmonic Fast Wave heating and current drive studies as well as electron Bernstein Wave emission studies will be presented

  17. Theoretical analysis of steady state operating forces in control valves

    Directory of Open Access Journals (Sweden)

    Basavaraj Hubballi

    2018-01-01

    Full Text Available The controlling components, such as valves are used to regulate controlled fluid power. It is not always possible to calculate valve forces accurately, and with some types of valves even the existence of certain types of forces cannot be predicted with certainty. In many cases, however, the analysis can be made fairly completely and accurately. The assumption of steady state conditions is valid for the valve alone, but transient effects in the rest of the system may be large. These effects are particularly important with regard to the instability of valves, where the system may react on the valve in such a way as to make it squeal or oscillate, sometimes with large amplitude. The origin of the steady state flow force understood from a brief qualitative explanation. The following paper will summarize much of what is known about valve forces in the spool type controlling element.

  18. Steady state operation and control experiments on Tore Supra

    International Nuclear Information System (INIS)

    Saint-Laurent, F.

    2000-01-01

    The main programme of the Tore Supra tokamak is to investigate the route towards long pulse plasma discharges. Tore Supra is thus equipped with a superconducting toroidal magnet, a full set of actively cooled plasma facing components, and a heating and current drive capability based on high power RF systems connected to actively cooled antennas. After pioneering investigations using the LHCD system alone (2 min and zero loop voltage discharges), recent efforts have concentrated on finding scenarios to couple the two RF heating systems in order to perform high power, long duration discharges. To this aim, 6.5 MW, 25 s as well as 4 MW, 60 s discharges have been successfully achieved. At these high power levels, the plasma-wall interaction becomes a critical issue, and recycling fluxes must be controlled to maintain density and to avoid plasma contamination. All these results contributed to the validation of the upgrade of the Tore Supra first wall components (CIEL project) scheduled for 2000. (author)

  19. Stabilizing the border steady-state solution of two interacting ...

    African Journals Online (AJOL)

    In this paper, we have successfully developed a feedback control which has been used to stabilize an unstable steady-state solution (0, 3.3534). This convergence has occurred when the values of the final time are 190, 200, 210 and 220 which corresponds to the scenario when the value of the step length of our simulation ...

  20. Non-Axisymmetric Shaping of Tokamaks Preserving Quasi-Axisymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Long-Poe Ku and Allen H. Boozer

    2009-06-05

    If quasi-axisymmetry is preserved, non-axisymmetric shaping can be used to design tokamaks that do not require current drive, are resilient to disruptions, and have robust plasma stability without feedback. Suggestions for addressing the critical issues of tokamaks can only be validated when presented with sufficient specificity that validating experiments can be designed. The purpose of this paper is provide that specificity for non-axisymmetric shaping. To our knowledge, no other suggestions for the solution of a number of tokamak issues, such as disruptions, have reached this level of specificity. Sequences of three-field-period quasi-axisymmetric plasmas are studied. These sequences address the questions: (1) What can be achieved at various levels of non-axisymmetric shaping? (2) What simplifications to the coils can be achieved by going to a larger aspect ratio? (3) What range of shaping can be achieved in a single experimental facility? The sequences of plasmas found in this study provide a set of interesting and potentially important configurations.

  1. Ideal MHD stability and performance of ITER steady-state scenarios with ITBs

    Science.gov (United States)

    Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.

    2012-06-01

    Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.

  2. Coherent control of long-distance steady-state entanglement in lossy resonator arrays

    Science.gov (United States)

    Angelakis, D. G.; Dai, L.; Kwek, L. C.

    2010-07-01

    We show that coherent control of the steady-state long-distance entanglement between pairs of cavity-atom systems in an array of lossy and driven coupled resonators is possible. The cavities are doped with atoms and are connected through waveguides, other cavities or fibers depending on the implementation. We find that the steady-state entanglement can be coherently controlled through the tuning of the phase difference between the driving fields. It can also be surprisingly high in spite of the pumps being classical fields. For some implementations where the connecting element can be a fiber, long-distance steady-state quantum correlations can be established. Furthermore, the maximal of entanglement for any pair is achieved when their corresponding direct coupling is much smaller than their individual couplings to the third party. This effect is reminiscent of the establishment of coherence between otherwise uncoupled atomic levels using classical coherent fields. We suggest a method to measure this entanglement by analyzing the correlations of the emitted photons from the array and also analyze the above results for a range of values of the system parameters, different network geometries and possible implementation technologies.

  3. Producing a steady-state population inversion

    International Nuclear Information System (INIS)

    Richards, R.K.; Griffin, D.C.

    1986-03-01

    An observed steady-state transition at 17.5 nm is identified as the 2p 5 3s3p 4 S/sub 3/2/ → 2p 6 3p 2 P/sub 3/2/ transition in Na-like aluminum. The upper level is populated by electron inner shell ionization of metastable Mg-like aluminum. From the emission intensity, the rate coefficient for populating the upper level is calculated to be approximately 5 x 10 -10 ) cm 3 /sec. Since the upper level is quasimetastable with a lifetime 22 times longer than the lower level, it may be possible to produce a population inversion, if a competing process to populate the lower level can be reduced

  4. Steady-State Ion Beam Modeling with MICHELLE

    Science.gov (United States)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  5. RF start-up and sustainment experiments on the TST-2-K spherical tokamak

    International Nuclear Information System (INIS)

    Ejiri, A.; Takase, Y.; Kasahara, H.; Yamada, T.; Hanada, K.; Sato, K. N.; Zushi, H.; Nakamura, K.; Sakamoto, M.; Idei, H.; Hasegawa, M.; Iyomasa, A.; Imamura, N.; Esaki, K.; Kitaguchi, M.; Sasaki, K.; Hoshika, H.; Mitarai, O.; Nishino, N.

    2006-01-01

    Plasma start-up and sustainment without an inductive field have been studied in the TST-2-K spherical tokamak using high power RF sources (8.2 GHz/up to 170 kW). Steady state discharges with a plasma current of 4 kA were achieved. The line integrated density was about 3 x 10 17 m -2 and the electron temperature was 160 eV. A truncated equilibrium was introduced to reproduce magnetic measurements. It was found that a positive Pfirsch-Schlueter current in the open field line region at the outboard boundary makes a significant contribution to the current. Insensitivity of the current to variations in the vertical field and RF power variation was also found

  6. Amount of impurity and its behavior in the STP-2 screw pinch tokamak

    International Nuclear Information System (INIS)

    Yamaguchi, S.

    1981-05-01

    Temporal and spatial evolution of oxygen spectral line intensities have been measured in the STP-2 screw pinch tokamak. The electron density and temperature as measured by Thomson scattering are of the order of 10 14 cm -3 and 10 eV, respectively. On the basis of these measurements, quasi-steady-state rate equations have been solved to give the OII and OIII ion densities. It is found that the density of oxygen impurity is about several percent of the electron density, and the impurity moves with the bulk plasma. It is confirmed that the impurity originates from the wall of the discharge tube during the initial phase of the discharge. (author)

  7. A snowflake divertor: a possible solution to the power exhaust problem for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Ryutov, D. D.; Cohen, R. H.; Rognlien, T. D.; Umansky, M. V.

    2012-11-21

    This paper summarizes recent progress in the theory of a snowflake divertor, a possible path to reduce both steady-state and intermittent heat loads on the divertor plates to an acceptable level. The most important feature of a SF divertor is the presence of a large zone of a very weak poloidal magnetic field around the poloidal field (PF) null. Qualitative explanation of a variety of new features characteristic of a SF divertor is provided based on simple scaling relations. The main part of the paper is focused on the concept of spreading of the heat flux by curvature-driven convection near the PF null. References to experimental results from the NSTX and TCV tokamaks are provided.

  8. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity.

    Science.gov (United States)

    Foster, Carl; Farland, Courtney V; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T; Porcari, John P

    2015-12-01

    High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. There were significant (p Tabata protocol was significantly less enjoyable (p HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.

  9. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-01-01

    the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time

  10. Analysis of steady state and transient two-phase flows in downwardly inclined lines

    International Nuclear Information System (INIS)

    Crawford, T.J.

    1983-01-01

    A study of steady-state and transient two-phase flows in downwardly inclined lines is described. Steady-state flow patterns maps are presented using Freon-113 as the working fluid to provide new high density vapors. These flow maps with high density vapor serve to significantly extend the investigations of steady-state downward two-phase flow patterns. Physical models developed which successfully predicted the onset or location of various flow pattern transitions. A new simplified criterion that would be useful to designers and experimenters is offered for the onset of dispersed flow. A new empirical holdup correlation and a new bubble diameter/flow rate correlation are also proposed. Flow transients in vertical downward lines were studied to investigate the possible formation of intermediate or spurious flow patterns that would not be seen at steady-state conditions. Void fraction behavior during the transients was modeled by using the dynamic slip equation from the transient analysis code RETRAN. Physical models of interfacial area were developed and compared with models and data from literature. There was satisfactory agreement between the models of the present study and the literature models and data. The concentration parameter of the drift flux model was evaluated for vertical downward flow. These new values of the flow dependent parameter were different from those previously proposed in the literature for use in upward flows, and made the drift flux model suitable for use in upward or downward flow lines

  11. S3C: EBT Steady-State Shooting code description and user's guide

    International Nuclear Information System (INIS)

    Downum, W.B.

    1983-09-01

    The Oak Ridge National Laboratory (ORNL) one-dimensional (1-D) Steady-State Shooting code (S3C) for ELMO Bumpy Torus (EBT) plasmas is described. Benchmark calculations finding the steady-state density and electron and ion temperature profiles for a known neutral density profile and known external energy sources are carried out. Good agreement is obtained with results from the ORNL Radially Resolved Time Dependent 1-D Transport code for an EBT-Q type reactor. The program logic is described, along with the physics models in each code block and the variable names used. Sample input and output files are listed, along with the main code

  12. Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges

  13. Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.

  14. Capitalist Diversity and De-growth Trajectories to Steady-state Economies

    DEFF Research Database (Denmark)

    Buch-Hansen, Hubert

    2014-01-01

    Growth-critical scholarship has done much to both expose the environmentally unsustainable nature of the capitalist growth-economies of the overdeveloped part of the world and to develop an alternative vision of a degrowth transition leading to a steady-state economy. However, this scholarship fa...

  15. Restitution slope is principally determined by steady-state action potential duration.

    Science.gov (United States)

    Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James

    2017-06-01

    The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on

  16. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Komoshvili, K [Tel Aviv University, Ramat Aviv (Israel); Cuperman, S [Tel Aviv University, Ramat Aviv (Israel); Bruma, C [Tel Aviv University, Ramat Aviv (Israel)

    2007-09-15

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined.

  17. Assessment of power deposition dependence on the antenna poloidal extension in the fast waves-plasma interaction in pre-heated spherical tokamaks

    International Nuclear Information System (INIS)

    Komoshvili, K; Cuperman, S; Bruma, C

    2007-01-01

    To assess the effect of antenna poloidal extension on fast waves-plasma interactions in pre-heated spherical tokamaks and, as a result, to assist the determination of optimal conditions for power deposition, we carried out a global, numerical investigation. Thus, we solved the steady-state full wave equations for Alfvenic modes in an inhomogeneous, non-uniformly magnetized, resistive, low aspect ratio tokamak plasma with appropriate consideration of boundary conditions; in this, processes such as wave propagation, reflection, transmission, absorption and mode conversion as well as mode-coupling(s) by plasma cross-section non-homogeneity generated waves were included. The results were analysed in terms of the directions of the current densities generated in the presence of up low field side or down high field side magnetic field gradient. Suitable antenna location and poloidal extension for maximum power deposition were determined

  18. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.

    Science.gov (United States)

    Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel

    2017-08-01

    The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.

  19. Steady State and Transient Analysis of Induction Motor Driving a ...

    African Journals Online (AJOL)

    The importance of using a digital computer in studying the performance of Induction machine under steady and transient states is presented with computer results which show the transient behaviour of 3-phase machine during balanced and unbalanced conditions. The computer simulation for these operating conditions is ...

  20. Activation analysis of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Selcow, E.C.

    1986-01-01

    The US fusion program has completed the conceptual design of a compact tokamak device that achieves ignition. The high neutron wall loadings associated with this compact deuterium-tritium-burning device indicate that radiation-related issues may be significant considerations in the overall system design. Sufficient shielding will be requied for the radiation protection of both reactor components and occupational personnel. A close-in igloo shield has been designed around the periphery of the tokamak structure to permit personnel access into the test cell after shutdown and limit the total activation of the test cell components. This paper describes the conceptual design of the igloo shield system and discusses the major neutronic concerns related to the design of the Compact Ignition Tokamak

  1. Data system design considerations for a pseudo-steady-state device

    International Nuclear Information System (INIS)

    Wing, W.R.

    1981-01-01

    The Advanced Toroidal Facility is being designed to run in a steady state. This places stringent requirements on a data system, since it must provide steady-state support that is equivalent to the support users are accustomed to from pulsed experiments; i.e., enough capacity to reduce diagnostic data for live presentation. Parameters such as density, position, and temperature must be presented live (i.e., within 0.1 s). Quantities such as plasma shape or internal structure should be available with a minimum of delay. The traditional solution to providing such capabilities is to use distributed processing to off-load data acquisition from the analysis computers. However, this suffers in a real-time environment because of the necessity of moving large quantities of data from acquisition to analysis. We expect to solve the problem by using a pipelined design that will acquire data directly into shared memory, where any one of four CPU's (VAX 11/780's) can proceed with analysis

  2. Steady-state evoked potentials possibilities for mental-state estimation

    Science.gov (United States)

    Junker, Andrew M.; Schnurer, John H.; Ingle, David F.; Downey, Craig W.

    1988-01-01

    The use of the human steady-state evoked potential (SSEP) as a possible measure of mental-state estimation is explored. A method for evoking a visual response to a sum-of-ten sine waves is presented. This approach provides simultaneous multiple frequency measurements of the human EEG to the evoking stimulus in terms of describing functions (gain and phase) and remnant spectra. Ways in which these quantities vary with the addition of performance tasks (manual tracking, grammatical reasoning, and decision making) are presented. Models of the describing function measures can be formulated using systems engineering technology. Relationships between model parameters and performance scores during manual tracking are discussed. Problems of unresponsiveness and lack of repeatability of subject responses are addressed in terms of a need for loop closure of the SSEP. A technique to achieve loop closure using a lock-in amplifier approach is presented. Results of a study designed to test the effectiveness of using feedback to consciously connect humans to their evoked response are presented. Findings indicate that conscious control of EEG is possible. Implications of these results in terms of secondary tasks for mental-state estimation and brain actuated control are addressed.

  3. The total quasi-steady-state approximation for complex enzyme reactions

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bersani, A. M.; Bersani, E.

    2008-01-01

    ) approximation (or standard quasi-steady-state approximation (sQSSA)), which is valid when the enzyme concentration is sufficiently small. This condition is usually fulfilled for in vitro experiments, but often breaks down in vivo. The total QSSA (tQSSA), which is valid for a broader range of parameters covering...

  4. Comparing Interval Management Control Laws for Steady-State Errors and String Stability

    Science.gov (United States)

    Weitz, Lesley A.; Swieringa, Kurt A.

    2018-01-01

    Interval Management (IM) is a future airborne spacing concept that leverages avionics to provide speed guidance to an aircraft to achieve and maintain a specified spacing interval from another aircraft. The design of a speed control law to achieve the spacing goal is a key aspect in the research and development of the IM concept. In this paper, two control laws that are used in much of the contemporary IM research are analyzed and compared to characterize steady-state errors and string stability. Numerical results are used to illustrate how the choice of control laws gains impacts the size of steady-state errors and string performance and the potential trade-offs between those performance characteristics.

  5. Blood flow patterns during incremental and steady-state aerobic exercise.

    Science.gov (United States)

    Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N

    2017-05-30

    Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, pflow velocity did not significantly change during Test 1. On Test 2 all the previous variables significantly increased in an intensity-dependent manner (repeated measures ANOVA, pflow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.

  6. Steady-state pattern electroretinogram and short-duration transient visual evoked potentials in glaucomatous and healthy eyes.

    Science.gov (United States)

    Amarasekera, Dilru C; Resende, Arthur F; Waisbourd, Michael; Puri, Sanjeev; Moster, Marlene R; Hark, Lisa A; Katz, L Jay; Fudemberg, Scott J; Mantravadi, Anand V

    2018-01-01

    This study evaluates two rapid electrophysiological glaucoma diagnostic tests that may add a functional perspective to glaucoma diagnosis. This study aimed to determine the ability of two office-based electrophysiological diagnostic tests, steady-state pattern electroretinogram and short-duration transient visual evoked potentials, to discern between glaucomatous and healthy eyes. This is a cross-sectional study in a hospital setting. Forty-one patients with glaucoma and 41 healthy volunteers participated in the study. Steady-state pattern electroretinogram and short-duration transient visual evoked potential testing was conducted in glaucomatous and healthy eyes. A 64-bar-size stimulus with both a low-contrast and high-contrast setting was used to compare steady-state pattern electroretinogram parameters in both groups. A low-contrast and high-contrast checkerboard stimulus was used to measure short-duration transient visual evoked potential parameters in both groups. Steady-state pattern electroretinogram parameters compared were MagnitudeD, MagnitudeD/Magnitude ratio, and the signal-to-noise ratio. Short-duration transient visual evoked potential parameters compared were amplitude and latency. MagnitudeD was significantly lower in glaucoma patients when using a low-contrast (P = 0.001) and high-contrast (P state pattern electroretinogram stimulus. MagnitudeD/Magnitude ratio and SNR were significantly lower in the glaucoma group when using a high-contrast 64-bar-size stimulus (P state pattern electroretinogram was effectively able to discern between glaucomatous and healthy eyes. Steady-state pattern electroretinogram may thus have a role as a clinically useful electrophysiological diagnostic tool. © 2017 Royal Australian and New Zealand College of Ophthalmologists.

  7. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    International Nuclear Information System (INIS)

    Khan, Ziauddin; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-01-01

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10"–"8 mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m"2 current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H_2O) vapor by 95% and oxygen (O_2) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10"−"8 mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  8. Conditioning of SST-1 Tokamak Vacuum Vessel by Baking and Glow Discharge Cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Ziauddin, E-mail: ziauddin@ipr.res.in; George, Siju; Semwal, Pratibha; Dhanani, Kalpeshkumar R.; Pathan, Firozkhan S.; Paravastu, Yuvakiran; Raval, Dilip C.; Babu, Gattu Ramesh; Khan, Mohammed Shoaib; Pradhan, Subrata

    2016-02-15

    Highlights: • SST-1 Tokamak was successfully commissioned. • Vacuum vessel was pumped down to 4.5 × 10{sup –8} mbar after baking and continuous GDC. • GDC reduced the water vapour by additional 57% while oxygen was reduced by 50%. • Under this condition, an initial plasma breakdown with current of 40 kA for 75 ms was achieved. - Abstract: Steady-state Superconducting Tokamak (SST-1) vacuum vessel (VV) adopts moderate baking at 110 ± 10 °C and the limiters baking at 250 ± 10 °C for ∼ 200 h followed by glow discharge cleaning in hydrogen (GDC-H) with 0.15 A/m{sup 2} current density towards its conditioning prior to plasma discharge experiment. The baking in SST-1 reduces the water (H{sub 2}O) vapor by 95% and oxygen (O{sub 2}) by 60% whereas the GDC reduces the water vapor by an additional 57% and oxygen by another 50% as measured with residual gas analyzer. The minimum breakdown voltage for H-GDC in SST-1 tokamak was experimentally observed to 300 V at 8 mbar cm. As a result of these adherences, SST-1 VV achieves an ultimate of 4.5 × 10{sup −8} mbar with two turbo-molecular pumps with effective pumping speed of 3250 l/s. In the last campaign, SST-1 has achieved successful plasma breakdown, impurity burn through and a plasma current of ∼ 40 kA for 75 ms.

  9. Steady-state free precession with myocardial tagging: CSPAMM in a single breathhold.

    Science.gov (United States)

    Zwanenburg, Jaco J M; Kuijer, Joost P A; Marcus, J Tim; Heethaar, Robert M

    2003-04-01

    A method is presented that combines steady-state free precession (SSFP) cine imaging with myocardial tagging. Before the tagging preparation at each ECG-R wave, the steady-state magnetization is stored as longitudinal magnetization by an alpha/2 flip-back pulse. Imaging is continued immediately after tagging preparation, using linearly increasing startup angles (LISA) with a rampup over 10 pulses. Interleaved segmented k-space ordering is used to prevent artifacts from the increasing signal during the LISA rampup. First, this LISA-SSFP method was evaluated regarding ghost artifacts from the steady-state interruption by comparing LISA with an alpha/2 startup method. Next, LISA-SSFP was compared with spoiled gradient echo (SGRE) imaging, regarding tag contrast-to-noise ratio and tag persistence. The measurements were performed in phantoms and in six subjects applying breathhold cine imaging with tagging (temporal resolution 51 ms). The results show that ghost artifacts are negligible for the LISA method. Compared to the SGRE reference, LISA-SSFP was two times faster, with a slightly better tag contrast-to-noise. Additionally, the tags persisted 126 ms longer with LISA-SSFP than with SGRE imaging. The high efficiency of LISA-SSFP enables the acquisition of complementary tagged (CSPAMM) images in a single breathhold. Copyright 2003 Wiley-Liss, Inc.

  10. Steady-State Characterization of Bacteriorhodopsin-D85N Photocycle

    Science.gov (United States)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    1999-01-01

    An operational characterization of the photocycle of the genetic mutant D85N of bacteriorhodopsin, BR-D85N, is presented. Steady-state bleach spectra and pump-probe absorbance data are obtained with thick hydrated films containing BR-D85N embedded in a gelatin host. Simple two- and three-state models are used to analyze the photocycle dynamics and extract relevant information such as pure-state absorption spectra, photochemical-transition quantum efficiencies, and thermal lifetimes of dominant states appearing in the photocycle, the knowledge of which should aid in the analysis of optical recording and retrieval of data in films incorporating this photochromic material. The remarkable characteristics of this material and their implications from the viewpoint of optical data storage and processing are discussed.

  11. Minimal gain marching schemes: searching for unstable steady-states with unsteady solvers

    Science.gov (United States)

    de S. Teixeira, Renan; S. de B. Alves, Leonardo

    2017-12-01

    Reference solutions are important in several applications. They are used as base states in linear stability analyses as well as initial conditions and reference states for sponge zones in numerical simulations, just to name a few examples. Their accuracy is also paramount in both fields, leading to more reliable analyses and efficient simulations, respectively. Hence, steady-states usually make the best reference solutions. Unfortunately, standard marching schemes utilized for accurate unsteady simulations almost never reach steady-states of unstable flows. Steady governing equations could be solved instead, by employing Newton-type methods often coupled with continuation techniques. However, such iterative approaches do require large computational resources and very good initial guesses to converge. These difficulties motivated the development of a technique known as selective frequency damping (SFD) (Åkervik et al. in Phys Fluids 18(6):068102, 2006). It adds a source term to the unsteady governing equations that filters out the unstable frequencies, allowing a steady-state to be reached. This approach does not require a good initial condition and works well for self-excited flows, where a single nonzero excitation frequency is selected by either absolute or global instability mechanisms. On the other hand, it seems unable to damp stationary disturbances. Furthermore, flows with a broad unstable frequency spectrum might require the use of multiple filters, which delays convergence significantly. Both scenarios appear in convectively, absolutely or globally unstable flows. An alternative approach is proposed in the present paper. It modifies the coefficients of a marching scheme in such a way that makes the absolute value of its linear gain smaller than one within the required unstable frequency spectra, allowing the respective disturbance amplitudes to decay given enough time. These ideas are applied here to implicit multi-step schemes. A few chosen test cases

  12. Steady-state pulses and superradiance in short-wavelength, swept-gain amplifiers

    International Nuclear Information System (INIS)

    Bonifacio, R.; Hopf, F.A.; Meystre, P.; Scully, M.O.

    1975-01-01

    The steady-state behavior of amplifiers in which the excitation is swept at the speed of light is discussed in the semiclassical approximation. In the present work the case where the decay time of the population is comparable to that of the polarization is examined. Pulse propagation is shown to obey a generalized sine-Gordon equation which contains the effects of atomic relaxations. The analytical expression of the steady-state pulses (SSP) gives two threshold conditions. In the region of limited gain the SSP is a broad pulse with small area which can be obtained by small signal theory. In the second region of high gain the SSP is the superradiant π pulse. Its pulse power is not limited as in usual superradiant theory because, as is shown, for a swept excitation the cooperation-length limit does not exist

  13. Pellet-plasma interaction: Local disturbances caused by pellet ablation in tokamaks

    International Nuclear Information System (INIS)

    Lengyel, L.L.

    1989-01-01

    The local disturbance amplitudes caused by ablating pellets in tokamaks are computed in the framework of a magnetohydrodynamic model supplemented by the neutral gas plasma shielding ablation model. The model computes, for a given number of pellet particles locally deposited, the time histories of the ablatant cloud parameters, such as cloud radius, cloud length, electron density, temperature and cloud beta, at a succession of magnetic flux surfaces. The cloud radius thus determined may be fed back into the ablation model, thus adjusting the effect of the shielding cloud on the ablation rate. The model is applied to typical plasma parameter ranges of existing and planned tokamaks. The results show that the ablating pellets may cause massive local disturbances in tokamaks, depending upon the number of particles locally deposited. The peaks of these disturbances are of a spike nature, lasting only a few microseconds (Alfven time-scale). The characteristic decay time of the 'quasi-steady' disturbance values that characterize the after-spike period is of the order of several milliseconds (hydrodynamic time-scale). The peak electron density values may be as high as 10 23 to 10 25 m -3 , with the associated beta peaks exceeding unity. The 'quasi-steady' values of the electron density and the ablatant beta may be of the order of 10 22 to 10 24 m -3 and unity, respectively. Furthermore, the results show the strong dependence of the ablation rate on the dynamic characteristics of the ablatant cloud surrounding the pellet. (author). 25 refs, 6 figs, 2 tabs

  14. Real time equilibrium reconstruction algorithm in EAST tokamak

    International Nuclear Information System (INIS)

    Wang Huazhong; Luo Jiarong; Huang Qinchao

    2004-01-01

    The EAST (HT-7U) superconducting tokamak is a national project of China on fusion research, with a capability of long-pulse (∼1000 s) operation. In order to realize a long-duration steady-state operation of EAST, some significant capability of real-time control is required. It would be very crucial to obtain the current profile parameters and the plasma shapes in real time by a flexible control system. As those discharge parameters cannot be directly measured, so a current profile consistent with the magnetohydrodynamic equilibrium should be evaluated from external magnetic measurements, based on a linearized iterative least square method, which can meet the requirements of the measurements. The arithmetic that the EFIT (equilibrium fitting code) is used for reference will be given in this paper and the computational efforts are reduced by parameterizing the current profile linearly in terms of a number of physical parameters. In order to introduce this reconstruction algorithm clearly, the main hardware design will be listed also. (authors)

  15. Navier-Stokes Predictions of Dynamic Stability Derivatives: Evaluation of Steady-State Methods

    National Research Council Canada - National Science Library

    DeSpirito, James; Silton, Sidra I; Weinacht, Paul

    2008-01-01

    The prediction of the dynamic stability derivatives-roll-damping, Magnus, and pitch-damping moments-were evaluated for three spin-stabilized projectiles using steady-state computational fluid dynamic (CFD) calculations...

  16. Nonequilibrium steady state in open quantum systems: Influence action, stochastic equation and power balance

    International Nuclear Information System (INIS)

    Hsiang, J.-T.; Hu, B.L.

    2015-01-01

    The existence and uniqueness of a steady state for nonequilibrium systems (NESS) is a fundamental subject and a main theme of research in statistical mechanics for decades. For Gaussian systems, such as a chain of classical harmonic oscillators connected at each end to a heat bath, and for classical anharmonic oscillators under specified conditions, definitive answers exist in the form of proven theorems. Answering this question for quantum many-body systems poses a challenge for the present. In this work we address this issue by deriving the stochastic equations for the reduced system with self-consistent backaction from the two baths, calculating the energy flow from one bath to the chain to the other bath, and exhibiting a power balance relation in the total (chain + baths) system which testifies to the existence of a NESS in this system at late times. Its insensitivity to the initial conditions of the chain corroborates to its uniqueness. The functional method we adopt here entails the use of the influence functional, the coarse-grained and stochastic effective actions, from which one can derive the stochastic equations and calculate the average values of physical variables in open quantum systems. This involves both taking the expectation values of quantum operators of the system and the distributional averages of stochastic variables stemming from the coarse-grained environment. This method though formal in appearance is compact and complete. It can also easily accommodate perturbative techniques and diagrammatic methods from field theory. Taken all together it provides a solid platform for carrying out systematic investigations into the nonequilibrium dynamics of open quantum systems and quantum thermodynamics. -- Highlights: •Nonequilibrium steady state (NESS) for interacting quantum many-body systems. •Derivation of stochastic equations for quantum oscillator chain with two heat baths. •Explicit calculation of the energy flow from one bath to the

  17. Study of the non inductive current generation in Tore Supra and application to the operational scenario of a continuous tokamak; Etude de la generation de courant non inductive dans Tore Supra et application aux scenarios operationnels d`un tokamak continu

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian-Vibert, F.

    1996-07-05

    Lower Hybrid Current Drive in tokamak plasmas allows to obtain continuous operations, which constitute a necessary step towards a definition of a thermonuclear fusion reactor. The objectives of this work is to define and study fully non inductive steady-state scenarios on Tore Supra. The current diffusion equation is solved to determined precisely the inductive and non inductive current density profiles and their influence on thee time evolution of a discharge. Then, a new operation mode is studied theoretically and experimentally. In this scenario, the transformer primary circuit voltage is controlled in such a way that the flux consumption vanishes. It allows to achieve full steady-state discharges in a fast and reproducible manner. A theoretical flux consumption scaling law during plasma current ramp-up assisted by Lower-Hybrid waves is presented and validated by experimental data, in view to minimized this consumption. The influence of a non monotonic current profile on the confinement and the transport of energy in the plasma is also clearly illustrated by experiments. (author). 138 refs., 16 figs., 1 tab.

  18. Diffusion in coronas around clinopyroxene: modelling with local equilibrium and steady state, and a non-steady-state modification to account for zoned actinolite-hornblende

    Science.gov (United States)

    Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.

    1992-01-01

    Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL ( L CaCa/ L AlAl≳3.) (where ≳ means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of

  19. Single-dose and steady-state pharmacokinetics of tenofovir disoproxil fumarate in human immunodeficiency virus-infected children.

    Science.gov (United States)

    Hazra, Rohan; Balis, Frank M; Tullio, Antonella N; DeCarlo, Ellen; Worrell, Carol J; Steinberg, Seth M; Flaherty, John F; Yale, Kitty; Poblenz, Marianne; Kearney, Brian P; Zhong, Lijie; Coakley, Dion F; Blanche, Stephane; Bresson, Jean Louis; Zuckerman, Judith A; Zeichner, Steven L

    2004-01-01

    Tenofovir disoproxil fumarate (DF) is a potent nucleotide analog reverse transcriptase inhibitor approved for the treatment of human immunodeficiency virus (HIV)-infected adults. The single-dose and steady-state pharmacokinetics of tenofovir were evaluated following administration of tenofovir DF in treatment-experienced HIV-infected children requiring a change in antiretroviral therapy. Using increments of tenofovir DF 75-mg tablets, the target dose was 175 mg/m(2); the median administered dose was 208 mg/m(2). Single-dose pharmacokinetics were evaluated in 18 subjects, and the geometric mean area under the concentration-time curve from 0 h to infinity (AUC(0- infinity )) was 2,150 ng. h/ml and the geometric mean maximum concentration (C(max)) was 266 ng/ml. Subsequently, other antiretrovirals were added to each patient's regimen based upon treatment history and baseline viral resistance results. Steady-state pharmacokinetics were evaluated in 16 subjects at week 4. The steady-state, geometric mean AUC for the 24-h dosing interval was 2,920 ng. h/ml and was significantly higher than the AUC(0- infinity ) after the first dose (P = 0.0004). The geometric mean C(max) at steady state was 302 ng/ml. Tenofovir DF was generally very well tolerated. Steady-state tenofovir exposures in children receiving tenofovir DF-containing combination antiretroviral therapy approached values seen in HIV-infected adults (AUC, approximately 3,000 ng. h/ml; C(max), approximately 300 ng/ml) treated with tenofovir DF at 300 mg.

  20. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Bers, A.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma