WorldWideScience

Sample records for steady-state fuel-coolant thermal

  1. Fuel Coolant Thermal Interaction Project. Quarterly progress report No. 2, October 1, 1975--December 31, 1975. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Todreas, N.E.

    1976-03-01

    The objective of the work reported is to experimentally and analytically study the dominant mechanisms in fuel coolant thermal interactions which could lead to vapor explosions. The exploration of mechanisms is focused in two areas: (a) mechanisms responsible for fragmentation in molten metal droplet experiments (including assessment of the validity of the proposed spontaneous nucleation mechanism); and (b) thermal stress initiated fracture as a fragmentation mechanism. Work being performed in these areas is briefly described.

  2. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    Science.gov (United States)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  3. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  4. Steady-state entanglement and thermalization of coupled qubits in two common heat baths

    Science.gov (United States)

    Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie

    2018-03-01

    In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.

  5. quasi-steady state thermal performances of a solar air heater with ...

    African Journals Online (AJOL)

    2017-01-17

    Jan 17, 2017 ... For low temperature solar heating applications two kind of solar air ... very low heat transfer rate because of small exchange surfaces ... In the study, mean temperatures and thermal performances of the solar air heater are modelled in quasi-steady state and compared to experimental data. Nomenclature.

  6. Quasi-steady state thermal performances of a solar air heater with ...

    African Journals Online (AJOL)

    Quasi-steady state thermal performance of a solar air heater with a combined absorber is studied. The whole energy balance equations related to the system were articulated as a linear system of temperature equations. Solutions to this linear system were assessed from program based on an iterative process. The mean ...

  7. PEBBLE: a two-dimensional steady-state pebble bed reactor thermal hydraulics code

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1981-09-01

    This report documents the local implementation of the PEBBLE code to treat the two-dimensional steady-state pebble bed reactor thermal hydraulics problem. This code is implemented as a module of a computation system used for reactor core history calculations. Given power density data, the geometric description in (RZ), and basic heat removal conditions and thermal properties, the coolant properties, flow conditions, and temperature distributions in the pebble fuel elements are predicted. The calculation is oriented to the continuous fueling, steady state condition with consideration of the effect of the high energy neutron flux exposure and temperature history on the thermal conductivity. The coolant flow conditions are calculated for the same geometry as used in the neutronics calculation, power density and fluence data being used directly, and temperature results are made available for subsequent use.

  8. A method for statistical steady state thermal analysis of reactor cores

    International Nuclear Information System (INIS)

    Whetton, P.A.

    1981-01-01

    In a previous publication the author presented a method for undertaking statistical steady state thermal analyses of reactor cores. The present paper extends the technique to an assessment of confidence limits for the resulting probability functions which define the probability that a given thermal response value will be exceeded in a reactor core. Establishing such confidence limits is considered an integral part of any statistical thermal analysis and essential if such analysis are to be considered in any regulatory process. In certain applications the use of a best estimate probability function may be justifiable but it is recognised that a demonstrably conservative probability function is required for any regulatory considerations. (orig.)

  9. Study of NPP core thermal-hydraulics design of ABWR on steady state condition

    International Nuclear Information System (INIS)

    Isnaini, M. D.

    1998-01-01

    The core thermal-hydraulics calculation of ABWR on steady state condition using COBRA IV-1 code has been carried out. For simplifying the problem, the calculation was done on a fuel bundle of ABWR as a model. The calculation used several data design as input, such as the reactor power 3926 MWt, the core coolant flowrate 115.1 Mlb/hr and coolant enthalpy at core inlet 527.7 Btu/lb. From this simple calculation was hope that it could be used as an introduction to studi the thermohydraulics design of ABWR

  10. A steady-state high-temperature method for measuring thermal conductivity of refractory materials

    Science.gov (United States)

    Manzolaro, M.; Corradetti, S.; Andrighetto, A.; Ferrari, L.

    2013-05-01

    A new methodology and an instrumental setup for the thermal conductivity estimation of isotropic bulk graphite and different carbides at high temperatures are presented. The method proposed in this work is based on the direct measurement of temperature and emissivity on the top surface of a sample disc of known dimensions. Temperatures measured under steady-state thermal equilibrium are then used to estimate the thermal conductivity of the sample by making use of the inverse parameter estimation technique. Thermal conductivity values obtained in this way are then compared to the material data sheets and values found in literature. The reported work has been developed within the Research and Development framework of the SPES (Selective Production of Exotic Species) project at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro).

  11. Steady State Transportation Cooling in Porous Media Under Local, Non-Thermal Equilibrium Fluid Flow

    Science.gov (United States)

    Rodriquez, Alvaro Che

    2002-01-01

    An analytical solution to the steady-state fluid temperature for 1-D (one dimensional) transpiration cooling has been derived. Transpiration cooling has potential use in the aerospace industry for protection against high heating environments for re-entry vehicles. Literature for analytical treatments of transpiration cooling has been largely confined to the assumption of thermal equilibrium between the porous matrix and fluid. In the present analysis, the fundamental fluid and matrix equations are coupled through a volumetric heat transfer coefficient and investigated in non-thermal equilibrium. The effects of varying the thermal conductivity of the solid matrix and the heat transfer coefficient are investigated. The results are also compared to existing experimental data.

  12. Numerical investigation of steady-state thermal behavior of an infrared detector cryo chamber

    Directory of Open Access Journals (Sweden)

    Singhal Mayank

    2017-01-01

    Full Text Available An infrared (IR detector is simply a transducer of radiant energy, converting radiant energy into a measurable form. Since radiation does not rely on visible light, it offers the possibility of seeing in the dark or through obscured conditions, by detecting the IR energy emitted by objects. One of the prime applications of IR detector systems for military use is in target acquisition and tracking of projectile systems. The IR detectors also have great potential in commercial market. Typically, IR detectors perform best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes makes the application of IR detectors extremely complex. Further, prior to proceeding on to a full blown transient thermal analysis it is worthwhile to perform a steady-state numerical analysis for ascertaining the effect of variation in viz., material, gas conduction coefficient, h, emissivity, ε, on the temperature profile along the cryo chamber length. This would enable understanding the interaction between the cryo chamber and its environment. Hence, the present work focuses on the development of steady-state numerical models for thermal analysis of IR cryo chamber using MATLAB. The numerical results show that gas conduction coefficient has marked influence on the temperature profile of the cryo chamber whereas the emissivity has a weak effect. The experimental validation of numerical results has also been presented.

  13. Ignition phase and steady-state structures of a non-thermal air plasma

    CERN Document Server

    Lu Xin Pei

    2003-01-01

    An AC-driven, non-thermal, atmospheric pressure air plasma is generated within the gap separating a disc-shaped metal electrode and a water electrode. The ignition phase and the steady-state are studied by a high-speed CCD camera. It is found that the plasma always initiates at the surface of the water electrode. The plasma exhibits different structures depending on the polarity of the water electrode: when the water electrode plays the role of cathode, a relatively wide but visibly dim plasma column is generated. At the maximum driving voltage, the gas temperature is between 800 and 900 K, and the peak current is 67 mA; when the water electrode is anode, the plasma column narrows but increases its light emission. The gas temperature in this case is measured to be in the 1400-1500 K range, and the peak current is 81 mA.

  14. Burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1

    Directory of Open Access Journals (Sweden)

    Muhammad Atta

    2011-01-01

    Full Text Available The burn-up dependent steady-state thermal hydraulic analysis of Pakistan research reactor-1, reference operating core, has been carried out utilizing standard computer codes WIMS/D4, CITATION, and RELAP5/MOD3.4. Reactor codes WIMS/D4 and CITATION have been used for the calculations of neutronic parameters including peaking factors and power profiles at different burn-up considering a xenon free core and also the equilibrium xenon values. RELAP5/MOD3.4 code was utilized for the determination of peak fuel centerline, clad and coolant temperatures to ensure the safety of the reactor throughout the cycle. The calculations reveal that the reactor is safe and no nucleate boiling will commence at any part of the core throughout the cycle and that the safety margin increases with burnup as peaking factors decrease.

  15. A method for statistical steady state thermal analysis of reactor cores

    International Nuclear Information System (INIS)

    Whetton, P.A.

    1980-01-01

    This paper presents a method for performing a statistical steady state thermal analysis of a reactor core. The technique is only outlined here since detailed thermal equations are dependent on the core geometry. The method has been applied to a pressurised water reactor core and the results are presented for illustration purposes. Random hypothetical cores are generated using the Monte-Carlo method. The technique shows that by splitting the parameters into two types, denoted core-wise and in-core, the Monte Carlo method may be used inexpensively. The idea of using extremal statistics to characterise the low probability events (i.e. the tails of a distribution) is introduced together with a method of forming the final probability distribution. After establishing an acceptable probability of exceeding a thermal design criterion, the final probability distribution may be used to determine the corresponding thermal response value. If statistical and deterministic (i.e. conservative) thermal response values are compared, information on the degree of pessimism in the deterministic method of analysis may be inferred and the restrictive performance limitations imposed by this method relieved. (orig.)

  16. Thermal Conductivity of Advanced Ceramic Thermal Barrier Coatings Determined by a Steady-state Laser Heat-flux Approach

    Science.gov (United States)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    The development of low conductivity and high temperature capable thermal barrier coatings requires advanced testing techniques that can accurately and effectively evaluate coating thermal conductivity under future high-performance and low-emission engine heat-flux conditions. In this paper, a unique steady-state CO2 laser (wavelength 10.6 microns) heat-flux approach is described for determining the thermal conductivity and conductivity deduced cyclic durability of ceramic thermal and environmental barrier coating systems at very high temperatures (up to 1700 C) under large thermal gradients. The thermal conductivity behavior of advanced thermal and environmental barrier coatings for metallic and Si-based ceramic matrix composite (CMC) component applications has also been investigated using the laser conductivity approach. The relationships between the lattice and radiation conductivities as a function of heat flux and thermal gradient at high temperatures have been examined for the ceramic coating systems. The steady-state laser heat-flux conductivity approach has been demonstrated as a viable means for the development and life prediction of advanced thermal barrier coatings for future turbine engine applications.

  17. Steady-State Thermal Properties of Rectangular Straw-Bales (RSB for Building

    Directory of Open Access Journals (Sweden)

    Leonardo Conti

    2016-10-01

    Full Text Available Straw is an inevitable product of cereal production and is available in huge quantities in the world. In order to use straw-bales as a building material, the characteristic values of the thermal performances should be determined. To not lose the benefits of the cheapness and sustainability of the material, the characteristics must be determined with simple and inexpensive means and procedures. This research aims to implement tools and methods focused at the determination of the thermal properties of straw-bales. For this study, the guidelines dictated by ASTM and ISO were followed. A measurement system consisting of a Metering Chamber (MC was realized. The MC was placed inside a Climate Chamber (CC. During the test, a known quantity of energy is introduced inside MC. When the steady-state is reached, all the energy put into MC passes through its walls in CC, where it is absorbed by the air-conditioner. A series of thermopiles detect the temperature of the surfaces of the measurement system and of the specimen. Determining the amount of energy transmitted by the various parts of MC and by the specimen, it is possible to apply Fourier’s law to calculate the thermal conductivity of the specimen.

  18. Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Nagaraj, Ben A.; Bruce, Robert W.

    2000-01-01

    The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) Zr02-8wt%Y2O3 thermal barrier coatings was determined by a steady-state heat flux laser technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long term test conditions. The thermal conductivity increase due to micro-pore sintering and the decrease due to coating micro-delaminations in the EB-PVD coatings were evaluated for grooved and non-grooved EB-PVD coating systems under isothermal and thermal cycling conditions. The coating failure modes under the high heat flux test conditions were also investigated. The test technique provides a viable means for obtaining coating thermal conductivity data for use in design, development, and life prediction for engine applications.

  19. Thermal performance and 3D analysis of advanced mechanically joined divertor plate for LHD under steady state high heat flux

    International Nuclear Information System (INIS)

    Kubota, Y.; Noda, N.; Sagara, A.; Sakamoto, R.; Yamazaki, K.; Satow, T.; Motojima, O.

    2001-01-01

    Thermal performances of an advanced mechanically joined module (MJM) under steady state high heat fluxes of 2.0-4.25 MW/m 2 and thermo-mechanical analysis are described. The advanced MJM was designed to apply for a helical divertor plate of a large helical device (LHD) at the next experimental phase II. The advanced MJM has a unified armor/heat sink made of carbon/carbon composite different from the normal MJM with a separated copper heat sink. To evaluate the thermal performance of the advanced MJM, short pulse high heat flux test up to 5.4 MW/m 2 and steady state high heat flux tests up to 4.25 MW/m 2 have been carried out using a test facility ACT. Moreover, the thermal fatigue test of the advanced MJM up to 150 cycles under steady state high heat flux of 2.5 MW/m 2 has been performed. After theses tests, no apparent damage and no cracking on the armor tile were observed although there was a little increase in the armor/heat sink temperature during the thermal fatigue test. To evaluate the thermal stress in the armor/heat sink of the MJM during steady state high heat flux test and to optimize the structure, thermo-mechanical analyses are done using a 3D CAD

  20. Thermal Conductivity Change Kinetics of Ceramic Thermal Barrier Coatings Determined by the Steady-State Laser Heat Flux Technique

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    A steady-state laser heat flux technique has been developed at the NASA Glenn Research Center at Lewis Field to obtain critical thermal conductivity data of ceramic thermal barrier coatings under the temperature and thermal gradients that are realistically expected to be encountered in advanced engine systems. In this study, thermal conductivity change kinetics of a plasma-sprayed, 254-mm-thick ZrO2-8 wt % Y2O3 ceramic coating were obtained at high temperatures. During the testing, the temperature gradients across the coating system were carefully measured by the surface and back pyrometers and an embedded miniature thermocouple in the substrate. The actual heat flux passing through the coating system was determined from the metal substrate temperature drop (measured by the embedded miniature thermocouple and the back pyrometer) combined with one-dimensional heat transfer models.

  1. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.

    Science.gov (United States)

    Sayer, Robert A; Piekos, Edward S; Phinney, Leslie M

    2012-12-01

    Accurate knowledge of thermophysical properties is needed to predict and optimize the thermal performance of microsystems. Thermal conductivity is experimentally determined by measuring quantities such as voltage or temperature and then inferring a thermal conductivity from a thermal model. Thermal models used for data analysis contain inherent assumptions, and the resultant thermal conductivity value is sensitive to how well the actual experimental conditions match the model assumptions. In this paper, a modified data analysis procedure for the steady state Joule heating technique is presented that accounts for bond pad effects including thermal resistance, electrical resistance, and Joule heating. This new data analysis method is used to determine the thermal conductivity of polycrystalline silicon (polysilicon) microbridges fabricated using the Sandia National Laboratories SUMMiT V™ micromachining process over the temperature range of 77-350 K, with the value at 300 K being 71.7 ± 1.5 W/(m K). It is shown that making measurements on beams of multiple lengths is useful, if not essential, for inferring the correct thermal conductivity from steady state Joule heating measurements.

  2. Steady-state work fluctuations of a dragged particle under external and thermal noise.

    Science.gov (United States)

    Baule, A; Cohen, E G D

    2009-07-01

    We consider a particle, confined to a moving harmonic potential, under the influence of friction and external asymmetric Poissonian shot noise (PSN). We study the fluctuations of the work done to maintain this system in a nonequilibrium steady state. PSN generalizes the usual Gaussian noise and can be considered to be a paradigm of external noise, where fluctuation and dissipation originate from physically independent mechanisms. We consider two scenarios: (i) the noise is given purely by PSN and (ii) in addition to PSN the particle is subject to white Gaussian noise. In both cases we derive exact expressions for the large deviation form of the work distribution, which are characterized by the time scales of the system. We show that the usual steady-state fluctuation theorem does not apply in our model and that in a certain parameter regime large negative work fluctuations are more likely to occur than the corresponding positive ones, though the average work is always positive.

  3. Steady state and transient thermal-hydraulic characterization of full-scale ITER divertor plasma facing components

    International Nuclear Information System (INIS)

    Tincani, A.; Malavasi, A.; Ricapito, I.; Riccardi, B.; Di Maio, P.A.; Vella, G.

    2007-01-01

    In the frame of the activities related to ITER divertor R and D, ENEA CR Brasimone was charged by EFDA (European Fusion Design Agreement) to investigate the thermal-hydraulic behaviour of the full-scale divertor plasma facing components, i.e. Inner Vertical Target, Dome Liner and Outer Vertical Target, both in steady state and during draining and drying transient. More in detail, for each PFC, the first phase of the work is the steady state hydraulic characterization which consists of: - measurements of pressure drops at different temperatures; - determination of the velocity distribution in the internal channels; - check the possible insurgence of cavitation. The subsequent phase of the thermal-hydraulic characterization foresees a testing campaign of draining and drying procedure by means of a suitable gas flow. The objective of this experimental procedure is to eliminate in the most efficient way the residual amount of water after gravity discharge. In order to accomplish this experimental campaign a significant modification of CEF1 loop has been designed and realized. This paper presents, first of all, the experimental set-up, the agreed test matrix and the achieved results for both steady state and transient tests. Moreover, the level of the implementation of a predictive hydraulic model, based on RELAP 5 code, as well as its results are described, discussed and compared with the experimental ones. (orig.)

  4. SAFE: A computer code for the steady-state and transient thermal analysis of LMR fuel elements

    International Nuclear Information System (INIS)

    Hayes, S.L.

    1993-12-01

    SAFE is a computer code developed for both the steady-state and transient thermal analysis of single LMR fuel elements. The code employs a two-dimensional control-volume based finite difference methodology with fully implicit time marching to calculate the temperatures throughout a fuel element and its associated coolant channel for both the steady-state and transient events. The code makes no structural calculations or predictions whatsoever. It does, however, accept as input structural parameters within the fuel such as the distributions of porosity and fuel composition, as well as heat generation, to allow a thermal analysis to be performed on a user-specified fuel structure. The code was developed with ease of use in mind. An interactive input file generator and material property correlations internal to the code are available to expedite analyses using SAFE. This report serves as a complete design description of the code as well as a user's manual. A sample calculation made with SAFE is included to highlight some of the code's features. Complete input and output files for the sample problem are provided

  5. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    Energy Technology Data Exchange (ETDEWEB)

    Ritz, Guillaume Henri

    2011-07-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m{sup -2} as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m{sup -2}. The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform

  6. Performance of tungsten-based materials and components under ITER and DEMO relevant steady-state thermal loads

    International Nuclear Information System (INIS)

    Ritz, Guillaume Henri

    2011-01-01

    In nuclear fusion devices the surfaces directly facing the plasma are irradiated with high energy fluxes. The most intense loads are deposited on the divertor located at the bottom of the plasma chamber, which has to withstand continuous heat loads with a power density of several MW . m -2 as well as transient events. These are much shorter (in the millisecond and sub-millisecond regime) but deposit a higher power densities of a few GW . m -2 . The search for materials that can survive to those severe loading conditions led to the choice of tungsten which possesses advantageous attributes such as a high melting point, high thermal conductivity, low thermal expansion and an acceptable activation rate. These properties made it an attractive and promising candidate as armor material for divertors of future fusion devices such as ITER and DEMO. For the DEMO divertor, conceptual studies on helium-cooled tungsten plasma-facing components were performed. The concept was realized and tested under DEMO specific cyclic thermal loads. The examination of the plasma-facing components by microstructural analyses before and after thermal loading enabled to determine the mechanisms for components failure. Among others, it clearly showed the impact of the tungsten grade and the thermal stress induced crack formation on the performance of the armor material and in general of the plasma-facing component under high heat loads. A tungsten qualification program was launched to study the behaviour of various tungsten grades, in particular the crack formation, under fusion relevant steady-state thermal loads. In total, seven commercially available materials from two industrial suppliers were investigated. As the material's thermal response is strongly related to its microstructure, this program comprised different material geometries and manufacturing technologies. It also included the utilization of an actively cooled specimen holder which has been designed to perform sophisticated

  7. A three-dimensional steady-state thermal analysis of the reactor closure

    International Nuclear Information System (INIS)

    Honda, Mitsugu; Sosa, Yutaka; Otsubo, Toru.

    1991-01-01

    This report summarizes the thermal shield design and the three-dimensional thermal analysis on the upper reactor structures of FBR Monju. The analysis was performed by using NASTRAN taking account of both convective and radiative heat flow. Especially, local heat flow by circumferential natural convection in the annulus gaps was calculated by VANAC (Vertical Annulus Natural Convection Analysis Program) which was confirmed by the scale model experiments. (author)

  8. High pulse number thermal shock tests on tungsten with steady state particle background

    Science.gov (United States)

    Wirtz, M.; Kreter, A.; Linke, J.; Loewenhoff, Th; Pintsuk, G.; Sergienko, G.; Steudel, I.; Unterberg, B.; Wessel, E.

    2017-12-01

    Thermal fatigue of metallic materials, which will be exposed to severe environmental conditions e.g. plasma facing materials in future fusion reactors, is an important issue in order to predict the life time of complete wall components. Therefore experiments in the linear plasma device PSI-2 were performed to investigate the synergistic effects of high pulse number thermal shock events (L = 0.38 GW m‑2, Δt = 0.5 ms) and stationary D/He (6%) plasma particle background on the thermal fatigue behavior of tungsten. Similar to experiments with pure thermal loads, the induced microstructural and surface modifications such as recrystallization and roughening as well as crack formation become more pronounced with increasing number of thermal shock events. However, the amount of damage significantly increases for synergistic loads showing severe surface roughening, plastic deformation and erosion resulting from the degradation of the mechanical properties caused by bombardment and diffusion of D/He to the surface and the bulk of the material. Additionally, D/He induced blistering and bubble formation were observed for all tested samples, which could change the thermal and mechanical properties of near surface regions.

  9. Effects of design variables predicted by a steady - state thermal performance analysis model of a loop heat pipe

    International Nuclear Information System (INIS)

    Jung, Eui Guk; Boo, Joon Hong

    2008-01-01

    This study deals with a mathematical modeling for the steady-state temperature characteristics of an entire loop heat pipe. The lumped layer model was applied to each node for temperature analysis. The flat type evaporator and condenser in the model had planar dimensions of 40 mm (W) x 50 mm (L). The wick material was a sintered metal and the working fluid was methanol. The molecular kinetic theory was employed to model the phase change phenomena in the evaporator and the condenser. Liquid-vapor interface configuration was expressed by the thin film theories available in the literature. Effects of design factors of loop heat pipe on the thermal performance were investigated by the modeling proposed in this study

  10. Steady-state thermal-hydraulic design analysis of the Advanced Neutron Source reactor

    International Nuclear Information System (INIS)

    Yoder, G.L. Jr.; Dixon, J.R.; Elkassabgi, Y.; Felde, D.K.; Giles, G.E.; Harrington, R.M.; Morris, D.G.; Nelson, W.R.; Ruggles, A.E.; Siman-Tov, M.; Stovall, T.K.

    1994-05-01

    The Advanced Neutron Source (ANS) is a research reactor that is planned for construction at Oak Ridge National Laboratory. This reactor will be a user facility with the major objective of providing the highest continuous neutron beam intensities of any reactor in the world. Additional objectives for the facility include providing materials irradiation facilities and isotope production facilities as good as, or better than, those in the High Flux Isotope Reactor. To achieve these objectives, the reactor design uses highly subcooled heavy water as both coolant and moderator. Two separate core halves of 67.6-L total volume operate at an average power density of 4.5 MW(t)/L, and the coolant flows upward through the core at 25 m/s. Operating pressure is 3.1 MPa at the core inlet with a 1.4-MPa pressure drop through the core region. Finally, in order to make the resources available for experimentation, the fuel is designed to provide a 17-d fuel cycle with an additional 4 d planned in each cycle for the refueling process. This report examines the codes and models used to develop the thermal-hydraulic design for ANS, as well as the correlations and physical data; evaluates thermal-hydraulic uncertainties; reports on thermal-hydraulic design and safety analysis; describes experimentation in support of the ANS reactor design and safety analysis; and provides an overview of the experimental plan

  11. Numerical study on thermal energy storage performance of phase change material under non-steady-state inlet boundary

    International Nuclear Information System (INIS)

    Tao, Y.B.; He, Y.L.

    2011-01-01

    Highlights: → Based on the unstable solar radiation, a model was established for phase change process under unsteady boundary. → The PCM melting time decreases with the initial inlet temperature increase under the same average inlet temperature. → The melting time reduces about 51.9% with the initial inlet temperature increase from 30 o C to 90 o C. → The melting time decreases with the initial inlet mass flow rate increase under the same average inlet mass flow rate. → The melting time reduces about 36.5% with the initial inlet mass flow rate increase from 2.0 x 10 -4 kg/s to 8.0 x 10 -4 kg/s. -- Abstract: Due to the solar radiation intensity variation over time, the outlet temperature or mass flow rate of heat transfer fluid (HTF) presents non-steady-state characteristics for solar collector. So, in the phase change thermal energy storage (PCTES) unit which is connected to solar collector, the phase change process occurs under the non-steady-state inlet boundary condition. In present paper, regarding the non-steady-state boundary, based on enthalpy method, a two dimensional physical and mathematical model for a shell-and-tube PCTES unit was established and the simulation code was self-developed. The effects of the non-steady-state inlet condition of HTF on the thermal performance of the PCTES unit were numerically analyzed. The results show that when the average HTF inlet temperature in an hour is fixed at a constant value, the melting time (time required for PCM completely melting) decreases with the increase of initial inlet temperature. When the initial inlet temperature increases from 30 o C to 90 o C, the melting time will decrease from 42.75 min to 20.58 min. However, the total TES capacity in an hour reduces from 338.9 kJ/kg to 211.5 kJ/kg. When the average inlet mass flow rate in an hour is fixed at a constant value, with the initial HTF inlet mass flow rate increasing, the melting time of PCM decreases. The initial inlet mass flow rate

  12. Steady-state thermal hydraulic analysis of Tajoura Nuclear Research Centre reactor (TNRC) with low enriched uranium core

    International Nuclear Information System (INIS)

    Ghangir, F.; Elwaer, A.

    2015-01-01

    This study focuses on the steady-state thermal hydraulic analysis of the reactor of the Tajoura Nuclear Research Centre (TNRC) with LOW Enriched Uranium (LEU) core. A MATLAB program has been constructed to calculate the important related safety parameters at the steady-state operation of the core. The calculations have been performed at the hottest cell of the core and at the operating power of 10 MW with coolant inlet temperature equals to 45 °. The benefit of the symmetry of the shape of the core cells has been used to divide the hottest cell to four regions. Each quarter of the hottest cell has been further divided to a plate part and a corner part. Therefore, the calculations have been applied to the quarter of the hottest cell at both plate and corner parts. The assessment of the operating power according to the maximum allowable clad surface temperature is used to identify the maximum operating power of TNRC's reactor. The outcome of this investigation is that the reactor of the TNRC must not operate at power equals to 10 MW and the maximum allowable operating power is 9.7 MW where the value of the maximum clad surface temperature is 101.7 ° (maximum allowable clad surface temperature = 102 °). The results have been compared witha previous studies [1] where a Nusselt number is calculated using a different correlation equation from this study. [2] where an onset of nucleate boiling (ONB) and the maximum allowable power are tested and with the results of a team at Argonne National Lab, ANL, [3] Which present a good agreement.(author)

  13. Thermal hydraulic core simulation of the MYRRHA Reactor in steady state operation

    International Nuclear Information System (INIS)

    Ferandes, Gustavo H.N.; Ramos, Mário C.; Carvalho, Athos M.S.S.; Cabrera, Carlos E.V.; Costa, Antonella L.; Pereira, Claubia

    2017-01-01

    MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) is a prototype nuclear subcritical reactor driven by a particle accelerator. As a special property, the reactor maintains the nuclear fission chain reaction by means of an external neutron source provided by a particle accelerator. The main aim of this work is to study two types of coolants, LBE (Lead-Bismuth Eutectic) and Na (Sodium) that are two strong candidates to be used in ADS systems as well as in Generation IV (GEN-IV) reactors. Firstly, it was developed a thermal hydraulic model of the MYRRHA core using the RELAP5-3D, considering LBE as coolant (original project). After this, the LBE was substituted by Na coolant to investigate the reactor behavior in such case. Results have demonstrated the high heat transfer capacity of the LBE coolant in this type of system. (author)

  14. Steady-state thermal studies on the HIE-ISOLDE high-$\\beta$ superconducting cavities

    CERN Document Server

    Alberty, L

    2013-01-01

    The activity of the High Intensity and Energy ISOLDE (HIE-ISOLDE) project aims to construct a superconducting linac based on 101.28 MHz niobium sputtered Quarter Wave Resonators (QWRs). For this, several prototypes of superconducting cavities are currently being developed at CERN using OFE copper as substrate material for Niobium film coating. Two main concepts are currently under development: one consists of rolled, machined, deepdrawed and welded parts; the other is based on machined parts which are put together using electron beam welding. This study presents the results of simulations carried out in order to assess the thermal performance of different designs. The interest for such analysis was raised up before launching the manufacture of the first industrial series, since both rolled and bulk approaches seemed possible.

  15. Thermal hydraulic core simulation of the MYRRHA Reactor in steady state operation

    Energy Technology Data Exchange (ETDEWEB)

    Ferandes, Gustavo H.N.; Ramos, Mário C.; Carvalho, Athos M.S.S.; Cabrera, Carlos E.V.; Costa, Antonella L.; Pereira, Claubia, E-mail: ghnfernandes@gmail.com, E-mail: marc5663@gmail.com, E-mail: athos1495@yahoo.com.br, E-mail: carlosvelcab@hotmail.com, E-mail: antonella@nuclear.ufmg.br, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Instituto Nacional de Ciência e Tecnologia de Reatores Nucleares Inovadores/CNPq (Brazil)

    2017-07-01

    MYRRHA (Multi-purpose Hybrid Research Reactor for High-tech Applications) is a prototype nuclear subcritical reactor driven by a particle accelerator. As a special property, the reactor maintains the nuclear fission chain reaction by means of an external neutron source provided by a particle accelerator. The main aim of this work is to study two types of coolants, LBE (Lead-Bismuth Eutectic) and Na (Sodium) that are two strong candidates to be used in ADS systems as well as in Generation IV (GEN-IV) reactors. Firstly, it was developed a thermal hydraulic model of the MYRRHA core using the RELAP5-3D, considering LBE as coolant (original project). After this, the LBE was substituted by Na coolant to investigate the reactor behavior in such case. Results have demonstrated the high heat transfer capacity of the LBE coolant in this type of system. (author)

  16. Measurement of the effective thermal conductivity of particulate materials by the steady-state heat flow method in a cuvette

    Science.gov (United States)

    Abyzov, Andrey M.; Shakhov, Fedor M.

    2014-12-01

    To measure the thermal conductivity of particle beds, a specially designed cuvette is inserted into the chamber of an ITP-MG4 device fitted with a vertical heat flux sensor. The cuvette with a transparent wall makes it possible to reduce the amount of test material to 25 cm3, to monitor visually the uniformity of a charge, to determine the bulk density of the particle bed (and to increase it if necessary using vibrocompaction) and to apply external pressure to the bed from 2.5 to 30 kPa. Using various continuous-solid and particulate materials as references, a calibration equation is obtained for thermal conductivity in the range of 0.03-1.1 W (m K)-1. To eliminate thermal contact resistance when measuring references, the end faces of glass specimens with a departure from flatness of up to 50 μm are wetted with water. To model the calibration, a calculation is carried out by the electrical circuit analogy. The calculated curve is close to the experimental points if a value for the contact thermal resistances r# = 2  ×  10-3 m2 K W-1 is taken. Values of r# calculated by the Yovanovich model, based on the known roughnesses of the contact surfaces of the cuvette and the solid specimens, are an order of magnitude lower due to the decisive influence of nonflatness and not surface roughness at the low pressures used. The conditions under which our measurements were made are compared with the instructions of Russian, American and international standards for the measurement of thermal conductivity by the steady-state heat flow method (specimen size, flatness of working surfaces, etc). The sources of measurement inaccuracy and ways to improve the technique are examined.

  17. KIM, Steady-State Transport for Fixed Source in 2-D Thermal Reactor by Monte-Carlo

    International Nuclear Information System (INIS)

    Cupini, E.; De Matteis, A.; Simonini, R.

    1980-01-01

    1 - Description of problem or function: KIM (K-infinite Monte Carlo) is a program which solves the steady-state linear transport equation for a fixed-source problem (or, by successive fixed-source runs, for the eigenvalue problem) in a two-dimensional infinite thermal reactor lattice. The main quantities computed in some broad energy groups are the following: - Fluxes and cross sections averaged over the region (i.e. a space portion that can be unconnected but contains everywhere the same homogeneous material), grouping of regions, the whole element. - Average absorption and fission rates per nuclide. - Average flux, absorption and production distributions versus energy. 2 - Method of solution: Monte Carlo simulation is used by tracing particle histories from fission birth down through the resonance region until absorption in the thermal range. The program is organised in three sections for fast, epithermal and thermal simulation, respectively; each section implements a particular model for both numerical techniques and cross section representation (energy groups in the fast section, groups or resonance parameters in the epithermal section, points in the thermal section). During slowing down (energy above 1 eV) nuclei are considered as stationary, with the exception of some resonance nuclei whose spacing between resonances is much greater than the resonance width. The Doppler broadening of s-wave resonances of these nuclides is taken into account by computing cross sections at the current neutron energy and at the temperature of the nucleus hit. During thermalization (energy below 1 eV) the thermal motion of some nuclides is also considered, by exploiting scattering kernels provided by the library for light water, heavy water and oxygen at several temperatures. KIM includes splitting and Russian roulette. A characteristic feature of the program is its approach to the lattice geometry. In fact, besides the usual continuous treatment of the geometry using the well

  18. Summary report of NEPTUN investigations into the steady state thermal hydraulics of the passive decay heat removal

    International Nuclear Information System (INIS)

    Rust, K.; Weinberg, D.; Hoffmann, H.; Frey, H.H.; Baumann, W.; Hain, K.; Leiling, W.; Hayafune, H.; Ohira, H.

    1995-12-01

    During the course of steady state NEPTUN investigations, the effects of different design and operating parameters were studied; in particular: The shell design of the above core sturcture, the core power, the number of decay heat exchangers put in operation, the complete flow path blockage at the primary side of the intermediate heat exchangers, and the fluid level in the primary vessel. The findings of the NEPTUN experiments indicate that the decay heat can be safely removed by natural convection. The interwrapper flow makes an essential contribution to that behavior. The decay heat exchangers installed in the upper plenum cause a thermal stratification associated with a pronounced gradient. The vertical extent of the stratification and the quantity of the gradient are depending on the fact whether a permeable or an impermeable shell covers the above core structure. An increase of the core power or a reduction of the number of decay heat exchangers being in operation leads to a higher temperature level in the primary system but does not alter the global temperature distribution. In the case that no coolant enters the inlet windows at the primary side of the intermediate and decay heat exchangers, the core remains coolable as far as the primary vessel is filled with fluid up to a minimum level. Cold water penetrates from the upper plenum into the core and removes the decay heat. The thermal hydraulic computer code FLUTAN was applied for the three-dimensional numerical simulation of the majority of NEPTUN tests reported here. The comparison of computed against experimental data indicates a qualitatively and quantitatively satisfying agreement of the findings with respect to the field of isotherms as well as the temperature profiles in the upper plenum and within the core region of very complex geometry. (orig./HP) [de

  19. On Line Neutron Flux Mapping in Fuel Coolant Channels of a Research Reactor

    International Nuclear Information System (INIS)

    Barbot, Loic; Domergue, Christophe; Villard, Jean-Francois; Destouches, Christophe; Braoudakis, George; Wassink, David; Sinclair, Bradley; Osborn, John-C.; Wu, Huayou; Blandin, C.; Thevenin, Mathieu; Corre, Gwenole; Normand, Stephane

    2013-06-01

    This work deals with the on-line neutron flux mapping of the OPAL research reactor. A specific irradiation device has been set up to investigate fuel coolant channels using subminiature fission chambers to get thermal neutron flux profiles. Experimental results are compared to first neutronic calculations and show good agreement (C/E ∼0.97). (authors)

  20. SIMMER-III applications to fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Kondo, Sa.; Tobita, Y.; Brear, D.J. [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-01-01

    The main purpose of the SIMMER-III code is to provide a numerical simulation of complex multiphase, multicomponent flow problems essential to investigate core disruptive accidents in liquid-metal fast reactors (LMFRs). However, the code is designed to be sufficiently flexible to be applied to a variety of multiphase flows, in addition to LMFR safety issues. In the present study, some typical experiments relating to fuel-coolant interactions (FCIs) have been analyzed by SIMMER-III to demonstrate that the code is applicable to such complex and highly transient multiphase flow situations. It is shown that SIMMER-III can reproduce the premixing phase both in water and sodium systems as well as the propagation of steam explosion. It is thus demonstrated the code is basically capable of simulating integral multiphase thermal-hydraulic problems included in FCI experiments. (author)

  1. STEADY-STATE HEAT REJECTION RATES FOR A COAXIAL BOREHOLE HEAT EXCHANGER DURING PASSIVE AND ACTIVE COOLING DETERMINED WITH THE NOVEL STEP THERMAL RESPONSE TEST METHOD

    Directory of Open Access Journals (Sweden)

    Marija Macenić

    2018-01-01

    Full Text Available At three locations in Zagreb, classical and extended thermal response test (TRT was conducted on installed coaxial heat exchangers. With classic TR test, thermogeological properties of the ground and thermal resistance of the borehole were determined at each location. It is seen that thermal conductivity of the ground varies, due to difference in geological profile of the sites. In addition, experimental research of steady-state thermal response step test (SSTRST was carried out to determine heat rejection rates for passive and active cooling in steady state regime. Results showed that heat rejection rate is only between 8-11 W/m, which indicates that coaxial system is not suitable for passive cooling demands. Furthermore, the heat pump in passive cooling mode uses additional plate heat exchanger where there is additional temperature drop of working fluid by approximately 1,5 °C. Therefore, steady-state rejection rate for passive cooling is even lower for a real case project. Coaxial heat exchanger should be always designed for an active cooling regime with an operation of a heat pump compressor in a classical vapour compression refrigeration cycle.

  2. Steady-state thermal-hydraulic analysis of the Moroccan TRIGA MARK II reactor by using PARET/ANL and COOLOD-N2 codes

    International Nuclear Information System (INIS)

    Boulaich, Y.; Nacir, B.; El Bardouni, T.; Zoubair, M.; El Bakkari, B.; Merroun, O.; El Younoussi, C.; Htet, A.; Boukhal, H.; Chakir, E.

    2011-01-01

    Research highlights: → The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. → The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). → The most important conclusion is that all obtained values of DNBR, fuel center and surface temperature, cladding surface temperature and coolant temperature across the hottest channel are largely far to compromise safety of the reactor. - Abstract: The COOLOD/N2 and PARET/ANL codes were used for a steady-state thermal-hydraulic and safety analysis of the 2 MW TRIGA MARK II reactor located at the Nuclear Studies Center of Maamora (CENM), Morocco. In order to validate our PARET/ANL and COOLOD-N2 models, the fuel center temperature as function of core power was calculated and compared with the corresponding experimental values. The comparison indicates that the calculated values are in satisfactory agreement with the measurement. The main objective of this study is to ensure the safety margins of different safety related parameters by steady-state calculations at full power level (2 MW). Therefore, we have calculated the departure from nucleate boiling ratio (DNBR), fuel center and surface temperature, cladding surface temperature and coolant temperature profiles across the hottest channel. The most important conclusion is that all obtained values are largely far to compromise safety of the reactor.

  3. Steady-state thermal-hydraulic analysis of the pellet-bed reactor for nuclear thermal propulsion

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Morley, N.J.; Yang, J.Y.

    1992-01-01

    The pellet-bed reactor (PBR) for nuclear thermal propulsion is a hydrogen-cooled, BeO-reflected, fast reactor, consisting of an annular core region filled with randomly packed, spherical fuel pellets. The fuel pellets in the PBR are self-supported, eliminating the need for internal core structure, which simplifies the core design and reduces the size and mass of the reactor. Each spherical fuel pellet is composed of hundreds of fuel microspheres embedded in a zirconium carbide (ZrC) matrix. Each fuel microsphere is composed of a UC-NbC fuel kernel surrounded by two consecutive layers of the NbC and ZrC. Gaseous hydrogen serves both as core coolant and as the propellant for the PBR rocket engine. The cold hydrogen flows axially down the inlet channel situated between the core and the external BeO reflector and radially through the orifices in the cold frit, the core, and the orifices in the hot frit. Finally, the hot hydrogen flows axially out the central channel and exits through converging-diverging nozzle. A thermal-hydraulic analysis of the PBR core was performed with an emphasis on optimizing the size and axial distribution of the orifices in the hot and cold frits to ensure that hot spots would not develop in the core during full-power operation. Also investigated was the validity of the assumptions of neglecting the axial conduction and axial cross flow in the core

  4. RAP-3A Computer code for thermal and hydraulic calculations in steady state conditions for fuel element clusters

    International Nuclear Information System (INIS)

    Popescu, C.; Biro, L.; Iftode, I.; Turcu, I.

    1975-10-01

    The RAP-3A computer code is designed for calculating the main steady state thermo-hydraulic parameters of multirod fuel clusters with liquid metal cooling. The programme provides a double accuracy computation of temperatures and axial enthalpy distributions of pressure losses and axial heat flux distributions in fuel clusters before boiling conditions occur. Physical and mathematical models as well as a sample problem are presented. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer

  5. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Kalcheva, S [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Sikik, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium); Koonen, E [Belgian Nuclear Research Center (SCK-CEN), Mol (Belgium)

    2016-09-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water. The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident. A feasibility study for the conversion of the BR2 reactor from highly-enriched uranium (HEU) to low-enriched uranium (LEU) fuel was previously performed to verify it can operate safely at the same maximum nominal steady-state heat flux. An assessment was also performed to quantify the heat fluxes at which the onset of flow instability and critical heat flux occur for each fuel type. This document updates and expands these results for the current representative core configuration (assuming a fresh beryllium matrix) by evaluating the onset of nucleate boiling (ONB), onset of fully developed nucleate boiling (FDNB), onset of flow instability (OFI) and critical heat flux (CHF).

  6. Replacement of unsteady heat transfer coefficient by equivalent steady-state one when calculating temperature oscillations in a thermal layer

    Science.gov (United States)

    Supel'nyak, M. I.

    2017-11-01

    Features of calculation of temperature oscillations which are damped in a surface layer of a solid and which are having a small range in comparison with range of temperature of the fluid medium surrounding the solid at heat transfer coefficient changing in time under the periodic law are considered. For the specified case the equations for approximate definition of constant and oscillating components of temperature field of a solid are received. The possibility of use of appropriately chosen steady-state coefficient when calculating the temperature oscillations instead of unsteady heat-transfer coefficient is investigated. Dependence for definition of such equivalent constant heat-transfer coefficient is determined. With its help the research of temperature oscillations of solids with canonical form for some specific conditions of heat transfer is undertaken. Comparison of the obtained data with results of exact solutions of a problem of heat conductivity by which the limits to applicability of the offered approach are defined is carried out.

  7. Steady-State Thermal-Hydraulics Analyses for the Conversion of the BR2 Reactor to LEU

    Energy Technology Data Exchange (ETDEWEB)

    Licht, J. R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bergeron, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Dionne, B. [Argonne National Lab. (ANL), Argonne, IL (United States); Van den Branden, G. [SCK CEN (Belgium); Kalcheva, S. [SCK CEN (Belgium); Sikik, E. [SCK CEN (Belgium); Koonen, E. [SCK CEN (Belgium)

    2015-12-01

    BR2 is a research reactor used for radioisotope production and materials testing. It’s a tank-in-pool type reactor cooled by light water and moderated by beryllium and light water (Figure 1). The reactor core consists of a beryllium moderator forming a matrix of 79 hexagonal prisms in a hyperboloid configuration; each having a central bore that can contain a variety of different components such as a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Based on a series of tests, the BR2 operation is currently limited to a maximum allowable heat flux of 470 W/cm2 to ensure fuel plate integrity during steady-state operation and after a loss-of-flow/loss-of-pressure accident.

  8. Measurement of the Thermal Conductivity of Unfrozen and Frozen Food Materials by a Steady State Method with Coaxial Dual-cylinder Apparatus.

    Science.gov (United States)

    Pongsawatmanit, R; Miyawaki, O; Yano, T

    1993-01-01

    Coaxial dual-cylinder apparatus was used to measure the effective thermal conductivity of aqueous solutions of glucose, sucrose, gelatin and egg albumin over a temperature range from -20° to 20°C by the steady state method. The accuracy of the apparatus was confirmed by testing with water and ice. The effective thermal conductivity decreased with an increase in the total solid content in both the frozen and unfrozen states. In the unfrozen state, the effective thermal conductivity was slightly dependent on temperature. In the frozen state, however, the effective thermal conductivity was strongly dependent on temperature; lower temperatures gave higher effective thermal conductivity, reflecting the increase in the ice fration. For the unfrozen samples, the intrinsic thermal conductivity of each solid component was calculated by heat transfer models. All the models tested, series, parallel and Maxwell-Eucken, were equally applicable to describe the heat conduction in the unfrozen state. In the frozen state, however, the strong temperature dependency of the effective thermal conductivity suggests that the effect of the temperature dependency of the ice fraction should be incorporated into theoretical models.

  9. Whole core pin-by-pin coupled neutronic-thermal-hydraulic steady state and transient calculations using COBAYA3 code

    International Nuclear Information System (INIS)

    Jimenez, J.; Herrero, J. J.; Cuervo, D.; Aragones, J. M.

    2010-10-01

    Nowadays coupled 3-dimensional neutron kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic model. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fuel design safety margins, because it is in the local scale, where we can search the hottest pellet or the maximum heat flux. The Polytechnic University of Madrid advanced multi-scale neutron-kinetics and thermal-hydraulics methodologies being implemented in COBAYA3 include domain decomposition by alternate core dissections for the local 3-dimensional fine-mesh scale problems (pin cells/subchannels) and an analytical nodal diffusion solver for the coarse mesh scale coupled with the thermal-hydraulic using a model of one channel per assembly or per quarter of assembly. In this work, we address the domain decomposition by the alternate core dissections methodology applied to solve coupled 3-dimensional neutronic-thermal-hydraulic problems at the fine-mesh scale. The neutronic-thermal-hydraulic coupling at the cell-subchannel scale allows the treatment of the effects of the detailed thermal-hydraulic feedbacks on cross-sections, thus resulting in better estimates of the local safety margins at the pin level. (Author)

  10. Integrated Fuel-Coolant Interaction (IFCI 6.0) code

    International Nuclear Information System (INIS)

    Davis, F.J.; Young, M.F.

    1994-04-01

    The integrated Fuel-Coolant interaction (IFCI) computer code is being developed at Sandia National Laboratories to investigate the fuel-coolant interaction (FCI) problem at large scale using a two-dimensional, four-field hydrodynamic framework and physically based models. IFCI will be capable of treating all major FCI processes in an integrated manner. This document is a product of the effort to generate a stand-alone version of IFCI, IFCI 6.0. The User's Manual describes in detail the hydrodynamic method and physical models used in IFCI 6.0. Appendix A is an input manual, provided for the creation of working decks

  11. Estimates of limits to fuel/coolant mixing

    International Nuclear Information System (INIS)

    Park, G.C.; Corradini, M.L.

    1991-06-01

    The vapor explosion process can involve the mixing of fuel with coolant prior to the explosion. A number of analysts have suggested limits to the amount of fuel/coolant mixing that could occur within the reactor vessel following a core melt accident. Past models are reviewed and a simplified approach is suggested to estimate a limit on the amount of fuel/coolant mixing possible. The approach uses concepts first advanced by Fauske in a different way. The results indicate that fuel temperature, ambient pressure and in particular the mixing length scale D mix are important parameters. For large values of D mix the fuel mass mixed in-vessel is limited to the range of 1-12 metric tons (1-10% of the core mass). (orig.) [de

  12. The STAT7 Code for Statistical Propagation of Uncertainties In Steady-State Thermal Hydraulics Analysis of Plate-Fueled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Floyd E. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Lin-wen [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States). Nuclear Reactor Lab.; Wilson, Erik [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-12-01

    The STAT code was written to automate many of the steady-state thermal hydraulic safety calculations for the MIT research reactor, both for conversion of the reactor from high enrichment uranium fuel to low enrichment uranium fuel and for future fuel re-loads after the conversion. A Monte-Carlo statistical propagation approach is used to treat uncertainties in important parameters in the analysis. These safety calculations are ultimately intended to protect against high fuel plate temperatures due to critical heat flux or departure from nucleate boiling or onset of flow instability; but additional margin is obtained by basing the limiting safety settings on avoiding onset of nucleate boiling. STAT7 can simultaneously analyze all of the axial nodes of all of the fuel plates and all of the coolant channels for one stripe of a fuel element. The stripes run the length of the fuel, from the bottom to the top. Power splits are calculated for each axial node of each plate to determine how much of the power goes out each face of the plate. By running STAT7 multiple times, full core analysis has been performed by analyzing the margin to ONB for each axial node of each stripe of each plate of each element in the core.

  13. Factorised steady states and condensation transitions in ...

    Indian Academy of Sciences (India)

    Scotland. E-mail: martin@ph.ed.ac.uk. Abstract. Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase ... weights rather it will be a nonequilibrium steady state. ... particular cases are: if u(m) = m then the dynamics of each particle is independent.

  14. Steady states in conformal theories

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.

  15. Calculational advance in the modeling of fuel-coolant interactions

    International Nuclear Information System (INIS)

    Bohl, W.R.

    1982-01-01

    A new technique is applied to numerically simulate a fuel-coolant interaction. The technique is based on the ability to calculate separate space- and time-dependent velocities for each of the participating components. In the limiting case of a vapor explosion, this framework allows calculation of the pre-mixing phase of film boiling and interpenetration of the working fluid by hot liquid, which is required for extrapolating from experiments to a reactor hypothetical accident. Qualitative results are compared favorably to published experimental data where an iron-alumina mixture was poured into water. Differing results are predicted with LMFBR materials

  16. Steady State Shift Damage Localization

    DEFF Research Database (Denmark)

    Sekjær, Claus; Bull, Thomas; Markvart, Morten Kusk

    2017-01-01

    The steady state shift damage localization (S3DL) method localizes structural deterioration, manifested as either a mass or stiffness perturbation, by interrogating the damage-induced change in the steady state vibration response with damage patterns cast from a theoretical model. Damage is, thus...... the required accuracy when examining complex structures, an extensive amount of degrees of freedom (DOF) must often be utilized. Since the interrogation matrix for each damage pattern depends on the size of the system matrices constituting the FE-model, the computational time quickly becomes of first...

  17. A Model for Molten Fuel-Coolant Interaction during Melt Slumping in a Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sohal, Manohar Singh; Siefken, Larry James

    1999-10-01

    This paper describes a simple fuel melt slumping model to replace the current parametric model in SCDAP/RELAP5. Specifically, a fuel-coolant interaction (FCI) model is developed to analyze the slumping molten fuel, molten fuel breakup, heat transfer to coolant, relocation of the molten droplets, size of a partially solidified particles that settle to the bottom of the lower plenum, and melt-plenum interaction, if any. Considering our objectives, the molten fuel jet breakup model, and fuel droplets Lagrangian model as included in a code TEXAS-V with Eulerian thermal hydraulics for water and steam from SCDAP/RELAP5 were used. The model was assessed with experimental data from MAGICO-2000 tests performed at University of California at Santa Barbara, and FARO Test L-08 performed at Joint Research Center, Ispra, Italy. The comparison was found satisfactory.

  18. Steady-State Process Modelling

    DEFF Research Database (Denmark)

    Cameron, Ian; Gani, Rafiqul

    2011-01-01

    illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....

  19. Ocean Thermal Energy Conversion power system development. Phase I: preliminary design. Final report. [OSAP-1 code; OTEC Steady-State Analysis Program

    Energy Technology Data Exchange (ETDEWEB)

    Westerberg, Arthur

    1978-12-04

    The following appendices are included: highlights of direction and correspondence; user manual for OTEC Steady-State Analysis Program (OSAP-1); sample results of OSAP-1; surface condenser installations; double-clad systems; aluminum alloy seawater piping; references searched for ammonia evaluation; references on stress-corrosion for ammonia; references on anhydrous ammonia storage; references on miscellaneous ammonia items; OTEC materials testing; test reports; OTEC technical specification chlorination system; OTEC technical specification AMERTAP system; OTEC optimization program users guide; concrete hull construction; weight and stability estimates; packing factor data; machinery and equipment list; letter from HPTI on titanium tubes; tables on Wolverine Korodense tubes; evaporator and condenser enhancement tables; code weld titanium tube price, weight tables Alcoa tubing tables; Union Carbide tubing pricing tables; turbotec tubing pricing tables; Wolverine tubing pricing tables; Union Carbide tubing characteristics and pricing; working fluids and turbines for OTEC power system; and hydrodynamic design of prototype OTEC cold and warm seawater pumps. (WHK)

  20. Quantum thermodynamics of nanoscale steady states far from equilibrium

    Science.gov (United States)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  1. Enceladus is not in Steady State

    Science.gov (United States)

    Cheunchitra, T.; Stevenson, D. J.

    2016-12-01

    Libration data tell us there is a global ocean. Topography and gravity tell us that there is substantial compensation at degree 2, meaning that the underside of the ice shell must have topography. This topography will decay, typically on a timescale of order a million years (fortuitously similar to thermal diffusion times through the ice shell), by viscous lateral flow of the ice. This could in principle be compensated in steady state by net melting beneath the poles and a compensating net freezing at the equator. In that model, the ice shell beneath the poles is partially melted with water being continuously produced and percolating to the base (or expelled if there are cracks, as at the South Pole). We have modeled this without an a priori assumption about the strength of tidal heating. We find that even if the tidal heating is zero on average around the equator, then the latent heat release from the required freezing can only be accommodated in steady state if the ice shell is 18km. The ice thickness must be even less at the poles in order to satisfy gravity and topography. Moreover, there must then be substantial tidal heating at the poles and it is physically unreasonable to have the volumetric tidal heating at the equator be enormously less than at the North Pole. For example, if the volumetric tidal heating at the equator is on average one quarter of that at the North Pole then marginal consistency with gravity and topography may be possible for a mean ice thickness at the equator of 12km. The global heat flow may exceed 40GW, much higher than the detectable IR excess (the observed south polar tiger stripe heat flow). Recent work (Fuller et al.) admits orbital evolutions with large heat flow at least for a recent part of the orbital history. However, this thin shell steady state model has difficulty reconciling observed gravity and topography as well as the libration data. We conclude that it is unlikely that Enceladus has no net melting or freezing. The ice

  2. Fuel-Coolant Interactions - some Basic Studies at the UKAEA Culham Laboratory

    International Nuclear Information System (INIS)

    Reynolds, J.A.; Dullforce, T.A.; Peckover, R.S.; Vaughan, G.J.

    1976-01-01

    In a hypothetical fault sequence important effects of fuel-coolant interactions include voiding and dispersion of core debris as well as the pressure damage usually discussed. The development of the fuel-coolant interaction probably depends on any pre-mixing Weber break-up that may occur, and is therefore a function of the way the fuel and coolant come together. Four contact modes are identified: jetting, shock tube, drops and static, and Culham's experiments have been mainly concerned with simulating the falling drop mode by using molten tin in water. It was observed that the fuel-coolant interaction is a short series of violent coolant oscillations centred at a localized position on the drop, generating a spray of submillimeter sized debris. The interaction started spontaneously at a specific time after the drop first contacted the water. There was a definite limited fuel-coolant interaction zone on a plot of initial coolant temperature versus initial fuel temperature outside which interactions never occurred. The. interaction time was a function of the initial temperatures. Theoretical scaling formulae are given which describe the fuel-coolant interaction zone and dwell time. Bounds of fuel and coolant temperature below which fuel-coolant interactions do not occur are explained by freezing. Upper bounds of fuel and coolant temperatures above which there were no fuel-coolant interactions are interpreted in terms of heat transfer through vapour films of various thicknesses. In conclusion: We have considered the effects of fuel-coolant interactions in a hypothetical fault sequence, emphasising that debris and vapour production as well as the pressure pulse can be important factors. The fuel-coolant interaction has been classified into types, according to possible modes of mixing in the fault sequence. Culham has been studying one type, the self-triggering of falling drops, by simulant experiments. It is found that there is a definite zone of interaction on a plot

  3. Thermal conductivity determinations on solid rock - a comparison between a steady-state divided-bar apparatus and a commercial transient line-source device

    Science.gov (United States)

    Sass, J.H.; Stone, C.; Munroe, R.J.

    1984-01-01

    Two apparatuses were used to measure thermal conductivities on pairs of contiguous samples from 17 specimens of solid rock: the USGS divided-bar apparatus, a steadystate comparative method, and the Shotherm "Quick Thermal Meter" (QTM), which employs a transient strip heat source. Both devices were calibrated relative to fused silica. Both devices have a reproducibility of ??5% or better depending, to some extent, on the physical nature of the specimen being tested. For solid rocks, specimen preparation for the divided bar is much more tedious and expensive than for the QTM, which seems insensitive to minor surface roughness. The QTM does, however, require quite large specimens (30 mm ?? 60 mm ?? 100 mm as a minimum for rocks) with even larger specimens (50 mm ?? 100 mm ?? 100 mm) required for higher conductivity material (3.5 W m-1 K-1 and greater). Experimental times are comparable; however, the QTM is a self-contained unit that can be transported easily and set up quickly and requires no more space than a standard desk top. From a formal statistical comparison, it appears that, over a large range of conductivities (1.4 to ???5 W m-1 K-1) and rock types, the two instruments will yield the same value of thermal conductivity for isotropic rocks. ?? 1984.

  4. Steady-state response of a micropolar generalized thermoelastic ...

    Indian Academy of Sciences (India)

    The linear theory of micropolar thermoelasticity was developed by extending the theory of micropolar continua to include thermal effects by Eringen [2] and Nowacki. [13]. Steady state response to moving loads in elasticity have been discussed in Fung [7]. Different authors [1,9,10,11,14,16±18] discussed different problems ...

  5. Steady-state Operational Characteristics of Ghana Research ...

    African Journals Online (AJOL)

    Steady state operational characteristics of the 30 kW tank-in-pool type reactor named Ghana Research Reactor-1 were investigated after a successful on-site zero power critical experiments. The steadystate operational character-istics determined were the thermal neutron fluxes, maximum period of operation at nominal ...

  6. Non-equilibrium steady state in the hydro regime

    Energy Technology Data Exchange (ETDEWEB)

    Pourhasan, Razieh [Science Institute, University of Iceland,Dunhaga 5, 107 Reykjavik (Iceland)

    2016-02-01

    We study the existence and properties of the non-equilibrium steady state which arises by putting two copies of systems at different temperatures into a thermal contact. We solve the problem for the relativistic systems that are described by the energy-momentum of a perfect hydro with general equation of state (EOS). In particular, we examine several simple examples: a hydro with a linear EOS, a holographic CFT perturbed by a relevant operator and a barotropic fluid, i.e., P=P(E). Our studies suggest that the formation of steady state is a universal result of the hydro regime regardless of the kind of fluid.

  7. The thermal effects of steady-state slab-driven mantle flow above a subducting plate: the Cascadia subduction zone and backarc

    Science.gov (United States)

    Currie, C. A.; Wang, K.; Hyndman, Roy D.; He, Jiangheng

    2004-06-01

    At subduction zones, geophysical and geochemical observations indicate that the arc and backarc regions are hot, in spite of the cooling effects of a subducting plate. At the well-studied Cascadia subduction zone, high mantle temperatures persist for over 500 km into the backarc, with little lateral variation. These high temperatures are even more surprising due to the juxtaposition of the hot Cascadia backarc against the thick, cold North America craton lithosphere. Given that local heat sources appear to be negligible, mantle flow is required to transport heat into the wedge and backarc. We have examined the thermal effects of mantle flow induced by traction along the top of the subducting plate. Through systematic tests of the backarc model boundary, we have shown that the model thermal structure of the wedge is primarily determined by the assumed temperatures along this boundary. To get high temperatures in the wedge, it is necessary for flow to mine heat from depth, either by using a temperature-dependent rheology, or by introducing a deep cold boundary through a thick adjacent lithosphere, consistent with the presence of a craton. Regardless of the thermal conditions along the backarc boundary, flow within an isoviscous wedge is too slow to transport a significant amount of heat into the wedge corner. With a more realistic stress- and temperature-dependent wedge rheology, flow is focused into the wedge corner, resulting in rapid flow upward toward the corner and enhanced temperatures below the arc, compatible with temperatures required for arc magma generation. However, this strong flow focusing produces a nearly stagnant region further landward in the shallow backarc mantle, where model temperatures and heat flow are much lower than observed. Observations of high backarc temperatures, particularly in areas that have not undergone recent extension, provide an important constraint on wedge dynamics. None of the models of simple traction-driven flow were able

  8. New Tore Supra steady state operating scenario

    International Nuclear Information System (INIS)

    Martin, G.; Parlange, F.; van Houtte, D.; Wijnands, T.

    1995-01-01

    This document deals with plasma control in steady state conditions. A new plasma control systems enabling feedback control of global plasma equilibrium parameters has been developed. It also enables to operate plasma discharge in steady state regime. (TEC). 4 refs., 5 figs

  9. Prototypic corium oxidation and hydrogen release during the Fuel-Coolant Interaction

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, J.; Piluso, P.; Bakardjieva, Snejana; Nižňanský, D.; Rehspringer, J.L.; Bezdička, Petr; Dugne, O.

    2015-01-01

    Roč. 75, JAN (2015), s. 210-218 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Corium * Fuel-Coolant Interaction * Hydrogen release * Material effect * Nuclear reactor severe accident Subject RIV: CA - Inorganic Chemistry Impact factor: 1.174, year: 2015

  10. Steady State Vapor Bubble in Pool Boiling.

    Science.gov (United States)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  11. The steady state in toroidal traps

    International Nuclear Information System (INIS)

    Goldston, R.

    1997-01-01

    Experiments at the JET, TORE SUPRA, TFTR and DIII-D reactors have corroborated calculations showing that an advanced tokamak configuration with an important self-generated current, a large plasma pressure and thus a large thermonuclear power density, could allow for the construction of fusion steady state reactors with reduced size and cost. Stellarators only need external superconductive coils for reaching the steady state, but it is essential to reduce in a large proportion the plasma self-generated current

  12. Critical issues for steady state operation

    International Nuclear Information System (INIS)

    Ohyabu, Nobuyoshi

    1994-01-01

    Significant progress has been made in the toroidal magnetic fusion research, achieving high quality plasmas which satisfy the breakeven condition. As the next step, such plasmas need to be maintained in a steady state or a longer period. Critical issues for the steady state operation have been discussed briefly, such as high heat load on the divertor plates, deterioration of the energy confinement with increasing power, impurity contamination, including helium (ash), maintaining of the magnetic configuration, erosion of the plasma facing material. (author)

  13. Steady-state magnetohydrodynamic clump turbulence

    International Nuclear Information System (INIS)

    Tetreault, D.J.

    1989-01-01

    The turbulent steady state of the magnetohydrodynamic (MHD) clump instability [Phys. Fluids 31, 2122 (1988)] is investigated. The steady state is determined by the balance between clump growth by turbulent mixing and clump decay by field line stochasticity. The turbulent fields driving the mixing are generated self-consistently from Ampere's law and conserve the magnetic helicity. In the steady state, the mean current and magnetic field satisfy J 0 = μB 0 , where μ depends on the mean-square fluctuation level. Above this critical point (J 0 >μB 0 ), the plasma is MHD clump unstable. MHD clump instability is a dynamical route to the force-free, Taylor state. For the steady state to exist, μ must exceed a threshold on the order of that required for B 0 /sub z/ field reversal. Steady-state MHD clump turbulence corresponds to field reversed Taylor states. From the μ threshold condition, the steady-state fluctuation spectrum (δB/sub rms//B) is calculated and shown to increase with mean driving current as θ 3 , where θ is the pinch parameter

  14. Advanced steady-state operating scenarios

    International Nuclear Information System (INIS)

    Nevins, W.M.; Bulmer, R.H.; Pearlstein, L.D.; Haney, S.W.; Manickam, J.

    1993-01-01

    The goal for advanced steady-state operation in ITER should be to demonstrate the operation of the plasma core for a steady-state fusion reactor. To accomplish this the authors must develop steady-state operating scenarios at high beta for high fusion power density, low auxiliary power requirements (Q CD ≥ 25, where Q CD triple-bond P fusion/P CD and P DC is the power required for sustaining the plasma current) for low recirculating power requirements, and at moderate safety factor (q ψ ≤ 4.5) to minimize the cost for the tokamak core of a steady-state demonstration power reactor based on the operating modes demonstrated in ITER. The key to achieving steady-state operation at high fusion power in ITER will be the development of operating scenarios with very high bootstrap current fractions (f BS ≥ 90%) in which the radial profile of the bootstrap current density is well aligned with that of the total plasma current density, and for which the MHD β-limit exceeds β n * = 0.05 T-m/MA. They are in the process of developing such operating modes for ITER. In section 1 they propose two advanced steady-state operating points; a preliminary operating point that was the basis for the MHD studies reported in section 2, and a second operating point that has been optimized based on the authors studies to date. In section 2 they present calculations indicating that the initial operating point is stable to MHD ballooning and low-n kink modes (with a conducting wall at r = 1.25a) up to β n * ∼ 6 x 10 -2 T - m/MA. In section 3 they present a free-boundary MHD equilibrium, and show that advanced steady-state operating modes are compatible with the ITER poloidal field system and diverter

  15. A steady state theory for processive cellulases

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil

    2013-01-01

    remains to be fully developed. In this paper, we suggest a deterministic kinetic model that relies on a processive set of enzyme reactions and a quasi steady-state assumption. It is shown that this approach is practicable in the sense that it leads to mathematically simple expressions for the steady......-state rate, and only requires data from standard assay techniques as experimental input. Specifically, it is shown that the processive reaction rate at steady state may be expressed by a hyperbolic function related to the conventional Michaelis–Menten equation. The main difference is a ‘kinetic processivity......Processive enzymes perform sequential steps of catalysis without dissociating from their polymeric substrate. This mechanism is considered essential for efficient enzymatic hydrolysis of insoluble cellulose (particularly crystalline cellulose), but a theoretical framework for processive kinetics...

  16. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  17. Integrated fuel-coolant interaction code: Assessment of stand-alone version 6.0

    International Nuclear Information System (INIS)

    Davis, F.J. Jr.

    1994-01-01

    This paper discusses the operational assessment of IFCI 6.0 against a small suite of experiments representative of the existing fuel-coolant interaction (FCI) database. The simulations should shakedown any obvious problems and demonstrate the functionality of the models contained within FCI for all phases of FCI phenomena. It was anticipated that these simulations should reasonably represent the experimental data. The IFCI 6.0 simulations were not expected, or required, to exactly reproduce the experimental results. IFCI 6.0 was assessed against a generic FITS-type pouring mode experiment, a FARO quenching experiment, and the IET-8 A ampersand B experiments to: (1) demonstrate that the code can reliably reproduce the results of the previous versions of the ifci code; (2) demonstrate the capability of qualitatively simulating all phases of fuel-coolant interactions (FCIs), including explosive cases, and; (3) identify shortcomings and areas for code enhancement

  18. Material effect in the nuclear fuel-coolant interaction: Analyses of prototypic melt fragmentation and solidification in the KROTOS facility

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, V.; Piluso, P.; Bakardjieva, Snejana; Dugne, O.

    2014-01-01

    Roč. 186, č. 2 (2014), s. 229-240 ISSN 0029-5450 Institutional support: RVO:61388980 Keywords : fuel-coolant interaction * melt fragmentation * KROTOS facility Subject RIV: CA - Inorganic Chemistry Impact factor: 0.725, year: 2014

  19. Numerical method for three dimensional steady-state two-phase flow calculations

    International Nuclear Information System (INIS)

    Raymond, P.; Toumi, I.

    1992-01-01

    This paper presents the numerical scheme which was developed for the FLICA-4 computer code to calculate three dimensional steady state two phase flows. This computer code is devoted to steady state and transient thermal hydraulics analysis of nuclear reactor cores 1,3 . The first section briefly describes the FLICA-4 flow modelling. Then in order to introduce the numerical method for steady state computations, some details are given about the implicit numerical scheme based upon an approximate Riemann solver which was developed for calculation of flow transients. The third section deals with the numerical method for steady state computations, which is derived from this previous general scheme and its optimization. We give some numerical results for steady state calculations and comparisons on required CPU time and memory for various meshing and linear system solvers

  20. Energy repartition in the nonequilibrium steady state

    NARCIS (Netherlands)

    Yan, Peng; Bauer, G.E.; Zhang, Huaiwu

    2017-01-01

    The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state nonequilibrium systems. The general concepts are illustrated by analytic solutions of

  1. Steady-state spheromak reactor studies

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design points is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported

  2. Steady state statistics of driven diffusions

    Czech Academy of Sciences Publication Activity Database

    Maes, C.; Netočný, Karel; Wynants, B.

    2008-01-01

    Roč. 387, č. 12 (2008), s. 2675-2689 ISSN 0378-4371 R&D Projects: GA ČR GC202/07/J051 Institutional research plan: CEZ:AV0Z10100520 Keywords : nonequilibrium fluctuations * steady state * diffusion Subject RIV: BE - Theoretical Physics Impact factor: 1.441, year: 2008

  3. Steady-state spheromak reactor studies. Revision

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Hagenson, R.L.

    1985-01-01

    After summarizing the essential elements of a gun-sustained spheromak, the potential for a steady-state is explored by means of a comprehensive physics/engineering/costing model. A range of cost-optimized reactor design point is presented, and the sensitivity of cost to key physics, engineering, and operational variables is reported

  4. Factorised steady states and condensation transitions in ...

    Indian Academy of Sciences (India)

    I will then consider a more general class of mass trans- port models, encompassing continuous mass variables and discrete time updating, and present a necessary and sufficient condition for the steady state to factorise. The prop- erty of factorisation again allows an analysis of the condensation transitions which may occur.

  5. Steady state modeling of desiccant wheels

    DEFF Research Database (Denmark)

    Bellemo, Lorenzo; Elmegaard, Brian; Kærn, Martin Ryhl

    2014-01-01

    systems. A steady state two-dimensional model is formulated and implemented aiming to obtain good accuracy and short computational times. Comparison with experimental data from the literature shows that the model reproduces the physical behavior of desiccant wheels. Mass diffusion in the desiccant should...

  6. Intermediates, Catalysts, Persistence, and Boundary Steady States

    DEFF Research Database (Denmark)

    Marcondes de Freitas, Michael; Feliu, Elisenda; Wiuf, Carsten

    2017-01-01

    as cascades of a large class of post-translational modification systems (of which the MAPK cascade and the n-site futile cycle are prominent examples). Since one of the aforementioned sufficient conditions for persistence precludes the existence of boundary steady states, our method also provides a graphical...

  7. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  8. The Steady State Distribution of the Master Equation

    OpenAIRE

    Sano, Mitsusada M.

    2008-01-01

    The steady states of the master equation are investigated. We give two expressions for the steady state distribution of the master equation a la the Zubarev-McLennan steady state distribution, i.e., the exact expression and an expression near equilibrium. The latter expression obtained is consistent with recent attempt of constructing steady state theormodynamics.

  9. Material effect in the fuel-coolant interaction: structural characterization of the steam explosion debris and solidification mechanism

    International Nuclear Information System (INIS)

    Tyrpekl, V.

    2012-01-01

    This work has been performed under joint supervision between Charles University in Prague (Czech Republic) and Strasbourg University (France). It also profited from the background and cooperation of Institute of Inorganic Chemistry Academy of Science of the Czech Republic and French Commission for Atomic and Alternative energies (CEA Cadarache). Results of the work contribute to the OECD/NEA project Serena 2 (Program on Steam Explosion Resolution for Nuclear Applications). Presented thesis can be classed in the scientific field of nuclear safety and material science. It is aimed on the so-called 'molten nuclear Fuel - Coolant Interaction' (FCI) that belongs among the recent issues of the nuclear reactor severe accident R and D. During the nuclear reactor melt down accident the melted reactor load can interact with the coolant (light water). This interaction can be located inside the vessel or outside in the case of vessel break-up. These two scenarios are commonly called in- and ex-vessel FCI and they differ in the conditions such as initial pressure of the system, water sub-cooling etc. The Molten fuel - coolant interaction can progress into thermal detonation called 'steam explosion' that can challenge the reactor or containment integrity. Recent experiments have shown that the melt composition has a major effect on the occurrence and yield of such explosion. In particular, different behaviors have been observed between simulant material (alumina), which has important explosion efficiency, and some prototypic corium compositions (80 w. % UO 2 , 20% w. % ZrO 2 . This 'material effect' has launched a new interest in the post-test analyses of FCI debris in order to estimate the processes occurring during these extremely rapid phenomena. The thesis is organized in nine chapters. The chapter 1 gives the general introduction and context of the nuclear reactor accident. Major nuclear accidents (Three Miles Island 1979, Chernobyl 1986 and Fukushima 2011) are briefly

  10. Steady state ventilation regimes in multiple room buildings

    Science.gov (United States)

    Flynn, Morris; Caulfield, Colm-Cille

    2004-11-01

    The ventilation of connected chambers offers a rich variety of flow behaviors. A two-chamber model is considered in which only one of the chambers is thermally forced yet both may communicate with the external environment. If the plume source has a finite volume flux, either chamber may become blocked i.e. completely filled with contaminated fluid. Hence, a steady, naturally ventilated regime is possible only for certain non-dimensional combinations of the effective vent area and the source volume and buoyancy fluxes. Steady state conditions are derived in a manner analogous to Linden, Lane-Serff & Smeed (1990) and Woods, Caulfield & Phillips (2003). Unfortunately, these conditions cannot specify the buoyant layer depth in the unforced room for which the transient evolution toward steady state must also be considered. Results from this analysis (performed in the limiting case of a plume source with zero volume flux) suggest that at steady state, the buoyant layer depth in the unforced chamber may be either larger or smaller than that of the forced chamber.

  11. Steady state compact toroidal plasma production

    Science.gov (United States)

    Turner, William C.

    1986-01-01

    Apparatus and method for maintaining steady state compact toroidal plasmas. A compact toroidal plasma is formed by a magnetized coaxial plasma gun and held in close proximity to the gun electrodes by applied magnetic fields or magnetic fields produced by image currents in conducting walls. Voltage supply means maintains a constant potential across the electrodes producing an increasing magnetic helicity which drives the plasma away from a minimum energy state. The plasma globally relaxes to a new minimum energy state, conserving helicity according to Taylor's relaxation hypothesis, and injecting net helicity into the core of the compact toroidal plasma. Controlling the voltage so as to inject net helicity at a predetermined rate based on dissipative processes maintains or increases the compact toroidal plasma in a time averaged steady state mode.

  12. Simulating ITER steady-state operation scenarios

    International Nuclear Information System (INIS)

    Kim, S.H.; Casper, T.A.; Campbell, D.J.; Snipes, J.A.; Bulmer, R.; LoDestro, L.L.; Meyer, W.H.; Pearlstein, L.D.

    2015-01-01

    Full text of publication follows. ITER steady-state operation aims at demonstrating fully non-inductive plasma operation at a moderate fusion power multiplication factor (Q) of about 5, for long burn durations of up to 3000 s. In this work, this operational capability is studied using an advanced free-boundary transport simulation code, CORSICA [1-3], including relevant physics and engineering constraints. The tokamak discharge modelling capability of the CORSICA code has been improved by integrating realistic source modules for heating and current drive and a parameterized EPED1 pedestal model. The electro-magnetic ITER machine description is computed using the recent design parameters and the latest source configurations are taken into account. This work has been performed to study the feasibility of the ITER steady-state operation. Although the evolution of internal transport barriers (ITBs) are not yet included in this study, a higher energy confinement over the H-mode confinement (H98>1) is assumed by maintaining a reversed safety factor (q) profile during the flat-top phase. This paper presents several ITER steady-state operation scenarios, including a reference 9 MA case, and also suggests a potential approach for achieving fully non-inductive ITER steady-state operation with Q>5. References: [1] Crotinger, J.A. et al, 1997 LLNL Report UCRL-ID-126284; NTIS PB2005-102154; [2] Casper, T.A. et al, 2010 23. Int. Conf. on Fusion Energy (Daejeon, Korea) ITR/P1-19 accepted for publication in Nuclear Fusion; [3] Kim, S.H. et al, 2012 24. Int. Conf. on Fusion Energy (San Diego, USA) ITR/P1-13. (authors)

  13. A review of hydrodynamic instabilities and their relevance to mixing in molten fuel coolant interactions

    International Nuclear Information System (INIS)

    Fletcher, D.F.

    1984-03-01

    A review of the literature on Rayleigh-Taylor, Kelvin-Helmholtz and capillary instability is presented. The concept of Weber breakup is examined and found to involve a combination of the above instabilities. Sample calculations are given which show how these instabilities may contribute to the mixing of melt and coolant in a molten fuel coolant interaction. It is concluded that Rayleigh-Taylor instability is likely to be important as the melt falls into the coolant and that Kelvin-Helmholtz instability is likely to develop when significant vapour velocities occur. (author)

  14. Proceedings of the CSNI specialists meeting on fuel-coolant interactions

    International Nuclear Information System (INIS)

    1994-03-01

    A specialists meeting on fuel-coolant interactions was held in Santa Barbara, CA from January 5--7, 1993. The meeting was sponsored by the United States Nuclear Regulatory Commission in collaboration with the Committee on the Safety of Nuclear Installation (CSNI) of the OECD Nuclear Energy Agency (NEA) and the University of California at Santa Barbara. The objectives of the meeting are to cross-fertilize on-going work, provide opportunities for mutual check points, seek to focus the technical issues on matters of practical significance and re-evaluate both the objectives as well as path of future research. Individual papers have been cataloged separately

  15. The effect of constraint on fuel-coolant interactions in a confined geometry

    Energy Technology Data Exchange (ETDEWEB)

    Park, H.; Corradini, M.L. [Univ. of Wisconsin, Madison, WI (United States)

    1995-09-01

    A Fuel-Coolant Interaction (FCI or vapor explosion) is the phenomena in which a hot liquid rapidly transfers its internal energy into a surrounding colder and more volatile liquid. The energetics of such a complex multi-phase and multi-component phenomenon is partially determined by the surrounding boundary conditions. As one of the boundary conditions, we studied the effect of constraint on FCIs. The WFCI-D series of experiments were performed specifically to observe this effect. The results from these and our previous WFCI tests as well as those of other investigators are compared.

  16. Proceedings of the CSNI specialists meeting on fuel-coolant interactions

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-03-01

    A specialists meeting on fuel-coolant interactions was held in Santa Barbara, CA from January 5-7, 1993. The meeting was sponsored by the United States Nuclear Regulatory Commission in collaboration with the Committee on the Safety of Nuclear Installation (CSNI) of the OECD Nuclear Energy Agency (NEA) and the University of California at Santa Barbara. The objectives of the meeting are to cross-fertilize on-going work, provide opportunities for mutual check points, seek to focus the technical issues on matters of practical significance and re-evaluate both the objectives as well as path of future research. Individual papers have been cataloged separately.

  17. The origin and magnitude of pressures in fuel-coolant interactions

    International Nuclear Information System (INIS)

    Heer, W.; Jakeman, D.; Smith, B.L.

    1987-01-01

    A number of small scale experiments to simulate fuel coolant interaction (FCI) effects have been carried out using Freon and water. Contrary to the predictions of most current FCI models, only modest pressure transients are observed within the interaction region itself but large pressure spikes, near to or above critical Freon pressure, are seen at the boundaries of the region. Similar pressure amplification effects have been noticed in parallel experiments involving two phase mixtures. It is suggested that in both cases a water hammer type effect is the cause of the pressure spikes. These observations could form the basis of new thinking in FCI modelling. (author)

  18. Fuel-coolant interaction (FCI) phenomena in reactor safety. Current understanding and future research needs

    Energy Technology Data Exchange (ETDEWEB)

    Speis, T.P. [Maryland Univ., College Park, MD (United States); Basu, S.

    1998-01-01

    This paper gives an account of the current understanding of fuel-coolant interaction (FCI) phenomena in the context of reactor safety. With increased emphasis on accident management and with emerging in-vessel core melt retention strategies for advanced light water reactor (ALWR) designs, recent interest in FCI has broadened to include an evaluation of potential threats to the integrity of reactor vessel lower head and ex-vessel structural support, as well as the role of FCI in debris quenching and coolability. The current understanding of FCI with regard to these issues is discussed, and future research needs to address the issues from a risk perspective are identified. (author)

  19. Status of molten fuel coolant interaction studies and theoretical modelling work at IGCAR

    International Nuclear Information System (INIS)

    Rao, P.B.; Singh, Om Pal; Singh, R.S.

    1994-01-01

    The status of Molten Fuel Coolant Interaction (MFCI) studies is reviewed and some of the important observations made are presented. A new model for MFCI that is developed at IGCAR by considering the various mechanisms in detail is described. The model is validated and compared with the available experimental data and theoretical work at different stages of its development. Several parametric studies that are carried using this model are described. The predictions from this model have been found to be satisfactory, considering the complexity of the MFCI. A need for more comprehensive and MFCI-specific experimental tests is brought out. (author)

  20. Mixing requirements for the limiting fuel-coolant interactions in liquid metal fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lenz, Jr, W F

    1976-11-01

    An estimation of the mixing requirements for the limiting fuel-coolant interactions in two specific liquid metal cooled fast reactors, the Fast Flux Test Facility (FFTF) and the Clinch River Breeder Reactor (CRBR), has been undertaken. The mixing requirements were represented in terms of the limiting mixing time constants. These constants were determined with the Argonne parametric FCI Computer Model for a range of core involvements. Specifically, fuel masses used ranged from as low as one-seventh of the core to a full core involvement. In general, conservative values for additional FCI input parameters were assumed such that the results would be conservative. With the results in hand, several mechanisms were investigated to determine what limiting effects they could have on the mixing rates of the fuel and coolant during an FCI. The energy requirements for mixing were investigated. The results, however, provided no limiting effects. A solidification limited fragmentation model was also investigated. Although this model provided no absolute limiting effects, it did show that fuel particle sizes of a certain size could indeed limit the fuel-coolant mixing rates. Additionally, the limiting effects were found to be much less significant for UC fuel. The third mechanism that was investigated concerned the limiting effects of the finite fuel release rates as a result of TOP accidents in the FFTF. Equivalent mixing time constants based on the fuel release rates were shown to be greater than the limiting values. Thus, this mechanism was shown to be limiting for the particular accident sequence investigated.

  1. Creep stresses in a spherical shell under steady state temperature

    Science.gov (United States)

    Verma, Gaurav; Rana, Puneet

    2017-10-01

    The paper investigates the problem of creep of a spherical structure under the influence of steady state temperature. The problem of creep in spherical shell is solved by using the concept of generalized strain measures and transition hypothesis given by Seth. The problem has reduced to non-linear differential equation for creep transition. This paper deals with the non-linear behaviour of spherical shell under thermal condition. The spherical shell structures are easily vulnerable to creep, shrinkage and thermal effects; a thorough understanding of their time-dependent behaviour has been fully established. The paper aims to provide thermal creep analysis to enhance the effective design and long life of shells, and a theoretical model is developed for calculating creep stresses and strains in a spherical shell with purpose. Results obtained for the problem are depicted graphically.

  2. MARS input data for steady-state calculation of ATLAS

    International Nuclear Information System (INIS)

    Park, Hyun Sik; Euh, D. J.; Choi, K. Y.; Kwon, T. S.; Jeong, J. J.; Baek, W. P.

    2004-12-01

    An integral effect test loop for Pressurized Water Reactors (PWRs), the ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation), is under construction by Thermal-Hydraulics Safety Research Division in Korea Atomic Energy Research Institute (KAERI). This report includes calculation sheets of the input for the best-estimate system analysis code, the MARS code, based on the ongoing design features of ATLAS. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400. The contents of this report are divided into three parts: (1) core and reactor vessel, (2) steam generator and steam line, and (3) primary piping, pressurizer and reactor coolant pump. The steady-state analysis for the ATLAS facility will be performed based on these calculation sheets, and its results will be applied to the detailed design of ATLAS. Additionally, the calculation results will contribute to getting optimum test conditions and preliminary operational test conditions for the steady-state and transient experiments

  3. Statistical steady states in turbulent droplet condensation

    Science.gov (United States)

    Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph

    2017-11-01

    We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.

  4. Response of tungsten surfaces to helium and hydrogen plasma exposure under ITER relevant steady state and repetitive transient conditions

    NARCIS (Netherlands)

    Buzi, L.; De Temmerman, G.; Huisman, A. E.; Bardin, S.; Morgan, T. W.; Rasinski, M.; Pitts, R. A.; Van Oost, G.

    2017-01-01

    The effect of helium (He) plasma exposure, and associated surface modifications, on the thermal shock resistance of tungsten (W) under ITER relevant steady state and transient heat and particle loads was studied. W samples were exposed to steady state and pulsed He plasmas at surface base

  5. Proceedings of the fourth CSNI specialist meeting on fuel-coolant interaction in nuclear reactor safety - Volumes 2+3

    International Nuclear Information System (INIS)

    1979-10-01

    This document presents the volumes 2 and 3 of the proceedings of the fourth CSNI specialist meeting on fuel-coolant interaction in nuclear reactor safety that was held in Bournemouth, UK, 2-5 april 1979: seven papers for session IV (Specific and well-characterized integral FCI experiments), five papers for Session V (FCI studies directly related to reactor conditions), and seven papers for Session VI (Implications of FCI for reactor safety studies). Session VII presents two panel discussions, the first one related to the science of fuel coolant interactions, the second one to reactor safety implications

  6. Transient and steady-state analyses of an electrically heated Topaz-II Thermionic Fuel Element

    International Nuclear Information System (INIS)

    El-Genk, M.S.; Xue, H.

    1992-01-01

    Transient and steady-state analyses of electrically heated, Thermionic Fuel Elements (TFEs) for Topaz-II space power system are performed. The calculated emitter and collector temperatures, load electric power and conversion efficiency are in good agreement with reported data. In this paper the effects or Cs pressure, thermal power input, and load resistance on the steady-state performance of the TFE are also investigated. In addition, the thermal response of the ZrH moderator during a startup transient and following a change in the thermal power input is examined

  7. Producing a steady-state population inversion

    International Nuclear Information System (INIS)

    Richards, R.K.; Griffin, D.C.

    1986-03-01

    An observed steady-state transition at 17.5 nm is identified as the 2p 5 3s3p 4 S/sub 3/2/ → 2p 6 3p 2 P/sub 3/2/ transition in Na-like aluminum. The upper level is populated by electron inner shell ionization of metastable Mg-like aluminum. From the emission intensity, the rate coefficient for populating the upper level is calculated to be approximately 5 x 10 -10 ) cm 3 /sec. Since the upper level is quasimetastable with a lifetime 22 times longer than the lower level, it may be possible to produce a population inversion, if a competing process to populate the lower level can be reduced

  8. Magnetic sensor for steady state tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-06-01

    A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).

  9. Molten fuel/coolant interaction studies: some results obtained with the Windscale small shock tube rig

    International Nuclear Information System (INIS)

    Higham, E.J.; Vaughan, G.J.

    1978-02-01

    Experiments are described in which water has been brought into contact with various molten metals in a shock tube, thus simulating the fall of coolant into molten uranium dioxide in a postulated reactor accident. Impact velocities of the water on to the molten material were in the range 5 to 7 m/s. Shock-pulse pressures in the water column after impact and particle size distributions of the dispersed resolidified material that was recovered were measured. The proportion of dispersed material and the size of the shock pulse (by comparison with that expected from water hammer alone) have been used as criteria for the occurrence of a molten fuel/coolant interaction and such interactions of varying degrees of violence have been found for water/aluminium, water/bismuth, water/tin, over a range of temperatures from 350 0 C to 950 0 C, for water/boric oxide, but not for water/magnesium. (author)

  10. Analysis of material effect in molten fuel-coolant interaction, comparison of thermodynamic calculations and experimental observations

    Czech Academy of Sciences Publication Activity Database

    Tyrpekl, Václav; Piluso, P.

    2012-01-01

    Roč. 46, AUGUST (2012), s. 197-203 ISSN 0306-4549 Institutional support: RVO:61388980 Keywords : Nuclear reactor severe accident * Fuel -Coolant Interaction * Material effect * Steam explosion Subject RIV: CA - Inorganic Chemistry Impact factor: 0.800, year: 2012

  11. An Adsorption Equilibria Model for Steady State Analysis

    KAUST Repository

    Ismail, Azhar Bin

    2016-02-29

    The investigation of adsorption isotherms is a prime factor in the ongoing development of adsorption cycles for a spectrum of advanced, thermally-driven engineering applications, including refrigeration, natural gas storage, and desalination processes. In this work, a novel semi-empirical mathematical model has been derived that significantly enhances the prediction of the steady state uptake in adsorbent surfaces. This model, a combination of classical Langmuir and a novel modern adsorption isotherm equation, allows for a higher degree of regression of both energetically homogenous and heterogeneous adsorbent surfaces compared to several isolated classical and modern isotherm models, and has the ability to regress isotherms for all six types under the IUPAC classification. Using a unified thermodynamic framework, a single asymmetrical energy distribution function (EDF) has also been proposed that directly relates the mathematical model to the adsorption isotherm types. This fits well with the statistical rate theory approach and offers mechanistic insights into adsorption isotherms.

  12. BR2 reactor core steady state transient modeling

    International Nuclear Information System (INIS)

    Makarenko, A.; Petrova, T.

    2000-01-01

    A coupled neutronics/hydraulics/heat-conduction model of the BR2 reactor core is under development at SCK-CEN. The neutron transport phenomenon has been implemented as steady state and time dependent nodal diffusion. The non-linear heat conduction equation in-side fuel elements is solved with a time dependent finite element method. To allow coupling between functional modules and to simulate subcooled regimes, a simple single-phase hydraulics has been introduced, while the two-phase hydraulics is under development. Multiple tests, general benchmark cases as well as calculation/experiment comparisons demonstrated a good accuracy of both neutronic and thermal hydraulic models, numerical reliability and full code portability. A refinement methodology has been developed and tested for better neutronic representation in hexagonal geometry. Much effort is still needed to complete the development of an extended cross section library with kinetic data and two-phase flow representation. (author)

  13. NASA Lewis Steady-State Heat Pipe Code Architecture

    Science.gov (United States)

    Mi, Ye; Tower, Leonard K.

    2013-01-01

    NASA Glenn Research Center (GRC) has developed the LERCHP code. The PC-based LERCHP code can be used to predict the steady-state performance of heat pipes, including the determination of operating temperature and operating limits which might be encountered under specified conditions. The code contains a vapor flow algorithm which incorporates vapor compressibility and axially varying heat input. For the liquid flow in the wick, Darcy s formula is employed. Thermal boundary conditions and geometric structures can be defined through an interactive input interface. A variety of fluid and material options as well as user defined options can be chosen for the working fluid, wick, and pipe materials. This report documents the current effort at GRC to update the LERCHP code for operating in a Microsoft Windows (Microsoft Corporation) environment. A detailed analysis of the model is presented. The programming architecture for the numerical calculations is explained and flowcharts of the key subroutines are given

  14. Modular first wall concept for steady state operation

    International Nuclear Information System (INIS)

    Kotzlowski, H.E.

    1981-01-01

    On the basis of the limiter design proposed for ZEPHYR a first wall concept has been developed which can also be used as a large area limiter, heat shield or beam pump. Its specific feature is the thermal contact of the wall armour elements with the water-cooled base plates. The combination of radiation and contact cooling, compared with radiation only, helps to lower the steady state temperatures of the first wall by approximately 50 % and to reduce the cooling-time between discharges. Particulary the lower wall temperature give a larger margin for additional heating of the wall by plasma disruption or neutral beams until excessive erosion or damage of the armour takes place

  15. Triple echo steady-state (TESS) relaxometry.

    Science.gov (United States)

    Heule, Rahel; Ganter, Carl; Bieri, Oliver

    2014-01-01

    Rapid imaging techniques have attracted increased interest for relaxometry, but none are perfect: they are prone to static (B0 ) and transmit (B1 ) field heterogeneities, and commonly biased by T2 /T1 . The purpose of this study is the development of a rapid T1 and T2 relaxometry method that is completely (T2 ) or partly (T1 ) bias-free. A new method is introduced to simultaneously quantify T1 and T2 within one single scan based on a triple echo steady-state (TESS) approach in combination with an iterative golden section search. TESS relaxometry is optimized and evaluated from simulations, in vitro studies, and in vivo experiments. It is found that relaxometry with TESS is not biased by T2 /T1 , insensitive to B0 heterogeneities, and, surprisingly, that TESS-T2 is not affected by B1 field errors. Consequently, excellent correspondence between TESS and reference spin echo data is observed for T2 in vitro at 1.5 T and in vivo at 3 T. TESS offers rapid T1 and T2 quantification within one single scan, and in particular B1 -insensitive T2 estimation. As a result, the new proposed method is of high interest for fast and reliable high-resolution T2 mapping, especially of the musculoskeletal system at high to ultra-high fields. Copyright © 2013 Wiley Periodicals, Inc.

  16. Two stable steady states in the Hodgkin-Huxley axons

    OpenAIRE

    Aihara, K.; Matsumoto, G.

    1983-01-01

    Two stable steady states were found in the numerical solution of the Hodgkin-Huxley equations for the intact squid axon bathed in potassium-rich sea water with an externally applied inward current. Under the conditions the two stable steady-states exist, the Hodgkin-Huxley equations have a complex bifurcation structure including, in addition to the two stable steady-states, a stable limit cycle, two unstable equilibrium points, and one asymptotically stable equilibrium point. It was also conc...

  17. Effect of stacking fault energy on steady-state creep rate of face ...

    African Journals Online (AJOL)

    Continuum elastic theory was used to establish the relationships between the force of interaction required to constrict dislocation partials, energy of constriction and climb velocity of the constricted thermal jogs, in order to examine the effect of stacking fault energy (SFE) on steady state creep rate of face centered cubic ...

  18. Steady-state response of the electron distribution function to an applied electric field

    International Nuclear Information System (INIS)

    Wiley, J.C.; Hinton, F.L.

    1980-01-01

    Steady-state solutions to the linearized Fokker--Planck equation have been numerically investigated using two models. The Kulsrud model, in which the electron-electron collision term is simplified by evaluating the integrals using a Maxwellian distribution, is considered first. It is shown that steady-state solutions of the Kulsrud model, obtained by long time integrations of the time dependent equation, can be obtained more easily by considering a separable solution. A more physically reasonable steady-state model, which consistently describes both the thermal and runaway regimes and is readily solved numerically, is developed. The resistivity, in agreement with Spitzer and Haerm, and runaway production rates, in agreement with the Kulsrud model, are obtained

  19. Proceedings of the OECD/CSNI specialists meeting on fuel-coolant interactions

    International Nuclear Information System (INIS)

    Akiyama, Mamoru; Yamano, Norihiro; Sugimoto, Jun

    1998-01-01

    The OECD/CSNI Specialists Meeting on Fuel Coolant Interactions (FCI) was held at Tokai-mura in Japan on May 19 through 21, 1997, and attended by 80 participants from 14 countries and one international organizations. In the meeting 36 papers were presented followed by active discussions in six sessions on various aspects of FCI issues, such as reactor application, premixing, propagation/trigger, experiments and code/models. At the end of the Meeting, the participants have reached to the consensus on the summary and recommendations, which consists of the following items; (1) We find no new evidence that would change or violate the conclusion of SERG-2 (1996) that alpha-mode failure is not risk significant. (2) Significant progress has been made since the Santa Barbara meeting (1993). (3) Several areas have been identified, which need further investigations to understand the basic FCI phenomena, and to improve the modeling. (4) We recommend maximizing open communication between various research groups in order to accelerate the resolution of the remaining issues. (5) We recommend that the next specialist meeting be held within 3 to 5 years in order to synthesize the activities described above. (J.P.N.)

  20. OECD/CSNI specialist meeting on fuel coolant interactions: summary and conclusions

    International Nuclear Information System (INIS)

    1997-01-01

    Research activities and interest on fuel-coolant interaction (FCI) have been increased and broadened since the last CSNI Specialist Meeting held in January 1993. Significant experimental and analytical research has been performed in many OECD countries and others. The growing international interest is, in large part, due to the emphasis on broader aspects of FCI ranging from melt quenching and coolability to energetic explosions (both in- and ex-vessel), and their relevance and applications to next-generation reactor design as well as accident management strategies. The objectives of the meeting are to review the knowledge and to obtain consensus on the phenomenology of FCI and in predicting FCI behavior in LWRs severe accidents; to identify those areas of FCI phenomena and prediction which are important for reactor safety but still poorly understood and require further study with clear methodologies; to inform the community and the regulatory agencies of the status of FCI issues, especially in the application to accident management and future reactor designs. The various sessions are: reactor applications, pre-mixing, propagation / trigger, experiments

  1. Molten Fuel-Coolant Interactions induced by coolant injection into molten fuel

    International Nuclear Information System (INIS)

    Park, H.S.; Yamano, Norihiko; Maruyama, Yu; Moriyama, Kiyofumi; Yang, Y.; Sugimoto, Jun

    1999-01-01

    To investigate Molten Fuel-Coolant Interactions (MFCIs) in various contact geometries, an experimental program, called MUSE (MUlti-configurations in Steam Explosions), has been initiated under the ALPHA program at JAERI in Japan. The first series of MUSE test has been focused on the coolant injection (CI) and stratified modes of FCIs using water as coolant and molten thermite as molten fuel. The effects of water jet subcooling, jet dynamics, jet shape and system constraint on FCIs energetic in these modes were experimentally investigated by precisely measuring their mechanical energy release in the MUSE facility. It was observed that measured mechanical energy increased with increasing of jet subcooling in a weakly constraint system but decreased in a strongly constraint system. FCI energetic also increased with increasing of water jet velocity. These results suggested that the penetration and dispersion phenomena of a water jet inside a melt determined the mixing conditions of FCIs in these contact modes and consequently played important roles on FCI energetics. To understand fundamental physics of these phenomena and possible mixing conditions in the MUSE tests, a set of visualization tests with several pairs of jet-pool liquids in non-boiling and isothermal conditions were carried out. Numerical simulations of a water jet penetrating into a water pool at non-boiling conditions showed similar behaviors to those observed in the visualization tests. (author)

  2. Multiple Boundary Layer Stripping Model by Plateau-Rayleigh Instability for Fuel-Coolant Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Woo Hyun; Moriyama, Kiyofumi; Park, Hyun Sun [POSTECH, Pohang (Korea, Republic of)

    2016-05-15

    One of them is FCI (Fuel-Coolant Interaction) phenomenon which is resulted from RPV (Reactor Pressure Vessel) failure at high pressure and high temperature condition of molten fuel. If RPV fails, the melt is ejected to the cavity which is flooded by water as a jet form. Then, the ejected melt jet interacts with water causing massive steam generation and resulting in particulate debris bed on the basemat. As a result of FCI, the initial boundary conditions of steam explosion and debris bed coolability are determined and that is the reason why understanding exact mechanism of melt jet breakup is important in this field. That is, FCI can be said as a starting phenomenon in the ex-vessel severe accident scenario. Until now, numerous previous researchers conducted FCI experiments and numerical analysis in small scale and plant scale. In two MATE experiments, the jet breakup lengths are compared and analyzed with the visualization data. From the observation, the new jet breakup model is proposed including the multiple boundary layer stripping mechanism. Combining the existing and new models, the erosion rate fraction for total melt mass rate was obtained. The new model showed that multiple BLS mechanisms contribute approximately 30% of the total melt jet breakup resulting in the short jet breakup length observed in the MATE 00-2 experiment.

  3. The premixing and propagation phases of fuel-coolant interactions: a review of recent experimental studies and code developments

    Energy Technology Data Exchange (ETDEWEB)

    Antariksawan, A.R. [Reactor Safety Technology Research Center of BATAN (Indonesia); Moriyama, Kiyofumi; Park, Hyun-sun; Maruyama, Yu; Yang, Yanhua; Sugimoto, Jun

    1998-09-01

    A vapor explosion (or an energetic fuel-coolant interactions, FCIs) is a process in which hot liquid (fuel) transfers its internal energy to colder, more volatile liquid (coolant); thus the coolant vaporizes at high pressure and expands and does works on its surroundings. Traditionally, the energetic fuel-coolant interactions could be distinguished in subsequent stages: premixing (or coarse mixing), triggering, propagation and expansion. Realizing that better and realistic prediction of fuel-coolant interaction consequences will be available understanding the phenomenology in the premixing and propagation stages, many experimental and analytical studies have been performed during more than two decades. A lot of important achievements are obtained during the time. However, some fundamental aspects are still not clear enough; thus the works are directed to that direction. In conjunction, the model/code development is pursuit. This is aimed to provide a scaling tool to bridge the experimental results to the real geometries, e.g. reactor pressure vessel, reactor containment. The present review intends to collect the available information on the recent works performed to study the premixing and propagation phases. (author). 97 refs.

  4. Steady State Analysis of Small Molten Salt Reactor

    Science.gov (United States)

    Yamamoto, Takahisa; Mitachi, Koshi; Suzuki, Takashi

    The Molten Salt Reactor (MSR) is a thermal neutron reactor with graphite moderation and operates on the thorium-uranium fuel cycle. The feature of the MSR is that fuel salt flows inside the reactor during the nuclear fission reaction. In the previous study, the authors developed numerical model with which to simulate the effects of fuel salt flow on the reactor characteristics. In this study, we apply the model to the steady-state analysis of a small MSR system and estimate the effects of fuel flow. The model consists of two-group neutron diffusion equations for fast and thermal neutron fluxes, transport equations for six-group delayed neutron precursors and energy conservation equations for fuel salt and the graphite moderator. The following results are obtained: (1) in the rated operation condition, the peaks of the neutron fluxes slightly move toward the bottom from the center of the reactor and the delayed neutron precursors are significantly carried by the fuel salt flow, and (2) the extension of residence time in the external-loop system and the rise of the fuel inflow temperature show weak negative reactivity effects, which decrease the neutron multiplication factor of the small MSR system.

  5. Measurement of non-steady-state free fatty acid turnover

    International Nuclear Information System (INIS)

    Jensen, M.D.; Heiling, V.; Miles, J.M.

    1990-01-01

    The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with [ 14 C]-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra [( 14 C]oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra

  6. Factorised steady states and condensation transitions in ...

    Indian Academy of Sciences (India)

    Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium – for example phase transitions in one-dimensional systems. In this talk I will review a simple model of a nonequilibrium system known as the `zero-range process' and its recent developments. The nonequilibrium ...

  7. Parametrization of the feedback Hamiltonian realizing a pure steady state

    International Nuclear Information System (INIS)

    Yamamoto, Naoki

    2005-01-01

    Feedback control is expected to considerably protect quantum states against decoherence caused by interaction between the system and environment. Especially, Markovian feedback scheme developed by Wiseman can modify the properties of decoherence and eventually recover the purity of the steady state of the corresponding master equation. This paper provides a condition for which the modified master equation has a pure steady state. By applying this condition to a two-qubit system, we obtain a complete parametrization of the feedback Hamiltonian such that the steady state becomes a maximally entangled state

  8. Characterizing the relationship between steady state and response using analytical expressions for the steady states of mass action models.

    Science.gov (United States)

    Loriaux, Paul Michael; Tesler, Glenn; Hoffmann, Alexander

    2013-01-01

    The steady states of cells affect their response to perturbation. Indeed, diagnostic markers for predicting the response to therapeutic perturbation are often based on steady state measurements. In spite of this, no method exists to systematically characterize the relationship between steady state and response. Mathematical models are established tools for studying cellular responses, but characterizing their relationship to the steady state requires that it have a parametric, or analytical, expression. For some models, this expression can be derived by the King-Altman method. However, King-Altman requires that no substrate act as an enzyme, and is therefore not applicable to most models of signal transduction. For this reason we developed py-substitution, a simple but general method for deriving analytical expressions for the steady states of mass action models. Where the King-Altman method is applicable, we show that py-substitution yields an equivalent expression, and at comparable efficiency. We use py-substitution to study the relationship between steady state and sensitivity to the anti-cancer drug candidate, dulanermin (recombinant human TRAIL). First, we use py-substitution to derive an analytical expression for the steady state of a published model of TRAIL-induced apoptosis. Next, we show that the amount of TRAIL required for cell death is sensitive to the steady state concentrations of procaspase 8 and its negative regulator, Bar, but not the other procaspase molecules. This suggests that activation of caspase 8 is a critical point in the death decision process. Finally, we show that changes in the threshold at which TRAIL results in cell death is not always equivalent to changes in the time of death, as is commonly assumed. Our work demonstrates that an analytical expression is a powerful tool for identifying steady state determinants of the cellular response to perturbation. All code is available at http://signalingsystems.ucsd.edu/models-and-code/ or

  9. Properties of the steady state distribution of electrons in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Muscato, Orazio; Di Stefano, Vincenza [Catania Univ. degli Studi (Italy). Dipt. di Matematica e Informatica; Wagner, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany)

    2010-07-01

    This paper studies a Boltzmann transport equation with several electronphonon scattering mechanisms, which describes the charge transport in semiconductors. The electric field is coupled to the electron distribution function via Poisson's equation. Both the parabolic and the quasi-parabolic band approximations are considered. The steady state behaviour of the electron distribution function is investigated by a Monte Carlo algorithm. More precisely, several nonlinear functionals of the solution are calculated that quantify the deviation of the steady state from a Maxwellian distribution with respect to the wave-vector. On the one hand, the numerical results illustrate known theoretical statements about the steady state and indicate possible directions for future studies. On the other hand, the nonlinear functionals provide tools that can be used in the framework of Monte Carlo algorithms for detecting regions in which the steady state distribution has a relatively simple structure, thus providing a basis for domain decomposition methods. (orig.)

  10. H-modes under steady-state conditions in JET

    International Nuclear Information System (INIS)

    Campbell, D.J.; Arshad, S.A.; Gondhalekar, A.; Thomas, P.R.

    1994-01-01

    Two H-mode regimes have been identified in JET in which edge localized modes (ELMs) maintain steady-state conditions. In the first regime, strong gas puffing was used in combined (ICRF plus NBI) heating experiments at powers of up to 20 MW. Rapid ELM activity occurred and at moderate powers (∼ 8 MW) steady-state H-modes with durations of up to 18s and energy confinement times of up to 95% of the JET/D-IIID scaling were established. At high toroidal beta (β N ≥ 1.5) H-mode plasmas were also found to exhibit regular ELM behaviour which resulted in steady-state H-modes with confinement enhancement of ∼ 90% of the JET/D-IIID scaling. This paper examines the plasma properties of these regimes and assesses their implications for steady-state H-mode operation in ignited plasmas. (author)

  11. Stabilizing unstable steady states using extended time-delay autosynchronization.

    Science.gov (United States)

    Chang, Austin; Bienfang, Joshua C.; Hall, G. Martin; Gardner, Jeff R.; Gauthier, Daniel J.

    1998-12-01

    We describe a method for stabilizing unstable steady states in nonlinear dynamical systems using a form of extended time-delay autosynchronization. Specifically, stabilization is achieved by applying a feedback signal generated by high-pass-filtering in real time the dynamical state of the system to an accessible system parameter or variables. Our technique is easy to implement, does not require knowledge of the unstable steady state coordinates in phase space, automatically tracks changes in the system parameters, and is more robust to broadband noise than previous schemes. We demonstrate the controller's efficacy by stabilizing unstable steady states in an electronic circuit exhibiting low-dimensional temporal chaos. The simplicity and robustness of the scheme suggests that it is ideally suited for stabilizing unstable steady states in ultra-high-speed systems. (c) 1998 American Institute of Physics.

  12. A theory of nonequilibrium steady states in quantum chaotic systems

    Science.gov (United States)

    Wang, Pei

    2017-09-01

    Nonequilibrium steady state (NESS) is a quasistationary state, in which exist currents that continuously produce entropy, but the local observables are stationary everywhere. We propose a theory of NESS under the framework of quantum chaos. In an isolated quantum system whose density matrix follows a unitary evolution, there exist initial states for which the thermodynamic limit and the long-time limit are noncommutative. The density matrix \\hat ρ of these states displays a universal structure. Suppose that \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketα and \\renewcommand{\\ket}[1]{{\\vert #1 >}} \\ketβ are different eigenstates of the Hamiltonian with energies E_α and E_β , respectively. \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ behaves as a random number which has zero mean. In thermodynamic limit, the variance of \\renewcommand{\\bra}[1]{} \\braα\\hat ρ \\ketβ is a smooth function of ≤ft\\vert E_α-E_β\\right\\vert , scaling as 1/≤ft\\vert E_α-E_β\\right\\vert 2 in the limit ≤ft\\vert E_α-E_β\\right\\vert \\to 0 . If and only if this scaling law is obeyed, the initial state evolves into NESS in the long time limit. We present numerical evidence of our hypothesis in a few chaotic models. Furthermore, we find that our hypothesis indicates the eigenstate thermalization hypothesis (ETH) for current operators in a bipartite system.

  13. Steady State Turbulent Transport in Magnetic Fusion Plasmas

    International Nuclear Information System (INIS)

    Lee, W.W.; Ethier, S.; Kolesnikov, R.; Wang, W.X.; Tang, W.M.

    2007-01-01

    For more than a decade, the study of microturbulence, driven by ion temperature gradient (ITG) drift instabilities in tokamak devices, has been an active area of research in magnetic fusion science for both experimentalists and theorists alike. One of the important impetus for this avenue of research was the discovery of the radial streamers associated the ITG modes in the early nineties using a Particle-In-Cell (PIC) code. Since then, ITG simulations based on the codes with increasing realism have become possible with the dramatic increase in computing power. The notable examples were the demonstration of the importance of nonlinearly generated zonal flows in regulating ion thermal transport and the transition from Bohm to GyroBoham scaling with increased device size. In this paper, we will describe another interesting nonlinear physical process associated with the parallel acceleration of the ions, that is found to play an important role for the steady state turbulent transport. Its discovery is again through the use of the modern massively parallel supercomputers

  14. Robust Steady State Analysis of the Power Grid

    OpenAIRE

    Pandey, Amritanshu; Jereminov, Marko; Wagner, Martin R.; Bromberg, David M.; Hug, Gabriela; Pileggi, Larry

    2018-01-01

    A robust methodology for obtaining the steady-state solution of the power grid is essential for reliable operation as well as planning of the future transmission and distribution grid. At present, disparate methods exist for steady-state analysis of the transmission (power flow) and distribution power grid (three-phase power flow). All existing alternating current (AC) power flow and three-phase power flow analyses formulate a non-linear problem that generally lacks the ability to ensure conv...

  15. Steady-state leaching of tritiated water from silica gel

    DEFF Research Database (Denmark)

    Das, H.A.; Hou, Xiaolin

    2009-01-01

    Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion.......Aqueous leaching of tritium from silica gel, loaded by absorption of water vapor, makes part of reactor de-commissioning. It is found to follow the formulation of steady-state diffusion....

  16. Selection of steady states in planar Darcy convection

    International Nuclear Information System (INIS)

    Tsybulin, V.G.; Karasoezen, B.; Ergenc, T.

    2006-01-01

    The planar natural convection of an incompressible fluid in a porous medium is considered. We study the selection of steady states under temperature perturbations on the boundary. A selection map is introduced in order to analyze the selection of a steady state from a continuous family of equilibria which exists under zero boundary conditions. The results of finite-difference modeling for a rectangular enclosure are presented

  17. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Bers, A.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to estalish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated inthe plasma

  18. System and method for generating steady state confining current for a toroidal plasma fusion reactor

    International Nuclear Information System (INIS)

    Fisch, N.J.

    1981-01-01

    A system for generating steady state confining current for a toroidal plasma fusion reactor providing steady-state generation of the thermonuclear power. A dense, hot toroidal plasma is initially prepared with a confining magnetic field with toroidal and poloidal components. Continuous wave rf energy is injected into said plasma to establish a spectrum of traveling waves in the plasma, where the traveling waves have momentum components substantially either all parallel, or all anti-parallel to the confining magnetic field. The injected rf energy is phased to couple to said traveling waves with both a phase velocity component and a wave momentum component in the direction of the plasma traveling wave components. The injected rf energy has a predetermined spectrum selected so that said traveling waves couple to plasma electrons having velocities in a predetermined range delta . The velocities in the range are substantially greater than the thermal electron velocity of the plasma. In addition, the range is sufficiently broad to produce a raised plateau having width delta in the plasma electron velocity distribution so that the plateau electrons provide steady-state current to generate a poloidal magnetic field component sufficient for confining the plasma. In steady state operation of the fusion reactor, the fusion power density in the plasma exceeds the power dissipated in the plasma

  19. Investigations on Fuel-Coolant Interaction with the RCN code VS-4

    International Nuclear Information System (INIS)

    Van der Putten, A.P.W.M.; Koning, H.; Van den Bogaard, J.P.A.

    1976-01-01

    Fuel-coolant interaction (FCI) processes may take place more or less coherent all along the whole coolant channel during a fast reactor accident. In order to understand the FCI phenomenon and to study its consequences for LMFBR safety, it is considered to be of great importance to take into account the axial dependency of the thermo and hydrodynamics in the computational model. To this end the programme VS-4 is being developed at RCN. This code will also be used to evaluate FCI aspects of the loss-of-cooling experiments being performed at RCN. VS-4 solves a set of partial differential equations describing the equations of conservation of mass, energy and momentum in the coolant channel as a function of the axial coordinate and time, using the method of characteristics. Notably the pressure, temperature, velocity and void fraction are calculated as functions of time and of axial coordinate. Both the all-liquid phase A and the two-phase B parts of the FCI process are described, in principle, by the same equations. It was therefore not necessary to make the so-called acoustic approximation for describing phase A. The VS-4 programme further includes: pressure losses due to friction and models describing: a. the heat transport from fuel particles into the sodium, and b. the fragmentation process. Calculations on the so-called Ispra test case have been performed giving special emphasis to the switch-over from the single phase to the two-phase part of the process. In conclusion: The method of characteristics is proved to be applicable not only for the one-phase, but also for the description of the homogeneous equilibrium two-phase part of a thermohydraulic process. To investigate the reactor safety aspects of FCI processes and to evaluate experimental research on FCI, it is indispensable to take the axial dependency effects into account. To this end the axial dependent code VS 4 based on the method of characteristics is available. At present the thermodynamic properties

  20. [On the terminology of auditory steady-state responses. What differentiates steady-state and transient potentials?].

    Science.gov (United States)

    Mühler, R

    2012-05-01

    Recording human auditory steady-state responses (ASSR) at different frequencies allows objective assessment of auditory thresholds. Common practice has been to record ASSR to pure tones that are sinusoidally modulated in amplitude and frequency. Recently, optimized chirp stimuli have been proposed to evoke transient as well as steady-state responses. Because of the resulting uncertainty about the different methods, this paper aims to reconsider the terminology of transient and steady-state responses. Two experiments demonstrate the smooth transition between transient and steady-state responses. In experiment 1, click-evoked auditory brainstem responses (ABR) were recorded over a wide range of stimulus repetition rates (24/s to 72/s). In experiment 2, auditory steady-state responses were recorded for the same stimulus repetition rates, using three different stimulus types: an amplitude modulated 1-kHz tone (AM), a 1-kHz tone-burst (TB) and a flat-spectrum chirp. Experiment 1 demonstrates the merging of the typical ABR wave complexes at higher repetition rates, forming a steady-state response. This effect can only be observed if the time window is extended far beyond the window traditionally used for clinical ABR recordings. Experiment 2 reveals similar ASSR amplitude spectra regardless of the stimulus type and repetition rate used. Steady-state responses can be evoked for a large variety of stimulus types and repetition rates. Thus, from a clinician's point of view, steady-state responses cannot be considered a new type of evoked responses. They differ from transient responses primarily in the frequency response method and the longer timeframe required.

  1. Steady State Analysis of Multiple Effect Evaporation (MEE) Desalination Process

    International Nuclear Information System (INIS)

    Ahmad, S.

    2012-01-01

    Life without water is not possible. Like other natural resources, the global resources of fresh water are unevenly distributed. The world population is increasing at very rapid rate while the natural water resources remain constant. This gap is expected to widen dramatically in the near future. Our country like most countries in the east suffer from water stressed condition. Desalination is only the logical or available solution. In MED units, the feed seawater sprayed individually in each effect is heated to form pure vapors, which condense to form product water. Irrespective of the continuous development of the desalination industry the thermal desalination is still expensive. The study presented in this thesis is motivated by, to study the impact of various cost controlling parameters on the performance of MEE desalination process. KANUPP has two desalination plants (RO and NDDP). The NDDP has parallel feed cross flow multiple effect evaporation (MEE-PC) configurations. The study presented in this thesis describes a simplified steady state mathematical model to analyze the MED systems. The results obtained by the model are compared with the NDDP data. The developed model is used to investigate the effect of the parameters controlling the product water cost. These parameters includes thermal performance ratio, cooling water flow rate and heat transfer area. It can also be used to study the effect of variation in the operating conditions of the plant on the plant performance. The effect of the process variables on the performance of MED is carried out. This includes the effect of number of effects, intake seawater salinity and heating stream temperature, vacuum condition in term of vapor temperature of last effect. (author)

  2. Steady state sedimentation of ultrasoft colloids

    Science.gov (United States)

    Singh, Sunil P.; Gompper, Gerhard; Winkler, Roland G.

    2018-02-01

    The structural and dynamical properties of ultra-soft colloids—star polymers—exposed to a uniform external force field are analyzed by applying the multiparticle collision dynamics technique, a hybrid coarse-grain mesoscale simulation approach, which captures thermal fluctuations and long-range hydrodynamic interactions. In the weak-field limit, the structure of the star polymer is nearly unchanged; however, in an intermediate regime, the radius of gyration decreases, in particular transverse to the sedimentation direction. In the limit of a strong field, the radius of gyration increases with field strength. Correspondingly, the sedimentation coefficient increases with increasing field strength, passes through a maximum, and decreases again at high field strengths. The maximum value depends on the functionality of the star polymer. High field strengths lead to symmetry breaking with trailing, strongly stretched polymer arms and a compact star-polymer body. In the weak-field-linear response regime, the sedimentation coefficient follows the scaling relation of a star polymer in terms of functionality and arm length.

  3. Analysis of the EJET boiling jet mixing experiments using the integrated fuel-coolant interaction code, IFCI

    International Nuclear Information System (INIS)

    Rightley, M.J.; Young, M.F.; Beck, D.F.

    1991-01-01

    In the event of a severe reactor accident leading to core melt, it is likely that molten fuel materials will come into contact with water, producing a molten fuel-coolant interaction (FCI). FCIs can occur for a variety of conditions in the core, the lower plenum, or in the reactor cavity. The nature of the FCIs that could occur ranges from benign static boiling, possibly including melt dispersion when the coherent melt mass is broken up on a time scale of 100's of milliseconds, to energetic steam explosions when the melt is finely fragmented on a time scale of milliseconds. Experimentation has revealed that scale-dependent processes occur in FCI's and that these dependencies are not understood. Attempts to model the process have generated several competing models. Unfortunately, the limited size and nature of the experimental database have made the choice of the correct model difficult. The integrated fuel-coolant interaction code, IFCI, was developed to provide a best estimate tool for FCIs, based on known physical laws and available experiments. The process of assessing the performance of IFCI involves comparing it to the different stages of FCI phenomena such as boiling jet breakup, detonation and products expansion. The NRC Program Molten Fuel-Coolant Interactions was initiated to perform this assessment against the current experimental data and other codes that have been developed to model FCIs. Upon completion of the assessment of the code, IFCI will be applied to reactor-scale simulations of lower plenum coarse mixing, steam and hydrogen production rates and steam explosion probabilities and their intensities

  4. Steady-state fission gas behavior in uranium-plutonium-zirconium metal fuel elements

    International Nuclear Information System (INIS)

    Steele, W.G.; Wazzan, A.R.; Okrent, D.

    1989-01-01

    An analysis of fission gas release and induced swelling in steady state irradiated U-Pu-Zr metal fuels is developed and computer coded. The code is used to simulate, with fair success, some gas release and induced swelling data obtained under the IFR program. It is determined that fuel microstructural changes resulting from zirconium migration, anisotropic swelling, and thermal variations are major factors affecting swelling and gas release behavior. (orig.)

  5. Calibration of a mass spectrometer in steady-state conditions

    International Nuclear Information System (INIS)

    Popov, E.V.; Kupryazhkin, A.Ya.

    1982-01-01

    The mass spectrometer calibration technique by 4 He in steady-state operation conditions by the method of gas expansion from the small volume into the large one using a capacitance micromanometer is described. For realizing steady-state operation of the mass-spectrometer one of the steam-mercury diffusion pumps has been replaced for an adsorption pump. Using adsorption pump permits to maintain working vacuum in the system for more than 3 h. The mass spectrometer calibration has been performed by comparing calibrated volume and mass spectrometer chamber volume. The mass spectrometer sensitivity value by 4 He in the steady-state operation ν=(4.1+-0.1)x10 - 7 Pa/mV is obtained

  6. A steady state solution to a field reversed configuration

    International Nuclear Information System (INIS)

    Okamoto, M.

    1987-01-01

    To find a steady state field reversed configuration, a method is considered for sustaining the diamagnetic plasma current by a seed current externally driven at the field null point. The steady state solution is obtained by solving the one-dimensional fluid equations including equilibrium and transport. It is found that the amount of seed current necessary to maintain a steady field reversal depends strongly on τ B /τ N , where τ B and τ N are the magnetic diffusion times and the particle confinement time, respectively. As τ B /τ N increases, more flux is excluded from the plasma. The steady state solution is applied to a D-T ignited plasma. (author)

  7. From Steady-State To Cyclic Metal Forming Processes

    International Nuclear Information System (INIS)

    Montmitonnet, Pierre

    2007-01-01

    Continuous processes often exhibit a high proportion of steady state, and have been modeled with steady-state formulations for thirty years, resulting in very CPU-time efficient computations. On the other hand, incremental forming processes generally remain a challenge for FEM software, because of the local nature of deformation compared with the size of the part to be formed, and of the large number of deformation steps needed. Among them however, certain semi-continuous metal forming processes can be characterized as periodic, or cyclic. In this case, an efficient computational strategy can be derived from the ideas behind the steady-state models. This will be illustrated with the example of pilgering, a seamless tube cold rolling process

  8. Structural simplification of chemical reaction networks in partial steady states.

    Science.gov (United States)

    Madelaine, Guillaume; Lhoussaine, Cédric; Niehren, Joachim; Tonello, Elisa

    2016-11-01

    We study the structural simplification of chemical reaction networks with partial steady state semantics assuming that the concentrations of some but not all species are constant. We present a simplification rule that can eliminate intermediate species that are in partial steady state, while preserving the dynamics of all other species. Our simplification rule can be applied to general reaction networks with some but few restrictions on the possible kinetic laws. We can also simplify reaction networks subject to conservation laws. We prove that our simplification rule is correct when applied to a module of a reaction network, as long as the partial steady state is assumed with respect to the complete network. Michaelis-Menten's simplification rule for enzymatic reactions falls out as a special case. We have implemented an algorithm that applies our simplification rules repeatedly and applied it to reaction networks from systems biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Contour analysis of steady state tokamak reactor performance

    International Nuclear Information System (INIS)

    Devoto, R.S.; Fenstermacher, M.E.

    1990-01-01

    A new method of analysis for presenting the possible operating space for steady state, non-ignited tokamak reactors is proposed. The method uses contours of reactor performance and plasma characteristics, fusion power gain, wall neutron flux, current drive power, etc., plotted on a two-dimensional grid, the axes of which are the plasma current I p and the normalized beta, β n = β/(I p /aB 0 ), to show possible operating points. These steady state operating contour plots are called SOPCONS. This technique is illustrated in an application to a design for the International Thermonuclear Experimental Reactor (ITER) with neutral beam, lower hybrid and bootstrap current drive. The utility of the SOPCON plots for pointing out some of the non-intuitive considerations in steady state reactor design is shown. (author). Letter-to-the-editor. 16 refs, 3 figs, 1 tab

  10. Steady-state pharmacokinetics and metabolism of voriconazole in patients.

    Science.gov (United States)

    Geist, Marcus J P; Egerer, Gerlinde; Burhenne, Jürgen; Riedel, Klaus-Dieter; Weiss, Johanna; Mikus, Gerd

    2013-11-01

    Voriconazole exhibits non-linear pharmacokinetics in adults and is said to be mainly metabolized by CYP2C19 and CYP3A4 to voriconazole-N-oxide. The aim of this study was to obtain data on steady-state pharmacokinetics after dosing for at least 14 days in patients taking additional medication and in vivo data on metabolites other than voriconazole-N-oxide. Thirty-one patients receiving voriconazole as regular therapeutic drug treatment during hospitalization participated in this prospective study. Pharmacokinetic profiles were obtained for the 12 h (dosing interval) after the first orally administered dose (400 mg) or (if possible and) after an orally administered maintenance dose (200 mg) following intake for at least 14 days (n = 14 after first dose; n = 23 after maintenance dose). Blood and urine samples were collected and the concentrations of voriconazole and three of its metabolites (the N-oxide, hydroxy-voriconazole and dihydroxy-voriconazole) were determined, as well as the CYP2C19 genotype of the patients. All other drugs taken by the participating patients were evaluated. A high variability of exposure (AUC) after the first dose was slightly reduced during steady-state dosing for voriconazole (82% to 71%) and the N-oxide (86% to 56%), remained high for hydroxy-voriconazole (79%) and even increased for dihydroxy-voriconazole (97% to 127%). In 16 of the 22 steady-state patients, trough plasma concentrations were steady state stayed almost constant. Hydroxylations of voriconazole seem to be quantitatively more important in its metabolism than N-oxidation. High variability in voriconazole exposure, as well as low steady-state trough plasma concentrations, suggest that the suggested steady-state dosage of 200 mg twice a day has to be increased to prevent disease progression. Therapeutic drug monitoring is probably necessary to optimize the voriconazole dose for individual patients.

  11. Multiple dual mode counter-current chromatography with periodic sample injection: Steady-state and non-steady-state operation.

    Science.gov (United States)

    Kostanyan, Artak E

    2014-12-19

    The multiple dual mode (MDM) counter-current chromatography (CCC) separation consists of a succession of two isocratic counter-current steps and is carried out in series alternating between normal phase and reversed phase operation. The performance of the MDM technique can be improved by the sample re-injection between each of the dual-mode steps. The objective of this work was to develop analytical expressions to describe the MDM CCC with periodic sample injection, which can be used to simulate these processes and select optimal operating conditions for the separation of a given feed mixture. Two possible methods of the MDM separation with periodic sample injection are considered: 1 - steady-state separation: the duration of the flow periods of the phases is kept constant for all the cycles and the steady-state regime is achieved after a certain number of cycles. 2 - non-steady-state separation with variable duration of phase elution steps. It is shown that proper selection of the duration of phase flow times allows to reach complete separation of solutes in continuous steady-state operation mode even in a low efficiency column. This mode of operation provides both high productivity and high resolution. The non-steady-state method with variable duration of phase elution steps offers several options to split a mixture into groups of compounds and/or concentrate target compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Emergence of advance waves in a steady-state universe

    Energy Technology Data Exchange (ETDEWEB)

    Hobart, R.H.

    1979-10-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state.

  13. Emergence of advance waves in a steady-state universe

    International Nuclear Information System (INIS)

    Hobart, R.H.

    1979-01-01

    In standard Wheeler-Feynman electrodynamics advanced waves from any source are absolutely canceled by the advanced waves from the absorber responding to that source. The present work shows this cancellation fails over cosmic distances in a steady-state universe. A test of the view proposed earlier, in a paper which assumed failure of cancellation ad hoc, that zero-point fluctuations of the electromagnetic field are such emergent advanced waves, is posed. The view entails anomalous slowing of spontaneous transition rates at longer emission wavelengths; available data go against this, furnishing additional argument against the suspect assumption that the universe is steady-state

  14. Effects of governing parameters on steady-state inter-wrapper flow in an LMFBR

    International Nuclear Information System (INIS)

    Moriya, Shoichi

    2001-01-01

    Hydraulic experiments were performed using a 1/8th scale rectangular model, based on a Japanese demonstration fast breeder reactor design, in order to study fundamental characteristics of interwrapper flows occurring under steady state conditions in an LMFBR. The steady state interwrapper flow of which direction was downward in the center region and upward in the peripheral region of a core barrel was observed because of the radial static pressure gradient in the upper part of the core barrel, produced by a core blockage effect resulting from an above core structure with a perforated skirt. Thermal stratification phenomena were moreover observed in the interwrapper region, created by the hot steady state interwrapper flow from an upper plenum and the cold leakage flow through the separated plate of the core barrel. The thermal interface was generated in higher part of the core barrel when the core blockage effect was smaller and Richardson number and the leakage flow rate ratio were larger. Significant temperature fluctuations occurred in the peripheral region of the core barrel, when the difference between the interface elevations in the center and peripheral regions of the core barrel was enough large. (author)

  15. Steady-state, pre-steady-state, and single-turnover kinetic measurement for DNA glycosylase activity.

    Science.gov (United States)

    Sassa, Akira; Beard, William A; Shock, David D; Wilson, Samuel H

    2013-08-19

    Human 8-oxoguanine DNA glycosylase (OGG1) excises the mutagenic oxidative DNA lesion 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Kinetic characterization of OGG1 is undertaken to measure the rates of 8-oxoG excision and product release. When the OGG1 concentration is lower than substrate DNA, time courses of product formation are biphasic; a rapid exponential phase (i.e. burst) of product formation is followed by a linear steady-state phase. The initial burst of product formation corresponds to the concentration of enzyme properly engaged on the substrate, and the burst amplitude depends on the concentration of enzyme. The first-order rate constant of the burst corresponds to the intrinsic rate of 8-oxoG excision and the slower steady-state rate measures the rate of product release (product DNA dissociation rate constant, k(off)). Here, we describe steady-state, pre-steady-state, and single-turnover approaches to isolate and measure specific steps during OGG1 catalytic cycling. A fluorescent labeled lesion-containing oligonucleotide and purified OGG1 are used to facilitate precise kinetic measurements. Since low enzyme concentrations are used to make steady-state measurements, manual mixing of reagents and quenching of the reaction can be performed to ascertain the steady-state rate (k(off)). Additionally, extrapolation of the steady-state rate to a point on the ordinate at zero time indicates that a burst of product formation occurred during the first turnover (i.e. y-intercept is positive). The first-order rate constant of the exponential burst phase can be measured using a rapid mixing and quenching technique that examines the amount of product formed at short time intervals (steady-state phase and corresponds to the rate of 8-oxoG excision (i.e. chemistry). The chemical step can also be measured using a single-turnover approach where catalytic cycling is prevented by saturating substrate DNA with enzyme (E>S). These approaches can measure elementary rate

  16. the steady-state performance characteristics of single phase transfer

    African Journals Online (AJOL)

    2012-11-03

    Nov 3, 2012 ... The paper reports the derivation of the steady- state equivalent circuit of a single phase transfer ... series opposition between the two halves of the ma- ..... from its equivalent circuit of fig 6 for different values of slip. Impedance due to forward field. Zf = Rf + jXf = Rr. 2(2s - 1). + jxr. 2. (19) in parallel with jxm. 2.

  17. Canonical structure of dynamical fluctuations in mesoscopic nonequilibrium steady states

    Czech Academy of Sciences Publication Activity Database

    Maes, C.; Netočný, Karel

    2008-01-01

    Roč. 82, č. 3 (2008), 30003/1-30003/6 ISSN 0295-5075 R&D Projects: GA ČR GC202/07/J051 Institutional research plan: CEZ:AV0Z10100520 Keywords : nonequilibrium fluctuations * steady state * Onsager- Machlup theory Subject RIV: BE - Theoretical Physics Impact factor: 2.203, year: 2008

  18. Application of Monte Carlo Method to Steady State Heat Conduction ...

    African Journals Online (AJOL)

    The Monte Carlo method was used in modelling steady state heat conduction problems. The method uses the fixed and the floating random walks to determine temperature in the domain of the definition of the heat conduction equation, at a single point directly. A heat conduction problem with an irregular shaped geometry ...

  19. Steady-state equations of even flux and scattering

    International Nuclear Information System (INIS)

    Verwaerde, D.

    1985-11-01

    Some mathematical properties of steady-state equation of even flux are shown in variational formalism. This theoretical frame allows to study the existence of a solution and its asymptotical behavior in opaque media (i.e. the relation with scattering equation). At last it allows to qualify the convergence velocity of resolution iterative processes used practically [fr

  20. Principle of Entropy Maximization for Nonequilibrium Steady States

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2002-01-01

    The goal of this contribution is to find out to what extent the principle of entropy maximization, which serves as a basis for the equilibrium thermodynamics, may be generalized onto non-equilibrium steady states. We prove a theorem that, in the system of thermodynamic coordinates, where entropy...

  1. Herd-Level Modeling and Steady-State Livestock Productivity ...

    African Journals Online (AJOL)

    ... an outline of the scope for applications and addresses the prospects for refinement and model extensions. The algorithms for use in development of steady state derivations include transition of matrices in a Markov Chain approach, continuous differential equations and actuarial approach built on life and fecundity tables.

  2. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  3. Correlates of Steady-State Haematocrit and Hepatosplenomegaly in ...

    African Journals Online (AJOL)

    Backgroup: Sickle cell disease is a common genetic disorder in Nigeria. Objectives: To determine the steady state haematocrit, liver size and spleen size in children with sickle cell disease and the factors that influence them. Methods: This was a retrospective study of children with sickle cell disorders who attended the ...

  4. Plasticity, Fracture and Friction in Steady-State Plate Cutting

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1997-01-01

    A closed form solution to the problem of steady-state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new...

  5. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Indian Academy of Sciences (India)

    Avinash A. Deshpande

    2017-09-12

    Sep 12, 2017 ... Abstract. We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of ...

  6. A steady state model for anaerobic digestion of sewage sludges ...

    African Journals Online (AJOL)

    A steady state model for anaerobic digestion of sewage sludge is developed that comprises three sequential parts – a kinetic part from which the % COD removal and ... and a carbonate system weak acid/base chemistry part from which the digester pH is calculated from the partial pressure of CO2 and alkalinity generated.

  7. Steady States of the Parametric Rotator and Pendulum

    Science.gov (United States)

    Bouzas, Antonio O.

    2010-01-01

    We discuss several steady-state rotation and oscillation modes of the planar parametric rotator and pendulum with damping. We consider a general elliptic trajectory of the suspension point for both rotator and pendulum, for the latter at an arbitrary angle with gravity, with linear and circular trajectories as particular cases. We treat the…

  8. Practical error analysis of the quasi-steady-state approximation ...

    African Journals Online (AJOL)

    The Quasi-Steady-State Approximation (QSSA) is a method of getting approximate solutions to differential equations, developed heuristically in biochemistry early this century. It can produce acceptable and important results even when formal analytic and numerical procedures fail. It has become associated with singular ...

  9. Regulation of the tolerogenic function of steady-state DCs.

    Science.gov (United States)

    Probst, Hans Christian; Muth, Sabine; Schild, Hansjörg

    2014-04-01

    Dendritic cells (DCs) are master regulators of T-cell responses. After sensing pathogen-derived molecular patterns (PAMPs), or signals of inflammation and cellular stress, DCs differentiate into potent activators of naïve CD4(+) and CD8(+) T cells through a process that is termed DC maturation. By contrast, DCs induce and maintain peripheral T-cell tolerance in the steady state, that is in the absence of overt infection or inflammation. However, the immunological steady state is not devoid of DC-activating stimuli, such as commensal microorganisms, subclinical infections, or basal levels of proinflammatory mediators. In the presence of these activating stimuli, DC maturation must be calibrated to ensure self-tolerance yet allow for adequate T-cell responses to infections. Here, we review the factors that are known to control DC maturation in the steady state and discuss their effect on the tolerogenic function of steady-state DCs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-Markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a static magnetic field. Very significantly, the sign of the orbital ...

  11. Dark Entangled Steady States of Interacting Rydberg Atoms

    DEFF Research Database (Denmark)

    Dasari, Durga; Mølmer, Klaus

    2013-01-01

    their short-lived excited states lead to rapid, dissipative formation of an entangled steady state. We show that for a wide range of physical parameters, this entangled state is formed on a time scale given by the strengths of coherent Raman and Rabi fields applied to the atoms, while it is only weakly...

  12. A displacement based FE formulation for steady state problems

    NARCIS (Netherlands)

    Yu, Y.

    2005-01-01

    In this thesis a new displacement based formulation is developed for elasto-plastic deformations in steady state problems. In this formulation the displacements are the primary variables, which is in contrast to the more common formulations in terms of the velocities as the primary variables. In a

  13. Classical Orbital Paramagnetism in Non-equilibrium Steady State

    Indian Academy of Sciences (India)

    Avinash A. Deshpande

    2017-09-12

    Sep 12, 2017 ... Classical Orbital Paramagnetism in Non-equilibrium Steady State. AVINASH A. DESHPANDE. ∗ and N. KUMAR. Raman Research Institute, Bangalore 560 080, India. ∗. Corresponding author. E-mail: desh@rri.res.in. MS received 25 March 2017; accepted 31 July 2017; published online 12 September ...

  14. Dust remobilization in fusion plasmas under steady state conditions

    NARCIS (Netherlands)

    Tolias, P.; Ratynskaia, S.; de Angeli, M.; De Temmerman, G.; Ripamonti, D.; Riva, G.; I. Bykov,; Shalpegin, A.; Vignitchouk, L.; Brochard, F.; Bystrov, K.; Bardin, S.; Litnovsky, A.

    2016-01-01

    The first combined experimental and theoretical studies of dust remobilization by plasma forces are reported. The main theoretical aspects of remobilization in fusion devices under steady state conditions are analyzed. In particular, the dominant role of adhesive forces is highlighted and generic

  15. Optimising performance in steady state for a supermarket refrigeration system

    DEFF Research Database (Denmark)

    Green, Torben; Kinnaert, Michel; Razavi-Far, Roozbeh

    2012-01-01

    Using a supermarket refrigeration system as an illustrative example, the paper postulates that by appropriately utilising knowledge of plant operation, the plant wide performance can be optimised based on a small set of variables. Focusing on steady state operations, the total system performance...

  16. Stabilizing the border steady-state solution of two interacting ...

    African Journals Online (AJOL)

    In this paper, we have successfully developed a feedback control which has been used to stabilize an unstable steady-state solution (0, 3.3534). This convergence has occurred when the values of the final time are 190, 200, 210 and 220 which corresponds to the scenario when the value of the step length of our simulation ...

  17. Steady state evaluation of aortic dissections: a feasibility study

    International Nuclear Information System (INIS)

    De Cicco, Maria Luisa; Andreoli, Chiara; Casciani, Emanuele; Polettini, Elisabetta; Gualdi, Gian Franco

    2005-01-01

    Purpose. One the main reasons for the limited use of MR1 in the evaluation of aortic dissection in emergency conditions is its long execution lime. The authors report their experience regarding a new MRI sequence that reduces execution time and avoids the use of contrast medium. Materials and methods. Eighteen haemodynamically stable patients with suspected (16 cases, 3 with confirmed diagnosis of aneurysm) or known aortic dissection (2 cases) underwent in emergency conditions 1.5T MR1 with Steady-State sequence (Fast Imaging Employing Steady-State Acquisition: GRE 2D; TR 3.5, TE 1.6; Flip Angle 45, bandwidth 125, matrix 224x224, NEX 1, acquisition lime per slice 7 s, thickness 6-8 mm, FOV 38; 2D-OE breath-hold sequence requiring cardiac triggering). The results obtained were compared in terms of diagnostic accuracy and execution lime wth those of classical MRI examination (black blood TI, FSE T2 and 3D MR-angiography) or multislice CT. Results. The diagnostic accuracy of MRI, both with Steady-State sequence and the classical technique, and multislice CT in the diagnosis of dissection or aneurysm equal (100%), whereas execution time is 6, 25 and 6 minutes, respectively. Multislice CT proved to be more accurate than Steady-State MR1 in evaluating the renal parenchyma and the extension of the dissection to the renal arteries. Conclusions. The Steady-State MRI sequence provides a diagnosis of aortic dissection or aneurysmal dilatation in a short lime and may represent a valuable alternative to CT in emergency settings, especially in patients with reported contraindications to iodinated contrast media [it

  18. Auditory steady-state response in cochlear implant patients.

    Science.gov (United States)

    Torres-Fortuny, Alejandro; Arnaiz-Marquez, Isabel; Hernández-Pérez, Heivet; Eimil-Suárez, Eduardo

    2018-03-19

    Auditory steady state responses to continuous amplitude modulated tones at rates between 70 and 110Hz, have been proposed as a feasible alternative to objective frequency specific audiometry in cochlear implant subjects. The aim of the present study is to obtain physiological thresholds by means of auditory steady-state response in cochlear implant patients (Clarion HiRes 90K), with acoustic stimulation, on free field conditions and to verify its biological origin. 11 subjects comprised the sample. Four amplitude modulated tones of 500, 1000, 2000 and 4000Hz were used as stimuli, using the multiple frequency technique. The recording of auditory steady-state response was also recorded at 0dB HL of intensity, non-specific stimulus and using a masking technique. The study enabled the electrophysiological thresholds to be obtained for each subject of the explored sample. There were no auditory steady-state responses at either 0dB or non-specific stimulus recordings. It was possible to obtain the masking thresholds. A difference was identified between behavioral and electrophysiological thresholds of -6±16, -2±13, 0±22 and -8±18dB at frequencies of 500, 1000, 2000 and 4000Hz respectively. The auditory steady state response seems to be a suitable technique to evaluate the hearing threshold in cochlear implant subjects. Copyright © 2018 Sociedad Española de Otorrinolaringología y Cirugía de Cabeza y Cuello. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. New analytical solution for solving steady-state heat conduction problems with singularities

    Directory of Open Access Journals (Sweden)

    Laraqi Najib

    2013-01-01

    Full Text Available A problem of steady-state heat conduction which presents singularities is solved in this paper by using the conformal mapping method. The principle of this method is based on the Schwarz-Christoffel transformation. The considered problem is a semi-infinite medium with two different isothermal surfaces separated by an adiabatic annular disc. We show that the thermal resistance can be determined without solving the governing equations. We determine a simple and exact expression that provides the thermal resistance as a function of the ratio of annular disc radii.

  20. 40 CFR 92.130 - Determination of steady-state concentrations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Determination of steady-state....130 Determination of steady-state concentrations. (a)(1) For HC and NOX emissions, a steady-state... section. (2) For CO and CO2 emissions, a steady-state concentration measurement, measured after 300...

  1. Steady state fractionation of heavy noble gas isotopes in a deep unsaturated zone

    Science.gov (United States)

    Seltzer, Alan M.; Severinghaus, Jeffrey P.; Andraski, Brian J.; Stonestrom, David A.

    2017-01-01

    To explore steady state fractionation processes in the unsaturated zone (UZ), we measured argon, krypton, and xenon isotope ratios throughout a ∼110 m deep UZ at the United States Geological Survey (USGS) Amargosa Desert Research Site (ADRS) in Nevada, USA. Prior work has suggested that gravitational settling should create a nearly linear increase in heavy-to-light isotope ratios toward the bottom of stagnant air columns in porous media. Our high-precision measurements revealed a binary mixture between (1) expected steady state isotopic compositions and (2) unfractionated atmospheric air. We hypothesize that the presence of an unsealed pipe connecting the surface to the water table allowed for direct inflow of surface air in response to extensive UZ gas sampling prior to our first (2015) measurements. Observed isotopic resettling in deep UZ samples collected a year later, after sealing the pipe, supports this interpretation. Data and modeling each suggest that the strong influence of gravitational settling and weaker influences of thermal diffusion and fluxes of CO2 and water vapor accurately describe steady state isotopic fractionation of argon, krypton, and xenon within the UZ. The data confirm that heavy noble gas isotopes are sensitive indicators of UZ depth. Based on this finding, we outline a potential inverse approach to quantify past water table depths from noble gas isotope measurements in paleogroundwater, after accounting for fractionation during dissolution of UZ air and bubbles.

  2. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study.

    Science.gov (United States)

    Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James

    2016-01-01

    Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. FARO test L-14 on fuel coolant interaction and quenching. Comparison report, volume 1 + 2, analysis of the results

    International Nuclear Information System (INIS)

    Annunziato, A.; Addabbo, C.; Yerkess, A.; Silverii, R.; Brewka, W.; Leva, G.

    1997-01-01

    This report provides a comparative analysis of the results from the ISP-39 exercise promoted by OECD-CSNI in the frame of the NEA activities. ISP-39 has been conceived to benchmark the predictive capabilities of computer codes used in the evaluation of fuel-coolant interaction (FCI) and quenching phenomenologies of relevance in water cooled reactors severe accidents safety analysis. The ISP-39 reference case is FARO test L-14, a non-energetic FCI test performed under realistic melt composition and prototypical accident conditions in the FARO experimental installation (Ispra, Italy). Thirteen research organizations from ten countries participated in the exercise submitting 15 prediction calculations with 8 different codes or code versions (COMETA, MC3D, IVA, IFCI, JASMINE, TEXAS, THIRMAL, VAPEX). ISP-39 was conducted as an open exercise. Conclusions are given concerning code capabilities, users effect and sensitivity analyses, numerical accuracy quantification of the predictions, code improvements, general considerations

  4. Steady-state propagation of interface corner crack

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Jensen, Henrik Myhre

    2013-01-01

    Steady-state propagation of interface cracks close to three-dimensional corners has been analyzed. Attention was focused on modeling the shape of the interface crack front and calculating the critical stress for steady-state propagation of the crack. The crack propagation was investigated...... by estimating the fracture mechanics parameters that includes the strain energy release rate, crack front profiles and the three-dimensional mode-mixity along the interface crack front. A numerical approach was then applied for coupling the far field solutions based on the Finite Element Method to the near...... field (crack tip) solutions based on the J-integral. The adopted two-dimensional numerical approach for the calculation of fracture mechanical properties was compared with three-dimensional models for quarter-circular and straight sided crack front shapes. A quantitative approach was formulated based...

  5. Theory of minimum dissipation of energy for the steady state

    International Nuclear Information System (INIS)

    Chu, T.K.

    1992-02-01

    The magnetic configuration of an inductively driven steady-state plasma bounded by a surface (or two adjacent surfaces) on which B·n = 0 is force-free: ∇xB = 2αB, where α is a constant, in time and in space. α is the ratio of the Poynting flux to the magnetic helicity flux at the boundary. It is also the ratio of the dissipative rates of the magnetic energy to the magnetic helicity in the plasma. The spatial extent of the configuration is noninfinitesimal. This global constraint is a result of the requirement that, for a steady-state plasma, the rate of change of the vector potential, ∂A/∂t, is constant in time and uniform in space

  6. Theoretical analysis of steady state operating forces in control valves

    Directory of Open Access Journals (Sweden)

    Basavaraj Hubballi

    2018-01-01

    Full Text Available The controlling components, such as valves are used to regulate controlled fluid power. It is not always possible to calculate valve forces accurately, and with some types of valves even the existence of certain types of forces cannot be predicted with certainty. In many cases, however, the analysis can be made fairly completely and accurately. The assumption of steady state conditions is valid for the valve alone, but transient effects in the rest of the system may be large. These effects are particularly important with regard to the instability of valves, where the system may react on the valve in such a way as to make it squeal or oscillate, sometimes with large amplitude. The origin of the steady state flow force understood from a brief qualitative explanation. The following paper will summarize much of what is known about valve forces in the spool type controlling element.

  7. Quantally fed steady-state domain distributions in stochastic inflation

    International Nuclear Information System (INIS)

    Bellini, M.; Sisterna, P.D.; Deza, R.R.

    2000-01-01

    Within the framework of stochastic inflationary cosmology it has been derived steady-state distributions P c (V) of domains in comoving coordinates, under the assumption of slow-rolling and for two specific choices of the coarse-grained inflation potential V(Φ). It has been modelled the process as a Starobinsky-like equation in V-space plus a time-independent source term P ω (V) which carries (phenomenologically) quantum-mechanical information drawn from either of two known solutions of the Wheeler-De Witt equation: Hartle-Hawking's and Vilenkin's wave functions. The presence of the source term leads to the existence of nontrivial steady-state distributions P c ω (V). The relative efficiencies of both mechanisms at different scales are compared for the proposed potentials

  8. Non-equilibrium steady states in supramolecular polymerization

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Sato, Akihiro; Hermans, Thomas M.

    2017-06-01

    Living systems use fuel-driven supramolecular polymers such as actin to control important cell functions. Fuel molecules like ATP are used to control when and where such polymers should assemble and disassemble. The cell supplies fresh ATP to the cytosol and removes waste products to sustain steady states. Artificial fuel-driven polymers have been developed recently, but keeping them in sustained non-equilibrium steady states (NESS) has proven challenging. Here we show a supramolecular polymer that can be kept in NESS, inside a membrane reactor where ATP is added and waste removed continuously. Assembly and disassembly of our polymer is regulated by phosphorylation and dephosphorylation, respectively. Waste products lead to inhibition, causing the reaction cycle to stop. Inside the membrane reactor, however, waste can be removed leading to long-lived NESS conditions. We anticipate that our approach to obtain NESS can be applied to other stimuli-responsive materials to achieve more life-like behaviour.

  9. Steady State Dynamic Operating Behavior of Universal Motor

    Directory of Open Access Journals (Sweden)

    Muhammad Khan Burdi

    2015-01-01

    Full Text Available A detailed investigation of the universal motor is developed and used for various dynamic steady state and transient operating conditions of loads. In the investigation, output torque, motor speed, input current, input/output power and efficiency are computed, compared and analyzed for different loads. While this paper discusses the steady-state behavior of the universal motor, another companion paper, ?Transient dynamic behavior of universal motor?, will discuss its transient behavior in detail. A non-linear generalized electric machine model of the motor is considered for the analysis. This study was essential to investigate effect of output load on input current, power, speed and efficiency of the motor during operations. Previously such investigation is not known

  10. Extending Molecular Theory to Steady-State Diffusing Systems

    Energy Technology Data Exchange (ETDEWEB)

    FRINK,LAURA J. D.; SALINGER,ANDREW G.; THOMPSON,AIDAN P.

    1999-10-22

    Predicting the properties of nonequilibrium systems from molecular simulations is a growing area of interest. One important class of problems involves steady state diffusion. To study these cases, a grand canonical molecular dynamics approach has been developed by Heffelfinger and van Swol [J. Chem. Phys., 101, 5274 (1994)]. With this method, the flux of particles, the chemical potential gradients, and density gradients can all be measured in the simulation. In this paper, we present a complementary approach that couples a nonlocal density functional theory (DFT) with a transport equation describing steady-state flux of the particles. We compare transport-DFT predictions to GCMD results for a variety of ideal (color diffusion), and nonideal (uphill diffusion and convective transport) systems. In all cases excellent agreement between transport-DFT and GCMD calculations is obtained with diffusion coefficients that are invariant with respect to density and external fields.

  11. Optimal control of transitions between nonequilibrium steady states.

    Directory of Open Access Journals (Sweden)

    Patrick R Zulkowski

    Full Text Available Biological systems fundamentally exist out of equilibrium in order to preserve organized structures and processes. Many changing cellular conditions can be represented as transitions between nonequilibrium steady states, and organisms have an interest in optimizing such transitions. Using the Hatano-Sasa Y-value, we extend a recently developed geometrical framework for determining optimal protocols so that it can be applied to systems driven from nonequilibrium steady states. We calculate and numerically verify optimal protocols for a colloidal particle dragged through solution by a translating optical trap with two controllable parameters. We offer experimental predictions, specifically that optimal protocols are significantly less costly than naive ones. Optimal protocols similar to these may ultimately point to design principles for biological energy transduction systems and guide the design of artificial molecular machines.

  12. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    Science.gov (United States)

    2016-08-29

    8,9]: A reaction such as ATP hydrolysis ( ATP → ADPþ Pi) produces entropy in the surrounding solution, and the chemical potential difference between...kinetic proofreading is achieved through breaking detailed balance, e.g., coupling the w ↔ x transition to the hydrolysis of ATP into ADP , whose...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences — reaches a steady state in

  13. Three-dimensional stellarator equilibrium as an ohmic steady state

    International Nuclear Information System (INIS)

    Park, W.; Monticello, D.A.; Strauss, H.; Manickam, J.

    1985-07-01

    A stable three-dimensional stellarator equilibrium can be obtained numerically by a time-dependent relaxation method using small values of dissipation. The final state is an ohmic steady state which approaches an ohmic equilibrium in the limit of small dissipation coefficients. We describe a method to speed up the relaxation process and a method to implement the B vector . del p = 0 condition. These methods are applied to obtain three-dimensional heliac equilibria using the reduced heliac equations

  14. Visual steady state in relation to age and cognitive function

    DEFF Research Database (Denmark)

    Horwitz, Anna; Dyhr Thomsen, Mia; Wiegand, Iris

    2017-01-01

    examine the steady-state VEP power response (SSVEP-PR) in the alpha (8Hz) and gamma (36Hz) bands in 54 males (avg. age: 62.0 years) and compare these with 10 young healthy participants (avg. age 27.6 years). Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power......, global cognition, executive function, memory, and education (p

  15. Progress and prospect of true steady state operation with RF

    Directory of Open Access Journals (Sweden)

    Jacquinot Jean

    2017-01-01

    Full Text Available Operation of fusion confinement experiments in full steady state is a major challenge for the development towards fusion energy. Critical to achieving this goal is the availability of actively cooled plasma facing components and auxiliary systems withstanding the very harsh plasma environment. Equally challenging are physics issues related to achieving plasma conditions and current drive efficiency required by reactor plasmas. RF heating and current drive systems have been key instruments for obtaining the progress made until today towards steady state. They hold all the records of long pulse plasma operation both in tokamaks and in stellarators. Nevertheless much progress remains to be made in particular for integrating all the requirements necessary for maintaining in steady state the density and plasma pressure conditions of a reactor. This is an important stated aim of ITER and of devices equipped with superconducting magnets. After considering the present state of the art, this review will address the key issues which remain to be solved both in physics and technology for reaching this goal. They constitute very active subjects of research which will require much dedicated experimentation in the new generation of superconducting devices which are now in operation or becoming close to it.

  16. Steady states of continuous-time open quantum walks

    Science.gov (United States)

    Liu, Chaobin; Balu, Radhakrishnan

    2017-07-01

    Continuous-time open quantum walks (CTOQW) are introduced as the formulation of quantum dynamical semigroups of trace-preserving and completely positive linear maps (or quantum Markov semigroups) on graphs. We show that a CTOQW always converges to a steady state regardless of the initial state when a graph is connected. When the graph is both connected and regular, it is shown that the steady state is the maximally mixed state. As shown by the examples in this article, the steady states of CTOQW can be very unusual and complicated even though the underlying graphs are simple. The examples demonstrate that the structure of a graph can affect quantum coherence in CTOQW through a long-time run. Precisely, the quantum coherence persists throughout the evolution of the CTOQW when the underlying topology is certain irregular graphs (such as a path or a star as shown in the examples). In contrast, the quantum coherence will eventually vanish from the open quantum system when the underlying topology is a regular graph (such as a cycle).

  17. Optimization of steady-state beam-driven tokamak reactors

    International Nuclear Information System (INIS)

    Mikkelsen, D.R.; Singer, C.E.

    1983-01-01

    Recent developments in neutral beam technology prompt us to reconsider the prospects for steady-state tokamak reactors. A mathematical reactor model is developed that includes the physics of beam-driven currents and reactor power balance, as well as reactor and beam system costs. This model is used to find the plasma temperatures that minimize the reactor cost per unit of net electrical output. The optimum plasma temperatures are nearly independent of β and are roughly twice as high as the optimum temperatures for ignited reactors. If beams of neutral deuterium atoms with near-optimum energies of 1 to 2 MeV are used to drive the current in a reactor the size of the International Tokamak Reactor, then the optimum temperatures are typically T /SUB e/ approx. = 12 to 15 keV and T /SUB i/ approx. = 17 to 21 keV for a wide range of model parameters. Net electrical output rises rapidly with increasing deuterium beam energy for E /SUB b/ less than or equal to 400 keV, but rises only slowly above E /SUB b/ about 1 MeV. We estimate that beam-driven steady-state reactors could be economically competitive with pulsed-ignition reactors if cyclic-loading problems limit the toroidal magnetic field strength of pulsed reactors to less than or equal to 85% of that allowed in steady-state reactors

  18. Steady-state oxygen-solubility in niobium

    International Nuclear Information System (INIS)

    Schulze, K.; Jehn, H.

    1977-01-01

    During annealing of niobium in oxygen in certain temperature and pressure ranges steady states are established between the absorption of molecular oxygen and the evaporation of volatile oxides. The oxygen concentration in the niobium-oxygen α-solid solution is a function of oxygen pressure and temperature and has been redetermined in the ranges 10 -5 - 10 -2 Pa O 2 and 2,070 - 2,470 K. It follows differing from former results the equation csub(o) = 9.1 x 10 -6 x sub(po2) x exp (502000/RT) with csub(o) in at.-ppm, sub(po2) in Pa, T in K, R = 8.31 J x mol -1 x K -1 . The existence of steady states is limited to a temperature range from 1870 to 2470 K and to oxygen concentrations below the solubility limit given by solidus and solvus lines in the T-c diagram. In the experiments high-purity niobium wires with a specific electrical ratio rho (273 K)/rho(4.2 K) > 5,000 have been gassed under isothermal-isobaric conditions until the steady state has been reached. The oxygen concentration has been determined analytically by vacuum fusion extraction with platinum-flux technique as well as by electrical residual resistivity measurements at 4.2 K. (orig.) [de

  19. Transient and steady-state currents in epoxy resin

    International Nuclear Information System (INIS)

    Guillermin, Christophe; Rain, Pascal; Rowe, Stephen W

    2006-01-01

    Charging and discharging currents have been measured in a diglycidyl ether of bisphenol-A epoxy resin with and without silica fillers, below and above its glass transition temperature T g = 65 deg. C. Both transient and steady-state current densities have been analysed. The average applied fields ranged from 3 to 35 kV mm -1 with a sample thickness of 0.5 mm. Above T g , transient currents suggested a phenomenon of charge injection forming trapped space charges even at low fields. Steady-state currents confirmed that the behaviour was not Ohmic and suggested Schottky-type injection. Below T g , the current is not controlled by the metal-dielectric interface but by the conduction in the volume: the current is Ohmic at low fields and both transient and steady-state currents suggest a phenomenon of space-charge limited currents at high fields. The field threshold is similar in the filler-free and the filled resin. Values in the range 12-17 kV mm -1 have been measured

  20. The Method of the Sensitivity Comparison of the Tin Dioxide Gas Sensor in Periodic Steady State

    Directory of Open Access Journals (Sweden)

    Libor Gajdosik

    2017-01-01

    Full Text Available The formulas for the time dependency of the electrical conductivity of the sensor in thermal periodic steady state in the clean air atmosphere were derived herein. The created model of the sensor was experimentally verified and enables to compare the sensitivity to the tested substance at the frequencies at which the tests were carried out. The experiments were carried out with the sensors MQR 1003, SP 11, and TGS813. The sensors were tested in the clean air atmosphere and subsequently in the presence of ethanol, acetone and toluene vapour in the air at three different frequencies.

  1. Steady State Analysis of Small Molten Salt Reactor : Effect of Fuel Salt Flow on Reactor Characteristics

    OpenAIRE

    YAMAMOTO, Takahisa; MITACHI, Koshi; SUZUKI, Takashi

    2005-01-01

    The Molten Salt Reactor (MSR) is a thermal neutron reactor with graphite moderation and operates on the thorium-uranium fuel cycle. The feature of the MSR is that fuel salt flows inside the reactor during the nuclear fission reaction. In the previous study, the authors developed numerical model with which to simulate the effects of fuel salt flow on the reactor characteristics. In this study, we apply the model to the steady-state analysis of a small MSR system and estimate the effects of fue...

  2. Investigation of component failure rates for pulsed versus steady state tokamak operation

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    1992-07-01

    This report presents component failure rate data sources applicable to magnetic fusion systems, and defines multiplicative factors to adjust these data for specific use on magnetic fusion experiment designs. The multipliers address both long pulse and steady state tokamak operation. Thermal fatigue and radiation damage are among the leading reasons for large multiplier values in pulsed operation applications. Field failure rate values for graphite protective tiles are presented, and beryllium tile failure rates in laboratory testing are also given. All of these data can be used for reliability studies, safety analyses, design tradeoff studies, and risk assessments

  3. Adiabatic non-equilibrium steady states in the partition free approach

    DEFF Research Database (Denmark)

    Cornean, Horia; Duclos, Pierre; Purice, Radu

    2012-01-01

    Consider a small sample coupled to a finite number of leads and assume that the total (continuous) system is at thermal equilibrium in the remote past. We construct a non-equilibrium steady state (NESS) by adiabatically turning on an electrical bias between the leads. The main mathematical...... challenge is to show that certain adiabatic wave operators exist and to identify their strong limit when the adiabatic parameter tends to zero. Our NESS is different from, though closely related with the NESS provided by the Jakic–Pillet–Ruelle approach. Thus we partly settle a question asked by Caroli et...

  4. Direct expansion solar assisted heat pumps – A clean steady state approach for overall performance analysis

    International Nuclear Information System (INIS)

    Tagliafico, Luca A.; Scarpa, Federico; Valsuani, Federico

    2014-01-01

    Traditional thermal solar panel technologies have limited efficiency and the required economic investments make them noncompetitive in the space heating market. The greatest limit to the diffusion of thermal solar systems is the characteristic temperatures they can reach: the strong connection between the user temperature and the collector temperature makes it possible to achieve high thermal (collector) efficiency only at low, often useless, user temperatures. By using solar collectors as thermal exchange units (evaporators) in a heat pump system (direct expansion solar assisted heat pump, DX-SAHP), the overall efficiency greatly increases with a significative cut of the associated investment in terms of pay-back time. In this study, an approach is proposed to the steady state analysis of DX-SAHP, which is based on the simplified inverse Carnot cycle and on the second law efficiency concept. This method, without the need of calculating the refrigerant fluid properties and the detailed processes occurring in the refrigeration device, allows us to link the main features of the plant to its relevant interactions with the surroundings. The very nature of the proposed method makes the relationship explicit and meaningful among all the involved variables. The paper, after the description of the method, presents an explanatory application of this technique by reviewing various aspects of the performance of a typical DX-SAHP in which the savings on primary energy consumption is regarded as the main feature of the plant and highlighted in a monthly averaged analysis. Results agree to those coming from a common standard steady state thermodynamic analysis. The application to a typical DX-SAHP system demonstrates that a mean saved primary energy of about 50% with respect to standard gas burner can be achieved for the same user needs. Such a result is almost independent from the type of flat plate solar panel used (double or single glazed, or even bare panels) as a result of

  5. The cryogenic operation of the superconducting magnet system in the HERA proton storage ring: Cool down, steady state operation, quench recovery processes

    International Nuclear Information System (INIS)

    Horlitz, G.; Clausen, M.; Lierl, H.; Lange, R.; Herzog, H.

    1991-01-01

    The 6.4 km long superconducting proton storage ring of HERA was completed in 1990. In October the first halfring was cooled, in December the second one. Steady state operation could be established after about 200 hours. The authors report on the cryogenic operation of the system during cooldown and steady state operation and give values for thermal losses. One octant was excited up to values exceeding the design current. Some results of quench tests in this octant are presented

  6. Fitting Boolean networks from steady state perturbation data.

    Science.gov (United States)

    Almudevar, Anthony; McCall, Matthew N; McMurray, Helene; Land, Hartmut

    2011-10-05

    Gene perturbation experiments are commonly used for the reconstruction of gene regulatory networks. Typical experimental methodology imposes persistent changes on the network. The resulting data must therefore be interpreted as a steady state from an altered gene regulatory network, rather than a direct observation of the original network. In this article an implicit modeling methodology is proposed in which the unperturbed network of interest is scored by first modeling the persistent perturbation, then predicting the steady state, which may then be compared to the observed data. This results in a many-to-one inverse problem, so a computational Bayesian approach is used to assess model uncertainty. The methodology is first demonstrated on a number of synthetic networks. It is shown that the Bayesian approach correctly assigns high posterior probability to the network structure and steady state behavior. Further, it is demonstrated that where uncertainty of model features is indicated, the uncertainty may be accurately resolved with further perturbation experiments. The methodology is then applied to the modeling of a gene regulatory network using perturbation data from nine genes which have been shown to respond synergistically to known oncogenic mutations. A hypothetical model emerges which conforms to reported regulatory properties of these genes. Furthermore, the Bayesian methodology is shown to be consistent in the sense that multiple randomized applications of the fitting algorithm converge to an approximately common posterior density on the space of models. Such consistency is generally not feasible for algorithms which report only single models. We conclude that fully Bayesian methods, coupled with models which accurately account for experimental constraints, are a suitable tool for the inference of gene regulatory networks, in terms of accuracy, estimation of model uncertainty, and experimental design.

  7. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    Directory of Open Access Journals (Sweden)

    O. Raz

    2016-05-01

    Full Text Available Under static conditions, a system satisfying detailed balance generically relaxes to an equilibrium state in which there are no currents. To generate persistent currents, either detailed balance must be broken or the system must be driven in a time-dependent manner. A stationary system that violates detailed balance evolves to a nonequilibrium steady state (NESS characterized by fixed currents. Conversely, a system that satisfies instantaneous detailed balance but is driven by the time-periodic variation of external parameters—also known as a stochastic pump (SP—reaches a periodic state with nonvanishing currents. In both cases, these currents are maintained at the cost of entropy production. Are these two paradigmatic scenarios effectively equivalent? For discrete-state systems, we establish a mapping between nonequilibrium stationary states and stochastic pumps. Given a NESS characterized by a particular set of stationary probabilities, currents, and entropy production rates, we show how to construct a SP with exactly the same (time-averaged values. The mapping works in the opposite direction as well. These results establish a proof of principle: They show that stochastic pumps are able to mimic the behavior of nonequilibrium steady states, and vice versa, within the theoretical framework of discrete-state stochastic thermodynamics. Nonequilibrium steady states and stochastic pumps are often used to model, respectively, biomolecular motors driven by chemical reactions and artificial molecular machines steered by the variation of external, macroscopic parameters. Our results loosely suggest that anything a biomolecular machine can do, an artificial molecular machine can do equally well. We illustrate this principle by showing that kinetic proofreading, a NESS mechanism that explains the low error rates in biochemical reactions, can be effectively mimicked by a constrained periodic driving.

  8. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    International Nuclear Information System (INIS)

    Thakre, S.; Ma, W.

    2013-08-01

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  9. Simulations of ex-vessel fuel coolant interactions in a Nordic BWR using MC3D code

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, S.; Ma, W. [Royal Institute of Technology, KTH. Div. of Nuclear Power Safety, Stockholm (Sweden)

    2013-08-15

    Nordic Boiling Water Reactors (BWRs) employ a drywell cavity flooding technique as a nuclear severe accident management strategy. In case of core melt accident where the reactor pressure vessel will fail and the melt will eject from the lower head and fall into a water pool, may be in the form of a continuous jet. It is assumed that the melt jet will fragment, quench and form a coolable debris bed into the water pool. The melt interaction with a water pool may cause an energetic steam explosion which creates a potential risk towards the integrity of containment, leading to fission products release into the atmosphere. The results of the APRI-7 project suggest that the significant damage to containment structures by steam explosion cannot be ruled according to the state-of-the-art knowledge about corresponding accident scenario. In the follow-up project APRI-8 (2012-2016) one of the goals of the KTH research is to resolve the steam explosion energetics (SEE) issue, developing a risk-oriented framework for quantifying conditional threats to containment integrity for a Nordic type BWR. The present study deals with the premixing and explosion phase calculations of a Nordic BWR dry cavity, using MC3D, a multiphase CFD code for fuel coolant interactions. The main goal of the study is the assessment of pressure buildup in the cavity and the impact loading on the side walls. The conditions for the calculations are used from the SERENA-II BWR case exercise. The other objective was to do the sensitivity analysis of the parameters in modeling of fuel coolant interactions, which can help to reduce uncertainty in assessment of steam explosion energetics. The results show that the amount of liquid melt droplets in the water (region of void<0.6) is maximum even before reaching the jet at the bottom. In the explosion phase, maximum pressure is attained at the bottom and the maximum impulse on the wall is at the bottom of the wall. The analysis is carried out using two different

  10. A steady state tokamak operation by use of magnetic monopoles

    International Nuclear Information System (INIS)

    Narihara, K.

    1991-12-01

    A steady state tokamak operation based on a magnetic monopole circuit is considered. Circulation of a chain of iron cubes which trap magnetic monopoles generates the needed loop voltage. The monopole circuit is enclosed by a series of solenoid coils in which magnetic field is feedback controlled so that the force on the circuit balance against the mechanical friction. The driving power is supplied through the current sources of poloidal, ohmic and solenoid coils. The current drive efficiency is same as that of the ohmic current drive. (author)

  11. On the minimum circulating power of steady state tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, K.; Itoh, S.; Fukuyama, A.; Yagi, M.

    1995-07-01

    Circulating power for the sustenance and profile control of the steady state tokamak plasmas is discussed. The simultaneous fulfillment of the MHD stability at high beta value, the improved confinement and the stationary equilibrium requires the rotation drive as well as the current drive. In addition to the current drive efficiency, the efficiency for the rotation drive is investigated. The direct rotation drive by the external torque, such as the case of beam injection, is not efficient enough. The mechanism and the magnitude of the spontaneous plasma rotation are studied. (author).

  12. Steady-State-Preserving Simulation of Genetic Regulatory Systems

    Directory of Open Access Journals (Sweden)

    Ruqiang Zhang

    2017-01-01

    Full Text Available A novel family of exponential Runge-Kutta (expRK methods are designed incorporating the stable steady-state structure of genetic regulatory systems. A natural and convenient approach to constructing new expRK methods on the base of traditional RK methods is provided. In the numerical integration of the one-gene, two-gene, and p53-mdm2 regulatory systems, the new expRK methods are shown to be more accurate than their prototype RK methods. Moreover, for nonstiff genetic regulatory systems, the expRK methods are more efficient than some traditional exponential RK integrators in the scientific literature.

  13. Non-steady-state heat transfer of finned surface

    International Nuclear Information System (INIS)

    Okamoto, Y.; Kameoka, T.

    1974-01-01

    For many purposes, the finned surface is being used to increase heat transfer. Heat exchangers and fuel elements of gas cooled nuclear reactors require the use of the finned surface for high flux heat transfer. The problem is analytically treated by deriving a non-steady-state equation of radiative and convective heat transfer of annular and radial fins in case of sudden change of the fin-root temperature or heat flux. The numerical solution of temperature distribution along the fin is obtained for several typical transient cases. (U.S.)

  14. Steady State Evoked Responses as a Measure of Tracking Difficulty.

    Science.gov (United States)

    1979-11-30

    8217) STEADY STATEr OKD !~PNE SAMAUE0;1 Jun 0.-30 Sep 79\\ TRACKIN& DFCUTY: HOR~a) a CONTRACT OR GRANT NUMBER(&) 7jU1HO . F960-79-C-156//j t- 3.PRFRIG...I.CONTROLLING OFFICE NAME AND ADDRESS,,.AARAA . Air Force Office of Scientific Research -(L 13. NUMBER OF PAGES Boiling AFB DC 20332 4 14...for future research were discussed. l AA SECURITY CLASIFI ATION OF TMIS PAGE(Wha, Data tateeE UM -R-X- 3 0-02 10 STEADY STATE EVOKED RESPONSES AS A

  15. Steady-state current drive by lower hybrid waves

    International Nuclear Information System (INIS)

    Belyanskaya, N.V.; Dnestrovskii, Y.N.; Kostomarov, D.P.; Smirnov, A.P.

    1986-01-01

    Steady-state current drive in a plasma by lower-hybrid waves with a square-wave spectrum is analyzed in the linear approximation. A linearized two-dimensional kinetic equation in velocity space for the electron distribution function is reduced to a one-dimensional expansion in Legendre polynomials. A numerical solution is found for the complete equation, and an analytic solution is found for the asymptotic equation. The results can be used to determine the effect of the spectral width of the excited waves on the efficiency of the current drive. The analytic solution agrees well with the numerical solution

  16. Heat transfer and fluid flow aspects of fuel--coolant interactions

    International Nuclear Information System (INIS)

    Corradini, M.L.

    1978-09-01

    A major portion of the safety analysis effort for the LMFBR is involved in assessing the consequences of a Hypothetical Core Disruptive Accident (HCDA). The thermal interaction of the hot fuel and the sodium coolant during the HCDA is investigated in two areas. A postulated loss of flow transient may produce a two-phase fuel at high pressures. The thermal interaction phenomena between fuel and coolant as the fuel is ejected into the upper plenum are investigated. A postulated transient overpower accident may produce molten fuel being released into sodium coolant in the core region. An energetic coolant vapor explosion for these reactor materials does not seem likely. However, experiments using other materials (e.g., Freon/water, tin/water) have demonstrated the possibility of this phenomenon

  17. Steady-state and accident analyses of PBMR with the computer code SPECTRA

    International Nuclear Information System (INIS)

    Stempniewicz, Marek M.

    2002-01-01

    The SPECTRA code is an accident analysis code developed at NRG. It is designed for thermal-hydraulic analyses of nuclear or conventional power plants. The code is capable of analysing the whole power plant, including reactor vessel, primary system, various control and safety systems, containment and reactor building. The aim of the work presented in this paper was to prepare a preliminary thermal-hydraulic model of PBMR for SPECTRA, and perform steady state and accident analyses. In order to assess SPECTRA capability to model the PBMR reactors, a model of the INCOGEN system has been prepared first. Steady state and accident scenarios were analyzed for INCOGEN configuration. Results were compared to the results obtained earlier with INAS and OCTOPUS/PANTHERMIX. A good agreement was obtained. Results of accident analyses with PBMR model showed qualitatively good results. It is concluded that SPECTRA is a suitable tool for analyzing High Temperature Reactors, such as INCOGEN or for example PBMR (Pebble Bed Modular Reactor). Analyses of INCOGEN and PBMR systems showed that in all analyzed cases the fuel temperatures remained within the acceptable limits. Consequently there is no danger of release of radioactivity to the environment. It may be concluded that those are promising designs for future safe industrial reactors. (author)

  18. Lower bounds for ballistic current and noise in non-equilibrium quantum steady states

    Directory of Open Access Journals (Sweden)

    Benjamin Doyon

    2015-03-01

    Full Text Available Let an infinite, homogeneous, many-body quantum system be unitarily evolved for a long time from a state where two halves are independently thermalized. One says that a non-equilibrium steady state emerges if there are nonzero steady currents in the central region. In particular, their presence is a signature of ballistic transport. We analyze the consequences of the current observable being a conserved density; near equilibrium this is known to give rise to linear wave propagation and a nonzero Drude peak. Using the Lieb–Robinson bound, we derive, under a certain regularity condition, a lower bound for the non-equilibrium steady-state current determined by equilibrium averages. This shows and quantifies the presence of ballistic transport far from equilibrium. The inequality suggests the definition of “nonlinear sound velocities”, which specialize to the sound velocity near equilibrium in non-integrable models, and “generalized sound velocities”, which encode generalized Gibbs thermalization in integrable models. These are bounded by the Lieb–Robinson velocity. The inequality also gives rise to a bound on the energy current noise in the case of pure energy transport. We show that the inequality is satisfied in many models where exact results are available, and that it is saturated at one-dimensional criticality.

  19. Plasma control issues for an advanced steady state tokamak reactor

    International Nuclear Information System (INIS)

    Moreau, D.

    2001-01-01

    This paper deals with specific control issues related to the advanced tokamak scenarios in which rather accurate tailoring of the current density profile is a requirement in connection with the steady state operation of a reactor in a high confinement optimized shear mode. It is found that adequate current profile control can be performed if real-time magnetic flux reconstruction is available through a set of dedicated diagnostics and computers, with sufficient accuracy to deduce the radial profile of the safety factor and of the internal plasma loop voltage. It is also shown that the safety factor can be precisely controlled in the outer half of the plasma through the surface loop voltage and the off-axis current drive power, but that a compromise must be made between the accuracy of the core safety factor control and the total duration of the current and fuel density ramp-up phases, so that the demonstration of the steady state reactor potential of the optimized/reversed shear concept in the Next Step device will demand pulse lengths of the order of one thousand seconds (or more for an ITER-size machine). (author)

  20. Dissipative dark matter halos: The steady state solution

    Science.gov (United States)

    Foot, R.

    2018-02-01

    Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter, is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that contain massless dark photons [unbroken U (1 ) gauge interactions]. Such dark matter not only features dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae (facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where heating and cooling rates locally balance. Here, we take into account the major cooling and heating processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry, negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark radiation. For the parameters considered, and assumptions made, we were unable to find a physically realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark matter models, and we discuss a specific example in some detail.

  1. Concept study of the Steady State Tokamak Reactor (SSTR)

    International Nuclear Information System (INIS)

    1991-06-01

    The Steady State Tokamak Reactor (SSTR) concept has been proposed as a realistic fusion power reactor to be built in the near future. An overall concept of SSTR is introduced which is based on a small extension of the present day physics and technologies. The major feature of SSTR is the maximum utilization of a bootstrap current in order to reduce the power required for the steady state operation. This requirement leads to the choice of moderate current (12 MA), and high βp (2.0) for the device, which are achieved by selecting high aspect ratio (A=4) and high toroidal magnetic field (16.5 T). A negative-ion-based neutral beam injection system is used both for heating and central current drive. Notable engineering features of SSTR are: the use of a uniform vacuum vessel and periodical replacements of the first wall and blanket layers and significant reduction of the electromagnetic force with the use of functionally gradient material. It is shown that a tokamak machine comparable to ITER in size can become a power reactor capable of generating about 1 GW of electricity with a plant efficiency of ∼30%. (author)

  2. MHD stability regimes for steady state and pulsed reactors

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kessel, C.E.; Pomphrey, N.

    1994-02-01

    A tokamak reactor will operate at the maximum value of β≡2μ 0 /B 2 that is compatible with MHD stability. This value depends upon the plasma current and pressure profiles, the plasma shape and aspect ratio, and the location of nearby conducting structures. In addition, a steady state reactor will minimize its external current drive requirements and thus achieve its maximum economic benefit with a bootstrap fraction near one, I bs /I p ∼ 1, which constrains the product of the inverse aspect ratio and the plasma poloidal beta to be near unity, ε β p ∼ 1. An inductively driven pulsed reactor has different constraints set by the steady-state Ohm's law which relates the plasma temperature and density profiles to the parallel current density. We present the results obtained during the ARIES I, II/IV, and III and the PULSAR reactor studies where these quantities were optimized subject to different design philosophies. The ARIES-II/IV and ARIES-III designs are both in the second stability regime, but differ in requirements on the form of the profiles at the plasma edge, and in the location of the conducting wall. The relation between these, as well as new attractive MHD regimes not utilized in the ARIES or PULSAR studies is also discussed

  3. Steady state magnetic field configurations for the earth's magnetotail

    International Nuclear Information System (INIS)

    Hau, L.N.; Wolf, R.A.; Voigt, G.H.; Wu, C.C.

    1989-01-01

    The authors present a two-dimensional, force-balanced magnetic field model in which flux tubes have constant pVγ throughout an extended region of the nightside plasma sheet, between approximately 36 R E geocentric distance and the region of the inner edge of the plasma sheet. They have thus demonstrated the theoretical existence of a steady state magnetic field configuration that is force-balanced and also consistent with slow, lossless, adiabatic, earthward convection within the limit of the ideal MHD (isotropic pressure, perfect conductivity). The numerical solution was constructed for a two-dimensional magnetosphere with a rectangular magnetopause and nonflaring tail. The primary characteristics of the steady state convection solution are (1) a pressure maximum just tailward of the inner edge of the plasma sheet and (2) a deep, broad minimum in equatorial magnetic field strength B ze , also just tailward of the inner edge. The results are consistent with Erickson's (1985) convection time sequences, which exhibited analogous pressure peaks and B ze minima. Observations do not indicate the existence of a B ze minimum, on the average. They suggest that the configurations with such deep minima in B ze may be tearing-mode unstable, thus leading to substorm onset in the inner plasma sheet

  4. True constructive interference in the steady state (trueCISS).

    Science.gov (United States)

    Hilbert, Tom; Nguyen, Damien; Thiran, Jean-Philippe; Krueger, Gunnar; Kober, Tobias; Bieri, Oliver

    2018-04-01

    To introduce a novel time-efficient method, termed true constructive interference in the steady state (trueCISS), that not only solves the problem of banding artifacts for balanced steady-state free precession (bSSFP) but also provides its genuine, that is, true, on-resonant signal. After a compressed sensing reconstruction from a set of highly undersampled phase-cycled bSSFP scans, the local off-resonance, relaxation time ratio, and equilibrium magnetization are voxel-wise estimated using a dictionary-based fitting routine. Subsequently, on-resonant bSSFP images are generated using the previously estimated parameters. Due to the high undersampling factors used, the acquisition time is not prolonged with respect to a standard CISS acquisition. From a set of 16 phase-cycled SSFP scans in combination with an eightfold undersampling, both phantom and in vivo whole-brain experiments demonstrate that banding successfully can be removed. Additionally, trueCISS allows the derivation of synthetic bSSFP images with arbitrary flip angles, which enables image contrasts that may not be possible to acquire in practice due to safety constraints. TrueCISS offers banding-free bSSFP images with on-resonant signal intensity and without requiring additional acquisition time compared to conventional methods. Magn Reson Med 79:1901-1910, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  5. Radial fast interrupted steady-state (FISS) magnetic resonance imaging.

    Science.gov (United States)

    Koktzoglou, Ioannis; Edelman, Robert R

    2018-04-01

    To report a highly interrupted radial variant of balanced steady-state free precession (bSSFP) imaging, termed fast interrupted steady-state (FISS), for decreasing flow artifact as well as fat signal conspicuity with respect to bSSFP, and saturation effects vis-à-vis fast low-angle shot (FLASH) imaging. Numerical simulations, phantom studies, and human studies were conducted to examine the imaging contrast, off-resonance behavior, and flow properties of FISS. Human studies applied FISS for cine cardiac imaging and ungated nonenhanced MR angiography (MRA) of the legs, neck, and brain. Comparisons were made with bSSFP and FLASH imaging. Simulations revealed that FISS retains the high signal levels of bSSFP for stationary on-resonant spins, while reducing undesirable signal heterogeneity from flowing spins. Phantom studies agreed with the simulations, and showed that FISS reduces fat signal and flow artifact with respect to bSSFP imaging. FISS imaging in human subjects agreed with the simulations and phantom studies, and showed reduced saturation artifact compared with FLASH imaging. FISS imaging reduces flow artifact and fat signal conspicuity with respect to bSSFP imaging, and ameliorates arterial signal saturation observed with FLASH imaging. Potential clinical applications include fat-suppressed cine imaging and ungated nonenhanced MRA. Magn Reson Med 79:2077-2086, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  6. Steady-State ALPS for Real-Valued Problems

    Science.gov (United States)

    Hornby, Gregory S.

    2009-01-01

    The two objectives of this paper are to describe a steady-state version of the Age-Layered Population Structure (ALPS) Evolutionary Algorithm (EA) and to compare it against other GAs on real-valued problems. Motivation for this work comes from our previous success in demonstrating that a generational version of ALPS greatly improves search performance on a Genetic Programming problem. In making steady-state ALPS some modifications were made to the method for calculating age and the method for moving individuals up layers. To demonstrate that ALPS works well on real-valued problems we compare it against CMA-ES and Differential Evolution (DE) on five challenging, real-valued functions and on one real-world problem. While CMA-ES and DE outperform ALPS on the two unimodal test functions, ALPS is much better on the three multimodal test problems and on the real-world problem. Further examination shows that, unlike the other GAs, ALPS maintains a genotypically diverse population throughout the entire search process. These findings strongly suggest that the ALPS paradigm is better able to avoid premature convergence then the other GAs.

  7. Transient and steady-state selection in the striatal microcircuit

    Directory of Open Access Journals (Sweden)

    Adam eTomkins

    2014-01-01

    Full Text Available Although the basal ganglia have been widely studied and implicated in signal processing and action selection, little information is known about the active role the striatal microcircuit plays in action selection in the basal ganglia-thalamo-cortical loops. To address this knowledge gap we use a large scale three dimensional spiking model of the striatum, combined with a rate coded model of the basal ganglia-thalamo-cortical loop, to asses the computational role the striatum plays in action selection. We identify a robust transient phenomena generated by the striatal microcircuit, which temporarily enhances the difference between two competing cortical inputs. We show that this transient is sufficient to modulate decision making in the basal ganglia-thalamo-cortical circuit. We also find that the transient selection originates from a novel adaptation effect in single striatal projection neurons, which is amenable to experimental testing. Finally, we compared transient selection with models implementing classical steady-state selection. We challenged both forms of model to account for recent reports of paradoxically enhanced response selection in Huntington's Disease patients. We found that steady-state selection was uniformly impaired under all simulated Huntington's conditions, but transient selection was enhanced given a sufficient Huntington's-like increase in NMDA receptor sensitivity. Thus our models provide an intriguing hypothesis for the mechanisms underlying the paradoxical cognitive improvements in manifest Huntington's patients.

  8. 40 CFR 86.1362-2010 - Steady-state testing with a ramped-modal cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a ramped... Exhaust Test Procedures § 86.1362-2010 Steady-state testing with a ramped-modal cycle. This section describes how to test engines under steady-state conditions. For model years through 2009, manufacturers may...

  9. 40 CFR 86.1362-2007 - Steady-state testing with a ramped-modal cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a ramped... Exhaust Test Procedures § 86.1362-2007 Steady-state testing with a ramped-modal cycle. This section describes how to test engines under steady-state conditions. Manufacturers may alternatively use the...

  10. 40 CFR 85.2225 - Steady state test exhaust analysis system-EPA 91.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Steady state test exhaust analysis... Performance Warranty Short Tests § 85.2225 Steady state test exhaust analysis system—EPA 91. (a) Special... for steady state short tests consists, at a minimum, of a tailpipe probe; a flexible sample line; a...

  11. 40 CFR Appendix II to Part 1039 - Steady-State Duty Cycles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix... Appendix II to Part 1039—Steady-State Duty Cycles (a) The following duty cycles apply for constant-speed...(seconds) Engine speed Torque(percent) 1, 2 1a Steady-state 53 Engine governed 100. 1b Transition 20 Engine...

  12. 40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Steady-state testing with a discrete... Exhaust Test Procedures § 86.1363-2007 Steady-state testing with a discrete-mode cycle. This section describes an alternate procedure for steady-state testing that manufacturers may use through the 2009 model...

  13. 40 CFR Appendix II to Part 1042 - Steady-State Duty Cycles

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Steady-State Duty Cycles II Appendix..., App. II Appendix II to Part 1042—Steady-State Duty Cycles (a) The following duty cycles apply as... Time in mode(seconds) Engine speed 1, 3 Power (percent) 2, 3 1aSteady-state 229 Maximum test speed 100...

  14. 40 CFR 85.2230 - Steady state test dynamometer-EPA 91.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Steady state test dynamometer-EPA 91... Warranty Short Tests § 85.2230 Steady state test dynamometer—EPA 91. (a) Special calendar and model year... or engines. (b) The chassis dynamometer for steady state short tests must provide the capabilities...

  15. Algorithm development for safeguarding the Wendelstein 7-X divertor during steady state operation

    Energy Technology Data Exchange (ETDEWEB)

    Rodatos, A.; Jakubowski, M. [Max-Planck-Institut fuer Plasmaphysik, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Greuner, H.; Sunn Pedersen, T. [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, D-85748 Garching (Germany); Wurden, G.A. [Los Alamos National Laboratory, Los Alamos, NM 87544 (United States)

    2014-07-01

    The divertor of Wendelstein 7X is designed to withstand steady state heat fluxes of 10 MW/m{sup 2} and 15 MW/m{sup 2} transiently. However higher local heat fluxes are possible. 10 thermographic infrared (IR) observation systems will be installed to monitor the divertor and its center goal is the detection of overheated areas in real time. Besides an increased plasma heat flux, there are at least two potential causes of an elevated diverter surface temperature. First, redeposited eroded material forming surface layers with a poor thermal connection to the underlying water-cooled tiles. Second, delaminated CFC tiles will exhibit an elevated surface temperature relative to properly bonded tiles. Using the measured characteristic time scales for the thermal response, gained from experiments at GLADIS, we have concluded that it is possible to distinguish between healthy, delaminated, surface-coated and delaminated surface-coated tiles.

  16. Two-Dimensional Steady-State Boundary Shape Inversion of CGM-SPSO Algorithm on Temperature Information

    Directory of Open Access Journals (Sweden)

    Shoubin Wang

    2017-01-01

    Full Text Available Addressing the problem of two-dimensional steady-state thermal boundary recognition, a hybrid algorithm of conjugate gradient method and social particle swarm optimization (CGM-SPSO algorithm is proposed. The global search ability of particle swarm optimization algorithm and local search ability of gradient algorithm are effectively combined, which overcomes the shortcoming that the conjugate gradient method tends to converge to the local solution and relies heavily on the initial approximation of the iterative process. The hybrid algorithm also avoids the problem that the particle swarm optimization algorithm requires a large number of iterative steps and a lot of time. The experimental results show that the proposed algorithm is feasible and effective in solving the problem of two-dimensional steady-state thermal boundary shape.

  17. Active ideal sedimentation: exact two-dimensional steady states.

    Science.gov (United States)

    Hermann, Sophie; Schmidt, Matthias

    2018-02-28

    We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.

  18. Analysis of steady-state ductile crack growth

    DEFF Research Database (Denmark)

    Niordson, Christian

    1999-01-01

    The fracture strength under quasi-static steady-state crack growth in an elastic-plastic material joined by a laser weld is analyzed. Laser welding gives high mismatch between the yield stress within the weld and the yield stress in the base material. This is due to the fast termic cycle, which...... the finite element mesh remains fixed relative to the tip of the growing crack. Fracture is modelled using two different local crack growth criteria. One is a crack opening displacement criterion, while the other is a model in which a cohesive zone is imposed in front of the crack tip along the fracture zone....... Both models predict that in general a thinner laser weld gives higher interface strength. Furthermore, both fracture criteria show, that the preferred path of the crack is close outside the weld material; a phenomenon also observed in experiments....

  19. Nuclide Importance and the Steady-State Burnup Equation

    International Nuclear Information System (INIS)

    Sekimoto, Hiroshi; Nemoto, Atsushi

    2000-01-01

    Conventional methods for evaluating some characteristic values of nuclides relating to burnup in a given neutron spectrum are reviewed in a mathematically systematic way, and a new method based on the importance theory is proposed. In this method, these characteristic values of a nuclide are equivalent to the importances of the nuclide. By solving the equation adjoint to the steady-state burnup equation with a properly chosen source term, the importances for all nuclides are obtained simultaneously.The fission number importance, net neutron importance, fission neutron importance, and absorbed neutron importance are evaluated and discussed. The net neutron importance is a measure directly estimating neutron economy, and it can be evaluated simply by calculating the fission neutron importance minus the absorbed neutron importance, where only the absorbed neutron importance depends on the fission product. The fission neutron importance and absorbed neutron importance are analyzed separately, and detailed discussions of the fission product effects are given for the absorbed neutron importance

  20. Fast Prediction Method for Steady-State Heat Convection

    KAUST Repository

    Wáng, Yì

    2012-03-14

    A reduced model by proper orthogonal decomposition (POD) and Galerkin projection methods for steady-state heat convection is established on a nonuniform grid. It was verified by thousands of examples that the results are in good agreement with the results obtained from the finite volume method. This model can also predict the cases where model parameters far exceed the sample scope. Moreover, the calculation time needed by the model is much shorter than that needed for the finite volume method. Thus, the nonuniform POD-Galerkin projection method exhibits high accuracy, good suitability, and fast computation. It has universal significance for accurate and fast prediction. Also, the methodology can be applied to more complex modeling in chemical engineering and technology, such as reaction and turbulence. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States

    KAUST Repository

    Komatsu, Teruhisa S.

    2010-01-01

    We describe our recent attempts toward statistical mechanics and thermodynamics for nonequilibrium steady states (NESS) realized, e.g., in a heat conducting system. Our first result is a simple expression of the probability distribution (of microscopic states) of a NESS. Our second result is a natural extension of the thermodynamic Clausius relation and a definition of an accompanying entropy in NESS. This entropy coincides with the normalization constant appearing in the above mentioned microscopic expression of NESS, and has an expression similar to the Shannon entropy (with a further symmetrization). The NESS entropy proposed here is a clearly defined measurable quantity even in a system with a large degrees of freedom. We numerically measure the NESS entropy in hardsphere fluid systems with a heat current, by observing energy exchange between the system and the heat baths when the temperatures of the baths are changed according to specified protocols.

  2. Exploiting the steady state, continuous fueling reactor model

    International Nuclear Information System (INIS)

    Vondy, D.R.; Cunningham, G.W.; Fowler, T.B.

    1979-01-01

    A continuously fueled reactor presents an analysis challenge, especially so when the neutron accounting is sensitive to the core design and the fuel handling. A scheme was implemented to solve the steady state, continuous fueling problem. This problem is an accurate model of the reactor for assessing performance at a point in its operating history. Available capability in a modular code system developed to treat fixed fuel reactors was extended in this effort. Parametric studies have been made with this capability to assess the performance of a pebble bed power plant reactor over a wide range of fueling possibilities. The model and the calculational methods are discussed. A global iteration scheme is used to effect a solution for the critical reactor state. The schemes used to accelerate the rate of convergence of one- and two-dimensional problems are described and the interactive behavior is shown for representative problems

  3. Locating CVBEM collocation points for steady state heat transfer problems

    Science.gov (United States)

    Hromadka, T.V.

    1985-01-01

    The Complex Variable Boundary Element Method or CVBEM provides a highly accurate means of developing numerical solutions to steady state two-dimensional heat transfer problems. The numerical approach exactly solves the Laplace equation and satisfies the boundary conditions at specified points on the boundary by means of collocation. The accuracy of the approximation depends upon the nodal point distribution specified by the numerical analyst. In order to develop subsequent, refined approximation functions, four techniques for selecting additional collocation points are presented. The techniques are compared as to the governing theory, representation of the error of approximation on the problem boundary, the computational costs, and the ease of use by the numerical analyst. ?? 1985.

  4. Steady State Temperature Profile in a Cylinder Heated by Microwaves

    Science.gov (United States)

    Jackson, H. W.; Barmatz, M.; Wagner, P.

    1995-01-01

    A new theory has been developed to calculate the steady state temperature profile in a cylindrical sample positioned along the entire axis of a cylindrical microwave cavity. Temperature profiles where computed for- alumina rods of various radii contained in a cavity excite in one of the TM(sub OnO) modes with n = 1, 2 or 3. Calculations where also performed with a concentric outer cylindrical tube surrounding the rod to investigate hybrid heating. The parameters studies of the sample center and surface temperature where performed as a function of the total power transmitted into the cavity. Also, the total hemispherical emissivity was varied at boundaries of the rod, surrounding tube, and cavity walls. The result are discussed in the context of controlling the average rod temperature and the temperature distribution in the rod during microwave processing.

  5. Period doubling in period-one steady states

    Science.gov (United States)

    Wang, Reuben R. W.; Xing, Bo; Carlo, Gabriel G.; Poletti, Dario

    2018-02-01

    Nonlinear classical dissipative systems present a rich phenomenology in their "route to chaos," including period doubling, i.e., the system evolves with a period which is twice that of the driving. However, typically the attractor of a periodically driven quantum open system evolves with a period which exactly matches that of the driving. Here, we analyze a periodically driven many-body open quantum system whose classical correspondent presents period doubling. We show that by studying the dynamical correlations, it is possible to show the occurrence of period doubling in the quantum (period-one) steady state. We also discuss that such systems are natural candidates for clean and intrinsically robust Floquet time crystals.

  6. Quasi-steady-state regime in transient stimulated Raman scattering

    International Nuclear Information System (INIS)

    Ackerhalt, J.R.; Kurnit, N.A.

    1987-01-01

    A method is developed for studying transient stimulated Raman scattering in the quasi-steady-state regime when the input pump field consists of a repetitive periodic sequence of pulses. The method is most attractive for cases where the single-pulse duration is substantially shorter than the repetition time scale, making a straightforward numerical simulation very costly, time consuming, and potentially intractable. The method is applicable to any periodic electric field envelope including that generated by a finite number of longitudinal modes with arbitrary phase. A second numerically efficient method is developed for treating the buildup of the entire pulse train. In addition, an analytic solution is found in the undepleted-pump regime which illuminates the underlying physics of the process

  7. Steady-State Density Functional Theory for Finite Bias Conductances.

    Science.gov (United States)

    Stefanucci, G; Kurth, S

    2015-12-09

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.

  8. Plasticity, Fracture and Friction in Steady-State Plate Cutting

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1997-01-01

    A closed form solution to the problem of steady-state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new...... extension of the presented plate model to include more structural members as for example the stiffeners attached to a ship bottom plating. The fracture process is discussed and the model is formulated partly on the basis of the material fracture toughness. The effect of friction and the reaction force...... perpendicular to the direction of motion is derived theoretically in a consistent manner. The perpendicular reaction force is of paramount importance for prediction the structural damage of a ship hull because it governs the vertical ship motion and rock penetration which is strongly coupled with the horizontal...

  9. Fuel-Coolant-Interaction modeling and analysis work for the High Flux Isotope Reactor Safety Analysis Report

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.; Georgevich, V.; Nestor, C.W.; Chang, S.J.; Freels, J.; Gat, U.; Lepard, B.L.; Gwaltney, R.C.; Luttrell, C.; Kirkpatrick, J.

    1993-07-01

    A brief historical background and a description of short- and long-term task plan development for effective closure of this important safety issue for the HFIR are given. Short-term aspects deal with Fuel-Coolant-Interaction (FCI) issues experimentation, modeling, and analysis for the flow-blockage-induced steam explosion events in direct support of the SAR. Long-term aspects deal with addressing FCI issues resulting from other accidents in conjunction with issues dealing with aluminum ignition, which can result in an order of magnitude increase in overall energetics. Problem formulation, modeling, and computer code simulation for the various phases of steam explosions are described. The evaluation of core melt initiation propagation, and melt superheat are described. Core melt initiation and propagation have been studied using simple conservative models as well as from modeling and analysis using RELAP5. Core debris coolability, heatup, and melting/freezing aspects have been studied by use of the two-dimensional melting/freezing analysis code 2DKO, which was also benchmarked with MELCOR code predictions. Descriptions are provided for the HM, BH, FCIMOD, and CTH computer codes that have been implemented for studying steam explosion energetics from the standpoint of evaluating bounding loads by thermodynamic models or best-estimate loads from one- and two-dimensional simulations of steam explosion energetics. Vessel failure modeling and analysis was conducted using the principles of probabilistic fracture mechanics in conjunction with ADINA code calculations. Top head bolts failure modeling has also been conducted where the failure criterion was based upon stresses in the bolts exceeding the material yield stress for a given time duration. Missile transport modeling and analysis was conducted by setting up a one-dimensional mathematical model that accounts for viscous dissipation, virtual mass effects, and material inertia

  10. Experiments on steady state particle control in Tore Supra and DIII-D

    Science.gov (United States)

    Mioduszewski, P. K.; Hogan, J. T.; Owen, L. W.; Maingi, R.; Lee, D. K.; Hillis, D. L.; Klepper, C. C.; Menon, M. M.; Thomas, C. E.; Uckan, T.; Wade, M. R.; Chatelier, M.; Grisolia, C.; Ghendrih, Ph.; Grosman, A.; Hutter, T.; Loarer, T.; Pégourié, B.; Mahdavi, M. A.; Schaffer, M.

    1995-04-01

    Particle control is playing an increasingly important role in tokamak plasma performance. The present paper discusses particle control of hydrogen/deuterium by wall pumping on graphite or carbonized surfaces, as well as by external exhaust with pumped limiters and pumped divertors. Wall pumping is ultimately a transient effect and by itself not suitable for steady state particle exhaust. Therefore, external exhaust techniques with pumped divertors and limiters are being developed. How wall pumping phenomena interact and correlate with these inherently steady state, external exhaust techniques, is not well known to date. In the present paper, the processes involved in wall pumping and in external pumping are investigated in an attempt to evaluate the effect of external exhaust on wall pumping. Some of the key elements of this analysis are: (1) charge-exchange fluxes to the wall play a crucial role in the core-wall particle dynamics, (2) the recycling fluxes of thermal molecules have a high probability of ionization in the scrape-off layer, (3) thermal particles originating from the wall, which are ionized within the scrape-off layer, can be directly exhausted, thus providing a direct path between wall and exhaust which can be used to control the wall inventory. This way, the wall can be kept in a continuous pumping state in the sense that it continuously absorbs energetic particles and releases thermal molecules which are then removed by the external exhaust mechanism. While most of the ingredients of this analysis have been observed individually before, the present evaluation is an attempt to correlate effects of wall recycling and external exhaust.

  11. The analysis of the annular fuel performance in steady state condition by using AFPAC code

    International Nuclear Information System (INIS)

    He Xiaojun; Ji Songtao; Zhang Yingchao

    2012-01-01

    The fuel performance code AFPAC v1.0 is used to analyze annular fuel's behavior under steady state conditions, including neutronics, thermal hydraulic, rod deformation, fission gas release and rod internal pressure. The calculation results show that: 1) Annular fuel has a good steady irradiation performance at 150% power level as current LWRs' with burnup up to 50 GWd/t, and all parameters, such as temperature, rod internal pressure and rod deformation, are meet the rod design criteria for current fuel of PWRs: 2) Compared to the solid fuel under the same irradiation condition. annular fuel has lower temperature, smaller deformation, lower fission gas release and lower pressure at EOL. From the point of view of steady irradiation performance, the safety of reactors can significantly improved by u sing the annular fuel. (authors)

  12. Verification of steady-state temperature predictions in an instrumented LMFBR driver subassembly

    International Nuclear Information System (INIS)

    Betten, P.R.; Feldman, E.E.; Chang, L.K.; Mohr, D.; Planchon, H.P.

    1985-01-01

    The measured coolant temperature within an instrumented, fueled driver subassembly in the Experimental Breeder Reactor-II (EBR-II) have been compared with the full-power, steady-state coolant temperatures predicted by a thermal-hydraulic code. Coolant temperatures were measured at three axial elevations: core midplane, top of core, and above the core. The agreement between the data and predictions is very good for all of the elevations except for the midplane. The deviation at the midplane is discussed and appears to result from a combination of factors which include a skewed axial power profile, a wire wrap hot-spot factor, and a possible elevation misalignment of the subassembly

  13. Ludwig-Soret effect in a linear temperature field: Theory and experiments for steady state distributions

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hyeyun [Department of Chemistry, Brown University, Providence, RI 02912 (United States); Gusev, Vitalyi E. [Universite du Maine, av. Messiaen, 72085 Le Mans Cedex 09 (France); Baek, Hyoungsu [Department of Applied Mathematics, Brown University, Providence, RI 02912 (United States); Wang, Yaqi [Department of Chemistry, Brown University, Providence, RI 02912 (United States); Diebold, Gerald J., E-mail: Gerald_Diebold@Brown.ed [Department of Chemistry, Brown University, Providence, RI 02912 (United States)

    2011-05-09

    The Ludwig-Soret effect, also known as thermal diffusion, describes the separation of mixtures in the presence of a temperature gradient. Here, a solution to the nonlinear differential equation that describes the motion of components of a binary mixture in a linear temperature field is given for long times, when the distribution of the components in space becomes time independent. A new experimental method based on the use of a scanning confocal microscope to monitor the spatial distribution of fluorescence from fluorescein labelled nanoparticles in water in a linear temperature field is described. - Highlights: We give a steady state solution to the Ludwig-Soret equation. We give a method of finding Soret parameters based on terminal spatial distributions. We introduce a new experimental method based on probing with a confocal microscope. The method is applied to studying fluorescent nanoparticles suspended in water.

  14. Quantitative tests of a steady state theory of solar wind electrons

    Science.gov (United States)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.

    1982-01-01

    A comparison is made of IMP 6, 7 and 8 electron data with the predictions of a solar wind electron steady state theory in which the control of transport by the macroscopic interplanetary electric and magnetic fields, as well as elastic Coulomb collisions with solar wind protons and thermal electrons, is assumed. While a ratio of forward to backward phase density for field-aligned extrathermal electrons of 6:1 is predicted, electron distribution measurements within the high speed solar wind show this ratio to be typically about an order of magnitude larger. A set of solar wind bulk speed anticorrelations predicted by the theory on the basis of a larger set of assumptions cannot be found in the IMP electron data set, so that improved agreement may require such modifications of the theory's assumptions as the inclusion of inelastic Coulomb and/or wave electron collisions.

  15. Modelling of PEM Fuel Cell Performance: Steady-State and Dynamic Experimental Validation

    Directory of Open Access Journals (Sweden)

    Idoia San Martín

    2014-02-01

    Full Text Available This paper reports on the modelling of a commercial 1.2 kW proton exchange membrane fuel cell (PEMFC, based on interrelated electrical and thermal models. The electrical model proposed is based on the integration of the thermodynamic and electrochemical phenomena taking place in the FC whilst the thermal model is established from the FC thermal energy balance. The combination of both models makes it possible to predict the FC voltage, based on the current demanded and the ambient temperature. Furthermore, an experimental characterization is conducted and the parameters for the models associated with the FC electrical and thermal performance are obtained. The models are implemented in Matlab Simulink and validated in a number of operating environments, for steady-state and dynamic modes alike. In turn, the FC models are validated in an actual microgrid operating environment, through the series connection of 4 PEMFC. The simulations of the models precisely and accurately reproduce the FC electrical and thermal performance.

  16. Ising game: Nonequilibrium steady states of resource-allocation systems

    Science.gov (United States)

    Xin, C.; Yang, G.; Huang, J. P.

    2017-04-01

    Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.

  17. Visual steady state in relation to age and cognitive function.

    Directory of Open Access Journals (Sweden)

    Anna Horwitz

    Full Text Available Neocortical gamma activity is crucial for sensory perception and cognition. This study examines the value of using non-task stimulation-induced EEG oscillations to predict cognitive status in a birth cohort of healthy Danish males (Metropolit with varying cognitive ability. In particular, we examine the steady-state VEP power response (SSVEP-PR in the alpha (8Hz and gamma (36Hz bands in 54 males (avg. age: 62.0 years and compare these with 10 young healthy participants (avg. age 27.6 years. Furthermore, we correlate the individual alpha-to-gamma difference in relative visual-area power (ΔRV with cognitive scores for the older adults. We find that ΔRV decrease with age by just over one standard deviation when comparing young with old participants (p<0.01. Furthermore, intelligence is significantly negatively correlated with ΔRV in the older adult cohort, even when processing speed, global cognition, executive function, memory, and education (p<0.05. In our preferred specification, an increase in ΔRV of one standard deviation is associated with a reduction in intelligence of 48% of a standard deviation (p<0.01. Finally, we conclude that the difference in cerebral rhythmic activity between the alpha and gamma bands is associated with age and cognitive status, and that ΔRV therefore provide a non-subjective clinical tool with which to examine cognitive status in old age.

  18. Steady-state growth of the marine diatom Thalassiosira pseudonana

    International Nuclear Information System (INIS)

    Olson, R.J.; SooHoo, J.B.; Kiefer, D.A.

    1980-01-01

    Seasonal studies of the vertical distribution of nitrate, nitrite, and phytoplankton in the oceans and studies using 15 N as a tracer of nitrate metabolism indicate that the reduction of nitrate by phytoplankton is a source of nitrite in the upper waters of the ocean. To better understand this process, the relationship between nitrate uptake and nitrite production has been examined with continuous cultures of the small marine diatom Thalassiosira pseudonana. In a turbidostat culture, the rates of nitrite production by T. Pseudonana increase with light intensity. This process is only loosely coupled to rates of nitrate assimilation since the ratio of net nitrite production to total nitrate assimilation increases with increased rates of growth. In continuous cultures where steady-state concentrations of nitrate and nitrite were varied, T. pseudonana produced nitrite at rates which increased with increasing concentrations of nitrate. Again, the rates of nitrite production were uncoupled from rates of nitrate assimilation. The study was used to derive a mathematical description of nitrate and nitrite metabolism by T. pseudonana. The validity of this model was supported by the results of a study in which 15 N-labeled nitrite was introduced into the continuous culture, and the model was used to examine patterns in distribution of nitrite in the Antarctic Ocean and the Sargasso Sea

  19. Quasi-steady state aerodynamics of the cheetah tail

    Directory of Open Access Journals (Sweden)

    Amir Patel

    2016-08-01

    Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  20. Electrically evoked auditory steady-state responses in Guinea pigs.

    Science.gov (United States)

    Jeng, Fuh-Cherng; Abbas, Paul J; Brown, Carolyn J; Miller, Charles A; Nourski, Kirill V; Robinson, Barbara K

    2007-01-01

    Most cochlear implant systems available today provide the user with information about the envelope of the speech signal. The goal of this study was to explore the feasibility of recording electrically evoked auditory steady-state response (ESSR) and in particular to evaluate the degree to which the response recorded using electrical stimulation could be separated from stimulus artifact. Sinusoidally amplitude-modulated electrical stimuli with alternating polarities were used to elicit the response in adult guinea pigs. Separation of the stimulus artifact from evoked neural responses was achieved by summing alternating polarity responses or by using spectral analysis techniques. The recorded response exhibited physiological response properties including a pattern of nonlinear growth and their abolishment following euthanasia or administration of tetrodotoxin. These findings demonstrate that the ESSR is a response generated by the auditory system and can be separated from electrical stimulus artifact. As it is evoked by a stimulus that shares important features of cochlear implant stimulation, this evoked potential may be useful in either clinical or basic research efforts. Copyright 2007 S. Karger AG, Basel.

  1. Attentional Modulation of Auditory Steady-State Responses

    Science.gov (United States)

    Mahajan, Yatin; Davis, Chris; Kim, Jeesun

    2014-01-01

    Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR). The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence). The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex. PMID:25334021

  2. Attentional modulation of auditory steady-state responses.

    Directory of Open Access Journals (Sweden)

    Yatin Mahajan

    Full Text Available Auditory selective attention enables task-relevant auditory events to be enhanced and irrelevant ones suppressed. In the present study we used a frequency tagging paradigm to investigate the effects of attention on auditory steady state responses (ASSR. The ASSR was elicited by simultaneously presenting two different streams of white noise, amplitude modulated at either 16 and 23.5 Hz or 32.5 and 40 Hz. The two different frequencies were presented to each ear and participants were instructed to selectively attend to one ear or the other (confirmed by behavioral evidence. The results revealed that modulation of ASSR by selective attention depended on the modulation frequencies used and whether the activation was contralateral or ipsilateral. Attention enhanced the ASSR for contralateral activation from either ear for 16 Hz and suppressed the ASSR for ipsilateral activation for 16 Hz and 23.5 Hz. For modulation frequencies of 32.5 or 40 Hz attention did not affect the ASSR. We propose that the pattern of enhancement and inhibition may be due to binaural suppressive effects on ipsilateral stimulation and the dominance of contralateral hemisphere during dichotic listening. In addition to the influence of cortical processing asymmetries, these results may also reflect a bias towards inhibitory ipsilateral and excitatory contralateral activation present at the level of inferior colliculus. That the effect of attention was clearest for the lower modulation frequencies suggests that such effects are likely mediated by cortical brain structures or by those in close proximity to cortex.

  3. Reactor potential of steady-state field-reversed configurations

    International Nuclear Information System (INIS)

    Kernbichler, W.

    1990-01-01

    The intrinsic potential of a Field-Reversed Configuration (FRC) for high-β operation - with β-values in the range of 50 to 100% - stimulates much interest in this device as an attractive candidate for a compact fusion device with high power density. Several additional benefits, e.g. the cylindrical geometry of the concept, the divertor action of the open field lines and the possibility for direct energy conversion of the charged particle flow, justify a closer look at the benefits and problems of FRCs. Present emphasis is on operation with D- 3 He fuel under reactor relevant conditions, whereas D-T is taken as a reference case. A steady-state version of an FRC is considered to be more attractive than its pulsed counterpart. Frequent start-up to high temperatures would be particularly detrimental for D- 3 He where start-up scenarios seem to rely on the transition from D-T to D- 3 He, with unavoidable strong tritium contamination

  4. Quasi-steady state aerodynamics of the cheetah tail.

    Science.gov (United States)

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities. © 2016. Published by The Company of Biologists Ltd.

  5. Prediction of steady state thermohydraulic conditions in water reactor systems

    International Nuclear Information System (INIS)

    Srikantiah, G.

    1975-08-01

    A method developed for the automatic prediction of the initial steady state conditions in reactor systems and a computer code based on this method are described. The reactor system is considered as a hydraulic network made up of the system components and their interconnections. Generalized network methods based on Graph Theory are applied to establish a set of independent equations in terms of the driving potentials and fluxes of the network. The terminal equations relating the ''across'' and ''through'' variables in the system components are derived by applying the one-dimensional drift-flux model. The resulting equations are solved by an appropriate numerical technique. Sample problems have been worked out to illustrate the advantages and the efficiency of this method. The basic advantages are: the component modeling is independent of the method of deriving the final balance equations for the system; the formulation procedure is independent of the numerical technique applied to solve the resulting set of equations, and the entire problem formulation and solution procedure requires a small amount of computer time

  6. Avoiding electromagnetic artifacts when recording auditory steady-state responses.

    Science.gov (United States)

    Picton, Terence W; John, M Sasha

    2004-09-01

    Electromagnetic artifacts can occur when recording multiple auditory steady-state responses evoked by sinusoidally amplitude modulated (SAM) stimuli. High-intensity air-conducted stimuli evoked responses even when hearing was prevented by masking. Additionally, high-intensity bone-conducted stimuli evoked responses that were completely different from those evoked by air-conducted stimuli of similar sensory level. These artifacts were caused by aliasing since they did not occur when recordings used high analog-digital (AD) conversion rates or when high frequencies in the electroencephalographic (EEG) signal were attenuated by steep-slope low-pass filtering. Two possible techniques can displace aliased energy away from the response frequencies: (1) using an AD rate that is not an integer submultiple of the carrier frequencies and (2) using stimuli with frequency spectra that do not alias back to the response frequencies, such as beats or "alternating SAM" tones. Alternating SAM tones evoke responses similar to conventional SAM tones, whereas beats produce significantly smaller responses.

  7. Hair-triggered instability of radial steady states, spread and extinction in semilinear heat equations

    Science.gov (United States)

    Shi, Junping; Wang, Xuefeng

    We first study the initial value problem for a general semilinear heat equation. We prove that every bounded nonconstant radial steady state is unstable if the spatial dimension is low ( n⩽10) or if the steady state is flat enough at infinity: the solution of the heat equation either becomes unbounded as t approaches the lifespan, or eventually stays above or below another bounded radial steady state, depending on if the initial value is above or below the first steady state; moreover, the second steady state must be a constant if n⩽10. Using this instability result, we then prove that every nonconstant radial steady state of the generalized Fisher equation is a hair-trigger for two kinds of dynamical behavior: extinction and spreading. We also prove more criteria on initial values for these types of behavior. Similar results for a reaction-diffusion system modeling an isothermal autocatalytic chemical reaction are also obtained.

  8. Evolution of Slow Dual Steady-State Optical Solitons in a Cold Three-State Medium

    International Nuclear Information System (INIS)

    Sun Jian-Qiang; Li Hao-Chen; Gu Xiao-Yan

    2012-01-01

    The generalized nonlinear Schrödinger equation, which describes the evolution of dual steady-state optical solitons in a cold three-state medium, is written as the Hamiltonian symplectic structure. The symplectic method is applied to investigate evolution of dual steady-state optical solitons. By adjusting the initial pulses, the saturation parameter variables and the distances of optical solitons, the different behaviors of dual steady-state optical solitons are analyzed. (fundamental areas of phenomenology(including applications))

  9. Two Dimensional Steady State Eddy Current Analysis of a Spinning Conducting Cylinder

    Science.gov (United States)

    2017-03-09

    UNCLASSIFIED UNCLASSIFIED AD-E403 855 Technical Report ARMET-TR-16045 TWO- DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A...August 2014 4. TITLE AND SUBTITLE TWO- DIMENSIONAL STEADY-STATE EDDY CURRENT ANALYSIS OF A SPINNING CONDUCTING CYLINDER 5a. CONTRACT NUMBER 5b...analytical closed-form analysis performed by Michael P. Perry and Thomas B. Jones (ref. 4). Two- dimensional (2D) finite element steady state analyses

  10. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  11. Tokamak burn cycle study: a data base for comparing long pulse and steady-state power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1983-11-01

    Several distinct operating modes (conventional ohmic, noninductive steady state, internal transformer, etc.) have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics (current drive efficiency) and engineering (superior materials) which will help achieve these goals for different burn cycles.

  12. Tokamak burn cycle study: a data base for comparing long pulse and steady-state power reactors

    International Nuclear Information System (INIS)

    Ehst, D.A.; Brooks, J.N.; Cha, Y.; Evans, K. Jr.; Hassanein, A.; Kim, S.; Majumdar, S.; Misra, B.; Stevens, H.C.

    1983-11-01

    Several distinct operating modes (conventional ohmic, noninductive steady state, internal transformer, etc.) have been proposed for tokamaks. Our study focuses on capital costs and lifetime limitations of reactor subsystems in an attempt to quantify sensitivity to pulsed operation. Major problem areas considered include: thermal fatigue on first wall, limiter/divertor; thermal energy storage; fatigue and eddy current heating in toroidal field coils; electric power supply costs; and noninductive driver costs. We assume a high availability and low cost of energy will be mandatory for a commercial fusion reactor, and we characterize improvements in physics (current drive efficiency) and engineering (superior materials) which will help achieve these goals for different burn cycles

  13. Steady State Comparisons HAWC2 v12.2 vs HAWCStab2 v2.12

    DEFF Research Database (Denmark)

    Verelst, David Robert; Hansen, Morten Hartvig; Pirrung, Georg

    This reports presents comparison of the steady state HAWC2 [1] [2] [3] simulation results and the HAWCStab2 computations of the DTU10MW reference turbine [4] [5]. It serves as a simple validation for the HAWCStab2 [6] [7] [8] steady state computations.......This reports presents comparison of the steady state HAWC2 [1] [2] [3] simulation results and the HAWCStab2 computations of the DTU10MW reference turbine [4] [5]. It serves as a simple validation for the HAWCStab2 [6] [7] [8] steady state computations....

  14. A steady-state model of the lunar ejecta cloud

    Science.gov (United States)

    Christou, Apostolos

    2014-05-01

    Every airless body in the solar system is surrounded by a cloud of ejecta produced by the impact of interplanetary meteoroids on its surface [1]. Such ``dust exospheres'' have been observed around the Galilean satellites of Jupiter [2,3]. The prospect of long-term robotic and human operations on the Moon by the US and other countries has rekindled interest on the subject [4]. This interest has culminated with the - currently ongoing - investigation of the Moon's dust exosphere by the LADEE spacecraft [5]. Here a model is presented of a ballistic, collisionless, steady state population of ejecta launched vertically at randomly distributed times and velocities and moving under constant gravity. Assuming a uniform distribution of launch times I derive closed form solutions for the probability density functions (pdfs) of the height distribution of particles and the distribution of their speeds in a rest frame both at the surface and at altitude. The treatment is then extended to particle motion with respect to a moving platform such as an orbiting spacecraft. These expressions are compared with numerical simulations under lunar surface gravity where the underlying ejection speed distribution is (a) uniform (b) a power law. I discuss the predictions of the model, its limitations, and how it can be validated against near-surface and orbital measurements.[1] Gault, D. Shoemaker, E.M., Moore, H.J., 1963, NASA TN-D 1767. [2] Kruger, H., Krivov, A.V., Hamilton, D. P., Grun, E., 1999, Nature, 399, 558. [3] Kruger, H., Krivov, A.V., Sremcevic, M., Grun, E., 2003, Icarus, 164, 170. [4] Grun, E., Horanyi, M., Sternovsky, Z., 2011, Planetary and Space Science, 59, 1672. [5] Elphic, R.C., Hine, B., Delory, G.T., Salute, J.S., Noble, S., Colaprete, A., Horanyi, M., Mahaffy, P., and the LADEE Science Team, 2014, LPSC XLV, LPI Contr. 1777, 2677.

  15. Human auditory steady state responses to binaural and monaural beats.

    Science.gov (United States)

    Schwarz, D W F; Taylor, P

    2005-03-01

    Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.

  16. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    International Nuclear Information System (INIS)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems

  17. Magnetic Fusion Energy Plasma Interactive and High Heat Flux Components: Volume 5, Technical assessment of critical issues in the steady state operation of fusion confinement devices

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    Critical issues for the steady state operation of plasma confinement devices exist in both the physics and technology fields of fusion research. Due to the wide range and number of these issues, this technical assessment has focused on the crucial issues associated with the plasma physics and the plasma interactive components. The document provides information on the problem areas that affect the design and operation of a steady state ETR or ITER type confinement device. It discusses both tokamaks and alternative concepts, and provides a survey of existing and planned confinement machines and laboratory facilities that can address the identified issues. A universal definition of steady state operation is difficult to obtain. From a physics point of view, steady state is generally achieved when the time derivatives approach zero and the operation time greatly exceeds the characteristic time constants of the device. Steady state operation for materials depends on whether thermal stress, creep, fatigue, radiation damage, or power removal are being discussed. For erosion issues, the fluence and availability of the machine for continuous operation are important, assuming that transient events such as disruptions do not limit the component lifetimes. The panel suggests, in general terms, that steady state requires plasma operation from 100 to 1000 seconds and an availability of more than a few percent, which is similar to the expectations for an ETR type device. The assessment of critical issues for steady state operation is divided into four sections: physics issues; technology issues; issues in alternative concepts; and devices and laboratory facilities that can address these problems.

  18. Recent progresses on high performance steady-state plasmas in the superconducting tokamak TRIAM-1M

    International Nuclear Information System (INIS)

    Itoh, Satoshi; Sato, Kohnosuke; Nakamura, Kazuo

    1999-01-01

    The overview of TRIAM-1M experiments is described. The up-to-date issues for steady-state operation are presented through the experience of the achievement of super ultra long tokamak discharges (SULD) sustained by lower hybrid current drive (LHCD) over 2 hours. The importance of the control of an initial phase of plasma, the avoidance of the concentration of huge heat load, the wall conditioning, and abrupt stop of the long discharges are proposed as the indispensable issues for the achievement of the steady-state operation of tokamak. A high ion temperature (HIT) discharge fully sustained by 2.45 GHz LHCD with both high ion temperature and steep temperature gradient is successfully demonstrated for longer than 1 min in the limiter configuration. The HIT discharges can be obtained in the narrow window of density and position. Moreover, the avoidance of the concentration of heat load on a limiter is the key point for the achievement and its long sustainment. As the effective thermal insulation between the wall and the plasma is improved on the single null configuration, HIT discharges with peak ion temperature > 5keV and steeper gradient up to 85 keV/m can be achieved by the exquisite control of density and position. The plasmas with high κ ∼1.5 can be also demonstrated for longer than 1 min. The current profile is also well-controlled for about 2 orders in magnitude longer than the current diffusion time using combined LHCD. The serious damage to the material of the first wall caused by energetic neutral particles produced via charge exchange process is also described. As the neutral particles cannot be affected by magnetic field, this damage by neutral particles must be avoided by the new technique. (author)

  19. Response of tungsten surfaces to helium and hydrogen plasma exposure under ITER relevant steady state and repetitive transient conditions

    Science.gov (United States)

    Buzi, L.; De Temmerman, G.; Huisman, A. E.; Bardin, S.; Morgan, T. W.; Rasinski, M.; Pitts, R. A.; Van Oost, G.

    2017-12-01

    The effect of helium (He) plasma exposure, and associated surface modifications, on the thermal shock resistance of tungsten (W) under ITER relevant steady state and transient heat and particle loads was studied. W samples were exposed to steady state and pulsed He plasmas at surface base temperatures from 670 to 1170 K. The same exposures were repeated in hydrogen (H) to allow a direct comparison of the role of the ion species on the thermal shock resistance. Exposure to He plasma pulses caused the formation of fine cracking network on W samples which occurred at a higher density and smaller depths compared to H pulsed plasma irradiation. The peak temperature reached during an ELM-like plasma pulse increased by a factor ~1.45 over the 100 s of He plasma exposure, indicating a deterioration of the thermal properties. Transient loading experiments were also performed using a high power pulsed laser during He plasma exposure, showing a significant modification of the target thermal response caused by the surface damage. The effect of He-induced morphology changes on the thermal response modification was found to be very small compared to that of transient-induced damage.

  20. A Physics-Based Rock Friction Constitutive Law: Steady State Friction

    Science.gov (United States)

    Aharonov, Einat; Scholz, Christopher H.

    2018-02-01

    Experiments measuring friction over a wide range of sliding velocities find that the value of the friction coefficient varies widely: friction is high and behaves according to the rate and state constitutive law during slow sliding, yet markedly weakens as the sliding velocity approaches seismic slip speeds. We introduce a physics-based theory to explain this behavior. Using conventional microphysics of creep, we calculate the velocity and temperature dependence of contact stresses during sliding, including the thermal effects of shear heating. Contacts are assumed to reach a coupled thermal and mechanical steady state, and friction is calculated for steady sliding. Results from theory provide good quantitative agreement with reported experimental results for quartz and granite friction over 11 orders of magnitude in velocity. The new model elucidates the physics of friction and predicts the connection between friction laws to independently determined material parameters. It predicts four frictional regimes as function of slip rate: at slow velocity friction is either velocity strengthening or weakening, depending on material parameters, and follows the rate and state friction law. Differences between surface and volume activation energies are the main control on velocity dependence. At intermediate velocity, for some material parameters, a distinct velocity strengthening regime emerges. At fast sliding, shear heating produces thermal softening of friction. At the fastest sliding, melting causes further weakening. This theory, with its four frictional regimes, fits well previously published experimental results under low temperature and normal stress.

  1. LOFT shield tank steady state temperatures with addition of gamma and neutron shielding

    International Nuclear Information System (INIS)

    Kyllingstad, G.

    1977-01-01

    The effect of introducing a neutron and gamma shield into the annulus between the reactor vessel and the shield tank is analyzed. This addition has been proposed in order to intercept neutron streaming up the annulus during nuclear operations. Its installation will require removal of approximately 20- 1 / 2 inches of stainless steel foil insulation at the top of the annulus. The resulting conduction path is believed to result in increased water temperatures within the shield tank, possibly beyond the 150 0 F limit, and/or cooling of the reactor vessel nozzles such that adverse thermal stresses would be generated. A two dimensional thermal analysis using the finite element code COUPLE/MOD2 was done for the shield tank system illustrated in the figure (1). The reactor was assumed to be at full power, 55 MW (th), with a loop flow rate of 2.15 x 10 6 lbm/hr (268.4 kg/s) at 2250 psi (15.51 MPa). Calculations indicate a steady state shield tank water temperature of 140 0 F (60 0 C). This is below the 150 0 F (65.56 0 C) limit. Also, no significant changes in thermal gradients within the nozzle or reactor vessel wall are generated. A spacer between the gamma shield and the shield tank is recommended, however, in order to ensure free air circulation through the annulus

  2. Quasi steady state multi-dimensional space-dependent kinetic code EUREKA-SPACE

    International Nuclear Information System (INIS)

    Inabe, Teruo; Ohnishi, Nobuaki

    1977-08-01

    A quasi steady state, multi-dimensional, space-dependent, kinetic code EUREKA-SPACE which is coupled with multi-region thermal-hydraulic model has been developed to analyze a water cooled, power reactor during a reactivity accident. The code includes the following features: (1) Multi-dimensional power and flux distributions are calculated for several fuel enthalpy increments, and the transient reactor power behavior is determined by use of point kinetics equation. The power and flux distributions of the core are calculated with multi-group multi-dimensional diffusion equations, using temperature dependent cross section data. (2) Thermal-hydraulic calculation for up to maximum of five regions is performed to provide the details for feedback reactivity. (3) Feedback reactivity from doppler effect, moderator effect, void formation and cladding thermal expansion effects is taken into account. The code is written in FORTRAN IV language for FACOM-230/75 and CDC-6600. This report presents detailed descriptions of the code, including basic equations, lists of input and output and test calculation results. (auth.)

  3. Progress Towards High Performance, Steady-state Spherical Torus

    International Nuclear Information System (INIS)

    Ono, M.; Bell, M.G.; Bell, R.E.; Bigelow, T.; Bitter, M.; Blanchard, W.; Boedo, J.; Bourdelle, C.; Bush, C.; Choe, W.; Chrzanowski, J.; Darrow, D.S.; Diem, S.J.; Doerner, R.; Efthimion, P.C.; Ferron, J.R.; Fonck, R.J.; Fredrickson, E.D.; Garstka, G.D.; Gates, D.A.; Gray, T.; Grisham, L.R.; Heidbrink, W.; Hill, K.W.; Hoffman, D.; Jarboe, T.R.; Johnson, D.W.; Kaita, R.; Kaye, S.M.; Kessel, C.; Kim, J.H.; Kissick, M.W.; Kubota, S.; Kugel, H.W.; LeBlanc, B.P.; Lee, K.; Lee, S.G.; Lewicki, B.T.; Luckhardt, S.; Maingi, R.; Majeski, R.; Manickam, J.; Maqueda, R.; Mau, T.K.; Mazzucato, E.; Medley, S.S.; Menard, J.; Mueller, D.; Nelson, B.A.; Neumeyer, C.; Nishino, N.; Ostrander, C.N.; Pacella, D.; Paoletti, F.; Park, H.K.; Park, W.; Paul, S.F.; Peng, Y.-K. M.; Phillips, C.K.; Pinsker, R.; Probert, P.H.; Ramakrishnan, S.; Raman, R.; Redi, M.; Roquemore, A.L.; Rosenberg, A.; Ryan, P.M.; Sabbagh, S.A.; Schaffer, M.; Schooff, R.J.; Seraydarian, R.; Skinner, C.H.; Sontag, A.C.; Soukhanovskii, V.; Spaleta, J.; Stevenson, T.; Stutman, D.; Swain, D.W.; Synakowski, E.; Takase, Y.; Tang, X.; Taylor, G.; Timberlake, J.; Tritz, K.L.; Unterberg, E.A.; Von Halle, A.; Wilgen, J.; Williams, M.; Wilson, J.R.; Xu, X.; Zweben, S.J.; Akers, R.; Barry, R.E.; Beiersdorfer, P.; Bialek, J.M.; Blagojevic, B.; Bonoli, P.T.; Carter, M.D.; Davis, W.; Deng, B.; Dudek, L.; Egedal, J.; Ellis, R.; Finkenthal, M.; Foley, J.; Fredd, E.; Glasser, A.; Gibney, T.; Gilmore, M.; Goldston, R.J.; Hatcher, R.E.; Hawryluk, R.J.; Houlberg, W.; Harvey, R.; Jardin, S.C.; Hosea, J.C.; Ji, H.; Kalish, M.; Lowrance, J.; Lao, L.L.; Levinton, F.M.; Luhmann, N.C.; Marsala, R.; Mastravito, D.; Menon, M.M.; Mitarai, O.; Nagata, M.; Oliaro, G.; Parsells, R.; Peebles, T.; Peneflor, B.; Piglowski, D.; Porter, G.D.; Ram, A.K.; Rensink, M.; Rewoldt, G.; Roney, P.; Shaing, K.; Shiraiwa, S.; Sichta, P.; Stotler, D.; Stratton, B.C.; Vero, R.; Wampler, W.R.; Wurden, G.A.

    2003-01-01

    Research on the Spherical Torus (or Spherical Tokamak) is being pursued to explore the scientific benefits of modifying the field line structure from that in more moderate aspect-ratio devices, such as the conventional tokamak. The Spherical Tours (ST) experiments are being conducted in various U.S. research facilities including the MA-class National Spherical Torus Experiment (NSTX) at Princeton, and three medium-size ST research facilities: Pegasus at University of Wisconsin, HIT-II at University of Washington, and CDX-U at Princeton. In the context of the fusion energy development path being formulated in the U.S., an ST-based Component Test Facility (CTF) and, ultimately a Demo device, are being discussed. For these, it is essential to develop high-performance, steady-state operational scenarios. The relevant scientific issues are energy confinement, MHD stability at high beta (B), noninductive sustainment, ohmic-solenoid-free start-up, and power and particle handling. In the confinement area, the NSTX experiments have shown that the confinement can be up to 50% better than the ITER-98-pby2 H-mode scaling, consistent with the requirements for an ST-based CTF and Demo. In NSTX, CTF-relevant average toroidal beta values bT of up to 35% with the near unity central betaT have been obtained. NSTX will be exploring advanced regimes where bT up to 40% can be sustained through active stabilization of resistive wall modes. To date, the most successful technique for noninductive sustainment in NSTX is the high beta-poloidal regime, where discharges with a high noninductive fraction (∼60% bootstrap current + neutral-beam-injected current drive) were sustained over the resistive skin time. Research on radio-frequency-based heating and current drive utilizing HHFW (High Harmonic Fast Wave) and EBW (Electron Bernstein Wave) is also pursued on NSTX, Pegasus, and CDX-U. For noninductive start-up, the Coaxial Helicity Injection (CHI), developed in HIT/HIT-II, has been adopted

  4. Frequency Domain Characterization of the Somatosensory Steady State Response in Electroencephalography

    NARCIS (Netherlands)

    Vlaar, Martijn P.; van der Helm, Frans C.T.; Schouten, Alfred C.

    2015-01-01

    A continuous somatosensory stimulation evokes a steady state response in the cortex, which can be measured using electroencephalography. We applied mechanical multisine stimulation of the wrist to investigate the properties of the steady state response in the frequency domain. Our results show a

  5. Distance to achieve steady state walking speed in frail elderly persons

    NARCIS (Netherlands)

    Lindemann, U.; Najafi, B.; Zijlstra, W.; Hauer, K.; Muche, R.; Becker, C.; Aminian, K.

    This study aims to determine the length of the gait initiation phase before achieving steady state walking in frail older people. Based on body fixed sensors, habitual walking was analysed in 116 community-dwelling older persons (mean age 83.1 years, 84% women). The start of steady state walking was

  6. The steady state of a particle in a vibrating box and possible ...

    Indian Academy of Sciences (India)

    In particular, the parameter range is found in which the particle oscillates between the walls in steady state as if the wall was static and it is showed that for these parameter ranges the particle settles to this steady state for all initial conditions. It is proposed that this phenomenon can be used to bunch charged particles in ...

  7. 40 CFR Appendix C to Subpart S of... - Steady-State Short Test Standards

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Steady-State Short Test Standards C Appendix C to Subpart S of Part 51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED.../Maintenance Program Requirements Pt. 51, Subpt. S, App. C Appendix C to Subpart S of Part 51—Steady-State...

  8. Steady state, erosional continuity, and the topography of landscapes developed in layered rocks

    Science.gov (United States)

    Perne, Matija; Covington, Matthew D.; Thaler, Evan A.; Myre, Joseph M.

    2017-01-01

    The concept of topographic steady state has substantially informed our understanding of the relationships between landscapes, tectonics, climate, and lithology. In topographic steady state, erosion rates are equal everywhere, and steepness adjusts to enable equal erosion rates in rocks of different strengths. This conceptual model makes an implicit assumption of vertical contacts between different rock types. Here we hypothesize that landscapes in layered rocks will be driven toward a state of erosional continuity, where retreat rates on either side of a contact are equal in a direction parallel to the contact rather than in the vertical direction. For vertical contacts, erosional continuity is the same as topographic steady state, whereas for horizontal contacts it is equivalent to equal rates of horizontal retreat on either side of a rock contact. Using analytical solutions and numerical simulations, we show that erosional continuity predicts the form of flux steady-state landscapes that develop in simulations with horizontally layered rocks. For stream power erosion, the nature of continuity steady state depends on the exponent, n, in the erosion model. For n = 1, the landscape cannot maintain continuity. For cases where n ≠ 1, continuity is maintained, and steepness is a function of erodibility that is predicted by the theory. The landscape in continuity steady state can be quite different from that predicted by topographic steady state. For n stream power erosion model, continuity steady state provides a general mathematical tool that may also be useful to understand landscapes that develop by other erosion processes.

  9. A steady-state target calculation method based on "point" model for integrating processes.

    Science.gov (United States)

    Pang, Qiang; Zou, Tao; Zhang, Yanyan; Cong, Qiumei

    2015-05-01

    Aiming to eliminate the influences of model uncertainty on the steady-state target calculation for integrating processes, this paper presented an optimization method based on "point" model and a method determining whether or not there is a feasible solution of steady-state target. The optimization method resolves the steady-state optimization problem of integrating processes under the framework of two-stage structure, which builds a simple "point" model for the steady-state prediction, and compensates the error between "point" model and real process in each sampling interval. Simulation results illustrate that the outputs of integrating variables can be restricted within the constraints, and the calculation errors between actual outputs and optimal set-points are small, which indicate that the steady-state prediction model can predict the future outputs of integrating variables accurately. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Dynamics and steady-state properties of adaptive networks

    Science.gov (United States)

    Wieland, Stefan

    Collective phenomena often arise through structured interactions among a system's constituents. In the subclass of adaptive networks, the interaction structure coevolves with the dynamics it supports, yielding a feedback loop that is common in a variety of complex systems. To understand and steer such systems, modeling their asymptotic regimes is an essential prerequisite. In the particular case of a dynamic equilibrium, each node in the adaptive network experiences a perpetual change in connections and state, while a comprehensive set of measures characterizing the node ensemble are stationary. Furthermore, the dynamic equilibria of a wide class of adaptive networks appear to be unique, as their characteristic measures are insensitive to initial conditions in both state and topology. This work focuses on dynamic equilibria in adaptive networks, and while it does so in the context of two paradigmatic coevolutionary processes, obtained results easily generalize to other dynamics. In the first part, a low-dimensional framework is elaborated on using the adaptive contact process. A tentative description of the phase diagram and the steady state is obtained, and a parameter region identified where asymmetric microscopic dynamics yield a symmetry between node subensembles. This symmetry is accounted for by novel recurrence relations, which predict it for a wide range of adaptive networks. Furthermore, stationary nodeensemble distributions are analytically generated by these relations from one free parameter. Secondly, another analytic framework is put forward that detects and describes dynamic equilibria, while assigning to them general properties that must hold for a variety of adaptive networks. Modeling a single node's evolution in state and connections as a random walk, the ergodic properties of the network process are used to extract node-ensemble statistics from the node's long-term behavior. These statistical measures are composed of a variety of stationary

  11. Steady-state fuel behavior modeling of nitride fuels in FRAPCON-EP

    Science.gov (United States)

    Feng, Bo; Karahan, Aydın; Kazimi, Mujid S.

    2012-08-01

    Fuel material properties and mechanistic fission gas models in FRAPCON-EP were updated to model the steady-state behavior of high-porosity nitride fuel operating at temperatures below half of the melting point. The fuel thermal conductivity and fuel thermal expansion models were updated with correlations for UN and (U,Pu)N fuels. Hot-pressing of the as-fabricated porosity was modeled as a function of the hydrostatic pressure and creep rate. The solid fission product swelling was assumed to increase linearly with burnup. Fission gas swelling constitutive models were updated to appropriately capture the intragranular gas bubble evolution in nitride fuel. Intergranular gas swelling was neglected due to the assumed high porosity of the fuel. The fission gas release behavior was modeled by fitting the fission gas diffusion coefficient in UN to FRAPCON's default fission gas release model. This fitted gas diffusion coefficient reflects the effects of porosity, burnup, operating temperature, fission rate, and bubble sink strength. Fission gas release and fuel swelling benchmarks against irradiation data were performed. The updated code was applied to UN fuel in typical PWR geometry and operating conditions, with an extended cycle length of 24 months. The results show that swelling of the nitride fuel up to 60 MWd/kg burnup did not lead to excessive straining of the cladding. Furthermore, this study showed that a porous (>15% porosity) nitride fuel pellet could achieve a much higher margin to failure from the cladding collapse and grid-to-rod fretting.

  12. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  13. Dispersed flow film boiling heat transfer of flowing water in vertical tubes: CIAE steady state data and prediction methods

    International Nuclear Information System (INIS)

    Chen Yuzhou; Chen Haiyan

    2000-01-01

    In CIAE a great number of film boiling experimental data have been obtained at steady state by using directly heated hot patch technique, covering the range of pressure 0.1-6MPa and mass flux of 23-1462 (23-500 mainly) kg/m 2 s. It is observed that in dispersed flow film boiling significant thermal nonequilibrium exists, and the heat transfer coefficients exhibit strongly history-dependent nature. Based on the experimental results a mechanistic model and a tabular method are proposed, and the assessment of RELAP5/MOD2.5 is made. (author)

  14. NCEL: two dimensional finite element code for steady-state temperature distribution in seven rod-bundle

    International Nuclear Information System (INIS)

    Hrehor, M.

    1979-01-01

    The paper deals with an application of the finite element method to the heat transfer study in seven-pin models of LMFBR fuel subassembly. The developed code NCEL solves two-dimensional steady state heat conduction equation in the whole subassembly model cross-section and enebles to perform the analysis of thermal behaviour in both normal and accidental operational conditions as eccentricity of the central rod or full or partial (porous) blockage of some part of the cross-flow area. The heat removal is simulated by heat sinks in coolant under conditions of subchannels slug flow approximation

  15. Stress analysis of ultrasonic density detector for LOFT core inlet steady-state and LOCE conditions. Supplement 1

    Energy Technology Data Exchange (ETDEWEB)

    Mosby, W.R.

    1979-04-25

    The UDD sensor bar with modified cross-section (0.0938-in. thick by 0.25-in. high overall) was analyzed to determine its resonant frequencies. Thermal and fluid-induced stresses due to steady-state and LOCE loads were also calculated. The sensor bar was shown not to be subject to vortex-shedding lock-in and was shown to meet applicable criteria of the ASME Boiler and Pressure Vessel Code. Seismic loads are insignificant compared to fluid loads.

  16. Advancing metal-oxide-semiconductor theory: Steady-state nonequilibrium conditions

    Science.gov (United States)

    Passlack, M.; Hong, M.; Schubert, E. F.; Zydzik, G. J.; Mannaerts, J. P.; Hobson, W. S.; Harris, T. D.

    1997-06-01

    This article investigates steady-state nonequilibrium conditions in metal-oxide-semiconductor (MOS) capacitors. Steady-state nonequilibrium conditions are of significant interest due to the advent of wide-gap semiconductors in the arena of MOS (or metal-insulator-semiconductor) devices and due to the scaling of oxide thickness in Si technology. Two major classes of steady-state nonequilibrium conditions were studied both experimentally and theoretically: (i) steady-state deep depletion and (ii) steady-state low level optical generation. It is found that the identification and subsequent understanding of steady-state nonequilibrium conditions is of significant importance for correct interpretation of electrical measurements such as capacitance-voltage and conductance-voltage measurements. Basic implications of steady-state nonequilibrium conditions were derived for both MOS capacitors with low interfaces state density Dit and for oxide semiconductor interfaces with a pinned Fermi level. Further, a photoluminescence power spectroscopy technique is investigated as a complementary tool for direct-gap semiconductors to study Dit and to monitor the interface quality during device fabrication.

  17. Steady state creep of Zr-Nb alloys in a temperature interval 350 to 5500C

    International Nuclear Information System (INIS)

    Pahutova, M.; Cadek, J.

    1976-01-01

    Creep of three Zr-Nb alloys (0.5, 2.5 and 4.5 wt% Nb) was investigated in a temperature interval 350 to 550 0 C using the isothermal creep test and transmission electron microscopy techniques. Relations between steady-state creep rate and applied stress were determined; the parameter of applied stress sensitivity of steady-state creep rate increases with the applied stress, reaching values sometimes greater than 30 at 350 0 C. The apparent activation energy of creep was determined and the mean effective stress in steady-state creep measured. Possible creep-rate controlling mechanisms were discussed, with the conclusion that the creep is most probably recovery-controlled. Relations between steady state flow stress and temperature suggest a significant contribution of an athermal deformation mechanism to the measured steady-state strain rate at low temperatures and high applied stresses. The creep-strengthening effect of niobium increases linearly with niobium concentration at high steady-state creep rates, while at low steady-state creep rates the optimum niobium concentration does not exceed 2.5%. This, together with the temperature sensitivity of the strengthening effect of niobium, was explained by structural stability decreasing as niobium concentration increases from 2.5 to 4.5%. Creep-controlling mechanisms for very low creep rates are discussed. (Auth.)

  18. Assessing Quasi-Steady State in Evaporation of Sessile Drops by Diffusion Models

    Science.gov (United States)

    Martin, Cameron; Nguyen, Hoa; Kelly-Zion, Peter; Pursell, Chris

    2017-11-01

    The vapor distributions surrounding sessile drops of methanol are modeled as the solutions of the steady-state and transient diffusion equations using Matlab's PDE Toolbox. The goal is to determine how quickly the transient diffusive transport reaches its quasi-steady state as the droplet geometry is varied between a Weber's disc, a real droplet shape, and a spherical cap with matching thickness or contact angle. We assume that the only transport mechanism at work is diffusion. Quasi-steady state is defined using several metrics, such as differences between the transient and steady-state solutions, and change in the transient solution over time. Knowing the vapor distribution, the gradient is computed to evaluate the diffusive flux. The flux is integrated along the surface of a control volume surrounding the drop to obtain the net rate of diffusion out of the volume. Based on the differences between the transient and steady-state diffusive fluxes at the discrete points along the control-volume surface, the time to reach quasi-steady state evaporation is determined and is consistent with other proposed measurements. By varying the dimensions of the control volume, we can also assess what regimes have equivalent or different quasi-steady states for different droplet geometries. Petroleum Research Fund.

  19. Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, Jen-Tsung [Center for Field Theory and Particle Physics, Department of Physics, Fudan University,Shanghai 200433 (China); Hu, B.L. [Center for Field Theory and Particle Physics, Department of Physics, Fudan University,Shanghai 200433 (China); Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland,College Park, Maryland 20742 (United States)

    2015-11-13

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T{sub 1}>T{sub 2}. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting http://arxiv.org/abs/1405.7642. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T{sub c}, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T{sub 1}, T{sub 2}, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T{sub c} is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, ‘hot entanglement’ is largely a fiction.

  20. Quantum entanglement at high temperatures? Bosonic systems in nonequilibrium steady state

    Science.gov (United States)

    Hsiang, Jen-Tsung; Hu, B. L.

    2015-11-01

    This is the second of a series of three papers examining how viable it is for entanglement to be sustained at high temperatures for quantum systems in thermal equilibrium (Case A), in nonequilibrium (Case B) and in nonequilibrium steady state (NESS) conditions (Case C). The system we analyze here consists of two coupled quantum harmonic oscillators each interacting with its own bath described by a scalar field, set at temperatures T 1 > T 2. For constant bilinear inter-oscillator coupling studied here (Case C1) owing to the Gaussian nature, the problem can be solved exactly at arbitrary temperatures even for strong coupling. We find that the valid entanglement criterion in general is not a function of the bath temperature difference, in contrast to thermal transport in the same NESS setting [1]. Thus lowering the temperature of one of the thermal baths does not necessarily help to safeguard the entanglement between the oscillators. Indeed, quantum entanglement will disappear if any one of the thermal baths has a temperature higher than the critical temperature T c, defined as the temperature above which quantum entanglement vanishes. With the Langevin equations derived we give a full display of how entanglement dynamics in this system depends on T 1, T 2, the inter-oscillator coupling and the system-bath coupling strengths. For weak oscillator-bath coupling the critical temperature T c is about the order of the inverse oscillator frequency, but for strong oscillator-bath coupling it will depend on the bath cutoff frequency. We conclude that in most realistic circumstances, for bosonic systems in NESS with constant bilinear coupling, `hot entanglement' is largely a fiction.

  1. Classical orbital paramagnetism in non-equilibrium steady state

    Indian Academy of Sciences (India)

    58

    Kumar (2012) negated the result of Kumar & Ku- mar (2009) through similar numerical simulation, but now with finer time steps, for the motion of the charged particle on the surface of a sphere –in fact, in the long-time limit (i.e. in thermal equilibrium) the orbital moment indeed again turned out to van- ish with decreasing time ...

  2. On the steady state temperature profiles of biological tissues during ...

    African Journals Online (AJOL)

    The Maxwell equations are solved together with the Pennes Bio-heat equation analytically. The procedure of solution is provoked by the solution to the Maxwell equation. The result revealed the effect of the model parameters such as: the thermal conductivity, blood perfusion coefficient, and the thickness of the tissues and ...

  3. Steady State Performance Characteristics of Micropolar Lubricated Hydrodynamic Journal Bearings with Flexible Liner

    Science.gov (United States)

    Bansal, Pikesh; Chattopadhyay, Ajit Kumar; Agrawal, Vishnu Prakash

    2016-04-01

    The aim of the present study is to theoretically determine the steady state characteristics of hydrodynamic oil journal bearings considering the effect of deformation of liner and with micropolar lubrication. Modified Reynolds equation based on micropolar lubrication theory is solved using finite difference method to obtain steady state film pressures. Minimum film thickness is calculated taking into consideration the deformation of the liner. Parametric study has been conducted and steady state characteristics for journal bearing with elasticity of bearing liner are plotted for various values of eccentricity ratio, deformation factor, characteristic length and coupling number.

  4. On Steady-State Multiple Resonances for a Modified Bretherton Equation

    Science.gov (United States)

    Sun, Jianglong; Cui, Jifeng; He, Zihan; Liu, Zeng

    2017-05-01

    In this article, a modified Bretherton equation is considered to further check if steady-state multiple resonances exist not only for water waves but also for other dispersive medium. The linear resonance condition analysis shows that different components may interact with each other so multiple resonances may happen. Convergent steady-state solutions are obtained by solution procedure based on the homotopy analysis method (HAM) and the collocation method. Amplitude spectrum analysis confirms that more components indeed join the resonance as the nonlinearity increases. This article suggests that steady-state multiple resonance may exist in other dispersive system.

  5. Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil

    2012-01-01

    The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme...

  6. Self-consistent steady state and dust-ion-acoustic soliton propagation in inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Li Yangfang; Ma, J.X.

    2005-01-01

    The steady state of an inhomogeneous collisional dusty plasma is formulated self-consistently and the dust-ion-acoustic soliton propagation in such a plasma is studied by using the reductive perturbation method. The steady state is governed by the ambipolar diffusion theory, which includes the spatially varying collisions of electrons and ions with dust grains and is solved numerically with the boundary value problem. The effects of the nonuniformity of the equilibrium quantities on the solitons are considered. It is shown that the property of the solitons, especially the characteristic width, are sensitive to the variations of the steady state

  7. Simulation of multi-steady states in low temperature gas discharge

    International Nuclear Information System (INIS)

    Li Hong; Hu Xiwei

    2004-01-01

    This article presents hydrodynamics simulation of multi-steady states and mode transition by DC-beam-injected gas discharge, and provides a model approach to hysteresis and distinct forms of multi-steady states. The critical transition conditions of the three discharge modes (temperature limited mode, Langmuir mode, and space charge limited mode) are estimated to be dependent on the gas pressure and the filament temperature. Various forms of the multi-steady states in gas discharge can be uniformly explained by the displacement of the mutant positions. The simulation results are in a good agreement with those of the experiments. (authors)

  8. Thermodynamic limit of a nonequilibrium steady state: Maxwell-type construction for a bistable biochemical system.

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2009-10-02

    We show that the thermodynamic limit of a bistable phosphorylation-dephosphorylation cycle has a selection rule for the "more stable" macroscopic steady state. The analysis is akin to the Maxwell construction. Based on the chemical master equation approach, it is shown that, except at a critical point, bistability disappears in the stochastic model when fluctuation is sufficiently low but unneglectable. Onsager's Gaussian fluctuation theory applies to the unique macroscopic steady state. With an initial state in the basin of attraction of the "less stable" steady state, the deterministic dynamics obtained by the law of mass action is a metastable phenomenon. Stability and robustness in cell biology are emergent stochastic concepts.

  9. Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

    Science.gov (United States)

    Bosch, H.-S.; Wolf, R. C.; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Bräuer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodié, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; König, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kühner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stäbler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, Ch.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K.-P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupiński, Ł.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; Eeten, P. v.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Fünfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; García Regaña, J. M.; Geiger, J.; Geißler, S.; Greuner, H.; Grahl, M.; Groß, S.; Grosman, A.; Grote, H.; Grulke, O.; Haas, M.; Haiduk, L.; Hartfuß, H.-J.; Harris, J. H.; Haus, D.; Hein, B.; Heitzenroeder, P.; Helander, P.; Heller, R.; Hidalgo, C.; Hildebrandt, D.; Höhnle, H.; Holtz, A.; Holzhauer, E.; Holzthüm, R.; Huber, A.; Hunger, H.; Hurd, F.; Ihrke, M.; Illy, S.; Ivanov, A.; Jablonski, S.; Jaksic, N.; Jakubowski, M.; Jaspers, R.; Jensen, H.; Jenzsch, H.; Kacmarczyk, J.; Kaliatk, T.; Kallmeyer, J.; Kamionka, U.; Karaleviciu, R.; Kern, S.; Keunecke, M.; Kleiber, R.; Knauer, J.; Koch, R.; Kocsis, G.; Könies, A.; Köppen, M.; Koslowski, R.; Koshurinov, J.; Krämer-Flecken, A.; Krampitz, R.; Kravtsov, Y.; Krychowiak, M.; Krzesinski, G.; Ksiazek, I.; Kubkowska, M.; Kus, A.; Langish, S.; Laube, R.; Laux, M.; Lazerson, S.; Lennartz, M.; Li, C.; Lietzow, R.; Lohs, A.; Lorenz, A.; Louche, F.; Lubyako, L.; Lumsdaine, A.; Lyssoivan, A.; Maaßberg, H.; Marek, P.; Martens, C.; Marushchenko, N.; Mayer, M.; Mendelevitch, B.; Mertens, Ph.; Mikkelsen, D.; Mishchenko, A.; Missal, B.; Mizuuchi, T.; Modrow, H.; Mönnich, T.; Morizaki, T.; Murakami, S.; Musielok, F.; Nagel, M.; Naujoks, D.; Neilson, H.; Neubauer, O.; Neuner, U.; Nocentini, R.; Noterdaeme, J.-M.; Nührenberg, C.; Obermayer, S.; Offermanns, G.; Oosterbeek, H.; Otte, M.; Panin, A.; Pap, M.; Paquay, S.; Pasch, E.; Peng, X.; Petrov, S.; Pilopp, D.; Pirsch, H.; Plaum, B.; Pompon, F.; Povilaitis, M.; Preinhaelter, J.; Prinz, O.; Purps, F.; Rajna, T.; Récsei, S.; Reiman, A.; Reiter, D.; Remmel, J.; Renard, S.; Rhode, V.; Riemann, J.; Rimkevicius, S.; Riße, K.; Rodatos, A.; Rodin, I.; Romé, M.; Roscher, H.-J.; Rummel, K.; Rummel, Th.; Runov, A.; Ryc, L.; Sachtleben, J.; Samartsev, A.; Sanchez, M.; Sano, F.; Scarabosio, A.; Schmid, M.; Schmitz, H.; Schmitz, O.; Schneider, M.; Schneider, W.; Scheibl, L.; Scholz, M.; Schröder, G.; Schröder, M.; Schruff, J.; Schumacher, H.; Shikhovtsev, I. V.; Shoji, M.; Siegl, G.; Skodzik, J.; Smirnow, M.; Speth, E.; Spong, D. A.; Stadler, R.; Sulek, Z.; Szabó, V.; Szabolics, T.; Szetefi, T.; Szökefalvi-Nagy, Z.; Tereshchenko, A.; Thomsen, H.; Thumm, M.; Timmermann, D.; Tittes, H.; Toi, K.; Tournianski, M.; Toussaint, U. v.; Tretter, J.; Tulipán, S.; Turba, P.; Uhlemann, R.; Urban, J.; Urbonavicius, E.; Urlings, P.; Valet, S.; Van Eester, D.; Van Schoor, M.; Vervier, M.; Viebke, H.; Vilbrandt, R.; Vrancken, M.; Wauters, T.; Weissgerber, M.; Weiß, E.; Weller, A.; Wendorf, J.; Wenzel, U.; Windisch, T.; Winkler, E.; Winkler, M.; Wolowski, J.; Wolters, J.; Wrochna, G.; Xanthopoulos, P.; Yamada, H.; Yokoyama, M.; Zacharias, D.; Zajac, J.; Zangl, G.; Zarnstorff, M.; Zeplien, H.; Zoletnik, S.; Zuin, M.

    2013-12-01

    The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate steady-state operation under plasma conditions relevant for a fusion power plant. Steady-state operation of a fusion device, on the one hand, requires the implementation of special technologies, giving rise to technical challenges during the design, fabrication and assembly of such a device. On the other hand, also the physics development of steady-state operation at high plasma performance poses a challenge and careful preparation. The electron cyclotron resonance heating system, diagnostics, experiment control and data acquisition are prepared for plasma operation lasting 30 min. This requires many new technological approaches for plasma heating and diagnostics as well as new concepts for experiment control and data acquisition.

  10. Nonexistence of nonconstant steady-state solutions in a triangular cross-diffusion model

    Science.gov (United States)

    Lou, Yuan; Tao, Youshan; Winkler, Michael

    2017-05-01

    In this paper we study the Shigesada-Kawasaki-Teramoto model for two competing species with triangular cross-diffusion. We determine explicit parameter ranges within which the model exclusively possesses constant steady state solutions.

  11. Research on Steady States of Fuzzy Cognitive Map and its Application in Three-Rivers Ecosystem

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2016-01-01

    Full Text Available Fuzzy Cognitive Map (FCM offers many advantages such intuitive knowledge representation and fast numerical reasoning ability, etc. It suits modeling and decision-making of dynamic systems. With the aims to effectively help to analyze and control system sustainable evolution, the paper defines the steady states of fixed point and limited cycle of a FCM modeling system. Accordingly, the rules of steady states of the FCM model and the factors influencing the steady states are presented and proved. The Three-Rivers represents a system including population, ecological environment, social development and their relationships. Based on the relationships, the Three-Rivers ecosystem is modeled by FCM and the Three-Rivers ecosystemsustainable evolutionis analyzed bythe rules of the steady states of FCM.

  12. ROLE OF NMDA, NICOTINIC, AND GABA RECEPTORS IN THE STEADY STATE VISUAL EVOKED POTENTIAL IN RATS.

    Science.gov (United States)

    This manuscript characterizes the receptor pathways involved in pattern-evoked potential generation in rats" NMDA and nicotinic acetylcholine receptors appear to be involved in the generation of the steady-state pattern evoked response in vivo." The pattern evok...

  13. Navier-Stokes Predictions of Dynamic Stability Derivatives: Evaluation of Steady-State Methods

    National Research Council Canada - National Science Library

    DeSpirito, James; Silton, Sidra I; Weinacht, Paul

    2008-01-01

    The prediction of the dynamic stability derivatives-roll-damping, Magnus, and pitch-damping moments-were evaluated for three spin-stabilized projectiles using steady-state computational fluid dynamic (CFD) calculations...

  14. Steady state performance of subcritical and supercritical pressure natural circulation in the same test facility

    International Nuclear Information System (INIS)

    Swapnalee, B.T.; Vijayan, P.K; Sharma, Manish; Pilkhwal, D.S.; Saha, D.; Sinha, R.K.

    2011-01-01

    For supercritical pressure natural circulation loops, explicit correlation for steady state flow are not available. While using the subcritical natural circulation flow correlation for supercritical pressure data, it has been observed that subcritical flow correlation is not able to predict the steady state flow accurately near supercritical pressure condition. A generalized correlation has been proposed to estimate the steady state flow in supercritical pressure natural circulation loop based on a relationship between dimensionless density and dimensionless enthalpy reported in literature. This generalized correlation has been tested with the steady state supercritical pressure CO 2 data and found to be in good agreement. Subsequently supercritical pressure data for different working fluids reported in literature has also been compared with the proposed correlation. It is observed that the same generalized correlation is applicable for other fluids also. The present paper deals with the details of the test facility, the derivation of the generalized correlation and comparison with experimental data. (author)

  15. Measurements of Gene Expression at Steady State Improve the Predictability of Part Assembly.

    Science.gov (United States)

    Zhang, Haoqian M; Chen, Shuobing; Shi, Handuo; Ji, Weiyue; Zong, Yeqing; Ouyang, Qi; Lou, Chunbo

    2016-03-18

    Mathematical modeling of genetic circuits generally assumes that gene expression is at steady state when measurements are performed. However, conventional methods of measurement do not necessarily guarantee that this assumption is satisfied. In this study, we reveal a bi-plateau mode of gene expression at the single-cell level in bacterial batch cultures. The first plateau is dynamically active, where gene expression is at steady state; the second plateau, however, is dynamically inactive. We further demonstrate that the predictability of assembled genetic circuits in the first plateau (steady state) is much higher than that in the second plateau where conventional measurements are often performed. By taking the nature of steady state into consideration, our method of measurement promises to directly capture the intrinsic property of biological parts/circuits regardless of circuit-host or circuit-environment interactions.

  16. Pump two-phase performance program. Volume 5. Steady-state data. Final report

    International Nuclear Information System (INIS)

    Kennedy, W.G.; Jacob, M.C.; Whitehouse, J.C.; Fishburn, J.D.; Kanupka, G.J.

    1980-09-01

    Objective was to obtain steady-state and transient two-phase empirical data to substantiate and improve the reactor coolant pump analytical model currently used for LOCA analysis. A one-fifth scale pump was tested in steady-state runs with single- and two-phase mixtures of water and steam over ranges of operating conditions representative of postulated loss-of-coolant accidents. This volume contains tabulated data and derived parameters obtained for each of 962 selected steady-state test points conducted. A summary chronological listing of all 1322 steady-state test points actually conducted is also provided. The basic data are 67 channels of direct measurements for each test. Twenty-six derived parameters plus drift and standard deviations are calculated from the basic data and presented in the tabulation

  17. Calibration of steady-state car-following models using macroscopic loop detector data.

    Science.gov (United States)

    2010-05-01

    The paper develops procedures for calibrating the steady-state component of various car following models using : macroscopic loop detector data. The calibration procedures are developed for a number of commercially available : microscopic traffic sim...

  18. Power exhaust and edge control in steady state Tore Supra plasma

    International Nuclear Information System (INIS)

    Mitteau, R.

    2002-01-01

    Tore Supra is operated since 2001 with a flat limiter which is designed for 10 MW/m 2 . The limiter is located in the bottom of the vacuum vessel. It was only partial in 2001, but it is now fully toroidal without poloidal leading edges. Part of the experimental campaign of 2001 was devoted to the physical as well as technological qualification of the limiter. For 4 MW injected, the limiter extracted 2.5 MW and heat flux densities reached 2.5 MW/m 2 . It is still modest compared to the design value, but nonetheless enables a comparison to the modelling as surface temperature increased locally to 400 deg C. Thermal steady state is reached in 5-8 seconds. The values of heat flux and the deposition pattern are in very good accordance with design simulations. The heat flux pattern is a combination of parallel and perpendicular flow components which are roughly of equal magnitude. Insights on the heat flux deposition pattern as well as on the tiles behaviour are given. Operation with such a large size high heat flux component sets renewed emphasis on issues such as feed back systems, active security, cooling parameter and in situ assessment of the elements. They are dealt with in the paper. (author)

  19. Progress of design studies on an LHD-type steady state reactor

    Energy Technology Data Exchange (ETDEWEB)

    Motojima, O. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)], E-mail: motojima@LHD.nifs.ac.jp; Komori, A.; Sagara, A.; Yamada, H. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Mitarai, O. [Kyushu Tokai University, 9-1-1 Toroku, Kumamoto 862-8652 (Japan); Sakamoto, R.; Miyazawa, J.; Kobayashi, M.; Morisaki, T.; Masuzaki, S.; Imagawa, S.; Kozaki, Y.; Tanaka, T. [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2008-12-15

    Progress of design studies on a heliotron reactor is reported. Recent experimental achievements in large helical device (LHD) are building up the physical basement. Integrated designs on LHD-type energy reactors have improved the base design of force free helical reactor and revealed economical feasibility. Large helical device is exploring a new horizon of net current free helical plasmas. Inherent characteristics demonstrate reactor relevant performances individually; steady state (1 h), high beta (5%), high density (1 x 10{sup 21} m{sup -3}), etc. In particular, discovery of internal diffusion barrier provides a novel attractive scenario of super high density operation. It greatly facilitates physical requirements as well as mitigates engineering demands. New methods have been proposed to access and operate ignited plasmas; a long rise-up over 300 s to reduce the heating power to 30 MW and a new proportional-integration-derivative (PID) control of the fueling to handle the thermally unstable plasma at high-density operations.

  20. Sensitivity of non-steady-state photoelectromotive force-based adaptive photodetectors and characterization techniques.

    Science.gov (United States)

    Stepanov, S I

    1994-02-20

    The light-to-electricity conversion efficiency of the non-steady-state photoelectromotive force effect and its threshold sensitivity for the detection of phase-modulated optical signals and space-charge electric fields are evaluated. It is shown that for the optimal conditions of operation (the carrier spatial frequency is equal to the inverse diffusion length of the photocarriers, the detected frequency is higher than the cutoff frequency of the electromotive force signal, and the load resistance is higher than the resistance of the sample), the generation-recombination noise is approximately equal to the thermal noise of the sample resistance. In this case the threshold sensitivity of the adaptive photodetector without an external dc bias is independent of the parameters of the crystal used and can be only 4√2 times lower than that caused by the generation-recombination noise in a conventional photoresistor. Unlike in photodiodes and photoresistors, the output noise caused by laser intensity fluctuations is of the multiplicative type in the adaptive photodetectors.

  1. Degradation of Leakage Currents in Solid Tantalum Capacitors Under Steady-State Bias Conditions

    Science.gov (United States)

    Teverovsky, Alexander A.

    2010-01-01

    Degradation of leakage currents in various types of solid tantalum capacitors under steady-state bias conditions was investigated at temperatures from 105 oC to 170 oC and voltages up to two times the rated voltage. Variations of leakage currents with time under highly accelerated life testing (HALT) and annealing, thermally stimulated depolarization currents, and I-V characteristics were measured to understand the conduction mechanism and the reason for current degradation. During HALT the currents increase gradually up to three orders of magnitude in some cases, and then stabilize with time. This degradation is reversible and annealing can restore the initial levels of leakage currents. The results are attributed to migration of positively charged oxygen vacancies in tantalum pentoxide films that diminish the Schottky barrier at the MnO2/Ta2O5 interface and increase electron injection. A simple model allows for estimation of concentration and mobility of oxygen vacancies based on the level of current degradation.

  2. IBIS, FBR 3-D Steady-State and Kinetics with Thermohydraulic Feedback

    International Nuclear Information System (INIS)

    Konomura, Mamoru; Tada, Nobuo; Oka, Yoshiaki; An, Shigehiro

    1987-01-01

    1 - Description of program or function: The IBIS code performs steady state and kinetics calculations based on a three-dimensional nuclear diffusion kinetics with thermal hydraulic feedback. It can calculate the following values in hexagonal-Z geometry of a fast breeder reactor core through the progress of transient: (1) Net reactivity; (2) Total and group-wise delayed neutron fraction; (3) Group-wise delayed neutron precursor concentration; (4) Total power and energy; (5) Space dependent neutron flux in each energy group; (6) Space dependent temperature of each material; (7) Maximum temperature of each material and its location. 2 - Method of solution: The quasi-static method is adopted to solve the three-dimensional nuclear diffusion kinetics problem. The method is the same as employed in the code QX1. The shape function equation is solved with the finite difference treatment as used in the codes CITATION and HONEYCOMB. One-dimensional thermo-hydraulics is solved with a model similar to that given in the code SASLA. Sodium boiling can be taken into account. 3 - Restrictions on the complexity of the problem: The number of neutron energy groups is fixed to 3 groups in the present version of the code

  3. CORTES, Steady-State and Transient Heat Flow and Stress Analysis in Pipe Joints

    International Nuclear Information System (INIS)

    Gantayat, A. N.; Powell, G. H.; Textor, R. E.; Bass, B. R.; Bryson, J. W.; Moore, S. E.

    1996-01-01

    1 - Description of problem or function: CORTES is a package consisting of five finite element programs developed for the stress analysis of ANSI Bl6.9 tee joints. The five programs are: SA, the stress analysis program which analyzes pipe joints for the effects of internal pressure and arbitrary combinations of bending moment, torsional moment, axial force, and sheer force on the ends of the branch and run pipes. A limited temperature stress analysis capability is provided. EP, the elasto-plastic stress analysis program which analyzes pipe joints for the effects of internal pressure and arbitrary combinations of forces (including moments) and displacements including rotations imposed on the ends of the run and branch pipes. THFA, the transient heat flow analysis program which determines the time history of temperature variations in the pipe joints. The joint is assumed initially to be at a uniform temperature. Temperature changes are then specified at the inner surface, and a heat flow analysis is performed assuming a perfectly insulated outer surface. SHFA, the steady-state heat flow analysis program which determines the steady-state temperature distribution in pipe joints. Temperatures are specified on given cross-sections of the branch and run portions of the tee joint, and the temperature distribution throughout the remainder of the joint is calculated assuming the inner and outer surfaces are perfectly insulated. TSA, accepts as input, the output data from THFA or SHFA and performs the thermal stress analysis on the pipe joints. 2 - Method of solution: The joint is idealized as a system of 8-node hexahedral finite elements. A modified Zienkiewicz-Irons iso-parametric element which has superior bending properties compared with the unmodified iso-parametric element is used. The transient heat flow (THFA) problem is solved by a step-by-step integration procedure assuming linear variation of temperature with time within a step. 3 - Restrictions on the complexity of

  4. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities

    International Nuclear Information System (INIS)

    Rowan, D.J.

    2013-01-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of 137 Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable 133 Cs) from geologic sources and the other released in pulses ( 137 Cs) from reactor operations. I also compare 137 Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test 137 Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher 137 Cs BAFs than expected from 133 Cs BAFs for the same fish or 137 Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any situation

  5. Bioaccumulation factors and the steady state assumption for cesium isotopes in aquatic foodwebs near nuclear facilities.

    Science.gov (United States)

    Rowan, D J

    2013-07-01

    Steady state approaches, such as transfer coefficients or bioaccumulation factors, are commonly used to model the bioaccumulation of (137)Cs in aquatic foodwebs from routine operations and releases from nuclear generating stations and other nuclear facilities. Routine releases from nuclear generating stations and facilities, however, often consist of pulses as liquid waste is stored, analyzed to ensure regulatory compliance and then released. The effect of repeated pulse releases on the steady state assumption inherent in the bioaccumulation factor approach has not been evaluated. In this study, I examine the steady state assumption for aquatic biota by analyzing data for two cesium isotopes in the same biota, one isotope in steady state (stable (133)Cs) from geologic sources and the other released in pulses ((137)Cs) from reactor operations. I also compare (137)Cs bioaccumulation factors for similar upstream populations from the same system exposed solely to weapon test (137)Cs, and assumed to be in steady state. The steady state assumption appears to be valid for small organisms at lower trophic levels (zooplankton, rainbow smelt and 0+ yellow perch) but not for older and larger fish at higher trophic levels (walleye). Attempts to account for previous exposure and retention through a biokinetics approach had a similar effect on steady state, upstream and non-steady state, downstream populations of walleye, but were ineffective in explaining the more or less constant deviation between fish with steady state exposures and non-steady state exposures of about 2-fold for all age classes of walleye. These results suggest that for large, piscivorous fish, repeated exposure to short duration, pulse releases leads to much higher (137)Cs BAFs than expected from (133)Cs BAFs for the same fish or (137)Cs BAFs for similar populations in the same system not impacted by reactor releases. These results suggest that the steady state approach should be used with caution in any

  6. The ITER divertor cassette. Steady state characterisation and draining and drying transient hydraulic analyses

    International Nuclear Information System (INIS)

    Pietro Alessandro Di Maio; Valerio Tomarchio; Giuseppe Vella; Irene Zammuto; Giovanni Dell'Orco

    2005-01-01

    gas bubbles. Due to the complex flow scheme of the hydraulic circuit, a pure theoretical study does not appears sufficient to address all the above mentioned items and an experimental validation of the models is mandatory. In addition to that, the assembly of the PFCs onto the cassette body as well as their integration by welding the coolant connections of the PFCs, also represent a critical step to be investigated. In order to investigate the aforementioned critical issues a theoretical and experimental research activity has been launched by the ENEA-Brasimone labs, in cooperation with the Department of Nuclear Engineering of the University of Palermo, with the specific aim of investigating the thermal-hydraulic behaviour of the whole divertor cassette both in steady state and operational or accidental transient conditions. The theoretical study, based on a computational approach, has been carried out with the RELAP5 code and the results obtained are herewith presented and critically discussed. In particular, the paper presents steady state and transient theoretical analyses intended to characterise the steady state behaviour of the cassette, determining flow distribution, pressure drop and CHF margin for each cooling channels, and to investigate the cassette behaviour during the draining and drying procedure, respectively. (authors)

  7. The ITER divertor cassette. Steady state characterisation and draining and drying transient hydraulic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pietro Alessandro Di Maio; Valerio Tomarchio; Giuseppe Vella; Irene Zammuto [Dipartimento di Ingegneria Nucleare, Viale delle Scienze, 90128 Palermo, (Italy); Giovanni Dell' Orco [ENEA-Brasimone, 40032 Camugnano, Bologna (Italy)

    2005-07-01

    elimination of gas bubbles. Due to the complex flow scheme of the hydraulic circuit, a pure theoretical study does not appears sufficient to address all the above mentioned items and an experimental validation of the models is mandatory. In addition to that, the assembly of the PFCs onto the cassette body as well as their integration by welding the coolant connections of the PFCs, also represent a critical step to be investigated. In order to investigate the aforementioned critical issues a theoretical and experimental research activity has been launched by the ENEA-Brasimone labs, in cooperation with the Department of Nuclear Engineering of the University of Palermo, with the specific aim of investigating the thermal-hydraulic behaviour of the whole divertor cassette both in steady state and operational or accidental transient conditions. The theoretical study, based on a computational approach, has been carried out with the RELAP5 code and the results obtained are herewith presented and critically discussed. In particular, the paper presents steady state and transient theoretical analyses intended to characterise the steady state behaviour of the cassette, determining flow distribution, pressure drop and CHF margin for each cooling channels, and to investigate the cassette behaviour during the draining and drying procedure, respectively. (authors)

  8. Steady state temperature profile in a sphere heated by microwaves

    Science.gov (United States)

    Barmatz, M.; Jackson, H. W.

    1992-01-01

    A new theory has been developed to calculate the microwave absorption and resultant temperature profile within a sphere positioned in a single mode rectangular cavity. This theory is an extension of a total absorption model based on Mie scattering results. Temperature profiles have been computed for alumina spheres at the center of a rectangular cavity excited in the TM354 mode. Parametric studies reveal significant structure in those profiles under special conditions that are associated with electromagnetic resonances inside the spheres. Anomalous behavior similar to thermal runaway occurs at moderate temperatures when there is enhanced absorption associated with resonant conditions in the sphere.

  9. Burn cycle requirements comparison of pulsed and steady-state tokamak reactors

    International Nuclear Information System (INIS)

    Brooks, J.N.; Ehst, D.A.

    1983-12-01

    Burn cycle parameters and energy transfer system requirements were analyzed for an 8-m commercial tokamak reactor using four types of cycles: conventional, hybrid, internal transformer, and steady state. Not surprisingly, steady state is the best burn mode if it can be achieved. The hybrid cycle is a promising alternative to the conventional. In contrast, the internal transformer cycle does not appear attractive for the size tokamak in question

  10. A Novel Chronic Opioid Monitoring Tool to Assess Prescription Drug Steady State Levels in Oral Fluid.

    Science.gov (United States)

    Shaparin, Naum; Mehta, Neel; Kunkel, Frank; Stripp, Richard; Borg, Damon; Kolb, Elizabeth

    2017-11-01

    Interpretation limitations of urine drug testing and the invasiveness of blood toxicology have motivated the desire for the development of simpler methods to assess biologically active drug levels on an individualized patient basis. Oral fluid is a matrix well-suited for the challenge because collections are based on simple noninvasive procedures and drug concentrations better correlate to blood drug levels as oral fluid is a filtrate of the blood. Well-established pharmacokinetic models were utilized to generate oral fluid steady state concentration ranges to assess the interpretive value of the alternative matrix to monitor steady state plasma oxycodone levels. Paired oral fluid and plasma samples were collected from patients chronically prescribed oxycodone and quantitatively analyzed by liquid chromatography tandem mass spectrometry. Steady state plasma concentration ranges were calculated for each donor and converted to an equivalent range in oral fluid. Measured plasma and oral fluid oxycodone concentrations were compared with respective matrix-matched steady state ranges, using each plasma steady state classification as the control. A high degree of correlation was observed between matrices when classifying donors according to expected steady state oxycodone concentration. Agreement between plasma and oral fluid steady state classifications was observed in 75.6% of paired samples. This study supports novel application of basic pharmacokinetic knowledge to the pain management industry, simplifying and improving individualized drug monitoring and risk assessment through the use of oral fluid drug testing. Many benefits of established therapeutic drug monitoring in plasma can be realized in oral fluid for patients chronically prescribed oxycodone at steady state. © 2017 American Academy of Pain Medicine. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  11. A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws

    Science.gov (United States)

    2012-09-03

    Numerical Solution of Polynomial Systems by Homotopy Con- tinuation Methods in Handbook of Numerical Analysis , Volume XI, Spe- cial Volume: Foundations of...A homotopy method based on WENO schemes for solving steady state problems of hyperbolic conservation laws Wenrui Hao∗ Jonathan D. Hauenstein† Chi...robustness of the new method . Keywords homotopy continuation, hyperbolic conservation laws, WENO scheme, steady state problems. ∗Department of Applied and

  12. Finite element modelling of creep process - steady state stresses and strains

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2014-01-01

    Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.

  13. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    Science.gov (United States)

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  14. Non-existence of Steady State Equilibrium in the Neoclassical Growth Model with a Longevity Trend

    DEFF Research Database (Denmark)

    Hermansen, Mikkel Nørlem

    of steady state equilibrium when considering the empirically observed trend in longevity. We extend a standard continuous time overlapping generations model by a longevity trend and are thereby able to study the properties of mortality-driven population growth. This turns out to be exceedingly complicated...... to handle, and it is shown that in general no steady state equilibrium exists. Consequently analytical results and long run implications cannot be obtained in a setting with a realistic demographic setup....

  15. Mathematical analysis of steady-state solutions in compartment and continuum models of cell polarization.

    Science.gov (United States)

    Zheng, Zhenzhen; Chou, Ching-Shan; Yi, Tau-Mu; Nie, Qing

    2011-10-01

    Cell polarization, in which substances previously uniformly distributed become asymmetric due to external or/and internal stimulation, is a fundamental process underlying cell mobility, cell division, and other polarized functions. The yeast cell S. cerevisiae has been a model system to study cell polarization. During mating, yeast cells sense shallow external spatial gradients and respond by creating steeper internal gradients of protein aligned with the external cue. The complex spatial dynamics during yeast mating polarization consists of positive feedback, degradation, global negative feedback control, and cooperative effects in protein synthesis. Understanding such complex regulations and interactions is critical to studying many important characteristics in cell polarization including signal amplification, tracking dynamic signals, and potential trade-off between achieving both objectives in a robust fashion. In this paper, we study some of these questions by analyzing several models with different spatial complexity: two compartments, three compartments, and continuum in space. The step-wise approach allows detailed characterization of properties of the steady state of the system, providing more insights for biological regulations during cell polarization. For cases without membrane diffusion, our study reveals that increasing the number of spatial compartments results in an increase in the number of steady-state solutions, in particular, the number of stable steady-state solutions, with the continuum models possessing infinitely many steady-state solutions. Through both analysis and simulations, we find that stronger positive feedback, reduced diffusion, and a shallower ligand gradient all result in more steady-state solutions, although most of these are not optimally aligned with the gradient. We explore in the different settings the relationship between the number of steady-state solutions and the extent and accuracy of the polarization. Taken together

  16. Steady state subchannel analysis of AHWR fuel cluster

    International Nuclear Information System (INIS)

    Dasgupta, A.; Chandraker, D.K.; Vijayan, P.K.; Saha, D.

    2006-09-01

    Subchannel analysis is a technique used to predict the thermal hydraulic behavior of reactor fuel assemblies. The rod cluster is subdivided into a number of parallel interacting flow subchannels. The conservation equations are solved for each of these subchannels, taking into account subchannel interactions. Subchannel analysis of AHWR D-5 fuel cluster has been carried out to determine the variations in thermal hydraulic conditions of coolant and fuel temperatures along the length of the fuel bundle. The hottest regions within the AHWR fuel bundle have been identified. The effect of creep on the fuel performance has also been studied. MCHFR has been calculated using Jansen-Levy correlation. The calculations have been backed by sensitivity analysis for parameters whose values are not known accurately. The sensitivity analysis showed the calculations to have a very low sensitivity to these parameters. Apart from the analysis, the report also includes a brief introduction of a few subchannel codes. A brief description of the equations and solution methodology used in COBRA-IIIC and COBRA-IV-I is also given. (author)

  17. Steady state effects in a two-pulse diffusion-weighted sequence.

    Science.gov (United States)

    Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S; Stilbs, Peter

    2015-04-21

    In conventional nuclear magnetic resonance (NMR) diffusion measurements a significant amount of experimental time is used up by magnetization recovery, serving to prevent the formation of the steady state, as in the latter case the manifestation of diffusion is modulated by multiple applications of the pulse sequence and conventional diffusion coefficient inference procedures are generally not applicable. Here, an analytical expression for diffusion-related effects in a two-pulse NMR experiment (e.g., pulsed-gradient spin echo) in the steady state mode (with repetition times less than the longitudinal relaxation time of the sample) is derived by employing a Fourier series expansion within the solution of the Bloch-Torrey equations. Considerations are given for the transition conditions between the full relaxation and the steady state experiment description. The diffusion coefficient of a polymer solution (polyethylene glycol) is measured by a two-pulse sequence in the full relaxation mode and for a range of repetition times, approaching the rapid steady state experiment. The precision of the fitting employing the presented steady state solution by far exceeds that of the conventional fitting. Additionally, numerical simulations are performed yielding results strongly supporting the proposed description of the NMR diffusion measurements in the steady state.

  18. Steady state effects in a two-pulse diffusion-weighted sequence

    International Nuclear Information System (INIS)

    Zubkov, Mikhail; Stait-Gardner, Timothy; Price, William S.; Stilbs, Peter

    2015-01-01

    In conventional nuclear magnetic resonance (NMR) diffusion measurements a significant amount of experimental time is used up by magnetization recovery, serving to prevent the formation of the steady state, as in the latter case the manifestation of diffusion is modulated by multiple applications of the pulse sequence and conventional diffusion coefficient inference procedures are generally not applicable. Here, an analytical expression for diffusion-related effects in a two-pulse NMR experiment (e.g., pulsed-gradient spin echo) in the steady state mode (with repetition times less than the longitudinal relaxation time of the sample) is derived by employing a Fourier series expansion within the solution of the Bloch-Torrey equations. Considerations are given for the transition conditions between the full relaxation and the steady state experiment description. The diffusion coefficient of a polymer solution (polyethylene glycol) is measured by a two-pulse sequence in the full relaxation mode and for a range of repetition times, approaching the rapid steady state experiment. The precision of the fitting employing the presented steady state solution by far exceeds that of the conventional fitting. Additionally, numerical simulations are performed yielding results strongly supporting the proposed description of the NMR diffusion measurements in the steady state

  19. When it pays to rush: interpreting morphogen gradients prior to steady-state

    International Nuclear Information System (INIS)

    Saunders, Timothy; Howard, Martin

    2009-01-01

    During development, morphogen gradients precisely determine the position of gene expression boundaries despite the inevitable presence of fluctuations. Recent experiments suggest that some morphogen gradients may be interpreted prior to reaching steady-state. Theoretical work has predicted that such systems will be more robust to embryo-to-embryo fluctuations. By analyzing two experimentally motivated models of morphogen gradient formation, we investigate the positional precision of gene expression boundaries determined by pre-steady-state morphogen gradients in the presence of embryo-to-embryo fluctuations, internal biochemical noise and variations in the timing of morphogen measurement. Morphogens that are direct transcription factors are found to be particularly sensitive to internal noise when interpreted prior to steady-state, disadvantaging early measurement, even in the presence of large embryo-to-embryo fluctuations. Morphogens interpreted by cell-surface receptors can be measured prior to steady-state without significant decrease in positional precision provided fluctuations in the timing of measurement are small. Applying our results to experiment, we predict that Bicoid, a transcription factor morphogen in Drosophila, is unlikely to be interpreted prior to reaching steady-state. We also predict that Activin in Xenopus and Nodal in zebrafish, morphogens interpreted by cell-surface receptors, can be decoded in pre-steady-state

  20. Reproducibility of hypercapnic ventilatory response measurements with steady-state and rebreathing methods.

    Science.gov (United States)

    Mannée, Denise C; Fabius, Timon M; Wagenaar, Michiel; Eijsvogel, Michiel M M; de Jongh, Frans H C

    2018-01-01

    In this study, the hypercapnic ventilatory response (HCVR) was measured, defined as the ventilation response to carbon dioxide tension ( P CO 2 ). We investigated which method, rebreathing or steady-state, is most suitable for measurement of the HCVR in healthy subjects, primarily based on reproducibility. Secondary outcome parameters were subject experience and duration. 20 healthy adults performed a rebreathing and steady-state HCVR measurement on two separate days. Subject experience was assessed using numeric rating scales (NRS). The intraclass correlation coefficient (ICCs) of the sensitivity to carbon dioxide above the ventilatory recruitment threshold and the projected apnoea threshold were calculated to determine the reproducibility of both methods. The ICCs of sensitivity were 0.89 (rebreathing) and 0.56 (steady-state). The ICCs of the projected apnoea threshold were 0.84 (rebreathing) and 0.25 (steady-state). The steady-state measurement was preferred by 16 out of 20 subjects; the differences in NRS scores were small. The hypercapnic ventilatory response measured using the rebreathing setup provided reproducible results, while the steady-state method did not. This may be explained by high variability in end-tidal P CO 2 . Differences in subject experience between the methods are small.

  1. 40 CFR 1033.515 - Discrete-mode steady-state emission tests of locomotives and locomotive engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Discrete-mode steady-state emission... Procedures § 1033.515 Discrete-mode steady-state emission tests of locomotives and locomotive engines. This... a warm-up followed by a sequence of nominally steady-state discrete test modes, as described in...

  2. Illustrating the Steady-State Condition and the Single-Molecule Kinetic Method with the NMDA Receptor

    Science.gov (United States)

    Kosman, Daniel J.

    2009-01-01

    The steady-state is a fundamental aspect of biochemical pathways in cells; indeed, the concept of steady-state is a definition of life itself. In a simple enzyme kinetic scheme, the steady-state condition is easy to define analytically but experimentally often difficult to capture because of its evanescent quality; the initial, constant velocity…

  3. Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints.

    Science.gov (United States)

    Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan

    2016-08-22

    Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the

  4. Steady state flow evaluations for passive auxiliary feedwater system of APR

    International Nuclear Information System (INIS)

    Park, Jongha; Kim, Jaeyul; Seong, Hoje; Kang, Kyoungho

    2012-01-01

    This paper briefly introduces a methodology to evaluate steady state flow of APR+ Passive Auxiliary Feedwater System (PAFS). The PAFS is being developed as a safety grade passive system to completely replace the existing active Auxiliary Feedwater System (AFWS). Natural circulation cooling can be generally classified into the single-phase, two-phase, and boiling-condensation modes. The PAF is designed to be operated in a boiling-condensation natural circulation mode. The steady-state flow rate should be equal to the steady-state boiling/condensation rate determined by the steady-state energy and momentum balances in the PAFS. The determined steady-state flow rate can be used in the design optimization for the natural circulation loop of the PAFS through the steady-state momentum balance. Since the retarding force, which is to be balanced by the driving force in the natural circulation system design depends on the reliable evaluation of the success of a natural circulation system design depends on the reliable evaluation of the pressure loss coefficients. In PAFS, the core decay heat is released by natural circulation flow between the S G secondary side and the Passive Condensation Heat Exchanger (PCHX) that is immersed in the Passive Condensation Cooling Tank (PCCT). The PCCT is located on the top of Auxiliary building The driving force is determined by the difference between the S/G (heat Source) secondary water level and condensation liquid (heat sink) level. It will overcome retarding force at flowrate in the system, which is determined by vaporization and condensation of the steam which is generated at the S/G by the latent heat in system. In this study, the theoretical method to estimate the steady state flow rate in boiling-condensation natural circulation system is developed and compared with test results

  5. An Efficient Steady-State Analysis Method for Large Boolean Networks with High Maximum Node Connectivity.

    Science.gov (United States)

    Hong, Changki; Hwang, Jeewon; Cho, Kwang-Hyun; Shin, Insik

    2015-01-01

    Boolean networks have been widely used to model biological processes lacking detailed kinetic information. Despite their simplicity, Boolean network dynamics can still capture some important features of biological systems such as stable cell phenotypes represented by steady states. For small models, steady states can be determined through exhaustive enumeration of all state transitions. As the number of nodes increases, however, the state space grows exponentially thus making it difficult to find steady states. Over the last several decades, many studies have addressed how to handle such a state space explosion. Recently, increasing attention has been paid to a satisfiability solving algorithm due to its potential scalability to handle large networks. Meanwhile, there still lies a problem in the case of large models with high maximum node connectivity where the satisfiability solving algorithm is known to be computationally intractable. To address the problem, this paper presents a new partitioning-based method that breaks down a given network into smaller subnetworks. Steady states of each subnetworks are identified by independently applying the satisfiability solving algorithm. Then, they are combined to construct the steady states of the overall network. To efficiently apply the satisfiability solving algorithm to each subnetwork, it is crucial to find the best partition of the network. In this paper, we propose a method that divides each subnetwork to be smallest in size and lowest in maximum node connectivity. This minimizes the total cost of finding all steady states in entire subnetworks. The proposed algorithm is compared with others for steady states identification through a number of simulations on both published small models and randomly generated large models with differing maximum node connectivities. The simulation results show that our method can scale up to several hundreds of nodes even for Boolean networks with high maximum node connectivity. The

  6. A principle for the noninvasive measurement of steady-state heat transfer parameters in living tissues

    Directory of Open Access Journals (Sweden)

    S. Yu. Makarov

    2014-01-01

    thermal field in biotissue (measuring procedure with the number i, dUiis a variation of a physical value U which unambiguously determines the steady-state thermal field, {pj} is a set of parameters to be measured.Theoretical analysis has shown that the implementation of the above principle leads to the equations that do not contain unknown values of blood temperature and power density of biological heat sources, unlike the starting Pennes equation [4]. This is the main advantage of the developed approach in comparison with non-stationary methods. In addition, there is no dynamic measurement error which is inevitably associated with the measurement procedure for the transient processes.Numerical and physical experiments have been carried out to validate the functionality of the above principle for noninvasive measuring the parameters of stationary heat transfer. For example, with use a thermophysical model of biological tissue [5] the procedure of measuring was simulated to obtain the values of two thermophysical parameters of model biological tissue, namely the blood perfusion (in absolute units and the thermal conductivity. Also, with use a specially designed probe the measurements were carried out for the natural biological tissue of human skin epithelium. The blood perfusion parameter estimation value is in good agreement with the literature data [6], despite the illustrative purpose of conducted measurements. These experiments have also demonstrated the possibility of simultaneous measuring the several thermophysical properties of biological tissue in a noninvasive manner, using a rather simple equipment.Formula (1 can contain not only thermophysical parameters of the living tissue, but any other parameters provided that each one unambiguously affects the heat transfer in a particular experiment. For example, it was shown that it is possible to recover the thicknesses of subcutaneous tissue layers of model of skin on the results of thermal measurements on the basis of

  7. Steady state and LOCA analysis of Kartini reactor using RELAP5/SCDAP code: The role of passive system

    Science.gov (United States)

    Antariksawan, Anhar R.; Wahyono, Puradwi I.; Taxwim

    2018-02-01

    Safety is the priority for nuclear installations, including research reactors. On the other hand, many studies have been done to validate the applicability of nuclear power plant based best estimate computer codes to the research reactor. This study aims to assess the applicability of the RELAP5/SCDAP code to Kartini research reactor. The model development, steady state and transient due to LOCA calculations have been conducted by using RELAP5/SCDAP. The calculation results are compared with available measurements data from Kartini research reactor. The results show that the RELAP5/SCDAP model steady state calculation agrees quite well with the available measurement data. While, in the case of LOCA transient simulations, the model could result in reasonable physical phenomena during the transient showing the characteristics and performances of the reactor against the LOCA transient. The role of siphon breaker hole and natural circulation in the reactor tank as passive system was important to keep reactor in safe condition. It concludes that the RELAP/SCDAP could be use as one of the tool to analyse the thermal-hydraulic safety of Kartini reactor. However, further assessment to improve the model is still needed.

  8. TRUMP, Steady-State and Transient 1-D, 2-D and 3-D Potential Flow, Temperature Distribution

    International Nuclear Information System (INIS)

    Elrod, D.C.; Turner, W.D.

    1981-01-01

    1 - Description of problem or function: TRUMP solves a general non- linear parabolic partial differential equation describing flow in various kinds of potential fields, such as fields of temperature, pressure, or electricity and magnetism; simultaneously, it will solve two additional equations representing, in thermal problems, heat production by decomposition of two reactants having rate constants with a general Arrhenius temperature dependence. Steady- state and transient flow in one, two, or three dimensions are considered in geometrical configurations having simple or complex shapes and structures. Problem parameters may vary with spatial position, time, or primary dependent variables--temperature, pressure, or field strength. Initial conditions may vary with spatial position, and among the criteria that may be specified for ending a problem are upper and lower limits on the size of the primary dependent variable, upper limits on the problem time or on the number of time-steps or on the computer time, and attainment of steady state. 2 - Method of solution: Solutions may be obtained by use of explicit- or implicit-difference equations, or by an optimized combination of both. 3 - Restrictions on the complexity of the problem: The program currently provides for maxima of: 40 materials, 5 reactants, 105 surface conditions, 20 boundary nodes, 16 entries per tabulated function (table-length)

  9. Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas

    Science.gov (United States)

    Liang, Zhi; Keblinski, Pawel

    2018-02-01

    Using molecular dynamics simulations, we study evaporation and condensation of fluid Ar in the presence of a non-condensable Ne gas in a nanochannel. The evaporation and condensation are driven by the temperature difference, ΔTL, between the evaporating and condensing liquid surfaces. The steady-state evaporation and condensation fluxes (JMD) are also affected by the Ne concentration, ρNe, and the nanochannel length. We find that across a wide range of ΔTL and ρNe, JMD is in good agreement with the prediction from Stefan's law and from Schrage relationships. Furthermore, for ΔTL less than ˜20% of the absolute average temperature, we find that both steady-state heat and mass fluxes are proportional to ΔTL. This allows us to determine the interfacial resistance to the heat and mass transfer and compare it with the corresponding resistances in the gas phase. In this context, we derive an analytical expression for the effective thermal conductivity of the gas region in the nanochannel and the mass transport interfacial resistance equivalent length, i.e., the length of the nanochannel for which the resistance to the mass flow is the same as the interfacial resistance to the mass flow.

  10. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.

    Science.gov (United States)

    Maity, Somsubhra; Wu, Wei-Chen; Tracy, Joseph B; Clarke, Laura I; Bochinski, Jason R

    2017-08-17

    Anisotropically-shaped metal nanoparticles act as nanoscale heaters via excitation of a localized surface plasmon resonance, utilizing a photothermal effect which converts the optical energy into local heat. Steady-state temperatures within a polymer matrix embedded with gold nanorods undergoing photothermal heating using continuous-wave excitation are measured in the immediate spatial vicinity of the nanoparticle (referred to as the local temperature) from observing the rate of physical rotation of the asymmetric nanoparticles within the locally created polymer melt. Average temperatures across the entire (mostly solid) sample (referred to as the global temperature) are simultaneously observed using a fluorescence method from randomly dispersed molecular emitters. Comparing these two independent measurements in films having varying concentrations of nanorods reveals the interplay between the local and global temperatures, clearly demonstrating the capability of these material samples to sustain large steady-state spatial temperature gradients when experiencing continuous-wave excitation photothermal heating. These results are discussed quantitatively. Illustrative imaging studies of nanofibers under photothermal heating also support the presence of a large temperature gradient. Photothermal heating in this manner has potential utility in creating unique thermal processing conditions for outcomes such as driving chemical reactions, inducing crystallinity changes, or enhancing degradation processes in a manner unachievable by conventional heating methods.

  11. Epoxide hydrolase-catalyzed enantioselective conversion of trans-stilbene oxide: Insights into the reaction mechanism from steady-state and pre-steady-state enzyme kinetics.

    Science.gov (United States)

    Archelas, Alain; Zhao, Wei; Faure, Bruno; Iacazio, Gilles; Kotik, Michael

    2016-02-01

    A detailed kinetic study based on steady-state and pre-steady-state measurements is described for the highly enantioselective epoxide hydrolase Kau2. The enzyme, which is a member of the α/β-hydrolase fold family, preferentially reacts with the (S,S)-enantiomer of trans-stilbene oxide (TSO) with an E value of ∼200. The enzyme follows a classical two-step catalytic mechanism with formation of an alkyl-enzyme intermediate in the first step and hydrolysis of this intermediate in a rate-limiting second step. Tryptophan fluorescence quenching during TSO conversion appears to correlate with alkylation of the enzyme. The steady-state data are consistent with (S,S) and (R,R)-TSO being two competing substrates with marked differences in k(cat) and K(M) values. The high enantiopreference of the epoxide hydrolase is best explained by pronounced differences in the second-order alkylation rate constant (k2/K(S)) and the alkyl-enzyme hydrolysis rate k3 between the (S,S) and (R,R)-enantiomers of TSO. Our data suggest that during conversion of (S,S)-TSO the two active site tyrosines, Tyr(157) and Tyr(259), serve mainly as electrophilic catalysts in the alkylation half-reaction, polarizing the oxirane oxygen of the bound epoxide through hydrogen bond formation, however, without fully donating their hydrogens to the forming alkyl-enzyme intermediate. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Dynamic evolution of initial instability during non-steady-state growth.

    Science.gov (United States)

    Dong, Zhibo; Zheng, Wenjian; Wei, Yanhong; Song, Kuijing

    2014-06-01

    Dynamic evolution of initial instability is investigated by an analytic model obtained by modifying the theory of Warren and Langer [Phys. Rev. E 47, 2702 (1993)] and the quantitative phase-field model in directional solidification under transient conditions for realistic parameters of a dilute alloy. The evolutions of tip velocity and concentration in the liquid side of the interface predicted by the analytic model agree very well with that from the phase-field simulation in the linear growth stage of the non-steady-state growth, indicating that the model could be used as a convenient method to study the initial instability during non-steady-state growth. The influences of non-steady-state conditions which include the increasing rate of pulling speed and temperature gradient at the onset of initial instability are investigated, and we find that, the initial instability seems to depend strongly on the non-steady-state conditions and the non-steady-state history, and thus, it should be primarily considered in the study of the transient growth.

  13. A two-step iterative method for evolving nonlinear acoustic systems to a steady-state

    Science.gov (United States)

    Watson, Willie R.; Myers, Michael K.

    1990-01-01

    A new approach for evolving two-dimensional nonlinear acoustic systems with flow to a steady state is presented. The approach is a two-step iterative method which is tested on a benchmark acoustic problem for which an exact analytical solution is available. Results are also calculated for a nonlinear acoustic problem for which an exact analytical solution is not known. Results indicate that the two-step method represents a powerful, efficient, and stable method for evolving two-dimensional acoustic systems to a steady state, and that the method is applicable to any number of spatial dimensions and to other hyperbolic systems. It is noted that for the benchmark problem only a single iteration on the method is required when the transient and steady-state field are of the same order of magnitude; however, four iterations are required when the steady-state field is several orders of magnitude smaller than the transient field. This method requires six iterations before achieving a steady state for the nonlinear test problem.

  14. The Markov process admits a consistent steady-state thermodynamic formalism

    Science.gov (United States)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  15. Paracetamol decreases steady-state exposure to lamotrigine by induction of glucuronidation in healthy subjects.

    Science.gov (United States)

    Gastrup, Sandra; Stage, Tore Bjerregaard; Fruekilde, Palle Bach Nielsen; Damkier, Per

    2016-04-01

    Patients receiving lamotrigine therapy frequently use paracetamol concomitantly. While one study suggests a possible, clinically relevant drug-drug interaction, practical recommendations of the concomitant use are inconsistent. We performed a systematic pharmacokinetic study in healthy volunteers to quantify the effect of 4 day treatment with paracetamol on the metabolism of steady-state lamotrigine. Twelve healthy, male volunteers participated in an open label, sequential interaction study. Lamotrigine was titrated to steady-state (100 mg daily) over 36 days, and blood and urine sampling was performed in a non-randomized order with and without paracetamol (1 g four times daily). The primary endpoint was change in steady-state area under the plasma concentration-time curve of lamotrigine. Secondary endpoints were changes in total apparent oral clearance, renal clearance, trough concentration of lamotrigine and formation clearance of lamotrigine glucuronide conjugates. Co-administration of lamotrigine and paracetamol decreased the steady-state area under the plasma concentration-time curve of lamotrigine by 20% (95% CI 10%, 25%; P steady-state lamotrigine glucuronidation, resulting in a 20% decrease in total systemic exposure and a 25% decrease in trough value of lamotrigine. This interaction may be of clinical relevance in some patients. © 2015 The British Pharmacological Society.

  16. Demonstration of the steady-state fluctuation theorem from a single trajectory

    International Nuclear Information System (INIS)

    Wang, G M; Carberry, D M; Reid, J C; Sevick, E M; Evans, D J

    2005-01-01

    The fluctuation theorem (FT) quantifies the probability of Second Law of Thermodynamics violations in small systems over short timescales. While this theorem has been experimentally demonstrated for systems that are perturbed from an initial equilibrium state, there are a number of studies suggesting that the theorem applies asymptotically in the long time limit to systems in a non-equilibrium steady state. The asymptotic application of the FT to such non-equilibrium steady-states has been referred to in the literature as the steady-state fluctuation theorem (or SSFT). In 2005 Wang et al demonstrated experimentally an integrated form of the SSFT using a colloidal bead that was weakly held in a circularly translating optical trap. Moreover, they showed that the integrated form of the FT may, for certain systems, hold under non-equilibrium steady states for all time, and not just in the long time limit, as suggested by the SSFT. While demonstration of the integrated forms of these theorems is compact and illustrative, a proper demonstration shows the theorem directly, rather than in its integrated form. In this paper, we present experimental results that demonstrate the SSFT directly, and show that the FT can hold for all time under non-equilibrium steady states

  17. Steady-state analysis of activated sludge processes with a settler model including sludge compression.

    Science.gov (United States)

    Diehl, S; Zambrano, J; Carlsson, B

    2016-01-01

    A reduced model of a completely stirred-tank bioreactor coupled to a settling tank with recycle is analyzed in its steady states. In the reactor, the concentrations of one dominant particulate biomass and one soluble substrate component are modelled. While the biomass decay rate is assumed to be constant, growth kinetics can depend on both substrate and biomass concentrations, and optionally model substrate inhibition. Compressive and hindered settling phenomena are included using the Bürger-Diehl settler model, which consists of a partial differential equation. Steady-state solutions of this partial differential equation are obtained from an ordinary differential equation, making steady-state analysis of the entire plant difficult. A key result showing that the ordinary differential equation can be replaced with an approximate algebraic equation simplifies model analysis. This algebraic equation takes the location of the sludge-blanket during normal operation into account, allowing for the limiting flux capacity caused by compressive settling to easily be included in the steady-state mass balance equations for the entire plant system. This novel approach grants the possibility of more realistic solutions than other previously published reduced models, comprised of yet simpler settler assumptions. The steady-state concentrations, solids residence time, and the wastage flow ratio are functions of the recycle ratio. Solutions are shown for various growth kinetics; with different values of biomass decay rate, influent volumetric flow, and substrate concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Métodos transientes de troca de calor na determinação das propriedades térmicas de materiais cerâmicos: I - o método de pulso de energia Thermal properties of ceramic materials by non-steady state techniques: I - the laser flash technique

    Directory of Open Access Journals (Sweden)

    W. N. dos Santos

    2005-09-01

    Full Text Available A condutividade térmica, a difusividade térmica e o calor específico, conhecidas como propriedades térmicas são as três propriedades físicas mais importantes de um material do ponto de vista de cálculos térmicos. Essas propriedades são observadas quando calor é adicionado ou removido do material, e se tornam importantes em qualquer projeto que precise funcionar em qualquer ambiente térmico. A condutividade térmica é uma das propriedades físicas mais importantes de um material. A sua determinação experimental apresenta algumas dificuldades e requer alta precisão na determinação dos fatores necessários para o seu cálculo. A difusividade térmica pode ser medida mais facilmente e com maior precisão do que a condutividade térmica. Por essa razão, muitos pesquisadores preferem medir a difusividade, e a partir dela calcular a condutividade térmica do material. Hoje são conhecidos vários métodos para a determinação da condutividade térmica e difusividade térmica de um material. Recentemente, os métodos transientes de troca de calor têm sido os métodos preferidos na determinação das propriedades térmicas de materiais. Neste trabalho é feita uma descrição e uma análise crítica de um dos métodos mais utilizados na determinação das propriedades térmicas de materiais cerâmicos: o método de pulso de energia. Resultados numéricos são também apresentados.Thermal conductivity, thermal diffusivity and specific heat, namely as the thermal properties, are the three most important physical properties of a material that are needed for heat transfer calculations. Those properties are observed when heat is added or removed from a material, and they become important in any design that must function in any thermal environment. Thermal conductivity is one of the most important physical properties of a material. However, its experimental evaluation may presents some specific troubles, and high precision in the

  19. Effect of steady-state faldaprevir on the pharmacokinetics of steady-state methadone and buprenorphine-naloxone in subjects receiving stable addiction management therapy.

    Science.gov (United States)

    Joseph, David; Schobelock, Michael J; Riesenberg, Robert R; Vince, Bradley D; Webster, Lynn R; Adeniji, Abidemi; Elgadi, Mabrouk; Huang, Fenglei

    2015-01-01

    The effects of steady-state faldaprevir on the safety, pharmacokinetics, and pharmacodynamics of steady-state methadone and buprenorphine-naloxone were assessed in 34 healthy male and female subjects receiving stable addiction management therapy. Subjects continued receiving a stable oral dose of either methadone (up to a maximum dose of 180 mg per day) or buprenorphine-naloxone (up to a maximum dose of 24 mg-6 mg per day) and also received oral faldaprevir (240 mg) once daily (QD) for 8 days following a 480-mg loading dose. Serial blood samples were taken for pharmacokinetic analysis. The pharmacodynamics of the opioid maintenance regimens were evaluated by the objective and subjective opioid withdrawal scales. Coadministration of faldaprevir with methadone or buprenorphine-naloxone resulted in geometric mean ratios for the steady-state area under the concentration-time curve from 0 to 24 h (AUC(0-24,ss)), the steady-state maximum concentration of the drug in plasma (C(max,ss)), and the steady-state concentration of the drug in plasma at 24 h (C(24,ss)) of 0.92 to 1.18 for (R)-methadone, (S)-methadone, buprenorphine, norbuprenorphine, and naloxone, with 90% confidence intervals including, or very close to including, 1.00 (no effect), suggesting a limited overall effect of faldaprevir. Although individual data showed moderate variability in the exposures between subjects and treatments, there was no evidence of symptoms of opiate overdose or withdrawal either during the coadministration of faldaprevir with methadone or buprenorphine-naloxone or after faldaprevir dosing was stopped. Similar faldaprevir exposures were observed in the methadone- and buprenorphine-naloxone-treated subjects. In conclusion, faldaprevir at 240 mg QD can be coadministered with methadone or buprenorphine-naloxone without dose adjustment, although given the relatively narrow therapeutic windows of these agents, monitoring for opiate overdose and withdrawal may still be appropriate. (This

  20. X-Ray Spectral Analysis of the Steady States of GRS1915+105

    Science.gov (United States)

    Peris, Charith S.; Remillard, Ronald A.; Steiner, James F.; Vrtilek, Saeqa D.; Varnière, Peggy; Rodriguez, Jerome; Pooley, Guy

    2016-05-01

    We report on the X-ray spectral behavior within the steady states of GRS1915+105. Our work is based on the full data set of the source obtained using the Proportional Counter Array (PCA) on the Rossi X-ray Timing Explorer (RXTE) and 15 GHz radio data obtained using the Ryle Telescope. The steady observations within the X-ray data set naturally separated into two regions in the color-color diagram and we refer to these regions as steady-soft and steady-hard. GRS1915+105 displays significant curvature in the coronal component in both the soft and hard data within the RXTE/PCA bandpass. A majority of the steady-soft observations displays a roughly constant inner disk radius ({R}{{in}}), while the steady-hard observations display an evolving disk truncation which is correlated to the mass accretion rate through the disk. The disk flux and coronal flux are strongly correlated in steady-hard observations and very weakly correlated in the steady-soft observations. Within the steady-hard observations, we observe two particular circumstances when there are correlations between the coronal X-ray flux and the radio flux with log slopes η ˜ 0.68+/- 0.35 and η ˜ 1.12+/- 0.13. They are consistent with the upper and lower tracks of Gallo et al. (2012), respectively. A comparison of the model parameters to the state definitions shows that almost all of the steady-soft observations match the criteria of either a thermal or steep power-law state, while a large portion of the steady-hard observations match the hard-state criteria when the disk fraction constraint is neglected.

  1. STEADY STATE MODELING OF THE MINIMUM CRITICAL CORE OF THE TRANSIENT REACTOR TEST FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Anthony L. Alberti; Todd S. Palmer; Javier Ortensi; Mark D. DeHart

    2016-05-01

    With the advent of next generation reactor systems and new fuel designs, the U.S. Department of Energy (DOE) has identified the need for the resumption of transient testing of nuclear fuels. The DOE has decided that the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory (INL) is best suited for future testing. TREAT is a thermal neutron spectrum, air-cooled, nuclear test facility that is designed to test nuclear fuels in transient scenarios. These specific scenarios range from simple temperature transients to full fuel melt accidents. DOE has expressed a desire to develop a simulation capability that will accurately model the experiments before they are irradiated at the facility. It is the aim for this capability to have an emphasis on effective and safe operation while minimizing experimental time and cost. The multi physics platform MOOSE has been selected as the framework for this project. The goals for this work are to identify the fundamental neutronics properties of TREAT and to develop an accurate steady state model for future multiphysics transient simulations. In order to minimize computational cost, the effect of spatial homogenization and angular discretization are investigated. It was found that significant anisotropy is present in TREAT assemblies and to capture this effect, explicit modeling of cooling channels and inter-element gaps is necessary. For this modeling scheme, single element calculations at 293 K gave power distributions with a root mean square difference of 0.076% from those of reference SERPENT calculations. The minimum critical core configuration with identical gap and channel treatment at 293 K resulted in a root mean square, total core, radial power distribution 2.423% different than those of reference SERPENT solutions.

  2. Computer program for the equations describing the steady state of enzyme reactions.

    Science.gov (United States)

    Varon, R; Garcia-Sevilla, F; Garcia-Moreno, M; Garcia-Canovas, F; Peyro, R; Duggleby, R G

    1997-04-01

    The derivation of steady-state equations is frequently carried out in enzyme kinetic studies. Done manually, this becomes tedious and prone to human error. The computer programs now available which are able to accept reaction mechanisms of some complexity are focused only on the strict steady-state approach. Here we present a computer program called REFERASS, with a short computation time and a user-friendly format for the input and output files, able to derive the strict steady-state equations and/or those corresponding to the usual assumption that one ore more of the reversible steps are in rapid equilibrium. This program handles enzyme-catalysed reactions with mechanisms involving up to 255 enzyme species connected by up to 255 reaction steps, subject to limits imposed by the memory and disk space available.

  3. Time Reversibility, Correlation Decay and the Steady State Fluctuation Relation for Dissipation

    Directory of Open Access Journals (Sweden)

    Denis J. Evans

    2013-04-01

    Full Text Available Steady state fluctuation relations for nonequilibrium systems are under intense investigation because of their important practical implications in nanotechnology and biology. However the precise conditions under which they hold need clarification. Using the dissipation function, which is related to the entropy production of linear irreversible thermodynamics, we show time reversibility, ergodic consistency and a recently introduced form of correlation decay, called T-mixing, are sufficient conditions for steady state fluctuation relations to hold. Our results are not restricted to a particular model and show that the steady state fluctuation relation for the dissipation function holds near or far from equilibrium subject to these conditions. The dissipation function thus plays a comparable role in nonequilibrium systems to thermodynamic potentials in equilibrium systems.

  4. Sickle cell disease painful crisis and steady state differentiation by proton magnetic resonance.

    Science.gov (United States)

    Fernández, Adolfo A; Cabal, Carlos A; Lores, Manuel A; Losada, Jorge; Pérez, Enrique R

    2009-01-01

    The delay time of the Hb S polymerization process was investigated in 63 patients with sickle cell disease during steady state and 10 during painful crisis starting from spin-spin proton magnetic resonance (PMR) time behavior measured at 36 degrees C and during spontaneous deoxygenation. We found a significant decrease of delay time as a result of the crisis (36 +/- 10%) and two well-differentiated ranges of values for each state: 273-354 min for steady state and 166-229 min for crisis with an uncertainty region of 15%. It is possible to use PMR as an objective and quantitative method in order to differentiate both clinical conditions of the sickle cell patient, but a more clear differentiation can be established comparing the delay time (td) value of one patient during crisis with his own td value during steady state.

  5. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1986-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  6. Paracetamol decreases steady-state exposure to lamotrigine by induction of glucuronidation in healthy subjects

    DEFF Research Database (Denmark)

    Gastrup, Sandra; Stage, Tore Bjerregaard; Fruekilde, Palle Bach Nielsen

    2016-01-01

    AIM: Patients receiving lamotrigine therapy frequently use paracetamol concomitantly. While one study suggests a possible, clinically relevant drug-drug interaction, practical recommendations of the concomitant use are inconsistent. We performed a systematic pharmacokinetic study in healthy...... volunteers to quantify the effect of 4-day treatment of paracetamol on the metabolism of steady-state lamotrigine. METHODS: Twelve healthy, male volunteers participated in an open-label, sequential interaction study. Lamotrigine was titrated to steady state (100 mg daily) over 36 days, and blood and urine...... sampling was performed in a non-randomised order with and without paracetamol (1 g four times daily). The primary endpoint was change in steady-state area under the plasma concentration-time curve of lamotrigine. Secondary endpoints were changes in total apparent oral clearance, renal clearance...

  7. Steady-State Magneto-Optical Trap with 100-Fold Improved Phase-Space Density

    Science.gov (United States)

    Bennetts, Shayne; Chen, Chun-Chia; Pasquiou, Benjamin; Schreck, Florian

    2017-12-01

    We demonstrate a continuously loaded 88Sr magneto-optical trap (MOT) with a steady-state phase-space density of 1.3 (2 )×10-3 . This is 2 orders of magnitude higher than reported in previous steady-state MOTs. Our approach is to flow atoms through a series of spatially separated laser cooling stages before capturing them in a MOT operated on the 7.4-kHz linewidth Sr intercombination line using a hybrid slower+MOT configuration. We also demonstrate producing a Bose-Einstein condensate at the MOT location, despite the presence of laser cooling light on resonance with the 30-MHz linewidth transition used to initially slow atoms in a separate chamber. Our steady-state high phase-space density MOT is an excellent starting point for a continuous atom laser and dead-time free atom interferometers or clocks.

  8. Nonequilibrium steady states in correlated electron systems - Photoinduced insulator-metal transition and optical response

    International Nuclear Information System (INIS)

    Tsuji, Naoto; Oka, Takashi; Aoki, Hideo

    2010-01-01

    To reveal the nature of the photoinduced insulator-metal transition, we show that an exact analysis of the Falicov-Kimball model subject to external ac electric fields becomes possible with Floquet's method combined with the nonequilibrium dynamical mean-field theory. The nonequilibrium steady state that appears during irradiation of a pump light is shown to be determined if the dissipation in a certain heat-bath model is introduced. This has enabled us to predict that novel features characteristic of the photoexcited steady states, i.e., negative weight (gain) in the low-energy region and dip structures around the photon energy of the pump light, should be observed in the optical conductivity. Special emphasis is put on the role of dissipation, for which we elaborate the dependence of the steady state on the strength of dissipation and the temperature of the heat bath.

  9. Analysis on temperature distribution in density lock on steady state without disturbance

    International Nuclear Information System (INIS)

    Yu Pei; Yan Changqi; Gu Haifeng; Chen Wei

    2010-01-01

    Temperature distribution on steady state without disturbance in density lock is simulated experimentally in this paper, and the temperature stratification end point is discovered on the temperature curve on steady state. It separated the heat conduction layer and homoiothermy layer. Only when the temperature stratification end point is in the density lock, heat can be restrained effectually. The temperature field is simulated with three methods. The first one is a method of semi-infinite flat-panel heat conduction, the second one is a method of one dimensional steady state conduction in constant cross-section straight-fin, and the last one is calculated using Fluent calculation software. The results indicated that the method of semi-infinite flat-panel heat conduction is the best one to calculate the distribution of temperature and location of temperature stratification end point. (authors)

  10. The non-local Fisher–KPP equation: travelling waves and steady states

    International Nuclear Information System (INIS)

    Berestycki, Henri; Nadin, Grégoire; Perthame, Benoit; Ryzhik, Lenya

    2009-01-01

    We consider the Fisher–KPP equation with a non-local saturation effect defined through an interaction kernel φ(x) and investigate the possible differences with the standard Fisher–KPP equation. Our first concern is the existence of steady states. We prove that if the Fourier transform φ-circumflex(ξ) is positive or if the length σ of the non-local interaction is short enough, then the only steady states are u ≡ 0 and u ≡ 1. Next, we study existence of the travelling waves. We prove that this equation admits travelling wave solutions that connect u = 0 to an unknown positive steady state u ∞ (x), for all speeds c ≥ c * . The travelling wave connects to the standard state u ∞ (x) ≡ 1 under the aforementioned conditions: φ-circumflex(ξ) > 0 or σ is sufficiently small. However, the wave is not monotonic for σ large

  11. Mechanism of Non-Steady State Dissolution of Goethite in the Presence of Siderophores

    Science.gov (United States)

    Reichard, P. U.; Kretzschmar, R.; Kraemer, S. M.

    2003-12-01

    Iron is an essential micronutrient for almost all known organisms. Bacteria, fungi, and graminaceous plants are capable of exuding siderophores as part of an iron acquisition strategy. The production of these strong iron chelating ligands is induced by iron limited conditions. Grasses under iron stress, for example, exude phytosiderophores into the rhizosphere in a special diurnal rhythm (Roemheld and Marschner 1986). A few hours after sunrise the exudation starts, culminates around noon and is shut down again until about 4 hours after noon. The phytosiderophores diffuse into the rhizosphere (Marschner et al. 1986) and are passively back transported to the plants by advective flow induced by high transpiration around noon. Despite a fairly short residence time of the phytosiderophores in the rhizosphere, it is a very effective strategy for iron acquisition. To investigate the effect of such pulse inputs of siderophores on iron acquisition, we studied the dissolution mechanism of goethite (alpha-FeOOH), a mineral phase common in soils, under non-steady state conditions. In consideration of the chemical complexity of the rhizosphere, we also investigated the effect of other organic ligands commonly found in the rhizosphere (e. g. oxalate) on the dissolution kinetics. The dissolution experiments were conducted in batch reactors with a constant goethite solids concentration of 2.5 g/l, an ionic strength of 0.01 M, a pH of 6 and 100 microM oxalate. To induce non-steady state conditions, 3 mM phytosiderophores were added to a batch after the goethite-oxalate suspension reacted for a certain time period. Before the siderophore was added to the goethite-oxalate suspension, no dissolution of iron was observed. But, with the addition of the siderophore, a high rate was observed for the iron mobilization under these non-steady state conditions that subsequently was followed by a slow steady state dissolution rate. The results of these non-steady state experiments are very

  12. A constitutive analysis of transient and steady-state elongational viscosities of bidisperse polystyrene blends

    DEFF Research Database (Denmark)

    Wagner, Manfred H.; Rolon-Garrido, Victor H.; Nielsen, Jens Kromann

    2008-01-01

    The transient and steady-state elongational viscosity data of three bidisperse polystyrene blends were investigated recently by Nielsen et al. [J. Rheol. 50, 453-476 (2006)]. The blends contain a monodisperse high molar mass component (M-L= 390 kg/ mol) in a matrix of a monodisperse small molar...... stretching potential of the long-chain component and an increasing steady-state elongational viscosity with increasing strain rate. In addition, in the dilution regime, a transition from affine chain stretch to nonaffine tube squeeze with decreasing strain rate is identified. The dilution regime ends......, and allowing (albeit by use of empirical linear-viscoelastic shift factors to correct the linear-viscoelastic predictions) for a quantitative description of the transient and steady-state elongational viscosities of the bidisperse polystyrene blends....

  13. Analysis of physical properties controlling steady-state infiltration rates on tropical savannah soils

    International Nuclear Information System (INIS)

    Mbagwu, J.S.C.

    1993-10-01

    A knowledge of physical properties influencing the steady-state infiltration rates (ic) of soils is needed for the hydrologic modelling of the infiltration process. In this study evidence is provided to show that effective porosity (Pe) (i.e. the proportion of macro pore spaces with equivalent radius of > 15 μm) and dry bulk density are the most important soil physical properties controlling the steady-state infiltration rates on a tropical savannah with varying land use histories. At a macro porosity value of ≤ 5.0% the steady-state infiltration rate is zero. Total porosity and the proportion of water-retaining pores explained only a small fraction of the variation in this property. Steady-state infiltration rates can also be estimated from either the saturated hydraulic conductivity (Ks) by the equation, i c = 31.1 + 1.06 (Ks), (R 2 = 0.8104, p ≤ 0.001) or the soil water transmissivity (A) by the equation, i c = 30.0 + 29.9(A), (R 2 = 0.8228, ρ ≤ 0.001). The Philip two-parameter model under predicted steady-state infiltration rates generally. Considering the ease of determination and reliability it is suggested that effective porosity be used to estimate the steady-state infiltration rates of these other soils with similar characteristics. The model is, i c 388.7(Pe) - 10.8(R 2 = 0.7265, p ≤ 0.001) where i c is in (cm/hr) and Pe in (cm 3 /cm 3 ). (author). 20 refs, 3 figs, 4 tabs

  14. The Energy Cost of Steady State Physical Activity in Acute Stroke.

    Science.gov (United States)

    Kramer, Sharon Flora; Cumming, Toby; Bernhardt, Julie; Johnson, Liam

    2018-04-01

    Cardiorespiratory fitness levels are very low after stroke, indicating that the majority of stroke survivors are unable to independently perform daily activities. Physical fitness training improves exercise capacity poststroke; however, the optimal timing and intensity of training is unclear. Understanding the energy cost of steady-state activity is necessary to guide training prescription early poststroke. We aimed to determine if acute stroke survivors can reach steady state (oxygen-uptake variability ≤2.0 mL O 2 /kg/min) during physical activity and if the energy cost of steady state activity differs from healthy controls. We recruited 23 stroke survivors less than 2 weeks poststroke. Thirteen were able to walk independently and performed a 6-minute walk (median age 78 years, interquartile range [IQR] 70-85), and 7 who were unable to walk independently performed 6 minutes of continuous sit-to-stands (median age 78 years, IQR 74-79) and we recruited 10 healthy controls (median age 73 years, IQR 70-77) who performed both 6 minutes of walking and sit-to-stands. Our primary outcome was energy cost (oxygen-uptake) during steady state activity (i.e., walking and continuous) sit-to-stands, measured by a mobile metabolic cart. All stroke survivors were able to reach steady state. Energy costs of walking was higher in stroke than in controls (mean difference .10 mL O 2 /kg/m, P = .02); the difference in energy costs during sit-to-stands was not significant (mean difference .11 mL O 2 /kg/sts, P = .45). Acute stroke survivors can reach a steady state during activity, indicating they are able to perform cardiorespiratory exercise. Acute stroke survivors require more energy per meter walked than controls. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  15. Analysis on the steady-state coherent synchrotron radiation with strong shielding

    International Nuclear Information System (INIS)

    Li, R.; Bohn, C.L.; Bisognano, J.J.

    1997-01-01

    There are several papers concerning shielding of coherent synchrotron radiation (CSR) emitted by a Gaussian line charge on a circular orbit centered between two parallel conducting plates. Previous asymptotic analyses in the frequency domain show that shielded steady-state CSR mainly arises from harmonics in the bunch frequency exceeding the threshold harmonic for satisfying the boundary conditions at the plates. In this paper the authors extend the frequency-domain analysis into the regime of strong shielding, in which the threshold harmonic exceeds the characteristic frequency of the bunch. The result is then compared to the shielded steady-state CSR power obtained using image charges

  16. Steady-State PMU Compliance Test under C37.118.1a-2014

    DEFF Research Database (Denmark)

    Ghiga, Radu; Wu, Qiuwei; Martin, Kenneth E.

    2016-01-01

    This paper presents a flexible testing method and the steady-state compliance of PMUs under the C37.118.1a amendment. The work is focused on the changes made to the standard for the harmonic rejection and out-of-band interference tests for which the ROCOF Error limits have been suspended. The paper...... vendors were tested simultaneously in order to provide a fair comparison of the devices. The results for the steady state tests are discussed in the paper together with the strengths and weaknesses of the PMUs and of the test setup....

  17. Modified fluctuation-dissipation and Einstein relation at nonequilibrium steady states.

    Science.gov (United States)

    Chaudhuri, Debasish; Chaudhuri, Abhishek

    2012-02-01

    Starting from the pioneering work of Agarwal [G. S. Agarwal, Zeitschrift für Physik 252, 25 (1972)], we present a unified derivation of a number of modified fluctuation-dissipation relations (MFDR) that relate response to small perturbations around nonequilibrium steady states to steady-state correlations. Using this formalism we show the equivalence of velocity forms of MFDR derived using continuum Langevin and discrete master equation dynamics. The resulting additive correction to the Einstein relation is exemplified using a flashing ratchet model of molecular motors. © 2012 American Physical Society

  18. Local wettability reversal during steady-state two-phase flow in porous media.

    Science.gov (United States)

    Sinha, Santanu; Grøva, Morten; Ødegården, Torgeir Bryge; Skjetne, Erik; Hansen, Alex

    2011-09-01

    We study the effect of local wettability reversal on remobilizing immobile fluid clusters in steady-state two-phase flow in porous media. We consider a two-dimensional network model for a porous medium and introduce a wettability alteration mechanism. A qualitative change in the steady-state flow patterns, destabilizing the percolating and trapped clusters, is observed as the system wettability is varied. When capillary forces are strong, a finite wettability alteration is necessary to move the system from a single-phase to a two-phase flow regime. When both phases are mobile, we find a linear relationship between fractional flow and wettability alteration.

  19. Steady-State Numerical Modeling of Size Effects in Wire Drawing

    DEFF Research Database (Denmark)

    Juul, Kristian Jørgensen; Nielsen, Kim Lau; Niordson, Christian Frithiof

    2016-01-01

    Wire drawing processes at micron scale receive increased interest as micro wires are increasingly required in micro electrical components. At the micron scale, size effects become important and have to be taken into consideration. The goal is to optimize the semi-cone angle of the tool in terms...... of drawing force. The present study employs a steady-state modelling technique that omits the transient regime, thus creating a basis for comprehensive parameter studies. The steady-state procedure is based on the streamline integration method presented by Dean and Hutchinson [1]. This approach allows...

  20. 7. IAEA Technical Meeting on Steady State Operation of Magnetic Fusion Devices - Booklet of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    This meeting has provided an appropriate forum to discuss current issues covering a wide range of technical topics related to the steady state operation issues and also to encourage forecast of the ITER performances. The technical meeting includes invited and contributed papers. The topics that have been dealt with are: 1) Superconducting devices (ITER, KSTAR, Tore-Supra, HT-7U, EAST, LHD, Wendelstein-7-X,...); 2) Long-pulse operation and advanced tokamak physics; 3) steady state fusion technologies; 4) Long pulse heating and current drive; 5) Particle control and power exhaust, and 6) ITER-related research and development issues. This document gathers the abstracts

  1. Capitalist Diversity and De-growth Trajectories to Steady-state Economies

    DEFF Research Database (Denmark)

    Buch-Hansen, Hubert

    2014-01-01

    Growth-critical scholarship has done much to both expose the environmentally unsustainable nature of the capitalist growth-economies of the overdeveloped part of the world and to develop an alternative vision of a degrowth transition leading to a steady-state economy. However, this scholarship...... on capitalist diversity and institutional change. On the basis of a typology of different models of capitalism, the article suggests that if de-growth transitions took place they would take different forms and lead to a variety of types of steady-state economies (SSEs). To illustrate this point, three ideal...

  2. A quaternionic map for the steady states of the Heisenberg spin-chain

    International Nuclear Information System (INIS)

    Mehta, Mitaxi P.; Dutta, Souvik; Tiwari, Shubhanshu

    2014-01-01

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  3. A quaternionic map for the steady states of the Heisenberg spin-chain

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, Mitaxi P., E-mail: mitaxi.mehta@ahduni.edu.in [IICT, Ahmedabad University, Opp. IIM, Navrangpura, Ahmedabad (India); Dutta, Souvik; Tiwari, Shubhanshu [BITS-Pilani, K.K. Birla Goa campus, Goa (India)

    2014-01-17

    We show that the steady states of the classical Heisenberg XXX spin-chain in an external magnetic field can be found by iterations of a quaternionic map. A restricted model, e.g., the xy spin-chain is known to have spatially chaotic steady states and the phase space occupied by these chaotic states is known to go through discrete changes as the field strength is varied. The same phenomenon is studied for the xxx spin-chain. It is seen that in this model the phase space volume varies smoothly with the external field.

  4. Seventh meeting of the ITER physics expert group on energetic particles, heating and steady state operations

    International Nuclear Information System (INIS)

    Gormezano, C.

    1999-01-01

    The seventh meeting of the ITER Physics Group on energetic particles, heating and steady state operation was held at CEN/Cadarache from 14 to 18 September 1999. This was the first meeting following the redefinition of the Expert Group structure and it was also the first meeting without participation of US physicists. The main topics covered were: 1. Energetic Particles, 2. Ion Cyclotron Resonance Heating, 3. Lower Hybrid Current Drive, 4. Electron Cyclotron Resonance Heating and Current Drive, 5. Neutral Beam Injection, 6. Steady-State Aspects

  5. Steady-state pharmacokinetics of metformin is independent of the OCT1 genotype in healthy volunteers

    DEFF Research Database (Denmark)

    Christensen, Mette Marie Hougaard; Højlund, Kurt; Hother-Nielsen, Ole

    2015-01-01

    PURPOSE: The aim of the study was to determine the steady-state pharmacokinetics of metformin in healthy volunteers with different numbers of reduced-function alleles in the organic cation transporter 1 gene (OCT1). METHODS: The study was conducted as part of a randomized cross-over trial. Thirty......-four healthy volunteers with known OCT1 genotypes (12 with two wild-type alleles, 13 with one and 9 with two reduced-function alleles) were included. In one of the study periods, they were titrated to steady-state with 1 g metformin twice daily. RESULTS: Neither AUC(0-12), C(max) nor Cl(renal) were...

  6. S3C: EBT Steady-State Shooting code description and user's guide

    International Nuclear Information System (INIS)

    Downum, W.B.

    1983-09-01

    The Oak Ridge National Laboratory (ORNL) one-dimensional (1-D) Steady-State Shooting code (S3C) for ELMO Bumpy Torus (EBT) plasmas is described. Benchmark calculations finding the steady-state density and electron and ion temperature profiles for a known neutral density profile and known external energy sources are carried out. Good agreement is obtained with results from the ORNL Radially Resolved Time Dependent 1-D Transport code for an EBT-Q type reactor. The program logic is described, along with the physics models in each code block and the variable names used. Sample input and output files are listed, along with the main code

  7. Steady state detection of chemical reaction networks using a simplified analytical method.

    Directory of Open Access Journals (Sweden)

    Ivan Martínez-Forero

    Full Text Available Chemical reaction networks (CRNs are susceptible to mathematical modelling. The dynamic behavior of CRNs can be investigated by solving the polynomial equations derived from its structure. However, simple CRN give rise to non-linear polynomials that are difficult to resolve. Here we propose a procedure to locate the steady states of CRNs from a formula derived through algebraic geometry methods. We have applied this procedure to define the steady states of a classic CRN that exhibits instability, and to a model of programmed cell death.

  8. ATC calculation with steady-state security constraints using Benders decomposition

    International Nuclear Information System (INIS)

    Shaaban, M.; Yan, Z.; Ni, Y.; Wu, F.; Li, W.; Liu, H.

    2003-01-01

    Available transfer capability (ATC) is an important indicator of the usable amount of transmission capacity accessible by assorted parties for commercial trading, ATC calculation is nontrivial when steady-state security constraints are included. In hie paper, Benders decomposition method is proposed to partition the AC problem with steady-state security constraints into a base case master problem and a series of subproblems relevant to various contingencies to include their impacts on ATC. The mathematical model is formulated and the two solution schemes are presented. Computer testing on the 4-bus system and IEEE 30-bus system shows the effectiveness of the proposed method and the solution schemes. (Author)

  9. High-temperature expansion for nonequilibrium steady states in driven lattice gases.

    Science.gov (United States)

    Lefevere, Raphael; Tasaki, Hal

    2005-05-27

    We develop a controlled high-temperature expansion for nonequilibrium steady states of the driven lattice gas, the "Ising model" for nonequilibrium physics. We represent the steady state as P(eta) alpha e(-betaH(eta)-psi(eta)) and evaluate the lowest order contribution to the nonequilibrium effective interaction psi(eta). We see that, in dimensions d > or = 2, all models with nonsingular transition rates yield the same summable psi(eta), suggesting the possibility of describing the state as a Gibbs state similar to equilibrium. The models with the Metropolis rule show exceptional behavior.

  10. Nonequilibrium steady state and induced currents of a mesoscopically glassy system: interplay of resistor-network theory and Sinai physics.

    Science.gov (United States)

    Hurowitz, Daniel; Rahav, Saar; Cohen, Doron

    2013-12-01

    We introduce an explicit solution for the nonequilibrium steady state (NESS) of a ring that is coupled to a thermal bath, and is driven by an external hot source with log-wide distribution of couplings. Having time scales that stretch over several decades is similar to glassy systems. Consequently there is a wide range of driving intensities where the NESS is like that of a random walker in a biased Brownian landscape. We investigate the resulting statistics of the induced current I. For a single ring we discuss how sign of I fluctuates as the intensity of the driving is increased, while for an ensemble of rings we highlight the fingerprints of Sinai physics on the distribution of the absolute value of I.

  11. Performance simulation of the JPL solar-powered distiller. Part 1: Quasi-steady-state conditions. [for cooling microwave equipment

    Science.gov (United States)

    Yung, C. S.; Lansing, F. L.

    1983-01-01

    A 37.85 cu m (10,000 gallons) per year (nominal) passive solar powered water distillation system was installed and is operational in the Venus Deep Space Station. The system replaced an old, electrically powered water distiller. The distilled water produced with its high electrical resistivity is used to cool the sensitive microwave equipment. A detailed thermal model was developed to simulate the performance of the distiller and study its sensitivity under varying environment and load conditions. The quasi-steady state portion of the model is presented together with the formulas for heat and mass transfer coefficients used. Initial results indicated that a daily water evaporation efficiency of 30% can be achieved. A comparison made between a full day performance simulation and the actual field measurements gave good agreement between theory and experiment, which verified the model.

  12. Steady state characteristics of a tilting pad journal bearing with controllable lubrication: Comparison between theoretical and experimental results

    DEFF Research Database (Denmark)

    Cerda Varela, Alejandro Javier; Nielsen, Bo Bjerregaard; Santos, Ilmar

    2013-01-01

    direction. The modification of the injection pressure enables to modify the bearing static and dynamic properties according to the operational needs. The results presented are obtained using a theoretical model, which considers all the effects that determine the bearing behavior (controllable......This paper is aimed at presenting results regarding the static and thermal behavior of a tilting-pad journal bearing operating under controllable regime. The bearing is rendered controllable by injecting high pressure oil into the clearance using holes drilled across the bearing pads in the radial...... elastothermohydrodynamic lubrication regime), as well as using a test rig designed and built to this effect. The comparison between experimental and theoretical results provides solid ground to determine the accuracy of the available model for the the prediction of the steady-state behavior of the tilting-pad bearing...

  13. Investigation of molten fuel coolant interaction phenomena using real time X-ray imaging of simulated woods metal-water system

    Directory of Open Access Journals (Sweden)

    Avinash Kumar Acharya

    2017-10-01

    Full Text Available In liquid metal fast breeder reactors, postulated failures of the plant protection system may lead to serious unprotected accidental consequences. Unprotected transients are generically categorized as transient overpower accidents and transient under cooling accidents. In both cases, core meltdown may occur and this can lead to a molten fuel coolant interaction (MFCI. The understanding of MFCI phenomena is essential for study of debris coolability and characteristics during post-accident heat removal. Sodium is used as coolant in liquid metal fast breeder reactors. Viewing inside sodium at elevated temperature is impossible because of its opaqueness. In the present study, a methodology to depict MFCI phenomena using a flat panel detector based imaging system (i.e., real time radiography is brought out using a woods metal-water experimental facility which simulates the UO2-Na interaction. The developed imaging system can capture attributes of the MFCI process like jet breakup length, jet front velocity, fragmented particle size, and a profile of the debris bed using digital image processing methods like image filtering, segmentation, and edge detection. This paper describes the MFCI process and developed imaging methodology to capture MFCI attributes which are directly related to the safe aspects of a sodium fast reactor.

  14. Comparing Non-Steady State Emissions under Start-Up and Shut-Down Operating Conditions with Steady State Emissions for Several Industrial Sectors: A Literature Review

    Directory of Open Access Journals (Sweden)

    Juwairia Obaid

    2017-02-01

    Full Text Available This study investigates the emissions of various industrial facilities under start-up, shut-down, and normal operations. The industries that have been investigated include power and/or heat generation, energy-from-waste generation, nuclear power generation, sulphuric acid production, ethylene production, petrochemical production, and waste incineration. The study investigated multiple facilities worldwide for each of these industrial categories. The different potential contaminants characteristic of each industry type have been investigated and the emissions of these contaminants under non-steady state have been compared to the steady state emissions. Where available, trends have been developed to identify the circumstances, i.e., the industrial sector and contaminant, under which the assessment and consideration of emissions from start-up and shut-down events is necessary for each industry. These trends differ by industrial sector and contaminant. For example, the study shows that sulphur dioxide (SO2 emissions should be assessed for the start-up operations of sulphuric acid production plants, but may not need to be assessed for the start-up operations of a conventional power generation facility. The trends developed as part of this research paper will help air permit applicants to effectively allocate their resources when assessing emissions related to non-steady state operations. Additionally, it will ensure that emissions are assessed for the worst-case scenario. This is especially important when emissions under start-up and shut-down operations have the potential to exceed enforceable emission limits. Thus, assessing emissions for the worst-case scenario can help in preventing the emissions from adversely impacting public health and the environment.

  15. Influence of longitudinal position on the evolution of steady-state signal in cardiac cine balanced steady-state free precession imaging.

    Science.gov (United States)

    Spear, Tyler J; Stromp, Tori A; Leung, Steve W; Vandsburger, Moriel H

    2017-11-01

    Emerging quantitative cardiac magnetic resonance imaging (CMRI) techniques use cine balanced steady-state free precession (bSSFP) to measure myocardial signal intensity and probe underlying physiological parameters. This correlation assumes that steady-state is maintained uniformly throughout the heart in space and time. To determine the effects of longitudinal cardiac motion and initial slice position on signal deviation in cine bSSFP imaging by comparing two-dimensional (2D) and three-dimensional (3D) acquisitions. Nine healthy volunteers completed cardiac MRI on a 1.5-T scanner. Short axis images were taken at six slice locations using both 2D and 3D cine bSSFP. 3D acquisitions spanned two slices above and below selected slice locations. Changes in myocardial signal intensity were measured across the cardiac cycle and compared to longitudinal shortening. For 2D cine bSSFP, 46% ± 9% of all frames and 84% ± 13% of end-diastolic frames remained within 10% of initial signal intensity. For 3D cine bSSFP the proportions increased to 87% ± 8% and 97% ± 5%. There was no correlation between longitudinal shortening and peak changes in myocardial signal. The initial slice position significantly impacted peak changes in signal intensity for 2D sequences ( P  cine bSSFP that is only restored at the center of a 3D excitation volume. During diastole, a transient steady-state is established similar to that achieved with 3D cine bSSFP regardless of slice location.

  16. Catalytic Mechanism of Cruzain from Trypanosoma cruzi As Determined from Solvent Kinetic Isotope Effects of Steady-State and Pre-Steady-State Kinetics.

    Science.gov (United States)

    Zhai, Xiang; Meek, Thomas D

    2018-02-02

    Cruzain, an important drug target for Chagas disease, is a member of clan CA of the cysteine proteases. Understanding the catalytic mechanism of cruzain is vital to the design of new inhibitors. To this end, we have determined pH-rate profiles for substrates and affinity agents and solvent kinetic isotope effects in pre-steady-state and steady-state modes using three substrates: Cbz-Phe-Arg-AMC, Cbz-Arg-Arg-AMC, and Cbz-Arg-Ala-AMC. The pH-rate profile of k cat /K m for Cbz-Arg-Arg-AMC indicated pK 1 = 6.6 (unprotonated) and pK 2 ∼ 9.6 (protonated) groups were required for catalysis. The temperature dependence of the pK = 6.2-6.6 group exhibited a ΔH ion value of 8.4 kcal/mol, typical of histidine. The pH-rate profile of inactivation by iodoacetamide confirmed that the catalytic cysteine possesses a pK a of 9.8. Normal solvent kinetic isotope effects were observed for both D 2 O k cat (1.6-2.1) and D 2 O k cat /K m (1.1-1.4) for all three substrates. Pre-steady-state kinetics revealed exponential bursts of AMC production for Cbz-Phe-Arg-AMC and Cbz-Arg-Arg-AMC, but not for Cbz-Arg-Ala-AMC. The overall solvent isotope effect on k cat can be attributed to the solvent isotope effect on the deacylation step. Our results suggest that cruzain is unique among papain-like cysteine proteases in that the catalytic cysteine and histidine have neutral charges in the free enzyme. The generation of the active thiolate of the catalytic cysteine is likely preceded (and possibly triggered) by a ligand-induced conformational change, which could bring the catalytic dyad into the proximity to effect proton transfer.

  17. Diffusion in coronas around clinopyroxene: modelling with local equilibrium and steady state, and a non-steady-state modification to account for zoned actinolite-hornblende

    Science.gov (United States)

    Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.

    1992-01-01

    Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL ( L CaCa/ L AlAl≳3.) (where ≳ means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of

  18. Steady-state and transient performance of HVDC link based 3-level ...

    African Journals Online (AJOL)

    Administrateur

    testés par des simulations à l'aide de Matlab Simulink et SimPowerSystems toolbox. Mots clé : CCHT- convertisseur à base de source de tension- MLI - technique de contrôle - charge passive. Abstract. This paper investigates the steady-state and transient performance of high-voltage DC (HVDC) transmission systems ...

  19. Einstein's steady-state theory: an abandoned model of the cosmos

    Science.gov (United States)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  20. A partition-free approach to transient and steady-state charge currents

    DEFF Research Database (Denmark)

    Cornean, Horia; Gianesello, Céline; Zagrebnov, Valentin

    2010-01-01

    We construct a non-equilibrium steady state and calculate the corresponding current for a mesoscopic Fermi system in the partition-free setting. To this end we study a small sample coupled to a finite number of semi-infinite leads. Initially, the whole system of quasi-free fermions is in a grand-...

  1. Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X

    NARCIS (Netherlands)

    Bosch, H. S.; R C Wolf,; Andreeva, T.; Baldzuhn, J.; Birus, D.; Bluhm, T.; Brauer, T.; Braune, H.; Bykov, V.; Cardella, A.; Durodie, F.; Endler, M.; Erckmann, V.; Gantenbein, G.; Hartmann, D.; Hathiramani, D.; Heimann, P.; Heinemann, B.; Hennig, C.; Hirsch, M.; Holtum, D.; Jagielski, J.; Jelonnek, J.; Kasparek, W.; Klinger, T.; Konig, R.; Kornejew, P.; Kroiss, H.; Krom, J. G.; Kuhner, G.; Laqua, H.; Laqua, H. P.; Lechte, C.; Lewerentz, M.; Maier, J.; McNeely, P.; Messiaen, A.; Michel, G.; Ongena, J.; Peacock, A.; Pedersen, T. S.; Riedl, R.; Riemann, H.; Rong, P.; Rust, N.; Schacht, J.; Schauer, F.; Schroeder, R.; Schweer, B.; Spring, A.; Stabler, A.; Thumm, M.; Turkin, Y.; Wegener, L.; Werner, A.; Zhang, D.; Zilker, M.; Akijama, T.; Alzbutas, R.; Ascasibar, E.; Balden, M.; Banduch, M.; Baylard, C.; Behr, W.; Beidler, C.; Benndorf, A.; Bergmann, T.; Biedermann, C.; Bieg, B.; Biel, W.; Borchardt, M.; Borowitz, G.; Borsuk, V.; Bozhenkov, S.; Brakel, R.; Brand, H.; Brown, T.; Brucker, B.; Burhenn, R.; Buscher, K. P.; Caldwell-Nichols, C.; Cappa, A.; Cardella, A.; Carls, A.; Carvalho, P.; Ciupinski, L.; Cole, M.; Collienne, J.; Czarnecka, A.; Czymek, G.; Dammertz, G.; Dhard, C. P.; Davydenko, V. I.; Dinklage, A.; Drevlak, M.; Drotziger, S.; Dudek, A.; Dumortier, P.; Dundulis, G.; von Eeten, P.; Egorov, K.; Estrada, T.; Faugel, H.; Fellinger, J.; Feng, Y.; Fernandes, H.; Fietz, W. H.; Figacz, W.; Fischer, F.; Fontdecaba, J.; Freund, A.; Funaba, T.; Funfgelder, H.; Galkowski, A.; Gates, D.; Giannone, L.; Regana, J. M. G.; Geiger, J.; Geissler, S.; Greuner, H.; Grahl, M.; Gross, S.; Grosman, A.; Grote, H.; Grulke, O.; R. Jaspers,; Szabo, V.

    2013-01-01

    The next step in the Wendelstein stellarator line is the large superconducting device Wendelstein 7-X, currently under construction in Greifswald, Germany. Steady-state operation is an intrinsic feature of stellarators, and one key element of the Wendelstein 7-X mission is to demonstrate

  2. Differential Cell Count of Bone Marrow Aspirates in Steady-state ...

    African Journals Online (AJOL)

    Bone marrow was aspirated from the posterior superior iliac spine. Slides were stained with MayGrünwald-Giemsa stain. Proportions of erythroid, myeloid, lymphoid and megakaryocytic cells out of 250 nucleated bone marrow cells were determined. Results: Steady state mean packed cell volume (PCV) was 0.2 ± 0.017 L/L.

  3. Analysis of steady state creep of southeastern New Mexico bedded salt

    International Nuclear Information System (INIS)

    Herrmann, W.; Wawersik, W.R.; Lauson, H.S.

    1980-03-01

    Steady state creep rates have been obtained from a large suite of existing experimental creep data relating to bedded rock salt from the Salado formation of S.E. New Mexico. Experimental conditions covered an intermediate temperature range from 22 0 C to 200 0 C, and shear stresses from 1000 psi (7 MPa) to 6000 psi (31 MPa). An expression, based on a single diffusion controlled dislocation climb mechanism, has been found to fit the observed dependence of steady state creep rate on shear stress and temperature, yielding an activation energy of 12 kcal/mole (50 kJ/mole) and a stress exponent of 4.9. Multiple regression analysis revealed a dependence on stratigraphy, but no statistically significant dependence on pressure of specimen size. No consistent dilatancy or compaction associated with steady state creep was found, although some individual specimens dilated or compacted during creep. The steady state creep data were found to agree very well with creep data for both bedded and dome salt from a variety of other locations

  4. Experimental study of vaporization effect on steady state and dynamic behavior of catalytic pellets

    NARCIS (Netherlands)

    Kulikov, A.V.; Kuzin, N.A.; Shigarov, A.B.; Kirillov, V.A.; Westerterp, K.R.; Kronberg, Alexandre E.

    2001-01-01

    The impact of the combined evaporation of the liquid phase and reaction on single catalyst pellet performance has been studied experimentally. The exothermic, catalyzed hydrogenation of α-methylstyrene (AMS) to cumene has been employed as a model reaction. Steady state and dynamic experiments have

  5. Steady State Investigations of DPF Soot Burn Rates and DPF Modeling

    DEFF Research Database (Denmark)

    Cordtz, Rasmus Lage; Ivarsson, Anders; Schramm, Jesper

    2011-01-01

    This work presents the experimental investigation of Diesel Particulate Filter (DPF) regeneration and a calibration procedure of a 1D DPF simulation model based on the commercial software AVL BOOST v. 5.1. Model constants and parameters are fitted on the basis of a number of steady state DPF expe...

  6. Steady-State Fluorescence Anisotropy to Investigate Flavonoids Binding to Proteins

    Science.gov (United States)

    Ingersoll, Christine M.; Strollo, Christen M.

    2007-01-01

    The steady-state fluorescence anisotropy is employed to study the binding of protein of a model protein, human serum albumin, to a commonly used flavonoid, quercetin. The experiment describes the thermodynamics, as well as the biochemical interactions of such binding effectively.

  7. Efficient decoding with steady-state Kalman filter in neural interface systems.

    Science.gov (United States)

    Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R

    2011-02-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.

  8. Molecular control of steady-state dendritic cell maturation and immune homeostasis.

    Science.gov (United States)

    Hammer, Gianna Elena; Ma, Averil

    2013-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation-the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease.

  9. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION & LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HU, T.A.

    2005-10-27

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  10. STEADY STATE FLAMMABLE GAS RELEASE RATE CALCULATION AND LOWER FLAMMABILITY LEVEL EVALUATION FOR HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    HU TA

    2009-10-26

    Assess the steady-state flammability level at normal and off-normal ventilation conditions. The hydrogen generation rate was calculated for 177 tanks using the rate equation model. Flammability calculations based on hydrogen, ammonia, and methane were performed for 177 tanks for various scenarios.

  11. Radioactivity computation of steady-state and pulsed fusion reactors operation

    International Nuclear Information System (INIS)

    Attaya, H.

    1994-06-01

    Different mathematical methods are used to calculate the nuclear transmutation in steady-state and pulsed neutron irradiation. These methods are the Schuer decomposition, the eigenvector decomposition, and the Pade approximation of the matrix exponential function. In the case of the linear decay chain approximation, a simple algorithm is used to evaluate the transition matrices

  12. Isoforms of human cytochrome-c oxidase. Subunit composition and steady-state kinetic properties

    NARCIS (Netherlands)

    van Kuilenburg, A. B.; Dekker, H. L.; van den Bogert, C.; Nieboer, P.; van Gelder, B. F.; Muijsers, A. O.

    1991-01-01

    The subunit pattern and the steady-state kinetics of cytochrome-c oxidase from human heart, muscle, kidney and liver were investigated. Polyacrylamide gel electrophoresis of immunopurified cytochrome-c oxidase preparations suggest that isoforms of subunit VIa exist, which show differences in

  13. Applications of mixed Petrov-Galerkin finite element methods to transient and steady state creep analysis

    International Nuclear Information System (INIS)

    Guerreiro, J.N.C.; Loula, A.F.D.

    1988-12-01

    The mixed Petrov-Galerkin finite element formulation is applied to transiente and steady state creep problems. Numerical analysis has shown additional stability of this method compared to classical Galerkin formulations. The accuracy of the new formulation is confirmed in some representative examples of two dimensional and axisymmetric problems. (author) [pt

  14. Analysis of Plasticity, Fracture and Friction in Steady State Plate Cutting

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup; Wierzbicki, Tomasz

    1996-01-01

    A closed form solution to the problem of steady state wedge cutting through a ductile metal plate is presented. The considered problem is an idealization of a ship bottom raking process, i.e. a continuous cutting damage of a ship bottom by a hard knife-like rock in a grounding event. A new...

  15. Real-time dynamic hydraulic model for water distribution networks: steady state modelling

    CSIR Research Space (South Africa)

    Osman, Mohammad S

    2016-09-01

    Full Text Available steady state hydraulic model that will be used within a real-time dynamic hydraulic model (DHM). The Council for Scientific and Industrial Research (CSIR) water distribution network (WDN) is used as a pilot study for this purpose. A hydraulic analysis...

  16. The total quasi-steady-state approximation for fully competitive enzyme reactions

    DEFF Research Database (Denmark)

    Pedersen, Morten Gram; Bersani, A.M.; Bersani, E.

    2007-01-01

    The validity of the Michaelis-Menten-Briggs-Haldane approximation for single enzyme reactions has recently been improved by the formalism of the total quasi-steady-state approximation. This approach is here extended to fully competitive systems, and a criterion for its validity is provided. We show...

  17. Reliable and Efficient Procedure for Steady-State Analysis of Nonautonomous and Autonomous Systems

    Directory of Open Access Journals (Sweden)

    J. Dobes

    2012-04-01

    Full Text Available The majority of contemporary design tools do not still contain steady-state algorithms, especially for the autonomous systems. This is mainly caused by insufficient accuracy of the algorithm for numerical integration, but also by unreliable steady-state algorithms themselves. Therefore, in the paper, a very stable and efficient procedure for the numerical integration of nonlinear differential-algebraic systems is defined first. Afterwards, two improved methods are defined for finding the steady state, which use this integration algorithm in their iteration loops. The first is based on the idea of extrapolation, and the second utilizes nonstandard time-domain sensitivity analysis. The two steady-state algorithms are compared by analyses of a rectifier and a C-class amplifier, and the extrapolation algorithm is primarily selected as a more reliable alternative. Finally, the method based on the extrapolation naturally cooperating with the algorithm for solving the differential-algebraic systems is thoroughly tested on various electronic circuits: Van der Pol and Colpitts oscillators, fragment of a large bipolar logical circuit, feedback and distributed microwave oscillators, and power amplifier. The results confirm that the extrapolation method is faster than a classical plain numerical integration, especially for larger circuits with complicated transients.

  18. Rate sensitivity of mixed mode interface toughness of dissimilar metallic materials: Studied at steady state

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Niordson, Christian Frithiof

    2012-01-01

    the SSV model [Suo, Z., Shih, C., Varias, A., 1993. A theory for cleavage cracking in the presence of plastic flow. Acta Metall. Mater. 41, 1551–1557] embedded in a steady state finite element formulation, here assuming plane strain conditions and small-scale yielding. Results are presented for a wide...

  19. Spectrally selective imaging with wideband balanced steady-state free precession MRI.

    Science.gov (United States)

    Çukur, Tolga

    2016-03-01

    Unwanted, bright fat signals in balanced steady-state free precession sequences are commonly suppressed using spectral shaping. Here, a new spectral-shaping method is proposed to significantly improve the uniformity of stopband suppression without compromising the level of passband signals. The proposed method combines binomial-pattern excitation pulses with a wideband balanced steady-state free precession sequence kernel. It thereby increases the frequency separation between the centers of pass and stopbands by π radians, enabling improved water-fat contrast. Simulations were performed to find the optimal flip angles and subpulse spacing for the binomial pulses that maximize contrast and signal efficiency. Comparisons with a conventional binomial balanced steady-state free precession sequence were performed in simulations as well as phantom and in vivo experiments at 1.5 T and 3 T. Enhanced fat suppression is demonstrated in vivo with an average improvement of 58% in blood-fat and 68% in muscle-fat contrast (P steady-state free precession method is a promising candidate for spectrally selective imaging with enhanced reliability against field inhomogeneities. © 2015 Wiley Periodicals, Inc.

  20. Steady state drift vortices in plasmas with shear flow in equilibrium

    DEFF Research Database (Denmark)

    Chakrabarti, N.

    1999-01-01

    The Hasegawa-Mima equation in the presence of sheared poloidal flow is solved for two-dimensional steady state vortex. It is shown that when the phase velocity of the vortex is the same as the diamagnetic drift velocity, an exact solution in the form of counter-rotating vortices may appear...

  1. The steady state: is it a neglectable or a compulsory condition for determining renal clearance

    International Nuclear Information System (INIS)

    Bongartz, W.; Kuni, H.; Ridder, H.W.; Naber, K.

    1975-01-01

    The first part of the paper reviews critically the whole-body counter technique with falling blood activity level for measuring renal clearance. It is proved that the methodological assumption that the classic clearance formula in its differential mode can be applied is not fulfilled under routine conditions for several reasons. Therefore, that procedure has to be judged as a ''clearance-equivalent'' method. The second part describes the development of a steady-state clearance procedure to a practicable method. By using a subcutaneous (s.c.) autogenous blood depot of 51 Cr-EDTA the authors achieve a quasi constant level of blood activity which is nearly equivalent to that achievable by means of a continuous infusion technique. The third part describes a further development of this method into a ''total clearance'' method by means of a new and quantitative two-compartment analysis. The authors discuss the conditions under which the main criterion of a steady state (input equal to output) is realized and show that (1) the steady state is a condition absolutely necessary for the exact determination of renal clearance, and (2) the standard condition of constant blood level is neither sufficient to prove a steady state nor essential for a mass balance. This conception of determining renal clearance indirectly by means of a complete two-compartment analysis seems to have advantages over competitive procedures. At a reasonable expense of hardware and personnel this method involves minimal discomfort to the patient. (author)

  2. Mechanistic assessment of hillslope transpiration controls of diel subsurface flow: a steady-state irrigation approach

    Science.gov (United States)

    H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell

    2010-01-01

    Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...

  3. A Steady State Visually Evoked Potential Investigation of Memory and Ageing

    Science.gov (United States)

    Macpherson, Helen; Pipingas, Andrew; Silberstein, Richard

    2009-01-01

    Old age is generally accompanied by a decline in memory performance. Specifically, neuroimaging and electrophysiological studies have revealed that there are age-related changes in the neural correlates of episodic and working memory. This study investigated age-associated changes in the steady state visually evoked potential (SSVEP) amplitude and…

  4. Molecular Control of Steady-State Dendritic Cell Maturation and Immune Homeostasis

    Science.gov (United States)

    Hammer, Gianna Elena; Ma, Averil

    2014-01-01

    Dendritic cells (DCs) are specialized sentinels responsible for coordinating adaptive immunity. This function is dependent upon coupled sensitivity to environmental signs of inflammation and infection to cellular maturation—the programmed alteration of DC phenotype and function to enhance immune cell activation. Although DCs are thus well equipped to respond to pathogens, maturation triggers are not unique to infection. Given that immune cells are exquisitely sensitive to the biological functions of DCs, we now appreciate that multiple layers of suppression are required to restrict the environmental sensitivity, cellular maturation, and even life span of DCs to prevent aberrant immune activation during the steady state. At the same time, steady-state DCs are not quiescent but rather perform key functions that support homeostasis of numerous cell types. Here we review these functions and molecular mechanisms of suppression that control steady-state DC maturation. Corruption of these steady-state operatives has diverse immunological consequences and pinpoints DCs as potent drivers of autoimmune and inflammatory disease. PMID:23330953

  5. Current Pressure Transducer Application of Model-based Prognostics Using Steady State Conditions

    Science.gov (United States)

    Teubert, Christopher; Daigle, Matthew J.

    2014-01-01

    Prognostics is the process of predicting a system's future states, health degradation/wear, and remaining useful life (RUL). This information plays an important role in preventing failure, reducing downtime, scheduling maintenance, and improving system utility. Prognostics relies heavily on wear estimation. In some components, the sensors used to estimate wear may not be fast enough to capture brief transient states that are indicative of wear. For this reason it is beneficial to be capable of detecting and estimating the extent of component wear using steady-state measurements. This paper details a method for estimating component wear using steady-state measurements, describes how this is used to predict future states, and presents a case study of a current/pressure (I/P) Transducer. I/P Transducer nominal and off-nominal behaviors are characterized using a physics-based model, and validated against expected and observed component behavior. This model is used to map observed steady-state responses to corresponding fault parameter values in the form of a lookup table. This method was chosen because of its fast, efficient nature, and its ability to be applied to both linear and non-linear systems. Using measurements of the steady state output, and the lookup table, wear is estimated. A regression is used to estimate the wear propagation parameter and characterize the damage progression function, which are used to predict future states and the remaining useful life of the system.

  6. Steady-state choice between four alternatives obeys the constant-ratio rule.

    Science.gov (United States)

    Bensemann, Joshua; Lobb, Brenda; Podlesnik, Christopher A; Elliffe, Douglas

    2015-07-01

    We investigated why violations to the constant-ratio rule, an assumption of the generalized matching law, occur in procedures that arrange frequent changes to reinforcer ratios. Our investigation produced steady-state data and compared them with data from equivalent, frequently changing procedures. Six pigeons responded in a four-alternative concurrent-schedule experiment with an arranged reinforcer-rate ratio of 27:9:3:1. The same four variable-interval schedules were used in every condition, for 50 sessions, and the physical location of each schedule was changed across conditions. The experiment was a steady-state version of a frequently changing procedure in which the locations of four VI schedules were changed every 10 reinforcers. We found that subjects' responding was consistent with the constant-ratio rule in the steady-state procedure. Additionally, local analyses showed that preference after reinforcement was towards the alternative that was likely to produce the next reinforcer, instead of being towards the just-reinforced alternative as in frequently changing procedures. This suggests that the effect of a reinforcer on preference is fundamentally different in rapidly changing and steady-state environments. Comparing this finding to the existing literature suggests that choice is more influenced by reinforcer-generated signals when the reinforcement contingencies often change. © Society for the Experimental Analysis of Behavior.

  7. Quantifying biases in non-steady state chamber measurements of soil-atmosphere gas exchange

    Science.gov (United States)

    Limitations of non-steady state (NSS) chamber methods for determining soil-to-atmosphere trace gas exchange rates have been recognized for several decades. Of these limitations, the so-called “chamber effect” is one of the most challenging to overcome. The chamber effect can be defined as the inhere...

  8. Theoretical comparison of advanced methods for calculating nitrous oxide fluxes using non-steady state chambers

    Science.gov (United States)

    Several flux-calculation (FC) schemes are available for determining soil-to-atmosphere emissions of nitrous oxide (N2O) and other trace gases using data from non-steady-state flux chambers. Recently developed methods claim to provide more accuracy in estimating the true pre-deployment flux (f0) comp...

  9. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction

    NARCIS (Netherlands)

    Heidt, Timo; Courties, Gabriel; Dutta, Partha; Sager, Hendrik B.; Sebas, Matt; Iwamoto, Yoshiko; Sun, Yuan; Da Silva, Nicolas; Panizzi, Peter; van der Lahn, Anja M.; Swirski, Filip K.; Weissleder, Ralph; Nahrendorf, Matthias

    2014-01-01

    Macrophages populate the steady-state myocardium. Previously, all macrophages were thought to arise from monocytes; however, it emerged that, in several organs, tissue-resident macrophages may self-maintain through local proliferation. Our aim was to study the contribution of monocytes to

  10. Transient and Steady-State Responses of an Asymmetric Nonlinear Oscillator

    Directory of Open Access Journals (Sweden)

    Alex Elías-Zúñiga

    2013-01-01

    oscillator that describes the motion of a damped, forced system supported symmetrically by simple shear springs on a smooth inclined bearing surface. We also use the percentage overshoot value to study the influence of damping and nonlinearity on the transient and steady-state oscillatory amplitudes.

  11. A quasi-steady state shrinking core model of "whole tree" combustion

    African Journals Online (AJOL)

    Remember me, or Register. DOWNLOAD FULL TEXT Open Access DOWNLOAD FULL TEXT Subscription or Fee Access. A quasi-steady state shrinking core model of "whole tree" combustion. A. Ouédraogo, JC Mulligan, JG Cleland. Abstract. (J. de la Recherche Scientifique de l'Université de Lomé, 2000, 4(2): 199-208) ...

  12. Incorporation of wind generation to the Mexican power grid: Steady state analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tovar, J.H.; Guardado, J.L.; Cisneros, F. [Inst. Tecnologico de Morelia (Mexico); Cadenas, R.; Lopez, S. [Comision Federal de Electricidad, Morelia (Mexico)

    1997-09-01

    This paper describes a steady state analysis related with the incorporation of large amounts of eolic generation into the Mexican power system. An equivalent node is used to represent individual eolic generators in the wind farm. Possible overloads, losses, voltage and reactive profiles and estimated severe contingencies are analyzed. Finally, the conclusions of this study are presented.

  13. Single-dose and steady-state pharmacokinetics of diltiazem administered in two different tablet formulations

    DEFF Research Database (Denmark)

    Christrup, Lona Louring; Bonde, J; Rasmussen, S N

    1992-01-01

    Single-dose and steady state pharmacokinetics of diltiazem administered in two different oral formulations were assessed with particular reference to rate and extent of absorption. Following single dose administration a significant difference in tmax was observed (2.9 +/- 1.9 and 6.8 +/- 2.6 hr r...

  14. Comparative analysis of steady state heat transfer in a TBC and ...

    Indian Academy of Sciences (India)

    - etry conforming to the NACA0012 is developed which is then used in a finite element algorithm to obtain a non-linear steady state solution to the heat equation for the blade under convection and radiation boundary conditions. The effects of.

  15. Transient and steady state photoelectronic analysis in TlInSe{sub 2} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Qasrawi, A.F., E-mail: aqasrawi@atilim.edu.tr [Group of Physics, Faculty of Engineering, Atilim University, 06836 Ankara (Turkey); Department of Physics, Arab-American University, Jenin, West Bank, Palestine (Country Unknown); Gasanly, N.M. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)

    2011-08-15

    Highlights: {yields} The steady state and time dependent photoconductivity kinetics of the TlInSe{sub 2} crystals are investigated in the temperature region of 100-350 K. {yields} The photocurrent of the sample exhibited linear, sublinear, and supralinear recombination mechanisms, at, above and below 160 K, respectively. {yields} Steady state photoconductivity revealed two recombination centres located at 234 and 94 meV. {yields} The transient photoconductivity is limited by a trapping center located at 173 meV. {yields} The capture coefficient of the trap for holes was determined as 3.11 x 10{sup -22} cm{sup -2}. -- Abstract: The temperature and illumination effects on the transient and steady state photoconductivities of TlInSe{sub 2} crystals have been studied. Namely, two recombination centres located at 234 and at 94 meV and one trap center located at 173 meV were determined from the temperature-dependent steady state and transient photoconductivities, respectively. The illumination dependence of photoconductivity indicated the domination of sublinear and supralinear recombination mechanisms above and below 160 K, respectively. The change in the recombination mechanism is attributed to the exchange of roles between the linear recombination at the surface and trapping centres in the crystal, which become dominant as temperature decreases. The transient photoconductivity measurement allowed the determination of the capture coefficient of traps for holes as 3.11 x 10{sup -22} cm{sup -2}.

  16. Steady-state, elastic-plastic growth of slanted cracks in symmetrically loaded plates

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau; Hutchinson, J. W.

    2017-01-01

    of the plate, the problem would be mode I, but due to the slant the local conditions along the crack front are a combination of mode I and mode III. A three-dimensional formulation for steady-state crack propagation is employed to generate distributions of effective stress, stress triaxiality and Lode...

  17. Post-CHF heat transfer during steady-state and transient conditions

    International Nuclear Information System (INIS)

    Fung, K.K.

    1978-06-01

    This review extends previous reviews of steady-state post-CHF literature by Groeneveld, Gardiner, and Fung by including more recent data. A review of the literature on transient post-CHF data is also included by extending the work of Yadigaroglu

  18. Coagulation profile of children with sickle cell anemia in steady state ...

    African Journals Online (AJOL)

    Background: Sickle cell anemia is associated with a hypercoagulable state that may lead to alterations in a coagulation profile. Measurements of coagulation factors are known to have some predictive value for clinical outcome. Objectives: To determine the coagulation profile of children with SCA in steady state and crisis ...

  19. Controlling Unknown Saddle Type Steady States of Dynamical Systems with Latency in the Feedback Loop

    DEFF Research Database (Denmark)

    Tamasevicius, Arunas; Bumeliene, Skaidra; Tamaseviciute, Elena

    2009-01-01

    We suggest an adaptive control technique for stabilizing saddle type unstable steady states of dynamical systems. The controller is composed of an unstable and a stable high-pass filters operating in parallel. The mathematical model is considered analytically and numerically. The conjoint...

  20. Pre-steady state transients in the Drosophila alcohol dehydrogenase catalyzed reaction: isotope effects and stereospecificity

    International Nuclear Information System (INIS)

    Place, A.R.; Eccleston, J.F.

    1987-01-01

    The alcohol dehydrogenase (ADH) isolated from Drosophila is unique among alcohol metabolizing enzymes by not requiring metals for catalysis, by showing 4-pro-S (B-sided) hydride transfer stereospecificity, and by possessing a greater catalytic turnover rate for secondary alcohols than for primary alcohols. They have extended their studies on the kinetic mechanism for this enzyme by examining the pre-steady state transients of ternary complex interconversion using stopped-flow fluorescence methods. When enzyme and a 30-fold molar excess of NADH is mixed with excess acetadehyde, methyl ethyl ketone (MEK), or cyclohexanone a rapid (> 100 s -1 ) transient is observe before the steady-state. The rates are insensitive to isotope substitution. With the substrate MEK, the rate and amplitude suggests a single turnover of the enzyme. Similar pre-steady state transients are observed when enzyme and a 50-fold molar excess of NAD + is mixed with ethanol, 2-propanol, and cyclohexanol. The rates show a hyperbolic concentration dependence and a deuterium isotope effect. With d 6 -deuteroethanol the transient no longer occurs in the pre-steady state. When the optical isomers of secondary alcohols are used as substrates, transients are observed only in the R-(-) isomers for all chain lengths. With 2-S(+)-heptanol and 2-S(+)-octanol no transients occur

  1. Steady-state transport equation resolution by particle methods, and numerical results

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-10-01

    A method to solve steady-state transport equation has been given. Principles of the method are given. The method is studied in two different cases; estimations given by the theory are compared to numerical results. Results got in 1-D (spherical geometry) and in 2-D (axisymmetric geometry) are given [fr

  2. FORMULATION OF NON-STEADY-STATE DUST FORMATION PROCESS IN ASTROPHYSICAL ENVIRONMENTS

    International Nuclear Information System (INIS)

    Nozawa, Takaya; Kozasa, Takashi

    2013-01-01

    The non-steady-state formation of small clusters and the growth of grains accompanied by chemical reactions are formulated under the consideration that the collision of key gas species (key molecule) controls the kinetics of dust formation process. The formula allows us to evaluate the size distribution and condensation efficiency of dust formed in astrophysical environments. We apply the formulation to the formation of C and MgSiO 3 grains in the ejecta of supernovae, as an example, to investigate how the non-steady effect influences the formation process, condensation efficiency f con, ∞ , and average radius a ave, ∞ of newly formed grains in comparison with the results calculated with the steady-state nucleation rate. We show that the steady-state nucleation rate is a good approximation if the collision timescale of key molecule τ coll is much smaller than the timescale τ sat with which the supersaturation ratio increases; otherwise the effect of the non-steady state becomes remarkable, leading to a lower f con, ∞ and a larger a ave, ∞ . Examining the results of calculations, we reveal that the steady-state nucleation rate is applicable if the cooling gas satisfies Λ ≡ τ sat /τ coll ∼> 30 during the formation of dust, and find that f con, ∞ and a ave, ∞ are uniquely determined by Λ on at the onset time t on of dust formation. The approximation formulae for f con, ∞ and a ave, ∞ as a function of Λ on could be useful in estimating the mass and typical size of newly formed grains from observed or model-predicted physical properties not only in supernova ejecta but also in mass-loss winds from evolved stars

  3. Steady-state analysis of the nickel oxide in neutral and weakly alkaline solutions

    International Nuclear Information System (INIS)

    Albu, C.; Deconinck, D.; Hotoiu, L.; Deconinck, J.; Topa, V.

    2013-01-01

    Thin passive nickel oxides are investigated in neutral and weakly alkaline pH solutions under steady-state conditions. The chemical species considered in the oxide film are nickel interstitials and vacancies, as well as oxygen vacancies. The set of differential equations used in this study is solved using the finite element method (FEM) and is able to reproduce the experimental data present in the literature. Steady-state oxide thickness variation with the applied electrode potential presents a linear behavior with an average slope of 2 nm/V. The role of dominant species in these thin films is investigated in terms of current density produced by the reactions at the interfaces, the reactions involving production and consumption of Ni 2+ vacancies playing a major role in the steady-state properties of the oxide. We show that the mass transport of species in the oxide is influenced more by the migration component of the flux than the diffusion component. Our results also show that the flux of Ni 2+ vacancies is approximately two orders of magnitude higher than the flux of oxygen vacancies and Ni 2+ interstitials, making them the dominant defects in the oxide (thus the p-type electronic character is present). Also, the Ni 2+ vacancies were found to have density levels of 10 20 –10 21 cm −3 close to the metal–film interface. Variations of the steady-state thickness and logarithm of the current density with the electrolyte pH, show a linear increase and decrease respectively. Some of these results are compared with data from experiments and simulations done on the iron oxide, showing that Ni forms steady-state passive films that are thinner than the ones formed on Fe under the same environment conditions (pH, temperature, and applied potential)

  4. STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE

    International Nuclear Information System (INIS)

    Bar-Or, Ben; Alexander, Tal

    2016-01-01

    A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity, and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity, dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in restricted volumes of phase-space may affect the steady state substantially

  5. Factor Xa inhibition by rivaroxaban in the trough steady state can significantly reduce thrombin generation.

    Science.gov (United States)

    Horinaka, Shigeo; Sugawara, Rie; Yonezawa, Yutaka; Ishimitsu, Toshihiko

    2018-01-01

    The aim of the present study was to demonstrate evidence of reduced thrombin generation at the trough plasma rivaroxaban concentration. A single-centre, prospective, nonrandomized, drug-intervention, self-controlled study was conducted in 51 anticoagulation therapy-naïve patients with nonvalvular atrial fibrillation. Plasma rivaroxaban concentration was measured by liquid chromatography tandem mass spectrometry (LC-MS/MS) and the anti-factor Xa chromogenic assay. Partial thrombin time (PT), protein C activity, and protein S antigen, prothrombin fragment 1 + 2 (F1 + 2), D-dimer, thrombomodulin (TM), thrombin-antithrombin complex (TAT), plasminogen activator inhibitor-1 (PAI-1) and tissue factor pathway inhibitor (TFPI) levels were also measured at the trough steady state after 4 weeks of rivaroxaban treatment and compared with baseline. Plasma concentrations obtained by the LC-MS/MS and anti-Xa assays were correlated (r = 0.841, P steady state was 23.6 ng ml -1 , at which F1 + 2, TAT and D-dimer had decreased from the baseline values (P steady state in the first to third quartile groups (+0.79 pg ml -1 , P = 0.048). By contrast, PAI-1, protein C activity, protein S antigen and TM remained within the normal range at the trough steady state. Residual plasma rivaroxaban at the trough steady state may explain the antithrombin effect of rivaroxaban in patients with nonvalvular atrial fibrillation. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  6. Intracellular CHO Cell Metabolite Profiling Reveals Steady-State Dependent Metabolic Fingerprints in Perfusion Culture.

    Science.gov (United States)

    Karst, Daniel J; Steinhoff, Robert F; Kopp, Marie R G; Serra, Elisa; Soos, Miroslav; Zenobi, Renato; Morbidelli, Massimo

    2017-07-01

    Perfusion cell culture processes allow the steady-state culture of mammalian cells at high viable cell density, which is beneficial for overall product yields and homogeneity of product quality in the manufacturing of therapeutic proteins. In this study, the extent of metabolic steady state and the change of the metabolite profile between different steady states of an industrial Chinese hamster ovary (CHO) cell line producing a monoclonal antibody (mAb) was investigated in stirred tank perfusion bioreactors. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) of daily cell extracts revealed more than a hundred peaks, among which 76 metabolites were identified by tandem MS (MS/MS) and high resolution Fourier transform ion cyclotron resonance (FT-ICR) MS. Nucleotide ratios (Uridine (U)-ratio, nucleotide triphosphate (NTP)-ratio and energy charge (EC)) and multivariate analysis of all features indicated a consistent metabolite profile for a stable culture performed at 40 × 10 6 cells/mL over 26 days of culture. Conversely, the reactor was operated continuously so as to reach three distinct steady states one after the other at 20, 60, and 40 × 10 6 cells/mL. In each case, a stable metabolite profile was achieved after an initial transient phase of approximately three days at constant cell density when varying between these set points. Clear clustering according to cell density was observed by principal component analysis, indicating steady-state dependent metabolite profiles. In particular, varying levels of nucleotides, nucleotide sugar, and lipid precursors explained most of the variance between the different cell density set points. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:879-890, 2017. © 2016 American Institute of Chemical Engineers.

  7. Fluctuation Theorem, Nonequilibrium Steady States and MacLennan-Zubarev Ensembles of $L^1$-Asymptotic Abelian C$^*$ Dynamical Systems

    CERN Document Server

    Tasaki, S

    2002-01-01

    For an infinitely extended system divisable into a finite subsystem and several reservoirs, the time evolution of initial states, where the reservoirs are in equilibrium with different temperatures and chemical potentials, is studied. Under the assumption that the time evolution is $L^1$-asymptotic abelian, (i) \\ the existence of the steady states, (ii) \\ the division independence of the steady states and their relative entropy production, and (iii) \\ the stability of steady states against local perturbations are shown. The explicit expression of the relative entropy production and a KMS characterization of the steady states are given. Without the $L^1$-asymptotic abelian property, a noncommutative analog to the fluctuation theorem is derived as well.

  8. Existence and instability of steady states for a triangular cross-diffusion system: A computer-assisted proof

    Science.gov (United States)

    Breden, Maxime; Castelli, Roberto

    2018-05-01

    In this paper, we present and apply a computer-assisted method to study steady states of a triangular cross-diffusion system. Our approach consist in an a posteriori validation procedure, that is based on using a fixed point argument around a numerically computed solution, in the spirit of the Newton-Kantorovich theorem. It allows to prove the existence of various non homogeneous steady states for different parameter values. In some situations, we obtain as many as 13 coexisting steady states. We also apply the a posteriori validation procedure to study the linear stability of the obtained steady states, proving that many of them are in fact unstable.

  9. Study on Off-Design Steady State Performances of Helium Gas Turbo-compressor for HTGR-GT

    International Nuclear Information System (INIS)

    Qisen Ren; Xiaoyong Yang; Zhiyong Huang; Jie Wang

    2006-01-01

    The high temperature gas-cooled reactor (HTGR) coupled with direct gas turbine cycle is a promising concept in the future of nuclear power development. Both helium gas turbine and compressor are key components in the cycle. Under normal conditions, the mode of power adjustment is to control total helium mass in the primary loop using gas storage vessels. Meanwhile, thermal power of reactor core is regulated. This article analyzes off-design performances of helium gas turbine and compressors for high temperature gas-cooled reactor with gas turbine cycle (HTGR-GT) at steady state level of electric power adjustment. Moreover, performances of the cycle were simply discussed. Results show that the expansion ratio of turbine decreases as electric power reduces but the compression ratios of compressors increase, efficiencies of both turbine and compressors decrease to some extent. Thermal power does not vary consistently with electric power, the difference between these two powers increases as electric power reduces. As a result of much thermal energy dissipated in the temperature modulator set at core inlet, thermal efficiency of the cycle has a widely reduction under partial load conditions. (authors)

  10. A pre-steady state and steady state kinetic analysis of the N-ribosyl hydrolase activity of hCD157.

    Science.gov (United States)

    Preugschat, Frank; Carter, Luke H; Boros, Eric E; Porter, David J T; Stewart, Eugene L; Shewchuk, Lisa M

    2014-12-15

    hCD157 catalyzes the hydrolysis of nicotinamide riboside (NR) and nicotinic acid riboside (NAR). The release of nicotinamide or nicotinic acid from NR or NAR was confirmed by spectrophotometric, HPLC and NMR analyses. hCD157 is inactivated by a mechanism-based inhibitor, 2'-deoxy-2'-fluoro-nicotinamide arabinoside (fNR). Modification of the enzyme during the catalytic cycle by NR, NAR, or fNR increased the intrinsic protein fluorescence by approximately 50%. Pre-steady state and steady state data were used to derive a minimal kinetic scheme for the hydrolysis of NR. After initial complex formation a reversible step (360 and 30s(-1)) is followed by a slow irreversible step (0.1s(-1)) that defined the rate limiting step, or kcat. The calculated KMapp value for NR in the hydrolytic reaction is 6nM. The values of the kinetic constants suggest that one biological function of cell-surface hCD157 is to bind and slowly hydrolyze NR, possibly converting it to a ligand-activated receptor. Differences in substrate preference between hCD157 and hCD38 were rationalized through a comparison of the crystal structures of the two proteins. This comparison identified several residues in hCD157 (F108 and F173) that can potentially hinder the binding of dinucleotide substrates (NAD+). Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    Science.gov (United States)

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program

  12. NESTLE: Few-group neutron diffusion equation solver utilizing the nodal expansion method for eigenvalue, adjoint, fixed-source steady-state and transient problems

    International Nuclear Information System (INIS)

    Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.

    1994-06-01

    NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation

  13. Method development for detecting divertor failures during steady state operation of Wendelstein 7X

    Energy Technology Data Exchange (ETDEWEB)

    Rodatos, Alexander; Jakubowski, Marcin; Sunn Pedersen, Thomas [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, Greifswald (Germany); Greuner, Henri [Max Planck Institute for Plasma Physics, Boltzmannstr. 2, Garching (Germany)

    2015-05-01

    Wendelstein 7-X (W7-X) is stellarator fusion experiment, which will start operation in 2015. One of its goals is the demonstration of the stellarator concepts steady state capability while operating with fusion relevant plasma parameters. For particle and heat exhaust from the plasma a set of 10 island divertor units is installed in the machine. During the steady state operation they are exposed to a heat flux of up to 10MW/m{sup 2} for up to 30 min. Transient, even higher heat fluxes are possible. To guarantee the save operation of W7-X a continues surveillance of the divertor is mandatory, which is realized by a set of 10 infrared cameras observing the divertor surface. These data needs to be evaluated during the experiment identifying defects, surface layers and actual hot spots caused by overheating.

  14. An equation oriented approach to steady state flowsheeting of methanol synthesis loop

    International Nuclear Information System (INIS)

    Fathikalajahi, J.; Baniadam, M.; Rahimpour, M.R.

    2008-01-01

    An equation-oriented approach was developed for steady state flowsheeting of a commercial methanol plant. The loop consists of fixed bed reactor, flash separator, preheater, coolers, and compressor. For steady sate flowsheeting of the plant mathematical model of reactor and other units are needed. Reactor used in loop is a Lurgi type and its configuration is rather complex. Previously reactor and flash separator are modeled as two important units of plant. The model is based on mass and energy balances in each equipment and utilizing some auxiliary equations such as rate of reaction and thermodynamics model for activity coefficients of liquid. In order to validate the mathematical model for the synthesis loop, some simulation data were performed using operating conditions and characteristics of the commercial plant. The good agreement between the steady state simulation results and the plant data shows the validity of the model

  15. Stability of periodic steady-state solutions to a non-isentropic Euler-Poisson system

    Science.gov (United States)

    Liu, Cunming; Peng, Yue-Jun

    2017-06-01

    We study the stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Poisson system without temperature damping term. The system arises in the theory of semiconductors for which the doping profile is a given smooth function. In this stability problem, there are no special restrictions on the size of the doping profile, but only on the size of the perturbation. We prove that small perturbations of periodic steady-states are exponentially stable for large time. For this purpose, we introduce new variables and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. This also allows to make the proof of the stability result very simple and concise.

  16. Comparing Interval Management Control Laws for Steady-State Errors and String Stability

    Science.gov (United States)

    Weitz, Lesley A.; Swieringa, Kurt A.

    2018-01-01

    Interval Management (IM) is a future airborne spacing concept that leverages avionics to provide speed guidance to an aircraft to achieve and maintain a specified spacing interval from another aircraft. The design of a speed control law to achieve the spacing goal is a key aspect in the research and development of the IM concept. In this paper, two control laws that are used in much of the contemporary IM research are analyzed and compared to characterize steady-state errors and string stability. Numerical results are used to illustrate how the choice of control laws gains impacts the size of steady-state errors and string performance and the potential trade-offs between those performance characteristics.

  17. Performance enhancement of steady-state Markov analysis for cognitive radio networks via channel reservation

    Directory of Open Access Journals (Sweden)

    Nehal M. El Azaly

    2017-12-01

    Full Text Available Cognitive radio wireless networks CRNs have been considered as an efficient communication paradigm to the utilization of scarce spectrum. The main purpose of channel reservation of dynamic spectrum access (DSA is to access these idle channels intelligently which are specialized for primary users (PUS to be used by unlicensed users temporarily, which are called secondary users (SUS without causing critical interference to the licensed user’s activity. In this paper, continuous-time Markov chain paradigm is improved via channel reservation to show the best usage of the radio spectrum bands, and the transition matrix are deduced for the proposed model. Moreover, the probability state vector is proved by performing steady state analysis. The deduced expressions of the suggested model are illustrated in the numerical results section. Keywords: Cognitive radio networks, Dynamic spectrum access, Channel reservation, Continuous-time Markov chain, Steady-state analysis

  18. Steady-State Somatosensory Evoked Potential for Brain-Computer Interface–Present and Future

    Directory of Open Access Journals (Sweden)

    Sangtae eAhn

    2016-01-01

    Full Text Available Brain-computer interface (BCI performance has achieved continued improvement over recent decades, and sensorimotor rhythm-based BCIs that use motor function have been popular subjects of investigation. However, it remains problematic to introduce them to the public market because of their low reliability. As an alternative resolution to this issue, visual-based BCIs that use P300 or steady-state visually evoked potentials seem promising; however, the inherent visual fatigue that occurs with these BCIs may be unavoidable. For these reasons, steady-state somatosensory evoked potential (SSSEP BCIs, which are based on tactile selective attention, have gained increasing attention recently. These may reduce the fatigue induced by visual attention and overcome the low reliability of motor activity. In this literature survey, recent findings on SSSEP and its methodological uses in BCI are reviewed. Further, existing limitations of SSSEP BCI and potential future directions for the technique are discussed.

  19. Steady-state and transient heat transfer through fins of complex geometry

    Directory of Open Access Journals (Sweden)

    Taler Dawid

    2014-06-01

    Full Text Available Various methods for steady-state and transient analysis of temperature distribution and efficiency of continuous-plate fins are presented. For a constant heat transfer coefficient over the fin surface, the plate fin can be divided into imaginary rectangular or hexangular fins. At first approximate methods for determining the steady-state fin efficiency like the method of equivalent circular fin and the sector method are discussed. When the fin geometry is complex, thus transient temperature distribution and fin efficiency can be determined using numerical methods. A numerical method for transient analysis of fins with complex geometry is developed. Transient temperature distributions in continuous fins attached to oval tubes is computed using the finite volume - finite element methods. The developed method can be used in the transient analysis of compact heat exchangers to calculate correctly the heat flow rate transferred from the finned tubes to the fluid.

  20. Basis adaptation and domain decomposition for steady-state partial differential equations with random coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    2017-12-01

    We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.

  1. Composing Problem Solvers for Simulation Experimentation: A Case Study on Steady State Estimation

    Science.gov (United States)

    Leye, Stefan; Ewald, Roland; Uhrmacher, Adelinde M.

    2014-01-01

    Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models. PMID:24705453

  2. Steady-state pulses and superradiance in short-wavelength, swept-gain amplifiers

    International Nuclear Information System (INIS)

    Bonifacio, R.; Hopf, F.A.; Meystre, P.; Scully, M.O.

    1975-01-01

    The steady-state behavior of amplifiers in which the excitation is swept at the speed of light is discussed in the semiclassical approximation. In the present work the case where the decay time of the population is comparable to that of the polarization is examined. Pulse propagation is shown to obey a generalized sine-Gordon equation which contains the effects of atomic relaxations. The analytical expression of the steady-state pulses (SSP) gives two threshold conditions. In the region of limited gain the SSP is a broad pulse with small area which can be obtained by small signal theory. In the second region of high gain the SSP is the superradiant π pulse. Its pulse power is not limited as in usual superradiant theory because, as is shown, for a swept excitation the cooperation-length limit does not exist

  3. Basis adaptation and domain decomposition for steady-state partial differential equations with random coefficients

    Science.gov (United States)

    Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.

    2017-12-01

    We present a novel approach for solving steady-state stochastic partial differential equations in high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numerical experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that accurate global solutions can be obtained with significantly reduced computational costs.

  4. Methods of computing steady-state voltage stability margins of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Joe Hong; Ghiocel, Scott Gordon

    2018-03-20

    In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.

  5. Steady State Thermo-Hydrodynamic Analysis of Two-Axial groove and Multilobe Hydrodynamic Bearings

    Directory of Open Access Journals (Sweden)

    C. Bhagat

    2014-12-01

    Full Text Available Steady state thermo-hydrodynamic analysis of two axial groove and multi lobe oil journal bearings is performed in this paper. To study the steady state thermo-hydrodynamic characteristics Reynolds equation is solved simultaneously along with the energy equation and heat conduction equation in bush and shaft. The effect of groove geometry, cavitation in the fluid film, the recirculation of lubricant, shaft speed has also been taken into account. Film temperature in case of three-lobe bearing is found to be high as compared to other studied bearing configurations. The data obtained from this analysis can be used conveniently in the design of such bearings, which are presented in dimensionless form.

  6. Rheological behavior of semi-solid 7075 aluminum alloy at steady state

    Directory of Open Access Journals (Sweden)

    Li Yageng

    2014-03-01

    Full Text Available The further application of semi-solid processing lies in the in-depth fundamental study like rheological behavior. In this research, the apparent viscosity of the semi-solid slurry of 7075 alloy was measured using a Couette type viscometer. The effects of solid fraction and shearing rate on the apparent viscosity of this alloy were investigated under different processing conditions. It can be seen that the apparent viscosity increases with an increase in the solid fraction from 10% to 50% (temperature 620 篊 to 630 篊 at steady state. When the solid fraction was fixed, the apparent viscosity can be decreased by altering the shearing rate from 61.235 s-1 to 489.88 s-1 at steady state. An empirical equation that shows the effects of solid fraction and shearing rate on the apparent viscosity is fitted. The microstructure of quenched samples was examined to understand the alloy抯 rheological behavior.

  7. Robust random number generation using steady-state emission of gain-switched laser diodes

    International Nuclear Information System (INIS)

    Yuan, Z. L.; Lucamarini, M.; Dynes, J. F.; Fröhlich, B.; Plews, A.; Shields, A. J.

    2014-01-01

    We demonstrate robust, high-speed random number generation using interference of the steady-state emission of guaranteed random phases, obtained through gain-switching a semiconductor laser diode. Steady-state emission tolerates large temporal pulse misalignments and therefore significantly improves the interference quality. Using an 8-bit digitizer followed by a finite-impulse-response unbiasing algorithm, we achieve random number generation rates of 8 and 20 Gb/s, for laser repetition rates of 1 and 2.5 GHz, respectively, with a ±20% tolerance in the interferometer differential delay. We also report a generation rate of 80 Gb/s using partially phase-correlated short pulses. In relation to the field of quantum key distribution, our results confirm the gain-switched laser diode as a suitable light source, capable of providing phase-randomized coherent pulses at a clock rate of up to 2.5 GHz.

  8. Influence of non-steady state during isoglycemic hyperinsulinemic clamp in hypertension. A LIFE substudy

    DEFF Research Database (Denmark)

    Olsen, M H; Andersen, U B; Wachtell, K

    1999-01-01

    We wanted to investigate whether time to steady state was reached within 2 h of insulin infusion during isoglycemic hyperinsulinemic clamp, comparing the glucose uptake index (M/IG) with Bergman's insulin sensitivity index (Sip). We performed a 2-h oral glucose tolerance test and a 3-h isoglycemic...... hyperinsulinemic clamp in 26 young, healthy subjects and 43 elderly patients with unmedicated essential hypertension and left ventricular hypertrophy. The 3-h Sip correlated strongly with the 2-h M/IG in the patients (r = 0.88, p .... Because the 2-h M/IG correlated strongly with the 3-h Sip with relatively narrow limits of agreement, it is a good measure of insulin sensitivity. However, a 2-h clamp results in lower insulin sensitivity values in elderly, hypertensive patients due to the fact that steady state is not reached...

  9. A fully implicit method for 3D quasi-steady state magnetic advection-diffusion.

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, Christopher; Robinson, Allen Conrad

    2009-09-01

    We describe the implementation of a prototype fully implicit method for solving three-dimensional quasi-steady state magnetic advection-diffusion problems. This method allows us to solve the magnetic advection diffusion equations in an Eulerian frame with a fixed, user-prescribed velocity field. We have verified the correctness of method and implementation on two standard verification problems, the Solberg-White magnetic shear problem and the Perry-Jones-White rotating cylinder problem.

  10. Large Amplitude Oscillatory Shear Rheology of Living Fibroblasts: Path-Dependent Steady States.

    Science.gov (United States)

    Sander, Mathias; Dobicki, Heike; Ott, Albrecht

    2017-10-03

    Mechanical properties of biological cells play a role in cell locomotion, embryonic tissue formation, and tumor migration among many other processes. Cells exhibit a complex nonlinear response to mechanical cues that is not understood. Cells may stiffen as well as soften, depending on the exact type of stimulus. Here we apply large-amplitude oscillatory shear to a monolayer of separated fibroblast cells suspended between two plates. Although we apply identical steady-state excitations, in response we observe different typical regimes that exhibit cell softening or cell stiffening to varying degrees. This degeneracy of the cell response can be linked to the initial paths that the instrument takes to go from cell rest to steady state. A model of cross-linked, force-bearing filaments submitted to steady-state excitation renders the different observed regimes with minor changes in parameters if the filaments are permitted to self-organize and form different spatially organized structures. We suggest that rather than a complex viscoelastic or plastic response, the different observed regimes reflect the emergence of different steady-state cytoskeletal conformations. A high sensitivity of the cytoskeletal rheology and structure to minor changes in parameters or initial conditions enables a cell to respond to mechanical requirements quickly and in various ways with only minor biochemical intervention. Probing path-dependent rheological changes constitutes a possibly very sensitive assessment of the cell cytoskeleton as a possible tool for medical diagnosis. Our observations show that the memory of subtle differences in earlier deformation paths must be taken into account when deciphering the cell mechanical response to large-amplitude deformations. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Restitution slope is principally determined by steady-state action potential duration.

    Science.gov (United States)

    Shattock, Michael J; Park, Kyung Chan; Yang, Hsiang-Yu; Lee, Angela W C; Niederer, Steven; MacLeod, Kenneth T; Winter, James

    2017-06-01

    The steepness of the action potential duration (APD) restitution curve and local tissue refractoriness are both thought to play important roles in arrhythmogenesis. Despite this, there has been little recognition of the apparent association between steady-state APD and the slope of the restitution curve. The objective of this study was to test the hypothesis that restitution slope is determined by APD and to examine the relationship between restitution slope, refractoriness and susceptibility to VF. Experiments were conducted in isolated hearts and ventricular myocytes from adult guinea pigs and rabbits. Restitution curves were measured under control conditions and following intervention to prolong (clofilium, veratridine, bretylium, low [Ca]e, chronic transverse aortic constriction) or shorten (catecholamines, rapid pacing) ventricular APD. Despite markedly differing mechanisms of action, all interventions that prolonged the action potential led to a steepening of the restitution curve (and vice versa). Normalizing the restitution curve as a % of steady-state APD abolished the difference in restitution curves with all interventions. Effects on restitution were preserved when APD was modulated by current injection in myocytes pre-treated with the calcium chelator BAPTA-AM - to abolish the intracellular calcium transient. The non-linear relation between APD and the rate of repolarization of the action potential is shown to underpin the common influence of APD on the slope of the restitution curve. Susceptibility to VF was found to parallel changes in APD/refractoriness, rather than restitution slope. Steady-state APD is the principal determinant of the slope of the ventricular electrical restitution curve. In the absence of post-repolarization refractoriness, factors that prolong the action potential would be expected to steepen the restitution curve. However, concomitant changes in tissue refractoriness act to reduce susceptibility to sustained VF. Dependence on

  12. Brain penetration assessment in vivo: a reliable and simple method in anesthetized rats at steady state.

    Science.gov (United States)

    Andersen, Claus A; Perfetti, Paolo; Nibbio, Martina; Bellini, Marta; Angelini, Roberto; Fornasier, Massenzio

    2014-07-30

    For CNS drugs, brain disposition is of critical importance during drug discovery. In vitro methods are used early followed by more predictive in vivo methods later on in the drug discovery process. Current in vivo methods are costly, have long turnover times or do not measure brain disposition at steady state. A new method to evaluate drug brain disposition in vivo was developed in anaesthetized rats. Seven reference compounds were administered as an initial IV bolus (loading dose) followed by IV infusion for 4.5 h in order to obtain a steady state plasma concentration before brain sampling. The loading dose was estimated from a preliminary single dose IV pharmacokinetic study and was found to successfully bring plasma concentrations to steady state for compounds exhibiting either mono- or bi-compartmental pharmacokinetics. Using this method, a steady state lasting at least 2h was obtained, thus making the in vivo method robust with respect to differences in the pharmacokinetics and/or blood-to-brain equilibration rate of the compounds tested. The method produced highly reproducible results, with substantial advantages in terms of cost, turnaround time and animal welfare. The results agreed with those reported in other, more elaborate preclinical models and in humans, enabling brain disposition to be assessed in a simple, efficient and robust in vivo model for new chemical entities. Introducing the presented method in drug discovery allows brain disposition to be assessed earlier in the drug discovery pipeline and thus facilitate the selection of potent and penetrant CNS drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Infinite product expansion of the Fokker-Planck equation with steady-state solution.

    Science.gov (United States)

    Martin, R J; Craster, R V; Kearney, M J

    2015-07-08

    We present an analytical technique for solving Fokker-Planck equations that have a steady-state solution by representing the solution as an infinite product rather than, as usual, an infinite sum. This method has many advantages: automatically ensuring positivity of the resulting approximation, and by design exactly matching both the short- and long-term behaviour. The efficacy of the technique is demonstrated via comparisons with computations of typical examples.

  14. Mimicking Nonequilibrium Steady States with Time-Periodic Driving (Open Source)

    Science.gov (United States)

    2016-05-18

    8,9]: A reaction such as ATP hydrolysis ( ATP → ADPþ Pi) produces entropy in the surrounding solution, and the chemical potential difference between...kinetic proofreading is achieved through breaking detailed balance, e.g., coupling the w ↔ x transition to the hydrolysis of ATP into ADP , whose...paradigm, a system driven by fixed thermodynamic forces—such as temperature gradients or chemical potential differences — reaches a steady state in

  15. Steady State Crack Propagation in Layered Material Systems Displaying Visco-plastic Behaviour

    DEFF Research Database (Denmark)

    Nielsen, Kim Lau

    2012-01-01

    The steady state fracture toughness of elastic visco-plastic materials is studied numerically, using both a conventional and a higher order model. Focus is on the combined effect of strain hardening, strain gradient hardening and strain rate hardening on cracking in layered material systems......, and predictions for the crack tip shielding ratio is brought forward. Included is a novel procedure for extracting information on the rate-independent toughness without approaching this numerically cumbersome limit....

  16. When can time-dependent currents be reproduced by the Landauer steady-state approximation?

    Science.gov (United States)

    Carey, Rachel; Chen, Liping; Gu, Bing; Franco, Ignacio

    2017-05-07

    We establish well-defined limits in which the time-dependent electronic currents across a molecular junction subject to a fluctuating environment can be quantitatively captured via the Landauer steady-state approximation. For this, we calculate the exact time-dependent non-equilibrium Green's function (TD-NEGF) current along a model two-site molecular junction, in which the site energies are subject to correlated noise, and contrast it with that obtained from the Landauer approach. The ability of the steady-state approximation to capture the TD-NEGF behavior at each instant of time is quantified via the same-time correlation function of the currents obtained from the two methods, while their global agreement is quantified by examining differences in the average currents. The Landauer steady-state approach is found to be a useful approximation when (i) the fluctuations do not disrupt the degree of delocalization of the molecular eigenstates responsible for transport and (ii) the characteristic time for charge exchange between the molecule and leads is fast with respect to the molecular correlation time. For resonant transport, when these conditions are satisfied, the Landauer approach is found to accurately describe the current, both on average and at each instant of time. For non-resonant transport, we find that while the steady-state approach fails to capture the time-dependent transport at each instant of time, it still provides a good approximation to the average currents. These criteria can be employed to adopt effective modeling strategies for transport through molecular junctions in interaction with a fluctuating environment, as is necessary to describe experiments.

  17. Differential equation methods for simulation of GFP kinetics in non-steady state experiments.

    Science.gov (United States)

    Phair, Robert D

    2018-03-15

    Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non-steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis. © 2018 Phair. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Non-steady-state transport of superthermal electrons in the plasmasphere

    Energy Technology Data Exchange (ETDEWEB)

    Khazanov, G.V.; Liemohn, M.W.; Gombosi, T.I.; Nagy, A.F. (Univ. of Michigan, Ann Arbor, MI (United States))

    1993-12-23

    Numerical solutions to the time-dependent kinetic equation, which describes the transport of superthermal electrons in the plasmasphere between the two conjugate ionospheres, are presented. The model calculates the distribution function as a function of time, field-aligned distance, energy, and pitch-angle. The processes of refilling, depleting, and establishing steady-state conditions of superthermal electrons in the plasmasphere are discussed. 10 refs., 6 figs.

  19. Iterative Observer-based Estimation Algorithms for Steady-State Elliptic Partial Differential Equation Systems

    KAUST Repository

    Majeed, Muhammad Usman

    2017-07-19

    Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.

  20. Steady-state tokamak reactor with non-divertor impurity control: STARFIRE

    International Nuclear Information System (INIS)

    Baker, C.C.

    1980-01-01

    STARFIRE is a conceptual design study of a commercial tokamak fusion electric power plant. Particular emphasis has been placed on simplifying the reactor concept by developing design concepts to produce a steady-state tokamak with non-divertor impurity control and helium ash removal. The concepts of plasma current drive using lower hybrid rf waves and a limiter/vacuum system for reactor applications are described

  1. Dynamic and steady-state oxygen-dependent lung relaxometry using inversion recovery ultra-fast steady-state free precession imaging at 1.5 T.

    Science.gov (United States)

    Bauman, Grzegorz; Pusterla, Orso; Santini, Francesco; Bieri, Oliver

    2018-02-01

    To demonstrate the feasibility of oxygen-dependent relaxometry in human lung using an inversion recovery ultra-fast steady-state free precession (IR-ufSSFP) technique. Electrocardiogram-triggered pulmonary relaxometry with IR-ufSSFP was performed in 7 healthy human subjects at 1.5 T. The data were acquired under both normoxic and hyperoxic conditions. In a single breath-hold of less than 9 seconds, 30 transient state IR-ufSSFP images were acquired, yielding longitudinal (T1) and transversal (T2) relaxometry parameter maps using voxel-wise nonlinear fitting. Possible spatial misalignments between consecutive IR-ufSSFP parameter maps were corrected using elastic image registration. Furthermore, dynamic relaxometry oxygen wash-in and wash-out scans were performed in one volunteer. From this, T 1 -related wash-in and wash-out time constants (τ wi , τ wo ) were calculated voxel-wise on registered maps using an exponential fitting model. For healthy lung, observed T1 values were 1399 ± 77 and 1290 ± 76 ms under normoxic and hyperoxic conditions, respectively. Oxygen-related reduction of T1 was statistically significant in every volunteer. No statistically significant change, however, was observed in T2, with normoxic and hyperoxic T2 values of 55 ± 16 and 56 ± 17 ms, respectively. The observed average τ wi was 87.0 ± 28.7 seconds, whereas the average τ wo was 73.5 ± 21.6 seconds. IR-ufSSFP allows fast, steady-state, and dynamic oxygen-dependent relaxometry of the human lung. Magn Reson Med 79:839-845, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Quantitative broadband absorption and scattering spectroscopy in turbid media by combined frequency-domain and steady state methodologies

    Science.gov (United States)

    Tromberg, Bruce J [Irvine, CA; Berger, Andrew J [Rochester, NY; Cerussi, Albert E [Lake Forest, CA; Bevilacqua, Frederic [Costa Mesa, CA; Jakubowski, Dorota [Irvine, CA

    2008-09-23

    A technique for measuring broadband near-infrared absorption spectra of turbid media that uses a combination of frequency-domain and steady-state reflectance methods. Most of the wavelength coverage is provided by a white-light steady-state measurement, whereas the frequency-domain data are acquired at a few selected wavelengths. Coefficients of absorption and reduced scattering derived from the frequency-domain data are used to calibrate the intensity of the steady-state measurements and to determine the reduced scattering coefficient at all wavelengths in the spectral window of interest. The absorption coefficient spectrum is determined by comparing the steady-state reflectance values with the predictions of diffusion theory, wavelength by wavelength. Absorption spectra of a turbid phantom and of human breast tissue in vivo, derived with the combined frequency-domain and steady-state technique, agree well with expected reference values.

  3. Study of impurity effects on CFETR steady-state scenario by self-consistent integrated modeling

    Science.gov (United States)

    Shi, Nan; Chan, Vincent S.; Jian, Xiang; Li, Guoqiang; Chen, Jiale; Gao, Xiang; Shi, Shengyu; Kong, Defeng; Liu, Xiaoju; Mao, Shifeng; Xu, Guoliang

    2017-12-01

    Impurity effects on fusion performance of China fusion engineering test reactor (CFETR) due to extrinsic seeding are investigated. An integrated 1.5D modeling workflow evolves plasma equilibrium and all transport channels to steady state. The one modeling framework for integrated tasks framework is used to couple the transport solver, MHD equilibrium solver, and source and sink calculations. A self-consistent impurity profile constructed using a steady-state background plasma, which satisfies quasi-neutrality and true steady state, is presented for the first time. Studies are performed based on an optimized fully non-inductive scenario with varying concentrations of Argon (Ar) seeding. It is found that fusion performance improves before dropping off with increasing {{Z}\\text{eff}} , while the confinement remains at high level. Further analysis of transport for these plasmas shows that low-k ion temperature gradient modes dominate the turbulence. The decrease in linear growth rate and resultant fluxes of all channels with increasing {{Z}\\text{eff}} can be traced to impurity profile change by transport. The improvement in confinement levels off at higher {{Z}\\text{eff}} . Over the regime of study there is a competition between the suppressed transport and increasing radiation that leads to a peak in the fusion performance at {{Z}\\text{eff}} (~2.78 for CFETR). Extrinsic impurity seeding to control divertor heat load will need to be optimized around this value for best fusion performance.

  4. Steady-state ozone concentrations in radiation induced noble gas-oxygen discharges

    International Nuclear Information System (INIS)

    Elsayed-Ali, H.E.; Miley, G.H.

    1985-01-01

    Measurements of steady-state ozone concentrations in continuous radiation induced noble gas-O/sub 2/ and noble gas-o/sub 2/-SF/sub 6/ mixtures has been accomplished. The discharges were created through the bombardment of the gases with energetic particles from the boron-10 (n,α) lithium-7 nuclear reaction. Three noble gases were studied, He, Ne, and Ar at partial pressures of few hundred Torr. The dose rates studied were in the order of 10/sup 15/ eV . cm/sup -3/ . s/sup -1/. The experimental apparatus and procedure were previously described. The experimentally observed steady-state ozone concentrations in noble gas-O/sub 2/ discharges were about an order of magnitude lower than that observed for oxygen radiolysis at similar dose rates. These results were physically explained by an enhanced role of negative ionic reactions with ozone causing its destruction. In noble gas-O/sub 2/-SF/sub 6/ mixtures, the steady-state ozone concentrations were found to be significantly higher (3-6 times) than that without the SF/sub 6/ addition. This observation was contrary to only a small increase observed after SF/sub 6/ addition to a few hundred Torr oxygen and is explained by an enhanced rate of electron dissociative attachment of ozone in noble gas-O/sub 2/ discharges

  5. Steady-state and transient analysis of a squeeze film damper bearing for rotor stability

    Science.gov (United States)

    Barrett, L. E.; Gunter, E. J.

    1975-01-01

    A study of the steady-state and transient response of the squeeze film damper bearing is presented. Both the steady-state and transient equations for the hydrodynamic bearing forces are derived. The bearing equivalent stiffness and damping coefficients are determined by steady-state equations. These coefficients are used to find the bearing configuration which will provide the optimum support characteristics based on a stability analysis of the rotor-bearing system. The transient analysis of rotor-bearing systems is performed by coupling the bearing and journal equations and integrating forward in time. The effects of unbalance, cavitation, and retainer springs are included in the analysis. Methods of determining the stability of a rotor-bearing system under the influence of aerodynamic forces and internal shaft friction are discussed with emphasis on solving the system characteristic frequency equation and on producing stability maps. It is shown that for optimum stability and low force transmissability the squeeze bearing should operate at an eccentricity ratio epsilon 0.4.

  6. Steady state characteristics of acclimated hydrogenotrophic methanogens on inorganic substrate in continuous chemostat reactors.

    Science.gov (United States)

    Ako, Olga Y; Kitamura, Y; Intabon, K; Satake, T

    2008-09-01

    A Monod model has been used to describe the steady state characteristics of the acclimated mesophilic hydrogenotrophic methanogens in experimental chemostat reactors. The bacteria were fed with mineral salts and specific trace metals and a H(2)/CO(2) supply was used as a single limited substrate. Under steady state conditions, the growth yield (Y(CH4)) reached 11.66 g cells per mmol of H(2)/CO(2) consumed. The daily cells generation average was 5.67 x 10(11), 5.25 x 10(11), 4.2 x 10(11) and 2.1 x 10(11) cells/l-culture for the dilutions 0.071/d, 0.083/d, 0.1/d and 0.125/d, respectively. The maximum specific growth rate (mu(max)) and the Monod half-saturation coefficient (K(S)) were 0.15/d and 0.82 g/L, respectively. Using these results, the reactor performance was simulated. During the steady state, the simulation predicts the dependence of the H(2)/CO(2) concentration (S) and the cell concentration (X) on the dilution rate. The model fitted the experimental data well and was able to yield a maximum methanogenic activity of 0.24 L CH(4)/g VSS.d. The dilution rate was estimated to be 0.1/d. At the dilution rate of 0.14/d, the exponential cells washout was achieved.

  7. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.

    Directory of Open Access Journals (Sweden)

    Zhongfan Zhu

    Full Text Available The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.

  8. On the Kaolinite Floc Size at the Steady State of Flocculation in a Turbulent Flow.

    Science.gov (United States)

    Zhu, Zhongfan; Wang, Hongrui; Yu, Jingshan; Dou, Jie

    2016-01-01

    The flocculation of cohesive fine-grained sediment plays an important role in the transport characteristics of pollutants and nutrients absorbed on the surface of sediment in estuarine and coastal waters through the complex processes of sediment transport, deposition, resuspension and consolidation. Many laboratory experiments have been carried out to investigate the influence of different flow shear conditions on the floc size at the steady state of flocculation in the shear flow. Most of these experiments reported that the floc size decreases with increasing shear stresses and used a power law to express this dependence. In this study, we performed a Couette-flow experiment to measure the size of the kaolinite floc through sampling observation and an image analysis system at the steady state of flocculation under six flow shear conditions. The results show that the negative correlation of the floc size on the flow shear occurs only at high shear conditions, whereas at low shear conditions, the floc size increases with increasing turbulent shear stresses regardless of electrolyte conditions. Increasing electrolyte conditions and the initial particle concentration could lead to a larger steady-state floc size.

  9. A waved journal bearing concept with improved steady-state and dynamic performance

    Science.gov (United States)

    Dimofte, Florin

    1994-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. A three wave, waved journal bearing geometry is used to show the geometry of this concept. The performance of generic waved bearings having either three, four, six, or eight waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of dynamic coefficients and fluid film stability. It was found that the bearing wave amplitude has an important influence on both steady-state and dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases. Also, the waved bearing becomes more stable as the wave amplitude increases. In addition, increasing the number of waves reduces the waved bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the waved bearing design for a specific application. It is concluded that the stiffness of an air bearing, due to the hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  10. Diffusion dynamics and steady states of systems of hard rods on a square lattice

    Science.gov (United States)

    Patra, Saugata; Das, Dibyendu; Rajesh, R.; Mitra, Mithun K.

    2018-02-01

    It is known from grand canonical simulations of a system of hard rods on two-dimensional lattices that an orientationally ordered nematic phase exists only when the length of the rods is at least seven. However, a recent microcanonical simulation with diffusion kinetics, conserving both total density and zero nematic order, reported the existence of a nematically phase-segregated steady state with interfaces in the diagonal direction for rods of length six [Phys. Rev. E 95, 052130 (2017), 10.1103/PhysRevE.95.052130], violating the equivalence of different ensembles for systems in equilibrium. We resolve this inconsistency by demonstrating that the kinetics violate detailed balance condition and drives the system to a nonequilibrium steady state. By implementing diffusion kinetics that drive the system to equilibrium, even within this constrained ensemble, we recover earlier results showing phase segregation only for rods of length greater than or equal to seven. Furthermore, in contrast to the nonequilibrium steady state, the interface has no preferred orientational direction. In addition, by implementing different nonequilibrium kinetics, we show that the interface between the phase segregated states can lie in different directions depending on the choice of kinetics.

  11. The Effects of High Intensity Interval Training vs Steady State Training on Aerobic and Anaerobic Capacity

    Directory of Open Access Journals (Sweden)

    Carl Foster, Courtney V. Farland, Flavia Guidotti, Michelle Harbin, Brianna Roberts, Jeff Schuette, Andrew Tuuri, Scott T. Doberstein, John P. Porcari

    2015-12-01

    Full Text Available High intensity interval training (HIIT has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly. Steady-state (n = 19 exercised (cycle ergometer 20 minutes at 90% of ventilatory threshold (VT. Tabata (n = 21 completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15 completed 13 sets of 30s (20 min @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05 increases in VO2max (+19, +18 and +18% and PPO (+17, +24 and +14% for each training group, as well as significant increases in peak (+8, + 9 and +5% & mean (+4, +7 and +6% power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05 than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05 across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults.

  12. Steady-state invariant genetics: probing the role of morphogen gradient dynamics in developmental patterning

    Science.gov (United States)

    Nahmad, Marcos

    2011-01-01

    Morphogen-mediated patterning is the predominant mechanism by which positional information is established during animal development. In the classical view, the interpretation of positional signals depends on the equilibrium distribution of a morphogen, regardless of the dynamics of gradient formation. The problem of whether or not morphogen dynamics contribute to developmental patterning has not been explored in detail, partly because genetic experiments, which selectively affect signalling dynamics while maintaining unchanged the steady-state morphogen profile, are difficult to design and interpret. Here, I present a modelling-based approach to identify genetic mutations in developmental patterning that may affect the transient, but leave invariant the steady-state signalling gradient. As a case study, this approach is used to explore the dynamic properties of Hedgehog (Hh) signalling in the developing wing of the fruitfly, Drosophila melanogaster. This analysis provides insights into how different properties of the Hh gradient dynamics, such as the duration of exposure to the signal or the maximum width of the transient gradient, can be genetically perturbed without affecting the steady-state distribution of the Hh concentration profile. I propose that this method can be used as an experimental design tool to investigate the role of transient morphogen gradients in developmental patterning and discuss the generality of these ideas in other problems. PMID:21421746

  13. Transient and Steady State Phenomena of Opposing Buoyant Jets in a Ceiling Vented Room

    Science.gov (United States)

    Landreth, Glen; Caulfield, C. P.

    2001-11-01

    A ceiling vented room with opposing sources of fluid of different densities is considered. Analytical steady state solutions are found from conservation principles, and are considered for varied source velocities, volume fluxes and densities. Ultimately, a two-layer density profile is predicted to develop, and solutions are found to be independent of initial ambient density within the room. Transient effects are considered by numerically solving the governing equations for the plumes in an evolving, ventilated room. Source velocities, volume fluxes and densities are again significant, as is initial ambient density in the transient behavior of the room ambient density. Phenomena such as plume collapse and mixing driven by static instability are predicted in specific cases, and the numerical and analytical solutions are found to agree in steady state. Experimental verifications, using analogue salt bath laboratory experiments have been performed for both steady state and time dependent phenomena. Conclusions including the applicability to hybrid or mixed-mode ventilation of real buildings will be discussed.

  14. Stochastic pumping of non-equilibrium steady-states: how molecules adapt to a fluctuating environment.

    Science.gov (United States)

    Astumian, R D

    2018-01-11

    In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.

  15. Steady State and Transient Fuel Rod Performance Analyses by Pad and Transuranus Codes

    International Nuclear Information System (INIS)

    Slyeptsov, O.; Slyeptsov, S.; Kulish, G.; Ostapov, A.; Chernov, I.

    2013-01-01

    The report performed under IAEA research contract No.15370/L2 describes the analysis results of WWER and PWR fuel rod performance at steady state operation and transients by means of PAD and TRANSURANUS codes. The code TRANSURANUS v1m1j09 developed by Institute for of Transuranium Elements (ITU) was used based on the Licensing Agreement N31302. The code PAD 4.0 developed by Westinghouse Electric Company was utilized in the frame of the Ukraine Nuclear Fuel Qualification Project for safety substantiation for the use of Westinghouse fuel assemblies in the mixed core of WWER-1000 reactor. The experimental data for the Russian fuel rod behavior obtained during the steady-state operation in the WWER-440 core of reactor Kola-3 and during the power transients in the core of MIR research reactor were taken from the IFPE database of the OECD/NEA and utilized for assessing the codes themselves during simulation of such properties as fuel burnup, fuel centerline temperature (FCT), fuel swelling, cladding strain, fission gas release (FGR) and rod internal pressure (RIP) in the rod burnup range of (41 - 60) GWD/MTU. The experimental data of fuel behavior at steady-state operation during seven reactor cycles presented by AREVA for the standard PWR fuel rod design were used to examine the code FGR model in the fuel burnup range of (37 - 81) GWD/MTU. (author)

  16. Constant specific activity input allows reconstruction of endogenous glucose concentration in non-steady state

    International Nuclear Information System (INIS)

    Cobelli, C.; Toffolo, G.

    1990-01-01

    In vivo studies on the glucose system often require its perturbation by an exogenous input of glucose, whereas glucose turnover is assessed by infusing a glucose tracer. The constant infusion represents the usual format of tracer administration, but it has no clear advantage other than simplicity. Here we propose a different tracer infusion format. It consists of infusing the tracer in parallel with unlabeled glucose so as to maintain a constant specific activity in the infusate. This protocol does not increase experimental complexity and provides new information on the glucose system in non-steady state by allowing reconstruction of the endogenous component of glucose concentration. This reconstruction only requires very general assumptions, such as tracer-tracee indistinguishability and mass conservation; in particular it is independent of the glucose model structure, i.e., number of compartments and their interconnections. A proof of the result is given for a general nonlinear model of the glucose system. The constant specific activity input is also advantageous for non-steady-state calculations, because it reduces the variation in the measured plasma glucose specific activity. The glucose system has served as the prototype, but the protocol is applicable to other blood-borne substances. The radioactive tracer case has been considered, but the same results apply to stable isotope tracers as well; in this case they also become relevant in a somewhat different context, i.e., kinetic studies in steady state

  17. Coherent control of long-distance steady-state entanglement in lossy resonator arrays

    Science.gov (United States)

    Angelakis, D. G.; Dai, L.; Kwek, L. C.

    2010-07-01

    We show that coherent control of the steady-state long-distance entanglement between pairs of cavity-atom systems in an array of lossy and driven coupled resonators is possible. The cavities are doped with atoms and are connected through waveguides, other cavities or fibers depending on the implementation. We find that the steady-state entanglement can be coherently controlled through the tuning of the phase difference between the driving fields. It can also be surprisingly high in spite of the pumps being classical fields. For some implementations where the connecting element can be a fiber, long-distance steady-state quantum correlations can be established. Furthermore, the maximal of entanglement for any pair is achieved when their corresponding direct coupling is much smaller than their individual couplings to the third party. This effect is reminiscent of the establishment of coherence between otherwise uncoupled atomic levels using classical coherent fields. We suggest a method to measure this entanglement by analyzing the correlations of the emitted photons from the array and also analyze the above results for a range of values of the system parameters, different network geometries and possible implementation technologies.

  18. Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension

    Science.gov (United States)

    Brothers, R Matthew; Lucas, Rebekah A I; Zhu, Yong-Sheng; Crandall, Craig G; Zhang, Rong

    2014-01-01

    New Findings What is the central question of this study? The relationship between changes in cerebral blood flow and arterial carbon dioxide tension is used to assess cerebrovascular function. Hypercapnia is generally evoked by two methods, i.e. steady-state and transient increases in carbon dioxide tension. In some cases, the hypercapnia is immediately preceded by a period of hypocapnia. It is unknown whether the cerebrovascular response differs between these methods and whether a period of hypocapnia blunts the subsequent response to hypercapnia. What is the main finding and its importance? The cerebrovascular response is similar between steady-state and transient hypercapnia. However, hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing-induced hypercapnia. Cerebral vasomotor reactivity (CVMR) to changes in arterial carbon dioxide tension () is assessed during steady-state or transient changes in . This study tested the following two hypotheses: (i) that CVMR during steady-state changes differs from that during transient changes in ; and (ii) that CVMR during rebreathing-induced hypercapnia would be blunted when preceded by a period of hyperventilation. For each hypothesis, end-tidal carbon dioxide tension () middle cerebral artery blood velocity (CBFV), cerebrovascular conductance index (CVCI; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCI versus ) were assessed in eight individuals. To address the first hypothesis, measurements were made during the following two conditions (randomized): (i) steady-state increases in of 5 and 10 Torr above baseline; and (ii) rebreathing-induced transient breath-by-breath increases in . The linear regression for CBFV versus (P = 0.65) and CVCI versus (P = 0.44) was similar between methods; however, individual variability in CBFV or CVCI responses existed among subjects. To address the second

  19. Fundamental approach to TRIGA steady-state thermal-hydraulic CHF analysis

    International Nuclear Information System (INIS)

    Feldman, E.E.

    2008-01-01

    Methods are investigated for predicting the power at which critical heat flux (CHF) occurs in TRIGA reactors that rely on natural convection for primary flow. For a representative TRIGA reactor, two sets of functions are created. For the first set, the General Atomics STAT code and the more widely-used RELAP5-3D code are each employed to obtain reactor flow rate as a function of power. For the second set, the Bernath correlation, the 2006 Groeneveld table, the Hall and Mudawar outlet correlation, and each of the four PG-CHF correlations for rod bundles are used to predict the power at which CHF occurs as a function of channel flow rate. The two sets of functions are combined to yield predictions of the power at which CHF occurs in the reactor. A combination of the RELAP5-3D code and the 2006 Groeneveld table predicts 67% more CHF power than does a combination of the STAT code and the Bernath correlation. (author)

  20. The technology and science of steady-state operation in magnetically confined plasmas

    International Nuclear Information System (INIS)

    Becoulet, A; Hoang, G T

    2008-01-01

    The steady-state operation of magnetically confined fusion plasmas is considered as one of the 'grand challenges' of future decades, if not the ultimate goal of the research and development activities towards a new source of energy. Reaching such a goal requires the high-level integration of both science and technology aspects of magnetic fusion into self-consistent plasma regimes in fusion-grade devices. On the physics side, the first constraint addresses the magnetic confinement itself which must be made persistent. This means to either rely on intrinsically steady-state configurations, like the stellarator one, or turn the inductively driven tokamak configuration into a fully non-inductive one, through a mix of additional current sources. The low efficiency of the external current drive methods and the necessity to minimize the re-circulating power claim for a current mix strongly weighted by the internal 'pressure driven' bootstrap current, itself strongly sensitive to the heat and particle transport properties of the plasma. A virtuous circle may form as the heat and particle transport properties are themselves sensitive to the current profile conditions. Note that several other factors, e.g. plasma rotation profile, magneto-hydro-dynamics activity, also influence the equilibrium state. In the present tokamak devices, several examples of such 'advanced tokamak' physics research demonstrate the feasibility of steady-state regimes, though with a number of open questions still under investigation. The modelling activity also progresses quite fast in this domain and supports understanding and extrapolation. This high level of physics sophistication of the plasma scenario however needs to be combined with steady-state technological constraints. The technology constraints for steady-state operation are basically twofold: the specific technologies required to reach the steady-state plasma conditions and the generic technologies linked to the long pulse operation of a