WorldWideScience

Sample records for steady periodic gravity

  1. The behavior of surface tension on steady-state rotating fluids in the low gravity environments

    Science.gov (United States)

    Hung, R. J.; Leslie, Fred W.

    1987-01-01

    The effect of surface tension on steady-state rotating fluids in a low gravity environment is studied. All the values of the physical parameters used in these calculations, except in the low gravity environments, are based on the measurements carried out by Leslie (1985) in the low gravity environment of a free-falling aircraft. The profile of the interface of two fluids is derived from Laplace's equation relating the pressure drop across an interface to the radii of curvature which has been applied to a low gravity rotating bubble that contacts the container boundary. The interface shape depends on the ratio of gravity to surface tension forces, the ratio of centrifugal to surface tension forces, the contact radius of the interface to the boundary, and the contact angle. The shape of the bubble is symmetric about its equator in a zero-gravity environment. This symmetry disappears and gradually shifts to parabolic profiles as the gravity environment becomes non-zero. The location of the maximum radius of the bubble moves upward from the center of the depth toward the top boundary of the cylinder as gravity increases. The contact radius of interface to the boundary r0 at the top side of cylinder increases and r0 at the bottom side of the cylinder decreases as the gravity environment increases from zero to 1 g.

  2. Gravity currents in rotating channels. Part 1. Steady-state theory

    Science.gov (United States)

    Hacker, J. N.; Linden, P. F.

    2002-04-01

    A theory is developed for the speed and structure of steady-state non-dissipative gravity currents in rotating channels. The theory is an extension of that of Benjamin (1968) for non-rotating gravity currents, and in a similar way makes use of the steady-state and perfect-fluid (incompressible, inviscid and immiscible) approximations, and supposes the existence of a hydrostatic ‘control point’ in the current some distance away from the nose. The model allows for fully non-hydrostatic and ageostrophic motion in a control volume V ahead of the control point, with the solution being determined by the requirements, consistent with the perfect-fluid approximation, of energy and momentum conservation in V, as expressed by Bernoulli's theorem and a generalized flow-force balance. The governing parameter in the problem, which expresses the strength of the background rotation, is the ratio W = B/R, where B is the channel width and R = (g[prime prime or minute]H)1/2/f is the internal Rossby radius of deformation based on the total depth of the ambient fluid H. Analytic solutions are determined for the particular case of zero front-relative flow within the gravity current. For each value of W there is a unique non-dissipative two-layer solution, and a non-dissipative one-layer solution which is specified by the value of the wall-depth h0. In the two-layer case, the non-dimensional propagation speed c = cf(g[prime prime or minute]H)[minus sign]1/2 increases smoothly from the non-rotating value of 0.5 as W increases, asymptoting to unity for W [rightward arrow] [infty infinity]. The gravity current separates from the left-hand wall of the channel at W = 0.67 and thereafter has decreasing width. The depth of the current at the right-hand wall, h0, increases, reaching the full depth at W = 1.90, after which point the interface outcrops on both the upper and lower boundaries, with the distance over which the interface slopes being 0.881R. In the one-layer case, the wall

  3. Algorithm for determining two-periodic steady-states in AC machines directly in time domain

    Directory of Open Access Journals (Sweden)

    Sobczyk Tadeusz J.

    2016-09-01

    Full Text Available This paper describes an algorithm for finding steady states in AC machines for the cases of their two-periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain despite of the fact that two-periodic waveforms are not repeated in any finite time interval. The basis for such an algorithm is a discrete differential operator that specifies the temporary values of the derivative of the two-periodic function in the selected set of points on the basis of the values of that function in the same set of points. It allows to develop algebraic equations defining the steady state solution reached in a chosen point set for the nonlinear differential equations describing the AC machines when electrical and mechanical equations should be solved together. That set of those values allows determining the steady state solution at any time instant up to infinity. The algorithm described in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.

  4. Steady-state response of periodically supported structures to a moving load

    NARCIS (Netherlands)

    Metrikine, A.V.; Wolfert, A.R.M.; Vrouwenvelder, A.C.W.M.

    1999-01-01

    Steady-state vibrations of periodically supported structures under a moving load are analytically investigated. The following three structures are considered: an overhead power line for a train, a long suspended bridge and a railway track. The study is based on the application of so-called

  5. Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow

    Science.gov (United States)

    Tsvelodub, O. Yu; Bocharov, A. A.

    2017-09-01

    The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. The paper studies nonlinear waves on a liquid film, flowing under the action of gravity in a known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. The periodic and soliton steady-state traveling solutions of this equation have been numerically found. The analysis of branching of new families of steady-state traveling solutions has been performed. In particular, it is shown that this model equation has solutions in the form of solitons-humps.

  6. Stability of periodic steady-state solutions to a non-isentropic Euler-Poisson system

    Science.gov (United States)

    Liu, Cunming; Peng, Yue-Jun

    2017-06-01

    We study the stability of periodic smooth solutions near non-constant steady-states for a non-isentropic Euler-Poisson system without temperature damping term. The system arises in the theory of semiconductors for which the doping profile is a given smooth function. In this stability problem, there are no special restrictions on the size of the doping profile, but only on the size of the perturbation. We prove that small perturbations of periodic steady-states are exponentially stable for large time. For this purpose, we introduce new variables and choose a non-diagonal symmetrizer of the full Euler equations to recover dissipation estimates. This also allows to make the proof of the stability result very simple and concise.

  7. Theory of steady state plasma flow and confinement in a periodic magnetic field

    International Nuclear Information System (INIS)

    Brown, M.G.

    1981-02-01

    The steady flow of plasmas through spatially periodic magnetic fields is examined, and a theoretical model is developed for the case of axisymmetric geometry. The externally applied magnetic fields can be cusps or mirrors joined end to end; electrons are then localised by these fields because of their small Larmor radius, while the ions can traverse the magnetic mirrors. The properties of the model equations are studied and dimensionless parameters which appear are interpreted. Numerical methods used in steady flow applications are reviewed, and some techniques of solution for the model equations are discussed. A solution method involving numerical integration of time-dependent equations is described, which approaches the steady state asymptotically; results from this method are presented and compared with the results from perturbation theory. (author)

  8. Subduction zones seen by GOCE gravity gradients

    DEFF Research Database (Denmark)

    Švarc, Mario; Herceg, Matija; Cammarano, Fabio

    In this study, the GOCE (Gravity field and steady state Ocean Circulation Explorer) gradiometry data were used to study geologic structures and mass variations within the lithosphere in areas of known subduction zones. The advantage of gravity gradiometry over other gravity methods is that gradie...

  9. Robust periodic steady state analysis of autonomous oscillators based on generalized eigenvalues

    NARCIS (Netherlands)

    Mirzavand, R.; Maten, ter E.J.W.; Beelen, T.G.J.; Schilders, W.H.A.; Abdipour, A.

    2011-01-01

    In this paper, we present a new gauge technique for the Newton Raphson method to solve the periodic steady state (PSS) analysis of free-running oscillators in the time domain. To find the frequency a new equation is added to the system of equations. Our equation combines a generalized eigenvector

  10. Robust periodic steady state analysis of autonomous oscillators based on generalized eigenvalues

    NARCIS (Netherlands)

    Mirzavand, R.; Maten, ter E.J.W.; Beelen, T.G.J.; Schilders, W.H.A.; Abdipour, A.; Michielsen, B.; Poirier, J.R.

    2012-01-01

    In this paper, we present a new gauge technique for the Newton Raphson method to solve the periodic steady state (PSS) analysis of free-running oscillators in the time domain. To find the frequency a new equation is added to the system of equations. Our equation combines a generalized eigenvector

  11. Periodic orbits around areostationary points in the Martian gravity field

    International Nuclear Information System (INIS)

    Liu Xiaodong; Baoyin Hexi; Ma Xingrui

    2012-01-01

    This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are calculated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areostationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both linearly stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenvalues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.

  12. Preprocessing of gravity gradients at the GOCE high-level processing facility

    NARCIS (Netherlands)

    Bouman, J.; Rispens, S.; Gruber, T.; Koop, R.; Schrama, E.; Visser, P.; Tscherning, C.C.; Veicherts, M.

    2008-01-01

    One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To

  13. Modelling of a stirling cryocooler regenerator under steady and steady - periodic flow conditions using a correlation based method

    Science.gov (United States)

    Kishor Kumar, V. V.; Kuzhiveli, B. T.

    2017-12-01

    The performance of a Stirling cryocooler depends on the thermal and hydrodynamic properties of the regenerator in the system. CFD modelling is the best technique to design and predict the performance of a Stirling cooler. The accuracy of the simulation results depend on the hydrodynamic and thermal transport parameters used as the closure relations for the volume averaged governing equations. A methodology has been developed to quantify the viscous and inertial resistance terms required for modelling the regenerator as a porous medium in Fluent. Using these terms, the steady and steady - periodic flow of helium through regenerator was modelled and simulated. Comparison of the predicted and experimental pressure drop reveals the good predictive power of the correlation based method. For oscillatory flow, the simulation could predict the exit pressure amplitude and the phase difference accurately. Therefore the method was extended to obtain the Darcy permeability and Forchheimer’s inertial coefficient of other wire mesh matrices applicable to Stirling coolers. Simulation of regenerator using these parameters will help to better understand the thermal and hydrodynamic interactions between working fluid and the regenerator material, and pave the way to contrive high performance, ultra-compact free displacers used in miniature Stirling cryocoolers in the future.

  14. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Velarde, M

    1977-07-01

    Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs.

  15. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    International Nuclear Information System (INIS)

    Garcia Velarde, M.

    1977-01-01

    Thermoconvective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Benard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (author) [es

  16. Instabilities in fluid layers and in reaction-diffusion systems: Steady states, time-periodic solutions, non-periodic attractors, and related convective and otherwise non-linear phenomena

    International Nuclear Information System (INIS)

    Garcia Velarde, M.

    1977-01-01

    Thermo convective instabilities in horizontal fluid layers are discussed with emphasis on the Rayleigh-Bernard model problem. Steady solutions and time-dependent phenomena (relaxation oscillations and transition to turbulence) are studied within the nonlinear Boussinesq-Oberbeck approximation. Homogeneous steady solutions, limit cycles, and inhomogeneous (ordered) spatial structures are also studied in simple reaction-diffusion systems. Lastly, the non-periodic attractor that appears at large Rayleigh numbers in the truncated Boussinesq-Oberbeck model of Lorenz, is constructed, and a discussion of turbulent behavior is given. (Author) 105 refs

  17. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    Science.gov (United States)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  18. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    International Nuclear Information System (INIS)

    Akarsu, Özgür; Dereli, Tekin

    2013-01-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales

  19. Late time acceleration of the 3-space in a higher dimensional steady state universe in dilaton gravity

    Science.gov (United States)

    Akarsu, Özgür; Dereli, Tekin

    2013-02-01

    We present cosmological solutions for (1+3+n)-dimensional steady state universe in dilaton gravity with an arbitrary dilaton coupling constant w and exponential dilaton self-interaction potentials in the string frame. We focus particularly on the class in which the 3-space expands with a time varying deceleration parameter. We discuss the number of the internal dimensions and the value of the dilaton coupling constant to determine the cases that are consistent with the observed universe and the primordial nucleosynthesis. The 3-space starts with a decelerated expansion rate and evolves into accelerated expansion phase subject to the values of w and n, but ends with a Big Rip in all cases. We discuss the cosmological evolution in further detail for the cases w = 1 and w = ½ that permit exact solutions. We also comment on how the universe would be conceived by an observer in four dimensions who is unaware of the internal dimensions and thinks that the conventional general relativity is valid at cosmological scales.

  20. Effects of artificial gravity on the cardiovascular system: Computational approach

    Science.gov (United States)

    Diaz Artiles, Ana; Heldt, Thomas; Young, Laurence R.

    2016-09-01

    Artificial gravity has been suggested as a multisystem countermeasure against the negative effects of weightlessness. However, many questions regarding the appropriate configuration are still unanswered, including optimal g-level, angular velocity, gravity gradient, and exercise protocol. Mathematical models can provide unique insight into these questions, particularly when experimental data is very expensive or difficult to obtain. In this research effort, a cardiovascular lumped-parameter model is developed to simulate the short-term transient hemodynamic response to artificial gravity exposure combined with ergometer exercise, using a bicycle mounted on a short-radius centrifuge. The model is thoroughly described and preliminary simulations are conducted to show the model capabilities and potential applications. The model consists of 21 compartments (including systemic circulation, pulmonary circulation, and a cardiac model), and it also includes the rapid cardiovascular control systems (arterial baroreflex and cardiopulmonary reflex). In addition, the pressure gradient resulting from short-radius centrifugation is captured in the model using hydrostatic pressure sources located at each compartment. The model also includes the cardiovascular effects resulting from exercise such as the muscle pump effect. An initial set of artificial gravity simulations were implemented using the Massachusetts Institute of Technology (MIT) Compact-Radius Centrifuge (CRC) configuration. Three centripetal acceleration (artificial gravity) levels were chosen: 1 g, 1.2 g, and 1.4 g, referenced to the subject's feet. Each simulation lasted 15.5 minutes and included a baseline period, the spin-up process, the ergometer exercise period (5 minutes of ergometer exercise at 30 W with a simulated pedal cadence of 60 RPM), and the spin-down process. Results showed that the cardiovascular model is able to predict the cardiovascular dynamics during gravity changes, as well as the expected

  1. Strong gravity effects of rotating black holes: quasi-periodic oscillations

    International Nuclear Information System (INIS)

    Aliev, Alikram N; Esmer, Göksel Daylan; Talazan, Pamir

    2013-01-01

    We explore strong gravity effects of the geodesic motion in the spacetime of rotating black holes in general relativity and braneworld gravity. We focus on the description of the motion in terms of three fundamental frequencies: the orbital frequency, the radial and vertical epicyclic frequencies. For a Kerr black hole, we perform a detailed numerical analysis of these frequencies at the innermost stable circular orbits and beyond them as well as at the characteristic stable orbits, at which the radial epicyclic frequency attains its highest value. We find that the values of the epicyclic frequencies for a class of stable orbits exhibit good qualitative agreement with the observed frequencies of the twin peaks quasi-periodic oscillations (QPOs) in some black hole binaries. We also find that at the characteristic stable circular orbits, where the radial (or the vertical) epicyclic frequency has maxima, the vertical and radial epicyclic frequencies exhibit an approximate 2:1 ratio even in the case of near-extreme rotation of the black hole. Next, we perform a similar analysis of the fundamental frequencies for a rotating braneworld black hole and argue that the existence of such a black hole with a negative tidal charge, whose angular momentum exceeds the Kerr bound in general relativity, does not confront with the observations of high-frequency QPOs. (paper)

  2. Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere

    International Nuclear Information System (INIS)

    Li Ziliang

    2008-01-01

    By introducing a new transformation, a new direct and unified algebraic method for constructing multiple travelling wave solutions of general nonlinear evolution equations is presented and implemented in a computer algebraic system, which extends Fan's direct algebraic method to the case when r > 4. The solutions of a first-order nonlinear ordinary differential equation with a higher degree nonlinear term and Fan's direct algebraic method of obtaining exact solutions to nonlinear partial differential equations are applied to the combined KdV-mKdV-GKdV equation, which is derived from a simple incompressible non-hydrostatic Boussinesq equation with the influence of thermal forcing and is applied to investigate internal gravity waves in the atmosphere. As a result, by taking advantage of the new first-order nonlinear ordinary differential equation with a fifth-degree nonlinear term and an eighth-degree nonlinear term, periodic wave solutions associated with the Jacobin elliptic function and the bell and kink profile solitary wave solutions are obtained under the effect of thermal forcing. Most importantly, the mechanism of propagation and generation of the periodic waves and the solitary waves is analysed in detail according to the values of the heating parameter, which show that the effect of heating in atmosphere helps to excite westerly or easterly propagating periodic internal gravity waves and internal solitary waves in atmosphere, which are affected by the local excitation structures in atmosphere. In addition, as an illustrative sample, the properties of the solitary wave solution and Jacobin periodic solution are shown by some figures under the consideration of heating interaction

  3. Assessing GOCE Gravity Models using Altimetry and In-situ Ocean Current Observation

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar; Honecker, Johanna

    gravity models provided by the GOCE mission have enhanced the resolution and sharpened the boundaries of those features and the associated geostrophic surface currents reveal improvements for all of the ocean's current systems. In this study, a series of 23 newer gravity models including observations from...... as quantified quality measures associated with the 23 GOCE gravity models.......The Gravity and steady state Ocean Circulation Explorer (GOCE) satellite mission measures Earth's gravity field with an unprecedented accuracy at short spatial scales. Previous results have demonstrated a significant advance in our ability to determine the ocean's general circulation. The improved...

  4. Atmospheric gravity waves due to the Tohoku-Oki tsunami observed in the thermosphere by GOCE

    NARCIS (Netherlands)

    Garcia, R.F.; Doornbos, E.N.; Bruinsma, S.; Hebert, H.

    2014-01-01

    Oceanic tsunami waves couple with atmospheric gravity waves, as previously observed through ionospheric and airglow perturbations. Aerodynamic velocities and density variations are computed from Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) accelerometer and thruster data during

  5. Modelling the Earth's static and time-varying gravity field using a combination of GRACE and GOCE data

    NARCIS (Netherlands)

    Farahani, H.H.

    2013-01-01

    The main focus of the thesis is modelling the static and time-varying parts of the Earth's gravity field at the global scale based on data acquired by the Gravity Recovery And Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE). In addition, a new

  6. Propagation of steady-state vibration in periodic pipes conveying fluid on elastic foundations with external moving loads

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Dianlong, E-mail: dianlongyu@yahoo.com.cn [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073 (China); MOE Key Laboratory of Photonic and Phononic Crystals, National University of Defense Technology, Changsha 410073 (China); Wen, Jihong; Shen, Huijie; Wen, Xisen [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073 (China); MOE Key Laboratory of Photonic and Phononic Crystals, National University of Defense Technology, Changsha 410073 (China)

    2012-10-01

    The propagation of steady-state vibration in a periodic pipe conveying fluid on elastic foundation with an external moving load is studied using wave propagation and attenuation theory. Wavenumbers and propagation properties in a moving coordinate system are investigated. The propagation constants are calculated using transfer matrix theory to determine whether the perturbation, which is introduced by an external moving load, can propagate through the pipe or not. The Bragg and locally resonant band gaps, corresponding to the velocity field, can exist in a periodic pipe system. In addition, the effects on both types of band gaps have been analysed.

  7. Propagation of steady-state vibration in periodic pipes conveying fluid on elastic foundations with external moving loads

    International Nuclear Information System (INIS)

    Yu, Dianlong; Wen, Jihong; Shen, Huijie; Wen, Xisen

    2012-01-01

    The propagation of steady-state vibration in a periodic pipe conveying fluid on elastic foundation with an external moving load is studied using wave propagation and attenuation theory. Wavenumbers and propagation properties in a moving coordinate system are investigated. The propagation constants are calculated using transfer matrix theory to determine whether the perturbation, which is introduced by an external moving load, can propagate through the pipe or not. The Bragg and locally resonant band gaps, corresponding to the velocity field, can exist in a periodic pipe system. In addition, the effects on both types of band gaps have been analysed.

  8. Noise Reduction, Atmospheric Pressure Admittance Estimation and Long-Period Component Extraction in Time-Varying Gravity Signals Using Ensemble Empirical Mode Decomposition

    Directory of Open Access Journals (Sweden)

    Linsong Wang

    2015-01-01

    Full Text Available Time-varying gravity signals, with their nonlinear, non-stationary and multi-scale characteristics, record the physical responses of various geodynamic processes and consist of a blend of signals with various periods and amplitudes, corresponding to numerous phenomena. Superconducting gravimeter (SG records are processed in this study using a multi-scale analytical method and corrected for known effects to reduce noise, to study geodynamic phenomena using their gravimetric signatures. Continuous SG (GWR-C032 gravity and barometric data are decomposed into a series of intrinsic mode functions (IMFs using the ensemble empirical mode decomposition (EEMD method, which is proposed to alleviate some unresolved issues (the mode mixing problem and the end effect of the empirical mode decomposition (EMD. Further analysis of the variously scaled signals is based on a dyadic filter bank of the IMFs. The results indicate that removing the high-frequency IMFs can reduce the natural and man-made noise in the data, which are caused by electronic device noise, Earth background noise and the residual effects of pre-processing. The atmospheric admittances based on frequency changes are estimated from the gravity and the atmospheric pressure IMFs in various frequency bands. These time- and frequency-dependent admittance values can be used effectively to improve the atmospheric correction. Using the EEMD method as a filter, the long-period IMFs are extracted from the SG time-varying gravity signals spanning 7 years. The resulting gravity residuals are well correlated with the gravity effect caused by the _ polar motion after correcting for atmospheric effects.

  9. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model

    DEFF Research Database (Denmark)

    Knudsen, Per; Bingham, R.; Andersen, Ole Baltazar

    2011-01-01

    The Gravity and steady-state Ocean Circulation Explorer (GOCE) satellite mission measures Earth’s gravity field with an unprecedented accuracy at short spatial scales. In doing so, it promises to significantly advance our ability to determine the ocean’s general circulation. In this study, an ini...

  10. Nonequilibrium steady states and resonant tunneling in time-periodically driven systems with interactions

    Science.gov (United States)

    Qin, Tao; Hofstetter, Walter

    2018-03-01

    Time-periodically driven systems are a versatile toolbox for realizing interesting effective Hamiltonians. Heating, caused by excitations to high-energy states, is a challenge for experiments. While most setups so far address the relatively weakly interacting regime, it is of general interest to study heating in strongly correlated systems. Using Floquet dynamical mean-field theory, we study nonequilibrium steady states (NESS) in the Falicov-Kimball model, with time-periodically driven kinetic energy or interaction. We systematically investigate the nonequilibrium properties of the NESS. For a driven kinetic energy, we show that resonant tunneling, where the interaction is an integer multiple of the driving frequency, plays an important role in the heating. In the strongly correlated regime, we show that this can be well understood using Fermi's golden rule and the Schrieffer-Wolff transformation for a time-periodically driven system. We furthermore demonstrate that resonant tunneling can be used to control the population of Floquet states to achieve "photodoping." For driven interactions introduced by an oscillating magnetic field near a widely adopted Feshbach resonance, we find that the double occupancy is strongly modulated. Our calculations apply to shaken ultracold-atom systems and to solid-state systems in a spatially uniform but time-dependent electric field. They are also closely related to lattice modulation spectroscopy. Our calculations are helpful to understand the latest experiments on strongly correlated Floquet systems.

  11. Dynamics and Control of Underwater Gliders I: Steady Motions

    OpenAIRE

    Mahmoudian, N.; Geisbert, J.; Woolsey, C.

    2007-01-01

    This paper describes analysis of steady motions for underwater gliders, a type of highly efficient underwater vehicle which uses gravity for propulsion. Underwater gliders are winged underwater vehicles which locomote by modulating their buoyancy and their attitude. Several such vehicles have been developed and have proven their worth as efficient long-distance, long-duration ocean sampling platforms. To date, the primary emphasis in underwater glider development has been on locomotive effici...

  12. A surface capturing method for the efficient computation of steady water waves

    NARCIS (Netherlands)

    Wackers, J.; Koren, B.

    2008-01-01

    A surface capturing method is developed for the computation of steady water–air flow with gravity. Fluxes are based on artificial compressibility and the method is solved with a multigrid technique and line Gauss–Seidel smoother. A test on a channel flow with a bottom bump shows the accuracy of the

  13. Thermal stress analysis of gravity support system for ITER based on ANSYS

    International Nuclear Information System (INIS)

    Liang Shangming; Yan Xijiang; Huang Yufeng; Wang Xianzhou; Hou Binglin; Li Pengyuan; Jian Guangde; Liu Dequan; Zhou Caipin

    2009-01-01

    A method for building the finite element model of the gravity support system for International Thermonuclear Experimental Reactor (ITER) was proposed according to the characteristics of the gravity support system with the cyclic symmetry. A mesh dividing method, which has high precision and an acceptable calculating scale, was used, and a three dimensional finite element model for the toroidal 20 degree sector of the gravity support system was built by using ANSYS. Meantime, the steady-state thermal analysis and thermal-structural coupling analysis of the gravity support system were performed. The thermal stress distributions and the maximal thermal stress values of all parts of the gravity support system were obtained, and the stress intensity of parts of the gravity support system was analyzed. The results of thermal stress analysis lay the solid foundation for design and improvement for gravity supports system for ITER. (authors)

  14. Testing a Dilaton Gravity Model Using Nucleosynthesis

    International Nuclear Information System (INIS)

    Boran, S.; Kahya, E. O.

    2014-01-01

    Big bang nucleosynthesis (BBN) offers one of the most strict evidences for the Λ-CDM cosmology at present, as well as the cosmic microwave background (CMB) radiation. In this work, our main aim is to present the outcomes of our calculations related to primordial abundances of light elements, in the context of higher dimensional steady-state universe model in the dilaton gravity. Our results show that abundances of light elements (primordial D, 3 He, 4 He, T, and 7 Li) are significantly different for some cases, and a comparison is given between a particular dilaton gravity model and Λ-CDM in the light of the astrophysical observations

  15. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    Science.gov (United States)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  16. Comparison of nevirapine plasma concentrations between lead-in and steady-state periods in Chinese HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Huijuan Kou

    Full Text Available To investigate the potential of nevirapine 200 mg once-daily regimen and evaluate the influence of patient characteristics on nevirapine concentrations.This was a prospective, multicentre cohort study with 532 HIV-infected patients receiving nevirapine as a part of their initial antiretroviral therapy. Plasma samples were collected at trough or peak time at the end of week 2 (lead-in period and week 4, 12, 24, 36, and 48 (steady-state period, and nevirapine concentrations were determined using a validated HPLC method. Potential influencing factors associated with nevirapine concentrations were evaluated using univariate and multivariate logistic regression.A total of 2348 nevirapine plasma concentrations were collected, including 1510 trough and 838 peak values. The median nevirapine trough and peak concentration during the lead-in period were 4.26 µg/mL (IQR 3.05-5.61 and 5.07 µg/mL (IQR 3.92-6.44 respectively, which both exceeded the recommended thresholds of nevirapine plasma concentrations. Baseline hepatic function had a moderate effect on median nevirapine trough concentrations at week 2 (4.25 µg/mL v.s. 4.86 µg/mL, for ALT <1.5 × ULN and ≥ 1.5 × ULN, respectively, P = 0.045. No significant difference was observed in median nevirapine trough concentration between lead-in and steady-state periods in patients with baseline ALT and AST level ≥ 1.5 × ULN (P = 0.171, P = 0.769, which was different from the patients with ALT/AST level <1.5ULN. The median trough concentrations were significantly higher in HIV/HCV co-infected patients than those without HCV at week 48 (8.16 µg/mL v.s. 6.15 µg/mL, P = 0.004.The 200 mg once-daily regimen of nevirapine might be comparable to twice-daily in plasma pharmacokinetics in Chinese population. Hepatic function prior to nevirapine treatment and HIV/HCV coinfection were significantly associated with nevirapine concentrations.

  17. Equilibrium points and associated periodic orbits in the gravity of binary asteroid systems: (66391) 1999 KW4 as an example

    Science.gov (United States)

    Shi, Yu; Wang, Yue; Xu, Shijie

    2018-04-01

    The motion of a massless particle in the gravity of a binary asteroid system, referred as the restricted full three-body problem (RF3BP), is fundamental, not only for the evolution of the binary system, but also for the design of relevant space missions. In this paper, equilibrium points and associated periodic orbit families in the gravity of a binary system are investigated, with the binary (66391) 1999 KW4 as an example. The polyhedron shape model is used to describe irregular shapes and corresponding gravity fields of the primary and secondary of (66391) 1999 KW4, which is more accurate than the ellipsoid shape model in previous studies and provides a high-fidelity representation of the gravitational environment. Both of the synchronous and non-synchronous states of the binary system are considered. For the synchronous binary system, the equilibrium points and their stability are determined, and periodic orbit families emanating from each equilibrium point are generated by using the shooting (multiple shooting) method and the homotopy method, where the homotopy function connects the circular restricted three-body problem and RF3BP. In the non-synchronous binary system, trajectories of equivalent equilibrium points are calculated, and the associated periodic orbits are obtained by using the homotopy method, where the homotopy function connects the synchronous and non-synchronous systems. Although only the binary (66391) 1999 KW4 is considered, our methods will also be well applicable to other binary systems with polyhedron shape data. Our results on equilibrium points and associated periodic orbits provide general insights into the dynamical environment and orbital behaviors in proximity of small binary asteroids and enable the trajectory design and mission operations in future binary system explorations.

  18. Computation of 3D steady Navier-Stokes flow with free-surface gravity waves

    NARCIS (Netherlands)

    Lewis, M.R.; Koren, B.; Raven, H.C.; Armfield, S.; Morgan, P.; Srinivas, K,

    2003-01-01

    In this paper an iterative method for the computation of stationary gravity-wave solutions is investigated, using a novel formulation of the free-surface (FS) boundary-value problem. This method requires the solution of a sequence of stationary Reynolds-Averaged Navier-Stokes subproblems employing

  19. Computation of 3D steady Navier-Stokes flow with free-surface gravity waves

    NARCIS (Netherlands)

    M.R. Lewis; B. Koren (Barry); H.C. Raven

    2003-01-01

    textabstractIn this paper an iterative method for the computation of stationary gravity-wave solutions is investigated, using a novel formulation of the free-surface (FS) boundary-value problem. This method requires the solution of a sequence of stationary Reynolds-Averaged Navier-Stokes subproblems

  20. Zero Gravity Flights as the Most Effective Embryonic Operation for Planned Commercial Spaceport

    Science.gov (United States)

    Abu Samah, Shamsul Kamar; Ridzuan Zakaria, Norul; Nasrun, Nasri; Abu, Jalaluddin; Muszaphar Shukor, Dato'Sheikh

    2013-09-01

    From the experience gained by the management team of Spaceport Malaysia, a popular service that can be provided by a planned commercial spaceport in a country without existing space travel infrastructure are zero gravity flights. Zero gravity flights range from parabolic flights using aerobatic airplane to suborbital flights using rockets, and in the near future using suborbital rocketplanes. Therefore, zero gravity flights can be operated from a certified runway or planned for operation at a future commercial spaceport. With such range of operation, zero gravity flights provide a natural link between a low cost operation of small airplane to exclusive high profile operation of suborbital rocketplane, and this attracts the attention of individuals and organizations that are planning for the establishment of a commercial spaceport. This is the approach chosen by the planners and developers of Spaceport Malaysia. A significant factor in zero gravity flight is the zero gravity time, the period where the payload onboard the airplane or rocketplane will experience zero gravity. Based on the momentum of the airplane or rocketplane, the zero gravity time may vary from few seconds to few minutes and that determines the quality of the zero gravity flight. To achieve zero gravity, the airplane or rocketplane will fly with a steady velocity for a significant time as a gravity control flight, accelerate upwards with an angle producing hypergravity and perform parabolic flight with natural momentum producing zero gravity and followed by dive that will result in another hypergravity flight. 2 zero gravity platforms being considered for operation at and by Spaceport Malaysia are F-5E Tiger II and Airbus A300, since both platforms have been successfully used by a partner of Spaceport Malaysia in performing zero gravity flights. An F-5E fighter jet owned by Royal Malaysian Air Force is being planned to be converted into a zero gravity platform to be operated at and by Spaceport

  1. Slab Geometry and Segmentation on Seismogenic Subduction Zone; Insight from gravity gradients

    Science.gov (United States)

    Saraswati, A. T.; Mazzotti, S.; Cattin, R.; Cadio, C.

    2017-12-01

    Slab geometry is a key parameter to improve seismic hazard assessment in subduction zones. In many cases, information about structures beneath subduction are obtained from geophysical dedicated studies, including geodetic and seismic measurements. However, due to the lack of global information, both geometry and segmentation in seismogenic zone of many subductions remain badly-constrained. Here we propose an alternative approach based on satellite gravity observations. The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission enables to probe Earth deep mass structures from gravity gradients, which are more sensitive to spatial structure geometry and directional properties than classical gravitational data. Gravity gradients forward modeling of modeled slab is performed by using horizontal and vertical gravity gradient components to better determine slab geophysical model rather than vertical gradient only. Using polyhedron method, topography correction on gravity gradient signal is undertaken to enhance the anomaly signal of lithospheric structures. Afterward, we compare residual gravity gradients with the calculated signals associated with slab geometry. In this preliminary study, straightforward models are used to better understand the characteristic of gravity gradient signals due to deep mass sources. We pay a special attention to the delineation of slab borders and dip angle variations.

  2. Software Analysis of New Space Gravity Data for Geophysics and Climate Research

    Science.gov (United States)

    Deese, Rupert; Ivins, Erik R.; Fielding, Eric J.

    2012-01-01

    Both the Gravity Recovery and Climate Experiment (GRACE) and Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellites are returning rich data for the study of the solid earth, the oceans, and the climate. Current software analysis tools do not provide researchers with the ease and flexibility required to make full use of this data. We evaluate the capabilities and shortcomings of existing software tools including Mathematica, the GOCE User Toolbox, the ICGEM's (International Center for Global Earth Models) web server, and Tesseroids. Using existing tools as necessary, we design and implement software with the capability to produce gridded data and publication quality renderings from raw gravity data. The straight forward software interface marks an improvement over previously existing tools and makes new space gravity data more useful to researchers. Using the software we calculate Bouguer anomalies of the gravity tensor's vertical component in the Gulf of Mexico, Antarctica, and the 2010 Maule earthquake region. These maps identify promising areas of future research.

  3. Role of gravity or confining pressure and contact stiffness in granular rheology

    NARCIS (Netherlands)

    Singh, A.; Saitoh, K.; Magnanimo, Vanessa; Luding, Stefan

    2015-01-01

    The steady-state shear rheology of granular materials is investigated in slow quasistatic and inertial flows. The effect of gravity (thus the local pressure) and the often-neglected contact stiffness are the focus of this study. A series of particle simulations are performed on a weakly frictional

  4. Gravity changes in mid-west Greenland from GOCE gravity model and gradient data using ground and airborne gravity

    DEFF Research Database (Denmark)

    Tscherning, Carl Christian; Herceg, Matija; Fredenslund Levinsen, Joanna

    GOCE TRF (terrestrial reference frame) vertical anomalous gradients (Tzz) from two periods have been used to determine gravity anomalies changes in mid-west Greenland, where a large mass-loss has been detected using GRACE (Fig. 1). As additional data were used the GOCE DIR-3 model and ground...... gravity at the coast on solid rock, where no mass loss is expected. The methods of Least-Squares Collocation (LSC) and the Reduced Point Mass (RPM) methods have been used, however only LSC included the ground data....

  5. Breeze Gravity Current in a Uniform Flow of Air

    Directory of Open Access Journals (Sweden)

    M.V. Shokurov

    2017-02-01

    Full Text Available Breeze circulation is often observed nearby the water basin coasts and usually accompanied by a background synoptic wind. One of the basic dynamically important components of the breeze circulation is gravity current. In the present paper the latter is used as the breeze simplified model. The theory of interaction of gravity current and a uniform synoptic wind are developed. The gravity current in the domain of infinite height in a stationary environment and environment with background flow was considered. To solve this problem the law of conservation of mass and universal property of the Froude number was used, which is true in the steady state. It is shown that increase of a tail-wind is followed by growth of the gravity current velocity and decrease of its height. The opposite situation is observed at increase of a head wind: the current velocity reduces and its height increases. Using a Taylor series expansion for small values of the background flow velocity a linear dependence of gravity current velocity on background flow velocity can be obtained. The factor determining the slope of the velocity of gravity current propagation on the background wind speed, which is equal 2/3, is a universal constant. The theory explains the results of numerical simulation previously obtained by numerous authors. A physical interpretation of dependence of the height and velocity of the gravity current on the background flow velocity is presented.

  6. Propagation of short-period gravity waves at high-latitudes during the MaCWAVE winter campaign

    Directory of Open Access Journals (Sweden)

    K. Nielsen

    2006-07-01

    Full Text Available As part of the MaCWAVE (Mountain and Convective Waves Ascending Vertically winter campaign an all-sky monochromatic CCD imager has been used to investigate the properties of short-period mesospheric gravity waves at high northern latitudes. Sequential measurements of several nightglow emissions were made from Esrange, Sweden, during a limited period from 27–31 January 2003. Coincident wind measurements over the altitude range (~80–100 km using two meteor radar systems located at Esrange and Andenes have been used to perform a novel investigation of the intrinsic properties of five distinct wave events observed during this period. Additional lidar and MSIS model temperature data have been used to investigate their nature (i.e. freely propagating or ducted. Four of these extensive wave events were found to be freely propagating with potential source regions to the north of Scandinavia. No evidence was found for strong orographic forcing by short-period waves in the airglow emission layers. The fifth event was most unusual exhibiting an extensive, but much smaller and variable wavelength pattern that appeared to be embedded in the background wind field. Coincident wind measurements indicated the presence of a strong shear suggesting this event was probably due to a large-scale Kelvin-Helmholtz instability.

  7. Flight results from the gravity-gradient-controlled RAE-1 satellite

    Science.gov (United States)

    Blanchard, D. L.

    1986-01-01

    The in-orbit dynamics of a large, flexible spacecraft has been modeled with a computer simulation, which was used for designing the control system, developing a deployment and gravity-gradient capture procedure, predicting the steady-state behavior, and designing a series of dynamics experiments for the Radio Astronomy Explorer (RAE) satellite. This flexible body dynamics simulator permits three-dimensional, large-angle rotation of the total spacecraft and includes effects of orbit eccentricity, thermal bending, solar pressure, gravitational accelerations, and the damper system. Flight results are consistent with the simulator predictions and are presented for the deployment and capture phases, the steady-state mission, and the dynamics experiments.

  8. ISS Quasi-steady Accelerometric Data as a Tool for the Detection of External Disturbances During the Period 2009-2016

    Science.gov (United States)

    Marín, M.; Dubert, D.; Simón, M. J.; Ollé, J.; Gavaldà, Jna.; Ruiz, X.

    2018-04-01

    The present work aims to investigate the degree of correlation existing between the information contained in the ISS reduced quasi-steady accelerometric data and different external mechanical disturbances (reboostings, dockings/undockings, berthings/deberthings and Extra Vehicular Activities), compiled for the period 2009 to 2016. The eight hour mean (Mean8h) and the eight hour root mean square (RMS8h) acceleration values, considered as reduced data, have been extracted from the quasi-steady records provided by NASA Principal Investigator Microgravity Services website. The advantage of applying the present strategy is to drastically reduce the amount of information to be processed all along these eight years. The Mean8h values have been used for the evaluation of trends as function of time while the RMS8h ones were used to define the level (weak, medium and strong) of the different kind of external mechanical disturbances considered. These criteria has been applied for approximately four hundred selected disturbances, compiled in the Appendix. Results indicate that reboosting is always detected as a strong disturbance, while dockings/undockings, as weak ones, having lower, though detectable level, depending on the type of spacecraft considered. Extra Vehicular Activities are undetectable by the use of this reduced quasi-steady approach. The inverse problem, in other words, knowing the value of the RMS8h one could try to predict the kind of disturbance responsible of it, is thus feasible except for berthing/deberthings and Extra Vehicular Activities.

  9. Periodic cycle of stretching and breaking of the head of gravity currents

    Science.gov (United States)

    Nogueira, H. I. S.; Adduce, C.; Alves, E.; Franca, M. J.

    2012-04-01

    Gravity currents, which are geophysical flows driven by density differences within a fluid, are herein investigated under unsteady conditions by means of lock-exchange releases of saline water into a fresh water tank. Generally, gravity or density currents are caused by temperature differences or the presence of dissolved substances or particles in suspension. Examples of gravity currents include avalanches of airborne snow and plumes of pyroclasts from volcanic eruptions, in the atmosphere, releases of pollutants and turbidity currents, in rivers, lakes and reservoirs, and oil spillage and oceanic fronts in the ocean. A controlled and convenient fashion to investigate in detail hydrodynamics of unsteady gravity currents is by means of lock-exchange experiments. The propagation of unsteady density currents, produced by lock exchange experiments, present three distinct phases, a first so-called slumping phase when buoyancy and inertial effects are balanced and front celerity is constant, a second (self-similar) phase when the reflected bore from the upper layer ambient fluid upstream drive, caused by continuity within the limited length tank, reaches the current front and causes the front celerity to decrease and provokes a diminution of the current head and, finally, a third viscous phase when viscosity plays a role and its effects overcome inertial effects. On the first and second phase, the current propagation is ruled by buoyancy effects counterbalanced by inertia, Reynolds stresses on the upper mixing layer and bed shear. Buoyancy is reduced due to entrainment and consequently the front velocity, leading to lower Reynolds number flows allowing thus viscosity effects to play a role. As for its anatomy, the current presents two distinct regions, the head and the remaining body or tail. On the very first instants of the release, the flow is bulky driven by the whole current mass while the head is not yet well defined. Later, this detaches from the main body and

  10. Preprocessing of gravity gradients at the GOCE high-level processing facility

    Science.gov (United States)

    Bouman, Johannes; Rispens, Sietse; Gruber, Thomas; Koop, Radboud; Schrama, Ernst; Visser, Pieter; Tscherning, Carl Christian; Veicherts, Martin

    2009-07-01

    One of the products derived from the gravity field and steady-state ocean circulation explorer (GOCE) observations are the gravity gradients. These gravity gradients are provided in the gradiometer reference frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. To use these gravity gradients for application in Earth scienes and gravity field analysis, additional preprocessing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and nontidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/ f behaviour for low frequencies. In the outlier detection, the 1/ f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/ f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low-degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this

  11. Gravity wave influence on NLC: experimental results from ALOMAR, 69° N

    Directory of Open Access Journals (Sweden)

    H. Wilms

    2013-12-01

    Full Text Available The influence of gravity waves on noctilucent clouds (NLC at ALOMAR (69° N is analysed by relating gravity wave activity to NLC occurrence from common-volume measurements. Gravity wave kinetic energies are derived from MF-radar wind data and filtered into different period ranges by wavelet transformation. From the dataset covering the years 1999–2011, a direct correlation between gravity wave kinetic energy and NLC occurrence is not found, i.e., NLC appear independently of the simultaneously measured gravity wave kinetic energy. In addition, gravity wave activity is divided into weak and strong activity as compared to a 13 yr mean. The NLC occurrence rates during strong and weak activity are calculated separately for a given wave period and compared to each other. Again, for the full dataset no dependence of NLC occurrence on relative gravity wave activity is found. However, concentrating on 12 h of NLC detections during 2008, we do find an NLC-amplification with strong long-period gravity wave occurrence. Our analysis hence confirms previous findings that in general NLC at ALOMAR are not predominantly driven by gravity waves while exceptions to this rule are at least possible.

  12. A computational study of radiation and gravity effect on temperature and soot formation in a methane air co-flow diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    Bhowal, Arup Jyoti, E-mail: arupjyoti.bhowal@heritageit.edu [Department of Mechanical Engineering, Heritage Institute of Technology, Chowbaga Road, Anandapur, Kolkata-700 107, West Bengal (India); Mandal, Bijan Kumar, E-mail: bkm375@yahoo.co.in [Department of Mechanical Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah – 711103, West Bengal (India)

    2016-07-12

    An effort has been made for a quantitative assessment of the soot formed under steady state in a methane air co flow diffusion flame by a numerical simulation at normal gravity and at lower gravity levels of 0.5 G, 0.1 G and 0.0001 G (microgravity). The peak temperature at microgravity is reduced by about 50 K than that at normal gravity level. There is an augmentation of soot formation at lower gravity levels. Peak value at microgravity multiplies by a factor of ∼7 of that at normal gravity. However, if radiation is not considered, soot formation is found to be much more.

  13. Chaotic Darcy-Brinkman convection in a fluid saturated porous layer subjected to gravity modulation

    Directory of Open Access Journals (Sweden)

    Moli Zhao

    2018-06-01

    Full Text Available On the basis of Darcy-Brinkman model, the chaotic convection in a couple stress fluid saturated porous media under gravity modulation is investigated using the nonlinear stability analyses. The transition from steady convection to chaos is analysed with the effect of Darcy-Brinkman couple stress parameter and the gravity modulation. The results show that the chaotic behavior is connected with the critical value of Rayleigh number which is dependent upon the oscillation frequency and the Darcy-Brinkman couple stress parameter. If the oscillation frequency Ω is not zero, the Rayleigh number value R of the chaotic behavior increases with the increase of the Darcy-Brinkman couple stress parameter. The Darcy-Brinkman couple stress parameter and the gravity modulation decrease the rate of heat transfer. Keywords: Darcy-Brinkman model, Gravity modulation, Nonlinear stability, Chaotic convection

  14. Short-period atmospheric gravity waves - A study of their statistical properties and source mechanisms

    Science.gov (United States)

    Gedzelman, S. D.

    1983-01-01

    Gravity waves for the one year period beginning 19 October 1976 around Palisades, New York, are investigated to determine their statistical properties and sources. The waves have typical periods of 10 min, pressure amplitudes of 3 Pa and velocities of 30 m/s. In general, the largest, amplitude waves occur during late fall and early winter when the upper tropospheric winds directly overhead are fastest and the static stability of the lower troposphere is greatest. Mean wave amplitudes correlate highly with the product of the mean maximum wind speed and the mean low level stratification directly aloft. A distinct diurnal variation of wave amplitudes with the largest waves occurring in the pre-dawn hours is also observed as a result of the increased static stability then. The majority of waves are generated by shear instability; however, a number of waves are generated by distant sources such as nuclear detonations or large thunderstorms. The waves with distant sources can be distinguished on the basis of their generally much higher coherency across the grid and velocities that depart markedly from the wind velocity at any point in the sounding.

  15. The physics of orographic gravity wave drag

    Directory of Open Access Journals (Sweden)

    Miguel A C Teixeira

    2014-07-01

    Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

  16. Recovery of the Earth's Gravity Field Based on Spaceborne Atom-interferometry and Its Accuracy Estimation

    Directory of Open Access Journals (Sweden)

    ZHU Zhu

    2017-09-01

    Full Text Available The electrostatic gravity gradiometer has been successfully applied as a core sensor in satellite gravity gradiometric mission GOCE, and its observations are used to recover the Earth's static gravity field with a degree and order above 200. The lifetime of GOCE has been over, and the next generation satellite gravity gradiometry with higher resolution is urgently required in order to recover the global steady-state gravity field with a degree and order of 200~360. High potential precision can be obtained in space by atom-interferometry gravity gradiometer due to its long interference time, and thus the atom-interferometry-based satellite gravity gradiometry has been proposed as one of the candidate techniques for the next satellite gravity gradiometric mission. In order to achieve the science goal for high resolution gravity field measurement in the future, a feasible scheme of atom-interferometry gravity gradiometry in micro-gravity environment is given in this paper, and the gravity gradient measurement can be achieved with a noise of 0.85mE/Hz1/2. Comparison and estimation of the Earth's gravity field recovery precision for different types of satellite gravity gradiometry is discussed, and the results show that the satellite gravity gradiometry based on atom-interferometry is expected to provide the global gravity field model with an improved accuracy of 7~8cm in terms of geoid height and 3×10-5 m/s2 in terms of gravity anomaly respectively at a degree and order of 252~290.

  17. Simulating nonlinear steady-state traveling waves on the falling liquid film entrained by a gas flow

    International Nuclear Information System (INIS)

    Yu Tsvelodub, O

    2016-01-01

    The article is devoted to the simulation of nonlinear waves on a liquid film flowing under gravity in the known stress field at the interface. In the case of small Reynolds numbers the problem is reduced to the consideration of solutions of the nonlinear integral-differential equation for film thickness deviation from the undisturbed level. Weakly nonlinear steady-state traveling solutions of the equation with wave numbers in a vicinity of neutral wave numbers are constructed analytically. The nature of the wave branching from the undisturbed solution is investigated. Steady-state traveling solutions, whose wave numbers within the instability area are far from neutral wave numbers, are found numerically. (paper)

  18. STEADY-STATE RELATIVISTIC STELLAR DYNAMICS AROUND A MASSIVE BLACK HOLE

    Energy Technology Data Exchange (ETDEWEB)

    Bar-Or, Ben; Alexander, Tal [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100 (Israel)

    2016-04-01

    A massive black hole (MBH) consumes stars whose orbits evolve into the small phase-space volume of unstable orbits, the “loss cone,” which take them into the MBH, or close enough to interact strongly with it. The resulting phenomena, e.g., tidal heating and disruption, binary capture and hyper-velocity star ejection, gravitational wave (GW) emission by inspiraling compact remnants, or hydrodynamical interactions with an accretion disk, can produce observable signatures and thereby reveal the MBH, affect its mass and spin evolution, test strong gravity, and probe stars and gas near the MBH. These continuous stellar loss and resupply processes shape the central stellar distribution. We investigate relativistic stellar dynamics near the loss cone of a non-spinning MBH in steady state, analytically and by Monte Carlo simulations of the diffusion of the orbital parameters. These take into account Newtonian mass precession due to enclosed stellar mass, in-plane precession due to general relativity, dissipation by GW, uncorrelated two-body relaxation, correlated resonant relaxation (RR), and adiabatic invariance due to secular precession, using a rigorously derived description of correlated post-Newtonian dynamics in the diffusion limit. We argue that general maximal entropy considerations strongly constrain the orbital diffusion in steady state, irrespective of the relaxation mechanism. We identify the exact phase-space separatrix between plunges and inspirals, and predict their steady-state rates. We derive the dependence of the rates on the mass of the MBH, show that the contribution of RR in steady state is small, and discuss special cases where unquenched RR in restricted volumes of phase-space may affect the steady state substantially.

  19. Active ideal sedimentation: exact two-dimensional steady states.

    Science.gov (United States)

    Hermann, Sophie; Schmidt, Matthias

    2018-02-28

    We consider an ideal gas of active Brownian particles that undergo self-propelled motion and both translational and rotational diffusion under the influence of gravity. We solve analytically the corresponding Smoluchowski equation in two space dimensions for steady states. The resulting one-body density is given as a series, where each term is a product of an orientation-dependent Mathieu function and a height-dependent exponential. A lower hard wall is implemented as a no-flux boundary condition. Numerical evaluation of the suitably truncated analytical solution shows the formation of two different spatial regimes upon increasing Peclet number. These regimes differ in their mean particle orientation and in their variation of the orientation-averaged density with height.

  20. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  1. Distributed fault slip model for the 2011 Tohoku-Oki earthquake from GNSS and GRACE/GOCE satellite gravimetry

    NARCIS (Netherlands)

    Fuchs, Martin Johann; Hooper, Andrew; Broerse, D.B.T.; Bouman, Johannes

    2016-01-01

    The Gravity Recovery and Climate Experiment (GRACE) mission (launched 2002) and the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission (March 2009 to November 2013) collected spaceborne gravity data for the preseismic and postseismic periods of the 2011 Tohoku-Oki

  2. Distributed fault slip model for the 2011 Tohoku-Oki earthquake from GNSS and GRACE/GOCE satellite gravimetry

    NARCIS (Netherlands)

    Fuchs, Martin Johann; Hooper, Andrew; Broerse, Taco|info:eu-repo/dai/nl/411299344; Bouman, Johannes

    The Gravity Recovery and Climate Experiment (GRACE) mission (launched 2002) and the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) mission (March 2009 to November 2013) collected spaceborne gravity data for the preseismic and postseismic periods of the 2011 Tohoku-Oki earthquake.

  3. Algebraic method for constructing singular steady solitary waves: a case study

    Science.gov (United States)

    Clamond, Didier; Dutykh, Denys; Galligo, André

    2016-07-01

    This article describes the use of algebraic methods in a phase plane analysis of ordinary differential equations. The method is illustrated by the study of capillary-gravity steady surface waves propagating in shallow water. We consider the (fully nonlinear, weakly dispersive) Serre-Green-Naghdi equation with surface tension, because it provides a tractable model that, at the same time, is not too simple, so interest in the method can be emphasized. In particular, we analyse a special class of solutions, the solitary waves, which play an important role in many fields of physics. In capillary-gravity regime, there are two kinds of localized infinitely smooth travelling wave solutions-solitary waves of elevation and of depression. However, if we allow the solitary waves to have an angular point, then the `zoology' of solutions becomes much richer, and the main goal of this study is to provide a complete classification of such singular localized solutions using the methods of the effective algebraic geometry.

  4. DETECTING GRAVITY MODES IN THE SOLAR {sup 8} B NEUTRINO FLUX

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Ilídio [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Turck-Chièze, Sylvaine, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt, E-mail: sylvaine.turck-chieze@cea.fr [CEA/IRFU/Service d' Astrophysique, CE Saclay, F-91191 Gif sur Yvette (France)

    2014-09-10

    The detection of gravity modes produced in the solar radiative zone has been a challenge in modern astrophysics for more than 30 yr and their amplitude in the core is not yet determined. In this Letter, we develop a new strategy to look for standing gravity modes through solar neutrino fluxes. We note that due to a resonance effect, the gravity modes of low degree and low order have the largest impact on the {sup 8} B neutrino flux. The strongest effect is expected to occur for the dipole mode with radial order 2, corresponding to periods of about 1.5 hr. These standing gravity waves produce temperature fluctuations that are amplified by a factor of 170 in the boron neutrino flux for the corresponding period, in consonance with the gravity modes. From current neutrino observations, we determine that the maximum temperature variation due to the gravity modes in the Sun's core is smaller than 5.8 × 10{sup –4}. This study clearly shows that due to their high sensitivity to the temperature, the {sup 8} B neutrino flux time series is an excellent tool to determine the properties of gravity modes in the solar core. Moreover, if gravity mode footprints are discovered in the {sup 8} B neutrino flux, this opens a new line of research to probe the physics of the solar core as non-standing gravity waves of higher periods cannot be directly detected by helioseismology but could leave their signature on boron neutrino or on other neutrino fluxes.

  5. Steady fall of isothermal, resistive-viscous, compressible fluid across magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Low, B. C., E-mail: low@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80301 (United States); Egan, A. K., E-mail: andrea.egan@colorado.edu [Barnard College, New York, New York 10027, USA and Department of Physics, Colorado University, Boulder, Colorado 80309 (United States)

    2014-06-15

    This is a basic MHD study of the steady fall of an infinite, vertical slab of isothermal, resistive-viscous, compressible fluid across a dipped magnetic field in uniform gravity. This double-diffusion steady flow in unbounded space poses a nonlinear but numerically tractable, one-dimensional (1D) free-boundary problem, assuming constant coefficients of resistivity and viscosity. The steady flow is determined by a dimensionless number μ{sub 1} proportional to the triple product of the two diffusion coefficients and the square of the linear total mass. For a sufficiently large μ{sub 1}, the Lorentz, viscous, fluid-pressure, and gravitational forces pack and collimate the fluid into a steady flow of a finite width defined by the two zero-pressure free-boundaries of the slab with vacuum. The viscous force is essential in this collimation effect. The study conjectures that in the regime μ{sub 1}→0, the 1D steady state exists only for μ{sub 1}∈Ω, a spectrum of an infinite number of discrete values, including μ{sub 1} = 0 that corresponds to two steady states, the classical zero-resistivity static slab of Kippenhahn and Schlüter [R. Kippenhahn and A. Schlüter, Z. Astrophys. 43, 36 (1957)] and its recent generalization [B. C. Low et al., Astrophys. J. 755, 34 (2012)] to admit an inviscid resistive flow. The pair of zero-pressure boundaries of each of the μ{sub 1}→0 steady-state slabs are located at infinity. Computational evidence suggests that the Ω steady-states are densely distributed around μ{sub 1} = 0, as an accumulation point, but are sparsely separated by open intervals of μ{sub 1}-values for which the slab must be either time-dependent or spatially multi-dimensional. The widths of these intervals are vanishingly small as μ{sub 1}→0. This topological structure of physical states is similar to that described by Landau and Liftshitz [L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, Reading, MA, 1959)] to explain the onset

  6. Venus gravity fields

    Science.gov (United States)

    Sjogren, W. L.; Ananda, M.; Williams, B. G.; Birkeland, P. W.; Esposito, P. S.; Wimberly, R. N.; Ritke, S. J.

    1981-01-01

    Results of Pioneer Venus Orbiter observations concerning the gravity field of Venus are presented. The gravitational data was obtained from reductions of Doppler radio tracking data for the Orbiter, which is in a highly eccentric orbit with periapsis altitude varying from 145 to 180 km and nearly fixed periapsis latitude of 15 deg N. The global gravity field was obtained through the simultaneous estimation of the orbit state parameters and gravity coefficients from long-period variations in orbital element rates. The global field has been described with sixth degree and order spherical harmonic coefficients, which are capable of resolving the three major topographical features on Venus. Local anomalies have been mapped using line-of-sight accelerations derived from the Doppler residuals between 40 deg N and 10 deg S latitude at approximately 300 km spatial resolution. Gravitational data is observed to correspond to topographical data obtained by radar altimeter, with most of the gravitational anomalies about 20-30 milligals. Simulations evaluating the isostatic states of two topographic features indicate that at least partial isostasy prevails, with the possibility of complete compensation.

  7. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    Science.gov (United States)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches

  8. Gravity and Height Variations at Medicina, Italy

    Science.gov (United States)

    Bruni, Sara; Zerbini, Susanna; Errico, Maddalena; Santi, Efisio; Wziontek, Hartmut

    2017-04-01

    Since 1996, at the Medicina station, height and gravity variations are monitored continuously by means of GPS, VLBI and superconducting gravimeter (SG) data. Additionally, absolute gravity observations are performed twice a year and environmental parameters, among others water table levels, are regularly acquired. Levelling between the different monuments at the site area is also carried out repeatedly to constrain local ties in the vertical position. Two GPS systems are located very close to each other, and both are in close proximity to the VLBI antenna. Twenty years of data are now available, which allow investigating both long- and short-period height and gravity signals together with their relevant correlations. Natural land subsidence, which is well known to occur in the area, is a major component of the observed long-term behavior; however, non-linear long-period signatures are also present in the time series. On a shorter time scale, fingerprints of the water table seasonal oscillations can be recognized in the data. The Medicina site is characterized by clayey soil subjected to consolidation effects when the water table lowers during summer periods. The pillar on which the SG is installed is especially affected because of its shallow foundation, causing height decreases in the order of 2.5-3 cm for water table lowering of 2 m. This study presents a comparative analysis of the different data sets with the aim of separating mass and deformation contributions in the SG gravity record.

  9. Europe's Preparation For GOCE Gravity Field Recovery

    Science.gov (United States)

    Suenkel, H.; Suenkel, H.

    2001-12-01

    The European Space Agency ESA is preparing for its first dedicated gravity field mission GOCE (Gravity Field and Steady-state Ocean Circulation Explorer) with a proposed launch in fall 2005. The mission's goal is the mapping of the Earth's static gravity field with very high resolution and utmost accuracy on a global scale. GOCE is a drag-free mission, flown in a circular and sun-synchronous orbit at an altitude between 240 and 250 km. Each of the two operational phases will last for 6 months. GOCE is based on a sensor fusion concept combining high-low satellite-to-satellite tracking (SST) and satellite gravity gradiometry (SGG). The transformation of the GOCE sensor data into a scientific product of utmost quality and reliability requires a well-coordinated effort of experts in satellite geodesy, applied mathematics and computer science. Several research groups in Europe do have this expertise and decided to form the "European GOCE Gravity Consortium (EGG-C)". The EGG-C activities are subdivided into tasks such as standard and product definition, data base and data dissemination, precise orbit determination, global gravity field model solutions and regional solutions, solution validation, communication and documentation, and the interfacing to level 3 product scientific users. The central issue of GOCE data processing is, of course, the determination of the global gravity field model using three independent mathematical-numerical techniques which had been designed and pre-developed in the course of several scientific preparatory studies of ESA: 1. The direct solution which is a least squares adjustment technique based on a pre-conditioned conjugated gradient method (PCGM). The method is capable of efficiently transforming the calibrated and validated SST and SGG observations directly or via lumped coefficients into harmonic coefficients of the gravitational potential. 2. The time-wise approach considers both SST and SGG data as a time series. For an idealized

  10. Analysis of time variable gravity data over Africa

    International Nuclear Information System (INIS)

    Barletta, Valentina R.; Aoudia, Abdelkarim

    2010-01-01

    Africa, in principle, is a unique laboratory where to address the individual contribution of the different facets of the Earth system as well as their interactions. However, it shows both a rich hydrology that exhibits complex characteristics of rivers and wide basins of different sizes in addition to the hydrology of lakes, and other wetlands and storage reservoirs and groundwater aquifers, and continuous and discontinuous changes in the physical properties of the Earth interior. Stretching and heating processes are accompanied by punctuated episodes of faulting and/or volcanism, and longer-term changes in surface elevation that disrupt river drainage and climate. Space gravity missions GRACE, flying since 2002, was expressly designed to detect the time-dependent gravity field in order to study the hydrological cycle of the Earth, but has also evidenced Solid Earth phenomena such as Post Glacial Rebound (PGR) and the signature of a giant earthquake such as the 2004 Sumatra. Hence the idea to analyze time variable gravity data over Africa in order to retrieve fingerprints of geophysical phenomena. The exploitation of the GRACE data for geophysics, however, is not straightforward. Indeed, the quality of the signal is not uniform worldwide and gravity is always the superposition of contributions from solid Earth as well as climate-related phenomena, that cannot be easily distinguished, at a first glance, both in time and space. In the present study we show that mass changes cannot be classified simply as trends or periodic signals. We follow an alternative way to separate complementary components, periodic and non-periodic signals, without loosing information. We show that the a priori periodic and linear trend fitting function is not everywhere appropriate and in some cases it is even so poor to result in misinterpreting the data. Variations in long term behavior and periodicities higher than the usual annual (and semi-annual) indeed occur, related to geophysical

  11. A Combined Gravity Compensation Method for INS Using the Simplified Gravity Model and Gravity Database.

    Science.gov (United States)

    Zhou, Xiao; Yang, Gongliu; Wang, Jing; Wen, Zeyang

    2018-05-14

    In recent decades, gravity compensation has become an important way to reduce the position error of an inertial navigation system (INS), especially for a high-precision INS, because of the extensive application of high precision inertial sensors (accelerometers and gyros). This paper first deducts the INS's solution error considering gravity disturbance and simulates the results. Meanwhile, this paper proposes a combined gravity compensation method using a simplified gravity model and gravity database. This new combined method consists of two steps all together. Step 1 subtracts the normal gravity using a simplified gravity model. Step 2 first obtains the gravity disturbance on the trajectory of the carrier with the help of ELM training based on the measured gravity data (provided by Institute of Geodesy and Geophysics; Chinese Academy of sciences), and then compensates it into the error equations of the INS, considering the gravity disturbance, to further improve the navigation accuracy. The effectiveness and feasibility of this new gravity compensation method for the INS are verified through vehicle tests in two different regions; one is in flat terrain with mild gravity variation and the other is in complex terrain with fierce gravity variation. During 2 h vehicle tests, the positioning accuracy of two tests can improve by 20% and 38% respectively, after the gravity is compensated by the proposed method.

  12. Steady-state Operational Characteristics of Ghana Research ...

    African Journals Online (AJOL)

    Steady state operational characteristics of the 30 kW tank-in-pool type reactor named Ghana Research Reactor-1 were investigated after a successful on-site zero power critical experiments. The steadystate operational character-istics determined were the thermal neutron fluxes, maximum period of operation at nominal ...

  13. Broadscale Postseismic Gravity Change Following the 2011 Tohoku-Oki Earthquake and Implication for Deformation by Viscoelastic Relaxation and Afterslip

    Science.gov (United States)

    Han, Shin-Chan; Sauber, Jeanne; Pollitz, Fred

    2014-01-01

    The analysis of GRACE gravity data revealed post-seismic gravity increase by 6 micro-Gal over a 500 km scale within a couple of years after the 2011 Tohoku-Oki earthquake, which is nearly 40-50% of the co-seismic gravity change. It originates mostly from changes in the isotropic component corresponding to the M(sub rr) moment tensor element. The exponential decay with rapid change in a year and gradual change afterward is a characteristic temporal pattern. Both viscoelastic relaxation and afterslip models produce reasonable agreement with the GRACE free-air gravity observation, while their Bouguer gravity patterns and seafloor vertical deformations are distinctly different. The post-seismic gravity variation is best modeled by the bi-viscous relaxation with a transient and steady state viscosity of 10(exp 18) and 10(exp 19) Pa s, respectively, for the asthenosphere. Our calculated higher-resolution viscoelastic relaxation model, underlying the partially ruptured elastic lithosphere, yields the localized post-seismic subsidence above the hypocenter reported from the GPS-acoustic seafloor surveying.

  14. A single dumbbell falling under gravity in a cellular flow field

    CERN Document Server

    Piva, M F

    2003-01-01

    We study the motion of a single polymer chain settling under gravity in an ensemble of periodic, cellular flow fields, which are steady in time. The molecule is an elastic dumbbell composed of two beads connected by a nonbendable Hookean spring. Each bead is subject to a Stokes drag and a Brownian force from the flow. In the absence of particle inertia, the molecule settles out at a rate which depends on three parameters: the particle velocity in a fluid at rest, V sub g , the spring constant, B, and the diffusion coefficient, D. We investigate the dependence of the molecule settling velocity on B, for fixed V sub g and D. It is found that this velocity strongly depends on B and it has a minimum value less than V sub g. We also find that the molecule is temporarily trapped at fixed points for certain values of the parameters. We analyse one fixed point in detail and conclude that its stability is the main factor which contributes to slowing down the settling process.

  15. Newtonian gravity in loop quantum gravity

    OpenAIRE

    Smolin, Lee

    2010-01-01

    We apply a recent argument of Verlinde to loop quantum gravity, to conclude that Newton's law of gravity emerges in an appropriate limit and setting. This is possible because the relationship between area and entropy is realized in loop quantum gravity when boundaries are imposed on a quantum spacetime.

  16. Plastic Models Designed to Produce Large Height-to-Length Ratio Steady-State Planar and Axisymmetric (Radial) Viscous Liquid Laminar Flow Gravity Currents

    Science.gov (United States)

    Blanck, Harvey F.

    2012-01-01

    Naturally occurring gravity currents include events such as air flowing through an open front door, a volcanic eruption's pyroclastic flow down a mountainside, and the spread of the Bhopal disaster's methyl isocyanate gas. Gravity currents typically have a small height-to-distance ratio. Plastic models were designed and constructed with a…

  17. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  18. Professor Sir Fred Hoyle astronomer who propounded the 'steady state' theory of the universe and defended it energetically in defiance of orthodox cosmology

    CERN Multimedia

    Ward, M

    2001-01-01

    Professor Hoyle was internationally acclaimed for his original work on stars, galaxies, gravity and the origin of atoms. He will always be associated with the 'steady state' theory of the universe, which he first proposed in 1948. Born on June 24 1915 he died on August 20th 2001, aged 86 (2 pages).

  19. On Steady-State Tropical Cyclones

    Science.gov (United States)

    2014-01-01

    Press: London. Marks FD, Black PG, Montgomery MT, Burpee RW. 2008. Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Weather Rev. 136: 1237... hurricanes ; tropical cyclones; typhoons; steady-state Received 18 April 2013; Revised 25 November 2013; Accepted 29 December 2013; Published online in Wiley...the concept of the ‘mature stage’ of a hurricane vortex. The definition of the ‘mature stage’ is commonly based on the time period in which the maximum

  20. Thirty years of precise gravity measurements at Mt. Vesuvius: an approach to detect underground mass movements

    Directory of Open Access Journals (Sweden)

    Giovanna Berrino

    2013-11-01

    Full Text Available Since 1982, high precision gravity measurements have been routinely carried out on Mt. Vesuvius. The gravity network consists of selected sites most of them coinciding with, or very close to, leveling benchmarks to remove the effect of the elevation changes from gravity variations. The reference station is located in Napoli, outside the volcanic area. Since 1986, absolute gravity measurements have been periodically made on a station on Mt. Vesuvius, close to a permanent gravity station established in 1987, and at the reference in Napoli. The results of the gravity measurements since 1982 are presented and discussed. Moderate gravity changes on short-time were generally observed. On long-term significant gravity changes occurred and the overall fields displayed well defined patterns. Several periods of evolution may be recognized. Gravity changes revealed by the relative surveys have been confirmed by repeated absolute measurements, which also confirmed the long-term stability of the reference site. The gravity changes over the recognized periods appear correlated with the seismic crises and with changes of the tidal parameters obtained by continuous measurements. The absence of significant ground deformation implies masses redistribution, essentially density changes without significant volume changes, such as fluids migration at the depth of the seismic foci, i.e. at a few kilometers. The fluid migration may occur through pre-existing geological structures, as also suggested by hydrological studies, and/or through new fractures generated by seismic activity. This interpretation is supported by the analyses of the spatial gravity changes overlapping the most significant and recent seismic crises.

  1. Steady natural convection in a horizontal channel containing heated rectangular blocks periodically mounted on its lower wall

    International Nuclear Information System (INIS)

    Bakkas, M.; Amahmid, A.; Hasnaoui, M.

    2006-01-01

    In this paper, we perform a numerical investigation of laminar steady natural convection flows in a two-dimensional horizontal channel containing heating rectangular blocks, periodically mounted on its lower wall. The blocks are heated at a constant temperature, T H ' and connected with adiabatic surfaces. The upper wall of the channel is maintained at a cold temperature T C ' . The parameters governing the problem are the Rayleigh number (10 2 = 6 ), the geometric parameter C (0.25=< C=l'/H'=<0.75) and the relative height of the blocks (1/8=< B=h'/H'=<1/2). The effect of the computational domain choice on the multiplicity of solutions is also investigated. The results obtained using air (Pr=0.72) as the working fluid show that the parameters B and C have a significant effect on the fluid flow and temperature fields. The symmetry of the flow is not always maintained although the boundary conditions for this problem are symmetrical, and the difference between two multiple solutions in terms of heat transfer may reach 34% for a given set of the governing parameters

  2. Effect of surface tension on the dynamical behavior of bubble in rotating fluids under low gravity environment

    Science.gov (United States)

    Hung, R. J.; Tsao, Y. D.; Leslie, Fred W.; Hong, B. B.

    1988-01-01

    Time dependent evolutions of the profile of free surface (bubble shapes) for a cylindrical container partially filled with a Newtonian fluid of constant density, rotating about its axis of symmetry, have been studied. Numerical computations of the dynamics of bubble shapes have been carried out with the following situations: (1) linear functions of spin-up and spin-down in low and microgravity environments, (2) linear functions of increasing and decreasing gravity enviroment in high and low rotating cylidner speeds, (3) step functions of spin-up and spin-down in a low gravity environment, and (4) sinusoidal function oscillation of gravity environment in high and low rotating cylinder speeds. The initial condition of bubble profiles was adopted from the steady-state formulations in which the computer algorithms have been developed by Hung and Leslie (1988), and Hung et al. (1988).

  3. Sinuous oscillations and steady warps of polytropic disks

    International Nuclear Information System (INIS)

    Balmforth, N.J.; Spiegel, E.A.

    1995-05-01

    In an asymptotic development of the equations governing the equilibria and linear stability of rapidly rotating polytropes we employed the slender aspect of these objects to reduce the three-dimensional partial differential equations to a somewhat simpler, ordinary integro-differential form. The earlier calculations dealt with isolated objects that were in centrifugal balance, that is the centrifugal acceleration of the configuration was balanced largely by self gravity with small contributions from the pressure gradient. Another interesting situation is that in which the polytrope rotates subject to externally imposed gravitational fields. In astrophysics, this is common in the theory of galactic dynamics because disks are unlikely to be isolated objects. The dark halos associated with disks also provide one possible explanation of the apparent warping of many galaxies. If the axis of the highly flattened disk is not aligned with that of the much less flattened halo, then the resultant torque of the halo gravity on the disk might provide a nonaxisymmetric distortion or disk warp. Motivated by these possibilities we shall here build models of polytropic disks of small but finite thickness which are subjected to prescribed, external gravitational fields. First we estimate how a symmetrical potential distorts the structure of the disk, then we examine its sinuous oscillations to confirm that they freely decay, hence suggesting that a warp must be externally forced. Finally, we consider steady warps of the disk plane when the axis of the disk does not coincide with that of the halo

  4. Even-dimensional topological gravity from Chern-Simons gravity

    International Nuclear Information System (INIS)

    Merino, N.; Perez, A.; Salgado, P.

    2009-01-01

    It is shown that the topological action for gravity in 2n-dimensions can be obtained from the (2n+1)-dimensional Chern-Simons gravity genuinely invariant under the Poincare group. The 2n-dimensional topological gravity is described by the dynamics of the boundary of a (2n+1)-dimensional Chern-Simons gravity theory with suitable boundary conditions. The field φ a , which is necessary to construct this type of topological gravity in even dimensions, is identified with the coset field associated with the non-linear realizations of the Poincare group ISO(d-1,1).

  5. Investigating gravity waves evidences in the Venus upper atmosphere

    Science.gov (United States)

    Migliorini, Alessandra; Altieri, Francesca; Shakun, Alexey; Zasova, Ludmila; Piccioni, Giuseppe; Bellucci, Giancarlo; Grassi, Davide

    2014-05-01

    We present a method to investigate gravity waves properties in the upper mesosphere of Venus, through the O2 nightglow observations acquired with the imaging spectrometer VIRTIS on board Venus Express. Gravity waves are important dynamical features that transport energy and momentum. They are related to the buoyancy force, which lifts air particles. Then, the vertical displacement of air particles produces density changes that cause gravity to act as restoring force. Gravity waves can manifest through fluctuations on temperature and density fields, and hence on airglow intensities. We use the O2 nightglow profiles showing double peaked structures to study the influence of gravity waves in shaping the O2 vertical profiles and infer the waves properties. In analogy to the Earth's and Mars cases, we use a well-known theory to model the O2 nightglow emissions affected by gravity waves propagation. Here we propose a statistical discussion of the gravity waves characteristics, namely vertical wavelength and wave amplitude, with respect to local time and latitude. The method is applied to about 30 profiles showing double peaked structures, and acquired with the VIRTIS/Venus Express spectrometer, during the mission period from 2006-07-05 to 2008-08-15.

  6. Steady-state bifurcations of the three-dimensional Kolmogorov problem

    Directory of Open Access Journals (Sweden)

    Zhi-Min Chen

    2000-08-01

    Full Text Available This paper studies the spatially periodic incompressible fluid motion in $mathbb R^3$ excited by the external force $k^2(sin kz, 0,0$ with $kgeq 2$ an integer. This driving force gives rise to the existence of the unidirectional basic steady flow $u_0=(sin kz,0, 0$ for any Reynolds number. It is shown in Theorem 1.1 that there exist a number of critical Reynolds numbers such that $u_0$ bifurcates into either 4 or 8 or 16 different steady states, when the Reynolds number increases across each of such numbers.

  7. Polar gravity fields from GOCE and airborne gravity

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Yidiz, Hasan

    2011-01-01

    Airborne gravity, together with high-quality surface data and ocean satellite altimetric gravity, may supplement GOCE to make consistent, accurate high resolution global gravity field models. In the polar regions, the special challenge of the GOCE polar gap make the error characteristics...... of combination models especially sensitive to the correct merging of satellite and surface data. We outline comparisons of GOCE to recent airborne gravity surveys in both the Arctic and the Antarctic. The comparison is done to new 8-month GOCE solutions, as well as to a collocation prediction from GOCE gradients...... in Antarctica. It is shown how the enhanced gravity field solutions improve the determination of ocean dynamic topography in both the Arctic and in across the Drake Passage. For the interior of Antarctica, major airborne gravity programs are currently being carried out, and there is an urgent need...

  8. Dynamics of Superfluid Helium in Low-Gravity

    Science.gov (United States)

    Frank, David J.

    1997-01-01

    sensitive to quasi-steady changes in the mass distribution of the liquid. The CFD codes were used to model the fluid's dynamic motion. Tests in one-g were performed with the main emphasis on being able to compute the actual damping of the fluid. A series of flights on the NASA Lewis reduced gravity DC-9 aircraft were performed with the Jet Propulsion Laboratory (JPL) Low Temperature Flight Facility and a superfluid Test Cell. The data at approximately 0.04g, lg and 2g were used to determine if correct fundamental frequencies can be predicted based on the acceleration field. Tests in zero gravity were performed to evaluate zero gravity motion.

  9. Theoretical frameworks for testing relativistic gravity: A review

    Science.gov (United States)

    Thorne, K. S.; Will, C. M.; Ni, W.

    1971-01-01

    Metric theories of gravity are presented, including the definition of metric theory, evidence for its existence, and response of matter to gravity with test body trajectories, gravitational red shift, and stressed matter responses. Parametrized post-Newtonian framework and interpretations are reviewed. Gamma, beta and gamma, and varied other parameters were measured. Deflection of electromagnetic waves, radar time delay, geodetic gyroscope precession, perihelion shifts, and periodic effects in orbits are among various studies carried out for metric theory experimentation.

  10. Gravitational waves from periodic three-body systems.

    Science.gov (United States)

    Dmitrašinović, V; Suvakov, Milovan; Hudomal, Ana

    2014-09-05

    Three bodies moving in a periodic orbit under the influence of Newtonian gravity ought to emit gravitational waves. We have calculated the gravitational radiation quadrupolar waveforms and the corresponding luminosities for the 13+11 recently discovered three-body periodic orbits in Newtonian gravity. These waves clearly allow one to distinguish between their sources: all 13+11 orbits have different waveforms and their luminosities (evaluated at the same orbit energy and body mass) vary by up to 13 orders of magnitude in the mean, and up to 20 orders of magnitude for the peak values.

  11. f(T) teleparallel gravity and cosmology.

    Science.gov (United States)

    Cai, Yi-Fu; Capozziello, Salvatore; De Laurentis, Mariafelicia; Saridakis, Emmanuel N

    2016-10-01

    Over recent decades, the role of torsion in gravity has been extensively investigated along the main direction of bringing gravity closer to its gauge formulation and incorporating spin in a geometric description. Here we review various torsional constructions, from teleparallel, to Einstein-Cartan, and metric-affine gauge theories, resulting in extending torsional gravity in the paradigm of f (T) gravity, where f (T) is an arbitrary function of the torsion scalar. Based on this theory, we further review the corresponding cosmological and astrophysical applications. In particular, we study cosmological solutions arising from f (T) gravity, both at the background and perturbation levels, in different eras along the cosmic expansion. The f (T) gravity construction can provide a theoretical interpretation of the late-time universe acceleration, alternative to a cosmological constant, and it can easily accommodate with the regular thermal expanding history including the radiation and cold dark matter dominated phases. Furthermore, if one traces back to very early times, for a certain class of f (T) models, a sufficiently long period of inflation can be achieved and hence can be investigated by cosmic microwave background observations-or, alternatively, the Big Bang singularity can be avoided at even earlier moments due to the appearance of non-singular bounces. Various observational constraints, especially the bounds coming from the large-scale structure data in the case of f (T) cosmology, as well as the behavior of gravitational waves, are described in detail. Moreover, the spherically symmetric and black hole solutions of the theory are reviewed. Additionally, we discuss various extensions of the f (T) paradigm. Finally, we consider the relation with other modified gravitational theories, such as those based on curvature, like f (R) gravity, trying to illuminate the subject of which formulation, or combination of formulations, might be more suitable

  12. Progress towards a space-borne quantum gravity gradiometer

    Science.gov (United States)

    Yu, Nan; Kohel, James M.; Ramerez-Serrano, Jaime; Kellogg, James R.; Lim, Lawrence; Maleki, Lute

    2004-01-01

    Quantum interferometer gravity gradiometer for 3D mapping is a project for developing the technology of atom interferometer-based gravity sensor in space. The atom interferometer utilizes atomic particles as free fall test masses to measure inertial forces with unprecedented sensitivity and precision. It also allows measurements of the gravity gradient tensor components for 3D mapping of subsurface mass distribution. The overall approach is based on recent advances of laser cooling and manipulation of atoms in atomic and optical physics. Atom interferometers have been demonstrated in research laboratories for gravity and gravity gradient measurements. In this approach, atoms are first laser cooled to micro-kelvin temperatures. Then they are allowed to freefall in vacuum as true drag-free test masses. During the free fall, a sequence of laser pulses is used to split and recombine the atom waves to realize the interferometric measurements. We have demonstrated atom interferometer operation in the Phase I period, and we are implementing the second generation for a complete gradiometer demonstration unit in the laboratory. Along with this development, we are developing technologies at component levels that will be more suited for realization of a space instrument. We will present an update of these developments and discuss the future directions of the quantum gravity gradiometer project.

  13. The effect of substrate composition and storage time on urine specific gravity in dogs.

    Science.gov (United States)

    Steinberg, E; Drobatz, K; Aronson, L

    2009-10-01

    The purpose of this study is to evaluate the effects of substrate composition and storage time on urine specific gravity in dogs. A descriptive cohort study of 15 dogs. The urine specific gravity of free catch urine samples was analysed during a 5-hour time period using three separate storage methods; a closed syringe, a diaper pad and non-absorbable cat litter. The urine specific gravity increased over time in all three substrates. The syringe sample had the least change from baseline and the diaper sample had the greatest change from baseline. The urine specific gravity for the litter and diaper samples had a statistically significant increase from the 1-hour to the 5-hour time point. The urine specific gravity from canine urine stored either on a diaper or in a non-absorbable litter increased over time. Although the change was found to be statistically significant over the 5-hour study period it is unlikely to be clinically significant.

  14. Temporal variability of tidal and gravity waves during a record long 10-day continuous lidar sounding

    Science.gov (United States)

    Baumgarten, Kathrin; Gerding, Michael; Baumgarten, Gerd; Lübken, Franz-Josef

    2018-01-01

    Gravity waves (GWs) as well as solar tides are a key driving mechanism for the circulation in the Earth's atmosphere. The propagation of gravity waves is strongly affected by tidal waves as they modulate the mean background wind field and vice versa, which is not yet fully understood and not adequately implemented in many circulation models. The daylight-capable Rayleigh-Mie-Raman (RMR) lidar at Kühlungsborn (54° N, 12° E) typically provides temperature data to investigate both wave phenomena during one full day or several consecutive days in the middle atmosphere between 30 and 75 km altitude. Outstanding weather conditions in May 2016 allowed for an unprecedented 10-day continuous lidar measurement, which shows a large variability of gravity waves and tides on timescales of days. Using a one-dimensional spectral filtering technique, gravity and tidal waves are separated according to their specific periods or vertical wavelengths, and their temporal evolution is studied. During the measurement period a strong 24 h wave occurs only between 40 and 60 km and vanishes after a few days. The disappearance is related to an enhancement of gravity waves with periods of 4-8 h. Wind data provided by ECMWF are used to analyze the meteorological situation at our site. The local wind structure changes during the observation period, which leads to different propagation conditions for gravity waves in the last days of the measurement period and therefore a strong GW activity. The analysis indicates a further change in wave-wave interaction resulting in a minimum of the 24 h tide. The observed variability of tides and gravity waves on timescales of a few days clearly demonstrates the importance of continuous measurements with high temporal and spatial resolution to detect interaction phenomena, which can help to improve parametrization schemes of GWs in general circulation models.

  15. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  16. Mimicking Nonequilibrium Steady States with Time-Periodic Driving

    Science.gov (United States)

    2016-08-29

    construction does not require the solution of any differential equations , only linear algebraic equations . By contrast, a mapping in the opposite...set of algebraic linear equations . The mapping between NESS and SP presented above was not intended as a set of operational instructions for... differential equations with time-periodic parameters. Typically, this can only be done numerically. In some applications, transition rates are constrained by

  17. Scales of gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Kolanovic, Marko; Nitti, Francesco; Gabadadze, Gregory

    2002-01-01

    We propose a framework in which the quantum gravity scale can be as low as 10 -3 eV. The key assumption is that the standard model ultraviolet cutoff is much higher than the quantum gravity scale. This ensures that we observe conventional weak gravity. We construct an explicit brane-world model in which the brane-localized standard model is coupled to strong 5D gravity of infinite-volume flat extra space. Because of the high ultraviolet scale, the standard model fields generate a large graviton kinetic term on the brane. This kinetic term 'shields' the standard model from the strong bulk gravity. As a result, an observer on the brane sees weak 4D gravity up to astronomically large distances beyond which gravity becomes five dimensional. Modeling quantum gravity above its scale by the closed string spectrum we show that the shielding phenomenon protects the standard model from an apparent phenomenological catastrophe due to the exponentially large number of light string states. The collider experiments, astrophysics, cosmology and gravity measurements independently point to the same lower bound on the quantum gravity scale, 10 -3 eV. For this value the model has experimental signatures both for colliders and for submillimeter gravity measurements. Black holes reveal certain interesting properties in this framework

  18. Seasonal gravity change at Yellowstone caldera

    Science.gov (United States)

    Poland, M. P.; de Zeeuw-van Dalfsen, E.

    2017-12-01

    relatively small gravity increase ( 25 microgals) over the same time period, despite the presence of 1 m of snow during the first survey and none during the second. Reinterpretation of past data collected at sites such as this one, where seasonal variations may be minor, could provide a clearer indication of mass changes in Yellowstone's magmatic system.

  19. Selection of artificial gravity by animals during suborbital rocket flights

    Science.gov (United States)

    Lange, K. O.; Belleville, R. E.; Clark, F. C.

    1975-01-01

    White rats selected preferred artificial gravity levels by locomotion in centrifuges consisting of two runways mounted in the nose of sounding rockets. Roll rate of the Aerobee 150A rocket was designed to produce an angular velocity of 45 rpm during 5 min of free-fall, providing a gravity range from 0.3 to 1.5 G depending on a subject's runway position. One animal was released at the high and one at the low gravity position in each flight. Animal positions were continuously recorded. Locomotion patterns during these flights were similar. All four animals explored the entire available G-range. One rat settled at 0.4 G after 2 min; the others crossed the 1-G location in progressively narrower excursions and were near earth gravity at the end of the test period. Tentatively, the data suggest that normal earth-reared rats select earth gravity when available magnitudes include values above and below 1 G. Modification of gravity preference by prolonged exposure to higher or lower levels remains a possibility.

  20. PPN-limit of Fourth Order Gravity inspired by Scalar-Tensor Gravity

    OpenAIRE

    Capozziello, S.; Troisi, A.

    2005-01-01

    Based on the {\\it dynamical} equivalence between higher order gravity and scalar-tensor gravity the PPN-limit of fourth order gravity is discussed. We exploit this analogy developing a fourth order gravity version of the Eddington PPN-parameters. As a result, Solar System experiments can be reconciled with higher order gravity, if physical constraints descending from experiments are fulfilled.

  1. Terrestrial gravity data analysis for interim gravity model improvement

    Science.gov (United States)

    1987-01-01

    This is the first status report for the Interim Gravity Model research effort that was started on June 30, 1986. The basic theme of this study is to develop appropriate models and adjustment procedures for estimating potential coefficients from terrestrial gravity data. The plan is to use the latest gravity data sets to produce coefficient estimates as well as to provide normal equations to NASA for use in the TOPEX/POSEIDON gravity field modeling program.

  2. Effect of gravity on colloid transport through water-saturated columns packed with glass beads: modeling and experiments.

    Science.gov (United States)

    Chrysikopoulos, Constantinos V; Syngouna, Vasiliki I

    2014-06-17

    The role of gravitational force on colloid transport in water-saturated columns packed with glass beads was investigated. Transport experiments were performed with colloids (clays: kaolinite KGa-1b, montmorillonite STx-1b). The packed columns were placed in various orientations (horizontal, vertical, and diagonal) and a steady flow rate of Q = 1.5 mL/min was applied in both up-flow and down-flow modes. All experiments were conducted under electrostatically unfavorable conditions. The experimental data were fitted with a newly developed, analytical, one-dimensional, colloid transport model. The effect of gravity is incorporated in the mathematical model by combining the interstitial velocity (advection) with the settling velocity (gravity effect). The results revealed that flow direction influences colloid transport in porous media. The rate of particle deposition was shown to be greater for up-flow than for down-flow direction, suggesting that gravity was a significant driving force for colloid deposition.

  3. Rotating gravity currents. Part 1. Energy loss theory

    Science.gov (United States)

    Martin, J. R.; Lane-Serff, G. F.

    2005-01-01

    A comprehensive energy loss theory for gravity currents in rotating rectangular channels is presented. The model is an extension of the non-rotating energy loss theory of Benjamin (J. Fluid Mech. vol. 31, 1968, p. 209) and the steady-state dissipationless theory of rotating gravity currents of Hacker (PhD thesis, 1996). The theory assumes the fluid is inviscid, there is no shear within the current, and the Boussinesq approximation is made. Dissipation is introduced using a simple method. A head loss term is introduced into the Bernoulli equation and it is assumed that the energy loss is uniform across the stream. Conservation of momentum, volume flux and potential vorticity between upstream and downstream locations is then considered. By allowing for energy dissipation, results are obtained for channels of arbitrary depth and width (relative to the current). The results match those from earlier workers in the two limits of (i) zero rotation (but including dissipation) and (ii) zero dissipation (but including rotation). Three types of flow are identified as the effect of rotation increases, characterized in terms of the location of the outcropping interface between the gravity current and the ambient fluid on the channel boundaries. The parameters for transitions between these cases are quantified, as is the detailed behaviour of the flow in all cases. In particular, the speed of the current can be predicted for any given channel depth and width. As the channel depth increases, the predicted Froude number tends to surd 2, as for non-rotating flows.

  4. The development of vestibular system and related function in mammals: Impact of gravity

    Directory of Open Access Journals (Sweden)

    Marc eJamon

    2014-02-01

    Full Text Available This chapter reviews the knowledge about the adaptation to Earth gravity during the development of mammals. The impact of early exposure to altered gravity is evaluated at the level of the functions related to the vestibular system, including postural control, homeostatic regulation, and spatial memory. The hypothesis of critical periods in the adaptation to gravity is discussed. Demonstrating a critical period requires removing the gravity stimulus during delimited time windows, what is impossible to do on Earth surface. The Surgical destruction of the vestibular apparatus, and the use of mice strains with defective graviceptors have provided useful information on the consequences of missing gravity perception, and the possible compensatory mechanisms, but transitory suppression of the stimulus can only be operated during spatial flight. The rare studies on rat pups housed on board of space shuttle significantly contributed to this problem, but the use of hypergravity environment, produced by means of chronic centrifugation, is the only available tool when repeated experiments must be carried out on Earth. Even though hypergravity is sometimes considered as a mirror situation to microgravity, the two situations cannot be confused because a gravitational force is still present. The theoretical considerations that validate the paradigm of hypergravity to evaluate critical periods are discussed. The question of adaption of graviceptor is questioned from an evolutionary point of view. It is possible that graviception is hardwired, because life on Earth has evolved under the constant pressure of gravity. The rapid acquisition of motor programming by precocial mammals in minutes after birth is consistent with this hypothesis, but the slow development of motor skills in altricial species and the plasticity of vestibular perception in adults suggest that gravity experience is required for the tuning of graviceptors. The possible reasons for this

  5. Assessment of EGM2008 using GPS/levelling and free-air gravity ...

    African Journals Online (AJOL)

    ge

    gravity data over the oceans and point terrestrial gravity data. Details of the above data sets ... town of Mombasa in 1931 and the mean sea level determined using tidal data recorded for a period of one year (Aseno, 1995). ... The datum for height in Kenya is the mean sea level referred to a tide gauge at. Kilindini Harbour in ...

  6. Ontogeny of mouse vestibulo-ocular reflex following genetic or environmental alteration of gravity sensing.

    Directory of Open Access Journals (Sweden)

    Mathieu Beraneck

    Full Text Available The vestibular organs consist of complementary sensors: the semicircular canals detect rotations while the otoliths detect linear accelerations, including the constant pull of gravity. Several fundamental questions remain on how the vestibular system would develop and/or adapt to prolonged changes in gravity such as during long-term space journey. How do vestibular reflexes develop if the appropriate assembly of otoliths and semi-circular canals is perturbed? The aim of present work was to evaluate the role of gravity sensing during ontogeny of the vestibular system. In otoconia-deficient mice (ied, gravity cannot be sensed and therefore maculo-ocular reflexes (MOR were absent. While canals-related reflexes were present, the ied deficit also led to the abnormal spatial tuning of the horizontal angular canal-related VOR. To identify putative otolith-related critical periods, normal C57Bl/6J mice were subjected to 2G hypergravity by chronic centrifugation during different periods of development or adulthood (Adult-HG and compared to non-centrifuged (control C57Bl/6J mice. Mice exposed to hypergravity during development had completely normal vestibulo-ocular reflexes 6 months after end of centrifugation. Adult-HG mice all displayed major abnormalities in maculo-ocular reflexe one month after return to normal gravity. During the next 5 months, adaptation to normal gravity occurred in half of the individuals. In summary, genetic suppression of gravity sensing indicated that otolith-related signals might be necessary to ensure proper functioning of canal-related vestibular reflexes. On the other hand, exposure to hypergravity during development was not sufficient to modify durably motor behaviour. Hence, 2G centrifugation during development revealed no otolith-specific critical period.

  7. Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory

    International Nuclear Information System (INIS)

    Chan, H.A.; Paik, H.J.

    1987-01-01

    Because of the equivalence principle, a global measurement is necessary to distinguish gravity from acceleration of the reference frame. A gravity gradiometer is therefore an essential instrument needed for precision tests of gravity laws and for applications in gravity survey and inertial navigation. Superconductivity and SQUID (superconducting quantum interference device) technology can be used to obtain a gravity gradiometer with very high sensitivity and stability. A superconducting gravity gradiometer has been developed for a null test of the gravitational inverse-square law and space-borne geodesy. Here we present a complete theoretical model of this instrument. Starting from dynamical equations for the device, we derive transfer functions, a common mode rejection characteristic, and an error model of the superconducting instrument. Since a gradiometer must detect a very weak differential gravity signal in the midst of large platform accelerations and other environmental disturbances, the scale factor and common mode rejection stability of the instrument are extremely important in addition to its immunity to temperature and electromagnetic fluctuations. We show how flux quantization, the Meissner effect, and properties of liquid helium can be utilized to meet these challenges

  8. Dualities and emergent gravity: Gauge/gravity duality

    Science.gov (United States)

    de Haro, Sebastian

    2017-08-01

    In this paper I develop a framework for relating dualities and emergence: two notions that are close to each other but also exclude one another. I adopt the conception of duality as 'isomorphism', from the physics literature, cashing it out in terms of three conditions. These three conditions prompt two conceptually different ways in which a duality can be modified to make room for emergence; and I argue that this exhausts the possibilities for combining dualities and emergence (via coarse-graining). I apply this framework to gauge/gravity dualities, considering in detail three examples: AdS/CFT, Verlinde's scheme, and black holes. My main point about gauge/gravity dualities is that the theories involved, qua theories of gravity, must be background-independent. I distinguish two senses of background-independence: (i) minimalistic and (ii) extended. I argue that the former is sufficiently strong to allow for a consistent theory of quantum gravity; and that AdS/CFT is background-independent on this account; while Verlinde's scheme best fits the extended sense of background-independence. I argue that this extended sense should be applied with some caution: on pain of throwing the baby (general relativity) out with the bath-water (extended background-independence). Nevertheless, it is an interesting and potentially fruitful heuristic principle for quantum gravity theory construction. It suggests some directions for possible generalisations of gauge/gravity dualities. The interpretation of dualities is discussed; and the so-called 'internal' vs. 'external' viewpoints are articulated in terms of: (i) epistemic and metaphysical commitments; (ii) parts vs. wholes. I then analyse the emergence of gravity in gauge/gravity dualities in terms of the two available conceptualisations of emergence; and I show how emergence in AdS/CFT and in Verlinde's scenario differ from each other. Finally, I give a novel derivation of the Bekenstein-Hawking black hole entropy formula based on

  9. Phase-field modelling of β(Ti) solidification in Ti-45at.%Al: columnar dendrite growth at various gravity levels

    Science.gov (United States)

    Viardin, A.; Berger, R.; Sturz, L.; Apel, M.; Hecht, U.

    2016-03-01

    The effect of solutal convection on the solidification of γ titanium aluminides, specifically on β(Ti) dendrite growth, is not well known. With the aim of supporting directional solidification experiments under hyper-gravity using a large diameter centrifuge, 2D-phase field simulations of β(Ti) dendrite growth have been performed for the binary alloy Ti-45at.%Al and various gravity scenarios. Both, the direction and magnitude of the gravity vector were varied systematically in order to reveal the subtle interplay between the convective flow pattern and mushy zone characteristics. In this presentation, gravity effects are discussed for early dendrite growth. For selected cases the evolution on longer timescales is also analyse of and oscillatory modes leading to dynamically stable steady state growth are outlined. In a dedicated simulation series forced flow is superimposed, as to mimic thermally driven fluid flow expected to establish on the macroscopic scale (sample size) in the centrifugal experiments. Above a certain threshold this flow turns dominant and precludes solutally driven convective effects.

  10. Gravity-height correlations for unrest at calderas

    Science.gov (United States)

    Berrino, G.; Rymer, H.; Brown, G. C.; Corrado, G.

    1992-11-01

    Calderas represent the sites of the world's most serious volcanic hazards. Although eruptions are not frequent at such structures on the scale of human lifetimes, there are nevertheless often physical changes at calderas that are measurable over periods of years or decades. Such calderas are said to be in a state of unrest, and it is by studying the nature of this unrest that we may begin to understand the dynamics of eruption precursors. Here we review combined gravity and elevation data from several restless calderas, and present new data on their characteristic signatures during periods of inflation and deflation. We find that unless the Bouguer gravity anomaly at a caldera is extremely small, the free-air gradient used to correct gravity data for observed elevation changes must be the measured or calculated gradient, and not the theoretical gradient, use of which may introduce significant errors. In general, there are two models that fit most of the available data. The first involves a Mogi-type point source, and the second is a Bouguer-type infinite horizontal plane source. The density of the deforming material (usually a magma chamber) is calculated from the gravity and ground deformation data, and the best fitting model is, to a first approximation, the one producing the most realistic density. No realistic density is obtained where there are real density changes, or where the data do not fit the point source or slab model. We find that a point source model fits most of the available data, and that most data are for periods of caldera inflation. The limited examples of deflation from large silicic calderas indicate that the amount of mass loss, or magma drainage, is usually much less than the mass gain during the preceding magma intrusion. In contrast, deflationary events at basaltic calderas formed in extensional tectonic environments are associated with more significant mass loss as magma is injected into the associated fissure swarms.

  11. Contravariant gravity on Poisson manifolds and Einstein gravity

    International Nuclear Information System (INIS)

    Kaneko, Yukio; Watamura, Satoshi; Muraki, Hisayoshi

    2017-01-01

    A relation between gravity on Poisson manifolds proposed in Asakawa et al (2015 Fortschr. Phys . 63 683–704) and Einstein gravity is investigated. The compatibility of the Poisson and Riemann structures defines a unique connection, the contravariant Levi-Civita connection, and leads to the idea of the contravariant gravity. The Einstein–Hilbert-type action yields an equation of motion which is written in terms of the analog of the Einstein tensor, and it includes couplings between the metric and the Poisson tensor. The study of the Weyl transformation reveals properties of those interactions. It is argued that this theory can have an equivalent description as a system of Einstein gravity coupled to matter. As an example, it is shown that the contravariant gravity on a two-dimensional Poisson manifold can be described by a real scalar field coupled to the metric in a specific manner. (paper)

  12. Is nonrelativistic gravity possible?

    International Nuclear Information System (INIS)

    Kocharyan, A. A.

    2009-01-01

    We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.

  13. African Plate Seismicity and Gravity Field Anomalies

    Science.gov (United States)

    Ryzhii, B. P.; Nachapkin, N. I.; Milanovsky, Svet

    The analysis of connection plate of earthquakes of the African continent with Bouguer gravity anomalies is carried out. As input dataSs were used the catalog of earthquakes and numeral map of Bouguer gravity field. The catalog contains geographical coor- dinates of epicenters and magnitudes of 8027 earthquakes recorded on continent and adjacent oceanic areas for the period from 1904 to 1988 years. The values of a gravity field preset in knots of a grid with a step 1 grade. For the analysis of plate seismicity from the catalog the parameters of 6408 earthquakes were chosen, which one have taken place in the field of restricted shore line. The earthquakes fixed in a band of a concatenation of continent with the Arabian plate were excluded from the analysis. On the basis of a numeral gravity map for everyone epicenter the value of Bouguer anomaly was calculated. The allocation of epicenters of earthquakes with magnitude M is obtained depending on value of a gravity Bouguer field. The outcomes of a sta- tistical analysis testify that practically all earthquakes are associated with the areas with negative values of Bouguer gravity field. Thus in areas with values of a field -160 mgal to -100 mgal there was 80 % of all earthquakes. It is necessary to note, that the mean value of the field for the African continent is -70 mgal. Obtained result gives us the possibility to make a conclusion about connection of plate earthquakes of Africa predominantly with structural complexes of earth crust with lower density. These out- comes are in the consent with a hypothesis of one of the authors (Ryzhii B.P.) about connection of plate earthquakes hypocenters on the territory of Russia with negative values of a gravity field and heightened silica content in the Earth crust. This work was supported with RFFI grant N 00-05-65067

  14. Gravity-matter entanglement in Regge quantum gravity

    International Nuclear Information System (INIS)

    Paunković, Nikola; Vojinović, Marko

    2016-01-01

    We argue that Hartle-Hawking states in the Regge quantum gravity model generically contain non-trivial entanglement between gravity and matter fields. Generic impossibility to talk about “matter in a point of space” is in line with the idea of an emergent spacetime, and as such could be taken as a possible candidate for a criterion for a plausible theory of quantum gravity. Finally, this new entanglement could be seen as an additional “effective interaction”, which could possibly bring corrections to the weak equivalence principle. (paper)

  15. Lovelock gravities from Born-Infeld gravity theory

    Science.gov (United States)

    Concha, P. K.; Merino, N.; Rodríguez, E. K.

    2017-02-01

    We present a Born-Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  16. Euler–Chern–Simons gravity from Lovelock–Born–Infeld gravity

    OpenAIRE

    Izaurieta, F.; Rodriguez, E.; Salgado, P.

    2004-01-01

    In the context of a gauge theoretical formulation, higher dimensional gravity invariant under the AdS group is dimensionally reduced to Euler-Chern-Simons gravity. The dimensional reduction procedure of Grignani-Nardelli [Phys. Lett. B 300, 38 (1993)] is generalized so as to permit reducing D-dimensional Lanczos Lovelock gravity to d=D-1 dimensions.

  17. Steady state and transient thermal-hydraulic characterization of full-scale ITER divertor plasma facing components

    International Nuclear Information System (INIS)

    Tincani, A.; Malavasi, A.; Ricapito, I.; Riccardi, B.; Di Maio, P.A.; Vella, G.

    2007-01-01

    In the frame of the activities related to ITER divertor R and D, ENEA CR Brasimone was charged by EFDA (European Fusion Design Agreement) to investigate the thermal-hydraulic behaviour of the full-scale divertor plasma facing components, i.e. Inner Vertical Target, Dome Liner and Outer Vertical Target, both in steady state and during draining and drying transient. More in detail, for each PFC, the first phase of the work is the steady state hydraulic characterization which consists of: - measurements of pressure drops at different temperatures; - determination of the velocity distribution in the internal channels; - check the possible insurgence of cavitation. The subsequent phase of the thermal-hydraulic characterization foresees a testing campaign of draining and drying procedure by means of a suitable gas flow. The objective of this experimental procedure is to eliminate in the most efficient way the residual amount of water after gravity discharge. In order to accomplish this experimental campaign a significant modification of CEF1 loop has been designed and realized. This paper presents, first of all, the experimental set-up, the agreed test matrix and the achieved results for both steady state and transient tests. Moreover, the level of the implementation of a predictive hydraulic model, based on RELAP 5 code, as well as its results are described, discussed and compared with the experimental ones. (orig.)

  18. Gravity

    CERN Document Server

    Gamow, George

    2003-01-01

    A distinguished physicist and teacher, George Gamow also possessed a special gift for making the intricacies of science accessible to a wide audience. In Gravity, he takes an enlightening look at three of the towering figures of science who unlocked many of the mysteries behind the laws of physics: Galileo, the first to take a close look at the process of free and restricted fall; Newton, originator of the concept of gravity as a universal force; and Einstein, who proposed that gravity is no more than the curvature of the four-dimensional space-time continuum.Graced with the author's own draw

  19. Lower dimensional gravity

    International Nuclear Information System (INIS)

    Brown, J.D.

    1988-01-01

    This book addresses the subject of gravity theories in two and three spacetime dimensions. The prevailing philosophy is that lower dimensional models of gravity provide a useful arena for developing new ideas and insights, which are applicable to four dimensional gravity. The first chapter consists of a comprehensive introduction to both two and three dimensional gravity, including a discussion of their basic structures. In the second chapter, the asymptotic structure of three dimensional Einstein gravity with a negative cosmological constant is analyzed. The third chapter contains a treatment of the effects of matter sources in classical two dimensional gravity. The fourth chapter gives a complete analysis of particle pair creation by electric and gravitational fields in two dimensions, and the resulting effect on the cosmological constant

  20. Lovelock gravities from Born–Infeld gravity theory

    Directory of Open Access Journals (Sweden)

    P.K. Concha

    2017-02-01

    Full Text Available We present a Born–Infeld gravity theory based on generalizations of Maxwell symmetries denoted as Cm. We analyze different configuration limits allowing to recover diverse Lovelock gravity actions in six dimensions. Further, the generalization to higher even dimensions is also considered.

  1. Glacier mass balance in high-arctic areas with anomalous gravity

    Science.gov (United States)

    Sharov, A.; Rieser, D.; Nikolskiy, D.

    2012-04-01

    All known glaciological models describing the evolution of Arctic land- and sea-ice masses in changing climate treat the Earth's gravity as horizontally constant, but it isn't. In the High Arctic, the strength of the gravitational field varies considerably across even short distances under the influence of a density gradient, and the magnitude of free air gravity anomalies attains 100 mGal and more. On long-term base, instantaneous deviations of gravity can have a noticeable effect on the regime and mass budget of glaciological objects. At best, the gravity-induced component of ice mass variations can be determined on topographically smooth, open and steady surfaces, like those of arctic planes, regular ice caps and landfast sea ice. The present research is devoted to studying gravity-driven impacts on glacier mass balance in the outer periphery of four Eurasian shelf seas with a very cold, dry climate and rather episodic character of winter precipitation. As main study objects we had chosen a dozen Russia's northernmost insular ice caps, tens to hundreds of square kilometres in extent, situated in a close vicinity of strong gravity anomalies and surrounded with extensive fields of fast and/or drift ice for most of the year. The supposition about gravitational forcing on glacioclimatic settings in the study region is based on the results of quantitative comparison and joint interpretation of existing glacier change maps and available data on the Arctic gravity field and solid precipitation. The overall mapping of medium-term (from decadal to half-centennial) changes in glacier volumes and quantification of mass balance characteristics in the study region was performed by comparing reference elevation models of study glaciers derived from Russian topographic maps 1:200,000 (CI = 20 or 40 m) representing the glacier state as in the 1950s-1980s with modern elevation data obtained from satellite radar interferometry and lidar altimetry. Free-air gravity anomalies were

  2. Nonlocal gravity

    CERN Document Server

    Mashhoon, Bahram

    2017-01-01

    Relativity theory is based on a postulate of locality, which means that the past history of the observer is not directly taken into account. This book argues that the past history should be taken into account. In this way, nonlocality---in the sense of history dependence---is introduced into relativity theory. The deep connection between inertia and gravitation suggests that gravity could be nonlocal, and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein's theory of gravitation has recently been developed. A significant consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. According to nonlocal gravity theory, what astronomers attribute to dark matter should instead be due to the nonlocality of gravitation. Nonlocality dominates on the scale of galaxies and beyond. Memory fades with time; therefore, the nonlocal aspect of gravity becomes wea...

  3. Planetary wave-gravity wave interactions during mesospheric inversion layer events

    Science.gov (United States)

    Ramesh, K.; Sridharan, S.; Raghunath, K.; Vijaya Bhaskara Rao, S.; Bhavani Kumar, Y.

    2013-07-01

    lidar temperature observations over Gadanki (13.5°N, 79.2°E) show a few mesospheric inversion layer (MIL) events during 20-25 January 2007. The zonal mean removed SABER temperature shows warm anomalies around 50°E and 275°E indicating the presence of planetary wave of zonal wave number 2. The MIL amplitudes in SABER temperature averaged for 10°N-15°N and 70°E-90°E show a clear 2 day wave modulation during 20-28 January 2007. Prior to 20 January 2007, a strong 2day wave (zonal wave number 2) is observed in the height region of 80-90 km and it gets largely suppressed during 20-26 January 2007 as the condition for vertical propagation is not favorable, though it prevails at lower heights. The 10 day mean zonal wind over Tirunelveli (8.7°N, 77.8°E) shows deceleration of eastward winds indicating the westward drag due to wave dissipation. The nightly mean MF radar observed zonal winds show the presence of alternating eastward and westward winds during the period of 20-26 January 2007. The two dimensional spectrum of Rayleigh lidar temperature observations available for the nights of 20, 22, and 24 January 2007 shows the presence of gravity wave activity with periods 18 min, 38 min, 38 min, and vertical wavelengths 6.4 km, 4.0 km, 6.4 km respectively. From the dispersion relation of gravity waves, it is inferred that these waves are internal gravity waves rather than inertia gravity waves with the horizontal phase speeds of ~40 m/s, ~37 m/s, and ~50 m/s respectively. Assuming the gravity waves are eastward propagating waves, they get absorbed only in the eastward local wind fields of the planetary wave thereby causing turbulence and eddy diffusion which can be inferred from the estimation of large drag force due to the breaking of gravity wave leading to the formation of large amplitude inversion events in alternate nights. The present study shows that, the mesospheric temperature inversion is caused mainly due to the gravity wave breaking and the inversion

  4. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, Michael J. [Monash University; Lane, Todd P. [University of Melbourne; Hankinson, Mai Chi Nguyen [Monash University

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection

  5. Separating Mass and Height Contributions in Gravity Variations at Medicina, Italy

    Science.gov (United States)

    Zerbini, S.; Bruni, S.; Errico, M.; Santi, E.; Wziontek, H.

    2016-12-01

    During 1996, at the Medicina station, a GPS and a superconducting gravimeter (SG) were installed in the framework of an experiment focused on the comparison between height and gravity variations. Absolute gravity observations are also performed twice a year and environmental parameters, among others water table levels, are recorded continuously. The station is also equipped with a second GPS system, the two antennas are very close to each other, and both are located in close proximity to the VLBI dish. Two decades of continuous height and gravity observations are now available which allow investigating both long and short period signals and the relevant correlations between the two measured quantities. Long period signatures are observed, a principal component is due to subsidence which is well known to occur in the area; however, also non-linear long-period behaviors are observed. Seasonal effects are also clearly recognizable in the time series and are mainly associated with the water table seasonal behavior. The station is characterized by clayey soil which is subject to consolidation effects when the water table lowers during the summer period. This effect is particularly recognizable in the SG data since the instrument is installed on a shallow foundation pillar which may suffer for height decreases in the order of 2,5-3 cm for water table lowering of 2 m.

  6. Gravity modulation of thermal instability in a viscoelastic fluid saturated anisotropic porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Bhadauria, Beer S. [Babasaheb Bhimrao Ambedkar Univ., Lucknow (India). Dept. of Applied Mathematics and Statistics; Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Srivastava, Atul K. [Banaras Hindu Univ., Varanasi (India). Dept. of Mathematics; Sacheti, Nirmal C.; Chandran, Pallath [Sultan Qaboos Univ., Muscat (Oman). Dept. of Mathematics

    2012-01-15

    The present paper deals with a thermal instability problem in a viscoelastic fluid saturating an anisotropic porous medium under gravity modulation. To find the gravity modulation effect, the gravity field is considered in two parts: a constant part and an externally imposed time-dependent periodic part. The time-dependent part of the gravity field, which can be realized by shaking the fluid, has been represented by a sinusoidal function. Using Hill's equation and the Floquet theory, the convective threshold has been obtained. It is found that gravity modulation can significantly affect the stability limits of the system. Further, we find that there is a competition between the synchronous and subharmonic modes of convection at the onset of instability. Effects of various parameters on the onset of instability have also been discussed. (orig.)

  7. Pre-steady-state Kinetics for Hydrolysis of Insoluble Cellulose by Cellobiohydrolase Cel7A

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Olsen, Jens Elmerdahl; Præstgaard, Eigil

    2012-01-01

    The transient kinetic behavior of enzyme reactions prior to the establishment of steady state is a major source of mechanistic information, yet this approach has not been utilized for cellulases acting on their natural substrate, insoluble cellulose. Here, we elucidate the pre-steady-state regime...... for the exo-acting cellulase Cel7A using amperometric biosensors and an explicit model for processive hydrolysis of cellulose. This analysis allows the identification of a pseudo-steady-state period and quantification of a processivity number as well as rate constants for the formation of a threaded enzyme...... to unveil fundamental reasons for the distinctive variability in hydrolytic activity found in different cellulase-substrate systems....

  8. Geometric Liouville gravity

    International Nuclear Information System (INIS)

    La, H.

    1992-01-01

    A new geometric formulation of Liouville gravity based on the area preserving diffeo-morphism is given and a possible alternative to reinterpret Liouville gravity is suggested, namely, a scalar field coupled to two-dimensional gravity with a curvature constraint

  9. Gravity current into an ambient fluid with an open surface

    Science.gov (United States)

    Ungarish, Marius

    2017-11-01

    Consider the steady-state gravity current of height h and density ρ1 that propagates into an ambient motionless fluid of height H and density ρ2 with an upper surface open to the atmosphere (open channel) at high Reynolds number. The current propagates with speed U and causes a depth decrease χ of the top surface. This is a significant extension of Benjamin's (1968) seminal solution for the fixed-top channel χ = 0 . Here the determination of χ is a part of the problem. The dimensionless parameters of the problem are a = h / H and r =ρ2 /ρ1 . We show that a control-volume analysis determines χ = χ / H and Fr = U / (g ' h)1/2 as functions of a , r , where g ' = (r-1 - 1) g is the reduced gravity. The system satisfies balance of volume and momentum (explicitly), and vorticity (implicitly). We present solutions. The predicted flows are in general dissipative, and thus physically valid only for a Frb (a) , but the reduction is not dramatic, typically a few percent. In the Boussinesq r 1 case, χ << 1 while Fr and dissipation are close to Benjamin's values.

  10. Effect of Oxygen Enrichment in Propane Laminar Diffusion Flames under Microgravity and Earth Gravity Conditions

    Science.gov (United States)

    Bhatia, Pramod; Singh, Ravinder

    2017-06-01

    Diffusion flames are the most common type of flame which we see in our daily life such as candle flame and match-stick flame. Also, they are the most used flames in practical combustion system such as industrial burner (coal fired, gas fired or oil fired), diesel engines, gas turbines, and solid fuel rockets. In the present study, steady-state global chemistry calculations for 24 different flames were performed using an axisymmetric computational fluid dynamics code (UNICORN). Computation involved simulations of inverse and normal diffusion flames of propane in earth and microgravity condition with varying oxidizer compositions (21, 30, 50, 100 % O2, by mole, in N2). 2 cases were compared with the experimental result for validating the computational model. These flames were stabilized on a 5.5 mm diameter burner with 10 mm of burner length. The effect of oxygen enrichment and variation in gravity (earth gravity and microgravity) on shape and size of diffusion flames, flame temperature, flame velocity have been studied from the computational result obtained. Oxygen enrichment resulted in significant increase in flame temperature for both types of diffusion flames. Also, oxygen enrichment and gravity variation have significant effect on the flame configuration of normal diffusion flames in comparison with inverse diffusion flames. Microgravity normal diffusion flames are spherical in shape and much wider in comparison to earth gravity normal diffusion flames. In inverse diffusion flames, microgravity flames were wider than earth gravity flames. However, microgravity inverse flames were not spherical in shape.

  11. The steady-state tokamak program

    International Nuclear Information System (INIS)

    Politzer, D.A.; Nevins, W.M.

    1992-01-01

    This paper reports on a steady-state tokamak experiment (STE) needed to develop the technology and physics data base required for construction of a steady-state fusion power demonstration reactor in the early 21st century. The STE will provide an integrated facility for the development and demonstration of steady-state and particle handling, low-activation high-heat-flux components and materials, efficient current drive, and continuous plasma performance in steady-state, with reactor-like plasma conditions under severe conditions of heat and particle bombardment of the wall. The STE facility will also be used to develop operation and control scenarios for ITER

  12. Covariant w∞ gravity

    NARCIS (Netherlands)

    Bergshoeff, E.; Pope, C.N.; Stelle, K.S.

    1990-01-01

    We discuss the notion of higher-spin covariance in w∞ gravity. We show how a recently proposed covariant w∞ gravity action can be obtained from non-chiral w∞ gravity by making field redefinitions that introduce new gauge-field components with corresponding new gauge transformations.

  13. Global gravity and the geodynamic model of the Earth

    International Nuclear Information System (INIS)

    Nedoma, J.

    1988-01-01

    Plate tectonic hypotheses require the formation of a new oceanic lithosphere at mid-oceanic ridges and imply the further modification and continued evolution towards the continental type of lithosphere in the regions of island arcs and orogenic belts. All these phenomena observed on the Earths's surface are results of all geodynamic processes passing through the Earth's interior. Since geodynamic processes change through the geological epochs, the gravity field also changes during the same geological periods. Thus, the paper is concerned with physical relationships between the global gravity field and the geodynamic processes as well as all geophysical fields affected by the geodynamic processes inside the Earth. The aim of this paper is to analyse the inner and outer gravity field of the Earth during the evolution of the Earth in the course of the geological epochs, and to build the generalized theory of the global gravity field of the Earth from the point of view of the global and local geodynamic processes taking place within the Earth's interior. (author)

  14. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Carlos Barceló

    2011-05-01

    Full Text Available Analogue gravity is a research programme which investigates analogues of general relativistic gravitational fields within other physical systems, typically but not exclusively condensed matter systems, with the aim of gaining new insights into their corresponding problems. Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  15. Quantum Gravity Phenomenology

    OpenAIRE

    Amelino-Camelia, Giovanni

    2003-01-01

    Comment: 9 pages, LaTex. These notes were prepared while working on an invited contribution to the November 2003 issue of Physics World, which focused on quantum gravity. They intend to give a non-technical introduction (accessible to readers from outside quantum gravity) to "Quantum Gravity Phenomenology"

  16. Geometric controls of the flexural gravity waves on the Ross Ice Shelf

    Science.gov (United States)

    Sergienko, O. V.

    2017-12-01

    Long-period ocean waves, formed locally or at distant sources, can reach sub-ice-shelf cavities and excite coupled motion in the cavity and the ice shelf - flexural gravity waves. Three-dimensional numerical simulations of the flexural gravity waves on the Ross Ice Shelf show that propagation of these waves is strongly controlled by the geometry of the system - the cavity shape, its water-column thickness and the ice-shelf thickness. The results of numerical simulations demonstrate that propagation of the waves is spatially organized in beams, whose orientation is determined by the direction of the of the open ocean waves incident on the ice-shelf front. As a result, depending on the beams orientation, parts of the Ross Ice Shelf experience significantly larger flexural stresses compared to other parts where the flexural gravity beams do not propagate. Very long-period waves can propagate farther away from the ice-shelf front exciting flexural stresses in the vicinity of the grounding line.

  17. Automated borehole gravity meter system

    International Nuclear Information System (INIS)

    Lautzenhiser, Th.V.; Wirtz, J.D.

    1984-01-01

    An automated borehole gravity meter system for measuring gravity within a wellbore. The gravity meter includes leveling devices for leveling the borehole gravity meter, displacement devices for applying forces to a gravity sensing device within the gravity meter to bring the gravity sensing device to a predetermined or null position. Electronic sensing and control devices are provided for (i) activating the displacement devices, (ii) sensing the forces applied to the gravity sensing device, (iii) electronically converting the values of the forces into a representation of the gravity at the location in the wellbore, and (iv) outputting such representation. The system further includes electronic control devices with the capability of correcting the representation of gravity for tidal effects, as well as, calculating and outputting the formation bulk density and/or porosity

  18. Gravity is Geometry.

    Science.gov (United States)

    MacKeown, P. K.

    1984-01-01

    Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)

  19. A contrastive study on the influences of radial and three-dimensional satellite gravity gradiometry on the accuracy of the Earth's gravitational field recovery

    International Nuclear Information System (INIS)

    Zheng Wei; Hsu Hou-Tse; Zhong Min; Yun Mei-Juan

    2012-01-01

    The accuracy of the Earth's gravitational field measured from the gravity field and steady-state ocean circulation explorer (GOCE), up to 250 degrees, influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij from the satellite gravity gradiometry (SGG) are contrastively demonstrated based on the analytical error model and numerical simulation, respectively. Firstly, the new analytical error model of the cumulative geoid height, influenced by the radial gravity gradient V zz and three-dimensional gravity gradient V ij are established, respectively. In 250 degrees, the GOCE cumulative geoid height error measured by the radial gravity gradient V zz is about 2 ½ times higher than that measured by the three-dimensional gravity gradient V ij . Secondly, the Earth's gravitational field from GOCE completely up to 250 degrees is recovered using the radial gravity gradient V zz and three-dimensional gravity gradient V ij by numerical simulation, respectively. The study results show that when the measurement error of the gravity gradient is 3 × 10 −12 /s 2 , the cumulative geoid height errors using the radial gravity gradient V zz and three-dimensional gravity gradient V ij are 12.319 cm and 9.295 cm at 250 degrees, respectively. The accuracy of the cumulative geoid height using the three-dimensional gravity gradient V ij is improved by 30%–40% on average compared with that using the radial gravity gradient V zz in 250 degrees. Finally, by mutual verification of the analytical error model and numerical simulation, the orders of magnitude from the accuracies of the Earth's gravitational field recovery make no substantial differences based on the radial and three-dimensional gravity gradients, respectively. Therefore, it is feasible to develop in advance a radial cold-atom interferometric gradiometer with a measurement accuracy of 10 −13 /s 2 −10 −15 /s 2 for precisely producing the next-generation GOCE Follow-On Earth gravity field

  20. Gravity inversion code

    International Nuclear Information System (INIS)

    Burkhard, N.R.

    1979-01-01

    The gravity inversion code applies stabilized linear inverse theory to determine the topography of a subsurface density anomaly from Bouguer gravity data. The gravity inversion program consists of four source codes: SEARCH, TREND, INVERT, and AVERAGE. TREND and INVERT are used iteratively to converge on a solution. SEARCH forms the input gravity data files for Nevada Test Site data. AVERAGE performs a covariance analysis on the solution. This document describes the necessary input files and the proper operation of the code. 2 figures, 2 tables

  1. Gravity brake

    Science.gov (United States)

    Lujan, Richard E.

    2001-01-01

    A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.

  2. The Cause of Gravity

    OpenAIRE

    Byrne, Michael

    1999-01-01

    Einstein said that gravity is an acceleration like any other acceleration. But gravity causes relativistic effects at non-relativistic speeds; so gravity could have relativistic origins. And since the strong force is thought to cause most of mass, and mass is proportional to gravity; the strong force is therefore also proportional to gravity. The strong force could thus cause relativistic increases of mass through the creation of virtual gluons; along with a comparable contraction of space ar...

  3. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  4. Cutoff for extensions of massive gravity and bi-gravity

    International Nuclear Information System (INIS)

    Matas, Andrew

    2016-01-01

    Recently there has been interest in extending ghost-free massive gravity, bi-gravity, and multi-gravity by including non-standard kinetic terms and matter couplings. We first review recent proposals for this class of extensions, emphasizing how modifications of the kinetic and potential structure of the graviton and modifications of the coupling to matter are related. We then generalize existing no-go arguments in the metric language to the vielbein language in second-order form. We give an ADM argument to show that the most promising extensions to the kinetic term and matter coupling contain a Boulware–Deser ghost. However, as recently emphasized, we may still be able to view these extensions as effective field theories below some cutoff scale. To address this possibility, we show that there is a decoupling limit where a ghost appears for a wide class of matter couplings and kinetic terms. In particular, we show that there is a decoupling limit where the linear effective vielbein matter coupling contains a ghost. Using the insight we gain from this decoupling limit analysis, we place an upper bound on the cutoff for the linear effective vielbein coupling. This result can be generalized to new kinetic interactions in the vielbein language in second-order form. Combined with recent results, this provides a strong uniqueness argument on the form of ghost-free massive gravity, bi-gravity, and multi-gravity. (paper)

  5. ADCP measurements of gravity currents in the Chicago River, Illinois

    Science.gov (United States)

    Garcia, C.M.; Oberg, K.; Garcia, M.H.

    2007-01-01

    A unique set of observations of stratified flow phenomena in the Chicago River was made using an upward-looking acoustic Doppler current profiler (ADCP) during the period November 20, 2003 to February 1, 2004. Water density differences between the Chicago River and its North Branch (NB) seem to be responsible for the development of gravity currents. With the objective of characterizing the occurrence, frequency, and evolution of such currents, the ADCP was configured to continuously collect high-resolution water velocity and echo intensity profiles in the Chicago River at Columbus Drive. During the observation period, 28 gravity current events were identified, lasting a total of 77% of the time. Sixteen of these events were generated by underflows from the NB and 12 of these events were generated by overflows from the NB. On average, the duration of the underflow and overflow events was 52.3 and 42.1 h, respectively. A detailed analysis of one underflow event, which started on January 7, 2004, and lasted about 65h, was performed. This is the first time that ADCP technology has been used to continuously monitor gravity currents in a river. ?? 2007 ASCE.

  6. Parallel shooting methods for finding steady state solutions to engine simulation models

    DEFF Research Database (Denmark)

    Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik

    2007-01-01

    Parallel single- and multiple shooting methods were tested for finding periodic steady state solutions to a Stirling engine model. The model was used to illustrate features of the methods and possibilities for optimisations. Performance was measured using simulation of an experimental data set...

  7. Intercomparison of stratospheric gravity wave observations with AIRS and IASI

    Directory of Open Access Journals (Sweden)

    L. Hoffmann

    2014-12-01

    Full Text Available Gravity waves are an important driver for the atmospheric circulation and have substantial impact on weather and climate. Satellite instruments offer excellent opportunities to study gravity waves on a global scale. This study focuses on observations from the Atmospheric Infrared Sounder (AIRS onboard the National Aeronautics and Space Administration Aqua satellite and the Infrared Atmospheric Sounding Interferometer (IASI onboard the European MetOp satellites. The main aim of this study is an intercomparison of stratospheric gravity wave observations of both instruments. In particular, we analyzed AIRS and IASI 4.3 μm brightness temperature measurements, which directly relate to stratospheric temperature. Three case studies showed that AIRS and IASI provide a clear and consistent picture of the temporal development of individual gravity wave events. Statistical comparisons based on a 5-year period of measurements (2008–2012 showed similar spatial and temporal patterns of gravity wave activity. However, the statistical comparisons also revealed systematic differences of variances between AIRS and IASI that we attribute to the different spatial measurement characteristics of both instruments. We also found differences between day- and nighttime data that are partly due to the local time variations of the gravity wave sources. While AIRS has been used successfully in many previous gravity wave studies, IASI data are applied here for the first time for that purpose. Our study shows that gravity wave observations from different hyperspectral infrared sounders such as AIRS and IASI can be directly related to each other, if instrument-specific characteristics such as different noise levels and spatial resolution and sampling are carefully considered. The ability to combine observations from different satellites provides an opportunity to create a long-term record, which is an exciting prospect for future climatological studies of stratospheric

  8. Gravity, Magnetism, and "Down": Non-Physics College Students' Conceptions of Gravity

    Science.gov (United States)

    Asghar, Anila; Libarkin, Julie C.

    2010-01-01

    This study investigates how students enrolled in entry-level geology, most of whom would graduate from college without university-level physics courses, thought about and applied the concept of gravity while solving problems concerning gravity. The repercussions of students' gravity concepts are then considered in the context of non-physics…

  9. Gsolve, a Python computer program with a graphical user interface to transform relative gravity survey measurements to absolute gravity values and gravity anomalies

    Science.gov (United States)

    McCubbine, Jack; Tontini, Fabio Caratori; Stagpoole, Vaughan; Smith, Euan; O'Brien, Grant

    2018-01-01

    A Python program (Gsolve) with a graphical user interface has been developed to assist with routine data processing of relative gravity measurements. Gsolve calculates the gravity at each measurement site of a relative gravity survey, which is referenced to at least one known gravity value. The tidal effects of the sun and moon, gravimeter drift and tares in the data are all accounted for during the processing of the survey measurements. The calculation is based on a least squares formulation where the difference between the absolute gravity at each surveyed location and parameters relating to the dynamics of the gravimeter are minimized with respect to the relative gravity observations, and some supplied gravity reference site values. The program additionally allows the user to compute free air gravity anomalies, with respect to the GRS80 and GRS67 reference ellipsoids, from the determined gravity values and calculate terrain corrections at each of the surveyed sites using a prism formula and a user supplied digital elevation model. This paper reviews the mathematical framework used to reduce relative gravimeter survey observations to gravity values. It then goes on to detail how the processing steps can be implemented using the software.

  10. Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer

    International Nuclear Information System (INIS)

    Sorrentino, F.; Lien, Y.-H.; Rosi, G.; Tino, G. M.; Bertoldi, A.; Bodart, Q.; Cacciapuoti, L.; Angelis, M. de; Prevedelli, M.

    2012-01-01

    We demonstrate a method to measure the gravitational acceleration with a dual cloud atom interferometer; the use of simultaneous atom interferometers reduces the effect of seismic noise on the gravity measurement. At the same time, the apparatus is capable of accurate measurements of the vertical gravity gradient. The ability to determine the gravity acceleration and gravity gradient simultaneously and with the same instrument opens interesting perspectives in geophysical applications.

  11. Airborne Gravity: NGS' Gravity Data for EN08 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...

  12. The earth's shape and gravity

    CERN Document Server

    Garland, G D; Wilson, J T

    2013-01-01

    The Earth's Shape and Gravity focuses on the progress of the use of geophysical methods in investigating the interior of the earth and its shape. The publication first offers information on gravity, geophysics, geodesy, and geology and gravity measurements. Discussions focus on gravity measurements and reductions, potential and equipotential surfaces, absolute and relative measurements, and gravity networks. The text then elaborates on the shape of the sea-level surface and reduction of gravity observations. The text takes a look at gravity anomalies and structures in the earth's crust; interp

  13. Airborne Gravity: NGS' Gravity Data for AN08 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2016 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  14. Artificial gravity - The evolution of variable gravity research

    Science.gov (United States)

    Fuller, Charles A.; Sulzman, Frank M.; Keefe, J. Richard

    1987-01-01

    The development of a space life science research program based on the use of rotational facilities is described. In-flight and ground centrifuges can be used as artificial gravity environments to study the following: nongravitational biological factors; the effects of 0, 1, and hyper G on man; counter measures for deconditioning astronauts in weightlessness; and the development of suitable artificial gravity for long-term residence in space. The use of inertial fields as a substitute for gravity, and the relations between the radius of the centrifuge and rotation rate and specimen height and rotation radius are examined. An example of a centrifuge study involving squirrel monkeys is presented.

  15. Airborne Gravity: NGS' Gravity Data for AS01 (2008)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  16. Airborne Gravity: NGS' Gravity Data for CS04 (2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  17. Airborne Gravity: NGS' Gravity Data for AN05 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  18. Airborne Gravity: NGS' Gravity Data for TS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  19. Airborne Gravity: NGS' Gravity Data for AN06 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  20. Airborne Gravity: NGS' Gravity Data for AS02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  1. Airborne Gravity: NGS' Gravity Data for EN01 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  2. Airborne Gravity: NGS' Gravity Data for AN03 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  3. Airborne Gravity: NGS' Gravity Data for AN04 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  4. Airborne Gravity: NGS' Gravity Data for CS05 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  5. Airborne Gravity: NGS' Gravity Data for EN06 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...

  6. Airborne Gravity: NGS' Gravity Data for AN02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  7. Airborne Gravity: NGS' Gravity Data for ES01 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of...

  8. Analogue Gravity

    Directory of Open Access Journals (Sweden)

    Barceló Carlos

    2005-12-01

    Full Text Available Analogue models of (and for gravity have a long and distinguished history dating back to the earliest years of general relativity. In this review article we will discuss the history, aims, results, and future prospects for the various analogue models. We start the discussion by presenting a particularly simple example of an analogue model, before exploring the rich history and complex tapestry of models discussed in the literature. The last decade in particular has seen a remarkable and sustained development of analogue gravity ideas, leading to some hundreds of published articles, a workshop, two books, and this review article. Future prospects for the analogue gravity programme also look promising, both on the experimental front (where technology is rapidly advancing and on the theoretical front (where variants of analogue models can be used as a springboard for radical attacks on the problem of quantum gravity.

  9. NGS Absolute Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NGS Absolute Gravity data (78 stations) was received in July 1993. Principal gravity parameters include Gravity Value, Uncertainty, and Vertical Gradient. The...

  10. Airborne Gravity: NGS' Gravity Data for CS08 (2015)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for CS08 collected in 2006 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum (GRAV-D)...

  11. Airborne Gravity: NGS' Gravity Data for ES02 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida and the Gulf of Mexico collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...

  12. Classical Weyl transverse gravity

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Ichiro [University of the Ryukyus, Department of Physics, Faculty of Science, Nishihara, Okinawa (Japan)

    2017-05-15

    We study various classical aspects of the Weyl transverse (WTDiff) gravity in a general space-time dimension. First of all, we clarify a classical equivalence among three kinds of gravitational theories, those are, the conformally invariant scalar tensor gravity, Einstein's general relativity and the WTDiff gravity via the gauge-fixing procedure. Secondly, we show that in the WTDiff gravity the cosmological constant is a mere integration constant as in unimodular gravity, but it does not receive any radiative corrections unlike the unimodular gravity. A key point in this proof is to construct a covariantly conserved energy-momentum tensor, which is achieved on the basis of this equivalence relation. Thirdly, we demonstrate that the Noether current for the Weyl transformation is identically vanishing, thereby implying that the Weyl symmetry existing in both the conformally invariant scalar tensor gravity and the WTDiff gravity is a ''fake'' symmetry. We find it possible to extend this proof to all matter fields, i.e. the Weyl-invariant scalar, vector and spinor fields. Fourthly, it is explicitly shown that in the WTDiff gravity the Schwarzschild black hole metric and a charged black hole one are classical solutions to the equations of motion only when they are expressed in the Cartesian coordinate system. Finally, we consider the Friedmann-Lemaitre-Robertson-Walker (FLRW) cosmology and provide some exact solutions. (orig.)

  13. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Science.gov (United States)

    Meyer, Catrin I.; Ern, Manfred; Hoffmann, Lars; Trinh, Quang Thai; Alexander, M. Joan

    2018-01-01

    statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  14. Intercomparison of AIRS and HIRDLS stratospheric gravity wave observations

    Directory of Open Access Journals (Sweden)

    C. I. Meyer

    2018-01-01

    compared on a statistical basis. The complete HIRDLS measurement period from January 2005 to March 2008 is covered. The seasonal and latitudinal distributions of gravity wave activity as observed by AIRS and HIRDLS agree well. A strong annual cycle at mid- and high latitudes is found in time series of gravity wave variances at 42 km, which has its maxima during wintertime and its minima during summertime. The variability is largest during austral wintertime at 60° S. Variations in the zonal winds at 2.5 hPa are associated with large variability in gravity wave variances. Altogether, gravity wave variances of AIRS and HIRDLS are complementary to each other. Large parts of the gravity wave spectrum are covered by joint observations. This opens up fascinating vistas for future gravity wave research.

  15. Southern Africa Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data base (14,559 records) was received in January 1986. Principal gravity parameters include elevation and observed gravity. The observed gravity values are...

  16. Robotic finger perturbation training improves finger postural steadiness and hand dexterity.

    Science.gov (United States)

    Yoshitake, Yasuhide; Ikeda, Atsutoshi; Shinohara, Minoru

    2018-02-01

    The purpose of the study was to understand the effect of robotic finger perturbation training on steadiness in finger posture and hand dexterity in healthy young adults. A mobile robotic finger training system was designed to have the functions of high-speed mechanical response, two degrees of freedom, and adjustable loading amplitude and direction. Healthy young adults were assigned to one of the three groups: random perturbation training (RPT), constant force training (CFT), and control. Subjects in RPT and CFT performed steady posture training with their index finger using the robot in different modes: random force in RPT and constant force in CFT. After the 2-week intervention period, fluctuations of the index finger posture decreased only in RPT during steady position-matching tasks with an inertial load. Purdue pegboard test score improved also in RPT only. The relative change in finger postural fluctuations was negatively correlated with the relative change in the number of completed pegs in the pegboard test in RPT. The results indicate that finger posture training with random mechanical perturbations of varying amplitudes and directions of force is effective in improving finger postural steadiness and hand dexterity in healthy young adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Assessing performance of gravity models in the Arctic and the implications for polar oceanography

    Science.gov (United States)

    Thomas, S. F.; McAdoo, D. C.; Farrell, S. L.; Brozena, J. M.; Childers, V. A.; Ziebart, M. K.; Shepherd, A.

    2014-12-01

    The circulation of the Arctic Ocean is of great interest to both the oceanographic and cryospheric communities. Understanding both the steady state and variations of this circulation is essential to building our knowledge of Arctic climate. With the advent of high inclination altimeter missions such as CryoSat and ICESat, it is now feasible to produce Mean Dynamic Topography (MDT) products for the region, which allow a comprehensive investigation of geostrophic currents. However, the accuracy of these products is largely limited by our knowledge of the marine geoid in the Arctic. There are a number of publicly available gravity models commonly used to derive the geoid. These use different combinations of available data (satellite gravimetry, altimetry, laser ranging, and in-situ) and are calculated using different mathematical techniques. However, the effect of these differences on the real world performance of these models when used for oceanographic studies in the Arctic is not well known. Given the unique problems for gravimetry in the region (especially data gaps) and their potential impact on MDT products, it is especially important that the relative performance of these models be assessed We consider the needs of the "end user" satellite oceanographer in the Arctic with respect to gravimetry, and the relationship between the precision of gravity data and the accuracy of a final MDT/current velocity product. Using high-precision aerogravity data collected over 3 years of campaigns by NASA's Operation IceBridge we inter-compare 10 of the leading gravity models and assess their performance in the Arctic. We also use historical data from campaigns flown by the US Naval Research Laboratory (NRL) to demonstrate the impact of gravity errors on MDT products. We describe how gravity models for the region might be improved in the future, in an effort to maximize the level at which Arctic currents may be resolved.

  18. Einstein gravity emerging from quantum weyl gravity

    International Nuclear Information System (INIS)

    Zee, A.

    1983-01-01

    We advocate a conformal invariant world described by the sum of the Weyl, Dirac, and Yang-Mills action. Quantum fluctuations bring back Einstein gravity so that the long-distance phenomenology is as observed. Formulas for the induced Newton's constant and Eddington's constant are derived in quantized Weyl gravity. We show that the analogue of the trace anomaly for the Weyl action is structurally similar to that for the Yang-Mills action

  19. Fragmented Canopies Control the Regimes of Gravity Current Development

    Science.gov (United States)

    Barcelona, Aina; Serra, Teresa; Colomer, Jordi

    2018-03-01

    Coastal ecosystems (marine littoral regions, wetlands, and deltas) are regions of high biological productivity. However, they are also one of the world's most threatened ecosystems. Wetlands are characterized by aquatic vegetation adapted to high salinity levels and climatic variations. Wetland canopies buffer these hydrodynamic and atmospheric variations and help retain sediment by reducing current velocity during sea storms or runoff after periods of rain. This work focuses on the effect of the presence of a gap (i.e., nonvegetated zone) parallel to the direction of the main current has on the sedimentation and hydrodynamics of a gravity current. The study aims to (1) address the behavior of a gravity current in a vegetated region compared to one without vegetation (i.e., the gap), (2) determine the effect gap size has on how a gravity current evolves, and 3) determine the effect gap sizes have on the sedimentary rates from a gravity current. Laboratory experiments were carried out in a flume using four different sediment concentrations, four different canopy densities (884, 354, 177, and 0 plants·m-2) and three different gap widths (H/2, H, and 1.5H, where H is the height of the water). This work shows that a gravity current's evolution and its sedimentary rates depend on the fractional volume occupied by the vegetation. While current dynamics in experiments with wider gaps are similar to the nonvegetated case, for smaller gaps the dynamics are closer to the fully vegetated case. Nonetheless, the gravity current exhibits the same behavior in both the vegetated region and the gap.

  20. influence of gravity

    Directory of Open Access Journals (Sweden)

    Animesh Mukherjee

    1991-01-01

    Full Text Available Based upon Biot's [1965] theory of initial stresses of hydrostatic nature produced by the effect of gravity, a study is made of surface waves in higher order visco-elastic media under the influence of gravity. The equation for the wave velocity of Stonely waves in the presence of viscous and gravitational effects is obtained. This is followed by particular cases of surface waves including Rayleigh waves and Love waves in the presence of viscous and gravity effects. In all cases the wave-velocity equations are found to be in perfect agreement with the corresponding classical results when the effects of gravity and viscosity are neglected.

  1. Comparing scalar-tensor gravity and f(R)-gravity in the Newtonian limit

    International Nuclear Information System (INIS)

    Capozziello, S.; Stabile, A.; Troisi, A.

    2010-01-01

    Recently, a strong debate has been pursued about the Newtonian limit (i.e. small velocity and weak field) of fourth order gravity models. According to some authors, the Newtonian limit of f(R)-gravity is equivalent to the one of Brans-Dicke gravity with ω BD =0, so that the PPN parameters of these models turn out to be ill-defined. In this Letter, we carefully discuss this point considering that fourth order gravity models are dynamically equivalent to the O'Hanlon Lagrangian. This is a special case of scalar-tensor gravity characterized only by self-interaction potential and that, in the Newtonian limit, this implies a non-standard behavior that cannot be compared with the usual PPN limit of General Relativity. The result turns out to be completely different from the one of Brans-Dicke theory and in particular suggests that it is misleading to consider the PPN parameters of this theory with ω BD =0 in order to characterize the homologous quantities of f(R)-gravity. Finally the solutions at Newtonian level, obtained in the Jordan frame for an f(R)-gravity, reinterpreted as a scalar-tensor theory, are linked to those in the Einstein frame.

  2. Mars gravity field error analysis from simulated radio tracking of Mars Observer

    International Nuclear Information System (INIS)

    Smith, D.E.; Lerch, F.J.; Chan, J.C.; Chinn, D.S.; Iz, H.B.; Mallama, A.; Patel, G.B.

    1990-01-01

    The Mars Observer (MO) Mission, in a near-polar orbit at 360-410 km altitude for nearly a 2-year observing period, will greatly improve our understanding of the geophysics of Mars, including its gravity field. To assess the expected improvement of the gravity field, the authors have conducted an error analysis based upon the mission plan for the Mars Observer radio tracking data from the Deep Space Network. Their results indicate that it should be possible to obtain a high-resolution model (spherical harmonics complete to degree and order 50 corresponding to a 200-km horizontal resolution) for the gravitational field of the planet. This model, in combination with topography from MO altimetry, should provide for an improved determination of the broad scale density structure and stress state of the Martian crust and upper mantle. The mathematical model for the error analysis is based on the representation of doppler tracking data as a function of the Martian gravity field in spherical harmonics, solar radiation pressure, atmospheric drag, angular momentum desaturation residual acceleration (AMDRA) effects, tracking station biases, and the MO orbit parameters. Two approaches are employed. In the first case, the error covariance matrix of the gravity model is estimated including the effects from all the nongravitational parameters (noise-only case). In the second case, the gravity recovery error is computed as above but includes unmodelled systematic effects from atmospheric drag, AMDRA, and solar radiation pressure (biased case). The error spectrum of gravity shows an order of magnitude of improvement over current knowledge based on doppler data precision from a single station of 0.3 mm s -1 noise for 1-min integration intervals during three 60-day periods

  3. The steady part of the secular variation of the Earth's magnetic field

    Science.gov (United States)

    Bloxham, Jeremy

    1992-01-01

    The secular variation of the Earth's magnetic field results from the effects of magnetic induction in the fluid outer core and from the effects of magnetic diffusion in the core and the mantle. Adequate observations to map the magnetic field at the core-mantle boundary extend back over three centuries, providing a model of the secular variation at the core-mantle boundary. Here we consider how best to analyze this time-dependent part of the field. To calculate steady core flow over long time periods, we introduce an adaptation of our earlier method of calculating the flow in order to achieve greater numerical stability. We perform this procedure for the periods 1840-1990 and 1690-1840 and find that well over 90 percent of the variance of the time-dependent field can be explained by simple steady core flow. The core flows obtained for the two intervals are broadly similar to each other and to flows determined over much shorter recent intervals.

  4. Selecting Tasks for Evaluating Human Performance as a Function of Gravity

    Science.gov (United States)

    Norcross, Jason R.; Gernhardt, Michael L.

    2011-01-01

    A challenge in understanding human performance as a function of gravity is determining which tasks to research. Initial studies began with treadmill walking, which was easy to quantify and control. However, with the development of pressurized rovers, it is less important to optimize human performance for ambulation as pressurized rovers will likely perform gross translation for them. Future crews are likely to spend much of their extravehicular activity (EVA) performing geology, construction,a nd maintenance type tasks. With these types of tasks, people have different performance strategies, and it is often difficult to quantify the task and measure steady-state metabolic rates or perform biomechanical analysis. For many of these types of tasks, subjective feedback may be the only data that can be collected. However, subjective data may not fully support a rigorous scientific comparison of human performance across different gravity levels and suit factors. NASA would benefit from having a wide variety of quantifiable tasks that allow human performance comparison across different conditions. In order to determine which tasks will effectively support scientific studies, many different tasks and data analysis techniques will need to be employed. Many of these tasks and techniques will not be effective, but some will produce quantifiable results that are sensitive enough to show performance differences. One of the primary concerns related to EVA performance is metabolic rate. The higher the metabolic rate, the faster the astronaut will exhaust consumables. The focus of this poster will be on how different tasks affect metabolic rate across different gravity levels.

  5. Characteristics of gravity signal and loading effect in China

    Directory of Open Access Journals (Sweden)

    Shuang Yi

    2015-07-01

    Full Text Available The complex geographical environment in China makes its gravity signals miscellaneous. This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions, the key features of which include positive trend in inner Tibet Plateau and South China and negative trend in North China plain and high mountain Asia (HMA. We also present the patterns of amplitudes and phases of annual and semiannual change. The mechanism underlying the semiannual period is explicitly discussed. The displacement in three directions expressed in terms of geo-potential spherical coefficients and load Love numbers are given. A case study applied with these equations is presented. The results show that Global Positioning System (GPS observations can be used to compare with Gravity Recovery and Climate Experiment (GRACE derived displacement and the vertical direction has a signal-noise-ratio of about one order of magnitude larger than the horizontal directions.

  6. Is Gravity an Entropic Force?

    Directory of Open Access Journals (Sweden)

    Shan Gao

    2011-04-01

    Full Text Available The remarkable connections between gravity and thermodynamics seem to imply that gravity is not fundamental but emergent, and in particular, as Verlinde suggested, gravity is probably an entropic force. In this paper, we will argue that the idea of gravity as an entropic force is debatable. It is shown that there is no convincing analogy between gravity and entropic force in Verlinde’s example. Neither holographic screen nor test particle satisfies all requirements for the existence of entropic force in a thermodynamics system. Furthermore, we show that the entropy increase of the screen is not caused by its statistical tendency to increase entropy as required by the existence of entropic force, but in fact caused by gravity. Therefore, Verlinde’s argument for the entropic origin of gravity is problematic. In addition, we argue that the existence of a minimum size of spacetime, together with the Heisenberg uncertainty principle in quantum theory, may imply the fundamental existence of gravity as a geometric property of spacetime. This may provide a further support for the conclusion that gravity is not an entropic force.

  7. Semiclassical quantum gravity: statistics of combinatorial Riemannian geometries

    International Nuclear Information System (INIS)

    Bombelli, L.; Corichi, A.; Winkler, O.

    2005-01-01

    This paper is a contribution to the development of a framework, to be used in the context of semiclassical canonical quantum gravity, in which to frame questions about the correspondence between discrete spacetime structures at ''quantum scales'' and continuum, classical geometries at large scales. Such a correspondence can be meaningfully established when one has a ''semiclassical'' state in the underlying quantum gravity theory, and the uncertainties in the correspondence arise both from quantum fluctuations in this state and from the kinematical procedure of matching a smooth geometry to a discrete one. We focus on the latter type of uncertainty, and suggest the use of statistical geometry as a way to quantify it. With a cell complex as an example of discrete structure, we discuss how to construct quantities that define a smooth geometry, and how to estimate the associated uncertainties. We also comment briefly on how to combine our results with uncertainties in the underlying quantum state, and on their use when considering phenomenological aspects of quantum gravity. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  8. A Gravity-Responsive Time-Keeping Protein of the Plant and Animal Cell Surface

    Science.gov (United States)

    Morre, D. James

    2003-01-01

    The hypothesis under investigation was that a ubiquinol (NADH) oxidase protein of the cell surface with protein disulfide-thiol interchange activity (= NOX protein) is a plant and animal time-keeping ultradian (period of less than 24 h) driver of both cell enlargement and the biological clock that responds to gravity. Despite considerable work in a large number of laboratories spanning several decades, this is, to my knowledge, our work is the first demonstration of a time-keeping biochemical reaction that is both gravity-responsive and growth-related and that has been shown to determine circadian periodicity. As such, the NOX protein may represent both the long-sought biological gravity receptor and the core oscillator of the cellular biological clock. Completed studies have resulted in 12 publications and two issued NASA-owned patents of the clock activity. The gravity response and autoentrainment were characterized in cultured mammalian cells and in two plant systems together with entrainment by light and small molecules (melatonin). The molecular basis of the oscillatory behavior was investigated using spectroscopic methods (Fourier transform infrared and circular dichroism) and high resolution electron microscopy. We have also applied these findings to an understanding of the response to hypergravity. Statistical methods for analysis of time series phenomena were developed (Foster et al., 2003).

  9. Strings and quantum gravity

    International Nuclear Information System (INIS)

    Vega, H.J. de

    1990-01-01

    One of the main challenges in theoretical physics today is the unification of all interactions including gravity. At present, string theories appear as the most promising candidates to achieve such a unification. However, gravity has not completely been incorporated in string theory, many technical and conceptual problems remain and a full quantum theory of gravity is still non-existent. Our aim is to properly understand strings in the context of quantum gravity. Attempts towards this are reviewed. (author)

  10. Gravity interpretation via EULDPH

    International Nuclear Information System (INIS)

    Ebrahimzadeh Ardestani, V.

    2003-01-01

    Euler's homogeneity equation for determining the coordinates of the source body especially to estimate the depth (EULDPH) is discussed at this paper. This method is applied to synthetic and high-resolution real data such as gradiometric or microgravity data. Low-quality gravity data especially in the areas with a complex geology structure has rarely been used. The Bouguer gravity anomalies are computed from absolute gravity data after the required corrections. Bouguer anomaly is transferred to residual gravity anomaly. The gravity gradients are estimated from residual anomaly values. Bouguer anomaly is the gravity gradients, using EULDPH. The coordinates of the perturbing body will be determined. Two field examples one in the east of Tehran (Mard Abad) where we would like to determine the location of the anomaly (hydrocarbon) and another in the south-east of Iran close to the border with Afghanistan (Nosrat Abad) where we are exploring chromite are presented

  11. Identification of Steady and Non-Steady Gait of Humanexoskeleton Walking System

    Science.gov (United States)

    Żur, K. K.

    2013-08-01

    In this paper a method of analysis of exoskeleton multistep locomotion was presented by using a computer with the preinstalled DChC program. The paper also presents a way to analytically calculate the ",motion indicator", as well as the algorithm calculating its two derivatives. The algorithm developed by the author processes data collected from the investigation and then a program presents the obtained final results. Research into steady and non-steady multistep locomotion can be used to design two-legged robots of DAR type and exoskeleton control system

  12. FOREX Trades: Can the Takens Algorithm Help to Obtain Steady Profit at Investment Reallocations?

    Science.gov (United States)

    Petrov, V. Yu.; Tribelsky, M. I.

    2015-12-01

    We report our preliminary results of application of the Takens algorithm to build a FOREX trade strategy, resulting in a steady long-time gain for a trader. The actual historical rates for pair EUR vs. USD are used. The values of various parameters of the problem including the "stop loss" and "take profit" thresholds are optimized to provide the maximal gain during the training period. Then, these values are employed for trades. We have succeeded to get the steady gain, if the spread is neglected. It proves that the FOREX market is predictable.

  13. Anomalies and gravity

    International Nuclear Information System (INIS)

    Mielke, Eckehard W.

    2006-01-01

    Anomalies in Yang-Mills type gauge theories of gravity are reviewed. Particular attention is paid to the relation between the Dirac spin, the axial current j5 and the non-covariant gauge spin C. Using diagrammatic techniques, we show that only generalizations of the U(1)- Pontrjagin four-form F and F = dC arise in the chiral anomaly, even when coupled to gravity. Implications for Ashtekar's canonical approach to quantum gravity are discussed

  14. Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  15. Gravity loop corrections to the standard model Higgs in Einstein gravity

    International Nuclear Information System (INIS)

    Yugo Abe; Masaatsu Horikoshi; Takeo Inami

    2016-01-01

    We study one-loop quantum gravity corrections to the standard model Higgs potential V(φ) à la Coleman-Weinberg and examine the stability question of V(φ) in the energy region of Planck mass scale, μ ≃ M_P_l (M_P_l = 1.22x10"1"9 GeV). We calculate the gravity one-loop corrections to V(φ) in Einstein gravity by using the momentum cut-off Λ. We have found that even small gravity corrections compete with the standard model term of V(φ) and affect the stability argument of the latter part alone. This is because the latter part is nearly zero in the energy region of M_P_l. (author)

  16. Data reduction and tying in regional gravity surveys—results from a new gravity base station network and the Bouguer gravity anomaly map for northeastern Mexico

    Science.gov (United States)

    Hurtado-Cardador, Manuel; Urrutia-Fucugauchi, Jaime

    2006-12-01

    Since 1947 Petroleos Mexicanos (Pemex) has conducted oil exploration projects using potential field methods. Geophysical exploration companies under contracts with Pemex carried out gravity anomaly surveys that were referred to different floating data. Each survey comprises observations of gravity stations along highways, roads and trails at intervals of about 500 m. At present, 265 separate gravimeter surveys that cover 60% of the Mexican territory (mainly in the oil producing regions of Mexico) are available. This gravity database represents the largest, highest spatial resolution information, and consequently has been used in the geophysical data compilations for the Mexico and North America gravity anomaly maps. Regional integration of gravimeter surveys generates gradients and spurious anomalies in the Bouguer anomaly maps at the boundaries of the connected surveys due to the different gravity base stations utilized. The main objective of this study is to refer all gravimeter surveys from Pemex to a single new first-order gravity base station network, in order to eliminate problems of gradients and spurious anomalies. A second objective is to establish a network of permanent gravity base stations (BGP), referred to a single base from the World Gravity System. Four regional loops of BGP covering eight States of Mexico were established to support the tie of local gravity base stations from each of the gravimeter surveys located in the vicinity of these loops. The third objective is to add the gravity constants, measured and calculated, for each of the 265 gravimeter surveys to their corresponding files in the Pemex and Instituto Mexicano del Petroleo database. The gravity base used as the common datum is the station SILAG 9135-49 (Latin American System of Gravity) located in the National Observatory of Tacubaya in Mexico City. We present the results of the installation of a new gravity base network in northeastern Mexico, reference of the 43 gravimeter surveys

  17. Pulsar spin down and cosmologies with varying gravity

    International Nuclear Information System (INIS)

    Mansfield, V.N.

    1976-01-01

    Reference is made to the measured spin down of the pulsar JP1953 and it is stated that this conflicts with conclusions concerning cosmologies having weakening gravity. An explanation is also given for the lack of long period pulsars in terms of group theory cosmologies with strengthening gravity. The implications of Dirac's large number hypothesis are considered, including possibilities for the implied continuous creation of matter, both 'additive creation' in which nucleons are created uniformly throughout space and 'multiplicative creation' in which matter is created where it already exists in proportion to the amount existing. Malin's suggestion (Phys. Rev. D9:3228 (1974)) that the mass of all particles varies inversely as the four-dimensional radius of curvature of the universe is also considered. (U.K.)

  18. Chaos and bifurcations in periodic windows observed in plasmas

    International Nuclear Information System (INIS)

    Qin, J.; Wang, L.; Yuan, D.P.; Gao, P.; Zhang, B.Z.

    1989-01-01

    We report the experimental observations of deterministic chaos in a steady-state plasma which is not driven by any extra periodic forces. Two routes to chaos have been found, period-doubling and intermittent chaos. The fine structures in chaos such as periodic windows and bifurcations in windows have also been observed

  19. Airborne Gravity: NGS' Gravity Data for CS02 (2008-2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Louisana and Mississippi collected in 2008-2009 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American...

  20. Quantum gravity from noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jungjai [Daejin University, Pocheon (Korea, Republic of); Yang, Hyunseok [Korea Institute for Advanced Study, Seoul (Korea, Republic of)

    2014-12-15

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  1. Quantum gravity from noncommutative spacetime

    International Nuclear Information System (INIS)

    Lee, Jungjai; Yang, Hyunseok

    2014-01-01

    We review a novel and authentic way to quantize gravity. This novel approach is based on the fact that Einstein gravity can be formulated in terms of a symplectic geometry rather than a Riemannian geometry in the context of emergent gravity. An essential step for emergent gravity is to realize the equivalence principle, the most important property in the theory of gravity (general relativity), from U(1) gauge theory on a symplectic or Poisson manifold. Through the realization of the equivalence principle, which is an intrinsic property in symplectic geometry known as the Darboux theorem or the Moser lemma, one can understand how diffeomorphism symmetry arises from noncommutative U(1) gauge theory; thus, gravity can emerge from the noncommutative electromagnetism, which is also an interacting theory. As a consequence, a background-independent quantum gravity in which the prior existence of any spacetime structure is not a priori assumed but is defined by using the fundamental ingredients in quantum gravity theory can be formulated. This scheme for quantum gravity can be used to resolve many notorious problems in theoretical physics, such as the cosmological constant problem, to understand the nature of dark energy, and to explain why gravity is so weak compared to other forces. In particular, it leads to a remarkable picture of what matter is. A matter field, such as leptons and quarks, simply arises as a stable localized geometry, which is a topological object in the defining algebra (noncommutative *-algebra) of quantum gravity.

  2. Initial results from SKiYMET meteor radar at Thumba (8.5°N, 77°E): 2. Gravity wave observations in the MLT region

    Science.gov (United States)

    Kumar, Karanam Kishore; Antonita, T. Maria; Shelbi, S. T.

    2007-12-01

    In the present communication, allSKy interferometric METeor (SKiYMET) radar observations of gravity wave activity in the mesosphere lower thermosphere (MLT) region over Thumba (8.5°N, 77°E) are presented. The present meteor radar system provides hourly zonal and meridional winds in the MLT region, which can be readily used for studying the tides, planetary waves, gravity waves of periods 2-6 hours, and other long period oscillations in this region. However, these hourly winds are not sufficient for studying short period gravity waves having periods less than an hour, which demand high temporal resolution measurements. Even though the winds are estimated on an hourly basis, information such as zenith angle, azimuth angle, and radial velocity of each detected meteor are archived. Using these details of the meteor, an algorithm is developed to obtain the 15-min temporal resolution wind data. The output of the algorithm is compared with hourly wind data, and it showed a good agreement during the high meteor shower periods. Most of the times high meteor counts are observed during late night and early morning hours (local) over this latitude. Continuous wind measurements during the high meteor shower periods are used for studying the gravity wave activity in the MLT region. As the wave activity is intermittent and nonstationary, wavelet analysis has been used for delineating the wave features. The results showed the upward propagating intermittent gravity waves with periods 1-2 and 4-5 hours. The new aspect of the present communication is the usage of meteor radar for gravity wave studies for the first time over this latitude and studying their seasonal variability.

  3. The gravity field and GGOS

    DEFF Research Database (Denmark)

    Forsberg, René; Sideris, M.G.; Shum, C.K.

    2005-01-01

    The gravity field of the earth is a natural element of the Global Geodetic Observing System (GGOS). Gravity field quantities are like spatial geodetic observations of potential very high accuracy, with measurements, currently at part-per-billion (ppb) accuracy, but gravity field quantities are also...... unique as they can be globally represented by harmonic functions (long-wavelength geopotential model primarily from satellite gravity field missions), or based on point sampling (airborne and in situ absolute and superconducting gravimetry). From a GGOS global perspective, one of the main challenges...... is to ensure the consistency of the global and regional geopotential and geoid models, and the temporal changes of the gravity field at large spatial scales. The International Gravity Field Service, an umbrella "level-2" IAG service (incorporating the International Gravity Bureau, International Geoid Service...

  4. Superconducting gravity gradiometer for sensitive gravity measurements. II. Experiment

    International Nuclear Information System (INIS)

    Chan, H.A.; Moody, M.V.; Paik, H.J.

    1987-01-01

    A sensitive superconducting gravity gradiometer has been constructed and tested. Coupling to gravity signals is obtained by having two superconducting proof masses modulate magnetic fields produced by persistent currents. The induced electrical currents are differenced by a passive superconducting circuit coupled to a superconducting quantum interference device. The experimental behavior of this device has been shown to follow the theoretical model closely in both signal transfer and noise characteristics. While its intrinsic noise level is shown to be 0.07 E Hz/sup -1/2/ (1 Eequivalent10/sup -9/ sec/sup -2/), the actual performance of the gravity gradiometer on a passive platform has been limited to 0.3--0.7 E Hz/sup -1/2/ due to its coupling to the environmental noise. The detailed structure of this excess noise is understood in terms of an analytical error model of the instrument. The calibration of the gradiometer has been obtained by two independent methods: by applying a linear acceleration and a gravity signal in two different operational modes of the instrument. This device has been successfully operated as a detector in a new null experiment for the gravitational inverse-square law. In this paper we report the design, fabrication, and detailed test results of the superconducting gravity gradiometer. We also present additional theoretical analyses which predict the specific dynamic behavior of the gradiometer and of the test

  5. Airborne Gravity: NGS' Gravity Data for EN07 (2012-2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine and Canada collected in 2012 and 2013 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American...

  6. Airborne Gravity: NGS' Gravity Data for AS03 (2010-2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  7. Gravity wave astronomy

    International Nuclear Information System (INIS)

    Pinheiro, R.

    1979-01-01

    The properties and production of gravitational radiation are described. The prospects for their detection are considered including the Weber apparatus and gravity-wave telescopes. Possibilities of gravity-wave astronomy are noted

  8. Cineradiographic Analysis of Mouse Postural Response to Alteration of Gravity and Jerk (Gravity Deceleration Rate

    Directory of Open Access Journals (Sweden)

    Katsuya Hasegawa

    2014-04-01

    Full Text Available The ability to maintain the body relative to the external environment is important for adaptation to altered gravity. However, the physiological limits for adaptation or the disruption of body orientation are not known. In this study, we analyzed postural changes in mice upon exposure to various low gravities. Male C57BL6/J mice (n = 6 were exposed to various gravity-deceleration conditions by customized parabolic flight-maneuvers targeting the partial-gravity levels of 0.60, 0.30, 0.15 and μ g (<0.001 g. Video recordings of postural responses were analyzed frame-by-frame by high-definition cineradiography and with exact instantaneous values of gravity and jerk. As a result, the coordinated extension of the neck, spine and hindlimbs was observed during the initial phase of gravity deceleration. Joint angles widened to 120%–200% of the reference g level, and the magnitude of the thoracic-curvature stretching was correlated with gravity and jerk, i.e., the gravity deceleration rate. A certain range of jerk facilitated mouse skeletal stretching efficiently, and a jerk of −0.3~−0.4 j (g/s induced the maximum extension of the thoracic-curvature. The postural response of animals to low gravity may undergo differential regulation by gravity and jerk.

  9. Long-period and short-period variations of ionospheric parameters studied from complex observations performed on Cuba

    Energy Technology Data Exchange (ETDEWEB)

    Laso, B; Lobachevskii, L A; Potapova, N I; Freizon, I A; Shapiro, B S

    1980-09-01

    Cuban data from 1978 are used to study long-period (i.e., diurnal) variations of Doppler shift on a 3000 km path at frequencies of 10 and 15 MHz these variations are related to variations of parameters on the ionospheric path. Short-period variations were also studied on the basis of Doppler shift data and vertical sounding data in the 0.000111-0.00113 Hz frequency range. The relation between the observed variations and internal gravity waves are discussed.

  10. Observing coseismic gravity change from the Japan Tohoku-Oki 2011 earthquake with GOCE gravity gradiometry

    NARCIS (Netherlands)

    Fuchs, M.J.; Bouman, J.; Broerse, D.B.T.; Visser, P.N.A.M.; Vermeersen, L.L.A.

    2013-01-01

    The Japan Tohoku-Oki earthquake (9.0 Mw) of 11 March 2011 has left signatures in the Earth's gravity field that are detectable by data of the Gravity field Recovery and Climate Experiment (GRACE) mission. Because the European Space Agency's (ESA) satellite gravity mission Gravity field and

  11. Orbital and epicyclic frequencies around neutron and strange stars in R{sup 2} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Kalin V., E-mail: kstaykov@phys.uni-sofia.bg [Department of Theoretical Physics, Faculty of Physics, Sofia University, 1164, Sofia (Bulgaria); Doneva, Daniela D., E-mail: daniela.doneva@uni-tuebingen.de [Theoretical Astrophysics, Eberhard Karls University of Tübingen, 72076, Tübingen (Germany); INRNE-Bulgarian Academy of Sciences, 1784, Sofia (Bulgaria); Yazadjiev, Stoytcho S., E-mail: yazad@phys.uni-sofia.bg [Department of Theoretical Physics, Faculty of Physics, Sofia University, 1164, Sofia (Bulgaria); Theoretical Astrophysics, Eberhard Karls University of Tübingen, 72076, Tübingen (Germany)

    2015-12-21

    According to various models, the orbital and the epicyclic frequencies of particles moving on a circular orbit around compact objects are related to the quasi-periodic oscillations observed in the X-ray flux of some pulsars or black hole candidates. It is expected that they originate from the inner edge of the accretion discs, deep into the gravitational field of the compact objects. Considering the planned new generation X-ray timing observatories with large collective areas, the quasi-periodic oscillations might be an excellent tool for testing gravity in strong field regime and, respectively, alternative gravitational theories. We examine the orbital and the epicyclic frequencies of a particle moving on a circular orbit around neutron or strange stars in R{sup 2} gravity. The case of slow rotation is considered too. The R{sup 2} gravity results are compared to the general relativistic case. We comment on the deviations from general relativity, as well as the deviations due to rotation in both theories.

  12. Orbital and epicyclic frequencies around neutron and strange stars in R{sup 2} gravity

    Energy Technology Data Exchange (ETDEWEB)

    Staykov, Kalin V. [Sofia University, Department of Theoretical Physics, Faculty of Physics, Sofia (Bulgaria); Doneva, Daniela D. [Eberhard Karls University of Tuebingen, Theoretical Astrophysics, Tuebingen (Germany); INRNE-Bulgarian Academy of Sciences, Sofia (Bulgaria); Yazadjiev, Stoytcho S. [Sofia University, Department of Theoretical Physics, Faculty of Physics, Sofia (Bulgaria); Eberhard Karls University of Tuebingen, Theoretical Astrophysics, Tuebingen (Germany)

    2015-12-15

    According to various models, the orbital and the epicyclic frequencies of particles moving on a circular orbit around compact objects are related to the quasi-periodic oscillations observed in the X-ray flux of some pulsars or black hole candidates. It is expected that they originate from the inner edge of the accretion discs, deep into the gravitational field of the compact objects. Considering the planned new generation X-ray timing observatories with large collective areas, the quasi-periodic oscillations might be an excellent tool for testing gravity in strong field regime and, respectively, alternative gravitational theories. We examine the orbital and the epicyclic frequencies of a particle moving on a circular orbit around neutron or strange stars in R{sup 2} gravity. The case of slow rotation is considered too. The R{sup 2} gravity results are compared to the general relativistic case. We comment on the deviations from general relativity, as well as the deviations due to rotation in both theories. (orig.)

  13. Airborne Gravity: NGS' Gravity Data for ES05 (2015-2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida and the Atlantic Ocean collected in two surveys, FL15-1 and FL15-2. This data set is part of the Gravity for the Re-definition of...

  14. Airborne Gravity: NGS' Gravity Data for AS04 (2015-2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2015 and 2016 over 2 surveys, AK15 and AK16. This data set is part of the Gravity for the Re-definition of the American...

  15. Development of a new generation gravity map of Antarctica: ADGRAV Antarctic Digital Gravity Synthesis

    Directory of Open Access Journals (Sweden)

    R. A. Arko

    1999-06-01

    Full Text Available The U.S. National Science Foundation (NSF has agreed to support the development of a new generation gravity map of Antarctica (ADGRAV - Antarctic Digital Gravity Synthesis, funding the development of a web based access tool. The goal of this project is the creation of an on-line Antarctic gravity database which will facilitate access to improved high resolution satellite gravity models, in conjunction with shipboard, airborne, and land based gravity measurements for the continental regions. This database will complement parallel projects underway to develop new continental bedrock (BEDMAP and magnetic (ADMAP maps of Antarctica.

  16. Cosmological tests of modified gravity.

    Science.gov (United States)

    Koyama, Kazuya

    2016-04-01

    We review recent progress in the construction of modified gravity models as alternatives to dark energy as well as the development of cosmological tests of gravity. Einstein's theory of general relativity (GR) has been tested accurately within the local universe i.e. the Solar System, but this leaves the possibility open that it is not a good description of gravity at the largest scales in the Universe. This being said, the standard model of cosmology assumes GR on all scales. In 1998, astronomers made the surprising discovery that the expansion of the Universe is accelerating, not slowing down. This late-time acceleration of the Universe has become the most challenging problem in theoretical physics. Within the framework of GR, the acceleration would originate from an unknown dark energy. Alternatively, it could be that there is no dark energy and GR itself is in error on cosmological scales. In this review, we first give an overview of recent developments in modified gravity theories including f(R) gravity, braneworld gravity, Horndeski theory and massive/bigravity theory. We then focus on common properties these models share, such as screening mechanisms they use to evade the stringent Solar System tests. Once armed with a theoretical knowledge of modified gravity models, we move on to discuss how we can test modifications of gravity on cosmological scales. We present tests of gravity using linear cosmological perturbations and review the latest constraints on deviations from the standard [Formula: see text]CDM model. Since screening mechanisms leave distinct signatures in the non-linear structure formation, we also review novel astrophysical tests of gravity using clusters, dwarf galaxies and stars. The last decade has seen a number of new constraints placed on gravity from astrophysical to cosmological scales. Thanks to on-going and future surveys, cosmological tests of gravity will enjoy another, possibly even more, exciting ten years.

  17. Gravity signatures of terrane accretion

    Science.gov (United States)

    Franco, Heather; Abbott, Dallas

    1999-01-01

    In modern collisional environments, accreted terranes are bracketed by forearc gravity lows, a gravitational feature which results from the abandonment of the original trench and the initiation of a new trench seaward of the accreted terrane. The size and shape of the gravity low depends on the type of accreted feature and the strength of the formerly subducting plate. Along the Central American trench, the accretion of Gorgona Island caused a seaward trench jump of 48 to 66 km. The relict trench axes show up as gravity lows behind the trench with minimum values of -78 mgal (N of Gorgona) and -49 mgal (S of Gorgona) respectively. These forearc gravity lows have little or no topographic expression. The active trench immediately seaward of these forearc gravity lows has minimum gravity values of -59 mgal (N of Gorgona) and -58 mgal (S of Gorgona), respectively. In the north, the active trench has a less pronounced gravity low than the sediment covered forearc. In the Mariana arc, two Cretaceous seamounts have been accreted to the Eocene arc. The northern seamount is most likely a large block, the southern seamount may be a thrust slice. These more recent accretion events have produced modest forearc topographic and gravity lows in comparison with the topographic and gravity lows within the active trench. However, the minimum values of the Mariana forearc gravity lows are modest only by comparison to the Mariana Trench (-216 mgal); their absolute values are more negative than at Gorgona Island (-145 to -146 mgal). We speculate that the forearc gravity lows and seaward trench jumps near Gorgona Island were produced by the accretion of a hotspot island from a strong plate. The Mariana gravity lows and seaward trench jumps (or thrust slices) were the result of breaking a relatively weak plate close to the seamount edifice. These gravity lows resulting from accretion events should be preserved in older accreted terranes.

  18. Airborne Gravity: NGS' Gravity Data for CS07 (2014 & 2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2014 & 2016 over 3 surveys,TX14-2, TX16-1 and TX16-2. This data set is part of the Gravity for the Re-definition of...

  19. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation.

    Science.gov (United States)

    Tie, Junbo; Cao, Juliang; Chang, Lubing; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-03-16

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method.

  20. A Model of Gravity Vector Measurement Noise for Estimating Accelerometer Bias in Gravity Disturbance Compensation

    Science.gov (United States)

    Cao, Juliang; Cai, Shaokun; Wu, Meiping; Lian, Junxiang

    2018-01-01

    Compensation of gravity disturbance can improve the precision of inertial navigation, but the effect of compensation will decrease due to the accelerometer bias, and estimation of the accelerometer bias is a crucial issue in gravity disturbance compensation. This paper first investigates the effect of accelerometer bias on gravity disturbance compensation, and the situation in which the accelerometer bias should be estimated is established. The accelerometer bias is estimated from the gravity vector measurement, and a model of measurement noise in gravity vector measurement is built. Based on this model, accelerometer bias is separated from the gravity vector measurement error by the method of least squares. Horizontal gravity disturbances are calculated through EGM2008 spherical harmonic model to build the simulation scene, and the simulation results indicate that precise estimations of the accelerometer bias can be obtained with the proposed method. PMID:29547552

  1. BOOK REVIEW: Quantum Gravity: third edition Quantum Gravity: third edition

    Science.gov (United States)

    Rovelli, Carlo

    2012-09-01

    The request by Classical and Quantum Gravity to review the third edition of Claus Kiefer's 'Quantum Gravity' puts me in a slightly awkward position. This is a remarkably good book, which every person working in quantum gravity should have on the shelf. But in my opinion quantum gravity has undergone some dramatic advances in the last few years, of which the book makes no mention. Perhaps the omission only attests to the current vitality of the field, where progress is happening fast, but it is strange for me to review a thoughtful, knowledgeable and comprehensive book on my own field of research, which ignores what I myself consider the most interesting results to date. Kiefer's book is unique as a broad introduction and a reliable overview of quantum gravity. There are numerous books in the field which (often notwithstanding titles) focus on a single approach. There are also countless conference proceedings and article collections aiming to be encyclopaedic, but offering disorganized patchworks. Kiefer's book is a careful and thoughtful presentation of all aspects of the immense problem of quantum gravity. Kiefer is very learned, and brings together three rare qualities: he is pedagogical, he is capable of simplifying matter to the bones and capturing the essential, and he offers a serious and balanced evaluation of views and ideas. In a fractured field based on a major problem that does not yet have a solution, these qualities are precious. I recommend Kiefer's book to my students entering the field: to work in quantum gravity one needs a vast amount of technical knowledge as well as a grasp of different ideas, and Kiefer's book offers this with remarkable clarity. This novel third edition simplifies and improves the presentation of several topics, but also adds very valuable new material on quantum gravity phenomenology, loop quantum cosmology, asymptotic safety, Horava-Lifshitz gravity, analogue gravity, the holographic principle, and more. This is a testament

  2. Simulation of non-hydrostatic gravity wave propagation in the upper atmosphere

    Directory of Open Access Journals (Sweden)

    Y. Deng

    2014-04-01

    Full Text Available The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM, which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.

  3. Low-gravity sensing of liquid/vapor interface and transient liquid flow

    Science.gov (United States)

    Jacobson, Saul A.; Korba, James M.; Lynnworth, Lawrence C.; Nguyen, Toan H.; Orton, George F.

    1987-03-01

    The work reported here deals mainly with tests on internally vaned cylindrical shell acrylic containers capped by hemispherical acrylic or aluminum end domes. Three different ultrasonic sensor techniques and one nucleonic technique presently are evaluated as possible solutions to the low-gravity liquid gauging problem. The ultrasonic techniques are as follows: use of a torsional wave sensor in which transit time is proportional to the integral of wetted distance x liquid density; integration of the flow rate output signal of a fast-response ultrasonic flowmeter; and use of multiplexed externally mounted 'point-sensor' transducers that sense transit times to liquid-gas interfaces. Using two commercial flowmeters and a thickness gauge modified for this particular project, bench tests were conducted at 1 g on liquids such as water, freon, and solvent 140, including both steady flow and pulsating flow with 40, 80, and 120 ms flow pulses. Subsequently, flight tests were conducted in the NASA KC-135 aircraft in which nearly 0-g conditions are obtainable for up to about 5 s in each of a number of repetitive parabolic flight trajectories. In some of these brief low-gravity flight tests freon was replaced with a higher-viscosity fuel to reduce sloshing and thereby obtain settled surfaces more quickly.

  4. DNAG Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Decade of North American Geology (DNAG) gravity grid values, spaced at 6 km, were used to produce the Gravity Anomaly Map of North America (1987; scale...

  5. Adaptive filtering of GOCE-derived gravity gradients of the disturbing potential in the context of the space-wise approach

    Science.gov (United States)

    Piretzidis, Dimitrios; Sideris, Michael G.

    2017-09-01

    Filtering and signal processing techniques have been widely used in the processing of satellite gravity observations to reduce measurement noise and correlation errors. The parameters and types of filters used depend on the statistical and spectral properties of the signal under investigation. Filtering is usually applied in a non-real-time environment. The present work focuses on the implementation of an adaptive filtering technique to process satellite gravity gradiometry data for gravity field modeling. Adaptive filtering algorithms are commonly used in communication systems, noise and echo cancellation, and biomedical applications. Two independent studies have been performed to introduce adaptive signal processing techniques and test the performance of the least mean-squared (LMS) adaptive algorithm for filtering satellite measurements obtained by the gravity field and steady-state ocean circulation explorer (GOCE) mission. In the first study, a Monte Carlo simulation is performed in order to gain insights about the implementation of the LMS algorithm on data with spectral behavior close to that of real GOCE data. In the second study, the LMS algorithm is implemented on real GOCE data. Experiments are also performed to determine suitable filtering parameters. Only the four accurate components of the full GOCE gravity gradient tensor of the disturbing potential are used. The characteristics of the filtered gravity gradients are examined in the time and spectral domain. The obtained filtered GOCE gravity gradients show an agreement of 63-84 mEötvös (depending on the gravity gradient component), in terms of RMS error, when compared to the gravity gradients derived from the EGM2008 geopotential model. Spectral-domain analysis of the filtered gradients shows that the adaptive filters slightly suppress frequencies in the bandwidth of approximately 10-30 mHz. The limitations of the adaptive LMS algorithm are also discussed. The tested filtering algorithm can be

  6. Measuring Gravity in International Trade Flows

    Directory of Open Access Journals (Sweden)

    E. Young Song

    2004-12-01

    Full Text Available The purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of income levels of countries, and in trade of most manThe purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of

  7. Toward explaining black hole entropy quantization in loop quantum gravity

    International Nuclear Information System (INIS)

    Sahlmann, Hanno

    2007-01-01

    In a remarkable numerical analysis of the spectrum of states for a spherically symmetric black hole in loop quantum gravity, Corichi, Diaz-Polo and Fernandez-Borja found that the entropy of the black hole horizon increases in what resembles discrete steps as a function of area. In the present article we reformulate the combinatorial problem of counting horizon states in terms of paths through a certain space. This formulation sheds some light on the origins of this steplike behavior of the entropy. In particular, using a few extra assumptions we arrive at a formula that reproduces the observed step length to a few tenths of a percent accuracy. However, in our reformulation the periodicity ultimately arises as a property of some complicated process, the properties of which, in turn, depend on the properties of the area spectrum in loop quantum gravity in a rather opaque way. Thus, in some sense, a deep explanation of the observed periodicity is still lacking

  8. Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment

    Science.gov (United States)

    van der Wal, Wouter; Kurtenbach, Enrico; Kusche, Jürgen; Vermeersen, Bert

    2011-11-01

    In areas dominated by Glacial Isostatic Adjustment (GIA), the free-air gravity anomaly rate can be converted to uplift rate to good approximation by using a simple spectral relation. We provide quantitative comparisons between gravity rates derived from monthly gravity field solutions (GFZ Potsdam, CSR Texas, IGG Bonn) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission with uplift rates measured by GPS in these areas. The band-limited gravity data from the GRACE satellite mission can be brought to very good agreement with the point data from GPS by using scaling factors derived from a GIA model (the root-mean-square of differences is 0.55 mm yr-1 for a maximum uplift rate signal of 10 mm yr-1). The root-mean-square of the differences between GRACE derived uplift rates and GPS derived uplift rates decreases with increasing GRACE time period to a level below the uncertainty that is expected from GRACE observations, GPS measurements and the conversion from gravity rate to uplift rate. With the current length of time-series (more than 8 yr) applying filters and a hydrology correction to the GRACE data does not reduce the root-mean-square of differences significantly. The smallest root-mean-square was obtained with the GFZ solution in Fennoscandia and with the CSR solution in North America. With radial gravity rates in excellent agreement with GPS uplift rates, more information on the GIA process can be extracted from GRACE gravity field solutions in the form of tangential gravity rates, which are equivalent to a rate of change in the deflection of the vertical scaled by the magnitude of gravity rate vector. Tangential gravity rates derived from GRACE point towards the centre of the previously glaciated area, and are largest in a location close to the centre of the former ice sheet. Forward modelling showed that present day tangential gravity rates have maximum sensitivity between the centre and edge of the former ice sheet, while radial gravity

  9. Dynamic fluid connectivity during steady-state multiphase flow in a sandstone.

    Science.gov (United States)

    Reynolds, Catriona A; Menke, Hannah; Andrew, Matthew; Blunt, Martin J; Krevor, Samuel

    2017-08-01

    The current conceptual picture of steady-state multiphase Darcy flow in porous media is that the fluid phases organize into separate flow pathways with stable interfaces. Here we demonstrate a previously unobserved type of steady-state flow behavior, which we term "dynamic connectivity," using fast pore-scale X-ray imaging. We image the flow of N 2 and brine through a permeable sandstone at subsurface reservoir conditions, and low capillary numbers, and at constant fluid saturation. At any instant, the network of pores filled with the nonwetting phase is not necessarily connected. Flow occurs along pathways that periodically reconnect, like cars controlled by traffic lights. This behavior is consistent with an energy balance, where some of the energy of the injected fluids is sporadically converted to create new interfaces.

  10. Hoffmann-Infeld black-hole solutions in Lovelock gravity

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, MatIas [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Instituto de AstronomIa y Fisica del Espacio, C.C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Ferraro, Rafael [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Instituto de AstronomIa y Fisica del Espacio, C.C. 67, Suc. 28, 1428 Buenos Aires (Argentina); Giribet, Gaston [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina)

    2005-07-07

    Five-dimensional black holes are studied in Lovelock gravity coupled to Hoffmann-Infeld nonlinear electrodynamics. It is shown that some of these solutions present a double peak behaviour of the temperature as a function of the horizon radius. This feature suggests that the evaporation process, though drastic for a period, leads to an eternal black-hole remnant. In fact, the form of the caloric curve corresponds to the existence of a plateau in the evaporation rate, which implies that black holes of intermediate scales turn out to be unstable. The geometrical aspects, such as the absence of conical singularity, the structure of horizons, etc are also discussed. In particular, solutions that are asymptotically AdS arise for special choices of the parameters, corresponding to charged solutions of five-dimensional Chern-Simons gravity.

  11. Hoffmann-Infeld black-hole solutions in Lovelock gravity

    International Nuclear Information System (INIS)

    Aiello, MatIas; Ferraro, Rafael; Giribet, Gaston

    2005-01-01

    Five-dimensional black holes are studied in Lovelock gravity coupled to Hoffmann-Infeld nonlinear electrodynamics. It is shown that some of these solutions present a double peak behaviour of the temperature as a function of the horizon radius. This feature suggests that the evaporation process, though drastic for a period, leads to an eternal black-hole remnant. In fact, the form of the caloric curve corresponds to the existence of a plateau in the evaporation rate, which implies that black holes of intermediate scales turn out to be unstable. The geometrical aspects, such as the absence of conical singularity, the structure of horizons, etc are also discussed. In particular, solutions that are asymptotically AdS arise for special choices of the parameters, corresponding to charged solutions of five-dimensional Chern-Simons gravity

  12. Mimicking Nonequilibrium Steady States with Time-Periodic Driving (Open Source)

    Science.gov (United States)

    2016-05-18

    construction does not require the solution of any differential equations , only linear algebraic equations . By contrast, a mapping in the opposite...set of algebraic linear equations . The mapping between NESS and SP presented above was not intended as a set of operational instructions for... differential equations with time-periodic parameters. Typically, this can only be done numerically. In some applications, transition rates are constrained by

  13. Modeling of zero gravity venting: Studies of two-phase heat transfer under reduced gravity

    Science.gov (United States)

    Merte, H., Jr.

    1986-01-01

    The objective is to predict the pressure response of a saturated liquid-vapor system when undergoing a venting or depressurization process in zero gravity at low vent rates. An experimental investigation of the venting of cylindrical containers partially filled with initially saturated liquids was previously conducted under zero-gravity conditions and compared with an analytical model which incorporated the effect of interfacial mass transfer on the ullage pressure response during venting. A new model is presented to improve the estimation of the interfacial mass transfer. Duhammel's superposition integral is incorporated to approximate the transient temperature response of the interface, treating the liquid as a semi-infinite solid with conduction heat transfer. Account is also taken of the condensation taking place within the bulk of a saturated vapor as isentropic expansion takes place. Computational results are presented for the venting of R-11 from a given vessel and initial state for five different venting rates over a period of three seconds, and compared to prior NASA experiments. An improvement in the prediction of the final pressure takes place, but is still considerably below the measurements.

  14. Earthquake precursors: spatial-temporal gravity changes before the great earthquakes in the Sichuan-Yunnan area

    Science.gov (United States)

    Zhu, Yi-Qing; Liang, Wei-Feng; Zhang, Song

    2018-01-01

    Using multiple-scale mobile gravity data in the Sichuan-Yunnan area, we systematically analyzed the relationships between spatial-temporal gravity changes and the 2014 Ludian, Yunnan Province Ms6.5 earthquake and the 2014 Kangding Ms6.3, 2013 Lushan Ms7.0, and 2008 Wenchuan Ms8.0 earthquakes in Sichuan Province. Our main results are as follows. (1) Before the occurrence of large earthquakes, gravity anomalies occur in a large area around the epicenters. The directions of gravity change gradient belts usually agree roughly with the directions of the main fault zones of the study area. Such gravity changes might reflect the increase of crustal stress, as well as the significant active tectonic movements and surface deformations along fault zones, during the period of gestation of great earthquakes. (2) Continuous significant changes of the multiple-scale gravity fields, as well as greater gravity changes with larger time scales, can be regarded as medium-range precursors of large earthquakes. The subsequent large earthquakes always occur in the area where the gravity changes greatly. (3) The spatial-temporal gravity changes are very useful in determining the epicenter of coming large earthquakes. The large gravity networks are useful to determine the general areas of coming large earthquakes. However, the local gravity networks with high spatial-temporal resolution are suitable for determining the location of epicenters. Therefore, denser gravity observation networks are necessary for better forecasts of the epicenters of large earthquakes. (4) Using gravity changes from mobile observation data, we made medium-range forecasts of the Kangding, Ludian, Lushan, and Wenchuan earthquakes, with especially successful forecasts of the location of their epicenters. Based on the above discussions, we emphasize that medium-/long-term potential for large earthquakes might exist nowadays in some areas with significant gravity anomalies in the study region. Thus, the monitoring

  15. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

    Science.gov (United States)

    Childers, V. A.; Eckl, M. C.

    2014-12-01

    The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

  16. Gravity effects on endogenous movements

    Science.gov (United States)

    Johnsson, Anders; Antonsen, Frank

    -ation stimulations (gravitropism reactions). Such a negative feedback can account for gravity initiated transport, resulting in lateral water transport and overall movements. The simulation results indicate that self-sustained oscillations can occur on such a cylinder of cells. It will also be demonstrated that the introduction of feedback in the model results in longer circum-nutation periods. It will be discussed how this generic modeling approach could be applied to discuss oscillatory plant movements in general and how other environmental factors, as for instance light gradients, could couple to the self-sustained movements. The oscillations require weightlessness for proper investigations. References: Antonsen F.: Biophysical studies of plant growth movements in microgravity and under 1 g conditions. PhD thesis, Norwegian University of Science and Technology 1998. Johnsson A., Solheim BGB, Iversen T.-H.: Gravity amplifies and microgravity decreases cir-cumnutations in Arabidopsis thaliana stems: results from a space experiment.-New Phytologist 182: 621-629. 2009. Turing AM.: The chemical basis for morphogenesis.-Phil Trans. R. Soc. London Ser B237:37 -72. 1952.

  17. Quantum Gravity

    International Nuclear Information System (INIS)

    Giribet, G E

    2005-01-01

    Claus Kiefer presents his book, Quantum Gravity, with his hope that '[the] book will convince readers of [the] outstanding problem [of unification and quantum gravity] and encourage them to work on its solution'. With this aim, the author presents a clear exposition of the fundamental concepts of gravity and the steps towards the understanding of its quantum aspects. The main part of the text is dedicated to the analysis of standard topics in the formulation of general relativity. An analysis of the Hamiltonian formulation of general relativity and the canonical quantization of gravity is performed in detail. Chapters four, five and eight provide a pedagogical introduction to the basic concepts of gravitational physics. In particular, aspects such as the quantization of constrained systems, the role played by the quadratic constraint, the ADM decomposition, the Wheeler-de Witt equation and the problem of time are treated in an expert and concise way. Moreover, other specific topics, such as the minisuperspace approach and the feasibility of defining extrinsic times for certain models, are discussed as well. The ninth chapter of the book is dedicated to the quantum gravitational aspects of string theory. Here, a minimalistic but clear introduction to string theory is presented, and this is actually done with emphasis on gravity. It is worth mentioning that no hard (nor explicit) computations are presented, even though the exposition covers the main features of the topic. For instance, black hole statistical physics (within the framework of string theory) is developed in a pedagogical and concise way by means of heuristical arguments. As the author asserts in the epilogue, the hope of the book is to give 'some impressions from progress' made in the study of quantum gravity since its beginning, i.e., since the end of 1920s. In my opinion, Kiefer's book does actually achieve this goal and gives an extensive review of the subject. (book review)

  18. Butterfly effect in 3D gravity

    Science.gov (United States)

    Qaemmaqami, Mohammad M.

    2017-11-01

    We study the butterfly effect by considering shock wave solutions near the horizon of the anti-de Sitter black hole in some three-dimensional gravity models including 3D Einstein gravity, minimal massive 3D gravity, new massive gravity, generalized massive gravity, Born-Infeld 3D gravity, and new bigravity. We calculate the butterfly velocities of these models and also we consider the critical points and different limits in some of these models. By studying the butterfly effect in the generalized massive gravity, we observe a correspondence between the butterfly velocities and right-left moving degrees of freedom or the central charges of the dual 2D conformal field theories.

  19. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  20. Nonsingular universe in massive gravity's rainbow

    Science.gov (United States)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  1. Airborne Gravity: NGS' Airborne Gravity Data for AN01 (2009-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2009-2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  2. Automated Burris gravity meter for single and continuous observation

    Directory of Open Access Journals (Sweden)

    Gerhard Jentzsch

    2018-05-01

    Full Text Available The Burris Gravity Meter™ manufactured by ZLS Corporation, Austin/Texas, USA, is based on the invention of L&R (L. LaCoste and A. Romberg: The ZLS (zero-length spring. A digital feedback system (range of about 50 mGal is used to null the beam. Now, more than 120 gravity meters of this make exist worldwide and are used successfully in exploration, volcanology, geodetic work and surveying.The sensor is made of the well-known (L&R metal-alloy zero-length spring providing a low drift characteristic. The drifts observed are comparable to L&R gravimeters and are less than 0.3 mGal per month, which is much lower than the drifts known for the fused quartz sensors.The dial is calibrated every 50 mGal over the entire 7000 mGal meter range. Since the gravity value is determined at these points, there are no periodic errors. By a fourth heater circuit temperature effects are totally avoided. The gravity meter is controlled via Bluetooth® either to a handheld computer (tablet or a notebook computer.The feedback responds with high stability and accuracy. The nulling of the beam is controlled by the UltraGrav™ control system which incorporates an inherently linear PWM (pulse-width modulated electrostatic feedback system. In order to improve the handling of the gravimeter we have developed two Windows based programs: AGESfield for single measurements and AGEScont for continuous readings. Keywords: Gravimeter, Micro-gravity measurements, Drift, Resolution, Single and continuous observations

  3. Constraining f(R) gravity in solar system, cosmology and binary pulsar systems

    Science.gov (United States)

    Liu, Tan; Zhang, Xing; Zhao, Wen

    2018-02-01

    The f (R) gravity can be cast into the form of a scalar-tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f (R) gravity, using a scalar-tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f (R) gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f (R) models (Hu-Sawicki model, Tsujikawa model and Starobinsky model) and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  4. Assessment of Gravity Field and Steady State Ocean Circulation Explorer (GOCE) geoid model using GPS levelling over Sabah and Sarawak

    Science.gov (United States)

    Othman, A. H.; Omar, K. M.; Din, A. H. M.; Som, Z. A. M.; Yahaya, N. A. Z.; Pa'suya, M. F.

    2016-06-01

    The GOCE satellite mission has significantly contributed to various applications such as solid earth physics, oceanography and geodesy. Some substantial applications of geodesy are to improve the gravity field knowledge and the precise geoid modelling towards realising global height unification. This paper aims to evaluate GOCE geoid model based on the recent GOCE Global Geopotential Model (GGM), as well as EGM2008, using GPS levelling data over East Malaysia, i.e. Sabah and Sarawak. The satellite GGMs selected in this study are the GOCE GGM models which include GOCE04S, TIM_R5 and SPW_R4, and the EGM2008 model. To assess these models, the geoid heights from these GGMs are compared to the local geometric geoid height. The GGM geoid heights was derived using EGMLAB1 software and the geometric geoid height was computed by available GPS levelling information obtained from the Department Survey and Mapping Malaysia. Generally, the GOCE models performed better than EGM2008 over East Malaysia and the best fit GOCE model for this region is the TIM_R5 model. The TIM_R5 GOCE model demonstrated the lowest R.M.S. of ± 16.5 cm over Sarawak, comparatively. For further improvement, this model should be combined with the local gravity data for optimum geoid modelling over East Malaysia.

  5. Interior Alaska Bouguer Gravity Anomaly

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A 1 kilometer Complete Bouguer Anomaly gravity grid of interior Alaska. Only those grid cells within 10 kilometers of a gravity data point have gravity values....

  6. The incompressible non-relativistic Navier-Stokes equation from gravity

    International Nuclear Information System (INIS)

    Bhattacharyya, Sayantani; Minwalla, Shiraz; Wadia, Spenta R.

    2009-01-01

    We note that the equations of relativistic hydrodynamics reduce to the incompressible Navier-Stokes equations in a particular scaling limit. In this limit boundary metric fluctuations of the underlying relativistic system turn into a forcing function identical to the action of a background electromagnetic field on the effectively charged fluid. We demonstrate that special conformal symmetries of the parent relativistic theory descend to 'accelerated boost' symmetries of the Navier-Stokes equations, uncovering a conformal symmetry structure of these equations. Applying our scaling limit to holographically induced fluid dynamics, we find gravity dual descriptions of an arbitrary solution of the forced non-relativistic incompressible Navier-Stokes equations. In the holographic context we also find a simple forced steady state shear solution to the Navier-Stokes equations, and demonstrate that this solution turns unstable at high enough Reynolds numbers, indicating a possible eventual transition to turbulence.

  7. Quantum steady computation

    International Nuclear Information System (INIS)

    Castagnoli, G.

    1991-01-01

    This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition

  8. Quantum steady computation

    Energy Technology Data Exchange (ETDEWEB)

    Castagnoli, G. (Dipt. di Informatica, Sistemistica, Telematica, Univ. di Genova, Viale Causa 13, 16145 Genova (IT))

    1991-08-10

    This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition.

  9. Motives and periods in Bianchi IX gravity models

    Science.gov (United States)

    Fan, Wentao; Fathizadeh, Farzad; Marcolli, Matilde

    2018-05-01

    We show that, when considering the anisotropic scaling factors and their derivatives as affine variables, the coefficients of the heat-kernel expansion of the Dirac-Laplacian on SU(2) Bianchi IX metrics are algebro-geometric periods of motives of complements in affine spaces of unions of quadrics and hyperplanes. We show that the motives are mixed Tate and we provide an explicit computation of their Grothendieck classes.

  10. Gravity wave-driven fluctuations in OH nightglow from an extended, dissipative emission region

    International Nuclear Information System (INIS)

    Schubert, G.; Walterscheid, R.L.; Hickey, M.P.

    1991-01-01

    The theory of gravity wave-driven fluctuations in the OH nightglow from an extended source region is generalized to account for effects of eddy kinematic viscosity v and eddy thermal diffusivity κ. In the nondiffusive case, the amplitudes and phases of vertically integrated normalized intensity (δI)/(bar I) and temperature (δT 1 )/(bar T 1 ) perturbations and vertically integrated Krassovsky's ratio (η) as functions of period are influenced by the upper limit of vertical integration of the extended source, especially at long periods when vertical wavelengths γ v are small. The effects, which include oscillations in (δT)/(bar I), (δT 1 )/(bar T 1 ), and (η), particularly at long periods, are due to constructive and destructive interference of nightglow signals from vertically separated levels of the OH emitting region that occur when γ v is comparable to or smaller than the thickness of the main emission region. The sensitivity of these ratios to the upper limit of vertical integration occurs because of the relatively small rate of decay of the intensity of OH emission with height above the peak emission level and the exponential growth with altitude of nondissipative gravity waves. Because eddy diffusion increases γ v , especially at long periods, and reduces wave growth with height compared with the case v = κ = 0, inclusion of eddy diffusion removes the sensitivity of (η) and the other ratios ot the maximum height of vertical integration. It is essential to account for both eddy diffusion and emission from the entire vertically extended emission region to correctly predict (η), (δI)/(bar I), and (δT 1 )/(bar T 1 ) at long gravity wave periods

  11. Pseudo Steady-State Free Precession for MR-Fingerprinting.

    Science.gov (United States)

    Assländer, Jakob; Glaser, Steffen J; Hennig, Jürgen

    2017-03-01

    This article discusses the signal behavior in the case the flip angle in steady-state free precession sequences is continuously varied as suggested for MR-fingerprinting sequences. Flip angle variations prevent the establishment of a steady state and introduce instabilities regarding to magnetic field inhomogeneities and intravoxel dephasing. We show how a pseudo steady state can be achieved, which restores the spin echo nature of steady-state free precession. Based on geometrical considerations, relationships between the flip angle, repetition and echo time are derived that suffice to the establishment of a pseudo steady state. The theory is tested with Bloch simulations as well as phantom and in vivo experiments. A typical steady-state free precession passband can be restored with the proposed conditions. The stability of the pseudo steady state is demonstrated by comparing the evolution of the signal of a single isochromat to one resulting from a spin ensemble. As confirmed by experiments, magnetization in a pseudo steady state can be described with fewer degrees of freedom compared to the original fingerprinting and the pseudo steady state results in more reliable parameter maps. The proposed conditions restore the spin-echo-like signal behavior typical for steady-state free precession in fingerprinting sequences, making this approach more robust to B 0 variations. Magn Reson Med 77:1151-1161, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Metastable gravity on classical defects

    International Nuclear Information System (INIS)

    Ringeval, Christophe; Rombouts, Jan-Willem

    2005-01-01

    We discuss the realization of metastable gravity on classical defects in infinite-volume extra dimensions. In dilatonic Einstein gravity, it is found that the existence of metastable gravity on the defect core requires violation of the dominant energy condition for codimension N c =2 defects. This is illustrated with a detailed analysis of a six-dimensional hyperstring minimally coupled to dilaton gravity. We present the general conditions under which a codimension N c >2 defect admits metastable modes, and find that they differ from lower codimensional models in that, under certain conditions, they do not require violation of energy conditions to support quasilocalized gravity

  13. Gravity-Driven Deposits in an Active Margin (Ionian Sea) Over the Last 330,000 Years

    Science.gov (United States)

    Köng, Eléonore; Zaragosi, Sébastien; Schneider, Jean-Luc; Garlan, Thierry; Bachèlery, Patrick; Sabine, Marjolaine; San Pedro, Laurine

    2017-11-01

    In the Ionian Sea, the subduction of the Nubia plate underneath the Eurasia plate leads to an important sediment remobilization on the Calabrian Arc and the Mediterranean Ridge. These events are often associated with earthquakes and tsunamis. In this study, we analyze gravity-driven deposits in order to establish their recurrence time on the Calabrian Arc and the western Mediterranean Ridge. Four gravity cores collected on ridges and slope basins of accretionary prisms record turbidites, megaturbidites, slumping and micro-faults over the last 330,000 years. These turbidites were dated by correlation with a hemipelagic core with a multi-proxy approach: radiometric dating, δ18O, b* colour curve, sapropels and tephrochronology. The origin of the gravity-driven deposits was studied with a sedimentary approach: grain-size, lithology, thin section, geochemistry of volcanic glass. The results suggest three periods of presence/absence of gravity-driven deposits: a first on the western lobe of the Calabrian Arc between 330,000 and 250,000 years, a second between 120,000 years and present day on the eastern lobe of the Calabrian Arc and over the last 60,000 years on the western lobe, and a third on the Mediterranean Ridge over the last 37,000 years. Return times for gravity-driven deposits are around 1,000 years during the most important record periods. The turbidite activity also highlights the presence of volcaniclastic turbidites that seems to be link to the Etna changing morphology over the last 320,000 years.

  14. Do's and don'ts in Fourier analysis of steady-state potentials.

    Science.gov (United States)

    Bach, M; Meigen, T

    1999-01-01

    Fourier analysis is a powerful tool in signal analysis that can be very fruitfully applied to steady-state evoked potentials (flicker ERG, pattern ERG, VEP, etc.). However, there are some inherent assumptions in the underlying discrete Fourier transform (DFT) that are not necessarily fulfilled in typical electrophysiological recording and analysis conditions. Furthermore, engineering software-packages may be ill-suited and/or may not fully exploit the information of steady-state recordings. Specifically: * In the case of steady-state stimulation we know more about the stimulus than in standard textbook situations (exact frequency, phase stability), so 'windowing' and calculation of the 'periodogram' are not necessary. * It is mandatory to choose an integer relationship between sampling rate and frame rate when employing a raster-based CRT stimulator. * The analysis interval must comprise an exact integer number (e.g., 10) of stimulus periods. * The choice of the number of stimulus periods per analysis interval needs a wise compromise: A high number increases the frequency resolution, but makes artifact removal difficult; a low number 'spills' noise into the response frequency. * There is no need to feel tied to a power-of-two number of data points as required by standard FFT, 'resampling' is an easy and efficient alternative. * Proper estimates of noise-corrected Fourier magnitude and statistical significance can be calculated that take into account the non-linear superposition of signal and noise. These aspects are developed in an intuitive approach with examples using both simulations and recordings. Proper use of Fourier analysis of our electrophysiological records will reduce recording time and/or increase the reliability of physiologic or pathologic interpretations.

  15. Molecular mechanisms of root gravity sensing and signal transduction.

    Science.gov (United States)

    Strohm, Allison K; Baldwin, Katherine L; Masson, Patrick H

    2012-01-01

    Plants use gravity as a guide to direct their roots down into the soil to anchor themselves and to find resources needed for growth and development. In higher plants, the columella cells of the root tip form the primary site of gravity sensing, and in these cells the sedimentation of dense, starch-filled plastids (amyloplasts) triggers gravity signal transduction. This generates an auxin gradient across the root cap that is transmitted to the elongation zone where it promotes differential cell elongation, allowing the root to direct itself downward. It is still not well understood how amyloplast sedimentation leads to auxin redistribution. Models have been proposed to explain how mechanosensitive ion channels or ligand-receptor interactions could connect these events. Although their roles are still unclear, possible second messengers in this process include protons, Ca(2+), and inositol 1,4,5-triphosphate. Upon gravistimulation, the auxin efflux facilitators PIN3 and PIN7 relocalize to the lower side of the columella cells and mediate auxin redistribution. However, evidence for an auxin-independent secondary mechanism of gravity sensing and signal transduction suggests that this physiological process is quite complex. Furthermore, plants must integrate a variety of environmental cues, resulting in multifaceted relationships between gravitropism and other directional growth responses such as hydro-, photo-, and thigmotropism. Copyright © 2011 Wiley Periodicals, Inc.

  16. GPS-TEC Observation of Gravity Waves Generated in the Ionosphere During 21 August 2017 Total Solar Eclipse

    Science.gov (United States)

    Nayak, Chinmaya; Yiǧit, Erdal

    2018-01-01

    The present work investigates ionospheric effects of the 21 August 2017 total solar eclipse, particularly targeting eclipse-generated gravity waves in the ionosphere. Ionospheric total electron content (TEC) derived from Global Positioning System (GPS) data obtained from a number of stations located both along and across the path of eclipse totality has been utilized for this purpose. Distinct gravity wave-like signatures with wave periods around 20-90 min (with dominant peak at 25-30 min wave period) have been observed at all locations both in the path of totality and away from it. The observed gravity waves are more intense at locations closer to the path of totality, and the wave amplitudes decrease gradually with increasing distance from the path of totality. Our result highlights the manifestation of eclipse-generated waves in the variability of the terrestrial ionosphere.

  17. Gravity gradient preprocessing at the GOCE HPF

    Science.gov (United States)

    Bouman, J.; Rispens, S.; Gruber, T.; Schrama, E.; Visser, P.; Tscherning, C. C.; Veicherts, M.

    2009-04-01

    One of the products derived from the GOCE observations are the gravity gradients. These gravity gradients are provided in the Gradiometer Reference Frame (GRF) and are calibrated in-flight using satellite shaking and star sensor data. In order to use these gravity gradients for application in Earth sciences and gravity field analysis, additional pre-processing needs to be done, including corrections for temporal gravity field signals to isolate the static gravity field part, screening for outliers, calibration by comparison with existing external gravity field information and error assessment. The temporal gravity gradient corrections consist of tidal and non-tidal corrections. These are all generally below the gravity gradient error level, which is predicted to show a 1/f behaviour for low frequencies. In the outlier detection the 1/f error is compensated for by subtracting a local median from the data, while the data error is assessed using the median absolute deviation. The local median acts as a high-pass filter and it is robust as is the median absolute deviation. Three different methods have been implemented for the calibration of the gravity gradients. All three methods use a high-pass filter to compensate for the 1/f gravity gradient error. The baseline method uses state-of-the-art global gravity field models and the most accurate results are obtained if star sensor misalignments are estimated along with the calibration parameters. A second calibration method uses GOCE GPS data to estimate a low degree gravity field model as well as gravity gradient scale factors. Both methods allow to estimate gravity gradient scale factors down to the 10-3 level. The third calibration method uses high accurate terrestrial gravity data in selected regions to validate the gravity gradient scale factors, focussing on the measurement band. Gravity gradient scale factors may be estimated down to the 10-2 level with this method.

  18. Steady-state hydrodynamic instabilities of active liquid crystals: hybrid lattice Boltzmann simulations.

    Science.gov (United States)

    Marenduzzo, D; Orlandini, E; Cates, M E; Yeomans, J M

    2007-09-01

    We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state. This transition is attained for sufficiently "extensile" rods, in the case of flow-aligning liquid crystals, and for sufficiently "contractile" ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange themselves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of "convection rolls." These results demonstrate a remarkable richness (including dependence on anchoring conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and efficient method for probing the complex hydrodynamic behavior of active nematics.

  19. New standards for reducing gravity data: The North American gravity database

    Science.gov (United States)

    Hinze, W. J.; Aiken, C.; Brozena, J.; Coakley, B.; Dater, D.; Flanagan, G.; Forsberg, R.; Hildenbrand, T.; Keller, Gordon R.; Kellogg, J.; Kucks, R.; Li, X.; Mainville, A.; Morin, R.; Pilkington, M.; Plouff, D.; Ravat, D.; Roman, D.; Urrutia-Fucugauchi, J.; Veronneau, M.; Webring, M.; Winester, D.

    2005-01-01

    The North American gravity database as well as databases from Canada, Mexico, and the United States are being revised to improve their coverage, versatility, and accuracy. An important part of this effort is revising procedures for calculating gravity anomalies, taking into account our enhanced computational power, improved terrain databases and datums, and increased interest in more accurately defining long-wavelength anomaly components. Users of the databases may note minor differences between previous and revised database values as a result of these procedures. Generally, the differences do not impact the interpretation of local anomalies but do improve regional anomaly studies. The most striking revision is the use of the internationally accepted terrestrial ellipsoid for the height datum of gravity stations rather than the conventionally used geoid or sea level. Principal facts of gravity observations and anomalies based on both revised and previous procedures together with germane metadata will be available on an interactive Web-based data system as well as from national agencies and data centers. The use of the revised procedures is encouraged for gravity data reduction because of the widespread use of the global positioning system in gravity fieldwork and the need for increased accuracy and precision of anomalies and consistency with North American and national databases. Anomalies based on the revised standards should be preceded by the adjective "ellipsoidal" to differentiate anomalies calculated using heights with respect to the ellipsoid from those based on conventional elevations referenced to the geoid. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  20. Scale-invariant gravity: geometrodynamics

    International Nuclear Information System (INIS)

    Anderson, Edward; Barbour, Julian; Foster, Brendan; Murchadha, Niall O

    2003-01-01

    We present a scale-invariant theory, conformal gravity, which closely resembles the geometrodynamical formulation of general relativity (GR). While previous attempts to create scale-invariant theories of gravity have been based on Weyl's idea of a compensating field, our direct approach dispenses with this and is built by extension of the method of best matching w.r.t. scaling developed in the parallel particle dynamics paper by one of the authors. In spatially compact GR, there is an infinity of degrees of freedom that describe the shape of 3-space which interact with a single volume degree of freedom. In conformal gravity, the shape degrees of freedom remain, but the volume is no longer a dynamical variable. Further theories and formulations related to GR and conformal gravity are presented. Conformal gravity is successfully coupled to scalars and the gauge fields of nature. It should describe the solar system observations as well as GR does, but its cosmology and quantization will be completely different

  1. Steady-state and pre-steady-state kinetic analysis of halopropane conversion by a Rhodococcus haloalkane dehalogenase

    NARCIS (Netherlands)

    Bosma, T; Pikkemaat, MG; Kingma, Jacob; Dijk, J; Janssen, DB

    2003-01-01

    Haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064 (DhaA) catalyzes the hydrolysis of carbon-halogen bonds in a wide range of haloalkanes. We examined the steady-state and pre-steady-state kinetics of halopropane conversion by DhaA to illuminate mechanistic details of the

  2. Multimode optical fibers: steady state mode exciter.

    Science.gov (United States)

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  3. Gravity Waves and Wind-Farm Efficiency in Neutral and Stable Conditions

    Science.gov (United States)

    Allaerts, Dries; Meyers, Johan

    2018-02-01

    We use large-eddy simulations (LES) to investigate the impact of stable stratification on gravity-wave excitation and energy extraction in a large wind farm. To this end, the development of an equilibrium conventionally neutral boundary layer into a stable boundary layer over a period of 8 h is considered, using two different cooling rates. We find that turbulence decay has considerable influence on the energy extraction at the beginning of the boundary-layer transition, but afterwards, energy extraction is dominated by geometrical and jet effects induced by an inertial oscillation. It is further shown that the inertial oscillation enhances gravity-wave excitation. By comparing LES results with a simple one-dimensional model, we show that this is related to an interplay between wind-farm drag, variations in the Froude number and the dispersive effects of vertically-propagating gravity waves. We further find that the pressure gradients induced by gravity waves lead to significant upstream flow deceleration, reducing the average turbine output compared to a turbine in isolated operation. This leads us to the definition of a non-local wind-farm efficiency, next to a more standard wind-farm wake efficiency, and we show that both can be of the same order of magnitude. Finally, an energy flux analysis is performed to further elucidate the effect of gravity waves on the flow in the wind farm.

  4. Dual geometric-gauge field aspects of gravity

    International Nuclear Information System (INIS)

    Huei Peng; Wang, K.

    1992-01-01

    We propose that the geometric and standard gauge field aspects of gravity are equally essential for a complete description of gravity and can be reconciled. We show that this dualism of gravity resolves the dimensional Newtonian constant problem in both quantum gravity and unification schemes involving gravity (i.e., the Newtonian constant is no longer the coupling constant in the gauge aspect of gravity) and reveals the profound similarity between gravity and other fields. 23 refs., 3 tabs

  5. VHF radar observations of gravity waves at a low latitude

    Directory of Open Access Journals (Sweden)

    G. Dutta

    1999-08-01

    Full Text Available Wind observations made at Gadanki (13.5°N by using Indian MST Radar for few days in September, October, December 1995 and January, 1996 have been analyzed to study gravity wave activity in the troposphere and lower stratosphere. Horizontal wind variances have been computed for gravity waves of period (2-6 h from the power spectral density (PSD spectrum. Exponential curves of the form eZ/H have been fitted by least squares technique to these variance values to obtain height variations of the irregular winds upto the height of about 15 km, where Z is the height in kilometers. The value of H, the scale height, as determined from curve fitting is found to be less than the theoretical value of scale height of neutral atmosphere in this region, implying that the waves are gaining energy during their passage in the troposphere. In other words, it indicates that the sources of gravity waves are present in the troposphere. The energy densities of gravity wave fluctuations have been computed. Polynomial fits to the observed values show that wave energy density increases in the troposphere, its source region, and then decreases in the lower stratosphere.Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; turbulence; waves and tides

  6. A comparison of Horava-Lifshitz gravity and Einstein gravity through thin-shell wormhole construction

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, F [Department of Mathematics, Jadavpur University, Kolkata 700032 (India); Kuhfittig, P K F [Department of Mathematics, Milwaukee School of Engineering, Milwaukee, WI 53202-3109 (United States); Kalam, M [Department of Physics, Aliah University, Sector V, Salt Lake, Kolkata 700091 (India); Usmani, A A [Department of Physics, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh (India); Ray, S, E-mail: farook-rahaman@yahoo.com, E-mail: kuhfitti@msoe.edu, E-mail: mehedikalam@yahoo.co.in, E-mail: anisul@iucaa.ernet.in, E-mail: saibal@iucaa.ernet.in [Department of Physics, Govt College of Engineering and Ceramic Technology, Kolkata 700010 (India)

    2011-08-07

    In this paper, we have constructed a new class of thin-shell wormholes from black holes in Horava-Lifshitz gravity. Particular emphasis is placed on those aspects that allow a comparison of Horava-Lifshitz gravity to Einstein gravity. The former enjoys a number of advantages for small values of the throat radius.

  7. Study on relationship between evolution of regional gravity field and seismic hazard

    Science.gov (United States)

    Li, W.; Xu, C.; Shen, C.

    2017-12-01

    The lack of anomalous signal is a big issue for the study of geophysics using historical geodesy observations, which is a relatively new area of earth gravimetry application in seismology. Hence the use of the gravity anomaly (GA) derived from either a global geopotential model (GGM) or a regional gravity reanalysis (Ground Gravity Survey, GGS) becomes an important alternative solution. In this study, the GGS at 186 points for the period of 2010 2014 in the Sichuan-Yunnan region (SYR) stations are analyzed. To study the temporal and spatial distribution characteristics of regional gravity filed (RGF) and its evolution mechanism. Taking the geological and geophysical data as constraints. From the GGM expanded up to degree 360, GA were obtained after gravity reduction, especially removing the reference field. The dynamically evolutional characteristics of gravity field are closely relative to fault activity. The gravity changes with time about 5 years at LongMenShan fault (LMSF) have a slop of -12.83±2.9 μGal/a, indicating that LMSF has an uplift. To test the signal extraction algorithm in some geodynamic processes, GA from the SYR were inverted and it was also imposed as a priori information. Fortunately, some significant gravity variation have been detected at some stations in the thrust fault before and after four earthquakes, in which typical anomalies (earthquake precursor, EP) were positive GA variation near the epicenter and the occurrence of a high-gravity-gradient zone across the epicenter prior to the Lushan earthquake (Ms 7.0). The repeated observation results during about 5 years indicate that no significant gravity changes related to other geodynamical events were observed in most observation epochs. In addition, the mechanism of gravity changes at Lushan was also explored. We calculated the gravity change rates based on the model of Songpan-Ganze block (SGB) to Sichuan basin (SCB). And the changes is in good agreement with observed one, indicating

  8. Combined influence of inertia, gravity, and surface tension on the linear stability of Newtonian fiber spinning

    Science.gov (United States)

    Bechert, M.; Scheid, B.

    2017-11-01

    The draw resonance effect appears in fiber spinning processes if the ratio of take-up to inlet velocity, the so-called draw ratio, exceeds a critical value and manifests itself in steady oscillations of flow velocity and fiber diameter. We study the effect of surface tension on the draw resonance behavior of Newtonian fiber spinning in the presence of inertia and gravity. Utilizing an alternative scaling makes it possible to visualize the results in stability maps of highly practical relevance. The interplay of the destabilizing effect of surface tension and the stabilizing effects of inertia and gravity lead to nonmonotonic stability behavior and local stability maxima with respect to the dimensionless fluidity and the dimensionless inlet velocity. A region of unconditional instability caused by the influence of surface tension is found in addition to the region of unconditional stability caused by inertia, which was described in previous works [M. Bechert, D. W. Schubert, and B. Scheid, Eur. J. Mech B 52, 68 (2015), 10.1016/j.euromechflu.2015.02.005; Phys. Fluids 28, 024109 (2016), 10.1063/1.4941762]. Due to its importance for a particular group of fiber spinning applications, a viscous-gravity-surface-tension regime, i.e., negligible effect of inertia, is analyzed separately. The mechanism underlying the destabilizing effect of surface tension is discussed and established stability criteria are tested for validity in the presence of surface tension.

  9. A GOCE only gravity model GOSG01S and the validation of GOCE related satellite gravity models

    Directory of Open Access Journals (Sweden)

    Xinyu Xu

    2017-07-01

    Full Text Available We compile the GOCE-only satellite model GOSG01S complete to spherical harmonic degree of 220 using Satellite Gravity Gradiometry (SGG data and the Satellite-to-Satellite Tracking (SST observations along the GOCE orbit based on applying a least-squares analysis. The diagonal components (Vxx, Vyy, Vzz of the gravitational gradient tensor are used to form the system of observation equations with the band-pass ARMA filter. The point-wise acceleration observations (ax, ay, az along the orbit are used to form the system of observation equations up to the maximum spherical harmonic degree/order 130. The analysis of spectral accuracy characteristics of the newly derived gravitational model GOSG01S and the existing models GOTIM04S, GODIR04S, GOSPW04S and JYY_GOCE02S based on their comparison with the ultra-high degree model EIGEN-6C2 reveals a significant consistency at the spectral window approximately between 80 and 190 due to the same period SGG data used to compile these models. The GOCE related satellite gravity models GOSG01S, GOTIM05S, GODIR05S, GOTIM04S, GODIR04S, GOSPW04S, JYY_GOCE02S, EIGEN-6C2 and EGM2008 are also validated by using GPS-leveling data in China and USA. According to the truncation at degree 200, the statistic results show that all GGMs have very similar differences at GPS-leveling points in USA, and all GOCE related gravity models have better performance than EGM2008 in China. This suggests that all these models provide much more information on the gravity field than EGM2008 in areas with low terrestrial gravity coverage. And STDs of height anomaly differences in China for the selected truncation degrees show that GOCE has improved the accuracy of the global models beyond degree 90 and the accuracies of the models improve from 24 cm to 16 cm. STDs of geoid height differences in USA show that GOSG01S model has best consistency comparing with GPS-leveling data for the frequency band of the degree between 20 and 160.

  10. Constraining f(R gravity in solar system, cosmology and binary pulsar systems

    Directory of Open Access Journals (Sweden)

    Tan Liu

    2018-02-01

    Full Text Available The f(R gravity can be cast into the form of a scalar–tensor theory, and scalar degree of freedom can be suppressed in high-density regions by the chameleon mechanism. In this article, for the general f(R gravity, using a scalar–tensor representation with the chameleon mechanism, we calculate the parametrized post-Newtonian parameters γ and β, the effective gravitational constant Geff, and the effective cosmological constant Λeff. In addition, for the general f(R gravity, we also calculate the rate of orbital period decay of the binary system due to gravitational radiation. Then we apply these results to specific f(R models (Hu–Sawicki model, Tsujikawa model and Starobinsky model and derive the constraints on the model parameters by combining the observations in solar system, cosmological scales and the binary systems.

  11. Focus on quantum Einstein gravity Focus on quantum Einstein gravity

    Science.gov (United States)

    Ambjorn, Jan; Reuter, Martin; Saueressig, Frank

    2012-09-01

    The gravitational asymptotic safety program summarizes the attempts to construct a consistent and predictive quantum theory of gravity within Wilson's generalized framework of renormalization. Its key ingredient is a non-Gaussian fixed point of the renormalization group flow which controls the behavior of the theory at trans-Planckian energies and renders gravity safe from unphysical divergences. Provided that the fixed point comes with a finite number of ultraviolet-attractive (relevant) directions, this construction gives rise to a consistent quantum field theory which is as predictive as an ordinary, perturbatively renormalizable one. This opens up the exciting possibility of establishing quantum Einstein gravity as a fundamental theory of gravity, without introducing supersymmetry or extra dimensions, and solely based on quantization techniques that are known to work well for the other fundamental forces of nature. While the idea of gravity being asymptotically safe was proposed by Steven Weinberg more than 30 years ago [1], the technical tools for investigating this scenario only emerged during the last decade. Here a key role is played by the exact functional renormalization group equation for gravity, which allows the construction of non-perturbative approximate solutions for the RG-flow of the gravitational couplings. Most remarkably, all solutions constructed to date exhibit a suitable non-Gaussian fixed point, lending strong support to the asymptotic safety conjecture. Moreover, the functional renormalization group also provides indications that the central idea of a non-Gaussian fixed point providing a safe ultraviolet completion also carries over to more realistic scenarios where gravity is coupled to a suitable matter sector like the standard model. These theoretical successes also triggered a wealth of studies focusing on the consequences of asymptotic safety in a wide range of phenomenological applications covering the physics of black holes, early

  12. Gravity a very short introduction

    CERN Document Server

    Clifton, Timothy

    2017-01-01

    Gravity is one of the four fundamental interactions that exist in nature. It also has the distinction of being the oldest, weakest, and most difficult force to quantize. Understanding gravity is not only essential for understanding the motion of objects on Earth, but also the motion of all celestial objects, and even the expansion of the Universe itself. It was the study of gravity that led Einstein to his profound realizations about the nature of space and time. Gravity is not only universal, it is also essential for understanding the behavior of the Universe, and all astrophysical bodies within it. In this Very Short Introduction Timothy Clifton looks at the development of our understanding of gravity since the early observations of Kepler and Newtonian theory. He discusses Einstein's theory of gravity, which now supplants Newton's, showing how it allows us to understand why the frequency of light changes as it passes through a gravitational field, why GPS satellites need their clocks corrected as they orbi...

  13. Quantum Gravity

    OpenAIRE

    Alvarez, Enrique

    2004-01-01

    Gravitons should have momentum just as photons do; and since graviton momentum would cause compression rather than elongation of spacetime outside of matter; it does not appear that gravitons are compatible with Swartzchild's spacetime curvature. Also, since energy is proportional to mass, and mass is proportional to gravity; the energy of matter is proportional to gravity. The energy of matter could thus contract space within matter; and because of the inter-connectedness of space, cause the...

  14. Gravity in the Brain as a Reference for Space and Time Perception.

    Science.gov (United States)

    Lacquaniti, Francesco; Bosco, Gianfranco; Gravano, Silvio; Indovina, Iole; La Scaleia, Barbara; Maffei, Vincenzo; Zago, Myrka

    2015-01-01

    Moving and interacting with the environment require a reference for orientation and a scale for calibration in space and time. There is a wide variety of environmental clues and calibrated frames at different locales, but the reference of gravity is ubiquitous on Earth. The pull of gravity on static objects provides a plummet which, together with the horizontal plane, defines a three-dimensional Cartesian frame for visual images. On the other hand, the gravitational acceleration of falling objects can provide a time-stamp on events, because the motion duration of an object accelerated by gravity over a given path is fixed. Indeed, since ancient times, man has been using plumb bobs for spatial surveying, and water clocks or pendulum clocks for time keeping. Here we review behavioral evidence in favor of the hypothesis that the brain is endowed with mechanisms that exploit the presence of gravity to estimate the spatial orientation and the passage of time. Several visual and non-visual (vestibular, haptic, visceral) cues are merged to estimate the orientation of the visual vertical. However, the relative weight of each cue is not fixed, but depends on the specific task. Next, we show that an internal model of the effects of gravity is combined with multisensory signals to time the interception of falling objects, to time the passage through spatial landmarks during virtual navigation, to assess the duration of a gravitational motion, and to judge the naturalness of periodic motion under gravity.

  15. Modular Extended-Stay HyperGravity Facility Design Concept: An Artificial-Gravity Space-Settlement Ground Analogue

    Science.gov (United States)

    Dorais, Gregory A.

    2015-01-01

    This document defines the design concept for a ground-based, extended-stay hypergravity facility as a precursor for space-based artificial-gravity facilities that extend the permanent presence of both human and non-human life beyond Earth in artificial-gravity settlements. Since the Earth's current human population is stressing the environment and the resources off-Earth are relatively unlimited, by as soon as 2040 more than one thousand people could be living in Earthorbiting artificial-gravity habitats. Eventually, the majority of humanity may live in artificialgravity habitats throughout this solar system as well as others, but little is known about the longterm (multi-generational) effects of artificial-gravity habitats on people, animals, and plants. In order to extend life permanently beyond Earth, it would be useful to create an orbiting space facility that generates 1g as well as other gravity levels to rigorously address the numerous challenges of such an endeavor. Before doing so, developing a ground-based artificial-gravity facility is a reasonable next step. Just as the International Space Station is a microgravity research facility, at a small fraction of the cost and risk a ground-based artificial-gravity facility can begin to address a wide-variety of the artificial-gravity life-science questions and engineering challenges requiring long-term research to enable people, animals, and plants to live off-Earth indefinitely.

  16. Bouncing dynamics of Bose–Einstein condensates under the effects of gravity

    Energy Technology Data Exchange (ETDEWEB)

    Sekh, Golam Ali, E-mail: golamali.sekh@ba.infn.it [Department of Physics, University of Kashmir, Hazratbal, Srinagar-190006, J & K (India); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, I-70126 Bari (Italy)

    2017-03-03

    Bouncing dynamics of quasi-one dimensional Bose–Einstein condensates (BECs) falling under gravity on delta-function potentials is investigated. First, we consider a single component BEC in the presence of cubic-quintic nonlinearity and study dynamical behavior of different parameters of the system using variational and numerical approaches. We see that the quintic nonlinearity plays a dominant role over cubic nonlinear interaction to extend the bouncing dynamics in the non-linear regime. We find that a matter-wave performs bouncing motion only for certain discrete values of initial position above the reflecting potential. We then consider bouncing dynamics of binary BECs. It is shown that the pair of matter-waves bounces together if inter-species interaction is attractive. However, their pairing breaks down if the inter-species interaction is made repulsive. - Highlights: • Single and coupled BECs • Effects of inter-component interaction and gravityPeriodic and quasi-periodic dynamics • Fermi-type acceleration.

  17. Black holes in pure Lovelock gravities

    International Nuclear Information System (INIS)

    Cai Ronggen; Ohta, Nobuyoshi

    2006-01-01

    Lovelock gravity is a fascinating extension of general relativity, whose action consists of dimensionally extended Euler densities. Compared to other higher order derivative gravity theories, Lovelock gravity is attractive since it has a lot of remarkable features such as the fact that there are no more than second order derivatives with respect to the metric in its equations of motion, and that the theory is free of ghosts. Recently, in the study of black strings and black branes in Lovelock gravity, a special class of Lovelock gravity is considered, which is named pure Lovelock gravity, where only one Euler density term exists. In this paper we study black hole solutions in the special class of Lovelock gravity and associated thermodynamic properties. Some interesting features are found, which are quite different from the corresponding ones in general relativity

  18. Active Response Gravity Offload System

    Science.gov (United States)

    Valle, Paul; Dungan, Larry; Cunningham, Thomas; Lieberman, Asher; Poncia, Dina

    2011-01-01

    The Active Response Gravity Offload System (ARGOS) provides the ability to simulate with one system the gravity effect of planets, moons, comets, asteroids, and microgravity, where the gravity is less than Earth fs gravity. The system works by providing a constant force offload through an overhead hoist system and horizontal motion through a rail and trolley system. The facility covers a 20 by 40-ft (approximately equals 6.1 by 12.2m) horizontal area with 15 ft (approximately equals4.6 m) of lifting vertical range.

  19. Gravity model improvement investigation. [improved gravity model for determination of ocean geoid

    Science.gov (United States)

    Siry, J. W.; Kahn, W. D.; Bryan, J. W.; Vonbun, F. F.

    1973-01-01

    This investigation was undertaken to improve the gravity model and hence the ocean geoid. A specific objective is the determination of the gravity field and geoid with a space resolution of approximately 5 deg and a height resolution of the order of five meters. The concept of the investigation is to utilize both GEOS-C altimeter and satellite-to-satellite tracking data to achieve the gravity model improvement. It is also planned to determine the geoid in selected regions with a space resolution of about a degree and a height resolution of the order of a meter or two. The short term objectives include the study of the gravity field in the GEOS-C calibration area outlined by Goddard, Bermuda, Antigua, and Cape Kennedy, and also in the eastern Pacific area which is viewed by ATS-F.

  20. UV caps, IR modification of gravity, and recovery of 4D gravity in regularized braneworlds

    International Nuclear Information System (INIS)

    Kobayashi, Tsutomu

    2008-01-01

    In the context of six-dimensional conical braneworlds we consider a simple and explicit model that incorporates long-distance modification of gravity and regularization of codimension-2 singularities. To resolve the conical singularities we replace the codimension-2 branes with ringlike codimension-1 branes, filling in the interiors with regular caps. The six-dimensional Planck scale in the cap is assumed to be much greater than the bulk Planck scale, which gives rise to the effect analogous to brane-induced gravity. Weak gravity on the regularized brane is studied in the case of a sharp conical bulk. We show by a linear analysis that gravity at short distances is effectively described by the four-dimensional Brans-Dicke theory, while the higher dimensional nature of gravity emerges at long distances. The linear analysis breaks down at some intermediate scale, below which four-dimensional Einstein gravity is shown to be recovered thanks to the second-order effects of the brane bending.

  1. Quantum Gravity Effects in Cosmology

    Directory of Open Access Journals (Sweden)

    Gu Je-An

    2018-01-01

    Full Text Available Within the geometrodynamic approach to quantum cosmology, we studied the quantum gravity effects in cosmology. The Gibbons-Hawking temperature is corrected by quantum gravity due to spacetime fluctuations and the power spectrum as well as any probe field will experience the effective temperature, a quantum gravity effect.

  2. Testing Quantum Gravity Induced Nonlocality via Optomechanical Quantum Oscillators.

    Science.gov (United States)

    Belenchia, Alessio; Benincasa, Dionigi M T; Liberati, Stefano; Marin, Francesco; Marino, Francesco; Ortolan, Antonello

    2016-04-22

    Several quantum gravity scenarios lead to physics below the Planck scale characterized by nonlocal, Lorentz invariant equations of motion. We show that such nonlocal effective field theories lead to a modified Schrödinger evolution in the nonrelativistic limit. In particular, the nonlocal evolution of optomechanical quantum oscillators is characterized by a spontaneous periodic squeezing that cannot be generated by environmental effects. We discuss constraints on the nonlocality obtained by past experiments, and show how future experiments (already under construction) will either see such effects or otherwise cast severe bounds on the nonlocality scale (well beyond the current limits set by the Large Hadron Collider). This paves the way for table top, high precision experiments on massive quantum objects as a promising new avenue for testing some quantum gravity phenomenology.

  3. Investigation of Global Imbalances Based on a Gravity Model

    Directory of Open Access Journals (Sweden)

    Hyun-Hoon Lee

    2011-06-01

    Full Text Available Using the US Treasury International Capital (TIC data, this paper attempts to analyze the size and trend of foreign investment in the U.S. in the form of equities, bonds and bank lending during the period of 2001-2007. In addition, this paper assesses the determinants of foreign investment in the U.S., using the financial gravity model which includes an East Asian dummy as an explanatory variable. The results show that most East Asian countries have invested more in the U.S. than the optimal level suggested by the gravity model. Such an over-investment is more evident in long-term bond investment than in equity investment or bank lending. Thus, the results confirm that global imbalance does exist between East Asian countries and the U.S.

  4. Relative contributions of transient and steady state infiltration during ephemeral streamflow

    Science.gov (United States)

    Blasch, Kyle W.; Ferré, Ty P.A.; Hoffmann, John P.; Fleming, John B.

    2006-01-01

    Simulations of infiltration during three ephemeral streamflow events in a coarse‐grained alluvial channel overlying a less permeable basin‐fill layer were conducted to determine the relative contribution of transient infiltration at the onset of streamflow to cumulative infiltration for the event. Water content, temperature, and piezometric measurements from 2.5‐m vertical profiles within the alluvial sediments were used to constrain a variably saturated water flow and heat transport model. Simulated and measured transient infiltration rates at the onset of streamflow were about two to three orders of magnitude greater than steady state infiltration rates. The duration of simulated transient infiltration ranged from 1.8 to 20 hours, compared with steady state flow periods of 231 to 307 hours. Cumulative infiltration during the transient period represented 10 to 26% of the total cumulative infiltration, with an average contribution of approximately 18%. Cumulative infiltration error for the simulated streamflow events ranged from 9 to 25%. Cumulative infiltration error for typical streamflow events of about 8 hours in duration in is about 90%. This analysis indicates that when estimating total cumulative infiltration in coarse‐grained ephemeral stream channels, consideration of the transient infiltration at the onset of streamflow will improve predictions of the total volume of infiltration that may become groundwater recharge.

  5. Airborne Gravity: NGS' Gravity Data for the US and Territories (2008-2022) - National Geospatial Data Asset (NGDA) Airborne Gravity (GRAV-D)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gravity for the Re-definition of the American Vertical Datum (GRAV-D) is a project initiated by NOAA's National Geodetic Survey to collect and monitor gravity data...

  6. Urine specific gravity test

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...

  7. Northern Oklahoma Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (710 records) were compiled by Professor Ahern. This data base was received in June 1992. Principal gravity parameters include latitude,...

  8. Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation

    Science.gov (United States)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim

    2003-01-01

    A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain

  9. Brief communication "Seismic and acoustic-gravity signals from the source of the 2004 Indian Ocean Tsunami"

    Directory of Open Access Journals (Sweden)

    A. Raveloson

    2012-02-01

    Full Text Available The great Sumatra-Andaman earthquake of 26 December 2004 caused seismic waves propagating through the solid Earth, tsunami waves propagating through the ocean and infrasound or acoustic-gravity waves propagating through the atmosphere. Since the infrasound wave travels faster than its associated tsunami, it is for warning purposes very intriguing to study the possibility of infrasound generation directly at the earthquake source. Garces et al. (2005 and Le Pichon et al. (2005 emphasized that infrasound was generated by mountainous islands near the epicenter and by tsunami propagation along the continental shelf to the Bay of Bengal. Mikumo et al. (2008 concluded from the analysis of travel times and amplitudes of first arriving acoustic-gravity waves with periods of about 400–700 s that these waves are caused by coseismic motion of the sea surface mainly to the west of the Nicobar islands in the open seas. We reanalyzed the acoustic-gravity waves and corrected the first arrival times of Mikumo et al. (2008 by up to 20 min. We found the source of the first arriving acoustic-gravity wave about 300 km to the north of the US Geological Survey earthquake epicenter. This confirms the result of Mikumo et al. (2008 that sea level changes at the earthquake source cause long period acoustic-gravity waves, which indicate that a tsunami was generated. Therefore, a denser local network of infrasound stations may be helpful for tsunami warnings, not only for very large earthquakes.

  10. Vaidya spacetime in massive gravity's rainbow

    Directory of Open Access Journals (Sweden)

    Yaghoub Heydarzade

    2017-11-01

    Full Text Available In this paper, we will analyze the energy dependent deformation of massive gravity using the formalism of massive gravity's rainbow. So, we will use the Vainshtein mechanism and the dRGT mechanism for the energy dependent massive gravity, and thus analyze a ghost free theory of massive gravity's rainbow. We study the energy dependence of a time-dependent geometry, by analyzing the radiating Vaidya solution in this theory of massive gravity's rainbow. The energy dependent deformation of this Vaidya metric will be performed using suitable rainbow functions.

  11. Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves.

    Science.gov (United States)

    Ripepe, M; Barfucci, G; De Angelis, S; Delle Donne, D; Lacanna, G; Marchetti, E

    2016-11-10

    Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.

  12. Physics of Trans-Planckian Gravity

    CERN Document Server

    Dvali, Gia; Germani, Cristiano

    2011-01-01

    We study aspects of the phenomenon of gravitational UV-self-completeness and its implications for deformations of Einstein gravity. In a ghost-free theory flowing to Einstein gravity in the IR trans-Planckian propagating quantum degrees of freedom cannot exist. The only physical meaning of a trans-Planckian pole is the one of a classical state (Black Hole) which is fully described by the light IR quantum degrees of freedom and gives exponentially-suppressed contributions to virtual processes. In this sense Einstein gravity is UV self-complete, although not Wilsonian. We show that this UV/IR correspondence puts a severe constraint on any attempt of conventional Wilsonian UV-completion of trans-Planckian gravity. In particular, there is no well-defined energy domain in which gravity could become asymptotically weak or safe.

  13. Stochastic Gravity: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Hu Bei Lok

    2008-05-01

    Full Text Available Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein–Langevin equation, which has, in addition, sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operator-valued stress-energy bitensor, which describes the fluctuations of quantum-matter fields in curved spacetimes. A new improved criterion for the validity of semiclassical gravity may also be formulated from the viewpoint of this theory. In the first part of this review we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to the correlation functions. The functional approach uses the Feynman–Vernon influence functional and the Schwinger–Keldysh closed-time-path effective action methods. In the second part, we describe three applications of stochastic gravity. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic-gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, using the Einstein–Langevin equation, we discuss the backreaction of Hawking radiation and the behavior of metric fluctuations for both the quasi-equilibrium condition of a black-hole in a box and the fully nonequilibrium condition of an evaporating black hole spacetime. Finally, we briefly discuss the theoretical structure of stochastic gravity in relation to quantum gravity and point out

  14. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  15. Active Response Gravity Offload and Method

    Science.gov (United States)

    Dungan, Larry K. (Inventor); Valle, Paul S. (Inventor); Bankieris, Derek R. (Inventor); Lieberman, Asher P. (Inventor); Redden, Lee (Inventor); Shy, Cecil (Inventor)

    2015-01-01

    A variable gravity field simulator can be utilized to provide three dimensional simulations for simulated gravity fields selectively ranging from Moon, Mars, and micro-gravity environments and/or other selectable gravity fields. The gravity field simulator utilizes a horizontally moveable carriage with a cable extending from a hoist. The cable can be attached to a load which experiences the effects of the simulated gravity environment. The load can be a human being or robot that makes movements that induce swinging of the cable whereby a horizontal control system reduces swinging energy. A vertical control system uses a non-linear feedback filter to remove noise from a load sensor that is in the same frequency range as signals from the load sensor.

  16. Idaho State Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (24,284 records) were compiled by the U. S. Geological Survey. This data base was received on February 23, 1993. Principal gravity...

  17. Physics of trans-Planckian gravity

    International Nuclear Information System (INIS)

    Dvali, Gia; Folkerts, Sarah; Germani, Cristiano

    2011-01-01

    We study the field theoretical description of a generic theory of gravity flowing to Einstein general relativity in IR. We prove that, if ghost-free, in the weakly-coupled regime such a theory can never become weaker than general relativity. Using this fact, as a by-product, we suggest that in a ghost-free theory of gravity trans-Planckian propagating quantum degrees of freedom cannot exist. The only physical meaning of a trans-Planckian pole is the one of a classical state (black hole) which is described by the light IR quantum degrees of freedom and gives exponentially-suppressed contributions to virtual processes. In this picture Einstein gravity is UV self-complete, although not Wilsonian, and sub-Planckian distances are unobservable in any healthy theory of gravity. We then finally show that this UV/IR correspondence puts a severe constraint on any attempt of conventional Wilsonian UV-completion of trans-Planckian gravity. Specifically, there is no well-defined energy domain in which gravity could become asymptotically weak or safe.

  18. Orbital Period Changes in WZ Sagittae

    Science.gov (United States)

    Patterson, Joseph; Stone, Geoffrey; Kemp, Jonathan; Skillman, David R.; de Miguel, Enrique; Potter, Michael; Starkey, Donn; Uthas, Helena; Jones, Jim; Slauson, Douglas; Koff, Robert; Myers, Gordon; Menzies, Kenneth; Campbell, Tut; Roberts, George; Foote, Jerry; Vanmunster, Tonny; Cook, Lewis M.; Krajci, Thomas; Ogmen, Yenal; Sabo, Richard; Seargeant, Jim

    2018-06-01

    We report a long-term (1961–2017) study of the eclipse times in the dwarf nova WZ Sagittae, in an effort to learn its rate of orbital-period change. Some wiggles with a timescale of 20–50 years are apparent, and a connection with the ∼23 year interval between dwarf-nova eruptions is possible. These back-and-forth wiggles dominate the O–C diagram, and prevent a secure measurement of the steady rate of orbital-period change.

  19. Ocean tides in GRACE monthly averaged gravity fields

    DEFF Research Database (Denmark)

    Knudsen, Per

    2003-01-01

    The GRACE mission will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more subtle climate signals which GRACE...... aims at. In this analysis the results of Knudsen and Andersen (2002) have been verified using actual post-launch orbit parameter of the GRACE mission. The current ocean tide models are not accurate enough to correct GRACE data at harmonic degrees lower than 47. The accumulated tidal errors may affect...... the GRACE data up to harmonic degree 60. A study of the revised alias frequencies confirm that the ocean tide errors will not cancel in the GRACE monthly averaged temporal gravity fields. The S-2 and the K-2 terms have alias frequencies much longer than 30 days, so they remain almost unreduced...

  20. Dilaton gravity, Poisson sigma models and loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Reyes, Juan D

    2009-01-01

    Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.

  1. Andes 1997 Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Central Andes gravity data (6,151 records) were compiled by Professor Gotze and the MIGRA Group. This data base was received in April, 1997. Principal gravity...

  2. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign. Part I. Observations with collocated radars

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, P.; Serafimovich, A.; Peters, D.; Latteck, R. [Leibniz-Inst. fuer Atmosphaerenphysik, Kuehlungsborn (Germany); Dalin, P. [Swedish Inst. of Space Physics, Kiruna (Sweden); Goldberg, R. [NASA/Goddard Space Flight Center, Greenbelt, MD (United States)

    2006-07-01

    During the MaCWAVE campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andoeya rocket range (ARR) near Andenes and the Swedish rocket range (ESRANGE) near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHP radar in the upper troposphere/ lower stratosphere at Andenes (69.3 N, 16.0 E) and the ESRAD VHP radar near Kiruna (67.9 N, 21.9 E). Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24-26 January 2003 with dominant vertical wavelengths of about 4-5 km as well as with dominant observed periods of about 13-14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of {proportional_to}200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of {proportional_to}5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains. (orig.)

  3. Progress in the global standardization of gravity: an analysis of the Woollard and Rose international gravity values

    International Nuclear Information System (INIS)

    Woollard, G.P.; Godley, V.M.

    1980-12-01

    The history of improvements in the global standarization of gravity values since the advent of high range gravimeters in 1948 is reviewed. In particular the gravity base values given in SEG special publication International Gravity Measurements (Woolard and Rose, 1963) are evaluated against the most recent set of standarized gravity base values, The International Gravity Standardization Net, 1971 (Morelli et al, 1974). Adjunct IGSN 71 values prepared by the US Defense Mapping Agency Aerospace Center (unpublished) are also used to give a more comprehensive worldwide comparison of values

  4. The Superheavy Elements and Anti-Gravity

    International Nuclear Information System (INIS)

    Anastasovski, Petar K.

    2004-01-01

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z < 64 and 63 < Z <145) exist that demonstrate these capabilities. The nuclei of the first group of elements have the masses with only the property of gravity. The nuclei of the elements of the second group have the masses with both properties: gravity and anti-gravity in two different ranges of curved space-time around the nuclei.. The hypothetical element with Z = 145 is the unique among all elements whose nucleus has only anti-gravity property. It is proposed that this element be named Hawking, in honour of Stephen W. Hawking

  5. Moho Density Contrast in Central Eurasia from GOCE Gravity Gradients

    Directory of Open Access Journals (Sweden)

    Mehdi Eshagh

    2016-05-01

    Full Text Available Seismic data are primarily used in studies of the Earth’s inner structure. Since large parts of the world are not yet sufficiently covered by seismic surveys, products from the Earth’s satellite observation systems have more often been used for this purpose in recent years. In this study we use the gravity-gradient data derived from the Gravity field and steady-state Ocean Circulation Explorer (GOCE, the elevation data from the Shuttle Radar Topography Mission (SRTM and other global datasets to determine the Moho density contrast at the study area which comprises most of the Eurasian plate (including parts of surrounding continental and oceanic tectonic plates. A regional Moho recovery is realized by solving the Vening Meinesz-Moritz’s (VMM inverse problem of isostasy and a seismic crustal model is applied to constrain the gravimetric solution. Our results reveal that the Moho density contrast reaches minima along the mid-oceanic rift zones and maxima under the continental crust. This spatial pattern closely agrees with that seen in the CRUST1.0 seismic crustal model as well as in the KTH1.0 gravimetric-seismic Moho model. However, these results differ considerably from some previously published gravimetric studies. In particular, we demonstrate that there is no significant spatial correlation between the Moho density contrast and Moho deepening under major orogens of Himalaya and Tibet. In fact, the Moho density contrast under most of the continental crustal structure is typically much more uniform.

  6. Analysis of stability and bifurcations of fixed points and periodic solutions of a lumped model of neocortex with two delays

    NARCIS (Netherlands)

    Visser, Sid; Meijer, Hil G.E.; van Putten, Michel J.A.M.; van Gils, Stephan A.

    2012-01-01

    A lumped model of neural activity in neocortex is studied to identify regions of multi-stability of both steady states and periodic solutions. Presence of both steady states and periodic solutions is considered to correspond with epileptogenesis. The model, which consists of two delay differential

  7. The role of collective self-gravity in the nonlinear evolution of viscous overstability in Saturn's rings.

    Science.gov (United States)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2017-06-01

    We investigate the influence of collective self-gravity forces on the nonlinear evolution of the viscous overstability in Saturn's dense rings. Local N-body simulations, incorporating vertical and radial collective self-gravity are performed. Vertical self-gravity is mimicked through an increased frequency of vertical oscillations, while radial self-gravity is approximated by solving the Poisson equation for a thin disk in Fourier space. Direct particle-particle forces are omitted, while the magnitude of radial self gravity is controlled by assigning a variable surface mass density to the system's homogeneous ground state. We compare our simulations with large-scale isothermal and non-isothermal hydrodynamic model calculations, including radial self-gravity and employing transport coefficients derived in Salo et al. (2001). We concentrate on optical depths τ=1.5-2, appropriate to model Saturn's dense rings. Our isothermal and non isothermal hydrodynamic results in the limit of vanishing self-gravity compare very well with the studies of Latter&Ogilvie (2010) and Rein&latter (2013), respectively.With non-vanishing radial self-gravity we find that the wavelengths of saturated overstable wave trains are located in close vicinity of the local minimum of the nonlinear dispersion relation for a particular surface density. Good agreement is found between non-isothermal hydrodynamics and N-body simulations for disks with strong radial self-gravity, while the largest deviations occur for a weak but non-vanishing self-gravity.The resulting saturation wavelengths of the viscous overstability for moderate and strong radial self-gravity (λ~ 200-300m) agree reasonably well with the length scale of periodic micro structure in Saturn's inner A and B ring, as found by Cassini.

  8. Cadiz, California Gravity Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (32 records) were gathered by Mr. Seth I. Gutman for AridTech Inc., Denver, Colorado using a Worden Prospector gravity meter. This data base...

  9. Gravity waves observed from the Equatorial Wave Studies (EWS campaign during 1999 and 2000 and their role in the generation of stratospheric semiannual oscillations

    Directory of Open Access Journals (Sweden)

    V. Deepa

    2006-10-01

    Full Text Available The altitude profiles of temperature fluctuations in the stratosphere and mesosphere observed with the Rayleigh Lidar at Gadanki (13.5° N, 79.2° E on 30 nights during January to March 1999 and 21 nights during February to April 2000 were analysed to bring out the temporal and vertical propagation characteristics of gravity wave perturbations. The gravity wave perturbations showed periodicities in the 0.5–3-h range and attained large amplitudes (4–5 K in the mesosphere. The phase propagation characteristics of gravity waves with different periods showed upward wave propagation with a vertical wavelength of 5–7 km. The mean flow acceleration computed from the divergence of momentum flux of gravity waves is compared with that calculated from monthly values of zonal wind obtained from RH-200 rockets flights. Thus, the contribution of gravity waves towards the generation of Stratospheric Semi Annual Oscillation (SSAO is estimated.

  10. Gravity Changes and Internal Processes: Some Results Obtained from Observations at Three Volcanoes

    Science.gov (United States)

    Jentzsch, Gerhard; Weise, Adelheid; Rey, Carlos; Gerstenecker, Carl

    Temporal gravity changes provide information about mass and/or density variations within and below the volcano edifice. Three active volcanoes have been under investigation; each of them related to a plate boundary: Mayon/Luzon/Philippines, Merapi/Java/Indonesia, and Galeras/Colombia. The observed gravity changes are smaller than previously expected but significant. For the three volcanoes under investigation, and within the observation period, mainly the increase of gravity is observed, ranging from 1,000 nm-2 to 1,600 nms-2. Unexpectedly, the gravity increase is confined to a rather small area with radii of 5 to 8 km around the summit. At Mayon and Merapi the parallel GPS measurements yield no significant elevation changes. This is crucial for the interpretation, as the internal pressure variations do not lead to significant deformation at the surface. Thus the classical Mogi-model for a shallow extending magma reservoir cannot apply. To confine the possible models, the attraction due to changes of groundwater level or soil moisture is estimated along the slope of Merapi exemplarily by 2-D modelling. Mass redistribution or density changes were evaluated within the vent as well as deeper fluid processes to explain the gravity variations; the results are compared to the model incorporating the additional effect of elastic deformation.

  11. Extended Theories of Gravity

    International Nuclear Information System (INIS)

    Capozziello, Salvatore; De Laurentis, Mariafelicia

    2011-01-01

    Extended Theories of Gravity can be considered as a new paradigm to cure shortcomings of General Relativity at infrared and ultraviolet scales. They are an approach that, by preserving the undoubtedly positive results of Einstein’s theory, is aimed to address conceptual and experimental problems recently emerged in astrophysics, cosmology and High Energy Physics. In particular, the goal is to encompass, in a self-consistent scheme, problems like inflation, dark energy, dark matter, large scale structure and, first of all, to give at least an effective description of Quantum Gravity. We review the basic principles that any gravitational theory has to follow. The geometrical interpretation is discussed in a broad perspective in order to highlight the basic assumptions of General Relativity and its possible extensions in the general framework of gauge theories. Principles of such modifications are presented, focusing on specific classes of theories like f(R)-gravity and scalar–tensor gravity in the metric and Palatini approaches. The special role of torsion is also discussed. The conceptual features of these theories are fully explored and attention is paid to the issues of dynamical and conformal equivalence between them considering also the initial value problem. A number of viability criteria are presented considering the post-Newtonian and the post-Minkowskian limits. In particular, we discuss the problems of neutrino oscillations and gravitational waves in extended gravity. Finally, future perspectives of extended gravity are considered with possibility to go beyond a trial and error approach.

  12. No slip gravity

    Science.gov (United States)

    Linder, Eric V.

    2018-03-01

    A subclass of the Horndeski modified gravity theory we call No Slip Gravity has particularly interesting properties: 1) a speed of gravitational wave propagation equal to the speed of light, 2) equality between the effective gravitational coupling strengths to matter and light, Gmatter and Glight, hence no slip between the metric potentials, yet difference from Newton's constant, and 3) suppressed growth to give better agreement with galaxy clustering observations. We explore the characteristics and implications of this theory, and project observational constraints. We also give a simple expression for the ratio of the gravitational wave standard siren distance to the photon standard candle distance, in this theory and others, and enable a direct comparison of modified gravity in structure growth and in gravitational waves, an important crosscheck.

  13. Zero-gravity movement studies

    Science.gov (United States)

    Badler, N. I.; Fishwick, P.; Taft, N.; Agrawala, M.

    1985-01-01

    The use of computer graphics to simulate the movement of articulated animals and mechanisms has a number of uses ranging over many fields. Human motion simulation systems can be useful in education, medicine, anatomy, physiology, and dance. In biomechanics, computer displays help to understand and analyze performance. Simulations can be used to help understand the effect of external or internal forces. Similarly, zero-gravity simulation systems should provide a means of designing and exploring the capabilities of hypothetical zero-gravity situations before actually carrying out such actions. The advantage of using a simulation of the motion is that one can experiment with variations of a maneuver before attempting to teach it to an individual. The zero-gravity motion simulation problem can be divided into two broad areas: human movement and behavior in zero-gravity, and simulation of articulated mechanisms.

  14. Global detailed gravimetric geoid. [based on gravity model derived from satellite tracking and surface gravity data

    Science.gov (United States)

    Vincent, S.; Marsh, J. G.

    1973-01-01

    A global detailed gravimetric geoid has been computed by combining the Goddard Space Flight Center GEM-4 gravity model derived from satellite and surface gravity data and surface 1 deg-by-1 deg mean free air gravity anomaly data. The accuracy of the geoid is + or - 2 meters on continents, 5 to 7 meters in areas where surface gravity data are sparse, and 10 to 15 meters in areas where no surface gravity data are available. Comparisons have been made with the astrogeodetic data provided by Rice (United States), Bomford (Europe), and Mather (Australia). Comparisons have also been carried out with geoid heights derived from satellite solutions for geocentric station coordinates in North America, the Caribbean, Europe, and Australia.

  15. Partial gravity - Human impacts on facility design

    Science.gov (United States)

    Capps, Stephen; Moore, Nathan

    1990-01-01

    Partial gravity affects the body differently than earth gravity and microgravity environments. The main difference from earth gravity is human locomotion; while the main dfference from microgravity is the specific updown orientation and reach envelopes which increase volume requirements. Much data are available on earth gravity and microgravity design; however, very little information is available on human reactions to reduced gravity levels in IVA situations (without pressure suits). Therefore, if humans commit to permanent lunar habitation, much research should be conducted in the area of partial gravity effects on habitat design.

  16. Generalized uncertainty principle, quantum gravity and Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2009-01-01

    We investigate a close connection between generalized uncertainty principle (GUP) and deformed Horava-Lifshitz (HL) gravity. The GUP commutation relations correspond to the UV-quantum theory, while the canonical commutation relations represent the IR-quantum theory. Inspired by this UV/IR quantum mechanics, we obtain the GUP-corrected graviton propagator by introducing UV-momentum p i =p 0i (1+βp 0 2 ) and compare this with tensor propagators in the HL gravity. Two are the same up to p 0 4 -order.

  17. Quantum W3 gravity

    International Nuclear Information System (INIS)

    Schoutens, K.; van Nieuwenhuizen, P.; State Univ. of New York, Stony Brook, NY

    1991-11-01

    We briefly review some results in the theory of quantum W 3 gravity in the chiral gauge. We compare them with similar results in the analogous but simpler cases of d = 2 induced gauge theories and d = 2 induced gravity

  18. Radion and holographic brane gravity

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Soda, Jiro

    2002-01-01

    The low energy effective theory for the Randall-Sundrum two-brane system is investigated with an emphasis on the role of the nonlinear radion in the brane world. The equations of motion in the bulk are solved using a low energy expansion method. This allows us, through the junction conditions, to deduce the effective equations of motion for gravity on the brane. It is shown that the gravity on the brane world is described by a quasi-scalar-tensor theory with a specific coupling function ω(Ψ)=3Ψ/2(1-Ψ) on the positive tension brane and ω(Φ)=-3Φ/2(1+Φ) on the negative tension brane, where Ψ and Φ are nonlinear realizations of the radion on the positive and negative tension branes, respectively. In contrast with the usual scalar-tensor gravity, the quasi-scalar-tensor gravity couples with two kinds of matter; namely, the matter on both positive and negative tension branes, with different effective gravitational coupling constants. In particular, the radion disguised as the scalar fields Ψ and Φ couples with the sum of the traces of the energy-momentum tensor on both branes. In the course of the derivation, it is revealed that the radion plays an essential role in converting the nonlocal Einstein gravity with generalized dark radiation to local quasi-scalar-tensor gravity. For completeness, we also derive the effective action for our theory by substituting the bulk solution into the original action. It is also shown that quasi-scalar-tensor gravity works as a hologram at low energy in the sense that the bulk geometry can be reconstructed from the solution of quasi-scalar-tensor gravity

  19. Failures in sand in reduced gravity environments

    Science.gov (United States)

    Marshall, Jason P.; Hurley, Ryan C.; Arthur, Dan; Vlahinic, Ivan; Senatore, Carmine; Iagnemma, Karl; Trease, Brian; Andrade, José E.

    2018-04-01

    The strength of granular materials, specifically sand is important for understanding physical phenomena on other celestial bodies. However, relatively few experiments have been conducted to determine the dependence of strength properties on gravity. In this work, we experimentally investigated relative values of strength (the peak friction angle, the residual friction angle, the angle of repose, and the peak dilatancy angle) in Earth, Martian, Lunar, and near-zero gravity. The various angles were captured in a classical passive Earth pressure experiment conducted on board a reduced gravity flight and analyzed using digital image correlation. The data showed essentially no dependence of the peak friction angle on gravity, a decrease in the residual friction angle between Martian and Lunar gravity, no dependence of the angle of repose on gravity, and an increase in the dilation angle between Martian and Lunar gravity. Additionally, multiple flow surfaces were seen in near-zero gravity. These results highlight the importance of understanding strength and deformation mechanisms of granular materials at different levels of gravity.

  20. A time-lapse gravity survey of the Coso geothermal field, China Lake Naval Air Weapons Station, California

    Science.gov (United States)

    Phelps, Geoffrey; Cronkite-Ratcliff, Collin; Blake, Kelly

    2018-04-19

    We have conducted a gravity survey of the Coso geothermal field to continue the time-lapse gravity study of the area initiated in 1991. In this report, we outline a method of processing the gravity data that minimizes the random errors and instrument bias introduced into the data by the Scintrex CG-5 relative gravimeters that were used. After processing, the standard deviation of the data was estimated to be ±13 microGals. These data reveal that the negative gravity anomaly over the Coso geothermal field, centered on gravity station CER1, is continuing to increase in magnitude over time. Preliminary modeling indicates that water-table drawdown at the location of CER1 is between 65 and 326 meters over the last two decades. We note, however, that several assumptions on which the model results depend, such as constant elevation and free-water level over the study period, still require verification.

  1. Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology

    Science.gov (United States)

    Norling, Brian L.

    Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.

  2. Topological gravity with minimal matter

    International Nuclear Information System (INIS)

    Li Keke

    1991-01-01

    Topological minimal matter, obtained by twisting the minimal N = 2 supeconformal field theory, is coupled to two-dimensional topological gravity. The free field formulation of the coupled system allows explicit representations of BRST charge, physical operators and their correlation functions. The contact terms of the physical operators may be evaluated by extending the argument used in a recent solution of topological gravity without matter. The consistency of the contact terms in correlation functions implies recursion relations which coincide with the Virasoro constraints derived from the multi-matrix models. Topological gravity with minimal matter thus provides the field theoretic description for the multi-matrix models of two-dimensional quantum gravity. (orig.)

  3. Teleparallel equivalent of Lovelock gravity

    Science.gov (United States)

    González, P. A.; Vásquez, Yerko

    2015-12-01

    There is a growing interest in modified gravity theories based on torsion, as these theories exhibit interesting cosmological implications. In this work inspired by the teleparallel formulation of general relativity, we present its extension to Lovelock gravity known as the most natural extension of general relativity in higher-dimensional space-times. First, we review the teleparallel equivalent of general relativity and Gauss-Bonnet gravity, and then we construct the teleparallel equivalent of Lovelock gravity. In order to achieve this goal, we use the vielbein and the connection without imposing the Weitzenböck connection. Then, we extract the teleparallel formulation of the theory by setting the curvature to null.

  4. Detection of large-scale concentric gravity waves from a Chinese airglow imager network

    Science.gov (United States)

    Lai, Chang; Yue, Jia; Xu, Jiyao; Yuan, Wei; Li, Qinzeng; Liu, Xiao

    2018-06-01

    Concentric gravity waves (CGWs) contain a broad spectrum of horizontal wavelengths and periods due to their instantaneous localized sources (e.g., deep convection, volcanic eruptions, or earthquake, etc.). However, it is difficult to observe large-scale gravity waves of >100 km wavelength from the ground for the limited field of view of a single camera and local bad weather. Previously, complete large-scale CGW imagery could only be captured by satellite observations. In the present study, we developed a novel method that uses assembling separate images and applying low-pass filtering to obtain temporal and spatial information about complete large-scale CGWs from a network of all-sky airglow imagers. Coordinated observations from five all-sky airglow imagers in Northern China were assembled and processed to study large-scale CGWs over a wide area (1800 km × 1 400 km), focusing on the same two CGW events as Xu et al. (2015). Our algorithms yielded images of large-scale CGWs by filtering out the small-scale CGWs. The wavelengths, wave speeds, and periods of CGWs were measured from a sequence of consecutive assembled images. Overall, the assembling and low-pass filtering algorithms can expand the airglow imager network to its full capacity regarding the detection of large-scale gravity waves.

  5. What Is Gravity?

    Science.gov (United States)

    Nelson, George

    2004-01-01

    Gravity is the name given to the phenomenon that any two masses, like you and the Earth, attract each other. One pulls on the Earth and the Earth pulls on one the same amount. And one does not have to be touching. Gravity acts over vast distances, like the 150 million kilometers (93 million miles) between the Earth and the Sun or the billions of…

  6. Human manual control performance in hyper-gravity.

    Science.gov (United States)

    Clark, Torin K; Newman, Michael C; Merfeld, Daniel M; Oman, Charles M; Young, Laurence R

    2015-05-01

    Hyper-gravity provides a unique environment to study how misperceptions impact control of orientation relative to gravity. Previous studies have found that static and dynamic roll tilts are perceptually overestimated in hyper-gravity. The current investigation quantifies how this influences control of orientation. We utilized a long-radius centrifuge to study manual control performance in hyper-gravity. In the dark, subjects were tasked with nulling out a pseudo-random roll disturbance on the cab of the centrifuge using a rotational hand controller to command their roll rate in order to remain perceptually upright. The task was performed in 1, 1.5, and 2 G's of net gravito-inertial acceleration. Initial performance, in terms of root-mean-square deviation from upright, degraded in hyper-gravity relative to 1 G performance levels. In 1.5 G, initial performance degraded by 26 % and in 2 G, by 45 %. With practice, however, performance in hyper-gravity improved to near the 1 G performance level over several minutes. Finally, pre-exposure to one hyper-gravity level reduced initial performance decrements in a different, novel, hyper-gravity level. Perceptual overestimation of roll tilts in hyper-gravity leads to manual control performance errors, which are reduced both with practice and with pre-exposure to alternate hyper-gravity stimuli.

  7. Quantum-classical correspondence in steady states of nonadiabatic systems

    International Nuclear Information System (INIS)

    Fujii, Mikiya; Yamashita, Koichi

    2015-01-01

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels

  8. Gravity/Fluid Correspondence and Its Application on Bulk Gravity with U(1) Gauge Field

    International Nuclear Information System (INIS)

    Hu, Ya-Peng; Zhang, Jian-Hui

    2014-01-01

    As the long wavelength limit of the AdS/CFT correspondence, the gravity/fluid correspondence has been shown to be a useful tool for extracting properties of the fluid on the boundary dual to the gravity in the bulk. In this paper, after briefly reviewing the algorithm of gravity/fluid correspondence, we discuss the results of its application on bulk gravity with a U(1) gauge field. In the presence of a U(1) gauge field, the dual fluid possesses more interesting properties such as its charge current. Furthermore, an external field A_μ"e"x"t could affect the charge current, and the U(1) Chern-Simons term also induces extra structures to the dual current giving anomalous transport coefficients.

  9. Detecting atmospheric normal modes with periods less than 6 h by barometric observations

    Science.gov (United States)

    Ermolenko, S. I.; Shved, G. M.; Jacobi, Ch.

    2018-04-01

    The theory of atmospheric normal modes (ANMs) predicts the existence of relatively short-period gravity-inertia ANMs. Simultaneous observations of surface air-pressure variations by barometers at distant stations of the Global Geodynamics Project network during an interval of 6 months were used to detect individual gravity-inertia ANMs with periods of ∼2-5 h. Evidence was found for five ANMs with a lifetime of ∼10 days. The data of the stations, which are close in both latitude and longitude, were utilized for deriving the phases of the detected ANMs. The phases revealed wave propagation to the west and increase of zonal wavenumbers with frequency. As all the detected gravity-inertia ANMs are westward propagating, they are suggested to be generated due to the breakdown of migrating solar tides and/or large-scale Rossby waves. The existence of an ANM background will complicate the detection of the translational motions of the Earth's inner core.

  10. Gravity and strings

    CERN Document Server

    Ortín, Tomás

    2015-01-01

    Self-contained and comprehensive, this definitive new edition of Gravity and Strings is a unique resource for graduate students and researchers in theoretical physics. From basic differential geometry through to the construction and study of black-hole and black-brane solutions in quantum gravity - via all the intermediate stages - this book provides a complete overview of the intersection of gravity, supergravity, and superstrings. Now fully revised, this second edition covers an extensive array of topics, including new material on non-linear electric-magnetic duality, the electric-tensor formalism, matter-coupled supergravity, supersymmetric solutions, the geometries of scalar manifolds appearing in 4- and 5-dimensional supergravities, and much more. Covering reviews of important solutions and numerous solution-generating techniques, and accompanied by an exhaustive index and bibliography, this is an exceptional reference work.

  11. Recent advancements in conformal gravity

    International Nuclear Information System (INIS)

    O’Brien, James G.; Chaykov, Spasen S.; Moss, Robert J.; Dentico, Jeremy; Stulge, Modestas; Stefanski, Brian

    2017-01-01

    In recent years, due to the lack of direct observed evidence of cold dark matter, coupled with the shrinking parameter space to search for new dark matter particles, there has been increased interest in Alternative Gravitational theories. This paper, addresses three recent advances in conformal gravity, a fourth order renormalizable metric theory of gravitation originally formulated by Weyl, and later advanced by Mannheim and Kazanas. The first section of the paper applies conformal gravity to the rotation curves of the LITTLE THINGS survey, extending the total number of rotation curves successfully fit by conformal gravity to well over 200 individual data sets without the need for additional dark matter. Further, in this rotation curve study, we show how MOND and conformal gravity compare for each galaxy in the sample. Second, we look at the original Zwicky problem of applying the virial theorem to the Coma cluster in order to get an estimate for the cluster mass. However, instead of using the standard Newtonian potential, here we use the weak field approximation of conformal gravity. We show that in the conformal case we can get a much smaller mass estimate and thus there is no apparent need to include dark matter. We then show that this calculation is in agreement with the observational data from other well studied clusters. Last, we explore the calculation of the deflection of starlight through conformal gravity, as a first step towards applying conformal gravity to gravitaitonal lensing. (paper)

  12. Effect of External Disturbing Gravity Field on Spacecraft Guidance and Surveying Line Layout for Marine Gravity Survey

    Directory of Open Access Journals (Sweden)

    HUANG Motao

    2016-11-01

    Full Text Available Centred on the support requirement of flying track control for a long range spacecraft, a detail research is made on the computation of external disturbing gravity field, the survey accuracy of gravity anomaly on the earth' surface and the program of surveying line layout for marine gravity survey. Firstly, the solution expression of navigation error for a long range spacecraft is analyzed and modified, and the influence of the earth's gravity field on flying track of spacecraft is evaluated. Then with a given limited quota of biased error of spacecraft drop point, the accuracy requirement for calculating the external disturbing gravity field is discussed and researched. Secondly, the data truncation error and the propagated data error are studied and estimated, and the quotas of survey resolution and computation accuracy for gravity anomaly on the earth' surface are determined. Finally, based on the above quotas, a corresponding program of surveying line layout for marine gravity survey is proposed. A numerical test has been made to prove the reasonableness and validity of the suggested program.

  13. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign – Part I: Observations with collocated radars

    Directory of Open Access Journals (Sweden)

    P. Hoffmann

    2006-11-01

    Full Text Available During the {MaCWAVE} campaign, combined rocket, radiosonde and ground-based measurements have been performed at the Norwegian Andøya Rocket Range (ARR near Andenes and the Swedish Rocket Range (ESRANGE near Kiruna in January 2003 to study gravity waves in the vicinity of the Scandinavian mountain ridge. The investigations presented here are mainly based on the evaluation of continuous radar measurements with the ALWIN VHF radar in the upper troposphere/ lower stratosphere at Andenes (69.3° N, 16.0° E and the ESRAD VHF radar near Kiruna (67.9° N, 21.9° E. Both radars are separated by about 260 km. Based on wavelet transformations of both data sets, the strongest activity of inertia gravity waves in the upper troposphere has been detected during the first period from 24–26 January 2003 with dominant vertical wavelengths of about 4–5 km as well as with dominant observed periods of about 13–14 h for the altitude range between 5 and 8 km under the additional influence of mountain waves. The results show the appearance of dominating inertia gravity waves with characteristic horizontal wavelengths of ~200 km moving in the opposite direction than the mean background wind. The results show the appearance of dominating inertia gravity waves with intrinsic periods in the order of ~5 h and with horizontal wavelengths of 200 km, moving in the opposite direction than the mean background wind. From the derived downward energy propagation it is supposed, that these waves are likely generated by a jet streak in the upper troposphere. The parameters of the jet-induced gravity waves have been estimated at both sites separately. The identified gravity waves are coherent at both locations and show higher amplitudes on the east-side of the Scandinavian mountain ridge, as expected by the influence of mountains.

  14. Concept study of the Steady State Tokamak Reactor (SSTR)

    International Nuclear Information System (INIS)

    1991-06-01

    The Steady State Tokamak Reactor (SSTR) concept has been proposed as a realistic fusion power reactor to be built in the near future. An overall concept of SSTR is introduced which is based on a small extension of the present day physics and technologies. The major feature of SSTR is the maximum utilization of a bootstrap current in order to reduce the power required for the steady state operation. This requirement leads to the choice of moderate current (12 MA), and high βp (2.0) for the device, which are achieved by selecting high aspect ratio (A=4) and high toroidal magnetic field (16.5 T). A negative-ion-based neutral beam injection system is used both for heating and central current drive. Notable engineering features of SSTR are: the use of a uniform vacuum vessel and periodical replacements of the first wall and blanket layers and significant reduction of the electromagnetic force with the use of functionally gradient material. It is shown that a tokamak machine comparable to ITER in size can become a power reactor capable of generating about 1 GW of electricity with a plant efficiency of ∼30%. (author)

  15. A GOCE-only global gravity field model by the space-wise approach

    DEFF Research Database (Denmark)

    Migliaccio, Frederica; Reguzzoni, Mirko; Gatti, Andrea

    2011-01-01

    The global gravity field model computed by the spacewise approach is one of three official solutions delivered by ESA from the analysis of the GOCE data. The model consists of a set of spherical harmonic coefficients and the corresponding error covariance matrix. The main idea behind this approach...... the orbit to reduce the noise variance and correlation before gridding the data. In the first release of the space-wise approach, based on a period of about two months, some prior information coming from existing gravity field models entered into the solution especially at low degrees and low orders...... degrees; the second is an internally computed GOCE-only prior model to be used in place of the official quick-look model, thus removing the dependency on EIGEN5C especially in the polar gaps. Once the procedure to obtain a GOCE-only solution has been outlined, a new global gravity field model has been...

  16. Newton-Cartan gravity revisited

    NARCIS (Netherlands)

    Andringa, Roel

    2016-01-01

    In this research Newton's old theory of gravity is rederived using an algebraic approach known as the gauging procedure. The resulting theory is Newton's theory in the mathematical language of Einstein's General Relativity theory, in which gravity is spacetime curvature. The gauging procedure sheds

  17. High-resolution gravity model of Venus

    Science.gov (United States)

    Reasenberg, R. D.; Goldberg, Z. M.

    1992-01-01

    The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter has been evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.

  18. Horizon thermodynamics in fourth-order gravity

    Directory of Open Access Journals (Sweden)

    Meng-Sen Ma

    2017-03-01

    Full Text Available In the framework of horizon thermodynamics, the field equations of Einstein gravity and some other second-order gravities can be rewritten as the thermodynamic identity: dE=TdS−PdV. However, in order to construct the horizon thermodynamics in higher-order gravity, we have to simplify the field equations firstly. In this paper, we study the fourth-order gravity and convert it to second-order gravity via a so-called “Legendre transformation” at the cost of introducing two other fields besides the metric field. With this simplified theory, we implement the conventional procedure in the construction of the horizon thermodynamics in 3 and 4 dimensional spacetime. We find that the field equations in the fourth-order gravity can also be written as the thermodynamic identity. Moreover, we can use this approach to derive the same black hole mass as that by other methods.

  19. Adaptive topographic mass correction for satellite gravity and gravity gradient data

    Science.gov (United States)

    Holzrichter, Nils; Szwillus, Wolfgang; Götze, Hans-Jürgen

    2014-05-01

    Subsurface modelling with gravity data includes a reliable topographic mass correction. Since decades, this mandatory step is a standard procedure. However, originally methods were developed for local terrestrial surveys. Therefore, these methods often include defaults like a limited correction area of 167 km around an observation point, resampling topography depending on the distance to the station or disregard the curvature of the earth. New satellite gravity data (e.g. GOCE) can be used for large scale lithospheric modelling with gravity data. The investigation areas can include thousands of kilometres. In addition, measurements are located in the flight height of the satellite (e.g. ~250 km for GOCE). The standard definition of the correction area and the specific grid spacing around an observation point was not developed for stations located in these heights and areas of these dimensions. This asks for a revaluation of the defaults used for topographic correction. We developed an algorithm which resamples the topography based on an adaptive approach. Instead of resampling topography depending on the distance to the station, the grids will be resampled depending on its influence at the station. Therefore, the only value the user has to define is the desired accuracy of the topographic correction. It is not necessary to define the grid spacing and a limited correction area. Furthermore, the algorithm calculates the topographic mass response with a spherical shaped polyhedral body. We show examples for local and global gravity datasets and compare the results of the topographic mass correction to existing approaches. We provide suggestions how satellite gravity and gradient data should be corrected.

  20. New insights into ocean tide loading corrections on tidal gravity data in Canary Islands

    Science.gov (United States)

    Arnoso, J.; Benavent, M.; Bos, M. S.; Montesinos, F. G.

    2009-04-01

    The Canary Islands are an interesting area to investigate ocean tides loading effects due to the complex coastline of the islands and the varying bathymetry. We present here the quality of five recent global oceanic tidal models, GOT00.2, GOT4.7, FES2004, TPXO.7.1 and AG2006, by comparing their predicted ocean tide loading values with results from tidal gravity observations made on three islands, Lanzarote, Tenerife and El Hierro, for the four harmonic constituents O1, K1, M2 and S2. In order to improve the accuracy of the loading corrections on the gravity tide measurements, we have used the high resolution regional oceanic model CIAM2 to supplement the global models considered here. This regional model has been obtained by assimilating TOPEX/Poseidon altimetry at crossovers and along-track points and tide gauge observations into a hydrodynamic model. The model has a 5'Ã-5' resolution and covers the area between the coordinates 26°.5N to 30°.0N and 19°.0W to 12°.5W. The gravity tide observing sites have been occupied by three different LaCoste&Romberg (LCR) spring gravimeters during different periods of observation. We considered here the most recent gravity tide observations made with LCR Graviton-EG1194 in El Hierro Island, for a period of 6 months during 2008. In the case of Tenerife and Lanzarote sites we have used observation periods of 6 months and 8 years with LCR-G665 and LCR-G434 gravimeters, respectively. The last two sites have been revisited in order to improve the previous tidal analysis results. Thus, the gravity ocean tide loading corrections, based on the five global ocean tide models supplemented with the regional model CIAM2 allowed us to review the normalization factors (scale factor and phase lag) of both two gravimeters. Also, we investigated the discrepancies of the corrected gravimetric factors with the DDW elastic and inelastic non hydrostatic body tide model (Dehant et al., 1999). The lowest values are found for inelastic model in the

  1. Scaling in quantum gravity

    Directory of Open Access Journals (Sweden)

    J. Ambjørn

    1995-07-01

    Full Text Available The 2-point function is the natural object in quantum gravity for extracting critical behavior: The exponential falloff of the 2-point function with geodesic distance determines the fractal dimension dH of space-time. The integral of the 2-point function determines the entropy exponent γ, i.e. the fractal structure related to baby universes, while the short distance behavior of the 2-point function connects γ and dH by a quantum gravity version of Fisher's scaling relation. We verify this behavior in the case of 2d gravity by explicit calculation.

  2. Self Completeness of Einstein Gravity

    CERN Document Server

    Dvali, Gia

    2010-01-01

    We argue, that in Einsteinian gravity the Planck length is the shortest length of nature, and any attempt of resolving trans-Planckian physics bounces back to macroscopic distances due to black hole formation. In Einstein gravity trans-Planckian propagating quantum degrees of freedom cannot exist, instead they are equivalent to the classical black holes that are fully described by lighter infra-red degrees of freedom and give exponentially-soft contribution into the virtual processes. Based on this property we argue that pure-Einstein (super)gravity and its high-dimensional generalizations are self-complete in deep-UV, but not in standard Wilsonian sense. We suggest that certain strong-coupling limit of string theory is built-in in pure Einstein gravity, whereas the role of weakly-coupled string theory limit is to consistently couple gravity to other particle species, with their number being set by the inverse string coupling. We also discuss some speculative ideas generalizing the notion of non-Wilsonian sel...

  3. Steady-State Performance of Kalman Filter for DPLL

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; CUI Xiaowei; LU Mingquan; FENG Zhenming

    2009-01-01

    For certain system models, the structure of the Kalman filter is equivalent to a second-order vari-able gain digital phase-locked loop (DPLL). To apply the knowledge of DPLLs to the design of Kalman filters, this paper studies the steady-state performance of Kalman filters for these system models. The results show that the steady-state Kalman gain has the same form as the DPLL gain. An approximate simple form for the steady-state Kalman gain is used to derive an expression for the equivalent loop bandwidth of the Kalman filter as a function of the process and observation noise variances. These results can be used to analyze the steady-state performance of a Kalman filter with DPLL theory or to design a Kalman filter model with the same steady-state performance as a given DPLL.

  4. Einstein versus the Simple Pendulum Formula: Does Gravity Slow All Clocks?

    Science.gov (United States)

    Puri, Avinash

    2015-01-01

    According to the Newtonian formula for a simple pendulum, the period of a pendulum is inversely proportional to the square root of "g", the gravitational field strength. Einstein's theory of general relativity leads to the result that time slows down where gravity is intense. The two claims look contradictory and can muddle student and…

  5. Practical steady-state enzyme kinetics.

    Science.gov (United States)

    Lorsch, Jon R

    2014-01-01

    Enzymes are key components of most biological processes. Characterization of enzymes is therefore frequently required during the study of biological systems. Steady-state kinetics provides a simple and rapid means of assessing the substrate specificity of an enzyme. When combined with site-directed mutagenesis (see Site-Directed Mutagenesis), it can be used to probe the roles of particular amino acids in the enzyme in substrate recognition and catalysis. Effects of interaction partners and posttranslational modifications can also be assessed using steady-state kinetics. This overview explains the general principles of steady-state enzyme kinetics experiments in a practical, rather than theoretical, way. Any biochemistry textbook will have a section on the theory of Michaelis-Menten kinetics, including derivations of the relevant equations. No specific enzymatic assay is described here, although a method for monitoring product formation or substrate consumption over time (an assay) is required to perform the experiments described. © 2014 Elsevier Inc. All rights reserved.

  6. Venus gravity - Analysis of Beta Regio

    Science.gov (United States)

    Esposito, P. B.; Sjogren, W. L.; Mottinger, N. A.; Bills, B. G.; Abbott, E.

    1982-01-01

    Radio tracking data acquired over Beta Regio were analyzed to obtain a surface mass distribution from which a detailed vertical gravity field was derived. In addition, a corresponding vertical gravity field was evaluated solely from the topography of the Beta region. A comparison of these two maps confirms the strong correlation between gravity and topography which was previously seen in line-of-sight gravity maps. It also demonstrates that the observed gravity is a significant fraction of that predicted from the topography alone. The effective depth of complete isostatic compensation for the Beta region is estimated to be 330 km, which is somewhat deeper than that found for other areas of Venus.

  7. Undergoing spherically symmetric steady-state accretion stability of white dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Sienkiewicz, R [Polska Akademia Nauk, Warsaw. N. Copernicus Astronomical Center

    1980-01-01

    Thermal and vibrational stabilities of accreting white dwarfs with steady-state nuclear burning were considered, assuming spherically symmetric accretion of the hydrogen-rich matter and using linear stability analysis. Almost all models with masses 0.2 M(sun) - 1.39 M(sun) were found to be unstable in some way. The type of instability expected to dominate is given as a function of the accretion rate. For most accretion rates it is the thermal instability. Oscillation periods are given for the models in which the vibrational instability is the most violent one. These periods are of the order of seconds or minutes. We expect that our stability analysis may suggest the cause of the variabilities of the hot components of some symbiotic stars, for a wide range of the accretion rates. In this case our models may serve as the initial conditions for evolutionary computations. The results predict that short-period oscillations should be observed in some hot nuclei of planetary nebulae.

  8. Consistency of orthodox gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bellucci, S. [INFN, Frascati (Italy). Laboratori Nazionali di Frascati; Shiekh, A. [International Centre for Theoretical Physics, Trieste (Italy)

    1997-01-01

    A recent proposal for quantizing gravity is investigated for self consistency. The existence of a fixed-point all-order solution is found, corresponding to a consistent quantum gravity. A criterion to unify couplings is suggested, by invoking an application of their argument to more complex systems.

  9. Numerical Simulation of cardiovascular deconditioning in different reduced gravity exposure scenarios. Parabolic flight validation.

    Science.gov (United States)

    Perez-Poch, Antoni; Gonzalez, Daniel

    Numerical models and simulations are an emerging area of research in human physiology. As complex numerical models are available, along with high-speed computing technologies, it is possible to produce more accurate predictions of the long-term effects of reduced gravity on the human body. NELME (Numerical Emulation of Long-Term Microgravity Effects) has been developed as an electrical-like control system model of the pysiological changes that may arise when gravity changes are applied to the cardiovascular system. Validation of the model has been carried out in parabolic flights at UPC BarcelonaTech Platform. A number of parabolas of up to 8 seconds were performed at Sabadell Airport with an aerobatic single-engine CAP10B plane capable of performing such maneuvres. Heart rate, arterial pressure, and gravity data was collected and compared to the output obtained from the model in order to optimize its parameters. The model is then able to perform simulations for long-term periods of exposure to microgravity, and then the risk for a major malfunction is evaluated. Vascular resistance is known to be impaired during a long-term mission. This effects are not fully understood, and the model is capable of providing a continuous thread of simulated scenarios, while varying gravity in a nearly-continuous way. Aerobic exercise as countermeasure has been simulated as a periodic perturbation into the simulated physiological system. Results are discussed in terms of the validaty and reliability of the outcomes from the model, that have been found compatible with the available data in the literature. Different gender sensitivities to microgravity exposure are discussed. Also thermal stress along with exercise, as it happens in the case of Extravehicular activity is smulated. Results show that vascular resistance is significantly impared (p<0,05) at gravity levels less than 0,4g, when exposed for a period of time longer than 16 days. This degree of impairement is comparable with

  10. Fluid Interfaces of Triangular Containers in Reduced Gravity Environments

    Science.gov (United States)

    Guttromson, Jayleen; Manning, Robert; Collicott, Steven H.

    2002-01-01

    Capillary dominated fluid dynamics will be examined in a reduced-gravity environment onboard the KC-135; in particular, the behavior of the lower portion of the meniscus in triangular tank geometries. Seven clear acrylic tanks were constructed to view seven angles of the four geometries. Silicon oil with two different viscosities, 2cs and 5cs silicon oil, were used on different days of the flight. Six tanks and one control tank are filled with a certain viscosity fluid for each flight day. During each parabola, three tanks are tested at time. The experimental tanks are exchanged between parabola sets on the KC-135. The 60deg -60deg -60deg control tank is viewed throughout the flight. To gather data, two digital video cameras and one digital still camera are placed perpendicular the viewing surface. To provide a greater contrast in the meniscus, an EL backlighting sheet was used to backlight the tanks. These images and video are then digitized, passed through NASA's mini-tracker software, and compared to a theory published my M. M. Weislogel, "Fluid Interface Phenomena in a Low-Gravity Environment: Recent Results from Drop Tower Experimentation." By focusing on a lower portion of the meniscus and using longer periods of reduced gravity, this experiment may confirm that a stationary point exists on the fluid surface. This information will enable better designing of propellant management devices, especially satellite propellant refilling and gas venting. Also, biological and material processing systems in reduced gravity environments will benefit from this data.

  11. BOOK REVIEW: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity

    Science.gov (United States)

    Husain, Viqar

    2012-03-01

    Research on quantum gravity from a non-perturbative 'quantization of geometry' perspective has been the focus of much research in the past two decades, due to the Ashtekar-Barbero Hamiltonian formulation of general relativity. This approach provides an SU(2) gauge field as the canonical configuration variable; the analogy with Yang-Mills theory at the kinematical level opened up some research space to reformulate the old Wheeler-DeWitt program into what is now known as loop quantum gravity (LQG). The author is known for his work in the LQG approach to cosmology, which was the first application of this formalism that provided the possibility of exploring physical questions. Therefore the flavour of the book is naturally informed by this history. The book is based on a set of graduate-level lectures designed to impart a working knowledge of the canonical approach to gravitation. It is more of a textbook than a treatise, unlike three other recent books in this area by Kiefer [1], Rovelli [2] and Thiemann [3]. The style and choice of topics of these authors are quite different; Kiefer's book provides a broad overview of the path integral and canonical quantization methods from a historical perspective, whereas Rovelli's book focuses on philosophical and formalistic aspects of the problems of time and observables, and gives a development of spin-foam ideas. Thiemann's is much more a mathematical physics book, focusing entirely on the theory of representing constraint operators on a Hilbert space and charting a mathematical trajectory toward a physical Hilbert space for quantum gravity. The significant difference from these books is that Bojowald covers mainly classical topics until the very last chapter, which contains the only discussion of quantization. In its coverage of classical gravity, the book has some content overlap with Poisson's book [4], and with Ryan and Shepley's older work on relativistic cosmology [5]; for instance the contents of chapter five of the

  12. Tunable Superconducting Gravity Gradiometer for Mars Climate, Atmosphere, and Gravity Field Investigation

    Science.gov (United States)

    Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.

    2015-01-01

    We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.

  13. Quantum gravito-optics: a light route from semiclassical gravity to quantum gravity

    International Nuclear Information System (INIS)

    Unnikrishnan, C S; Gillies, George T

    2015-01-01

    Quantum gravity remains an elusive theory, in spite of our thorough understanding of the quantum theory and the general theory of relativity separately, presumably due to the lack of any observational clues. We argue that the theory of quantum gravity has a strong constraining anchor in the sector of gravitational radiation, ensuring reliable physical clues, albeit in a limited observable form. In particular, all types of gravitational waves expected to be observable in LIGO-like advanced detectors are fully quantum mechanical states of radiation. Exact equivalence of the full quantum gravity theory with the familiar semiclassical theory is ensured in the radiation sector, in most real situations where the relevant quantum operator functions are normal ordered, by the analogue of the optical equivalence theorem in quantum optics. We show that this is indeed the case for the detection of the waves from a massive binary system, a single gravitational atom, that emits coherent radiation. The idea of quantum-gravitational optics can assist in guiding along the fuzzy roads to quantum gravity. (paper)

  14. Stability in designer gravity

    International Nuclear Information System (INIS)

    Hertog, Thomas; Hollands, Stefan

    2005-01-01

    We study the stability of designer gravity theories, in which one considers gravity coupled to a tachyonic scalar with anti-de Sitter (AdS) boundary conditions defined by a smooth function W. We construct Hamiltonian generators of the asymptotic symmetries using the covariant phase space method of Wald et al and find that they differ from the spinor charges except when W = 0. The positivity of the spinor charge is used to establish a lower bound on the conserved energy of any solution that satisfies boundary conditions for which W has a global minimum. A large class of designer gravity theories therefore have a stable ground state, which the AdS/CFT correspondence indicates should be the lowest energy soliton. We make progress towards proving this by showing that minimum energy solutions are static. The generalization of our results to designer gravity theories in higher dimensions involving several tachyonic scalars is discussed

  15. Carroll versus Galilei gravity

    Energy Technology Data Exchange (ETDEWEB)

    Bergshoeff, Eric [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Gomis, Joaquim [Departament de Física Cuàntica i Astrofísica and Institut de Ciències del Cosmos,Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain); Rollier, Blaise [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands); Rosseel, Jan [Faculty of Physics, University of Vienna,Boltzmanngasse 5, A-1090 Vienna (Austria); Veldhuis, Tonnis ter [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2017-03-30

    We consider two distinct limits of General Relativity that in contrast to the standard non-relativistic limit can be taken at the level of the Einstein-Hilbert action instead of the equations of motion. One is a non-relativistic limit and leads to a so-called Galilei gravity theory, the other is an ultra-relativistic limit yielding a so-called Carroll gravity theory. We present both gravity theories in a first-order formalism and show that in both cases the equations of motion (i) lead to constraints on the geometry and (ii) are not sufficient to solve for all of the components of the connection fields in terms of the other fields. Using a second-order formalism we show that these independent components serve as Lagrange multipliers for the geometric constraints we found earlier. We point out a few noteworthy differences between Carroll and Galilei gravity and give some examples of matter couplings.

  16. New special operators in W-gravity theories

    International Nuclear Information System (INIS)

    Rama, S.K.

    1991-01-01

    This paper reports on special physical operators of W 3 -gravity having non-trivial ghost sectors. Some of these operators may be viewed as the Liouville dressings of the energy operator of the Ising model coupled to two-dimensional (2D) gravity and this fills in the gap in the connection between pure W 3 -gravity and Ising model coupled to 2D gravity found in the authors' previous work. The authors formulate a selection rule required for the calculation of correlators in W-gravity theories. Using this rule, the authors construct the non-ghost part of the new operators of W N -gravity and find that they represent the (N,N + 1) minimal model operators from both inside and outside the minimal table. Along the way the authors obtain the canonical spectrum of W N -gravity for all N

  17. Nonlinearities in modified gravity cosmology: Signatures of modified gravity in the nonlinear matter power spectrum

    International Nuclear Information System (INIS)

    Cui Weiguang; Zhang Pengjie; Yang Xiaohu

    2010-01-01

    A large fraction of cosmological information on dark energy and gravity is encoded in the nonlinear regime. Precision cosmology thus requires precision modeling of nonlinearities in general dark energy and modified gravity models. We modify the Gadget-2 code and run a series of N-body simulations on modified gravity cosmology to study the nonlinearities. The modified gravity model that we investigate in the present paper is characterized by a single parameter ζ, which determines the enhancement of particle acceleration with respect to general relativity (GR), given the identical mass distribution (ζ=1 in GR). The first nonlinear statistics we investigate is the nonlinear matter power spectrum at k < or approx. 3h/Mpc, which is the relevant range for robust weak lensing power spectrum modeling at l < or approx. 2000. In this study, we focus on the relative difference in the nonlinear power spectra at corresponding redshifts where different gravity models have the same linear power spectra. This particular statistics highlights the imprint of modified gravity in the nonlinear regime and the importance of including the nonlinear regime in testing GR. By design, it is less susceptible to the sample variance and numerical artifacts. We adopt a mass assignment method based on wavelet to improve the power spectrum measurement. We run a series of tests to determine the suitable simulation specifications (particle number, box size, and initial redshift). We find that, the nonlinear power spectra can differ by ∼30% for 10% deviation from GR (|ζ-1|=0.1) where the rms density fluctuations reach 10. This large difference, on one hand, shows the richness of information on gravity in the corresponding scales, and on the other hand, invalidates simple extrapolations of some existing fitting formulae to modified gravity cosmology.

  18. Stabilized amorphous glibenclamide nanoparticles by high-gravity technique

    International Nuclear Information System (INIS)

    Yu Lei; Li Caixia; Le Yuan; Chen Jianfeng; Zou Haikui

    2011-01-01

    Highlights: · Amorphous glibenclamide nanoparticles of 220 nm are obtained using the high-gravity technique. · The dissolution rate of these nanoparticles achieves 85% in 5 min, while those of the raw glibenclamide and the commercial glibenclamide tablet only reach 35% and 55% respectively during the same period. · The morphology, particle size, crystalline form and dissolution rate of these nanoparticles almost remain constant after keeping more than 70 days. - Abstract: The stable amorphous glibenclamide nanoparticles was obtained via anti-solvent precipitation using the high-gravity technique in this study. The effects of operating variables on the particle size were investigated. The properties of glibenclamide nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) and dissolution test. The prepared glibenclamide nanoparticles had a mean size of 220 nm within a narrow distribution. The dissolution rate of glibenclamide nanoparticles was obviously faster than that of the raw glibenclamide or the commercial glibenclamide tablet. It achieved 85% in 5 min, while those of the raw glibenclamide and the commercial glibenclamide tablet achieved 35% and 55% respectively during the same period. The physical stability of the nanoparticles was tested after storing for more than 70 days at room conditions. Their morphology, particle size, crystalline form and dissolution rate almost remained constant during storage.

  19. Gravity wave generation and propagation during geomagnetic storms over Kiruna (67.8°N, 20.4°E

    Directory of Open Access Journals (Sweden)

    P. R. Fagundes

    1995-04-01

    Full Text Available Atmospheric gravity waves, detected over Kiruna (67.8°N, 20.4°E during geomagnetic storms, are presented and analysed. The data include direct measurements of the OI 630.0 nm emission line intensity, the x-component of the local geomagnetic field and thermospheric (meridional and zonal wind velocities derived from the OI 630.0 nm Doppler shift observed with an imaging Fabry-Perot interferometer (IFPI. A low pass band filter technique was used to determine short-period variations in the thermospheric meridional wind velocities observed during geomagnetic storms. These short-period variations in the meridional wind velocities, which are identified as due to gravity waves, are compared to the corresponding variations observed in the OI 630.0 nm emission line intensity, x-component of the local geomagnetic field and the location of the auroral electrojet. A cross-correlation analysis was used to calculate the propagation velocities of the observed gravity waves.

  20. Planet X as the source of the periodic and steady-state flux of short period comets

    International Nuclear Information System (INIS)

    Matese, J.J.; Whitmire, D.P.

    1986-01-01

    The cratering and fossil records suggest that impacts on the earth have been modulated with a period of roughly 30 Myr. In the Planet X model, this modulation is the result of the interaction of Planet X with a primordial disk of planetesimals lying beyond the orbit of Neptune. In this paper, observational and theoretical evidence supporting the existence of Planet X and the planetesimal disk is briefly reviewed, and the constraints on the orbit parameters of Planet X and the disk parameters which must be satisfied to ensure consistency with observational limits are discussed

  1. A Multiscale Nested Modeling Framework to Simulate the Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves

    Science.gov (United States)

    2015-09-30

    Interaction of Surface Gravity Waves with Nonlinear Internal Gravity Waves Lian Shen St. Anthony Falls Laboratory and Department of Mechanical...on studying surface gravity wave evolution and spectrum in the presence of surface currents caused by strongly nonlinear internal solitary waves...interaction of surface and internal gravity waves in the South China Sea. We will seek answers to the following questions: 1) How does the wind-wave

  2. Renormalization and asymptotic freedom in quantum gravity

    International Nuclear Information System (INIS)

    Tomboulis, E.T.

    1984-01-01

    The article reviews some recent attempts to construct satisfactory theories of quantum gravity within the framework of local, continuum field theory. Quantum gravity; the renormalization group and its fixed points; fixed points and dimensional continuation in gravity; and quantum gravity at d=4-the 1/N expansion-asymptotic freedom; are all discussed. (U.K.)

  3. 2-Dim. gravity and string theory

    International Nuclear Information System (INIS)

    Narain, K.S.

    1991-01-01

    The role of 2-dim. gravity in string theory is discussed. In particular d=25 string theory coupled to 2-d. gravity is described and shown to give rise to the physics of the usual 26-dim. string theory (where one does not quantise 2-d. gravity. (orig.)

  4. Analysis of the steady-state operation of vacuum systems for fusion machines

    International Nuclear Information System (INIS)

    Roose, T.R.; Hoffman, M.A.; Carlson, G.A.

    1975-01-01

    A computer code named GASBAL was written to calculate the steady-state vacuum system performance of multi-chamber mirror machines as well as rather complex conventional multichamber vacuum systems. Application of the code, with some modifications, to the quasi-steady tokamak operating period should also be possible. Basically, GASBAL analyzes free molecular gas flow in a system consisting of a central chamber (the plasma chamber) connected by conductances to an arbitrary number of one- or two-chamber peripheral tanks. Each of the peripheral tanks may have vacuum pumping capability (pumping speed), sources of cold gas, and sources of energetic atoms. The central chamber may have actual vacuum pumping capability, as well as a plasma capable of ionizing injected atoms and impinging gas molecules and ''pumping'' them to a peripheral chamber. The GASBAL code was used in the preliminary design of a large mirror machine experiment--LLL's MX

  5. The instability of internal gravity waves to localised disturbances

    Directory of Open Access Journals (Sweden)

    J. Vanneste

    1995-02-01

    Full Text Available The instability of an internal gravity wave due to nonlinear wave-wave interaction is studied theoretically and numerically. Three different aspects of this phenomenon are examined. 1. The influence of dissipation on both the resonant and the nonresonant interactions is analysed using a normal mode expansion of the basic equations. In particular, the modifications induced in the interaction domain are calculated and as a result some modes are shown to be destabilised by dissipation. 2. The evolution of an initial unstable disturbance of finite vertical extent is described as the growth of two secondary wave packets travelling at the same group velocity. A quasi-linear correction to the basic primary wave is calculated, corresponding to a localised amplitude decrease due to the disturbance growth. 3. Numerical experiments are carried out to study the effect of a basic shear on wave instability. It appears that the growing secondary waves can have a frequency larger than that of the primary wave, provided that the shear is sufficient. The instability of waves with large amplitude and long period, such as tides or planetary waves, could therefore be invoked as a possible mechanism for the generation of gravity waves with shorter period in the middle atmosphere.

  6. Observational constraints on transverse gravity: A generalization of unimodular gravity

    International Nuclear Information System (INIS)

    Lopez-Villarejo, J J

    2010-01-01

    We explore the hypothesis that the set of symmetries enjoyed by the theory that describes gravity is not the full group of diffeomorphisms (Diff(M)), as in General Relativity, but a maximal subgroup of it (TransverseDiff(M)), with its elements having a jacobian equal to unity; at the infinitesimal level, the parameter describing the coordinate change x μ → x μ + ξ μ (x) is transverse, i.e., δ μ ξ μ = 0. Incidentally, this is the smaller symmetry one needs to propagate consistently a graviton, which is a great theoretical motivation for considering these theories. Also, the determinant of the metric, g, behaves as a 'transverse scalar', so that these theories can be seen as a generalization of the better-known unimodular gravity. We present our results on the observational constraints on transverse gravity, in close relation with the claim of equivalence with general scalar-tensor theory. We also comment on the structure of the divergences of the quantum theory to the one-loop order.

  7. Anamorphic quasiperiodic universes in modified and Einstein gravity with loop quantum gravity corrections

    Science.gov (United States)

    Amaral, Marcelo M.; Aschheim, Raymond; Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.; Woolridge, Daniel

    2017-09-01

    The goal of this work is to elaborate on new geometric methods of constructing exact and parametric quasiperiodic solutions for anamorphic cosmology models in modified gravity theories, MGTs, and general relativity, GR. There exist previously studied generic off-diagonal and diagonalizable cosmological metrics encoding gravitational and matter fields with quasicrystal like structures, QC, and holonomy corrections from loop quantum gravity, LQG. We apply the anholonomic frame deformation method, AFDM, in order to decouple the (modified) gravitational and matter field equations in general form. This allows us to find integral varieties of cosmological solutions determined by generating functions, effective sources, integration functions and constants. The coefficients of metrics and connections for such cosmological configurations depend, in general, on all spacetime coordinates and can be chosen to generate observable (quasi)-periodic/aperiodic/fractal/stochastic/(super) cluster/filament/polymer like (continuous, stochastic, fractal and/or discrete structures) in MGTs and/or GR. In this work, we study new classes of solutions for anamorphic cosmology with LQG holonomy corrections. Such solutions are characterized by nonlinear symmetries of generating functions for generic off-diagonal cosmological metrics and generalized connections, with possible nonholonomic constraints to Levi-Civita configurations and diagonalizable metrics depending only on a time like coordinate. We argue that anamorphic quasiperiodic cosmological models integrate the concept of quantum discrete spacetime, with certain gravitational QC-like vacuum and nonvacuum structures. And, that of a contracting universe that homogenizes, isotropizes and flattens without introducing initial conditions or multiverse problems.

  8. Threshold quantities for infectious diseases in periodic environments

    NARCIS (Netherlands)

    Heesterbeek, J.A.P.; Roberts, M.G.

    1995-01-01

    In this short note we give threshold quantities that determine the stability of the infection-free steady state for periodic deterministic systems that describe the spread of infectious diseases in populations whose individuals can be divided into a finite number of distinct groups. We concentrate

  9. Lattice gravity and strings

    International Nuclear Information System (INIS)

    Jevicki, A.; Ninomiya, M.

    1985-01-01

    We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)

  10. The Future of Gravity

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    Of the four fundamental forces, gravity has been studied the longest, yet gravitational physics is one of the most rapidly developing areas of science today. This talk will give a broad brush survey of the past achievements and future prospects of general relativistic gravitational physics. Gravity is a two frontier science being important on both the very largest and smallest length scales considered in contemporary physics. Recent advances and future prospects will be surveyed in precision tests of general relativity, gravitational waves, black holes, cosmology and quantum gravity. The aim will be an overview of a subject that is becoming increasingly integrated with experiment and other branches of physics.

  11. And what if gravity is intrinsically quantic?

    International Nuclear Information System (INIS)

    Ziaeepour, Houri

    2009-01-01

    Since the early days of search for a quantum theory of gravity the attempts have been mostly concentrated on the quantization of an otherwise classical system. The two most contentious candidate theories of gravity, string theory and quantum loop gravity are based on a quantum field theory - the latter is a quantum field theory of connections on a SU(2) group manifold and the former is a quantum field theory in two dimensional spaces. Here we argue that there is a very close relation between quantum mechanics (QM) and gravity. Without gravity, QM becomes ambiguous. We consider this observation as the evidence for an intrinsic relation between these fundamental laws of nature. We suggest a quantum role and definition for gravity in the context of a quantum Universe, and present a preliminary formulation for gravity in a system with a finite number of particles.

  12. Efficient multigrid computation of steady hypersonic flows

    NARCIS (Netherlands)

    Koren, B.; Hemker, P.W.; Murthy, T.K.S.

    1991-01-01

    In steady hypersonic flow computations, Newton iteration as a local relaxation procedure and nonlinear multigrid iteration as an acceleration procedure may both easily fail. In the present chapter, same remedies are presented for overcoming these problems. The equations considered are the steady,

  13. New Tore Supra steady state operating scenario

    International Nuclear Information System (INIS)

    Martin, G.; Parlange, F.; van Houtte, D.; Wijnands, T.

    1995-01-01

    This document deals with plasma control in steady state conditions. A new plasma control systems enabling feedback control of global plasma equilibrium parameters has been developed. It also enables to operate plasma discharge in steady state regime. (TEC). 4 refs., 5 figs

  14. Spin Entanglement Witness for Quantum Gravity

    NARCIS (Netherlands)

    Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W.; Ulbricht, Hendrik; Toros, Marko; Paternostro, Mauro; Geraci, Andrew A.; Barker, Peter F.; Kim, M. S.; Milburn, Gerard

    2017-01-01

    Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no

  15. Squeezing more information out of time variable gravity data with a temporal decomposition approach

    DEFF Research Database (Denmark)

    Barletta, Valentina Roberta; Bordoni, A.; Aoudia, A.

    2012-01-01

    an explorative approach based on a suitable time series decomposition, which does not rely on predefined time signatures. The comparison and validation against the fitting approach commonly used in GRACE literature shows a very good agreement for what concerns trends and periodic signals on one side......A measure of the Earth's gravity contains contributions from solid Earth as well as climate-related phenomena, that cannot be easily distinguished both in time and space. After more than 7years, the GRACE gravity data available now support more elaborate analysis on the time series. We propose...... used to assess the possibility of finding evidence of meaningful geophysical signals different from hydrology over Africa in GRACE data. In this case we conclude that hydrological phenomena are dominant and so time variable gravity data in Africa can be directly used to calibrate hydrological models....

  16. Atom Interferometer Technologies in Space for Gravity Mapping and Gravity Science

    Science.gov (United States)

    Williams, Jason; Chiow, Sheng-Wey; Kellogg, James; Kohel, James; Yu, Nan

    2015-05-01

    Atom interferometers utilize the wave-nature of atomic gases for precision measurements of inertial forces, with potential applications ranging from gravity mapping for planetary science to unprecedented tests of fundamental physics with quantum gases. The high stability and sensitivity intrinsic to these devices already place them among the best terrestrial sensors available for measurements of gravitational accelerations, rotations, and gravity gradients, with the promise of several orders of magnitude improvement in their detection sensitivity in microgravity. Consequently, multiple precision atom-interferometer-based projects are under development at the Jet Propulsion Laboratory, including a dual-atomic-species interferometer that is to be integrated into the Cold Atom Laboratory onboard the International Space Station and a highly stable gravity gradiometer in a transportable design relevant for earth science measurements. We will present JPL's activities in the use of precision atom interferometry for gravity mapping and gravitational wave detection in space. Our recent progresses bringing the transportable JPL atom interferometer instrument to be competitive with the state of the art and simulations of the expected capabilities of a proposed flight project will also be discussed. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  17. Light fermions in quantum gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Gies, Holger

    2011-01-01

    We study the impact of quantum gravity, formulated as a quantum field theory of the metric, on chiral symmetry in a fermionic matter sector. Specifically we address the question of whether metric fluctuations can induce chiral symmetry breaking and bound state formation. Our results based on the functional renormalization group indicate that chiral symmetry is left intact even at strong gravitational coupling. In particular, we found that asymptotically safe quantum gravity where the gravitational couplings approach a non-Gaußian fixed point generically admits universes with light fermions. Our results thus further support quantum gravity theories built on fluctuations of the metric field such as the asymptotic-safety scenario. A study of chiral symmetry breaking through gravitational quantum effects may also serve as a significant benchmark test for other quantum gravity scenarios, since a completely broken chiral symmetry at the Planck scale would not be in accordance with the observation of light fermions in our universe. We demonstrate that this elementary observation already imposes constraints on a generic UV completion of gravity. (paper)

  18. The Juno Gravity Science Instrument

    Science.gov (United States)

    Asmar, Sami W.; Bolton, Scott J.; Buccino, Dustin R.; Cornish, Timothy P.; Folkner, William M.; Formaro, Roberto; Iess, Luciano; Jongeling, Andre P.; Lewis, Dorothy K.; Mittskus, Anthony P.; Mukai, Ryan; Simone, Lorenzo

    2017-11-01

    The Juno mission's primary science objectives include the investigation of Jupiter interior structure via the determination of its gravitational field. Juno will provide more accurate determination of Jupiter's gravity harmonics that will provide new constraints on interior structure models. Juno will also measure the gravitational response from tides raised on Jupiter by Galilean satellites. This is accomplished by utilizing Gravity Science instrumentation to support measurements of the Doppler shift of the Juno radio signal by NASA's Deep Space Network at two radio frequencies. The Doppler data measure the changes in the spacecraft velocity in the direction to Earth caused by the Jupiter gravity field. Doppler measurements at X-band (˜ 8 GHz) are supported by the spacecraft telecommunications subsystem for command and telemetry and are used for spacecraft navigation as well as Gravity Science. The spacecraft also includes a Ka-band (˜ 32 GHz) translator and amplifier specifically for the Gravity Science investigation contributed by the Italian Space Agency. The use of two radio frequencies allows for improved accuracy by removal of noise due to charged particles along the radio signal path.

  19. Hydrodynamic parameters of micro porous media for steady and oscillatory flow: Application to cryocooler regenerators

    Science.gov (United States)

    Cha, Jeesung Jeff

    microporous structures. This is particularly troubling with regards to the regenerator, where friction and thermal non-equilibrium between the fluid and the structure play crucial roles. Little attention has been paid to this issue primarily because of the difficulty of experimental measurements. Multi-dimensional modeling of a regenerator is very complex and requires knowledge about the anisotropic hydrodynamic parameters in various components, in particular the regenerator. In view of the above, this investigation was aimed at: (a) experimental measurement and correlation of the steady and periodic flow directional Darcy permeability and Forchheimer's inertial hydrodynamic parameters for some widely-used regenerator fillers; (b) system-level parametric CFD-based analyses of entire PTC systems; and (c) a preliminary CFD-based assessment of the effect of direct and linear scale-down of current Inertance Tube Pulse Tube Cryocooler (ITPTCs) on their thermal performance. Modular experimental apparatuses were designed and built for the measurement of pressure drops across five different and widely-used regenerator fillers, under steady-state and steady periodic flow conditions. Separate test sections were used so that the pressure drops in axial and lateral directions could be measured. The fillers that were investigated included 325 mesh stainless steel screens, 400 mesh stainless steel screens, sintered 400 mesh stainless steel screens, stainless steel metal foam, and stacked nickel micro-machined disks. The parametric effects that were addressed in the experiments included the porosity in the range of 26.8% to 69.2%, and frequency in the range of 5 Hz to 60 Hz for the periodic flow tests. A CFDassisted method was developed, which allowed for obtaining the directional permeability and Forchheimer coefficients from the experimental data in a rigorous manner and without any arbitrary assumption. Using the Fluent code, parametric CID analyses were performed in which entire ITPTC

  20. Measurement of non-steady-state free fatty acid turnover

    International Nuclear Information System (INIS)

    Jensen, M.D.; Heiling, V.; Miles, J.M.

    1990-01-01

    The accuracy of non-steady-state equations for measuring changes in free fatty acid rate of appearance (Ra) is unknown. In the present study, endogenous lipolysis (traced with [ 14 C]-linoleate) was pharmacologically suppressed in six conscious mongrel dogs. A computer-responsive infusion pump was then used to deliver an intravenous oleic acid emulsion in both constant and linear gradient infusion modes. Both non-steady-state equations with various effective volumes of distribution (V) and steady-state equations were used to measure oleate Ra [( 14 C]oleate). Endogenous lipolysis did not change during the experiment. When oleate Ra increased in a linear gradient fashion, only non-steady-state equations with a large (150 ml/kg) V resulted in erroneous values (9% overestimate, P less than 0.05). In contrast, when oleate Ra decreased in a similar fashion, steady-state and standard non-steady-state equations (V = plasma volume = 50 ml/kg) overestimated total oleate Ra (18 and 7%, P less than 0.001 and P less than 0.05, respectively). Overall, non-steady-state equations with an effective V of 90 ml/kg (1.8 x plasma volume) allowed the most accurate estimates of oleate Ra

  1. Gravity measurements in southeastern Alaska reveal negative gravity rate of change caused by glacial isostatic adjustment

    Science.gov (United States)

    Sun, W.; Miura, S.; Sato, T.; Sugano, T.; Freymueller, J.; Kaufman, M.; Larsen, C. F.; Cross, R.; Inazu, D.

    2010-12-01

    For the past 300 years, southeastern Alaska has undergone rapid ice-melting and land uplift attributable to global warming. Corresponding crustal deformation (3 cm/yr) caused by the Little Ice Age retreat is detectable with modern geodetic techniques such as GPS and tidal gauge measurements. Geodetic deformation provides useful information for assessing ice-melting rates, global warming effects, and subcrustal viscosity. Nevertheless, integrated geodetic observations, including gravity measurements, are important. To detect crustal deformation caused by glacial isostatic adjustment and to elucidate the viscosity structure in southeastern Alaska, Japanese and U.S. researchers began a joint 3-year project in 2006 using GPS, Earth tide, and absolute gravity measurements. A new absolute gravity network was established, comprising five sites around Glacier Bay, near Juneau, Alaska. This paper reports the network's gravity measurements during 2006-2008. The bad ocean model in this area hindered ocean loading correction: Large tidal residuals remain in the observations. Accurate tidal correction necessitated on-site tidal observation. Results show high observation precision for all five stations: day ice thickness changes. A gravity bias of about -13.2 ± 0.1 mGal exists between the Potsdam and current FG5 gravity data.

  2. Topics in string theory and quantum gravity

    CERN Document Server

    Alvarez-Gaume, Luis

    1992-01-01

    These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) ...

  3. Quantum Gravity Experiments

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2015-10-01

    Full Text Available A new quantum gravity experiment is reported with the data confirming the generali- sation of the Schrödinger equation to include the interaction of the wave function with dynamical space. Dynamical space turbulence, via this interaction process, raises and lowers the energy of the electron wave function, which is detected by observing conse- quent variations in the electron quantum barrier tunnelling rate in reverse-biased Zener diodes. This process has previously been reported and enabled the measurement of the speed of the dynamical space flow, which is consistent with numerous other detection experiments. The interaction process is dependent on the angle between the dynamical space flow velocity and the direction of the electron flow in the diode, and this depen- dence is experimentally demonstrated. This interaction process explains gravity as an emergent quantum process, so unifying quantum phenomena and gravity. Gravitational waves are easily detected.

  4. Stochastic quantum gravity

    International Nuclear Information System (INIS)

    Rumpf, H.

    1987-01-01

    We begin with a naive application of the Parisi-Wu scheme to linearized gravity. This will lead into trouble as one peculiarity of the full theory, the indefiniteness of the Euclidean action, shows up already at this level. After discussing some proposals to overcome this problem, Minkowski space stochastic quantization will be introduced. This will still not result in an acceptable quantum theory of linearized gravity, as the Feynman propagator turns out to be non-causal. This defect will be remedied only after a careful analysis of general covariance in stochastic quantization has been performed. The analysis requires the notion of a metric on the manifold of metrics, and a natural candidate for this is singled out. With this a consistent stochastic quantization of Einstein gravity becomes possible. It is even possible, at least perturbatively, to return to the Euclidean regime. 25 refs. (Author)

  5. Venus gravity anomalies and their correlations with topography

    Science.gov (United States)

    Sjogren, W. L.; Bills, B. G.; Birkeland, P. W.; Esposito, P. B.; Konopliv, A. R.; Mottinger, N. A.; Ritke, S. J.; Phillips, R. J.

    1983-01-01

    This report provides a summary of the high-resolution gravity data obtained from the Pioneer Venus Orbiter radio tracking data. Gravity maps, covering a 70 deg latitude band through 360 deg of longitude, are displayed as line-of-sight and vertical gravity. Topography converted to gravity and Bouguer gravity maps are also shown in both systems. Topography to gravity ratios are made over several regions of the planet. There are markedly different ratios for the Aphrodite area as compared to the Beta and Atla areas.

  6. Towards the map of quantum gravity

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2018-06-01

    In this paper we point out some possible links between different approaches to quantum gravity and theories of the Planck scale physics. In particular, connections between loop quantum gravity, causal dynamical triangulations, Hořava-Lifshitz gravity, asymptotic safety scenario, Quantum Graphity, deformations of relativistic symmetries and nonlinear phase space models are discussed. The main focus is on quantum deformations of the Hypersurface Deformations Algebra and Poincaré algebra, nonlinear structure of phase space, the running dimension of spacetime and nontrivial phase diagram of quantum gravity. We present an attempt to arrange the observed relations in the form of a graph, highlighting different aspects of quantum gravity. The analysis is performed in the spirit of a mind map, which represents the architectural approach to the studied theory, being a natural way to describe the properties of a complex system. We hope that the constructed graphs (maps) will turn out to be helpful in uncovering the global picture of quantum gravity as a particular complex system and serve as a useful guide for the researchers.

  7. Equivalence of two-dimensional gravities

    International Nuclear Information System (INIS)

    Mohammedi, N.

    1990-01-01

    The authors find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL(2,R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2 + 1 dimensional gravity. The authors present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given

  8. Trade-offs between forest carbon stocks and harvests in a steady state - A multi-criteria analysis.

    Science.gov (United States)

    Pingoud, Kim; Ekholm, Tommi; Sievänen, Risto; Huuskonen, Saija; Hynynen, Jari

    2018-03-15

    This paper provides a perspective for comparing trade-offs between harvested wood flows and forest carbon stocks with different forest management regimes. A constant management regime applied to a forest area with an even age-class distribution leads to a steady state, in which the annual harvest and carbon stocks remain constant over time. As both are desirable - carbon stocks for mitigating climate change and harvests for the economic use of wood and displacing fossil fuels - an ideal strategy should be chosen from a set of management regimes that are Pareto-optimal in the sense of multi-criteria decision-making. When choosing between Pareto-optimal alternatives, the trade-off between carbon stock and harvests is unavoidable. This trade-off can be described e.g. in terms of carbon payback times or carbon returns. As numerical examples, we present steady-state harvest levels and carbon stocks in a Finnish boreal forest region for different rotation periods, thinning intensities and collection patterns for harvest residues. In the set of simulated management practices, harvest residue collection presents the most favorable trade-off with payback times around 30-40 years; while Pareto-optimal changes in rotation or thinnings exhibited payback times over 100 years, or alternatively carbon returns below 1%. By extending the rotation period and using less-intensive thinnings compared to current practices, the steady-state carbon stocks could be increased by half while maintaining current harvest levels. Additional cases with longer rotation periods should be also considered, but were here excluded due to the lack of reliable data on older forest stands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Steady state neutral beam injector

    International Nuclear Information System (INIS)

    Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.

    2000-01-01

    Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)

  10. Gravity Station Data for Portugal

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 3064 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  11. Interior Alaska Gravity Station Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 9416 records. This data base was received in March 1997. Principal gravity parameters include Free-air Anomalies which have been...

  12. Gravity Station Data for Spain

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data total 28493 records. This data base was received in April 1997. Principal gravity parameters include Free-air Anomalies which have been...

  13. Generalized pure Lovelock gravity

    Science.gov (United States)

    Concha, Patrick; Rodríguez, Evelyn

    2017-11-01

    We present a generalization of the n-dimensional (pure) Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  14. Cerebral vasomotor reactivity: steady-state versus transient changes in carbon dioxide tension.

    Science.gov (United States)

    Brothers, R Matthew; Lucas, Rebekah A I; Zhu, Yong-Sheng; Crandall, Craig G; Zhang, Rong

    2014-11-01

    Cerebral vasomotor reactivity (CVMR) to changes in arterial carbon dioxide tension (P aCO 2) is assessed during steady-state or transient changes in P aCO 2. This study tested the following two hypotheses: (i) that CVMR during steady-state changes differs from that during transient changes in P aCO 2; and (ii) that CVMR during rebreathing-induced hypercapnia would be blunted when preceded by a period of hyperventilation. For each hypothesis, end-tidal carbon dioxide tension (P ET , CO 2) middle cerebral artery blood velocity (CBFV), cerebrovascular conductance index (CVCI; CBFV/mean arterial pressure) and CVMR (slope of the linear regression between changes in CBFV and CVCI versus P ET , CO 2) were assessed in eight individuals. To address the first hypothesis, measurements were made during the following two conditions (randomized): (i) steady-state increases in P ET , CO 2 of 5 and 10 Torr above baseline; and (ii) rebreathing-induced transient breath-by-breath increases in P ET , CO 2. The linear regression for CBFV versus P ET , CO 2 (P = 0.65) and CVCI versus P ET , CO 2 (P = 0.44) was similar between methods; however, individual variability in CBFV or CVCI responses existed among subjects. To address the second hypothesis, the same measurements were made during the following two conditions (randomized): (i) immediately following a brief period of hypocapnia induced by hyperventilation for 1 min followed by rebreathing; and (ii) during rebreathing only. The slope of the linear regression for CBFV versus P ET , CO 2 (P < 0.01) and CVCI versus P ET , CO 2 (P < 0.01) was reduced during hyperventilation plus rebreathing relative to rebreathing only. These results indicate that cerebral vasomotor reactivity to changes in P aCO 2 is similar regardless of the employed methodology to induce changes in P aCO 2 and that hyperventilation-induced hypocapnia attenuates the cerebral vasodilatory responses during a subsequent period of rebreathing

  15. Tester Detects Steady-Short Or Intermittent-Open Circuits

    Science.gov (United States)

    Anderson, Bobby L.

    1990-01-01

    Momentary open circuits or steady short circuits trigger buzzer. Simple, portable, lightweight testing circuit sounds long-duration alarm when it detects steady short circuit or momentary open circuit in coaxial cable or other two-conductor transmission line. Tester sensitive to discontinuities lasting 10 microseconds or longer. Used extensively for detecting intermittent open shorts in accelerometer and extensometer cables. Also used as ordinary buzzer-type continuity checker to detect steady short or open circuits.

  16. Turning on gravity with the Higgs mechanism

    International Nuclear Information System (INIS)

    Alexander, Stephon; Barrow, John D; Magueijo, João

    2016-01-01

    We investigate how a Higgs mechanism could be responsible for the emergence of gravity in extensions of Einstein theory, with a suitable low energy limit. In this scenario, at high energies, symmetry restoration could ‘turn off’ gravity, with dramatic implications for cosmology and quantum gravity. The sense in which gravity is muted depends on the details of the implementation. In the most extreme case gravity’s dynamical degrees of freedom would only be unleashed after the Higgs field acquires a non-trivial vacuum expectation value, with gravity reduced to a topological field theory in the symmetric phase. We might also identify the Higgs and the Brans–Dicke fields in such a way that in the unbroken phase Newton’s constant vanishes, decoupling matter and gravity. We discuss the broad implications of these scenarios. (letter)

  17. Logamediate Inflation in f ( T ) Teleparallel Gravity

    Energy Technology Data Exchange (ETDEWEB)

    Rezazadeh, Kazem; Karami, Kayoomars [Department of Physics, University of Kurdistan, Pasdaran Street, P.O. Box 66177-15175, Sanandaj (Iran, Islamic Republic of); Abdolmaleki, Asrin, E-mail: rezazadeh86@gmail.com [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), P.O. Box 55134-441, Maragha (Iran, Islamic Republic of)

    2017-02-20

    We study logamediate inflation in the context of f ( T ) teleparallel gravity. f ( T )-gravity is a generalization of the teleparallel gravity which is formulated on the Weitzenbock spacetime, characterized by the vanishing curvature tensor (absolute parallelism) and the non-vanishing torsion tensor. We consider an f ( T )-gravity model which is sourced by a canonical scalar field. Assuming a power-law f ( T ) function in the action, we investigate an inflationary universe with a logamediate scale factor. Our results show that, although logamediate inflation is completely ruled out by observational data in the standard inflationary scenario based on Einstein gravity, it can be compatible with the 68% confidence limit joint region of Planck 2015 TT,TE,EE+lowP data in the framework of f ( T )-gravity.

  18. Matter scattering in quadratic gravity and unitarity

    Science.gov (United States)

    Abe, Yugo; Inami, Takeo; Izumi, Keisuke; Kitamura, Tomotaka

    2018-03-01

    We investigate the ultraviolet (UV) behavior of two-scalar elastic scattering with graviton exchanges in higher-curvature gravity theory. In Einstein gravity, matter scattering is shown not to satisfy the unitarity bound at tree level at high energy. Among some of the possible directions for the UV completion of Einstein gravity, such as string theory, modified gravity, and inclusion of high-mass/high-spin states, we take R_{μν}^2 gravity coupled to matter. We show that matter scattering with graviton interactions satisfies the unitarity bound at high energy, even with negative norm states due to the higher-order derivatives of metric components. The difference in the unitarity property of these two gravity theories is probably connected to that in another UV property, namely, the renormalizability property of the two.

  19. A Study of Mesoscale Gravity Waves over the North Atlantic with Satellite Observations and a Mesoscale Model

    Science.gov (United States)

    Wu, Dong L.; Zhang, Fuqing

    2004-01-01

    Satellite microwave data are used to study gravity wave properties and variabilities over the northeastern United States and the North Atlantic in the December-January periods. The gravity waves in this region, found in many winters, can reach the stratopause with growing amplitude. The Advanced Microwave Sounding Unit-A (AMSU-A) observations show that the wave occurrences are correlated well with the intensity and location of the tropospheric baroclinic jet front systems. To further investigate the cause(s) and properties of the North Atlantic gravity waves, we focus on a series of wave events during 19-21 January 2003 and compare AMSU-A observations to simulations from a mesoscale model (MM5). The simulated gravity waves compare qualitatively well with the satellite observations in terms of wave structures, timing, and overall morphology. Excitation mechanisms of these large-amplitude waves in the troposphere are complex and subject to further investigations.

  20. QBO Modulation of the Mesopause Gravity Wave Momentum Flux over Tierra del Fuego

    Science.gov (United States)

    De Wit, R. J.; Janches, D.; Fritts, D. C.; Hibbins, R. E.

    2016-01-01

    The interannual variability of the mesosphere and lower thermosphere (MLT) gravity wave momentum flux over southern mid latitudes (53.7degS) has been studied using more than 7 years of meteor radar observations at Ro Grande, Argentina. A modulation, with periods similar to that of the equatorial stratospheric quasi-biennial oscillation (QBO), is observed in the vertical flux of zonal as well as meridional momentum. The QBO signal is largest in the zonal component during summer and is in phase with the stratospheric QBO at 50 hPa (approx. 21 km). The relation between the stratospheric QBO and the QBO modulation in the MLT gravity wave forcing (derived from the divergence of the momentum flux) was found to be consistent with that expected from the Holton-Tan effect coupled to the interhemispheric coupling mechanism. These results provide the first observational support for the existence of the midlatitude gravity wave forcing anomalies as hypothesized in the interhemispheric coupling mechanism.

  1. The Superheavy Elements and Anti-Gravity

    Science.gov (United States)

    Anastasovski, Petar K.

    2004-02-01

    The essence of any propulsion concept is to overcome gravity. Anti-gravity is a natural means to achieve this. Thus, the technology to pursue anti-gravity, by using superheavy elements, may provide a new propulsion paradigm. The theory of superluminal relativity provides a hypothesis for existence of elements with atomic number up to Z = 145, some of which may possess anti-gravity properties. Analysis results show that curved space-time exists demonstrating both gravitic and anti-gravitic properties not only around nuclei but inside the nuclei as well. Two groups of elements (Z Hawking, in honour of Stephen W. Hawking.

  2. Generalized Vaidya spacetime for cubic gravity

    Science.gov (United States)

    Ruan, Shan-Ming

    2016-03-01

    We present a kind of generalized Vaidya solution of a new cubic gravity in five dimensions whose field equations in spherically symmetric spacetime are always second order like the Lovelock gravity. We also study the thermodynamics of its spherically symmetric apparent horizon and get its entropy expression and generalized Misner-Sharp energy. Finally, we present the first law and second law hold in this gravity. Although all the results are analogous to those in Lovelock gravity, we in fact introduce the contribution of a new cubic term in five dimensions where the cubic Lovelock term is just zero.

  3. Generalized pure Lovelock gravity

    Directory of Open Access Journals (Sweden)

    Patrick Concha

    2017-11-01

    Full Text Available We present a generalization of the n-dimensional (pure Lovelock Gravity theory based on an enlarged Lorentz symmetry. In particular, we propose an alternative way to introduce a cosmological term. Interestingly, we show that the usual pure Lovelock gravity is recovered in a matter-free configuration. The five and six-dimensional cases are explicitly studied.

  4. Steady turbulent flow in curved rectangular channels

    NARCIS (Netherlands)

    De Vriend, H.J.

    1979-01-01

    After the study of fully developed and developing steady laminar flow in curved channels of shallow rectangular wet cross-section (see earlier reports in this series), steady turbulent flow in such channels is investigated as a next step towards a mathematical model of the flow in shallow river

  5. Gravity Data for South America

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (152,624 records) were compiled by the University of Texas at Dallas. This data base was received in June 1992. Principal gravity parameters...

  6. Why is gravity so weak?

    International Nuclear Information System (INIS)

    Goradia, S.G.

    2006-01-01

    Why is gravity weak? Gravity is plagued with this and many other questions. After decades of exhausting work we do not have a clear answer. In view of this fact it will be shown in the following pages that there are reasons for thinking that gravity is just a composite force consisting of the long-range manifestations of short range nuclear forces that are too tiny to be measured at illuminated or long ranges by particle colliders. This is consistent with Einstein's proposal in 1919

  7. Processing Marine Gravity Data Around Korea

    Science.gov (United States)

    Lee, Y.; Choi, K.; Kim, Y.; Ahn, Y.; Chang, M.

    2008-12-01

    In Korea currently 4 research ships are under operating in Korea, after the first research vessel equipped shipborne gravity meter was introduced in 1990s. These are Onnuri(launch 1991) of KORDI(Korea Ocean Research & Development Institute), Haeyang2000(launch 1996), Badaro1(launch 2002) of NORI(National Oceanographic Research Institute) and Tamhae2(launch 1997) of KIGAM(Korea Institute of Geoscience and Mineral Resources). Those of research vessel, Haeyang2000 have observed marine gravity data over 150,000 points each year from year 1996 to year 2003. Haeyang2000, about 2,500 tons, is unable to operate onshore so NORI has constructed another 600 tons research ship Badaro1 that has observed marine gravity data onshore since year 2002. Haeyang2000 finished observing marine gravity data offshore within Korean territorial waters until year 2003. Currently Badaro1 is observing marine gravity data onshore. These shipborne gravity data will be very useful and important on geodesy and geophysics research also those data can make a contribution to developing these studies. In this study NORI's shipbrne gravity data from 1996 to 2007 has been processed for fundamental data to compute Korean precise geoid. Marine gravity processing steps as followed. 1. Check the time sequence, latitude and longitude position, etc. of shipborne gravity data 2. Arrangement of the tide level below the pier and meter drift correction of each cruise. 3. Elimination of turning points. 4. The time lag correction. 5. Computation of RV's velocities, Heading angles and the Eötvös correction. 6. Kalman filtering of GPS navigation data using cross-over points. 7. Cross-over correction using least square adjustment. About 2,058,000 points have been processed with NORI's marine gravity data from 1996 to 2007 in this study. The distribution of free-air anomalies was -41.0 mgal to 136.0 mgal(mean 8.90mgal) within Korean territorial waters. The free-air anomalies processed with the marine gravity data are

  8. Is there a quantum theory of gravity

    International Nuclear Information System (INIS)

    Strominger, A.

    1984-01-01

    The paper concerns attempts to construct a unitary, renormalizable quantum field theory of gravity. Renormalizability and unitarity in quantum gravity; the 1/N expansion; 1/D expansions; and quantum gravity and particle physics; are all discussed. (U.K.)

  9. Scarred resonances and steady probability distribution in a chaotic microcavity

    International Nuclear Information System (INIS)

    Lee, Soo-Young; Rim, Sunghwan; Kim, Chil-Min; Ryu, Jung-Wan; Kwon, Tae-Yoon

    2005-01-01

    We investigate scarred resonances of a stadium-shaped chaotic microcavity. It is shown that two components with different chirality of the scarring pattern are slightly rotated in opposite ways from the underlying unstable periodic orbit, when the incident angles of the scarring pattern are close to the critical angle for total internal reflection. In addition, the correspondence of emission pattern with the scarring pattern disappears when the incident angles are much larger than the critical angle. The steady probability distribution gives a consistent explanation about these interesting phenomena and makes it possible to expect the emission pattern in the latter case

  10. Merging of airborne gravity and gravity derived from satellite altimetry: Test cases along the coast of greenland

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Andersen, Ole Baltazar; Tscherning, C.C.

    2002-01-01

    for the use of gravity data especially, when computing geoid models in coastal regions. The presence of reliable marine gravity data for independent control offers an opportunity to study procedures for the merging of airborne and satellite data around Greenland. Two different merging techniques, both based......The National Survey and Cadastre - Denmark (KMS) has for several years produced gravity anomaly maps over the oceans derived from satellite altimetry. During the last four years, KMS has also conducted airborne gravity surveys along the coast of Greenland dedicated to complement the existing...... onshore gravity coverage and fill in new data in the very-near coastal area, where altimetry data may contain gross errors. The airborne surveys extend from the coastline to approximately 100 km offshore, along 6000 km of coastline. An adequate merging of these different data sources is important...

  11. The stably stratified internal boundary layer for steady and diurnally varying offshore flow

    Science.gov (United States)

    Garratt, J. R.

    1987-03-01

    A two-dimensional numerical mesoscale model is used to investigate the internal structure and growth of the stably stratified internal boundary layer (IBL) beneath warm, continental air flowing over a cooler sea. Two situations are studied — steady-state and diurnally varying offshore flow. In the steady-state case, vertical profiles of mean quantities and eddy diffusion coefficients ( K) within the IBL show small, but significant, changes with increasing distance from the coast. The top of the IBL is well defined, with large vertical gradients within the layer and a maximum in the coast-normal wind component near the top. Well away from the coast, turbulence, identified by non-zero K, decreases to insignificant levels near the top of the IBL; the IBL itself is characterised by a critical value of the layer-flux Richardson number equal to 0.18. The overall behaviour of the mean profiles is similar to that found in the horizontally homogeneous stable boundary layer over land. A simple physical model is used to relate the depth of the layer h to several relevant physical parameters viz., x, the distance from the coast and U, the large-scale wind (both normal to the coastline) and gδθ/θ, Δθ being the temperature difference between continental mixed-layer air and sea surface, θ is the mean potential temperature and g is the acceleration due to gravity. Excellent agreement with the numerical results is found, with h = 0.014 x 1/2 U ( gδθ/θ)-1/2. In the diurnally varying case, the mean profiles within the IBL show only small differences from the steady-state case, although diurnal variations, particularly in the wind maximum, are evident within a few hundred kilometres of the coast. A mesoscale circulation normal to the coast, and superimposed upon the mean offshore flow, develops seawards of the coastline with maximum vertical velocities about sunset, of depth about 2 km and horizontal scale ≈ 500 km. The circulation is related to the advection, and

  12. Production of black holes in TeV-scale gravity

    International Nuclear Information System (INIS)

    Ringwald, A.

    2003-01-01

    Copious production of microscopic black holes is one of the least model-dependent predictions of TeV-scale gravity scenarios. We review the arguments behind this assertion and discuss opportunities to track the striking associated signatures in the near future. These include searches at neutrino telescopes, such as AMANDA and RICE, at cosmic ray air shower facilities, such as the Pierre Auger Observatory, and at colliders, such as the Large Hadron Collider. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  13. Quantum gravity

    International Nuclear Information System (INIS)

    Markov, M.A.; West, P.C.

    1984-01-01

    This book discusses the state of the art of quantum gravity, quantum effects in cosmology, quantum black-hole physics, recent developments in supergravity, and quantum gauge theories. Topics considered include the problems of general relativity, pregeometry, complete cosmological theories, quantum fluctuations in cosmology and galaxy formation, a new inflationary universe scenario, grand unified phase transitions and the early Universe, the generalized second law of thermodynamics, vacuum polarization near black holes, the relativity of vacuum, black hole evaporations and their cosmological consequences, currents in supersymmetric theories, the Kaluza-Klein theories, gauge algebra and quantization, and twistor theory. This volume constitutes the proceedings of the Second Seminar on Quantum Gravity held in Moscow in 1981

  14. Long-Term Observation of Small and Medium-Scale Gravity Waves over the Brazilian Equatorial Region

    Science.gov (United States)

    Essien, Patrick; Buriti, Ricardo; Wrasse, Cristiano M.; Medeiros, Amauri; Paulino, Igo; Takahashi, Hisao; Campos, Jose Andre

    2016-07-01

    This paper reports the long term observations of small and medium-scale gravity waves over Brazilian equatorial region. Coordinated optical and radio measurements were made from OLAP at Sao Joao do Cariri (7.400S, 36.500W) to investigate the occurrences and properties and to characterize the regional mesospheric gravity wave field. All-sky imager measurements were made from the site. for almost 11 consecutive years (September 2000 to November 2010). Most of the waves propagated were characterized as small-scale gravity. The characteristics of the two waves events agreed well with previous gravity wave studies from Brazil and other sites. However, significant differences in the wave propagation headings indicate dissimilar source regions. The observed medium-scale gravity wave events constitute an important new dataset to study their mesospheric properties at equatorial latitudes. These data exhibited similar propagation headings to the short period events, suggesting they originated from the same source regions. It was also observed that some of the medium-scale were capable of propagating into the lower thermosphere where they may have acted directly as seeds for the Rayleigh-Taylor instability development. The wave events were primarily generated by meteorological processes since there was no correlation between the evolution of the wave events and solar cycle F10.7.

  15. Mars - Hellas Planitia gravity analysis

    Science.gov (United States)

    Sjogren, W. L.; Wimberley, R. N.

    1981-01-01

    Doppler radio tracking data from Viking Orbiter 1 has provided new detailed observations of gravity variations over Hellas Planitia. Line-of-sight Bouguer gravity definitely indicates that isostatic adjustment has occurred. Two theoretical models were tested to obtain fits to the gravity data. Results for a surface deficit model, and a model with a surface deficit and a mass excess at depth are displayed. The mass-at-depth model produced very marked improvement in the data fit as compared to the surface deficit model. The optimum depth for the mass excess is 130 km.

  16. CDT meets Horava-Lifshitz gravity

    International Nuclear Information System (INIS)

    Ambjorn, J.; Goerlich, A.; Jordan, S.; Jurkiewicz, J.; Loll, R.

    2010-01-01

    The theory of causal dynamical triangulations (CDT) attempts to define a nonperturbative theory of quantum gravity as a sum over spacetime geometries. One of the ingredients of the CDT framework is a global time foliation, which also plays a central role in the quantum gravity theory recently formulated by Horava. We show that the phase diagram of CDT bears a striking resemblance with the generic Lifshitz phase diagram appealed to by Horava. We argue that CDT might provide a unifying nonperturbative framework for anisotropic as well as isotropic theories of quantum gravity.

  17. Gauge Gravity and Space-Time

    OpenAIRE

    Wu, Ning

    2012-01-01

    When we discuss problems on gravity, we can not avoid some fundamental physical problems, such as space-time, inertia, and inertial reference frame. The goal of this paper is to discuss the logic system of gravity theory and the problems of space-time, inertia, and inertial reference frame. The goal of this paper is to set up the theory on space-time in gauge theory of gravity. Based on this theory, it is possible for human kind to manipulate physical space-time on earth, and produce a machin...

  18. Quantum gravity and the renormalisation group

    International Nuclear Information System (INIS)

    Litim, D.

    2011-01-01

    The Standard Model of particle physics is remarkably successful in describing three out of the four known fundamental forces of Nature. But what is up with gravity? Attempts to understand quantum gravity on the same footing as the other forces still face problems. Some time ago, it has been pointed out that gravity may very well exist as a fundamental quantum field theory provided its high-energy behaviour is governed by a fixed point under the renormalisation group. In recent years, this 'asymptotic safety' scenario has found significant support thanks to numerous renormalisation group studies, lattice simulations, and new ideas within perturbation theory. The lectures will give an introduction into the renormalisation group approach for quantum gravity, aimed at those who haven't met the topic before. After an introduction and overview, the key ideas and concepts of asymptotic safety for gravity are fleshed out. Results for gravitational high-energy fixed points and scaling exponents are discussed as well as key features of the gravitational phase diagram. The survey concludes with some phenomenological implications of fixed point gravity including the physics of black holes and particle physics beyond the Standard Model. (author)

  19. Discretization of 3d gravity in different polarizations

    Science.gov (United States)

    Dupuis, Maïté; Freidel, Laurent; Girelli, Florian

    2017-10-01

    We study the discretization of three-dimensional gravity with Λ =0 following the loop quantum gravity framework. In the process, we realize that different choices of polarization are possible. This allows us to introduce a new discretization based on the triad as opposed to the connection as in the standard loop quantum gravity framework. We also identify the classical nontrivial symmetries of discrete gravity, namely the Drinfeld double, given in terms of momentum maps. Another choice of polarization is given by the Chern-Simons formulation of gravity. Our framework also provides a new discretization scheme of Chern-Simons, which keeps track of the link between the continuum variables and the discrete ones. We show how the Poisson bracket we recover between the Chern-Simons holonomies allows us to recover the Goldman bracket. There is also a transparent link between the discrete Chern-Simons formulation and the discretization of gravity based on the connection (loop gravity) or triad variables (dual loop gravity).

  20. An introduction to atmospheric gravity waves

    CERN Document Server

    Nappo, Carmen J

    2012-01-01

    Gravity waves exist in all types of geophysical fluids, such as lakes, oceans, and atmospheres. They play an important role in redistributing energy at disturbances, such as mountains or seamounts and they are routinely studied in meteorology and oceanography, particularly simulation models, atmospheric weather models, turbulence, air pollution, and climate research. An Introduction to Atmospheric Gravity Waves provides readers with a working background of the fundamental physics and mathematics of gravity waves, and introduces a wide variety of applications and numerous recent advances. Nappo provides a concise volume on gravity waves with a lucid discussion of current observational techniques and instrumentation.An accompanying website contains real data, computer codes for data analysis, and linear gravity wave models to further enhance the reader's understanding of the book's material. Companion web site features animations and streaming video Foreword by George Chimonas, a renowned expert on the interac...

  1. Human Performance in Simulated Reduced Gravity Environments

    Science.gov (United States)

    Cowley, Matthew; Harvill, Lauren; Rajulu, Sudhakar

    2014-01-01

    NASA is currently designing a new space suit capable of working in deep space and on Mars. Designing a suit is very difficult and often requires trade-offs between performance, cost, mass, and system complexity. Our current understanding of human performance in reduced gravity in a planetary environment (the moon or Mars) is limited to lunar observations, studies from the Apollo program, and recent suit tests conducted at JSC using reduced gravity simulators. This study will look at our most recent reduced gravity simulations performed on the new Active Response Gravity Offload System (ARGOS) compared to the C-9 reduced gravity plane. Methods: Subjects ambulated in reduced gravity analogs to obtain a baseline for human performance. Subjects were tested in lunar gravity (1.6 m/sq s) and Earth gravity (9.8 m/sq s) in shirt-sleeves. Subjects ambulated over ground at prescribed speeds on the ARGOS, but ambulated at a self-selected speed on the C-9 due to time limitations. Subjects on the ARGOS were given over 3 minutes to acclimate to the different conditions before data was collected. Nine healthy subjects were tested in the ARGOS (6 males, 3 females, 79.5 +/- 15.7 kg), while six subjects were tested on the C-9 (6 males, 78.8 +/- 11.2 kg). Data was collected with an optical motion capture system (Vicon, Oxford, UK) and was analyzed using customized analysis scripts in BodyBuilder (Vicon, Oxford, UK) and MATLAB (MathWorks, Natick, MA, USA). Results: In all offloaded conditions, variation between subjects increased compared to 1-g. Kinematics in the ARGOS at lunar gravity resembled earth gravity ambulation more closely than the C-9 ambulation. Toe-off occurred 10% earlier in both reduced gravity environments compared to earth gravity, shortening the stance phase. Likewise, ankle, knee, and hip angles remained consistently flexed and had reduced peaks compared to earth gravity. Ground reaction forces in lunar gravity (normalized to Earth body weight) were 0.4 +/- 0.2 on

  2. Gravity on-shell diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Enrico [Walter Burke Institute for Theoretical Physics, California Institute of Technology,Pasadena, CA 91125 (United States); Trnka, Jaroslav [Center for Quantum Mathematics and Physics (QMAP),Department of Physics, University of California,Davis, CA 95616 (United States)

    2016-11-22

    We study on-shell diagrams for gravity theories with any number of supersymmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only dlog-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N=8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinity are present, in complete agreement with the conjecture presented in http://dx.doi.org/10.1007/JHEP06(2015)202.

  3. Exact Solutions in Three-Dimensional Gravity

    Science.gov (United States)

    García-Díaz, Alberto A.

    2017-09-01

    Preface; 1. Introduction; 2. Point particles; 3. Dust solutions; 4. AdS cyclic symmetric stationary solutions; 5. Perfect fluid static stars; 6. Static perfect fluid stars with Λ; 7. Hydrodynamic equilibrium; 8. Stationary perfect fluid with Λ; 9. Friedmann–Robertson–Walker cosmologies; 10. Dilaton-inflaton FRW cosmologies; 11. Einstein–Maxwell solutions; 12. Nonlinear electrodynamics black hole; 13. Dilaton minimally coupled to gravity; 14. Dilaton non-minimally coupled to gravity; 15. Low energy 2+1 string gravity; 16. Topologically massive gravity; 17. Bianchi type spacetimes in TMG; 18. Petrov type N wave metrics; 19. Kundt spacetimes in TMG; 20. Cotton tensor in Riemannian spacetimes; References; Index.

  4. Steady electric fields and currents elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    2013-01-01

    Steady Electric Fields and Currents, Volume 1 is an introductory text to electromagnetism and potential theory. This book starts with the fields associated with stationary charges and unravels the stationary condition to allow consideration of the flow of steady currents in closed circuits. The opening chapter discusses the experimental results that require mathematical explanation and discussion, particularly those referring to phenomena that question the validity of the simple Newtonian concepts of space and time. The subsequent chapters consider steady-state fields, electrostatics, dielectr

  5. Fixed points of quantum gravity

    OpenAIRE

    Litim, D F

    2003-01-01

    Euclidean quantum gravity is studied with renormalisation group methods. Analytical results for a non-trivial ultraviolet fixed point are found for arbitrary dimensions and gauge fixing parameter in the Einstein-Hilbert truncation. Implications for quantum gravity in four dimensions are discussed.

  6. Topological strings from Liouville gravity

    International Nuclear Information System (INIS)

    Ishibashi, N.; Li, M.

    1991-01-01

    We study constrained SU(2) WZW models, which realize a class of two-dimensional conformal field theories. We show that they give rise to topological gravity coupled to the topological minimal models when they are coupled to Liouville gravity. (orig.)

  7. Neutron Stars : Magnetism vs Gravity

    Indian Academy of Sciences (India)

    however, in the magnetosphere, electromagnetic forces dominate over gravity : Fgr = mg ~ 10-18 Newton ; Fem = e V B ~ 10-5 Newton; (for a single electron of mass m and charge e ) ; Hence, the electromagnetic force is 1013 times stronger than gravity !!

  8. Algebraic definition of topological W gravity

    International Nuclear Information System (INIS)

    Hosono, S.

    1992-01-01

    In this paper, the authors propose a definition of the topological W gravity using some properties of the principal three-dimensional subalgebra of a simple Lie algebra due to Kostant. In the authors' definition, structures of the two-dimensional topological gravity are naturally embedded in the extended theories. In accordance with the definition, the authors will present some explicit calculations for the W 3 gravity

  9. Cosmic censorship in quantum Einstein gravity

    Science.gov (United States)

    Bonanno, A.; Koch, B.; Platania, A.

    2017-05-01

    We study the quantum gravity modification of the Kuroda-Papapetrou model induced by the running of the Newton’s constant at high energy in quantum Einstein gravity. We argue that although the antiscreening character of the gravitational interaction favours the formation of a naked singularity, quantum gravity effects turn the classical singularity into a ‘whimper’ singularity which remains naked for a finite amount of advanced time.

  10. The dynamic representation of gravity is suspended when the idiotropic vector is misaligned with gravity.

    Science.gov (United States)

    De Sá Teixeira, Nuno Alexandre; Hecht, Heiko

    2014-01-01

    When people are asked to indicate the vanishing location of a moving target, errors in the direction of motion (representational momentum) and in the direction of gravity (representational gravity) are usually found. These errors possess a temporal course wherein the memory for the location of the target drifts downwards with increasing temporal intervals between target's disappearance and participant's responses (representational trajectory). To assess if representational trajectory is a body-referenced or a world-referenced phenomenon. A behavioral localization method was employed with retention times between 0 and 1400 ms systematically imposed after the target's disappearance. The target could move horizontally (rightwards or leftwards) or vertically (upwards or downwards). Body posture was varied in a counterbalanced order between sitting upright and lying on the side (left lateral decubitus position). In the upright task, the memory for target location drifted downwards with time in the direction of gravity. This time course did not emerge for the decubitus task, where idiotropic dominance was found. The dynamic visual representation of gravity is neither purely body-referenced nor world-referenced. It seems to be modulated instead by the relationship between the idiotropic vector and physical gravity.

  11. Circulation-based Modeling of Gravity Currents

    Science.gov (United States)

    Meiburg, E. H.; Borden, Z.

    2013-05-01

    Atmospheric and oceanic flows driven by predominantly horizontal density differences, such as sea breezes, thunderstorm outflows, powder snow avalanches, and turbidity currents, are frequently modeled as gravity currents. Efforts to develop simplified models of such currents date back to von Karman (1940), who considered a two-dimensional gravity current in an inviscid, irrotational and infinitely deep ambient. Benjamin (1968) presented an alternative model, focusing on the inviscid, irrotational flow past a gravity current in a finite-depth channel. More recently, Shin et al. (2004) proposed a model for gravity currents generated by partial-depth lock releases, considering a control volume that encompasses both fronts. All of the above models, in addition to the conservation of mass and horizontal momentum, invoke Bernoulli's law along some specific streamline in the flow field, in order to obtain a closed system of equations that can be solved for the front velocity as function of the current height. More recent computational investigations based on the Navier-Stokes equations, on the other hand, reproduce the dynamics of gravity currents based on the conservation of mass and momentum alone. We propose that it should therefore be possible to formulate a fundamental gravity current model without invoking Bernoulli's law. The talk will show that the front velocity of gravity currents can indeed be predicted as a function of their height from mass and momentum considerations alone, by considering the evolution of interfacial vorticity. This approach does not require information on the pressure field and therefore avoids the need for an energy closure argument such as those invoked by the earlier models. Predictions by the new theory are shown to be in close agreement with direct numerical simulation results. References Von Karman, T. 1940 The engineer grapples with nonlinear problems, Bull. Am. Math Soc. 46, 615-683. Benjamin, T.B. 1968 Gravity currents and related

  12. Gravity Before Einstein and Schwinger Before Gravity

    Science.gov (United States)

    Trimble, Virginia L.

    2012-05-01

    Julian Schwinger was a child prodigy, and Albert Einstein distinctly not; Schwinger had something like 73 graduate students, and Einstein very few. But both thought gravity was important. They were not, of course, the first, nor is the disagreement on how one should think about gravity that is being highlighted here the first such dispute. The talk will explore, first, several of the earlier dichotomies: was gravity capable of action at a distance (Newton), or was a transmitting ether required (many others). Did it act on everything or only on solids (an odd idea of the Herschels that fed into their ideas of solar structure and sunspots)? Did gravitational information require time for its transmission? Is the exponent of r precisely 2, or 2 plus a smidgeon (a suggestion by Simon Newcomb among others)? And so forth. Second, I will try to say something about Scwinger's lesser known early work and how it might have prefigured his "source theory," beginning with "On the Interaction of Several Electrons (the unpublished, 1934 "zeroth paper," whose title somewhat reminds one of "On the Dynamics of an Asteroid," through his days at Berkeley with Oppenheimer, Gerjuoy, and others, to his application of ideas from nuclear physics to radar and of radar engineering techniques to problems in nuclear physics. And folks who think good jobs are difficult to come by now might want to contemplate the couple of years Schwinger spent teaching elementary physics at Purdue before moving on to the MIT Rad Lab for war work.

  13. The Gravity Field of Mercury After the Messenger Low-Altitude Campaign

    Science.gov (United States)

    Mazarico, Erwan; Genova, Antonio; Goossens, Sander; Lemoine, Frank G.; Smith, David E.; Zuber, Maria T.; Neumann, Gary A.; Solomon, Sean C.

    2015-01-01

    The final year of the MESSENGER mission was designed to take advantage of the remaining propellant onboard to provide a series of lowaltitude observation campaigns and acquire novel scientific data about the innermost planet. The lower periapsis altitude greatly enhances the sensitivity to the short-wavelength gravity field, but only when the spacecraft is in view of Earth. After more than 3 years in orbit around Mercury, the MESSENGER spacecraft was tracked for the first time below 200-km altitude on 5 May 2014 by the NASA Deep Space Network (DSN). Between August and October, periapsis passages down to 25-km altitude were routinely tracked. These periods considerably improved the quality of the data coverage. Before the end of its mission, MESSENGER will fly at very low altitudes for extended periods of time. Given the orbital geometry, however the periapses will not be visible from Earth and so no new tracking data will be available for altitudes lower than 75 km. Nevertheless, the continuous tracking of MESSENGER in the northern hemisphere will help improve the uniformity of the spatial coverage at altitudes lower than 150 km, which will further improve the overall quality of the Mercury gravity field.

  14. Effect of Numerical Error on Gravity Field Estimation for GRACE and Future Gravity Missions

    Science.gov (United States)

    McCullough, Christopher; Bettadpur, Srinivas

    2015-04-01

    In recent decades, gravity field determination from low Earth orbiting satellites, such as the Gravity Recovery and Climate Experiment (GRACE), has become increasingly more effective due to the incorporation of high accuracy measurement devices. Since instrumentation quality will only increase in the near future and the gravity field determination process is computationally and numerically intensive, numerical error from the use of double precision arithmetic will eventually become a prominent error source. While using double-extended or quadruple precision arithmetic will reduce these errors, the numerical limitations of current orbit determination algorithms and processes must be accurately identified and quantified in order to adequately inform the science data processing techniques of future gravity missions. The most obvious numerical limitation in the orbit determination process is evident in the comparison of measured observables with computed values, derived from mathematical models relating the satellites' numerically integrated state to the observable. Significant error in the computed trajectory will corrupt this comparison and induce error in the least squares solution of the gravitational field. In addition, errors in the numerically computed trajectory propagate into the evaluation of the mathematical measurement model's partial derivatives. These errors amalgamate in turn with numerical error from the computation of the state transition matrix, computed using the variational equations of motion, in the least squares mapping matrix. Finally, the solution of the linearized least squares system, computed using a QR factorization, is also susceptible to numerical error. Certain interesting combinations of each of these numerical errors are examined in the framework of GRACE gravity field determination to analyze and quantify their effects on gravity field recovery.

  15. The Gravity Model Approach: An Application on the Eco Was Trading Bloc

    Directory of Open Access Journals (Sweden)

    Luqman Afolabi O.

    2016-04-01

    Full Text Available This study aims to examine bilateral trade flows across ECOWAS-15 nations with the use of a panel and cross section for the period of 1981-2013. The methodology carried out to achieve this objective involves the use of various techniques of estimation for the gravity model (Static and dynamic. More specifically, this study aims to investigate the formational impact of regional trade integration agreements on trade flows within a group of countries using the same currencies and ECOWAS at large. The main use of regional variables into gravity models is intended to determine whether RTAs lead to trade creation, or diversion. The results show the presence of a strong relationship among the factors of both RIAs and trade flows.

  16. What goes up... gravity and scientific method

    CERN Document Server

    Kosso, Peter

    2017-01-01

    The concept of gravity provides a natural phenomenon that is simultaneously obvious and obscure; we all know what it is, but rarely question why it is. The simple observation that 'what goes up must come down' contrasts starkly with our current scientific explanation of gravity, which involves challenging and sometimes counterintuitive concepts. With such extremes between the plain and the perplexing, gravity forces a sharp focus on scientific method. Following the history of gravity from Aristotle to Einstein, this clear account highlights the logic of scientific method for non-specialists. Successive theories of gravity and the evidence for each are presented clearly and rationally, focusing on the fundamental ideas behind them. Using only high-school level algebra and geometry, the author emphasizes what the equations mean rather than how they are derived, making this accessible for all those curious about gravity and how science really works.

  17. Quantum Gravity Mathematical Models and Experimental Bounds

    CERN Document Server

    Fauser, Bertfried; Zeidler, Eberhard

    2007-01-01

    The construction of a quantum theory of gravity is the most fundamental challenge confronting contemporary theoretical physics. The different physical ideas which evolved while developing a theory of quantum gravity require highly advanced mathematical methods. This book presents different mathematical approaches to formulate a theory of quantum gravity. It represents a carefully selected cross-section of lively discussions about the issue of quantum gravity which took place at the second workshop "Mathematical and Physical Aspects of Quantum Gravity" in Blaubeuren, Germany. This collection covers in a unique way aspects of various competing approaches. A unique feature of the book is the presentation of different approaches to quantum gravity making comparison feasible. This feature is supported by an extensive index. The book is mainly addressed to mathematicians and physicists who are interested in questions related to mathematical physics. It allows the reader to obtain a broad and up-to-date overview on ...

  18. Loop Quantum Gravity

    Directory of Open Access Journals (Sweden)

    Rovelli Carlo

    1998-01-01

    Full Text Available The problem of finding the quantum theory of the gravitational field, and thus understanding what is quantum spacetime, is still open. One of the most active of the current approaches is loop quantum gravity. Loop quantum gravity is a mathematically well-defined, non-perturbative and background independent quantization of general relativity, with its conventional matter couplings. Research in loop quantum gravity today forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained are: (i The computation of the physical spectra of geometrical quantities such as area and volume, which yields quantitative predictions on Planck-scale physics. (ii A derivation of the Bekenstein-Hawking black hole entropy formula. (iii An intriguing physical picture of the microstructure of quantum physical space, characterized by a polymer-like Planck scale discreteness. This discreteness emerges naturally from the quantum theory and provides a mathematically well-defined realization of Wheeler's intuition of a spacetime ``foam''. Long standing open problems within the approach (lack of a scalar product, over-completeness of the loop basis, implementation of reality conditions have been fully solved. The weak part of the approach is the treatment of the dynamics: at present there exist several proposals, which are intensely debated. Here, I provide a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  19. 14 CFR 29.27 - Center of gravity limits.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 29.27 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight General § 29.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity...

  20. Weak lensing probes of modified gravity

    International Nuclear Information System (INIS)

    Schmidt, Fabian

    2008-01-01

    We study the effect of modifications to general relativity on large-scale weak lensing observables. In particular, we consider three modified gravity scenarios: f(R) gravity, the Dvali-Gabadadze-Porrati model, and tensor-vector-scalar theory. Weak lensing is sensitive to the growth of structure and the relation between matter and gravitational potentials, both of which will in general be affected by modified gravity. Restricting ourselves to linear scales, we compare the predictions for galaxy-shear and shear-shear correlations of each modified gravity cosmology to those of an effective dark energy cosmology with the same expansion history. In this way, the effects of modified gravity on the growth of perturbations are separated from the expansion history. We also propose a test which isolates the matter-potential relation from the growth factor and matter power spectrum. For all three modified gravity models, the predictions for galaxy and shear correlations will be discernible from those of dark energy with very high significance in future weak lensing surveys. Furthermore, each model predicts a measurably distinct scale dependence and redshift evolution of galaxy and shear correlations, which can be traced back to the physical foundations of each model. We show that the signal-to-noise for detecting signatures of modified gravity is much higher for weak lensing observables as compared to the integrated Sachs-Wolfe effect, measured via the galaxy-cosmic microwave background cross-correlation.

  1. Cosmological acceleration. Dark energy or modified gravity?

    International Nuclear Information System (INIS)

    Bludman, S.

    2006-05-01

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model ΛCDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  2. Cosmological acceleration. Dark energy or modified gravity?

    Energy Technology Data Exchange (ETDEWEB)

    Bludman, S

    2006-05-15

    We review the evidence for recently accelerating cosmological expansion or ''dark energy'', either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any constituent Dark Energy. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of ''dark energy'' cannot be derived from the homogeneous expansion history alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, but also allow nearly static Dark Energy or gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish between static and ''dynamic'' ''dark energy''. But, cosmologically distinguishing the Concordance Model {lambda}CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati low-curvature modifications of Einstein gravity may also be detected in refined observations in the solar system (Lue and Starkman) or at the intermediate Vainstein scale (Iorio) in isolated galaxy clusters. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence (''Why so small now?'') without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity. (Orig.)

  3. FRW cosmology in F(R,T) gravity

    International Nuclear Information System (INIS)

    Myrzakulov, Ratbay

    2012-01-01

    In this paper, we consider a theory of gravity with a metric-dependent torsion namely the F(R,T) gravity, where R is the curvature scalar and T is the torsion scalar. We study the geometric root of such theory. In particular we give the derivation of the model from the geometrical point of view. Then we present the more general form of F(R,T) gravity with two arbitrary functions and give some of its particular cases. In particular, the usual F(R) and F(T) gravity theories are particular cases of the F(R,T) gravity. In the cosmological context, we find that our new gravitational theory can describe the accelerated expansion of the Universe. (orig.)

  4. Polyhedral shape model for terrain correction of gravity and gravity gradient data based on an adaptive mesh

    Science.gov (United States)

    Guo, Zhikui; Chen, Chao; Tao, Chunhui

    2016-04-01

    Since 2007, there are four China Da yang cruises (CDCs), which have been carried out to investigate polymetallic sulfides in the southwest Indian ridge (SWIR) and have acquired both gravity data and bathymetry data on the corresponding survey lines(Tao et al., 2014). Sandwell et al. (2014) published a new global marine gravity model including the free air gravity data and its first order vertical gradient (Vzz). Gravity data and its gradient can be used to extract unknown density structure information(e.g. crust thickness) under surface of the earth, but they contain all the mass effect under the observation point. Therefore, how to get accurate gravity and its gradient effect of the existing density structure (e.g. terrain) has been a key issue. Using the bathymetry data or ETOPO1 (http://www.ngdc.noaa.gov/mgg/global/global.html) model at a full resolution to calculate the terrain effect could spend too much computation time. We expect to develop an effective method that takes less time but can still yield the desired accuracy. In this study, a constant-density polyhedral model is used to calculate the gravity field and its vertical gradient, which is based on the work of Tsoulis (2012). According to gravity field attenuation with distance and variance of bathymetry, we present an adaptive mesh refinement and coarsening strategies to merge both global topography data and multi-beam bathymetry data. The local coarsening or size of mesh depends on user-defined accuracy and terrain variation (Davis et al., 2011). To depict terrain better, triangular surface element and rectangular surface element are used in fine and coarse mesh respectively. This strategy can also be applied to spherical coordinate in large region and global scale. Finally, we applied this method to calculate Bouguer gravity anomaly (BGA), mantle Bouguer anomaly(MBA) and their vertical gradient in SWIR. Further, we compared the result with previous results in the literature. Both synthetic model

  5. Cosmological QCD phase transition in steady non-equilibrium dissipative Hořava–Lifshitz early universe

    International Nuclear Information System (INIS)

    Khodadi, M.; Sepangi, H.R.

    2014-01-01

    We study the phase transition from quark–gluon plasma to hadrons in the early universe in the context of non-equilibrium thermodynamics. According to the standard model of cosmology, a phase transition associated with chiral symmetry breaking after the electro-weak transition has occurred when the universe was about 1–10 μs old. We focus attention on such a phase transition in the presence of a viscous relativistic cosmological background fluid in the framework of non-detailed balance Hořava–Lifshitz cosmology within an effective model of QCD. We consider a flat Friedmann–Robertson–Walker universe filled with a non-causal and a causal bulk viscous cosmological fluid respectively and investigate the effects of the running coupling constants of Hořava–Lifshitz gravity, λ, on the evolution of the physical quantities relevant to a description of the early universe, namely, the temperature T, scale factor a, deceleration parameter q and dimensionless ratio of the bulk viscosity coefficient to entropy density (ξ)/s . We assume that the bulk viscosity cosmological background fluid obeys the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively. -- Highlights: •In this paper we have studied quark–hadron phase transition in the early universe in the context of the Hořava–Lifshitz model. •We use a flat FRW universe with the bulk viscosity cosmological background fluid obeying the evolution equation of the steady truncated (Eckart) and full version of the Israel–Stewart fluid, respectively

  6. 14 CFR 27.27 - Center of gravity limits.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Center of gravity limits. 27.27 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight General § 27.27 Center of gravity limits. The extreme forward and aft centers of gravity and, where critical, the extreme lateral centers of gravity must be...

  7. Spin Entanglement Witness for Quantum Gravity.

    Science.gov (United States)

    Bose, Sougato; Mazumdar, Anupam; Morley, Gavin W; Ulbricht, Hendrik; Toroš, Marko; Paternostro, Mauro; Geraci, Andrew A; Barker, Peter F; Kim, M S; Milburn, Gerard

    2017-12-15

    Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here, we introduce an idea for such a test based on the principle that two objects cannot be entangled without a quantum mediator. We show that despite the weakness of gravity, the phase evolution induced by the gravitational interaction of two micron size test masses in adjacent matter-wave interferometers can detectably entangle them even when they are placed far apart enough to keep Casimir-Polder forces at bay. We provide a prescription for witnessing this entanglement, which certifies gravity as a quantum coherent mediator, through simple spin correlation measurements.

  8. GRAVITY VARIATIONS AND RECENT GEODYNAMICS OF THE SOUTH-WESTERN PART OF THE BAIKAL REGION

    Directory of Open Access Journals (Sweden)

    V. Yu. Timofeev

    2013-01-01

    Full Text Available Modern methods for determination of gravity values make it possible to obtain measurements with the accuracy up to 10–9 from g0 of the normal value (up to 1 microgal = 10 m/sec2. While all the systematic and periodic effects are excluded, a question is raised about stability of the gravity field of the Earth over time. Changes of the altitude (the Earth’s radius with time can be estimated with an accuracy of 0.1 mm by modern space geodetic techniques, such as VLBI method. Our experiments for evaluation of stability of the gravity values over the past decades are based on the data obtained by Russian and foreign observatories using absolute ballistic laser gravimeters. The results put a limit of 10–10 per year to changes of the Earth’s radius. These estimations can be useful for testing hypotheses in tectonics.Measurements of non-tidal variations of gravity (Δg, which were obtained from 1992 to 2012 at the Talaya seismic station (located in the south-western part of the Baikal region, are interpreted together with GPS observation data. At the Talaya seismic station, the linear component of gravity variations corresponds to changes in the elevation of this site. The correlation coefficient is close to the normal value of the vertical gradient of gravity. At this site, coseismic gravity variations at the time of the Kultuk earthquake (27 August 2008, Mw=6.3 were caused by a combined effect of the change of the site’s elevation and deformation of the crust. Our estimations of the coseismic effects are consistent with results obtained by modeling based on the available seismic data.

  9. Modeling human perception of orientation in altered gravity

    Science.gov (United States)

    Clark, Torin K.; Newman, Michael C.; Oman, Charles M.; Merfeld, Daniel M.; Young, Laurence R.

    2015-01-01

    Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception, and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal-otolith interaction model based upon the hypothesis that the central nervous system (CNS) treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: (a) static roll tilt in hyper-gravity, (b) static pitch tilt in hyper-gravity, (c) static roll tilt in hypo-gravity, and (d) static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments. PMID:25999822

  10. Modeling Human Perception of Orientation in Altered Gravity

    Directory of Open Access Journals (Sweden)

    Torin K. Clark

    2015-05-01

    Full Text Available Altered gravity environments, such as those experienced by astronauts, impact spatial orientation perception and can lead to spatial disorientation and sensorimotor impairment. To more fully understand and quantify the impact of altered gravity on orientation perception, several mathematical models have been proposed. The utricular shear, tangent, and the idiotropic vector models aim to predict static perception of tilt in hyper-gravity. Predictions from these prior models are compared to the available data, but are found to systematically err from the perceptions experimentally observed. Alternatively, we propose a modified utricular shear model for static tilt perception in hyper-gravity. Previous dynamic models of vestibular function and orientation perception are limited to 1 G. Specifically, they fail to predict the characteristic overestimation of roll tilt observed in hyper-gravity environments. To address this, we have proposed a modification to a previous observer-type canal otolith interaction model based upon the hypothesis that the central nervous system treats otolith stimulation in the utricular plane differently than stimulation out of the utricular plane. Here we evaluate our modified utricular shear and modified observer models in four altered gravity motion paradigms: a static roll tilt in hyper-gravity, b static pitch tilt in hyper-gravity, c static roll tilt in hypo-gravity, and d static pitch tilt in hypo-gravity. The modified models match available data in each of the conditions considered. Our static modified utricular shear model and dynamic modified observer model may be used to help quantitatively predict astronaut perception of orientation in altered gravity environments.

  11. Observational tests of modified gravity

    International Nuclear Information System (INIS)

    Jain, Bhuvnesh; Zhang Pengjie

    2008-01-01

    Modifications of general relativity provide an alternative explanation to dark energy for the observed acceleration of the Universe. Modified gravity theories have richer observational consequences for large-scale structures than conventional dark energy models, in that different observables are not described by a single growth factor even in the linear regime. We examine the relationships between perturbations in the metric potentials, density and velocity fields, and discuss strategies for measuring them using gravitational lensing, galaxy cluster abundances, galaxy clustering/dynamics, and the integrated Sachs-Wolfe effect. We show how a broad class of gravity theories can be tested by combining these probes. A robust way to interpret observations is by constraining two key functions: the ratio of the two metric potentials, and the ratio of the gravitational 'constant' in the Poisson equation to Newton's constant. We also discuss quasilinear effects that carry signatures of gravity, such as through induced three-point correlations. Clustering of dark energy can mimic features of modified gravity theories and thus confuse the search for distinct signatures of such theories. It can produce pressure perturbations and anisotropic stresses, which break the equality between the two metric potentials even in general relativity. With these two extra degrees of freedom, can a clustered dark energy model mimic modified gravity models in all observational tests? We show with specific examples that observational constraints on both the metric potentials and density perturbations can in principle distinguish modifications of gravity from dark energy models. We compare our result with other recent studies that have slightly different assumptions (and apparently contradictory conclusions).

  12. Quasi-topological Ricci polynomial gravities

    Science.gov (United States)

    Li, Yue-Zhou; Liu, Hai-Shan; Lü, H.

    2018-02-01

    Quasi-topological terms in gravity can be viewed as those that give no contribution to the equations of motion for a special subclass of metric ansätze. They therefore play no rôle in constructing these solutions, but can affect the general perturbations. We consider Einstein gravity extended with Ricci tensor polynomial invariants, which admits Einstein metrics with appropriate effective cosmological constants as its vacuum solutions. We construct three types of quasi-topological gravities. The first type is for the most general static metrics with spherical, toroidal or hyperbolic isometries. The second type is for the special static metrics where g tt g rr is constant. The third type is the linearized quasitopological gravities on the Einstein metrics. We construct and classify results that are either dependent on or independent of dimensions, up to the tenth order. We then consider a subset of these three types and obtain Lovelock-like quasi-topological gravities, that are independent of the dimensions. The linearized gravities on Einstein metrics on all dimensions are simply Einstein and hence ghost free. The theories become quasi-topological on static metrics in one specific dimension, but non-trivial in others. We also focus on the quasi-topological Ricci cubic invariant in four dimensions as a specific example to study its effect on holography, including shear viscosity, thermoelectric DC conductivities and butterfly velocity. In particular, we find that the holographic diffusivity bounds can be violated by the quasi-topological terms, which can induce an extra massive mode that yields a butterfly velocity unbound above.

  13. Thermosyphon Flooding in Reduced Gravity Environments

    Science.gov (United States)

    Gibson, Marc Andrew

    2013-01-01

    An innovative experiment to study the thermosyphon flooding limits was designed and flown on aparabolic flight campaign to achieve the Reduced Gravity Environments (RGE) needed to obtainempirical data for analysis. Current correlation models of Faghri and Tien and Chung do not agreewith the data. A new model is presented that predicts the flooding limits for thermosyphons inearths gravity and lunar gravity with a 95 confidence level of +- 5W.

  14. Correcting GRACE gravity fields for ocean tide effects

    DEFF Research Database (Denmark)

    Knudsen, Per; Andersen, Ole Baltazar

    2002-01-01

    [1] The GRACE mission will be launch in early 2002 and will map the Earth's gravity fields and its variations with unprecedented accuracy during its 5-year lifetime. Unless ocean tide signals and their load upon the solid earth are removed from the GRACE data, their long period aliases obscure more...... tide model if altimetry corrected for inverted barometer effects was used in its derivation. To study the temporal characteristics of the ocean tidal constituents when sampled by GRACE, approximate alias frequencies were derived assuming a sampling of half a sidereal day. Those results show...

  15. Internal model of gravity influences configural body processing.

    Science.gov (United States)

    Barra, Julien; Senot, Patrice; Auclair, Laurent

    2017-01-01

    Human bodies are processed by a configural processing mechanism. Evidence supporting this claim is the body inversion effect, in which inversion impairs recognition of bodies more than other objects. Biomechanical configuration, as well as both visual and embodied expertise, has been demonstrated to play an important role in this effect. Nevertheless, the important factor of body inversion effect may also be linked to gravity orientation since gravity is one of the most fundamental constraints of our biology, behavior, and perception on Earth. The visual presentation of an inverted body in a typical body inversion paradigm turns the observed body upside down but also inverts the implicit direction of visual gravity in the scene. The orientation of visual gravity is then in conflict with the direction of actual gravity and may influence configural processing. To test this hypothesis, we dissociated the orientations of the body and of visual gravity by manipulating body posture. In a pretest we showed that it was possible to turn an avatar upside down (inversion relative to retinal coordinates) without inverting the orientation of visual gravity when the avatar stands on his/her hands. We compared the inversion effect in typical conditions (with gravity conflict when the avatar is upside down) to the inversion effect in conditions with no conflict between visual and physical gravity. The results of our experiment revealed that the inversion effect, as measured by both error rate and reaction time, was strongly reduced when there was no gravity conflict. Our results suggest that when an observed body is upside down (inversion relative to participants' retinal coordinates) but the orientation of visual gravity is not, configural processing of bodies might still be possible. In this paper, we discuss the implications of an internal model of gravity in the configural processing of observed bodies. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Quantized gauge invariant periodic TDHF solutions

    International Nuclear Information System (INIS)

    Kan, K.-K.; Griffin, J.J.; Lichtner, P.C.; Dworzecka, M.

    1979-01-01

    Time-dependent Hartree-Fock (TDHF) is used to study steady state large amplitude nuclear collective motions, such as vibration and rotation. As is well known the small amplitude TDHF leads to the RPA equation. The analysis of periodicity in TDHF is not trivial because TDHF is a nonlinear theory and it is not known under what circumstances a nonlinear theory can support periodic solutions. It is also unknown whether such periodic solution, if they exist, form a continuous or a discrete set. But, these properties may be important in obtaining the energy spectrum of the collective states from the TDHF description. The periodicity and Gauge Invariant Periodicity of solutions are investigated for that class of models whose TDHF solutions depend on time through two parameters. In such models TDHF supports a continuous family of periodic solutions, but only a discrete subset of these is gauge invariant. These discrete Gauge Invariant Periodic solutions obey the Bohr-Summerfeld quantization rule. The energy spectrum of the Gauge Invariant Periodic solutions is compared with the exact eigenergies in one specific example

  17. Loop-quantum-gravity vertex amplitude.

    Science.gov (United States)

    Engle, Jonathan; Pereira, Roberto; Rovelli, Carlo

    2007-10-19

    Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.

  18. Natural inflation and quantum gravity.

    Science.gov (United States)

    de la Fuente, Anton; Saraswat, Prashant; Sundrum, Raman

    2015-04-17

    Cosmic inflation provides an attractive framework for understanding the early Universe and the cosmic microwave background. It can readily involve energies close to the scale at which quantum gravity effects become important. General considerations of black hole quantum mechanics suggest nontrivial constraints on any effective field theory model of inflation that emerges as a low-energy limit of quantum gravity, in particular, the constraint of the weak gravity conjecture. We show that higher-dimensional gauge and gravitational dynamics can elegantly satisfy these constraints and lead to a viable, theoretically controlled and predictive class of natural inflation models.

  19. Lanczos–Lovelock models of gravity

    International Nuclear Information System (INIS)

    Padmanabhan, T.; Kothawala, D.

    2013-01-01

    Lanczos–Lovelock models of gravity represent a natural and elegant generalization of Einstein’s theory of gravity to higher dimensions. They are characterized by the fact that the field equations only contain up to second derivatives of the metric even though the action functional can be a quadratic or higher degree polynomial in the curvature tensor. Because these models share several key properties of Einstein’s theory they serve as a useful set of candidate models for testing the emergent paradigm for gravity. This review highlights several geometrical and thermodynamical aspects of Lanczos–Lovelock models which have attracted recent attention

  20. Implications of steady-state operation on divertor design

    International Nuclear Information System (INIS)

    Sevier, D.L.; Reis, E.E.; Baxi, C.B.; Silke, G.W.; Wong, C.P.C.; Hill, D.N.

    1996-01-01

    As fusion experiments progress towards long pulse or steady state operation, plasma facing components are undergoing a significant change in their design. This change represents the transition from inertially cooled pulsed systems to steady state designs of significant power handling capacity. A limited number of Plasma Facing Component (PFC) systems are in operation or planning to address this steady state challenge at low heat flux. However in most divertor designs components are required to operate at heat fluxes at 5 MW/m 2 or above. The need for data in this area has resulted in a significant amount of thermal/hydraulic and thermal fatigue testing being done on prototypical elements. Short pulse design solutions are not adequate for longer pulse experiments and the areas of thermal design, structural design, material selection, maintainability, and lifetime prediction are undergoing significant changes. A prudent engineering approach will guide us through the transitional phase of divertor design to steady-state power plant components. This paper reviews the design implications in this transition to steady state machines and the status of the community efforts to meet evolving design requirements. 54 refs., 5 figs., 2 tabs

  1. The covariant formulation of f ( T ) gravity

    International Nuclear Information System (INIS)

    Krššák, Martin; Saridakis, Emmanuel N

    2016-01-01

    We show that the well-known problem of frame dependence and violation of local Lorentz invariance in the usual formulation of f ( T ) gravity is a consequence of neglecting the role of spin connection. We re-formulate f ( T ) gravity starting from, instead of the ‘pure tetrad’ teleparallel gravity, the covariant teleparallel gravity, using both the tetrad and the spin connection as dynamical variables, resulting in a fully covariant, consistent, and frame-independent version of f ( T ) gravity, which does not suffer from the notorious problems of the usual, pure tetrad, f ( T ) theory. We present the method to extract solutions for the most physically important cases, such as the Minkowski, the Friedmann–Robertson–Walker (FRW) and the spherically symmetric ones. We show that in covariant f ( T ) gravity we are allowed to use an arbitrary tetrad in an arbitrary coordinate system along with the corresponding spin connection, resulting always in the same physically relevant field equations. (paper)

  2. Quantum gravity as Escher's dragon

    International Nuclear Information System (INIS)

    Smilga, A.V.

    2003-01-01

    The main obstacle in attempts to construct a consistent quantum gravity is the absence of independent flat time. This can in principle be cured by going out to higher dimensions. The modern paradigm assumes that the fundamental theory of everything is some form of string theory living in space of more than four dimensions. We advocate another possibility that the fundamental theory is a form of D = 4 higher derivative gravity. This class of theories has a nice feature of renormalizability, so that perturbative calculations are feasible. There are also finite N = 4 supersymmetric conformal supergravity theories. This possibility is particularly attractive. Einstein's gravity is obtained in a natural way as an effective low-energy theory. The N= 1 supersymmetric version of the theory has a natural higher dimensional interpretation due to V.I. Ogievetsky and E.S. Sokatchev, which involves embedding our curved Minkowski spacetime manifold into flat eight-dimensional space. Assuming that a variant of the finite N = 4 theory also admits a similar interpretation, this may eventually allow one to construct consistent quantum theory of gravity. We argue, however, that, even though future gravity theory will probably use higher dimensions as construction scaffolds, its physical content and meaning should refer to four dimensions, where an observer lives

  3. Accounting for time- and space-varying changes in the gravity field to improve the network adjustment of relative-gravity data

    Science.gov (United States)

    Kennedy, Jeffrey R.; Ferre, Ty P.A.

    2015-01-01

    The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively

  4. Topologically massive gravity and its conformal limit

    International Nuclear Information System (INIS)

    Ertl, S.

    2012-01-01

    Three dimensional gravity has been known for some time to be a playground for testing ideas and problems of higher dimensional gravitational theories. Nevertheless its status as a toy model for quantum gravity is still uncertain. Already in 1986 Brown and Henneaux discovered that three dimensional quantum gravity with negative cosmological constant is dual to a two dimensional conformal field theory (CFT) in the sense that the Hilbert space must fall into unitary representation of two copies of the Virasoro algebra. They obtained, in quantizing this theory, an asymptotic Virasoro algebra with central charges c L =c R =(3 l)/(2 G N ), where G N is Newton's constant and ℓ parameterizes the cosmological constant. Almost ten years later black hole solutions for this three dimensional theory were discovered by Banados, Teitelboim and Zanelli. In the same period of time further milestones of relevance for this work have been established: the AdS/CFT correspondence by Maldacena in 1997 and the proposal by Witten in 2007 to define three dimensional quantum gravity in terms of its dual CFT. Over the last few years many attempts have been made to construct gravitational theories in three dimensions that could serve as toy models for quantum gravity. Since a pure Einstein-Hilbert action with a negative cosmological constant lacks additional degrees of freedom one can remedy this by adding a gravitational Chern-Simons term. This results in a theory that exhibits black holes and gravitons and is called topologically massive gravity (TMG). The first part of this thesis deals with finding exact solutions of TMG. This is an interesting problem already at the classical level since non-trivial solutions to the equations of motion are hard to find and only few are known. An efficient way to find solutions is to dimensionally reduce the theory by using two commuting Killing vectors. This results in a (0+1)-dimensional model in which it is then possible to classify all stationary axi

  5. [Shifting path of industrial pollution gravity centers and its driving mechanism in Pan-Yangtze River Delta].

    Science.gov (United States)

    Zhao, Hai-Xia; Jiang, Xiao-Wei; Cui, Jian-Xin

    2014-11-01

    Shifting path of industrial pollution gravity centers is the response of environmental special formation during the industry transfer process, in order to prove the responding of industrial pollution gravity centers to industry transfer in economically developed areas, this paper calculates the gravity centers of industrial wastewater, gas and solid patterns and reveals the shifting path and its driving mechanism, using the data of industrial pollution in the Pan-Yangtze River Delta from 2000 to 2010. The results show that the gravity center of the industrial waste in Pan-Yangtze River Delta shifts for sure in the last 10 years, and gravity center of solid waste shifts the maximum distance within the three wastes, which was 180.18 km, and shifting distances for waste gas and waste water were 109.51 km and 85.92 km respectively. Moreover, the gravity center of the industrial waste in Pan-Yangtze River Delta shifts westwards, and gravity centers of waste water, gas and solid shift for 0.40 degrees, 0.17 degrees and 0.03 degrees respectively. The shifting of industrial pollution gravity centers is driven by many factors. The rapid development of the heavy industry in Anhui and Jiangxi provinces results in the westward shifting of the pollutions. The optimization and adjustment of industrial structures in Yangtze River Delta region benefit to alleviating industrial pollution, and high-polluting industries shifted to Anhui and Jiangxi provinces promotes pollution gravity center shifting to west. While the development of massive clean enterprise, strong environmental management efforts and better environmental monitoring system slow the shifting trend of industrial pollution to the east in Yangtze River Delta. The study of industrial pollution gravity shift and its driving mechanism provides a new angle of view to analyze the relationship between economic development and environmental pollution, and also provides academic basis for synthetical management and control of

  6. Role of Wind Filtering and Unbalanced Flow Generation in Middle Atmosphere Gravity Wave Activity at Chatanika Alaska

    Directory of Open Access Journals (Sweden)

    Colin C. Triplett

    2017-01-01

    Full Text Available The meteorological control of gravity wave activity through filtering by winds and generation by spontaneous adjustment of unbalanced flows is investigated. This investigation is based on a new analysis of Rayleigh LiDAR measurements of gravity wave activity in the upper stratosphere-lower mesosphere (USLM,40–50kmon 152 nights at Poker Flat Research Range (PFRR, Chatanika, Alaska (65◦ N, 147◦ W, over 13 years between 1998 and 2014. The LiDAR measurements resolve inertia-gravity waves with observed periods between 1 h and 4 h and vertical wavelengths between 2 km and 10 km. The meteorological conditions are defined by reanalysis data from the Modern-Era Retrospective Analysis for Research and Applications (MERRA. The gravity wave activity shows large night-to-night variability, but a clear annual cycle with a maximum in winter,and systematic interannual variability associated with stratospheric sudden warming events. The USLM gravity wave activity is correlated with the MERRA winds and is controlled by the winds in the lower stratosphere through filtering by critical layer filtering. The USLM gravity wave activity is also correlated with MERRA unbalanced flow as characterized by the residual of the nonlinear balance equation. This correlation with unbalanced flow only appears when the wind conditions are taken into account, indicating that wind filtering is the primary control of the gravity wave activity.

  7. Steady-streaming effects on the motion of the cerebrospinal fluid (CSF) in the spinal canal

    Science.gov (United States)

    Lawrence, Jenna; Coenen, Wilfried; Sanchez, Antonio; Lasheras, Juan

    2017-11-01

    With each heart beat the oscillatory blood supply to the rigid cranial vault produces a time-periodic variation of the intracranial pressure that drives the cerebrospinal fluid (CSF) periodically in and out of the compliant spinal canal. We have recently conducted an analysis of this flow-structure interaction problem taking advantage of the small compliance of the dura membrane bounding externally the CSF and of the disparity of length scales associated with the geometry of the subarachnoid space. We have shown in an idealized geometry that the steady-streaming motion associated with this periodic flow, resulting from the nonlinear cumulative effects of convective acceleration, causes a bulk recirculation of CSF inside the spinal canal, which has been observed in many radiological studies. We extend here our study to investigate the possible contribution arising from the flow around the nerve roots protruding from the spinal cord, an effect that was neglected in our previous work. For this purpose, we consider the oscillatory motion around a cylindrical post confined between two parallel plates. For large values of the relevant Strouhal number we find at leading order a harmonic Stokes flow, whereas steady-streaming effects enter in the first-order corrections, which are computed for realistic values of the Womersley number and of the cylinder height-to-radius ratio.

  8. Self-scaling minority carrier lifetime imaging using periodically modulated electroluminescence

    Science.gov (United States)

    Kropp, Timo; Berner, Marcel; Werner, Jürgen H.

    2017-11-01

    We present a straightforward self-scaling imaging technique to extract the effective minority carrier lifetime image of silicon solar cells using periodically modulated electroluminescence. This novel modulation technique overcomes main limiting factors linked to camera integration time. Our approach is based on comparing three luminescence images taken during current modulation. One image is taken while periodically injecting excess charge carriers with a pulsed current stimulation followed by an open-circuit luminescence decay. A second image with the same injection profile is taken while additionally extracting excess charge carriers at the falling edge, accelerating the luminescence decay. Both images are normalized to a steady-state image. The camera integration time is several orders of magnitude longer than the modulation period length, and no synchronization of image acquisition is needed. The intensity difference between both modulated images is used for determining a calibration factor to convert the steady-state image into the effective minority carrier lifetime image: Our modulation method enables carrier lifetime images completely independent of the image integration time. First carrier lifetime images show good agreement with data from time resolved electroluminescence.

  9. Quantum Gravity in Two Dimensions

    DEFF Research Database (Denmark)

    Ipsen, Asger Cronberg

    The topic of this thesis is quantum gravity in 1 + 1 dimensions. We will focus on two formalisms, namely Causal Dynamical Triangulations (CDT) and Dy- namical Triangulations (DT). Both theories regularize the gravity path integral as a sum over triangulations. The difference lies in the class...

  10. Toward Joint Inversion of Gravity and Dyanamics

    Science.gov (United States)

    Jacoby, W. R.

    To better understand geodynamic processes as seafloor spreading, plumes, subduction, and isostatic adjustment, gravity is inverted with "a prioriinformation from topography/bathymetry, seismic structure and dynamic models. Examples are subduction of the Juan de Fuca plate below Vancouver Island, the passive Black Sea­Turkey margin and Iceland ridge-plume interaction. Gravity and other data are averaged 50 km wide strips. Mass balances are estimated (showing also that the free air anomaly is misleading for narrow structures). The mass balances represent plate forces and plate bending, affecting the gravity signals and the isostatic state of continental margins and ridge-plume effects, which are highly correlated in space and cannot be separated without a priori information from modelling. The examples from widely different tectonic situations demonstrate that the art of regional-scale gravity inversion requires extensive background knowledge and inclusion of dynamic processes. It is difficult to conceive any formal, globally applicable procedure taking care of this; it is even a question, what is data, what a priori information? They are not distinguishable if all are included as foreward routines. The "accuracy" of models cannot be perfectly determined, if the "real" mass distribution is not known ­ if known, gravity inversion would be unnecessary. In reality only guesses are possible on the basis of observations and physical laws governing geodynamics. A priori information and gravity data limit the resolution of gravity inversion. Different model types are indistinguishable because adjustments within their parameter uncertainties permit a good fit. But gravity excludes wrong models (Karl Popper: science evolves by falsification of wrong models), and precise gravity guides and defines aims, targets and strategies for new observations.

  11. Steady laminar flow of fractal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Susarrey, Orlando; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)

    2017-02-12

    We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived. - Highlights: • Equations of Stokes flow of Newtonian fractal fluid are derived. • Pressure distribution in the Newtonian fractal fluid is derived. • Velocity distribution in Poiseuille flow of fractal fluid is found. • Velocity distribution in a steady Couette flow is established.

  12. Plasma membrane NADH oxidase of maize roots responds to gravity and imposed centrifugal forces

    Science.gov (United States)

    Bacon, E.; Morre, D. J.

    2001-01-01

    NADH oxidase activities measured with excised roots of dark-grown maize (Zea mays) seedlings and with isolated plasma membrane vesicles from roots of dark-grown maize oscillated with a regular period length of 24 min and were inhibited by the synthetic auxin 2,4-dichlorophenoxyacetic [correction of dichorophenoxyacetic] acid. The activities also responded to orientation with respect to gravity and to imposed centrifugal forces. Turning the roots upside down resulted in stimulation of the activity with a lag of about 10 min. Returning the sections to the normal upright position resulted in a return to initial rates. The activity was stimulated reversibly to a maximum of about 2-fold with isolated plasma membrane vesicles, when subjected to centrifugal forces of 25 to 250 x g for 1 to 4 min duration. These findings are the first report of a gravity-responsive enzymatic activity of plant roots inhibited by auxin and potentially related to the gravity-induced growth response. c2001 Editions scientifiques et medicales Elsevier SAS.

  13. Quantum gravity and quantum cosmology

    CERN Document Server

    Papantonopoulos, Lefteris; Siopsis, George; Tsamis, Nikos

    2013-01-01

    Quantum gravity has developed into a fast-growing subject in physics and it is expected that probing the high-energy and high-curvature regimes of gravitating systems will shed some light on how to eventually achieve an ultraviolet complete quantum theory of gravity. Such a theory would provide the much needed information about fundamental problems of classical gravity, such as the initial big-bang singularity, the cosmological constant problem, Planck scale physics and the early-time inflationary evolution of our Universe.   While in the first part of this book concepts of quantum gravity are introduced and approached from different angles, the second part discusses these theories in connection with cosmological models and observations, thereby exploring which types of signatures of modern and mathematically rigorous frameworks can be detected by experiments. The third and final part briefly reviews the observational status of dark matter and dark energy, and introduces alternative cosmological models.   ...

  14. Flavorful hybrid anomaly-gravity mediation

    International Nuclear Information System (INIS)

    Gross, Christian; Hiller, Gudrun

    2011-01-01

    We consider supersymmetric models where anomaly and gravity mediation give comparable contributions to the soft terms and discuss how this can be realized in a five-dimensional brane world. The gaugino mass pattern of anomaly mediation is preserved in such a hybrid setup. The flavorful gravity-mediated contribution cures the tachyonic slepton problem of anomaly mediation. The supersymmetric flavor puzzle is solved by alignment. We explicitly show how a working flavor-tachyon link can be realized with Abelian flavor symmetries and give the characteristic signatures of the framework, including O(1) slepton mass splittings between different generations and between doublets and singlets. This provides opportunities for same flavor dilepton edge measurements with missing energy at the Large Hadron Collider (LHC). Rare lepton decay rates could be close to their current experimental limit. Compared to pure gravity mediation, the hybrid model is advantageous because it features a heavy gravitino which can avoid the cosmological gravitino problem of gravity-mediated models combined with leptogenesis.

  15. Unifying Einstein and Palatini gravities

    International Nuclear Information System (INIS)

    Amendola, Luca; Enqvist, Kari; Koivisto, Tomi

    2011-01-01

    We consider a novel class of f(R) gravity theories where the connection is related to the conformally scaled metric g μν =C(R)g μν with a scaling that depends on the scalar curvature R only. We call them C theories and show that the Einstein and Palatini gravities can be obtained as special limits. In addition, C theories include completely new physically distinct gravity theories even when f(R)=R. With nonlinear f(R), C theories interpolate and extrapolate the Einstein and Palatini cases and may avoid some of their conceptual and observational problems. We further show that C theories have a scalar-tensor formulation, which in some special cases reduces to simple Brans-Dicke-type gravity. If matter fields couple to the connection, the conservation laws in C theories are modified. The stability of perturbations about flat space is determined by a simple condition on the Lagrangian.

  16. Influence of internal and external boundary conditions on the decrement factor and time lag heat flux of building walls in steady periodic regime

    International Nuclear Information System (INIS)

    Mazzeo, D.; Oliveti, G.; Arcuri, N.

    2016-01-01

    Highlights: • Dynamic behaviour of building walls subjected to sinusoidal and actual loadings. • The joint action of more temperature and heat flux loadings has been considered. • Dynamic parameters were defined by the internal and external fluctuating heat flux. • Use of the Total Harmonic Distortion to determine the number of harmonics required. • Study of the influence of external and internal loadings on dynamic parameters. - Abstract: The dynamic behaviour of opaque components of the building envelope in steady periodic regime is investigated using parameters defined by the fluctuating heat flux that is transferred in the wall. The use of the heat flux allows for the joint action of the loadings that characterise both the outdoor environment and the indoor air-conditioned environment to be taken into account. The analysis was developed in sinusoidal conditions to determine the frequency response of the wall and in non-sinusoidal conditions to identify the actual dynamic behaviour of the wall. The use of non-dimensional periodic thermal transmittance is proposed for the sinusoidal analysis in order to evaluate the decrement factor and the time lag that the heat flux undergoes in crossing the wall as well as the efficiency of heat storage. In the presence of non-sinusoidal loadings, the identification of the dynamic behaviour of the wall is obtained using several dynamic parameters: the decrement factor in terms of energy, defined as the ratio between the energy in a semi-period entering and exiting the wall; the decrement factor and the time lag in terms of heat flux, considering the maximum peak and the minimum peak. These parameters allow for the identification of how the form of the heat flux trend crossing the wall is modified. The number of harmonics to be considered for an accurate representation of heat fluxes is determined by means of the introduction of the Total Harmonic Distortion (THD), which quantifies the distortion of a non

  17. Extracting gravity wave parameters during the September 2002 Southern Hemisphere major sudden stratospheric warming using a SANAE imaging riometer

    Energy Technology Data Exchange (ETDEWEB)

    Mbatha, N. [South African National Space Agency, Hermanus (South Africa). Space Science; KwaZulu-Natal Univ., Durban (South Africa). School of Chemistry and Physics; Sivakumar, V. [KwaZulu-Natal Univ., Durban (South Africa). School of Chemistry and Physics; Bencherif, H. [La Reunion Univ. UMR 8105 CNRS, Saint-Denis (France). Lab. de l' Atmosphere et des Cyclones; Malinga, S. [South African National Space Agency, Hermanus (South Africa). Space Science

    2013-11-01

    Using absorption data measured by imaging riometer for ionospheric studies (IRIS) located at the South Africa National Antarctic Expedition (SANAE), Antarctica (72 S, 3 W), we extracted the parameters of gravity waves (GW) of periods between 40 and 50 min during late winter/ spring of the year 2002, a period of the unprecedented major sudden stratospheric warming (SSW) in the Southern Hemisphere middle atmosphere. During this period, an unprecedented substantial increase of temperature by about 25-30K throughout the stratosphere was observed. During the period of the occurrence of the major stratospheric warming, there was a reduction of both the GW horizontal phase speeds and the horizontal wavelengths at 90 km. The GW phase speeds and horizontal wavelengths were observed to reach minimum values of about 7ms{sup -1} and 19 km, respectively, while during the quiet period the average value of the phase speed and horizontal wavelength was approximately 23ms{sup -1} and 62 km, respectively. The observed event is discussed in terms of momentum flux and also a potential interaction of gravity waves, planetary waves and mean circulation.

  18. The Effect of Seasonal and Long-Period Geopotential Variations on the GPS Orbits

    Science.gov (United States)

    Melachroinos, Stavros A.; Lemoine, Frank G.; Chinn, Douglas S.; Zelensky, Nikita P.; Nicholas, Joseph B.; Beckley, Brian D.

    2013-01-01

    We examine the impact of using seasonal and long-period time-variable gravity field (TVG) models on GPS orbit determination, through simulations from 1994 to 2012. The models of time-variable gravity that we test include the GRGS release RL02 GRACE-derived 10-day gravity field models up to degree and order 20 (grgs20x20), a 4 x 4 series of weekly coefficients using GGM03S as a base derived from SLR and DORIS tracking to 11 satellites (tvg4x4), and a harmonic fit to the above 4 x 4 SLR-DORIS time series (goco2s_fit2). These detailed models are compared to GPS orbit simulations using a reference model (stdtvg) based on the International Earth Rotation Service (IERS) and International GNSS Service (IGS) repro1 standards. We find that the new TVG modeling produces significant along, cross-track orbit differences as well as annual, semi-annual, draconitic and long-period effects in the Helmert translation parameters (Tx, Ty, Tz) of the GPS orbits with magnitudes of several mm. We show that the simplistic TVG modeling approach used by all of the IGS Analysis Centers, which is based on the models provided by the IERS standards, becomes progressively less adequate following 2006 when compared to the seasonal and long-period TVG models.

  19. Characteristics of gravity and magnetic field and their relationship with uranium mineralization in northern Guangxi area

    International Nuclear Information System (INIS)

    Shu Xiaojing; Yin Zhongfan; Hao Yuhua; guan Nansheng; Li Xuexun

    1993-08-01

    The characteristics of gravity and magnetic field, deep-seated structures and their relationship with uranium mineralization in Northern Guangxi are investigated. Especially, based on geophysical investigation, the distinguishing features of uranium ore-forming are discussed, involved with the uranium source body, the heating force and mechanical force of granite magma acted on uranium mineralization, the deep-seated geological process, the hydrothermal activity, the formation environments of granite-type uranium deposit, the source of pyrite and its influence on uranium mineralization, the uranium ore-forming of Sinian-Cambrian periods and devonian period formations, and the simple model of uranium ore-forming. On the basis of the relationship of uranium mineralization with geophysical field, as well as the ore-forming geological environments inferred by gravity and magnetic field investigation, the physical-geological model is established in order to predicate uranium prospect

  20. Streaming gravity mode instability

    International Nuclear Information System (INIS)

    Wang Shui.

    1989-05-01

    In this paper, we study the stability of a current sheet with a sheared flow in a gravitational field which is perpendicular to the magnetic field and plasma flow. This mixing mode caused by a combined role of the sheared flow and gravity is named the streaming gravity mode instability. The conditions of this mode instability are discussed for an ideal four-layer model in the incompressible limit. (author). 5 refs

  1. Inertia gravity waves in the upper troposphere during the MaCWAVE winter campaign. Part II. Radar investigations and modelling studies

    Energy Technology Data Exchange (ETDEWEB)

    Serafimovich, A.; Zuelicke, C.; Hoffmann, P.; Peters, D.; Singer, W. [Leibniz-Inst. fuer Atmosphaerenphysik, Kuehlungsborn (Germany); Dalin, P. [Swedish Inst. of Space Physics, Kiruna (Sweden)

    2006-07-01

    We present an experimental and modelling study of a strong gravity wave event in the upper troposphere/lower stratosphere near the Scandinavian mountain ridge. Continuous VHP radar measurements during the MaCWAVE rocket and ground-based measurement campaign were performed at the Norwegian Andoya rocket range (ARR) near Andenes (69.3 N, 16 E) in January 2003. Detailed gravity wave investigations based on PSU/NCAR fifth-generation mesoscale model (MM5) data have been used for comparison with experimentally obtained results. The model data show the presence of a mountain wave and of an inertia gravity wave generated by a jet streak near the tropopause region. Temporal and spatial dependencies of jet induced inertia gravity waves with dominant observed periods of about 13 h and vertical wavelengths of {proportional_to}4.5-5 km are investigated with wavelet transform applied on radar measurements and model data. The jet induced wave packet is observed to move upstream and downward in the upper troposphere. The model data agree with the experimentally obtained results fairly well. Possible reasons for the observed differences, e.g. in the time of maximum of the wave activity, are discussed. Finally, the vertical fluxes of horizontal momentum are estimated with different methods and provide similar amplitudes. We found indications that the derived positive vertical flux of the horizontal momentum corresponds to the obtained parameters of the jet-induced inertia gravity wave, but only at the periods and heights of the strongest wave activity. (orig.)

  2. Seismic-induced accelerations detected by two parallel gravity meters in continuous recording with a high sampling rate at Etna volcano

    Directory of Open Access Journals (Sweden)

    P. Stefanelli

    2008-06-01

    Full Text Available We analyse a microgravity data set acquired from two spring LaCoste & Romberg gravity meters operated in parallel at the same site on Etna volcano (Italy for about two months (August – September 2005. The high sampling rate acquisition (2Hz allowed the correlation of short-lasting gravity fluctuations with seismic events. After characterizing the oscillation behavior of the meters, through the study of spectral content and the background noise level of both sequences, we recognized fluctuations in the gravity data, spanning a range of periods from 1 second to about 30 seconds dominated by components with a period of about 15 ÷ 25 seconds, during time intervals encompassing both local seismic events and large worldwide earthquakes. The data analyses demonstrate that observed earthquake-induced gravity fluctuations have some differences due to diverse spectral content of the earthquakes. When local seismic events which present high frequency content excite the meters, the correlation between the two gravity signals is poor (factor < 0.3. Vice versa, when large worldwide earthquakes occur and low frequency seismic waves dominate the ensuing seismic wavefield, the resonance frequencies of the meters are excited and they react according to more common features. In the latter case, the signals from the two instruments are strongly correlated to each other (up to 0.9. In this paper the behaviors of spring gravimeters in the frequency range of the disturbances produced by local and large worldwide earthquakes are presented and discussed.

  3. Approaches to quantum gravity. Loop quantum gravity, spinfoams and topos approach

    International Nuclear Information System (INIS)

    Flori, Cecilia

    2010-01-01

    One of the main challenges in theoretical physics over the last five decades has been to reconcile quantum mechanics with general relativity into a theory of quantum gravity. However, such a theory has been proved to be hard to attain due to i) conceptual difficulties present in both the component theories (General Relativity (GR) and Quantum Theory); ii) lack of experimental evidence, since the regimes at which quantum gravity is expected to be applicable are far beyond the range of conceivable experiments. Despite these difficulties, various approaches for a theory of Quantum Gravity have been developed. In this thesis we focus on two such approaches: Loop Quantum Gravity and the Topos theoretic approach. The choice fell on these approaches because, although they both reject the Copenhagen interpretation of quantum theory, their underpinning philosophical approach to formulating a quantum theory of gravity are radically different. In particular LQG is a rather conservative scheme, inheriting all the formalism of both GR and Quantum Theory, as it tries to bring to its logical extreme consequences the possibility of combining the two. On the other hand, the Topos approach involves the idea that a radical change of perspective is needed in order to solve the problem of quantum gravity, especially in regard to the fundamental concepts of 'space' and 'time'. Given the partial successes of both approaches, the hope is that it might be possible to find a common ground in which each approach can enrich the other. This thesis is divided in two parts: in the first part we analyse LQG, paying particular attention to the semiclassical properties of the volume operator. Such an operator plays a pivotal role in defining the dynamics of the theory, thus testing its semiclassical limit is of uttermost importance. We then proceed to analyse spin foam models (SFM), which are an attempt at a covariant or path integral formulation of canonical Loop Quantum Gravity (LQG). In

  4. Approaches to quantum gravity. Loop quantum gravity, spinfoams and topos approach

    Energy Technology Data Exchange (ETDEWEB)

    Flori, Cecilia

    2010-07-23

    One of the main challenges in theoretical physics over the last five decades has been to reconcile quantum mechanics with general relativity into a theory of quantum gravity. However, such a theory has been proved to be hard to attain due to i) conceptual difficulties present in both the component theories (General Relativity (GR) and Quantum Theory); ii) lack of experimental evidence, since the regimes at which quantum gravity is expected to be applicable are far beyond the range of conceivable experiments. Despite these difficulties, various approaches for a theory of Quantum Gravity have been developed. In this thesis we focus on two such approaches: Loop Quantum Gravity and the Topos theoretic approach. The choice fell on these approaches because, although they both reject the Copenhagen interpretation of quantum theory, their underpinning philosophical approach to formulating a quantum theory of gravity are radically different. In particular LQG is a rather conservative scheme, inheriting all the formalism of both GR and Quantum Theory, as it tries to bring to its logical extreme consequences the possibility of combining the two. On the other hand, the Topos approach involves the idea that a radical change of perspective is needed in order to solve the problem of quantum gravity, especially in regard to the fundamental concepts of 'space' and 'time'. Given the partial successes of both approaches, the hope is that it might be possible to find a common ground in which each approach can enrich the other. This thesis is divided in two parts: in the first part we analyse LQG, paying particular attention to the semiclassical properties of the volume operator. Such an operator plays a pivotal role in defining the dynamics of the theory, thus testing its semiclassical limit is of uttermost importance. We then proceed to analyse spin foam models (SFM), which are an attempt at a covariant or path integral formulation of canonical Loop Quantum

  5. Gravity study of the Middle Aterno Valley

    Science.gov (United States)

    di Nezza, Maria; di Filippo, Michele; Cesi, Claudio; Ferri, Fernando

    2010-05-01

    A gravity study was carried out to identify the geological and structural features of the Middle Aterno Valley, and intramontane depression in the central Appennines, which was targeted to assess the seismic hazard of the city of L'Aquila and surrounding areas, after the Abruzzo 2009 earthquake. Gravity anomalies have been used for the construction of a 3D model of the area, and gravity data for the construction of Bouguer and residual anomaly maps. These data, together with geological surface data allowed for the understanding of the Plio-quaternary tectonic setting of the basins. The study area has been differentiated into different domains with respect to structural and morphological features of different styles of faults. Geology and gravity data show that the local amplification phenomena are due to the fact that the historical center of L'Aquila was built on a coarse breccias (debris-flow deposits with decameter scale limestone blocks) overlying sandy and clayey lacustrine sediments. As these sediments have a low density, gravity prospecting very easily identifies them. Residual anomalies, showing a relative gravity low corresponding to the historical center of L'Aquila, and surrounding areas, indicated that these sediments are up to 250 m-thick. Gravity prospecting also revealed the uprooting of the reliefs which outcrop in the area of Coppito. These reliefs, practically outcrop in the middle of the basin. Here, the gravity anomalies are negative and not positive as would be expected from outcropping geological bedrock.

  6. Lanczos-Lovelock gravity from a thermodynamic perspective

    International Nuclear Information System (INIS)

    Chakraborty, Sumanta

    2015-01-01

    The deep connection between gravitational dynamics and horizon thermodynamics leads to several intriguing features both in general relativity and in Lanczos-Lovelock theories of gravity. Recently in http://arxiv.org/abs/1312.3253 several additional results strengthening the above connection have been established within the framework of general relativity. In this work we provide a generalization of the above setup to Lanczos-Lovelock gravity as well. To our expectation it turns out that most of the results obtained in the context of general relativity generalize to Lanczos-Lovelock gravity in a straightforward but non-trivial manner. First, we provide an alternative and more general derivation of the connection between Noether charge for a specific time evolution vector field and gravitational heat density of the boundary surface. This will lead to holographic equipartition for static spacetimes in Lanczos-Lovelock gravity as well. Taking a cue from this, we have introduced naturally defined four-momentum current associated with gravity and matter energy momentum tensor for both Lanczos-Lovelock Lagrangian and its quadratic part. Then, we consider the concepts of Noether charge for null boundaries in Lanczos-Lovelock gravity by providing a direct generalization of previous results derived in the context of general relativity. Another very interesting feature for gravity is that gravitational field equations for arbitrary static and spherically symmetric spacetimes with horizon can be written as a thermodynamic identity in the near horizon limit. This result holds in both general relativity and in Lanczos-Lovelock gravity as well. In a previous work [http://arxiv.org/abs/1505.05297] we have shown that, for an arbitrary spacetime, the gravitational field equations near any null surface generically leads to a thermodynamic identity. In this work, we have also generalized this result to Lanczos-Lovelock gravity by showing that gravitational field equations for Lanczos

  7. Flow and Displacement of Non-Newtonian Fluid(Power-Law Model) by Surface Tension and Gravity Force in Inclined Circular Tube

    International Nuclear Information System (INIS)

    Moh, Jeong Hah; Cho, Y. I.

    2014-01-01

    This paper presents the theoretical analysis of a flow driven by surface tension and gravity in an inclined circular tube. A governing equation is developed for describing the displacement of a non-Newtonian fluid(Power-law model) that continuously flows into a circular tube owing to surface tension, which represents a second-order, nonlinear, non-homogeneous, and ordinary differential form. It was found that quantitatively, the theoretical predictions of the governing equation were in excellent agreement with the solutions of the equation for horizontal tubes and the past experimental data. In addition, the predictions compared very well with the results of the force balance equation for steady

  8. Quantum gravity and Standard-Model-like fermions

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Lippoldt, Stefan

    2017-01-01

    We discover that chiral symmetry does not act as an infrared attractor of the renormalization group flow under the impact of quantum gravity fluctuations. Thus, observationally viable quantum gravity models must respect chiral symmetry. In our truncation, asymptotically safe gravity does, as a chiral fixed point exists. A second non-chiral fixed point with massive fermions provides a template for models with dark matter. This fixed point disappears for more than 10 fermions, suggesting that an asymptotically safe ultraviolet completion for the standard model plus gravity enforces chiral symmetry.

  9. Group field theory and simplicial quantum gravity

    International Nuclear Information System (INIS)

    Oriti, D

    2010-01-01

    We present a new group field theory for 4D quantum gravity. It incorporates the constraints that give gravity from BF theory and has quantum amplitudes with the explicit form of simplicial path integrals for first-order gravity. The geometric interpretation of the variables and of the contributions to the quantum amplitudes is manifest. This allows a direct link with other simplicial gravity approaches, like quantum Regge calculus, in the form of the amplitudes of the model, and dynamical triangulations, which we show to correspond to a simple restriction of the same.

  10. Three-dimensional dilatonic gravity's rainbow: Exact solutions

    International Nuclear Information System (INIS)

    Hossein Hendi, Seyed; Eslam Panah, Behzad; Panahiyan, Shahram

    2016-01-01

    Deep relations of dark energy scenario and string theory results into dilaton gravity, on the one hand, and the connection between quantum gravity and gravity's rainbow, on the other hand, motivate us to consider three-dimensional dilatonic black hole solutions in gravity's rainbow. We obtain two classes of the solutions, which are polynomial and logarithmic forms. We also calculate conserved and thermodynamic quantities, and examine the first law of thermodynamics for both classes. In addition, we study thermal stability and show that one of the classes is thermally stable while the other one is unstable.

  11. Analysis of Alabama Airborne Gravity at Three Altitudes: Expected Accuracy and Spatial Resolution from a Future Tibetan Airborne Gravity Survey

    Directory of Open Access Journals (Sweden)

    Chi-Hsun Huang

    2013-01-01

    Full Text Available In situ airborne gravity data at altitudes of 11, 6.3, and 1.7 km over a smooth area of Alabama are used to assess gravity accuracy and errors in upward and downward continuations. Analysis of the Alabama free-air anomaly gravity data at crossover points at the three altitudes suggests 1 - 2 mgal accuracy for the dataset. Gravity data at each altitude are then expanded into local 3D Fourier series, to prepare for continuation. This Fourier representation results in continuation errors at few-mgal level in Alabama, even in the extreme case of downward continuation from 11 km to sea level. The result in Alabama inspires an airborne gravity survey over the rough, inaccessible terrain of Tibet. Similar investigations as in Alabama are made in Tibet using EGM08-derived airborne gravity data at flight altitudes of 10, 5, and 0 km. Bouguer anomalies at the 10-km altitude preserve the major tectonic features of Tibet. Downward continuation errors increase with terrain roughness, but the survey can enhance local tectonic features. This study highlights the value of a future Tibetan airborne gravity survey and points out the expected gravity accuracy and spatial resolution from this survey.

  12. Loop Quantum Gravity.

    Science.gov (United States)

    Rovelli, Carlo

    2008-01-01

    The problem of describing the quantum behavior of gravity, and thus understanding quantum spacetime , is still open. Loop quantum gravity is a well-developed approach to this problem. It is a mathematically well-defined background-independent quantization of general relativity, with its conventional matter couplings. Today research in loop quantum gravity forms a vast area, ranging from mathematical foundations to physical applications. Among the most significant results obtained so far are: (i) The computation of the spectra of geometrical quantities such as area and volume, which yield tentative quantitative predictions for Planck-scale physics. (ii) A physical picture of the microstructure of quantum spacetime, characterized by Planck-scale discreteness. Discreteness emerges as a standard quantum effect from the discrete spectra, and provides a mathematical realization of Wheeler's "spacetime foam" intuition. (iii) Control of spacetime singularities, such as those in the interior of black holes and the cosmological one. This, in particular, has opened up the possibility of a theoretical investigation into the very early universe and the spacetime regions beyond the Big Bang. (iv) A derivation of the Bekenstein-Hawking black-hole entropy. (v) Low-energy calculations, yielding n -point functions well defined in a background-independent context. The theory is at the roots of, or strictly related to, a number of formalisms that have been developed for describing background-independent quantum field theory, such as spin foams, group field theory, causal spin networks, and others. I give here a general overview of ideas, techniques, results and open problems of this candidate theory of quantum gravity, and a guide to the relevant literature.

  13. Semiclassical unimodular gravity

    International Nuclear Information System (INIS)

    Fiol, Bartomeu; Garriga, Jaume

    2010-01-01

    Classically, unimodular gravity is known to be equivalent to General Relativity (GR), except for the fact that the effective cosmological constant Λ has the status of an integration constant. Here, we explore various formulations of unimodular gravity beyond the classical limit. We first consider the non-generally covariant action formulation in which the determinant of the metric is held fixed to unity. We argue that the corresponding quantum theory is also equivalent to General Relativity for localized perturbative processes which take place in generic backgrounds of infinite volume (such as asymptotically flat spacetimes). Next, using the same action, we calculate semiclassical non-perturbative quantities, which we expect will be dominated by Euclidean instanton solutions. We derive the entropy/area ratio for cosmological and black hole horizons, finding agreement with GR for solutions in backgrounds of infinite volume, but disagreement for backgrounds with finite volume. In deriving the above results, the path integral is taken over histories with fixed 4-volume. We point out that the results are different if we allow the 4-volume of the different histories to vary over a continuum range. In this ''generalized'' version of unimodular gravity, one recovers the full set of Einstein's equations in the classical limit, including the trace, so Λ is no longer an integration constant. Finally, we consider the generally covariant theory due to Henneaux and Teitelboim, which is classically equivalent to unimodular gravity. In this case, the standard semiclassical GR results are recovered provided that the boundary term in the Euclidean action is chosen appropriately

  14. Application of Cauchy-type integrals in developing effective methods for depth-to-basement inversion of gravity and gravity gradiometry data

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Zhdanov, Michael

    2015-01-01

    to be discretized for the calculation of gravity field. This was especially significant in the modeling and inversion of gravity data for determining the depth to the basement. Another important result was developing a novel method of inversion of gravity data to recover the depth to basement, based on the 3D...... Cauchy-type integral representation. Our numerical studies determined that the new method is much faster than conventional volume discretization method to compute the gravity response. Our synthetic model studies also showed that the developed inversion algorithm based on Cauchy-type integral is capable......One of the most important applications of gravity surveys in regional geophysical studies is determining the depth to basement. Conventional methods of solving this problem are based on the spectrum and/or Euler deconvolution analysis of the gravity field and on parameterization of the earth...

  15. Mars - Crustal structure inferred from Bouguer gravity anomalies.

    Science.gov (United States)

    Phillips, R. J.; Saunders, R. S.; Conel, J. E.

    1973-01-01

    Bouguer gravity has been computed for the equatorial region of Mars by differencing free air gravity and the gravity predicted from topographic variations. The free air gravity was generated from an eighth-order set of spherical harmonic coefficients. The gravity from topographic variations was generated by integrating a two-dimensional Green's function over each contour level. The Bouguer gravity indicates crustal inhomogeneities on Mars that are postulated to be variations in crustal thickness. The Tharsis ridge is a region of thick continental type crust. The gravity data, structural patterns, topography, and surface geology of this region lead to the interpretation of the Tharsis topographic high as a broad crustal upwarp possibly associated with local formation of lower-density crustal material and subsequent rise of a thicker crust. The Amazonis region is one of several basins of relatively thin crust, analogous to terrestrial ocean basins. The Libya and Hellas basins, which are probable impact features, are also underlain by thin crust and are possible regions of mantle upwelling.

  16. From thermodynamics to the solutions in gravity theory

    International Nuclear Information System (INIS)

    Zhang, Hongsheng; Li, Xin-Zhou

    2014-01-01

    In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R) gravity in an n-dimensional (n≥3) spacetime which permits three-type (n−2)-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R) gravity

  17. From thermodynamics to the solutions in gravity theory

    Directory of Open Access Journals (Sweden)

    Hongsheng Zhang

    2014-10-01

    Full Text Available In a recent work, we present a new point of view to the relation of gravity and thermodynamics, in which we derive the Schwarzschild solution through thermodynamic considerations by the aid of the Misner–Sharp mass in an adiabatic system. In this Letter we continue to investigate the relation between gravity and thermodynamics for obtaining solutions via thermodynamics. We generalize our studies on gravi-thermodynamics in Einstein gravity to modified gravity theories. By using the first law with the assumption that the Misner–Sharp mass is the mass for an adiabatic system, we reproduce the Boulware–Deser–Cai solution in Gauss–Bonnet gravity. Using this gravi-thermodynamic thought, we obtain a NEW class of solution in F(R gravity in an n-dimensional (n≥3 spacetime which permits three-type (n−2-dimensional maximally symmetric subspace, as an extension of our recent three-dimensional black hole solution, and four-dimensional Clifton–Barrow solution in F(R gravity.

  18. Limit Cycles and Chaos via Quasi-periodicity in Two Coupled Ensembles of Ultra-cold Atoms.

    Science.gov (United States)

    Patra, Aniket; Yuzbashyan, Emil; Altshuler, Boris

    We study the dynamics of two mesoscopic ensembles of ultra-cold two level atoms, which are collectively coupled to an optical cavity and are being pumped incoherently to the excited state. Whereas the time independent steady states are well understood, little is known about the time dependent ones. We explore and categorize various time dependent steady states, e.g. limit cycles and chaotic behavior. We draw a non-equilibrium phase diagram indicating different steady-state behaviors in different parts of the parameter space. We discuss the synchronization of the two ensembles in the time dependent steady states. We also show the onset of chaos via quasi-periodicity. The rich time dependent steady-state behavior, especially the existence of chaos, opens up possibilities for several engineering applications. Supported in part by the University and Louis Bevier Graduate Fellowship.

  19. Cosmological footprints of loop quantum gravity.

    Science.gov (United States)

    Grain, J; Barrau, A

    2009-02-27

    The primordial spectrum of cosmological tensor perturbations is considered as a possible probe of quantum gravity effects. Together with string theory, loop quantum gravity is one of the most promising frameworks to study quantum effects in the early universe. We show that the associated corrections should modify the potential seen by gravitational waves during the inflationary amplification. The resulting power spectrum should exhibit a characteristic tilt. This opens a new window for cosmological tests of quantum gravity.

  20. New Gravity Wave Treatments for GISS Climate Models

    Science.gov (United States)

    Geller, Marvin A.; Zhou, Tiehan; Ruedy, Reto; Aleinov, Igor; Nazarenko, Larissa; Tausnev, Nikolai L.; Sun, Shan; Kelley, Maxwell; Cheng, Ye

    2011-01-01

    Previous versions of GISS climate models have either used formulations of Rayleigh drag to represent unresolved gravity wave interactions with the model-resolved flow or have included a rather complicated treatment of unresolved gravity waves that, while being climate interactive, involved the specification of a relatively large number of parameters that were not well constrained by observations and also was computationally very expensive. Here, the authors introduce a relatively simple and computationally efficient specification of unresolved orographic and nonorographic gravity waves and their interaction with the resolved flow. Comparisons of the GISS model winds and temperatures with no gravity wave parameterization; with only orographic gravity wave parameterization; and with both orographic and nonorographic gravity wave parameterizations are shown to illustrate how the zonal mean winds and temperatures converge toward observations. The authors also show that the specifications of orographic and nonorographic gravity waves must be different in the Northern and Southern Hemispheres. Then results are presented where the nonorographic gravity wave sources are specified to represent sources from convection in the intertropical convergence zone and spontaneous emission from jet imbalances. Finally, a strategy to include these effects in a climate-dependent manner is suggested.