Two-dimensional steady unsaturated flow through embedded elliptical layers
Bakker, Mark; Nieber, John L.
2004-12-01
New analytic element solutions are presented for unsaturated, two-dimensional steady flow in vertical planes that include nonoverlapping impermeable elliptical layers and elliptical inhomogeneities. The hydraulic conductivity, which is represented by an exponential function of the pressure head, differs between the inside and outside of an elliptical inhomogeneity; both the saturated hydraulic conductivity and water retention parameters are allowed to differ between the inside and outside. The Richards equation is transformed, through the Kirchhoff transformation and a second standard transformation, into the modified Helmholtz equation. Analytic element solutions are obtained through separation of variables in elliptical coordinates. The resulting equations for the Kirchhoff potential consist of infinite sums of products of exponentials and modified Mathieu functions. In practical applications the series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately but up to machine accuracy, provided that enough terms are used. The pressure head, saturation, and flow may be computed analytically at any point in the vadose zone. Examples are given of the shadowing effect of an impermeable elliptical layer in a uniform flow field and funnel-type flow between two elliptical inhomogeneities. The presented solutions may be applied to study transport processes in vadose zones containing many impermeable elliptical layers or elliptical inhomogeneities.
Overdetermined elliptic problems in topological disks
Mira, Pablo
2018-06-01
We introduce a method, based on the Poincaré-Hopf index theorem, to classify solutions to overdetermined problems for fully nonlinear elliptic equations in domains diffeomorphic to a closed disk. Applications to some well-known nonlinear elliptic PDEs are provided. Our result can be seen as the analogue of Hopf's uniqueness theorem for constant mean curvature spheres, but for the general analytic context of overdetermined elliptic problems.
Majeed, Muhammad Usman
2017-07-19
Steady-state elliptic partial differential equations (PDEs) are frequently used to model a diverse range of physical phenomena. The source and boundary data estimation problems for such PDE systems are of prime interest in various engineering disciplines including biomedical engineering, mechanics of materials and earth sciences. Almost all existing solution strategies for such problems can be broadly classified as optimization-based techniques, which are computationally heavy especially when the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time-like. In this regard, first, an iterative observer algorithm is developed that sweeps over regular-shaped domains and solves boundary estimation problems for steady-state Laplace equation. It is well-known that source and boundary estimation problems for the elliptic PDEs are highly sensitive to noise in the data. For this, an optimal iterative observer algorithm, which is a robust counterpart of the iterative observer, is presented to tackle the ill-posedness due to noise. The iterative observer algorithm and the optimal iterative algorithm are then used to solve source localization and estimation problems for Poisson equation for noise-free and noisy data cases respectively. Next, a divide and conquer approach is developed for three-dimensional domains with two congruent parallel surfaces to solve the boundary and the source data estimation problems for the steady-state Laplace and Poisson kind of systems respectively. Theoretical results are shown using a functional analysis framework, and consistent numerical simulation results are presented for several test cases using finite difference discretization schemes.
Models of steady state cooling flows in elliptical galaxies
International Nuclear Information System (INIS)
Vedder, P.W.; Trester, J.J.; Canizares, C.R.
1988-01-01
A comprehensive set of steady state models for spherically symmetric cooling flows in early-type galaxies is presented. It is found that a reduction of the supernova (SN) rate in ellipticals produces a decrease in the X-ray luminosity of galactic cooling flows and a steepening of the surface brightness profile. The mean X-ray temperature of the cooling flow is not affected noticeably by a change in the SN rate. The external pressure around a galaxy does not markedly change the luminosity of the gas within the galaxy but does change the mean temperature of the gas. The presence of a dark matter halo in a galaxy only changes the mean X-ray temperature slightly. The addition of a distribution of mass sinks which remove material from the general accretion flow reduces L(X) very slightly, flattens the surface brightness profile, and reduces the central surface brightness level to values close to those actually observed. A reduction in the stellar mass-loss rate only slightly reduces the X-ray luminosity of the cooling flow and flattens the surface brightness by a small amount. 37 references
Equivalent operator preconditioning for elliptic problems
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe; Karátson, J.
2009-01-01
Roč. 50, č. 3 (2009), s. 297-380 ISSN 1017-1398 Institutional research plan: CEZ:AV0Z30860518 Keywords : Elliptic problem * Conjugate gradient method * preconditioning * equivalent operators * compact operators Subject RIV: BA - General Mathematics Impact factor: 0.716, year: 2009 http://en.scientificcommons.org/42514649
three solutions for a semilinear elliptic boundary value problem
Indian Academy of Sciences (India)
69
Keywords: The Laplacian operator, elliptic problem, Nehari man- ifold, three critical points, weak solution. 1. Introduction. Let Ω be a smooth bounded domain in RN , N ≥ 3 . In this work, we show the existence of at least three solutions for the semilinear elliptic boundary- value problem: (Pλ).. −∆u = f(x)|u(x)|p−2u(x) + ...
Collage-based approaches for elliptic partial differential equations inverse problems
Yodzis, Michael; Kunze, Herb
2017-01-01
The collage method for inverse problems has become well-established in the literature in recent years. Initial work developed a collage theorem, based upon Banach's fixed point theorem, for treating inverse problems for ordinary differential equations (ODEs). Amongst the subsequent work was a generalized collage theorem, based upon the Lax-Milgram representation theorem, useful for treating inverse problems for elliptic partial differential equations (PDEs). Each of these two different approaches can be applied to elliptic PDEs in one space dimension. In this paper, we explore and compare how the two different approaches perform for the estimation of the diffusivity for a steady-state heat equation.
Diffraction and Dirchlet problem for parameter-elliptic convolution ...
African Journals Online (AJOL)
In this paper we evaluate the difference between the inverse operators of a Dirichlet problem and of a diffraction problem for parameter-elliptic convolution operators with constant symbols. We prove that the inverse operator of a Dirichlet problem can be obtained as a limit case of such a diffraction problem. Quaestiones ...
On a fourth order superlinear elliptic problem
Directory of Open Access Journals (Sweden)
M. Ramos
2001-01-01
Full Text Available We prove the existence of a nonzero solution for the fourth order elliptic equation $$Delta^2u= mu u +a(xg(u$$ with boundary conditions $u=Delta u=0$. Here, $mu$ is a real parameter, $g$ is superlinear both at zero and infinity and $a(x$ changes sign in $Omega$. The proof uses a variational argument based on the argument by Bahri-Lions cite{BL}.
Applications of elliptic Carleman inequalities to Cauchy and inverse problems
Choulli, Mourad
2016-01-01
This book presents a unified approach to studying the stability of both elliptic Cauchy problems and selected inverse problems. Based on elementary Carleman inequalities, it establishes three-ball inequalities, which are the key to deriving logarithmic stability estimates for elliptic Cauchy problems and are also useful in proving stability estimates for certain elliptic inverse problems. The book presents three inverse problems, the first of which consists in determining the surface impedance of an obstacle from the far field pattern. The second problem investigates the detection of corrosion by electric measurement, while the third concerns the determination of an attenuation coefficient from internal data, which is motivated by a problem encountered in biomedical imaging.
C1,1 regularity for degenerate elliptic obstacle problems
Daskalopoulos, Panagiota; Feehan, Paul M. N.
2016-03-01
The Heston stochastic volatility process is a degenerate diffusion process where the degeneracy in the diffusion coefficient is proportional to the square root of the distance to the boundary of the half-plane. The generator of this process with killing, called the elliptic Heston operator, is a second-order, degenerate-elliptic partial differential operator, where the degeneracy in the operator symbol is proportional to the distance to the boundary of the half-plane. In mathematical finance, solutions to the obstacle problem for the elliptic Heston operator correspond to value functions for perpetual American-style options on the underlying asset. With the aid of weighted Sobolev spaces and weighted Hölder spaces, we establish the optimal C 1 , 1 regularity (up to the boundary of the half-plane) for solutions to obstacle problems for the elliptic Heston operator when the obstacle functions are sufficiently smooth.
hp Spectral element methods for three dimensional elliptic problems
Indian Academy of Sciences (India)
elliptic boundary value problems on non-smooth domains in R3. For Dirichlet problems, ... of variable degree bounded by W. Let N denote the number of layers in the geomet- ric mesh ... We prove a stability theorem for mixed problems when the spectral element functions vanish ..... Applying Theorem 3.1,. ∫ r l. |Mu|2dx −.
The use of MACSYMA for solving elliptic boundary value problems
Thejll, Peter; Gilbert, Robert P.
1990-01-01
A boundary method is presented for the solution of elliptic boundary value problems. An approach based on the use of complete systems of solutions is emphasized. The discussion is limited to the Dirichlet problem, even though the present method can possibly be adapted to treat other boundary value problems.
Majeed, Muhammad Usman
2017-01-01
the problems are formulated on higher dimensional space domains. However, in this dissertation, feedback based state estimation algorithms, known as state observers, are developed to solve such steady-state problems using one of the space variables as time
Nonconforming h-p spectral element methods for elliptic problems
Indian Academy of Sciences (India)
In [6,7,13,14] h-p spectral element methods for solving elliptic boundary value problems on polygonal ... Let M denote the number of corner layers and W denote the number of degrees of .... β is given by Theorem 2.2 of [3] which can be stated.
Multiple solutions for inhomogeneous nonlinear elliptic problems arising in astrophyiscs
Directory of Open Access Journals (Sweden)
Marco Calahorrano
2004-04-01
Full Text Available Using variational methods we prove the existence and multiplicity of solutions for some nonlinear inhomogeneous elliptic problems on a bounded domain in $mathbb{R}^n$, with $ngeq 2$ and a smooth boundary, and when the domain is $mathbb{R}_+^n$
Hörmander spaces, interpolation, and elliptic problems
Mikhailets, Vladimir A; Malyshev, Peter V
2014-01-01
The monograph gives a detailed exposition of the theory of general elliptic operators (scalar and matrix) and elliptic boundary value problems in Hilbert scales of Hörmander function spaces. This theory was constructed by the authors in a number of papers published in 2005-2009. It is distinguished by a systematic use of the method of interpolation with a functional parameter of abstract Hilbert spaces and Sobolev inner product spaces. This method, the theory and their applications are expounded for the first time in the monographic literature. The monograph is written in detail and in a
A note on quasilinear elliptic eigenvalue problems
Directory of Open Access Journals (Sweden)
Gianni Arioli
1999-11-01
Full Text Available We study an eigenvalue problem by a non-smooth critical point theory. Under general assumptions, we prove the existence of at least one solution as a minimum of a constrained energy functional. We apply some results on critical point theory with symmetry to provide a multiplicity result.
Domain decomposition method for solving elliptic problems in unbounded domains
International Nuclear Information System (INIS)
Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.
1991-01-01
Computational aspects of the box domain decomposition (DD) method for solving boundary value problems in an unbounded domain are discussed. A new variant of the DD-method for elliptic problems in unbounded domains is suggested. It is based on the partitioning of an unbounded domain adapted to the given asymptotic decay of an unknown function at infinity. The comparison of computational expenditures is given for boundary integral method and the suggested DD-algorithm. 29 refs.; 2 figs.; 2 tabs
Dirichlet problem for quasi-linear elliptic equations
Directory of Open Access Journals (Sweden)
Azeddine Baalal
2002-10-01
Full Text Available We study the Dirichlet Problem associated to the quasilinear elliptic problem $$ -sum_{i=1}^{n}frac{partial }{partial x_i}mathcal{A}_i(x,u(x, abla u(x+mathcal{B}(x,u(x,abla u(x=0. $$ Then we define a potential theory related to this problem and we show that the sheaf of continuous solutions satisfies the Bauer axiomatic theory. Submitted April 9, 2002. Published October 2, 2002. Math Subject Classifications: 31C15, 35B65, 35J60. Key Words: Supersolution; Dirichlet problem; obstacle problem; nonlinear potential theory.
A remark on some nonlinear elliptic problems
Directory of Open Access Journals (Sweden)
Lucio Boccardo
2002-10-01
Full Text Available We shall prove an existence result of $W_0^{1,p}(Omega$ solutions for the boundary value problem $$displylines{ -mathop{m div} a(x, u,abla u=F quadmbox{in }Omegacr u=0quadmbox{on }partialOmega }$$ with right hand side in $W^{-1,p'}(Omega$. The features of the equation are that no restrictions on the growth of the function $a(x,s,xi$ with respect to $s$ are assumed and that $a(x,s,xi$ with respect to $xi$ is monotone, but not strictly monotone. We overcome the difficulty of the uncontrolled growth of $a$ thanks to a suitable definition of solution (similar to the one introduced in cite{B6} for the study of the Dirichlet problem in $L^1$ and the difficulty of the not strict monotonicity thanks to a technique (the $L^1$-version of Minty's Lemma similar to the one used in cite{BO}.
The Convergence Problems of Eigenfunction Expansions of Elliptic Differential Operators
Ahmedov, Anvarjon
2018-03-01
In the present research we investigate the problems concerning the almost everywhere convergence of multiple Fourier series summed over the elliptic levels in the classes of Liouville. The sufficient conditions for the almost everywhere convergence problems, which are most difficult problems in Harmonic analysis, are obtained. The methods of approximation by multiple Fourier series summed over elliptic curves are applied to obtain suitable estimations for the maximal operator of the spectral decompositions. Obtaining of such estimations involves very complicated calculations which depends on the functional structure of the classes of functions. The main idea on the proving the almost everywhere convergence of the eigenfunction expansions in the interpolation spaces is estimation of the maximal operator of the partial sums in the boundary classes and application of the interpolation Theorem of the family of linear operators. In the present work the maximal operator of the elliptic partial sums are estimated in the interpolation classes of Liouville and the almost everywhere convergence of the multiple Fourier series by elliptic summation methods are established. The considering multiple Fourier series as an eigenfunction expansions of the differential operators helps to translate the functional properties (for example smoothness) of the Liouville classes into Fourier coefficients of the functions which being expanded into such expansions. The sufficient conditions for convergence of the multiple Fourier series of functions from Liouville classes are obtained in terms of the smoothness and dimensions. Such results are highly effective in solving the boundary problems with periodic boundary conditions occurring in the spectral theory of differential operators. The investigations of multiple Fourier series in modern methods of harmonic analysis incorporates the wide use of methods from functional analysis, mathematical physics, modern operator theory and spectral
On discrete maximum principles for nonlinear elliptic problems
Czech Academy of Sciences Publication Activity Database
Karátson, J.; Korotov, S.; Křížek, Michal
2007-01-01
Roč. 76, č. 1 (2007), s. 99-108 ISSN 0378-4754 R&D Projects: GA MŠk 1P05ME749; GA AV ČR IAA1019201 Institutional research plan: CEZ:AV0Z10190503 Keywords : nonlinear elliptic problem * mixed boundary conditions * finite element method Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2007
Nonlinear Eigenvalue Problems in Elliptic Variational Inequalities: a local study
International Nuclear Information System (INIS)
Conrad, F.; Brauner, C.; Issard-Roch, F.; Nicolaenko, B.
1985-01-01
The authors consider a class of Nonlinear Eigenvalue Problems (N.L.E.P.) associated with Elliptic Variational Inequalities (E.V.I.). First the authors introduce the main tools for a local study of branches of solutions; the authors extend the linearization process required in the case of equations. Next the authors prove the existence of arcs of solutions close to regular vs singular points, and determine their local behavior up to the first order. Finally, the authors discuss the connection between their regularity condition and some stability concept. 37 references, 6 figures
Incomplete block factorization preconditioning for indefinite elliptic problems
Energy Technology Data Exchange (ETDEWEB)
Guo, Chun-Hua [Univ. of Calgary, Alberta (Canada)
1996-12-31
The application of the finite difference method to approximate the solution of an indefinite elliptic problem produces a linear system whose coefficient matrix is block tridiagonal and symmetric indefinite. Such a linear system can be solved efficiently by a conjugate residual method, particularly when combined with a good preconditioner. We show that specific incomplete block factorization exists for the indefinite matrix if the mesh size is reasonably small. And this factorization can serve as an efficient preconditioner. Some efforts are made to estimate the eigenvalues of the preconditioned matrix. Numerical results are also given.
Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients
Bonito, Andrea; DeVore, Ronald A.; Nochetto, Ricardo H.
2013-01-01
Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.
Energy Analysis in the Elliptic Restricted Three-body Problem
Qi, Yi; de Ruiter, Anton
2018-05-01
The gravity assist or flyby is investigated by analyzing the inertial energy of a test particle in the elliptic restricted three-body problem (ERTBP), where two primary bodies are moving in elliptic orbits. Firstly, the expression of the derivation of energy is obtained and discussed. Then, the approximate expressions of energy change in a circular neighborhood of the smaller primary are derived. Numerical computation indicates that the obtained expressions can be applied to study the flyby problem of the nine planets and the Moon in the solar system. Parameters related to the flyby are discussed analytically and numerically. The optimal conditions, including the position and time of the periapsis, for a flyby orbit are found to make a maximum energy gain or loss. Finally, the mechanical process of a flyby orbit is uncovered by an approximate expression in the ERTBP. Numerical computations testify that our analytical results well approximate the mechanical process of flyby orbits obtained by the numerical simulation in the ERTBP. Compared with the previous research established in the patched-conic method and numerical calculation, our analytical investigations based on a more elaborate derivation get more original results.
The mimetic finite difference method for elliptic problems
Veiga, Lourenço Beirão; Manzini, Gianmarco
2014-01-01
This book describes the theoretical and computational aspects of the mimetic finite difference method for a wide class of multidimensional elliptic problems, which includes diffusion, advection-diffusion, Stokes, elasticity, magnetostatics and plate bending problems. The modern mimetic discretization technology developed in part by the Authors allows one to solve these equations on unstructured polygonal, polyhedral and generalized polyhedral meshes. The book provides a practical guide for those scientists and engineers that are interested in the computational properties of the mimetic finite difference method such as the accuracy, stability, robustness, and efficiency. Many examples are provided to help the reader to understand and implement this method. This monograph also provides the essential background material and describes basic mathematical tools required to develop further the mimetic discretization technology and to extend it to various applications.
Scalable Domain Decomposition Preconditioners for Heterogeneous Elliptic Problems
Directory of Open Access Journals (Sweden)
Pierre Jolivet
2014-01-01
Full Text Available Domain decomposition methods are, alongside multigrid methods, one of the dominant paradigms in contemporary large-scale partial differential equation simulation. In this paper, a lightweight implementation of a theoretically and numerically scalable preconditioner is presented in the context of overlapping methods. The performance of this work is assessed by numerical simulations executed on thousands of cores, for solving various highly heterogeneous elliptic problems in both 2D and 3D with billions of degrees of freedom. Such problems arise in computational science and engineering, in solid and fluid mechanics. While focusing on overlapping domain decomposition methods might seem too restrictive, it will be shown how this work can be applied to a variety of other methods, such as non-overlapping methods and abstract deflation based preconditioners. It is also presented how multilevel preconditioners can be used to avoid communication during an iterative process such as a Krylov method.
Tomar, S.K.
2002-01-01
It is well known that elliptic problems when posed on non-smooth domains, develop singularities. We examine such problems within the framework of spectral element methods and resolve the singularities with exponential accuracy.
Spectral results for mixed problems and fractional elliptic operators,
DEFF Research Database (Denmark)
Grubb, Gerd
2015-01-01
In the first part of the paper we show Weyl type spectral asymptotic formulas for pseudodifferential operators P a of order 2a, with type and factorization index a ∈ R +, restricted to compact sets with boundary; this includes fractional powers of the Laplace operator. The domain...... and the regularity of eigenfunctions is described. In the second part, we apply this in a study of realizations A χ,Σ+ in L 2( Ω ) of mixed problems for a second-order strongly elliptic symmetric differential operator A on a bounded smooth set Ω ⊂ R n; here the boundary ∂Ω=Σ is partioned smoothly into Σ......=Σ_∪Σ+, the Dirichlet condition γ0u=0 is imposed on Σ_, and a Neumann or Robin condition χu=0 is imposed on Σ+. It is shown that the Dirichlet-to-Neumann operator Pγ,χ is principally of type 1/2 with factorization index 1/2, relative to Σ+. The above theory allows a detailed description of D (Aχ,Σ_+) with singular...
RBF Multiscale Collocation for Second Order Elliptic Boundary Value Problems
Farrell, Patricio; Wendland, Holger
2013-01-01
In this paper, we discuss multiscale radial basis function collocation methods for solving elliptic partial differential equations on bounded domains. The approximate solution is constructed in a multilevel fashion, each level using compactly
On the Dirichlet problem for an elliptic equation
Directory of Open Access Journals (Sweden)
Anatolii K. Gushchin
2015-03-01
Full Text Available It is well known that the concept of a generalized solution from the Sobolev space $ W_2 ^ 1 $ of the Dirichlet problem for a second order elliptic equation is not a generalization of the classical solution sensu stricto: not every continuous function on the domain boundary is a trace of some function from $ W_2 ^ 1$. The present work is dedicated to the memory of Valentin Petrovich Mikhailov, who proposed a generalization of both these concepts. In the Mikhailov's definition the boundary values of the solution are taken from the $ L_2 $; this definition extends naturally to the case of boundary functions from $ L_p$, $p> 1 $. Subsequently, the author of this work has shown that solutions have the property $ (n-1 $-dimensional continuity; $ n $ is a dimension of the space in which we consider the problem. This property is similar to the classical definition of uniform continuity, but traces of this function on the measures from a special class should be considered instead of values of the function at points. This class is a little more narrow than the class of Carleson measures. The trace of function on the measure is an element of $ L_p $ with respect to this measure. The property $ (n-1 $-dimensional continuity makes it possible to give another definition of the solution of the Dirichlet problem (a definition of $(n-1$-dimensionally continuous solution, which is in the form close to the classical one. This definition does not require smoothness of the boundary. The Dirichlet problem in the Mikhailov's formulation and especially for the $(n-1$-dimensionally continuous solution was studied insufficiently (in contrast to the cases of classical and generalized solutions. First of all, it refers to conditions on the right side of the equation, in which the Dirichlet problem is solvable. In this article the new results in this direction are presented. In addition, we discuss the conditions on the coefficients of the equation and the conditions on
Cho, Yumi
2018-05-01
We study nonlinear elliptic problems with nonstandard growth and ellipticity related to an N-function. We establish global Calderón-Zygmund estimates of the weak solutions in the framework of Orlicz spaces over bounded non-smooth domains. Moreover, we prove a global regularity result for asymptotically regular problems which are getting close to the regular problems considered, when the gradient variable goes to infinity.
International Nuclear Information System (INIS)
Usher, J.L.; Powell, J.R.
1975-06-01
In previous studies only circular cross section reactor plasmas were considered. The purpose of this research is to examine the effects of elliptical plasma cross sections. Several technological benefits have been determined. Maximum magnetic field strength requirements are 30 to 65 percent less than for 5000 MW (th) reactors and may be as much as 40 percent less than for circular cross section reactors of comparable size. Very large n tau values are found (10 15 to 10 17 sec/cm 3 ), which produce large burn-up fractions (15 to 60 percent). There is relatively little problem with impurity build-up. Long confinement times (60 to 500 seconds) are found. Finally, the elliptical cross section reactors exhibit a major toroidal radius reduction of as large as 30 percent over circular reactors operating at comparable power levels
On nonlocal semi linear elliptic problem with an indefinite term
International Nuclear Information System (INIS)
Yechoui, Akila
2007-08-01
The aim of this paper is to investigate the existence of solutions of a nonlocal semi linear elliptic equation with an indefinite term. The monotone method, the method of upper and lower solutions and the classical maximum principle are used to obtain our results. (author)
Existence of positive solutions to semilinear elliptic problems with ...
Indian Academy of Sciences (India)
57
In mathematical modeling, elliptic partial differential equations are used together with boundary conditions specifying the .... Note that the trace map X ↩→ Lq(∂Ω) is compact for q ∈ [1, 2∗) (see, e.g., [4, ..... [2] Ambrosetti A and Rabinowitz P H, Dual variational methods in critical point theory and applications, J. Functional ...
Boundary-value problems with free boundaries for elliptic systems of equations
Monakhov, V N
1983-01-01
This book is concerned with certain classes of nonlinear problems for elliptic systems of partial differential equations: boundary-value problems with free boundaries. The first part has to do with the general theory of boundary-value problems for analytic functions and its applications to hydrodynamics. The second presents the theory of quasiconformal mappings, along with the theory of boundary-value problems for elliptic systems of equations and applications of it to problems in the mechanics of continuous media with free boundaries: problems in subsonic gas dynamics, filtration theory, and problems in elastico-plasticity.
Numerical Solution of Time-Dependent Problems with a Fractional-Power Elliptic Operator
Vabishchevich, P. N.
2018-03-01
A time-dependent problem in a bounded domain for a fractional diffusion equation is considered. The first-order evolution equation involves a fractional-power second-order elliptic operator with Robin boundary conditions. A finite-element spatial approximation with an additive approximation of the operator of the problem is used. The time approximation is based on a vector scheme. The transition to a new time level is ensured by solving a sequence of standard elliptic boundary value problems. Numerical results obtained for a two-dimensional model problem are presented.
Preconditioning for Mixed Finite Element Formulations of Elliptic Problems
Wildey, Tim; Xue, Guangri
2013-01-01
In this paper, we discuss a preconditioning technique for mixed finite element discretizations of elliptic equations. The technique is based on a block-diagonal approximation of the mass matrix which maintains the sparsity and positive definiteness of the corresponding Schur complement. This preconditioner arises from the multipoint flux mixed finite element method and is robust with respect to mesh size and is better conditioned for full permeability tensors than a preconditioner based on a diagonal approximation of the mass matrix. © Springer-Verlag Berlin Heidelberg 2013.
The eigenvalue problem for a singular quasilinear elliptic equation
Directory of Open Access Journals (Sweden)
Benjin Xuan
2004-02-01
Full Text Available We show that many results about the eigenvalues and eigenfunctions of a quasilinear elliptic equation in the non-singular case can be extended to the singular case. Among these results, we have the first eigenvalue is associated to a $C^{1,alpha}(Omega$ eigenfunction which is positive and unique (up to a multiplicative constant, that is, the first eigenvalue is simple. Moreover the first eigenvalue is isolated and is the unique positive eigenvalue associated to a non-negative eigenfunction. We also prove some variational properties of the second eigenvalue.
A displacement based FE formulation for steady state problems
Yu, Y.
2005-01-01
In this thesis a new displacement based formulation is developed for elasto-plastic deformations in steady state problems. In this formulation the displacements are the primary variables, which is in contrast to the more common formulations in terms of the velocities as the primary variables. In a
RBF Multiscale Collocation for Second Order Elliptic Boundary Value Problems
Farrell, Patricio
2013-01-01
In this paper, we discuss multiscale radial basis function collocation methods for solving elliptic partial differential equations on bounded domains. The approximate solution is constructed in a multilevel fashion, each level using compactly supported radial basis functions of smaller scale on an increasingly fine mesh. On each level, standard symmetric collocation is employed. A convergence theory is given, which builds on recent theoretical advances for multiscale approximation using compactly supported radial basis functions. We are able to show that the convergence is linear in the number of levels. We also discuss the condition numbers of the arising systems and the effect of simple, diagonal preconditioners, now proving rigorously previous numerical observations. © 2013 Society for Industrial and Applied Mathematics.
New Boundary Constraints for Elliptic Systems used in Grid Generation Problems
Kaul, Upender K.; Clancy, Daniel (Technical Monitor)
2002-01-01
This paper discusses new boundary constraints for elliptic partial differential equations as used in grid generation problems in generalized curvilinear coordinate systems. These constraints, based on the principle of local conservation of thermal energy in the vicinity of the boundaries, are derived using the Green's Theorem. They uniquely determine the so called decay parameters in the source terms of these elliptic systems. These constraints' are designed for boundary clustered grids where large gradients in physical quantities need to be resolved adequately. It is observed that the present formulation also works satisfactorily for mild clustering. Therefore, a closure for the decay parameter specification for elliptic grid generation problems has been provided resulting in a fully automated elliptic grid generation technique. Thus, there is no need for a parametric study of these decay parameters since the new constraints fix them uniquely. It is also shown that for Neumann type boundary conditions, these boundary constraints uniquely determine the solution to the internal elliptic problem thus eliminating the non-uniqueness of the solution of an internal Neumann boundary value grid generation problem.
Existence of bounded solutions of Neumann problem for a nonlinear degenerate elliptic equation
Directory of Open Access Journals (Sweden)
Salvatore Bonafede
2017-10-01
Full Text Available We prove the existence of bounded solutions of Neumann problem for nonlinear degenerate elliptic equations of second order in divergence form. We also study some properties as the Phragmen-Lindelof property and the asymptotic behavior of the solutions of Dirichlet problem associated to our equation in an unbounded domain.
On an Optimal -Control Problem in Coefficients for Linear Elliptic Variational Inequality
Directory of Open Access Journals (Sweden)
Olha P. Kupenko
2013-01-01
Full Text Available We consider optimal control problems for linear degenerate elliptic variational inequalities with homogeneous Dirichlet boundary conditions. We take the matrix-valued coefficients in the main part of the elliptic operator as controls in . Since the eigenvalues of such matrices may vanish and be unbounded in , it leads to the “noncoercivity trouble.” Using the concept of convergence in variable spaces and following the direct method in the calculus of variations, we establish the solvability of the optimal control problem in the class of the so-called -admissible solutions.
TOPICAL REVIEW: The stability for the Cauchy problem for elliptic equations
Alessandrini, Giovanni; Rondi, Luca; Rosset, Edi; Vessella, Sergio
2009-12-01
We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, the three-spheres inequality. Due to the current absence of research funding from the Italian Ministry of University and Research, this work has been completed without any financial support.
Identification of the Diffusion Parameter in Nonlocal Steady Diffusion Problems
Energy Technology Data Exchange (ETDEWEB)
D’Elia, M., E-mail: mdelia@fsu.edu, E-mail: mdelia@sandia.gov [Sandia National Laboratories (United States); Gunzburger, M. [Florida State University (United States)
2016-04-15
The problem of identifying the diffusion parameter appearing in a nonlocal steady diffusion equation is considered. The identification problem is formulated as an optimal control problem having a matching functional as the objective of the control and the parameter function as the control variable. The analysis makes use of a nonlocal vector calculus that allows one to define a variational formulation of the nonlocal problem. In a manner analogous to the local partial differential equations counterpart, we demonstrate, for certain kernel functions, the existence of at least one optimal solution in the space of admissible parameters. We introduce a Galerkin finite element discretization of the optimal control problem and derive a priori error estimates for the approximate state and control variables. Using one-dimensional numerical experiments, we illustrate the theoretical results and show that by using nonlocal models it is possible to estimate non-smooth and discontinuous diffusion parameters.
Mixed FEM for Second Order Elliptic Problems on Polygonal Meshes with BEM-Based Spaces
Efendiev, Yalchin; Galvis, Juan; Lazarov, Raytcho; Weiß er, Steffen
2014-01-01
We present a Boundary Element Method (BEM)-based FEM for mixed formulations of second order elliptic problems in two dimensions. The challenge, we would like to address, is a proper construction of H(div)-conforming vector valued trial functions
Barger, R. L.
1977-01-01
Slender body methods were applied to some specialized problems associated with missile configurations with elliptic cross sections. Expressions are derived for computing the velocity distribution on the nose section when the ellipse eccentricity is varying longitudinally on the missile. The cross flow velocity on a triform fin section is also studied.
Stability Estimates for h-p Spectral Element Methods for Elliptic Problems
Dutt, Pravir; Tomar, S.K.; Kumar, B.V. Rathish
2002-01-01
In a series of papers of which this is the first we study how to solve elliptic problems on polygonal domains using spectral methods on parallel computers. To overcome the singularities that arise in a neighborhood of the corners we use a geometrical mesh. With this mesh we seek a solution which
BOUNDARY VALUE PROBLEM FOR A LOADED EQUATION ELLIPTIC-HYPERBOLIC TYPE IN A DOUBLY CONNECTED DOMAIN
Directory of Open Access Journals (Sweden)
O.Kh. Abdullaev
2014-06-01
Full Text Available We study the existence and uniqueness of the solution of one boundary value problem for the loaded elliptic-hyperbolic equation of the second order with two lines of change of type in double-connected domain. Similar results have been received by D.M.Kuryhazov, when investigated domain is one-connected.
A mixed nonoverlapping covolume method on quadrilateral grids for elliptic problems
Zhao, X.; Chen, Y.; Lv, J.
2016-01-01
A covolume method is proposed for the mixed formulation of second-order elliptic problems. The solution domain is divided by a quadrilateral grid, corresponding to which a nonoverlapping dual grid is constructed. The velocity and pressure are approximated by the lowest-order Raviart–Thomas space on
A study on discontinuous Galerkin finite element methods for elliptic problems
Janivita Joto Sudirham, J.J.S.; Sudirham, J.J.; van der Vegt, Jacobus J.W.; van Damme, Rudolf M.J.
2003-01-01
In this report we study several approaches of the discontinuous Galerkin finite element methods for elliptic problems. An important aspect in these formulations is the use of a lifting operator, for which we present an efficient numerical approximation technique. Numerical experiments for two
Positive solutions with changing sign energy to a nonhomogeneous elliptic problem of fourth order
Directory of Open Access Journals (Sweden)
M.Talbi
2011-01-01
Full Text Available In this paper, we study the existence for two positive solutions toa nonhomogeneous elliptic equation of fourth order with a parameter lambda such tha 0 < lambda < lambda^. The first solution has a negative energy while the energy of the second one is positive for 0 < lambda < lambda_0 and negative for lambda_0 < lambda < lambda^. The values lambda_0 and lambda^ are given under variational form and we show that every corresponding critical point is solution of the nonlinear elliptic problem (with a suitable multiplicative term.
Domain decomposition based iterative methods for nonlinear elliptic finite element problems
Energy Technology Data Exchange (ETDEWEB)
Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)
1994-12-31
The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.
Constructive Solution of Ellipticity Problem for the First Order Differential System
Directory of Open Access Journals (Sweden)
Vladimir E. Balabaev
2017-01-01
Full Text Available We built first order elliptic systems with any possible number of unknown functions and the maximum possible number of unknowns, i.e, in general. These systems provide the basis for studying the properties of any first order elliptic systems. The study of the Cauchy-Riemann system and its generalizations led to the identification of a class of elliptic systems of first-order of a special structure. An integral representation of solutions is of great importance in the study of these systems. Only by means of a constructive method of integral representations we can solve a number of problems in the theory of elliptic systems related mainly to the boundary properties of solutions. The obtained integral representation could be applied to solve a number of problems that are hard to solve, if you rely only on the non-constructive methods. Some analogues of the theorems of Liouville, Weierstrass, Cauchy, Gauss, Morera, an analogue of Green’s formula are established, as well as an analogue of the maximum principle. The used matrix operators allow the new structural arrangement of the maximum number of linearly independent vector fields on spheres of any possible dimension. Also the built operators allow to obtain a constructive solution of the extended problem ”of the sum of squares” known in algebra.
Collage-type approach to inverse problems for elliptic PDEs on perforated domains
Directory of Open Access Journals (Sweden)
Herb E. Kunze
2015-02-01
Full Text Available We present a collage-based method for solving inverse problems for elliptic partial differential equations on a perforated domain. The main results of this paper establish a link between the solution of an inverse problem on a perforated domain and the solution of the same model on a domain with no holes. The numerical examples at the end of the paper show the goodness of this approach.
Asymptotic Estimates and Qualitatives Properties of an Elliptic Problem in Dimension Two
Mehdi, Khalil El; Grossi, Massimo
2003-01-01
In this paper we study a semilinear elliptic problem on a bounded domain in $\\R^2$ with large exponent in the nonlinear term. We consider positive solutions obtained by minimizing suitable functionals. We prove some asymtotic estimates which enable us to associate a "limit problem" to the initial one. Usong these estimates we prove some quantitative properties of the solution, namely characterization of level sets and nondegeneracy.
Directory of Open Access Journals (Sweden)
Hongwu Zhang
2011-08-01
Full Text Available In this article, we study a Cauchy problem for an elliptic equation with variable coefficients. It is well-known that such a problem is severely ill-posed; i.e., the solution does not depend continuously on the Cauchy data. We propose a modified quasi-boundary value regularization method to solve it. Convergence estimates are established under two a priori assumptions on the exact solution. A numerical example is given to illustrate our proposed method.
Chen, Zhangxin; Ewing, Richard E.
1996-01-01
Multigrid algorithms for nonconforming and mixed finite element methods for second order elliptic problems on triangular and rectangular finite elements are considered. The construction of several coarse-to-fine intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed finite element methods with and without projection of the coefficient of the differential problems into finite element spaces is described.
Directory of Open Access Journals (Sweden)
M. G. Crandall
1999-07-01
Full Text Available We study existence of continuous weak (viscosity solutions of Dirichlet and Cauchy-Dirichlet problems for fully nonlinear uniformly elliptic and parabolic equations. Two types of results are obtained in contexts where uniqueness of solutions fails or is unknown. For equations with merely measurable coefficients we prove solvability of the problem, while in the continuous case we construct maximal and minimal solutions. Necessary barriers on external cones are also constructed.
A finite-dimensional reduction method for slightly supercritical elliptic problems
Directory of Open Access Journals (Sweden)
Riccardo Molle
2004-01-01
Full Text Available We describe a finite-dimensional reduction method to find solutions for a class of slightly supercritical elliptic problems. A suitable truncation argument allows us to work in the usual Sobolev space even in the presence of supercritical nonlinearities: we modify the supercritical term in such a way to have subcritical approximating problems; for these problems, the finite-dimensional reduction can be obtained applying the methods already developed in the subcritical case; finally, we show that, if the truncation is realized at a sufficiently large level, then the solutions of the approximating problems, given by these methods, also solve the supercritical problems when the parameter is small enough.
Eigenvalue problems for degenerate nonlinear elliptic equations in anisotropic media
Directory of Open Access Journals (Sweden)
Vicenţiu RăDulescu
2005-06-01
Full Text Available We study nonlinear eigenvalue problems of the type Ã¢ÂˆÂ’div(a(xÃ¢ÂˆÂ‡u=g(ÃŽÂ»,x,u in Ã¢Â„ÂN, where a(x is a degenerate nonnegative weight. We establish the existence of solutions and we obtain information on qualitative properties as multiplicity and location of solutions. Our approach is based on the critical point theory in Sobolev weighted spaces combined with a Caffarelli-Kohn-Nirenberg-type inequality. A specific minimax method is developed without making use of Palais-Smale condition.
Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem
Lakshtanov, E.; Vainberg, B.
2013-10-01
The paper concerns the isotropic interior transmission eigenvalue (ITE) problem. This problem is not elliptic, but we show that, using the Dirichlet-to-Neumann map, it can be reduced to an elliptic one. This leads to the discreteness of the spectrum as well as to certain results on a possible location of the transmission eigenvalues. If the index of refraction \\sqrt{n(x)} is real, then we obtain a result on the existence of infinitely many positive ITEs and the Weyl-type lower bound on its counting function. All the results are obtained under the assumption that n(x) - 1 does not vanish at the boundary of the obstacle or it vanishes identically, but its normal derivative does not vanish at the boundary. We consider the classical transmission problem as well as the case when the inhomogeneous medium contains an obstacle. Some results on the discreteness and localization of the spectrum are obtained for complex valued n(x).
Mielke, Alexander
1991-01-01
The theory of center manifold reduction is studied in this monograph in the context of (infinite-dimensional) Hamil- tonian and Lagrangian systems. The aim is to establish a "natural reduction method" for Lagrangian systems to their center manifolds. Nonautonomous problems are considered as well assystems invariant under the action of a Lie group ( including the case of relative equilibria). The theory is applied to elliptic variational problemson cylindrical domains. As a result, all bounded solutions bifurcating from a trivial state can be described by a reduced finite-dimensional variational problem of Lagrangian type. This provides a rigorous justification of rod theory from fully nonlinear three-dimensional elasticity. The book will be of interest to researchers working in classical mechanics, dynamical systems, elliptic variational problems, and continuum mechanics. It begins with the elements of Hamiltonian theory and center manifold reduction in order to make the methods accessible to non-specialists,...
Energy Technology Data Exchange (ETDEWEB)
Maliassov, S.Y. [Texas A& M Univ., College Station, TX (United States)
1996-12-31
An approach to the construction of an iterative method for solving systems of linear algebraic equations arising from nonconforming finite element discretizations with nonmatching grids for second order elliptic boundary value problems with anisotropic coefficients is considered. The technique suggested is based on decomposition of the original domain into nonoverlapping subdomains. The elliptic problem is presented in the macro-hybrid form with Lagrange multipliers at the interfaces between subdomains. A block diagonal preconditioner is proposed which is spectrally equivalent to the original saddle point matrix and has the optimal order of arithmetical complexity. The preconditioner includes blocks for preconditioning subdomain and interface problems. It is shown that constants of spectral equivalence axe independent of values of coefficients and mesh step size.
An adaptive finite element method for steady and transient problems
International Nuclear Information System (INIS)
Benner, R.E. Jr.; Davis, H.T.; Scriven, L.E.
1987-01-01
Distributing integral error uniformly over variable subdomains, or finite elements, is an attractive criterion by which to subdivide a domain for the Galerkin/finite element method when localized steep gradients and high curvatures are to be resolved. Examples are fluid interfaces, shock fronts and other internal layers, as well as fluid mechanical and other boundary layers, e.g. thin-film states at solid walls. The uniform distribution criterion is developed into an adaptive technique for one-dimensional problems. Nodal positions can be updated simultaneously with nodal values during Newton iteration, but it is usually better to adopt nearly optimal nodal positions during Newton iteration upon nodal values. Three illustrative problems are solved: steady convection with diffusion, gradient theory of fluid wetting on a solid surface and Buckley-Leverett theory of two phase Darcy flow in porous media
Nonlinear Elliptic Boundary Value Problems at Resonance with Nonlinear Wentzell Boundary Conditions
Directory of Open Access Journals (Sweden)
Ciprian G. Gal
2017-01-01
Full Text Available Given a bounded domain Ω⊂RN with a Lipschitz boundary ∂Ω and p,q∈(1,+∞, we consider the quasilinear elliptic equation -Δpu+α1u=f in Ω complemented with the generalized Wentzell-Robin type boundary conditions of the form bx∇up-2∂nu-ρbxΔq,Γu+α2u=g on ∂Ω. In the first part of the article, we give necessary and sufficient conditions in terms of the given functions f, g and the nonlinearities α1, α2, for the solvability of the above nonlinear elliptic boundary value problems with the nonlinear boundary conditions. In other words, we establish a sort of “nonlinear Fredholm alternative” for our problem which extends the corresponding Landesman and Lazer result for elliptic problems with linear homogeneous boundary conditions. In the second part, we give some additional results on existence and uniqueness and we study the regularity of the weak solutions for these classes of nonlinear problems. More precisely, we show some global a priori estimates for these weak solutions in an L∞-setting.
Three-body problem in quantum mechanics: Hyperspherical elliptic coordinates and harmonic basis sets
International Nuclear Information System (INIS)
Aquilanti, Vincenzo; Tonzani, Stefano
2004-01-01
Elliptic coordinates within the hyperspherical formalism for three-body problems were proposed some time ago [V. Aquilanti, S. Cavalli, and G. Grossi, J. Chem. Phys. 85, 1362 (1986)] and recently have also found application, for example, in chemical reaction theory [see O. I. Tolstikhin and H. Nakamura, J. Chem. Phys. 108, 8899 (1998)]. Here we consider their role in providing a smooth transition between the known 'symmetric' and 'asymmetric' parametrizations, and focus on the corresponding hyperspherical harmonics. These harmonics, which will be called hyperspherical elliptic, involve products of two associated Lame polynomials. We will provide an expansion of these new sets in a finite series of standard hyperspherical harmonics, producing a powerful tool for future applications in the field of scattering and bound-state quantum-mechanical three-body problems
On the asymptotic of solutions of elliptic boundary value problems in domains with edges
International Nuclear Information System (INIS)
Nkemzi, B.
2005-10-01
Solutions of elliptic boundary value problems in three-dimensional domains with edges may exhibit singularities. The usual procedure to study these singularities is by the application of the classical Mellin transformation or continuous Fourier transformation. In this paper, we show how the asymptotic behavior of solutions of elliptic boundary value problems in general three-dimensional domains with straight edges can be investigated by means of discrete Fourier transformation. We apply this approach to time-harmonic Maxwell's equations and prove that the singular solutions can fully be described in terms of Fourier series. The representation here can easily be used to approximate three-dimensional stress intensity factors associated with edge singularities. (author)
Discrete conservation of nonnegativity for elliptic problems solved by the hp-FEM
Czech Academy of Sciences Publication Activity Database
Šolín, P.; Vejchodský, Tomáš; Araiza, R.
2007-01-01
Roč. 76, 1-3 (2007), s. 205-210 ISSN 0378-4754 R&D Projects: GA ČR GP201/04/P021 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete nonnegativity conservation * discrete Green's function * elliptic problems * hp-FEM * higher-order finite element methods * Poisson equation * numerical experimetns Subject RIV: BA - General Mathematics Impact factor: 0.738, year: 2007
Numerical treatment of elliptic BVP with several solutions and of MHD equilibrium problems
International Nuclear Information System (INIS)
Meyer-Spasche, R.
1975-12-01
It is found out empirically that Newton iteration and difference methods are very suitable for the numerical treatment of elliptic boundary value problems (Lu)(x) = f(x,u(x)) in D c R 2 , u/deltaD = g having several solutions. Some convergence theorems for these methods are presented. Some notable numerical examples are given, including bifurcation diagrams, which are interesting in themselves and show also the applicability of the methods developed. (orig./WB) [de
Directory of Open Access Journals (Sweden)
Nikita Agarwal
2017-07-01
Full Text Available In this article, we study the approximate controllability and homegenization results of a semi-linear elliptic problem with Robin boundary condition in a periodically perforated domain. We prove the existence of minimal norm control using Lions constructive approach, which is based on Fenchel-Rockafeller duality theory, and by means of Zuazua's fixed point arguments. Then, as the homogenization parameter goes to zero, we link the limit of the optimal controls (the limit of fixed point of the controllability problems with the optimal control of the corresponding homogenized problem.
Mixed FEM for Second Order Elliptic Problems on Polygonal Meshes with BEM-Based Spaces
Efendiev, Yalchin
2014-01-01
We present a Boundary Element Method (BEM)-based FEM for mixed formulations of second order elliptic problems in two dimensions. The challenge, we would like to address, is a proper construction of H(div)-conforming vector valued trial functions on arbitrary polygonal partitions of the domain. The proposed construction generates trial functions on polygonal elements which inherit some of the properties of the unknown solution. In the numerical realization, the relevant local problems are treated by means of boundary integral formulations. We test the accuracy of the method on two model problems. © 2014 Springer-Verlag.
Modeling groundwater flow to elliptical lakes and through multi-aquifer elliptical inhomogeneities
Bakker, Mark
2004-05-01
Two new analytic element solutions are presented for steady flow problems with elliptical boundaries. The first solution concerns groundwater flow to shallow elliptical lakes with leaky lake beds in a single-aquifer. The second solution concerns groundwater flow through elliptical cylinder inhomogeneities in a multi-aquifer system. Both the transmissivity of each aquifer and the resistance of each leaky layer may differ between the inside and the outside of an inhomogeneity. The elliptical inhomogeneity may be bounded on top by a shallow elliptical lake with a leaky lake bed. Analytic element solutions are obtained for both problems through separation of variables of the Laplace and modified-Helmholtz differential equations in elliptical coordinates. The resulting equations for the discharge potential consist of infinite sums of products of exponentials, trigonometric functions, and modified-Mathieu functions. The series are truncated but still fulfill the differential equation exactly; boundary conditions are met approximately, but up to machine accuracy provided enough terms are used. The head and flow may be computed analytically at any point in the aquifer. Examples are given of uniform flow through an elliptical lake, a well pumping near two elliptical lakes, and uniform flow through three elliptical inhomogeneities in a multi-aquifer system. Mathieu functions may be applied in a similar fashion to solve other groundwater flow problems in semi-confined aquifers and leaky aquifer systems with elliptical internal or external boundaries.
Energy Technology Data Exchange (ETDEWEB)
Aarao, J; Bradshaw-Hajek, B H; Miklavcic, S J; Ward, D A, E-mail: Stan.Miklavcic@unisa.edu.a [School of Mathematics and Statistics, University of South Australia, Mawson Lakes, SA 5095 (Australia)
2010-05-07
Standard analytical solutions to elliptic boundary value problems on asymmetric domains are rarely, if ever, obtainable. In this paper, we propose a solution technique wherein we embed the original domain into one with simple boundaries where the classical eigenfunction solution approach can be used. The solution in the larger domain, when restricted to the original domain, is then the solution of the original boundary value problem. We call this the extended-domain-eigenfunction method. To illustrate the method's strength and scope, we apply it to Laplace's equation on an annular-like domain.
Spectral Solutions of Self-adjoint Elliptic Problems with Immersed Interfaces
International Nuclear Information System (INIS)
Auchmuty, G.; Klouček, P.
2011-01-01
This paper describes a spectral representation of solutions of self-adjoint elliptic problems with immersed interfaces. The interface is assumed to be a simple non-self-intersecting closed curve that obeys some weak regularity conditions. The problem is decomposed into two problems, one with zero interface data and the other with zero exterior boundary data. The problem with zero interface data is solved by standard spectral methods. The problem with non-zero interface data is solved by introducing an interface space H Γ (Ω) and constructing an orthonormal basis of this space. This basis is constructed using a special class of orthogonal eigenfunctions analogously to the methods used for standard trace spaces by Auchmuty (SIAM J. Math. Anal. 38, 894–915, 2006). Analytical and numerical approximations of these eigenfunctions are described and some simulations are presented.
Cost-effective computations with boundary interface operators in elliptic problems
International Nuclear Information System (INIS)
Khoromskij, B.N.; Mazurkevich, G.E.; Nikonov, E.G.
1993-01-01
The numerical algorithm for fast computations with interface operators associated with the elliptic boundary value problems (BVP) defined on step-type domains is presented. The algorithm is based on the asymptotically almost optimal technique developed for treatment of the discrete Poincare-Steklov (PS) operators associated with the finite-difference Laplacian on rectangles when using the uniform grid with a 'displacement by h/2'. The approach can be regarded as an extension of the method proposed for the partial solution of the finite-difference Laplace equation to the case of displaced grids and mixed boundary conditions. It is shown that the action of the PS operator for the Dirichlet problem and mixed BVP can be computed with expenses of the order of O(Nlog 2 N) both for arithmetical operations and computer memory needs, where N is the number of unknowns on the rectangle boundary. The single domain algorithm is applied to solving the multidomain elliptic interface problems with piecewise constant coefficients. The numerical experiments presented confirm almost linear growth of the computational costs and memory needs with respect to the dimension of the discrete interface problem. 14 refs., 3 figs., 4 tabs
Directory of Open Access Journals (Sweden)
Sabri Bensid
2010-04-01
Full Text Available We study the nonlinear elliptic problem with discontinuous nonlinearity $$displaylines{ -Delta u = f(uH(u-mu quadhbox{in } Omega, cr u =h quad hbox{on }partial Omega, }$$ where $H$ is the Heaviside unit function, $f,h$ are given functions and $mu$ is a positive real parameter. The domain $Omega$ is the unit ball in $mathbb{R}^n$ with $ngeq 3$. We show the existence of a positive solution $u$ and a hypersurface separating the region where $-Delta u=0$ from the region where $-Delta u=f(u$. Our method relies on the implicit function theorem and bifurcation analysis.
Vasil'ev, V. I.; Kardashevsky, A. M.; Popov, V. V.; Prokopev, G. A.
2017-10-01
This article presents results of computational experiment carried out using a finite-difference method for solving the inverse Cauchy problem for a two-dimensional elliptic equation. The computational algorithm involves an iterative determination of the missing boundary condition from the override condition using the conjugate gradient method. The results of calculations are carried out on the examples with exact solutions as well as at specifying an additional condition with random errors are presented. Results showed a high efficiency of the iterative method of conjugate gradients for numerical solution
Ayuso Dios, Blanca
2013-10-30
We introduce and analyze two-level and multilevel preconditioners for a family of Interior Penalty (IP) discontinuous Galerkin (DG) discretizations of second order elliptic problems with large jumps in the diffusion coefficient. Our approach to IPDG-type methods is based on a splitting of the DG space into two components that are orthogonal in the energy inner product naturally induced by the methods. As a result, the methods and their analysis depend in a crucial way on the diffusion coefficient of the problem. The analysis of the proposed preconditioners is presented for both symmetric and non-symmetric IP schemes; dealing simultaneously with the jump in the diffusion coefficient and the non-nested character of the relevant discrete spaces presents additional difficulties in the analysis, which precludes a simple extension of existing results. However, we are able to establish robustness (with respect to the diffusion coefficient) and near-optimality (up to a logarithmic term depending on the mesh size) for both two-level and BPX-type preconditioners, by using a more refined Conjugate Gradient theory. Useful by-products of the analysis are the supporting results on the construction and analysis of simple, efficient and robust two-level and multilevel preconditioners for non-conforming Crouzeix-Raviart discretizations of elliptic problems with jump coefficients. Following the analysis, we present a sequence of detailed numerical results which verify the theory and illustrate the performance of the methods. © 2013 American Mathematical Society.
Ayuso Dios, Blanca; Holst, Michael; Zhu, Yunrong; Zikatanov, Ludmil
2013-01-01
We introduce and analyze two-level and multilevel preconditioners for a family of Interior Penalty (IP) discontinuous Galerkin (DG) discretizations of second order elliptic problems with large jumps in the diffusion coefficient. Our approach to IPDG-type methods is based on a splitting of the DG space into two components that are orthogonal in the energy inner product naturally induced by the methods. As a result, the methods and their analysis depend in a crucial way on the diffusion coefficient of the problem. The analysis of the proposed preconditioners is presented for both symmetric and non-symmetric IP schemes; dealing simultaneously with the jump in the diffusion coefficient and the non-nested character of the relevant discrete spaces presents additional difficulties in the analysis, which precludes a simple extension of existing results. However, we are able to establish robustness (with respect to the diffusion coefficient) and near-optimality (up to a logarithmic term depending on the mesh size) for both two-level and BPX-type preconditioners, by using a more refined Conjugate Gradient theory. Useful by-products of the analysis are the supporting results on the construction and analysis of simple, efficient and robust two-level and multilevel preconditioners for non-conforming Crouzeix-Raviart discretizations of elliptic problems with jump coefficients. Following the analysis, we present a sequence of detailed numerical results which verify the theory and illustrate the performance of the methods. © 2013 American Mathematical Society.
A LEVEL SET BASED SHAPE OPTIMIZATION METHOD FOR AN ELLIPTIC OBSTACLE PROBLEM
Burger, Martin
2011-04-01
In this paper, we construct a level set method for an elliptic obstacle problem, which can be reformulated as a shape optimization problem. We provide a detailed shape sensitivity analysis for this reformulation and a stability result for the shape Hessian at the optimal shape. Using the shape sensitivities, we construct a geometric gradient flow, which can be realized in the context of level set methods. We prove the convergence of the gradient flow to an optimal shape and provide a complete analysis of the level set method in terms of viscosity solutions. To our knowledge this is the first complete analysis of a level set method for a nonlocal shape optimization problem. Finally, we discuss the implementation of the methods and illustrate its behavior through several computational experiments. © 2011 World Scientific Publishing Company.
Butuzov, V. F.
2017-06-01
We construct and justify asymptotic expansions of solutions of a singularly perturbed elliptic problem with Dirichlet boundary conditions in the case when the corresponding degenerate equation has a triple root. In contrast to the case of a simple root, the expansion is with respect to fractional (non-integral) powers of the small parameter, the boundary-layer variables have another scaling, and the boundary layer has three zones. This gives rise to essential modifications in the algorithm for constructing the boundary functions. Solutions of the elliptic problem are stationary solutions of the corresponding parabolic problem. We prove that such a stationary solution is asymptotically stable and find its global domain of attraction.
Zhang, Ye; Gong, Rongfang; Cheng, Xiaoliang; Gulliksson, Mårten
2018-06-01
This study considers the inverse source problem for elliptic partial differential equations with both Dirichlet and Neumann boundary data. The unknown source term is to be determined by additional boundary conditions. Unlike the existing methods found in the literature, which usually employ the first-order in time gradient-like system (such as the steepest descent methods) for numerically solving the regularized optimization problem with a fixed regularization parameter, we propose a novel method with a second-order in time dissipative gradient-like system and a dynamical selected regularization parameter. A damped symplectic scheme is proposed for the numerical solution. Theoretical analysis is given for both the continuous model and the numerical algorithm. Several numerical examples are provided to show the robustness of the proposed algorithm.
The Dirichlet problem with L2-boundary data for elliptic linear equations
Chabrowski, Jan
1991-01-01
The Dirichlet problem has a very long history in mathematics and its importance in partial differential equations, harmonic analysis, potential theory and the applied sciences is well-known. In the last decade the Dirichlet problem with L2-boundary data has attracted the attention of several mathematicians. The significant features of this recent research are the use of weighted Sobolev spaces, existence results for elliptic equations under very weak regularity assumptions on coefficients, energy estimates involving L2-norm of a boundary data and the construction of a space larger than the usual Sobolev space W1,2 such that every L2-function on the boundary of a given set is the trace of a suitable element of this space. The book gives a concise account of main aspects of these recent developments and is intended for researchers and graduate students. Some basic knowledge of Sobolev spaces and measure theory is required.
Multigrid method applied to the solution of an elliptic, generalized eigenvalue problem
Energy Technology Data Exchange (ETDEWEB)
Alchalabi, R.M. [BOC Group, Murray Hill, NJ (United States); Turinsky, P.J. [North Carolina State Univ., Raleigh, NC (United States)
1996-12-31
The work presented in this paper is concerned with the development of an efficient MG algorithm for the solution of an elliptic, generalized eigenvalue problem. The application is specifically applied to the multigroup neutron diffusion equation which is discretized by utilizing the Nodal Expansion Method (NEM). The underlying relaxation method is the Power Method, also known as the (Outer-Inner Method). The inner iterations are completed using Multi-color Line SOR, and the outer iterations are accelerated using Chebyshev Semi-iterative Method. Furthermore, the MG algorithm utilizes the consistent homogenization concept to construct the restriction operator, and a form function as a prolongation operator. The MG algorithm was integrated into the reactor neutronic analysis code NESTLE, and numerical results were obtained from solving production type benchmark problems.
Directory of Open Access Journals (Sweden)
Tomasz S. Zabawa
2005-01-01
Full Text Available The Dirichlet problem for an infinite weakly coupled system of semilinear differential-functional equations of elliptic type is considered. It is shown the existence of solutions to this problem. The result is based on Chaplygin's method of lower and upper functions.
International Nuclear Information System (INIS)
Casas, E.; Troeltzsch, F.
1999-01-01
In this paper we are concerned with some optimal control problems governed by semilinear elliptic equations. The case of a boundary control is studied. We consider pointwise constraints on the control and a finite number of equality and inequality constraints on the state. The goal is to derive first- and second-order optimality conditions satisfied by locally optimal solutions of the problem
Collier, Nathan; Dalcin, Lisandro; Calo, Victor M.
2014-01-01
SUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits.
Elliptic boundary value problems with fractional regularity data the first order approach
Amenta, Alex
2018-01-01
In this monograph the authors study the well-posedness of boundary value problems of Dirichlet and Neumann type for elliptic systems on the upper half-space with coefficients independent of the transversal variable and with boundary data in fractional Hardy-Sobolev and Besov spaces. The authors use the so-called "first order approach" which uses minimal assumptions on the coefficients and thus allows for complex coefficients and for systems of equations. This self-contained exposition of the first order approach offers new results with detailed proofs in a clear and accessible way and will become a valuable reference for graduate students and researchers working in partial differential equations and harmonic analysis.
Existence of Solutions for Degenerate Elliptic Problems in Weighted Sobolev Space
Directory of Open Access Journals (Sweden)
Lili Dai
2015-01-01
Full Text Available This paper is devoted to the study of the existence of solutions to a general elliptic problem Au+g(x,u,∇u=f-divF, with f∈L1(Ω and F∈∏i=1NLp'(Ω,ωi*, where A is a Leray-Lions operator from a weighted Sobolev space into its dual and g(x,s,ξ is a nonlinear term satisfying gx,s,ξsgn(s≥ρ∑i=1Nωi|ξi|p, |s|≥h>0, and a growth condition with respect to ξ. Here, ωi, ωi* are weight functions that will be defined in the Preliminaries.
Collier, Nathan
2014-09-17
SUMMARY: We compare the computational efficiency of isogeometric Galerkin and collocation methods for partial differential equations in the asymptotic regime. We define a metric to identify when numerical experiments have reached this regime. We then apply these ideas to analyze the performance of different isogeometric discretizations, which encompass C0 finite element spaces and higher-continuous spaces. We derive convergence and cost estimates in terms of the total number of degrees of freedom and then perform an asymptotic numerical comparison of the efficiency of these methods applied to an elliptic problem. These estimates are derived assuming that the underlying solution is smooth, the full Gauss quadrature is used in each non-zero knot span and the numerical solution of the discrete system is found using a direct multi-frontal solver. We conclude that under the assumptions detailed in this paper, higher-continuous basis functions provide marginal benefits.
Gazzola, Filippo; Sweers, Guido
2010-01-01
This monograph covers higher order linear and nonlinear elliptic boundary value problems in bounded domains, mainly with the biharmonic or poly-harmonic operator as leading principal part. Underlying models and, in particular, the role of different boundary conditions are explained in detail. As for linear problems, after a brief summary of the existence theory and Lp and Schauder estimates, the focus is on positivity or - since, in contrast to second order equations, a general form of a comparison principle does not exist - on “near positivity.” The required kernel estimates are also presented in detail. As for nonlinear problems, several techniques well-known from second order equations cannot be utilized and have to be replaced by new and different methods. Subcritical, critical and supercritical nonlinearities are discussed and various existence and nonexistence results are proved. The interplay with the positivity topic from the ﬁrst part is emphasized and, moreover, a far-reaching Gidas-Ni-Nirenbe...
Directory of Open Access Journals (Sweden)
Chen Jie-Dong
2016-01-01
Full Text Available In this paper, we investigate the local fractional Laplace equation in the steady heat-conduction problem. The solutions involving the non-differentiable graph are obtained by using the characteristic equation method (CEM via local fractional derivative. The obtained results are given to present the accuracy of the technology to solve the steady heat-conduction in fractal media.
Directory of Open Access Journals (Sweden)
Samurović S.
2007-01-01
Full Text Available In this paper the problem of the phenomenological modelling of elliptical galaxies using various available observational data is presented. Recently, Tortora, Cardona and Piedipalumbo (2007 suggested a double power law expression for the global cumulative mass-to-light ratio of elliptical galaxies. We tested their expression on a sample of ellipticals for which we have the estimates of the mass-to-light ratio beyond ~ 3 effective radii, a region where dark matter is expected to play an important dynamical role. We found that, for all the galaxies in our sample, we have α + β > 0, but that this does not necessarily mean a high dark matter content. The galaxies with higher mass (and higher dark matter content also have higher value of α+β. It was also shown that there is an indication that the galaxies with higher value of the effective radius also have higher dark matter content. .
Multilevel Methods for Elliptic Problems with Highly Varying Coefficients on Nonaligned Coarse Grids
Energy Technology Data Exchange (ETDEWEB)
Scheichl, Robert [Univ. of Bath (United Kingdom). Dept. of Mathematical Sciences; Vassilevski, Panayot S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zikatanov, Ludmil T. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Mathematics
2012-06-21
We generalize the analysis of classical multigrid and two-level overlapping Schwarz methods for 2nd order elliptic boundary value problems to problems with large discontinuities in the coefficients that are not resolved by the coarse grids or the subdomain partition. The theoretical results provide a recipe for designing hierarchies of standard piecewise linear coarse spaces such that the multigrid convergence rate and the condition number of the Schwarz preconditioned system do not depend on the coefficient variation or on any mesh parameters. One assumption we have to make is that the coarse grids are sufficiently fine in the vicinity of cross points or where regions with large diffusion coefficients are separated by a narrow region where the coefficient is small. We do not need to align them with possible discontinuities in the coefficients. The proofs make use of novel stable splittings based on weighted quasi-interpolants and weighted Poincaré-type inequalities. Finally, numerical experiments are included that illustrate the sharpness of the theoretical bounds and the necessity of the technical assumptions.
Steady convection in MHD Benard problem with Hall effects
Directory of Open Access Journals (Sweden)
Lidia Palese
2017-10-01
Full Text Available In this paper we apply some variants of the classical energy method to study the nonlinear Lyapunov stability of the thermodiffusive equilibrium for a viscous thermoelectroconducting fully ionized fluid in a horizontal layer heated from below. The classical L^2 norm, too weak to highlight some stabilizing or unstabilizing effects, can be used to dominate the nonlinear terms. A more fine Lyapunov function is obtained by reformulating the initial perturbation evolution problem, in terms of some independent scalar fields. In such a way, if the principle of exchange of stabilities holds, we obtain the coincidence of linear and nonlinear stability bounds.
1974-09-07
ellipticity filter. The source waveforms are recreated by an inverse transform of those complex ampli- tudes associated with the same azimuth...terms of the three complex data points and the ellipticity. Having solved the equations for all frequency bins, the inverse transform of...Transform of those complex amplitudes associated with Source 1, yielding the signal a (t). Similarly, take the inverse Transform of all
Solving fractal steady heat-transfer problems with the local fractional Sumudu transform
Directory of Open Access Journals (Sweden)
Wang Yi
2015-01-01
Full Text Available In this paper the linear oscillator problem in fractal steady heat-transfer is studied within the local fractional theory. In particular, the local fractional Sumudu transform (LFST will be used to solve both the homogeneous and the non-homogeneous local fractional oscillator equations (LFOEs under fractal steady heat-transfer. It will be shown that the obtained non-differentiable solutions characterize the fractal phenomena with and without the driving force in fractal steady heat transfer at low excess temperatures.
Directory of Open Access Journals (Sweden)
A. Narayan
2013-01-01
Full Text Available The oblateness and the photogravitational effects of both the primaries on the location and the stability of the triangular equilibrium points in the elliptical restricted three-body problem have been discussed. The stability of the triangular points under the photogravitational and oblateness effects of both the primaries around the binary systems Achird, Lyeten, Alpha Cen-AB, Kruger 60, and Xi-Bootis, has been studied using simulation techniques by drawing different curves of zero velocity.
Czech Academy of Sciences Publication Activity Database
Axelsson, Owe; Karátson, J.; Kovács, B.
2014-01-01
Roč. 52, č. 6 (2014), s. 2957-2976 ISSN 0036-1429 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : streamline diffusion finite element method * solving convection-dominated elliptic problems * convergence is robust Subject RIV: BA - General Mathematics Impact factor: 1.788, year: 2014 http://epubs.siam.org/doi/abs/10.1137/130940268
On the curve of critical exponents for nonlinear elliptic problems in the case of a zero mass
Il'yasov, Ya. Sh.
2017-03-01
For semilinear elliptic equations -Δ u = λ| u| p-2 u-| u| q-2 u, boundary value problems in bounded and unbounded domains are considered. In the plane of exponents p × q, the so-called curves of critical exponents are defined that divide this plane into domains with qualitatively different properties of the boundary value problems and the corresponding parabolic equations. New solvability conditions for boundary value problems, conditions for the stability and instability of stationary solutions, and conditions for the existence of global solutions to parabolic equations are found.
A Multigrid Algorithm for an Elliptic Problem with a Perturbed Boundary Condition
Bonito, Andrea; Pasciak, Joseph E.
2013-01-01
We discuss the preconditioning of systems coupling elliptic operators in Ω⊂Rd, d=2,3, with elliptic operators defined on hypersurfaces. These systems arise naturally when physical phenomena are affected by geometric boundary forces, such as the evolution of liquid drops subject to surface tension. The resulting operators are sums of interior and boundary terms weighted by parameters. We investigate the behavior of multigrid algorithms suited to this context and demonstrate numerical results which suggest uniform preconditioning bounds that are level and parameter independent.
Directory of Open Access Journals (Sweden)
Jilian Wu
2013-01-01
Full Text Available We discuss several stabilized finite element methods, which are penalty, regular, multiscale enrichment, and local Gauss integration method, for the steady incompressible flow problem with damping based on the lowest equal-order finite element space pair. Then we give the numerical comparisons between them in three numerical examples which show that the local Gauss integration method has good stability, efficiency, and accuracy properties and it is better than the others for the steady incompressible flow problem with damping on the whole. However, to our surprise, the regular method spends less CPU-time and has better accuracy properties by using Crout solver.
International Nuclear Information System (INIS)
Kopriva, D.A.
1982-01-01
A numerical scheme has been developed to solve the quasilinear form of the transonic stream function equation. The method is applied to compute steady two-dimensional axisymmetric solar wind-type problems. A single, perfect, non-dissipative, homentropic and polytropic gas-dynamics is assumed. The four equations governing mass and momentum conservation are reduced to a single nonlinear second order partial differential equation for the stream function. Bernoulli's equation is used to obtain a nonlinear algebraic relation for the density in terms of stream function derivatives. The vorticity includes the effects of azimuthal rotation and Bernoulli's function and is determined from quantities specified on boundaries. The approach is efficient. The number of equations and independent variables has been reduced and a rapid relaxation technique developed for the transonic full potential equation is used. Second order accurate central differences are used in elliptic regions. In hyperbolic regions a dissipation term motivated by the rotated differencing scheme of Jameson is added for stability. A successive-line-overrelaxation technique also introduced by Jameson is used to solve the equations. The nonlinear equation for the density is a double valued function of the stream function derivatives. The velocities are extrapolated from upwind points to determine the proper branch and Newton's method is used to iteratively compute the density. This allows accurate solutions with few grid points
Kaltenbacher, Barbara; Klassen, Andrej
2018-05-01
In this paper we provide a convergence analysis of some variational methods alternative to the classical Tikhonov regularization, namely Ivanov regularization (also called the method of quasi solutions) with some versions of the discrepancy principle for choosing the regularization parameter, and Morozov regularization (also called the method of the residuals). After motivating nonequivalence with Tikhonov regularization by means of an example, we prove well-definedness of the Ivanov and the Morozov method, convergence in the sense of regularization, as well as convergence rates under variational source conditions. Finally, we apply these results to some linear and nonlinear parameter identification problems in elliptic boundary value problems.
International Nuclear Information System (INIS)
Nazarov, S A
1999-01-01
We describe a wide class of boundary-value problems for which the application of elliptic theory can be reduced to elementary algebraic operations and which is characterized by the following polynomial property: the sesquilinear form corresponding to the problem degenerates only on some finite-dimensional linear space P of vector polynomials. Under this condition the boundary-value problem is elliptic, and its kernel and cokernel can be expressed in terms of P. For domains with piecewise-smooth boundary or infinite ends (conic, cylindrical, or periodic), we also present fragments of asymptotic formulae for the solutions, give specific versions of general conditional theorems on the Fredholm property (in particular, by modifying the ordinary weighted norms), and compute the index of the operator corresponding to the boundary-value problem. The polynomial property is also helpful for asymptotic analysis of boundary-value problems in thin domains and junctions of such domains. Namely, simple manipulations with P permit one to find the size of the system obtained by dimension reduction as well as the orders of the differential operators occurring in that system and provide complete information on the boundary layer structure. The results are illustrated by examples from elasticity and hydromechanics
Directory of Open Access Journals (Sweden)
Qiong Liu
2012-01-01
Full Text Available We study the following fourth-order elliptic equations: Δ2+Δ=(,,∈Ω,=Δ=0,∈Ω, where Ω⊂ℝ is a bounded domain with smooth boundary Ω and (, is asymptotically linear with respect to at infinity. Using an equivalent version of Cerami's condition and the symmetric mountain pass lemma, we obtain the existence of multiple solutions for the equations.
Non-steady state modeling of wheel-rail contact problem
Guiral, A.; Alonso, A.; Baeza González, Luis Miguel; Giménez, J.G.
2013-01-01
Among all the algorithms to solve the wheel–rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it pre...
Barton, Ariel
2016-01-01
This monograph presents a comprehensive treatment of second order divergence form elliptic operators with bounded measurable t-independent coefficients in spaces of fractional smoothness, in Besov and weighted L^p classes. The authors establish: (1) Mapping properties for the double and single layer potentials, as well as the Newton potential; (2) Extrapolation-type solvability results: the fact that solvability of the Dirichlet or Neumann boundary value problem at any given L^p space automatically assures their solvability in an extended range of Besov spaces; (3) Well-posedness for the non-homogeneous boundary value problems. In particular, the authors prove well-posedness of the non-homogeneous Dirichlet problem with data in Besov spaces for operators with real, not necessarily symmetric, coefficients.
Sun, Huafei; Darmofal, David L.
2014-12-01
In this paper we propose a new high-order solution framework for interface problems on non-interface-conforming meshes. The framework consists of a discontinuous Galerkin (DG) discretization, a simplex cut-cell technique, and an output-based adaptive scheme. We first present a DG discretization with a dual-consistent output evaluation for elliptic interface problems on interface-conforming meshes, and then extend the method to handle multi-physics interface problems, in particular conjugate heat transfer (CHT) problems. The method is then applied to non-interface-conforming meshes using a cut-cell technique, where the interface definition is completely separate from the mesh generation process. No assumption is made on the interface shape (other than Lipschitz continuity). We then equip our strategy with an output-based adaptive scheme for an accurate output prediction. Through numerical examples, we demonstrate high-order convergence for elliptic interface problems and CHT problems with both smooth and non-smooth interface shapes.
Composing problem solvers for simulation experimentation: a case study on steady state estimation.
Leye, Stefan; Ewald, Roland; Uhrmacher, Adelinde M
2014-01-01
Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models.
Some problems in steady-state thermal conductivity with variable heat transfer rate
International Nuclear Information System (INIS)
Malov, Yu.I.; Martinson, L.K.; Pavlov, K.B.
1975-01-01
Some boundary-value problems of steady heat conductivity with an alternating heat exchange coefficient have been solved for a cylindrical region. The solutions have been performed as expansion in series with respect to eigenfunctions with the coefficients consistent with infinite systems of linear algebraic equations. A reduction method has been substantiated for those systems. The paper presents results of calculation of the temperature distribution inside the infinite cylinder with concrete tasks of heat exchange coefficient variations on the cylinder surface
Quasilinear infiltration from an elliptical cavity
Kuhlman, Kristopher L.; Warrick, Arthur W.
2008-08-01
We develop analytic solutions to the linearized steady-state Richards equation for head and total flowrate due to an elliptic cylinder cavity with a specified pressure head boundary condition. They are generalizations of the circular cylinder cavity solutions of Philip [Philip JR. Steady infiltration from circular cylindrical cavities. Soil Sci Soc Am J 1984;48:270-8]. The circular and strip sources are limiting cases of the elliptical cylinder solution, derived for both horizontally- and vertically-aligned ellipses. We give approximate rational polynomial expressions for total flowrate from an elliptical cylinder over a range of sizes and shapes. The exact elliptical solution is in terms of Mathieu functions, which themselves are generalizations of and computed from trigonometric and Bessel functions. The required Mathieu functions are computed from a matrix eigenvector problem, a modern approach that is straightforward to implement using available linear algebra libraries. Although less efficient and potentially less accurate than the iterative continued fraction approach, the matrix approach is simpler to understand and implement and is valid over a wider parameter range.
Energy Technology Data Exchange (ETDEWEB)
Bloechle, B.; Manteuffel, T.; McCormick, S.; Starke, G.
1996-12-31
Many physical phenomena are modeled as scalar second-order elliptic boundary value problems with discontinuous coefficients. The first-order system least-squares (FOSLS) methodology is an alternative to standard mixed finite element methods for such problems. The occurrence of singularities at interface corners and cross-points requires that care be taken when implementing the least-squares finite element method in the FOSLS context. We introduce two methods of handling the challenges resulting from singularities. The first method is based on a weighted least-squares functional and results in non-conforming finite elements. The second method is based on the use of singular basis functions and results in conforming finite elements. We also share numerical results comparing the two approaches.
Li, Kenli; Zou, Shuting; Xv, Jin
2008-01-01
Elliptic curve cryptographic algorithms convert input data to unrecognizable encryption and the unrecognizable data back again into its original decrypted form. The security of this form of encryption hinges on the enormous difficulty that is required to solve the elliptic curve discrete logarithm problem (ECDLP), especially over GF(2(n)), n in Z+. This paper describes an effective method to find solutions to the ECDLP by means of a molecular computer. We propose that this research accomplishment would represent a breakthrough for applied biological computation and this paper demonstrates that in principle this is possible. Three DNA-based algorithms: a parallel adder, a parallel multiplier, and a parallel inverse over GF(2(n)) are described. The biological operation time of all of these algorithms is polynomial with respect to n. Considering this analysis, cryptography using a public key might be less secure. In this respect, a principal contribution of this paper is to provide enhanced evidence of the potential of molecular computing to tackle such ambitious computations.
Energy Technology Data Exchange (ETDEWEB)
Bazalii, B V; Degtyarev, S P [Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk (Ukraine)
2013-07-31
An elliptic boundary-value problem for second-order equations with nonnegative characteristic form is investigated in the situation when there is a weak degeneracy on the boundary of the domain. A priori estimates are obtained for solutions and the problem is proved to be solvable in some weighted Hölder spaces. Bibliography: 18 titles.
Non-steady state modelling of wheel-rail contact problem
Guiral, A.; Alonso, A.; Baeza, L.; Giménez, J. G.
2013-01-01
Among all the algorithms to solve the wheel-rail contact problem, Kalker's FastSim has become the most useful computation tool since it combines a low computational cost and enough precision for most of the typical railway dynamics problems. However, some types of dynamic problems require the use of a non-steady state analysis. Alonso and Giménez developed a non-stationary method based on FastSim, which provides both, sufficiently accurate results and a low computational cost. However, it presents some limitations; the method is developed for one time-dependent creepage and its accuracy for varying normal forces has not been checked. This article presents the required changes in order to deal with both problems and compares its results with those given by Kalker's Variational Method for rolling contact.
Symmetry in an elliptic problem and the blow-up set of a quasilinear heat equation
Energy Technology Data Exchange (ETDEWEB)
Cortazar, C.; Elgueta, M. [Universidad Catolica, Santiago (Chile); Felmer, P. [Universidad de Chile, Santiago (Chile)
1996-12-31
We will consider in this paper a semilinear elliptic equation {triangle}u + f(u) = 0 in {Omega}, (1.5) where the function f is locally Lipschitz in (0,{infinity}) and continuous in (0,{infinity}). We study symmetry properties of nonnegative solutions of this equation in two different situations: first we assume {Omega} = IR{sup N}, and second we consider {Omega} {ne} IR{sup N} and we provide (1.5) with overdetermined boundary conditions. Next we describe our results in the first case, that is, when {Omega} = IR{sup N}. We will consider the following hypothesis on the nonlinear function f (F) f(0) {le} 0, f continuous in (0,+{infinity}), locally Lipschitz in (0,+{infinity}) and there exists {alpha} > 0 so that f is strictly decreasing in [0,{alpha}]. We note that the support of a solution of (1.5) is not known a priori and so we have in fact a free boundary involved. Our goal is to determine the shape of this support and the symmetry properties of the solution.
Classical Lie Point Symmetry Analysis of a Steady Nonlinear One-Dimensional Fin Problem
Directory of Open Access Journals (Sweden)
R. J. Moitsheki
2012-01-01
Full Text Available We consider the one-dimensional steady fin problem with the Dirichlet boundary condition at one end and the Neumann boundary condition at the other. Both the thermal conductivity and the heat transfer coefficient are given as arbitrary functions of temperature. We perform preliminary group classification to determine forms of the arbitrary functions appearing in the considered equation for which the principal Lie algebra is extended. Some invariant solutions are constructed. The effects of thermogeometric fin parameter and the exponent on temperature are studied. Also, the fin efficiency is analyzed.
International Nuclear Information System (INIS)
Diaz, J. I.; Galiano, G.; Padial, J. F.
1999-01-01
We study the uniqueness of solutions of a semilinear elliptic problem obtained from an inverse formulation when the nonlinear terms of the equation are prescribed in a general class of real functions. The inverse problem arises in the modeling of the magnetic confinement of a plasma in a Stellarator device. The uniqueness proof relies on an L ∞ -estimate on the solution of an auxiliary nonlocal problem formulated in terms of the relative rearrangement of a datum with respect to the solution
B. Kaynar; S.I. Birbil (Ilker); J.B.G. Frenk (Hans)
2007-01-01
textabstractIn this paper portfolio problems with linear loss functions and multivariate elliptical distributed returns are studied. We consider two risk measures, Value-at-Risk and Conditional-Value-at-Risk, and two types of decision makers, risk neutral and risk averse. For Value-at-Risk, we show
On a variational principle for shape optimization and elliptic free boundary problems
Directory of Open Access Journals (Sweden)
Raúl B. González De Paz
2009-02-01
Full Text Available A variational principle for several free boundary value problems using a relaxation approach is presented. The relaxed Energy functional is concave and it is defined on a convex set, so that the minimizing points are characteristic functions of sets. As a consequence of the first order optimality conditions, it is shown that the corresponding sets are domains bounded by free boundaries, so that the equivalence of the solution of the relaxed problem with the solution of several free boundary value problem is proved. Keywords: Calculus of variations, optimization, free boundary problems.
Vacuum system problems of EBT: a steady-state fusion experiment
International Nuclear Information System (INIS)
Livesey, R.L.
1981-01-01
Many of the vacuum problems faced by EBT will soon be shared by other plasma devices as high-power microwave systems and long pulse lengths become more common. The solutions used on EBT (such as the raised lip with elastomer seal) are not unique; however, experience has shown that microwave-compatible designs must be carefully thought out. All details of the vacuum must be carefully thought out. All details of the vacuum must be carefully screened in advance to insure that microwaves do not leak into pumps or diagnostics where they can cause major damage. Sputter coating, which even now is noticeably present in most pulsed plasma systems, becomes much worse as systems approach steady state. And finally, radiation degradation of components which is presently a minor problem will become significant on high-power microwave-fed devices, such as EBT-P
Adaptive solution of some steady-state fluid-structure interaction problems
International Nuclear Information System (INIS)
Etienne, S.; Pelletier, D.
2003-01-01
This paper presents a general integrated and coupled formulation for modeling the steady-state interaction of a viscous incompressible flow with an elastic structure undergoing large displacements (geometric non-linearities). This constitutes an initial step towards developing a sensitivity analysis formulation for this class of problems. The formulation uses velocity and pressures as unknowns in a flow domain and displacements in the structural components. An interface formulation is presented that leads to clear and simple finite element implementation of the equilibrium conditions at the fluid-solid interface. Issues of error estimation and mesh adaptation are discussed. The adaptive formulation is verified on a problem with a closed form solution. It is then applied to a sample case for which the structure undergoes large displacements induced by the flow. (author)
Continuous Dependence on Modeling in the Cauchy Problem for Nonlinear Elliptic Equations.
1987-04-01
problema di Cauchy per le equazione di tipo ellitico, Ann. Mat. Pura Appl., 46 (1958), pp. 131-153 [18] P. W. Schaefer, On the Cauchy problem for an...Continued) PP 438 PP 448 Fletcher, Jean W. Supply Problems in the Naval Reserve, Cymrot, Donald J., Military Retiremnt and Social Security: A 14 pp
Variational methods for boundary value problems for systems of elliptic equations
Lavrent'ev, M A
2012-01-01
Famous monograph by a distinguished mathematician presents an innovative approach to classical boundary value problems. The treatment employs the basic scheme first suggested by Hilbert and developed by Tonnelli. 1963 edition.
A dimension decomposition approach based on iterative observer design for an elliptic Cauchy problem
Majeed, Muhammad Usman
2015-07-13
A state observer inspired iterative algorithm is presented to solve boundary estimation problem for Laplace equation using one of the space variables as a time-like variable. Three dimensional domain with two congruent parallel surfaces is considered. Problem is set up in cartesian co-ordinates and Laplace equation is re-written as a first order state equation with state operator matrix A and measurements are provided on the Cauchy data surface with measurement operator C. Conditions for the existence of strongly continuous semigroup generated by A are studied. Observability conditions for pair (C, A) are provided in infinite dimensional setting. In this given setting, special observability result obtained allows to decompose three dimensional problem into a set of independent two dimensional sub-problems over rectangular cross-sections. Numerical simulation results are provided.
A dimension decomposition approach based on iterative observer design for an elliptic Cauchy problem
Majeed, Muhammad Usman; Laleg-Kirati, Taous-Meriem
2015-01-01
A state observer inspired iterative algorithm is presented to solve boundary estimation problem for Laplace equation using one of the space variables as a time-like variable. Three dimensional domain with two congruent parallel surfaces
A LEVEL SET BASED SHAPE OPTIMIZATION METHOD FOR AN ELLIPTIC OBSTACLE PROBLEM
Burger, Martin; Matevosyan, Norayr; Wolfram, Marie-Therese
2011-01-01
analysis of the level set method in terms of viscosity solutions. To our knowledge this is the first complete analysis of a level set method for a nonlocal shape optimization problem. Finally, we discuss the implementation of the methods and illustrate its
Uniqueness in some higher order elliptic boundary value problems in n dimensional domains
Directory of Open Access Journals (Sweden)
C.-P. Danet
2011-07-01
Full Text Available We develop maximum principles for several P functions which are defined on solutions to equations of fourth and sixth order (including a equation which arises in plate theory and bending of cylindrical shells. As a consequence, we obtain uniqueness results for fourth and sixth order boundary value problems in arbitrary n dimensional domains.
Strongly nonlinear nonhomogeneous elliptic unilateral problems with L^1 data and no sign conditions
Directory of Open Access Journals (Sweden)
Elhoussine Azroul
2012-05-01
Full Text Available In this article, we prove the existence of solutions to unilateral problems involving nonlinear operators of the form: $$ Au+H(x,u,abla u=f $$ where $A$ is a Leray Lions operator from $W_0^{1,p(x}(Omega$ into its dual $W^{-1,p'(x}(Omega$ and $H(x,s,xi$ is the nonlinear term satisfying some growth condition but no sign condition. The right hand side $f$ belong to $L^1(Omega$.
Ferrari, Fabio; Lavagna, Michèle
2018-06-01
The design of formations of spacecraft in a three-body environment represents one of the most promising challenges for future space missions. Two or more cooperating spacecraft can greatly answer some very complex mission goals, not achievable by a single spacecraft. The dynamical properties of a low acceleration environment such as the vicinity of libration points associated to a three-body system, can be effectively exploited to design spacecraft configurations able of satisfying tight relative position and velocity requirements. This work studies the evolution of an uncontrolled formation orbiting in the proximity of periodic orbits about collinear libration points under the Circular and Elliptic Restricted Three-Body Problems. A three spacecraft triangularly-shaped formation is assumed as a representative geometry to be investigated. The study identifies initial configurations that provide good performance in terms of formation keeping, and investigates key parameters that control the relative dynamics between the spacecraft within the three-body system. Formation keeping performance is quantified by monitoring shape and size changes of the triangular formation. The analysis has been performed under five degrees of freedom to define the geometry, the orientation and the location of the triangle in the synodic rotating frame.
Annotations on the virtual element method for second-order elliptic problems
Energy Technology Data Exchange (ETDEWEB)
Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-01-03
This document contains working annotations on the Virtual Element Method (VEM) for the approximate solution of diffusion problems with variable coefficients. To read this document you are assumed to have familiarity with concepts from the numerical discretization of Partial Differential Equations (PDEs) and, in particular, the Finite Element Method (FEM). This document is not an introduction to the FEM, for which many textbooks (also free on the internet) are available. Eventually, this document is intended to evolve into a tutorial introduction to the VEM (but this is really a long-term goal).
A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids
Wheeler, Mary F.
2011-01-01
In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter allows for local flux elimination giving a cell-centered system for the scalar variable. We study two versions of the method: with a symmetric quadrature rule on smooth grids and a non-symmetric quadrature rule on rough grids. Theoretical and numerical results demonstrate first order convergence for problems with full-tensor coefficients. Second order superconvergence is observed on smooth grids. © 2011 Published by Elsevier Ltd.
Applications of an implicit HLLC-based Godunov solver for steady state hypersonic problems
International Nuclear Information System (INIS)
Link, R.A.; Sharman, B.
2005-01-01
Over the past few years, there has been considerable activity developing research vehicles for studying hypersonic propulsion. Successful launches of the Australian Hyshot and the US Hyper-X vehicles have added a significant amount of flight test data to a field that had previously been limited to numerical simulation. A number of approaches have been proposed for hypersonics propulsion, including attached detonation wave, supersonics combustion, and shock induced combustion. Due to the high cost of developing flight hardware, CFD simulations will continue to be a key tool for investigating the feasibility of these concepts. Capturing the interactions of the vehicle body with the boundary layer and chemical reactions pushes the limits of available modelling tools and computer hardware. Explicit formulations are extremely slow in converging to a steady state; therefore, the use of implicit methods are warranted. An implicit LLC-based Godunov solver has been developed at Martec in collaboration with DRDC Valcartier to solve hypersonic problems with a minimum of CPU time and RAM storage. The solver, Chinook Implicit, is based upon the implicit formulation adopted by Batten et. al. The solver is based on a point implicit Gauss-Seidel method for unstructured grids, and includes fully implicit boundary conditions. Preliminary results for small and large scale inviscid hypersonics problems will be presented. (author)
Coco, Armando; Russo, Giovanni
2018-05-01
In this paper we propose a second-order accurate numerical method to solve elliptic problems with discontinuous coefficients (with general non-homogeneous jumps in the solution and its gradient) in 2D and 3D. The method consists of a finite-difference method on a Cartesian grid in which complex geometries (boundaries and interfaces) are embedded, and is second order accurate in the solution and the gradient itself. In order to avoid the drop in accuracy caused by the discontinuity of the coefficients across the interface, two numerical values are assigned on grid points that are close to the interface: a real value, that represents the numerical solution on that grid point, and a ghost value, that represents the numerical solution extrapolated from the other side of the interface, obtained by enforcing the assigned non-homogeneous jump conditions on the solution and its flux. The method is also extended to the case of matrix coefficient. The linear system arising from the discretization is solved by an efficient multigrid approach. Unlike the 1D case, grid points are not necessarily aligned with the normal derivative and therefore suitable stencils must be chosen to discretize interface conditions in order to achieve second order accuracy in the solution and its gradient. A proper treatment of the interface conditions will allow the multigrid to attain the optimal convergence factor, comparable with the one obtained by Local Fourier Analysis for rectangular domains. The method is robust enough to handle large jump in the coefficients: order of accuracy, monotonicity of the errors and good convergence factor are maintained by the scheme.
Elliptic curves for applications (Tutorial)
Lange, T.; Bernstein, D.J.; Chatterjee, S.
2011-01-01
More than 25 years ago, elliptic curves over finite fields were suggested as a group in which the Discrete Logarithm Problem (DLP) can be hard. Since then many researchers have scrutinized the security of the DLP on elliptic curves with the result that for suitably chosen curves only exponential
Elliptic boundary value problems
Maz'ya, V G; Plamenevskii, B A; Stupyali, L; Plamenevskii, B A
1984-01-01
The papers in this volume have been selected, translated, and edited from publications not otherwise translated into English under the auspices of the AMS-ASL-IMS Committee on Translations from Russian and Other Foreign Languages.
Garcia-Botella, Angel; Fernandez-Balbuena, Antonio Alvarez; Bernabeu, Eusebio
2006-10-10
Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used to produce optical devices, including the use of reflective and refractive components or inverse engineering techniques. However, many of these optical components are based on translational symmetries, rotational symmetries, or free-form surfaces. We study a new family of nonimaging concentrators called elliptical concentrators. This new family of concentrators provides new capabilities and can have different configurations, either homofocal or nonhomofocal. Translational and rotational concentrators can be considered as particular cases of elliptical concentrators.
2012-09-03
27] introduced a new smoothness indicator, which removed the slight post- shock oscillations and improved the convergence . A Newton- iteration method... Gauss - Seidel algorithm for steady Euler equation on unstructured grids, Numer. Math. Theor. Meth. Appl., Vol. 1, pp. 92–112, (2008). [14] G.-S. Jiang...was adopted to solve the steady two dimensional Euler equations [10, 11, 13]. The matrix-free Squared Preconditioning is applied to a Newton iteration
Institute of Scientific and Technical Information of China (English)
龙晓瀚; 毕春加
2005-01-01
In this paper, we prove the existence, uniqueness and uniform convergence of the solution of finite volume element method based on the P1 conforming element for non-selfadjoint and indefinite elliptic problems under minimal elliptic regularity assumption.
Feehan, Paul M. N.
2017-09-01
We prove existence of solutions to boundary value problems and obstacle problems for degenerate-elliptic, linear, second-order partial differential operators with partial Dirichlet boundary conditions using a new version of the Perron method. The elliptic operators considered have a degeneracy along a portion of the domain boundary which is similar to the degeneracy of a model linear operator identified by Daskalopoulos and Hamilton [9] in their study of the porous medium equation or the degeneracy of the Heston operator [21] in mathematical finance. Existence of a solution to the partial Dirichlet problem on a half-ball, where the operator becomes degenerate on the flat boundary and a Dirichlet condition is only imposed on the spherical boundary, provides the key additional ingredient required for our Perron method. Surprisingly, proving existence of a solution to this partial Dirichlet problem with ;mixed; boundary conditions on a half-ball is more challenging than one might expect. Due to the difficulty in developing a global Schauder estimate and due to compatibility conditions arising where the ;degenerate; and ;non-degenerate boundaries; touch, one cannot directly apply the continuity or approximate solution methods. However, in dimension two, there is a holomorphic map from the half-disk onto the infinite strip in the complex plane and one can extend this definition to higher dimensions to give a diffeomorphism from the half-ball onto the infinite ;slab;. The solution to the partial Dirichlet problem on the half-ball can thus be converted to a partial Dirichlet problem on the slab, albeit for an operator which now has exponentially growing coefficients. The required Schauder regularity theory and existence of a solution to the partial Dirichlet problem on the slab can nevertheless be obtained using previous work of the author and C. Pop [16]. Our Perron method relies on weak and strong maximum principles for degenerate-elliptic operators, concepts of
Steady-state bifurcations of the three-dimensional Kolmogorov problem
Directory of Open Access Journals (Sweden)
Zhi-Min Chen
2000-08-01
Full Text Available This paper studies the spatially periodic incompressible fluid motion in $mathbb R^3$ excited by the external force $k^2(sin kz, 0,0$ with $kgeq 2$ an integer. This driving force gives rise to the existence of the unidirectional basic steady flow $u_0=(sin kz,0, 0$ for any Reynolds number. It is shown in Theorem 1.1 that there exist a number of critical Reynolds numbers such that $u_0$ bifurcates into either 4 or 8 or 16 different steady states, when the Reynolds number increases across each of such numbers.
Instability of the Null Steady State: The Fundamental Problem of Inhibiting Malignant Cell Growth
Varfolomeev, S. D.; Lukovenkov, A. V.
2018-07-01
Mathematical modeling of the process of inhibiting malignant growth by common chemotherapeutic agents and biological therapeutics is used to investigate the effect kinetic parameters of the model have on the outcome of treatment. It is shown that the ultimate suppression of growth, i.e., the formation of a stable steady-state with no cancer cells, cannot be attained if only the means of classical chemotherapy are used.
International Nuclear Information System (INIS)
Takahashi, Toshio; Terada, Atsuhiko
2006-03-01
In the corrosive process environment of thermochemical hydrogen production Iodine-Sulfur process plant, there is a difficulty in the direct measurement of surface temperature of the structural materials. An inverse problem method can effectively be applied for this problem, which enables estimation of the surface temperature using the temperature data at the inside of structural materials. This paper shows analytical results of steady state temperature distributions in a two-dimensional cylindrical system cooled by impinging jet flow, and clarifies necessary order of multiple-valued function from the viewpoint of engineeringly satisfactory precision. (author)
Directory of Open Access Journals (Sweden)
Shoubin Wang
2017-01-01
Full Text Available The compound variable inverse problem which comprises boundary temperature distribution and surface convective heat conduction coefficient of two-dimensional steady heat transfer system with inner heat source is studied in this paper applying the conjugate gradient method. The introduction of complex variable to solve the gradient matrix of the objective function obtains more precise inversion results. This paper applies boundary element method to solve the temperature calculation of discrete points in forward problems. The factors of measuring error and the number of measuring points zero error which impact the measurement result are discussed and compared with L-MM method in inverse problems. Instance calculation and analysis prove that the method applied in this paper still has good effectiveness and accuracy even if measurement error exists and the boundary measurement points’ number is reduced. The comparison indicates that the influence of error on the inversion solution can be minimized effectively using this method.
International Nuclear Information System (INIS)
Karpp, R.R.
1984-01-01
The particle solution of the problem of the symmetric impact of two compressible fluid stream is derived. The plane two-dimensional flow is assumed to be steady, and the inviscid compressible fluid is of the Chaplygin (tangent gas) type. The equations governing this flow are transformed to the hodograph plane where an exact, closed-form solution for the stream function is obtained. The distribution of fluid properties along the plane of symmetry and the shape of free surface streamlines are determined by transformation back to the physical plane. The problem of a compressible fluid jet penetrating an infinite target of similar material is also solved by considering a limiting case of this solution. Differences between compressible and incompressible flows of the type considered are illustrated
International Nuclear Information System (INIS)
Karpp, R.R.
1980-10-01
This report treats analytically the problem of the symmetric impact of two compressible fluid streams. The flow is assumed to be steady, plane, inviscid, and subsonic and that the compressible fluid is of the Chaplygin (tangent gas) type. In the analysis, the governing equations are first transformed to the hodograph plane where an exact, closed-form solution is obtained by standard techniques. The distributions of fluid properties along the plane of symmetry as well as the shapes of the boundary streamlines are exactly determined by transforming the solution back to the physical plane. The problem of a compressible fluid jet penetrating into an infinite target of similar material is also exactly solved by considering a limiting case of this solution. This new compressible flow solution reduces to the classical result of incompressible flow theory when the sound speed of the fluid is allowed to approach infinity. Several illustrations of the differences between compressible and incompressible flows of the type considered are presented
Second order degenerate elliptic equations
International Nuclear Information System (INIS)
Duong Minh Duc.
1988-08-01
Using an improved Sobolev inequality we study a class of elliptic operators which is degenerate inside the domain and strongly degenerate near the boundary of the domain. Our results are applicable to the L 2 -boundary value problem and the mixed boundary problem. (author). 18 refs
A mathematical model and numerical solution of interface problems for steady state heat conduction
Directory of Open Access Journals (Sweden)
Z. Muradoglu Seyidmamedov
2006-01-01
(isolation Ωδ tends to zero. For each case, the local truncation errors of the used conservative finite difference scheme are estimated on the nonuniform grid. A fast direct solver has been applied for the interface problems with piecewise constant but discontinuous coefficient k=k(x. The presented numerical results illustrate high accuracy and show applicability of the given approach.
Some Considerations on the Problem of Non-Steady State Traffic Flow Optimization
2007-01-01
Poor traffic signal timing accounts for an estimated 10 percent of all traffic delay about 300 million vehicle-hours on major roadways alone. Americans agree that this is a problem: one U.S. Department of Transportation (DOT) survey found tha...
Directory of Open Access Journals (Sweden)
Aang Nuryaman
2012-11-01
Full Text Available The governing equations describing the methane oxidation process in reverse flow reactor are given by a set of convective-diffusion equations with a nonlinear reaction term, where temperature and methane conversion are dependent variables. In this study, the process is assumed to be one-dimensional pseudo homogeneous model and takes place with a certain reaction rate in which the whole process of reactor is still workable. Thus, the reaction rate can proceed at a fixed temperature. Under this condition, we restrict ourselves to solve the equations for the conversion only. From the available data, it turns out that the ratio of the diffusion term to the reaction term is small. Hence, this ratio is considered as small parameter in our model and this leads to a singular perturbation problem. In the vicinity of small parameter in front of higher order term, the numerical difficulties will be found. Here, we present an analytical solution by means of matched asymptotic expansions. Result shows that, up to and including the first order of approximation, the solution is in agreement with the exact and numerical solutions of the boundary value problem.
Chechkin, Gregory A.; Chechkina, Tatiana P.
2017-10-01
In this paper, we consider a spectral problem with singular perturbation of density located near the boundary of the domain, depending on a small parameter. We prove the compactness theorem and study the behavior of eigenelements to the given problem, as the small parameter tends to zero. xml:lang="fr"
Ellipticities of Elliptical Galaxies in Different Environments
Chen, Cheng-Yu; Hwang, Chorng-Yuan; Ko, Chung-Ming
2016-10-01
We studied the ellipticity distributions of elliptical galaxies in different environments. From the ninth data release of the Sloan Digital Sky Survey, we selected galaxies with absolute {r}\\prime -band magnitudes between -21 and -22. We used the volume number densities of galaxies as the criterion for selecting the environments of the galaxies. Our samples were divided into three groups with different volume number densities. The ellipticity distributions of the elliptical galaxies differed considerably in these three groups of different density regions. We deprojected the observed 2D ellipticity distributions into intrinsic 3D shape distributions, and the result showed that the shapes of the elliptical galaxies were relatively spherically symmetric in the high density region (HDR) and that relatively more flat galaxies were present in the low density region (LDR). This suggests that the ellipticals in the HDRs and LDRs have different origins or that different mechanisms might be involved. The elliptical galaxies in the LDR are likely to have evolved from mergers in relatively anisotropic structures, such as filaments and webs, and might contain information on the anisotropic spatial distribution of their parent mergers. By contrast, elliptical galaxies in the HDR might be formed in more isotropic structures, such as galaxy clusters, or they might encounter more torqueing effects compared with galaxies in LDRs, thereby becoming rounder.
Piotrowski, Jerzy
1991-10-01
Investigation of contact mechanical nonlinearities of a mathematical model of corrugation revealed that the typical shape of contact patch resembles a falling drop of water. A contact patch of that shape was approximated with a figure composed of two parts of ellipses with different eccentricities. The contact pressure distribution was assumed as a smoothing ensemble of two paraboloidal distributions. The description of a general case of double half elliptical contact area was given but a special case of double half elliptical contact is more interesting as it possesses some Hertzian properties. It was shown how three geometrical parameters of double half elliptical contact can be chosen when actual, non-Hertzian contact is known. A linear theory was written which indicates that the lateral vibrations of the rail may be excited only due to shape variation on corrugation even if any other cause for these vibrations does not exist. For nonlinear theory a computer program, based on FASTSIM algorithm by Kalker, was written. The aim is to calculate the creep forces and frictional power density distribution over the contact area. Also, a graphic program visualizing the solution was written. Numerical results are not provided; unattended and unsolved problems relevant for this type of contact are listed.
International Nuclear Information System (INIS)
Ramiere, I.
2006-09-01
This work is dedicated to the introduction of two original fictitious domain methods for the resolution of elliptic problems (mainly convection-diffusion problems) with general and eventually mixed boundary conditions: Dirichlet, Robin or Neumann. The originality lies in the approximation of the immersed boundary by an approximate interface derived from the fictitious domain Cartesian mesh, which is generally not boundary-fitted to the physical domain. The same generic numerical scheme is used to impose the embedded boundary conditions. Hence, these methods require neither a surface mesh of the immersed boundary nor the local modification of the numerical scheme. We study two modelling of the immersed boundary. In the first one, called spread interface, the approximate immersed boundary is the union of the cells crossed by the physical immersed boundary. In the second one, called thin interface, the approximate immersed boundary lies on sides of mesh cells. Additional algebraic transmission conditions linking both flux and solution jumps through the thin approximate interface are introduced. The fictitious problem to solve as well as the treatment of the embedded boundary conditions are detailed for the two methods. A Q1 finite element scheme is implemented for the numerical validation of the spread interface approach while a new cell-centered finite volume scheme is derived for the thin interface approach with immersed jumps. Each method is then combined to multilevel local mesh refinement algorithms (with solution or flux residual) to increase the precision of the solution in the vicinity of the immersed interface. A convergence analysis of a Q1 finite element method with non-boundary fitted meshes is also presented. This study proves the convergence rates of the present methods. Among the various industrial applications, the simulation on a model of heat exchanger in french nuclear power plants enables us to appreciate the performances of the fictitious domain
International Workshop on Elliptic and Parabolic Equations
Schrohe, Elmar; Seiler, Jörg; Walker, Christoph
2015-01-01
This volume covers the latest research on elliptic and parabolic equations and originates from the international Workshop on Elliptic and Parabolic Equations, held September 10-12, 2013 at the Leibniz Universität Hannover. It represents a collection of refereed research papers and survey articles written by eminent scientist on advances in different fields of elliptic and parabolic partial differential equations, including singular Riemannian manifolds, spectral analysis on manifolds, nonlinear dispersive equations, Brownian motion and kernel estimates, Euler equations, porous medium type equations, pseudodifferential calculus, free boundary problems, and bifurcation analysis.
International Nuclear Information System (INIS)
Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.
1994-06-01
NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation
Institute of Scientific and Technical Information of China (English)
毕春加
2005-01-01
In this paper, we establish the maximum norm estimates of the solutions of the finite volume element method (FVE) based on the P1 conforming element for the non-selfadjoint and indefinite elliptic problems.
B. Kaynar; S.I. Birbil (Ilker); J.B.G. Frenk (Hans)
2007-01-01
textabstractWe discuss a class of risk measures for portfolio optimization with linear loss functions, where the random returns of financial instruments have a multivariate elliptical distribution. Under this setting we pay special attention to two risk measures, Value-at-Risk and
Sound Attenuation in Elliptic Mufflers Using a Regular Perturbation Method
Banerjee, Subhabrata; Jacobi, Anthony M.
2012-01-01
The study of sound attenuation in an elliptical chamber involves the solution of the Helmholtz equation in elliptic coordinate systems. The Eigen solutions for such problems involve the Mathieu and the modified Mathieu functions. The computation of such functions poses considerable challenge. An alternative method to solve such problems had been proposed in this paper. The elliptical cross-section of the muffler has been treated as a perturbed circle, enabling the use of a regular perturbatio...
Energy Technology Data Exchange (ETDEWEB)
Mineev, Mark [Los Alamos National Laboratory
2008-01-01
The planar elliptic extension of the Laplacian growth is, after a proper parametrization, given in a form of a solution to the equation for areapreserving diffeomorphisms. The infinite set of conservation laws associated with such elliptic growth is interpreted in terms of potential theory, and the relations between two major forms of the elliptic growth are analyzed. The constants of integration for closed form solutions are identified as the singularities of the Schwarz function, which are located both inside and outside the moving contour. Well-posedness of the recovery of the elliptic operator governing the process from the continuum of interfaces parametrized by time is addressed and two examples of exact solutions of elliptic growth are presented.
Czech Academy of Sciences Publication Activity Database
Neustupa, Jiří
2015-01-01
Roč. 35, č. 3 (2015), s. 201-212 ISSN 0174-4747 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : steady Navier-Stokes problem * slip boundary conditions Subject RIV: BA - General Mathematics http://www.degruyter.com/view/j/anly.2015.35.issue-3/anly-2014-1304/anly-2014-1304. xml
Partial differential operators of elliptic type
Shimakura, Norio
1992-01-01
This book, which originally appeared in Japanese, was written for use in an undergraduate course or first year graduate course in partial differential equations and is likely to be of interest to researchers as well. This book presents a comprehensive study of the theory of elliptic partial differential operators. Beginning with the definitions of ellipticity for higher order operators, Shimakura discusses the Laplacian in Euclidean spaces, elementary solutions, smoothness of solutions, Vishik-Sobolev problems, the Schauder theory, and degenerate elliptic operators. The appendix covers such preliminaries as ordinary differential equations, Sobolev spaces, and maximum principles. Because elliptic operators arise in many areas, readers will appreciate this book for the way it brings together a variety of techniques that have arisen in different branches of mathematics.
Elliptic Tales Curves, Counting, and Number Theory
Ash, Avner
2012-01-01
Elliptic Tales describes the latest developments in number theory by looking at one of the most exciting unsolved problems in contemporary mathematics--the Birch and Swinnerton-Dyer Conjecture. The Clay Mathematics Institute is offering a prize of 1 million to anyone who can discover a general solution to the problem. In this book, Avner Ash and Robert Gross guide readers through the mathematics they need to understand this captivating problem. The key to the conjecture lies in elliptic curves, which are cubic equations in two variables. These equations may appear simple, yet they arise from
Elliptic Determinantal Processes and Elliptic Dyson Models
Katori, Makoto
2017-10-01
We introduce seven families of stochastic systems of interacting particles in one-dimension corresponding to the seven families of irreducible reduced affine root systems. We prove that they are determinantal in the sense that all spatio-temporal correlation functions are given by determinants controlled by a single function called the spatio-temporal correlation kernel. For the four families {A}_{N-1}, {B}_N, {C}_N and {D}_N, we identify the systems of stochastic differential equations solved by these determinantal processes, which will be regarded as the elliptic extensions of the Dyson model. Here we use the notion of martingales in probability theory and the elliptic determinant evaluations of the Macdonald denominators of irreducible reduced affine root systems given by Rosengren and Schlosser.
Coexistence of a General Elliptic System in Population Dynamics
DEFF Research Database (Denmark)
Pedersen, Michael
2004-01-01
This paper is concerned with a strongly-coupled elliptic system representing a competitive interaction between two species. We give a sufficient condition for the existence of positive solutions. An example is also given to show that there is a coexistence of a steady state if the cross-diffusion......This paper is concerned with a strongly-coupled elliptic system representing a competitive interaction between two species. We give a sufficient condition for the existence of positive solutions. An example is also given to show that there is a coexistence of a steady state if the cross...
Nonlinear elliptic equations of the second order
Han, Qing
2016-01-01
Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler-Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge-Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and "elementary" proofs for results in important special cases. This book will serve as a valuable resource for graduate stu...
Triaxiality in elliptical galaxies
Energy Technology Data Exchange (ETDEWEB)
Benacchio, L; Galletta, G [Padua Univ. (Italy). Ist. di Astronomia
1980-12-01
The existence of a triaxial shape for elliptical galaxies has been considered in recent years to explain the new kinematical and geometrical findings, i.e. (a) the low rotation/velocity dispersion ratio found also in some flat systems, (b) the presence of twisting in the isophotes, (c) the recently found correlation between maximum twisting and maximum flattening, (d) the presence of rotation along the minor axis. A simple geometrical model of elliptical galaxies having shells with different axial ratios c/a, b/a has been produced to interpret three fundamental key-features of elliptical galaxies: (i) the distribution of the maximum flattening observed; (ii) the percentage of ellipticals showing twisting; and (iii) the correlation between maximum twisting and maximum flattening. The model has been compared with observational data for 348 elliptical systems as given by Strom and Strom. It is found that a triaxial ellipsoid with coaxial shells having axial ratios c/a and b/a mutually dependent in a linear way can satisfy the observations.
Ballard, Patrick
2016-12-01
The steady sliding frictional contact problem between a moving rigid indentor of arbitrary shape and an isotropic homogeneous elastic half-space in plane strain is extensively analysed. The case where the friction coefficient is a step function (with respect to the space variable), that is, where there are jumps in the friction coefficient, is considered. The problem is put under the form of a variational inequality which is proved to always have a solution which, in addition, is unique in some cases. The solutions exhibit different kinds of universal singularities that are explicitly given. In particular, it is shown that the nature of the universal stress singularity at a jump of the friction coefficient is different depending on the sign of the jump.
Niemi, Antti; Collier, Nathan; Calo, Victor M.
2013-01-01
We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.
Niemi, Antti
2013-05-01
We revisit the finite element analysis of convection-dominated flow problems within the recently developed Discontinuous Petrov-Galerkin (DPG) variational framework. We demonstrate how test function spaces that guarantee numerical stability can be computed automatically with respect to the optimal test space norm. This makes the DPG method not only stable but also robust, that is, uniformly stable with respect to the Péclet number in the current application. We employ discontinuous piecewise Bernstein polynomials as trial functions and construct a subgrid discretization that accounts for the singular perturbation character of the problem to resolve the corresponding optimal test functions. We also show that a smooth B-spline basis has certain computational advantages in the subgrid discretization. The overall effectiveness of the algorithm is demonstrated on two problems for the linear advection-diffusion equation. © 2011 Elsevier B.V.
Nonlinear Elliptic Differential Equations with Multivalued Nonlinearities
Indian Academy of Sciences (India)
In this paper we study nonlinear elliptic boundary value problems with monotone and nonmonotone multivalued nonlinearities. First we consider the case of monotone nonlinearities. In the first result we assume that the multivalued nonlinearity is defined on all R R . Assuming the existence of an upper and of a lower ...
Nonlinear elliptic partial differential equations an introduction
Le Dret, Hervé
2018-01-01
This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.
Superconducting elliptical cavities
Sekutowicz, J K
2011-01-01
We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.
Directory of Open Access Journals (Sweden)
A. Narayan
2014-01-01
Full Text Available This paper analyzes the existence of resonance stability of the triangular equilibrium points of the planar elliptical restricted three-body problem when both the primaries are oblate spheroid as well as the source of radiation under the particular case, when e=0. We have derived Hamiltonian function describing the motion of infinitesimal mass in the neighborhood of the triangular equilibrium solutions taken as a convergent series. Hamiltonian function for the system has been derived and also expanded in powers of the generalized components of momenta. We have used canonical transformation to make the Hamiltonian function independent of true anomaly. The most interesting and distinguishable results of this study are establishing the relation for determining the range of stability at and near the resonance ω2=1/2 around the binary system.
CSIR Research Space (South Africa)
Mhlongo, MD
2014-05-01
Full Text Available and heat transfer coefficient.This work has been extended in [11] whereby the introduction of the Kirchhoff transformation linearized the one-dimensional fin problem when heat transfer is a differential consequence of thermal conductivity. Symmetry methods... 𝑥 ( 𝜉 ) , 𝜁 𝑥𝑥 = 𝐷 𝑥 (𝜁 𝑥 ) − 𝜃 𝐷 𝑥 ( 𝜉 ) , (46) 10 Advances in Mathematical Physics Table 10: Lie bracket of the admitted symmetry algebra for𝑚 ̸= 𝑛, 𝑛 ̸= − 1 and various 𝑓(𝑥). 𝑓(𝑥) = 𝑥 𝑎 𝑎 = 0 𝑛 arbitrary 𝑓(𝑥) = 𝑥𝑎...
Elliptic differential equations theory and numerical treatment
Hackbusch, Wolfgang
2017-01-01
This book simultaneously presents the theory and the numerical treatment of elliptic boundary value problems, since an understanding of the theory is necessary for the numerical analysis of the discretisation. It first discusses the Laplace equation and its finite difference discretisation before addressing the general linear differential equation of second order. The variational formulation together with the necessary background from functional analysis provides the basis for the Galerkin and finite-element methods, which are explored in detail. A more advanced chapter leads the reader to the theory of regularity. Individual chapters are devoted to singularly perturbed as well as to elliptic eigenvalue problems. The book also presents the Stokes problem and its discretisation as an example of a saddle-point problem taking into account its relevance to applications in fluid dynamics.
Steady state obliquity of a rigid body in the spin-orbit resonant problem: application to Mercury
Lhotka, Christoph
2017-12-01
We investigate the stable Cassini state 1 in the p : q spin-orbit resonant problem. Our study includes the effect of the gravitational potential up to degree and order 4 and p : q spin-orbit resonances with p,q≤ 8 and p≥ q. We derive new formulae that link the gravitational field coefficients with its secular orbital elements and its rotational parameters. The formulae can be used to predict the orientation of the spin axis and necessary angular momentum at exact resonance. We also develop a simple pendulum model to approximate the dynamics close to resonance and make use of it to predict the libration periods and widths of the oscillatory regime of motions in phase space. Our analytical results are based on averaging theory that we also confirm by means of numerical simulations of the exact dynamical equations. Our results are applied to a possible rotational history of Mercury.
Energy Technology Data Exchange (ETDEWEB)
Ceolin, Celina; Schramm, Marcelo; Bodmann, Bardo Ernst Josef; Vilhena, Marco Tullio Mena Barreto de [Universidade Federal do Rio Grande do Sul, Porto Alegre (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Bogado Leite, Sergio de Queiroz [Comissao Nacional de Energia Nuclear, Rio de Janeiro (Brazil)
2014-11-15
In this work the authors solved the steady state neutron diffusion equation for a multi-layer slab assuming the multi-group energy model. The method to solve the equation system is based on an expansion in Taylor Series resulting in an analytical expression. The results obtained can be used as initial condition for neutron space kinetics problems. The neutron scalar flux was expanded in a power series, and the coefficients were found by using the ordinary differential equation and the boundary and interface conditions. The effective multiplication factor k was evaluated using the power method. We divided the domain into several slabs to guarantee the convergence with a low truncation order. We present the formalism together with some numerical simulations.
Multilevel quadrature of elliptic PDEs with log-normal diffusion
Harbrecht, Helmut; Peters, Michael; Siebenmorgen, Markus
2015-01-01
Each function evaluation corresponds to a deterministic elliptic boundary value problem which can be solved by finite elements on an appropriate level of refinement. The complexity is thus given by the number
Type-2 fuzzy elliptic membership functions for modeling uncertainty
DEFF Research Database (Denmark)
Kayacan, Erdal; Sarabakha, Andriy; Coupland, Simon
2018-01-01
Whereas type-1 and type-2 membership functions (MFs) are the core of any fuzzy logic system, there are no performance criteria available to evaluate the goodness or correctness of the fuzzy MFs. In this paper, we make extensive analysis in terms of the capability of type-2 elliptic fuzzy MFs...... in modeling uncertainty. Having decoupled parameters for its support and width, elliptic MFs are unique amongst existing type-2 fuzzy MFs. In this investigation, the uncertainty distribution along the elliptic MF support is studied, and a detailed analysis is given to compare and contrast its performance...... advantages mentioned above, elliptic MFs have comparable prediction results when compared to Gaussian and triangular MFs. Finally, in order to test the performance of fuzzy logic controller with elliptic interval type-2 MFs, extensive real-time experiments are conducted for the 3D trajectory tracking problem...
Directory of Open Access Journals (Sweden)
Олена Валентинівна Лупаренко
2015-03-01
Full Text Available When the wave processes in bounded elastic bodies are examined, we are faced with a significant complication of the structure of the wave field compared to the case of infinite bodies. This is due to the complex nature of the reflection of elastic waves from the boundaries of the body because the direction of the general flow of energy is changed. Even more complicated the structure of the wave field is, if there are inner boundaries between fields with different elastic properties. This entails the emergence of new wave effects associated with the dynamic stress concentration in the vicinity of the internal and external boundaries of the field. The nature of edge effects is changed too. They will depend not only from the size of the field but also from the geometric and elastic parameters defining the nature of heterogeneity. At the forefront are the questions of systematization of the results for the purpose of extradition of practical recommendations for optimal design of heterogeneous section details in particular conditions of its operation. Urgent enough is the question of the possibility of neglecting of structural heterogeneity and anisotropy of the section of the body in strengthening calculations and evaluation of possible errors. The mathematical basis for the study will be the expressions for particular solutions of equations of motion, constructed for infinite layers, which are sets of plane standing waves. When choosing the form of partial solutions, we must take into account not only the opportunity to satisfy the boundary conditions at the exterior boundary of the field, but also the mechanical properties at the interface of the sphere. This entails the complication of numerical-analytical algorithm of solving the problem
Anisotropic elliptic optical fibers
Kang, Soon Ahm
1991-05-01
The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.
Lectures on Selected Topics in Mathematical Physics: Elliptic Functions and Elliptic Integrals
Schwalm, William A.
2015-12-01
This volume is a basic introduction to certain aspects of elliptic functions and elliptic integrals. Primarily, the elliptic functions stand out as closed solutions to a class of physical and geometrical problems giving rise to nonlinear differential equations. While these nonlinear equations may not be the types of greatest interest currently, the fact that they are solvable exactly in terms of functions about which much is known makes up for this. The elliptic functions of Jacobi, or equivalently the Weierstrass elliptic functions, inhabit the literature on current problems in condensed matter and statistical physics, on solitons and conformal representations, and all sorts of famous problems in classical mechanics. The lectures on elliptic functions have evolved as part of the first semester of a course on theoretical and mathematical methods given to first- and second-year graduate students in physics and chemistry at the University of North Dakota. They are for graduate students or for researchers who want an elementary introduction to the subject that nevertheless leaves them with enough of the details to address real problems. The style is supposed to be informal. The intention is to introduce the subject as a moderate extension of ordinary trigonometry in which the reference circle is replaced by an ellipse. This entre depends upon fewer tools and has seemed less intimidating that other typical introductions to the subject that depend on some knowledge of complex variables. The first three lectures assume only calculus, including the chain rule and elementary knowledge of differential equations. In the later lectures, the complex analytic properties are introduced naturally so that a more complete study becomes possible.
The properties of radio ellipticals
International Nuclear Information System (INIS)
Sparks, W.B.; Disney, M.J.; Rodgers, A.W.
1984-01-01
Optical and additional radio data are presented for the bright galaxies of the Disney and Wall survey (1977 Mon. Not. R. Astron. Soc. 179, 235). These data form the basis of a statistical comparison of the properties of radio elliptical galaxies to radio-quiet ellipticals. The correlations may be explained by the depth of the gravitational potential well in which the galaxy resides governing the circumstances under which an elliptical galaxy rids itself of internally produced gas. (author)
Investigation on computation of elliptical microwave plasma cavity
Liao, Xiaoli; Liu, Hua; Zhang, Kai
2008-12-01
In recent years, the advance of the elliptical resonant cavity and focus cavity is known by many people. There are homogeneous and multipatternal virtues in the focus dimensional microwave field of the elliptical resonant cavity. It is very suitable for applying the low power microwave biological effect equipment. However, when designing the elliptical resonant cavity may meet the problems of complex and huge computation need to be solved. This paper proposed the simple way of approximate processing the Mathieu function. It can greatly simplify the difficulty and decrease the scale of computation. This method can satisfy the requirements of research and development within project permitted precision.
Multilevel quadrature of elliptic PDEs with log-normal diffusion
Harbrecht, Helmut
2015-01-07
We apply multilevel quadrature methods for the moment computation of the solution of elliptic PDEs with lognormally distributed diffusion coefficients. The computation of the moments is a difficult task since they appear as high dimensional Bochner integrals over an unbounded domain. Each function evaluation corresponds to a deterministic elliptic boundary value problem which can be solved by finite elements on an appropriate level of refinement. The complexity is thus given by the number of quadrature points times the complexity for a single elliptic PDE solve. The multilevel idea is to reduce this complexity by combining quadrature methods with different accuracies with several spatial discretization levels in a sparse grid like fashion.
Uniformization of elliptic curves
Ülkem, Özge; Ulkem, Ozge
2015-01-01
Every elliptic curve E defined over C is analytically isomorphic to C*=qZ for some q ∊ C*. Similarly, Tate has shown that if E is defined over a p-adic field K, then E is analytically isomorphic to K*=qZ for some q ∊ K . Further the isomorphism E(K) ≅ K*/qZ respects the action of the Galois group GK/K, where K is the algebraic closure of K. I will explain the construction of this isomorphism.
Elliptic partial differential equations
Han, Qing
2011-01-01
Elliptic Partial Differential Equations by Qing Han and FangHua Lin is one of the best textbooks I know. It is the perfect introduction to PDE. In 150 pages or so it covers an amazing amount of wonderful and extraordinary useful material. I have used it as a textbook at both graduate and undergraduate levels which is possible since it only requires very little background material yet it covers an enormous amount of material. In my opinion it is a must read for all interested in analysis and geometry, and for all of my own PhD students it is indeed just that. I cannot say enough good things abo
Fast computation of complete elliptic integrals and Jacobian elliptic functions
Fukushima, Toshio
2009-12-01
As a preparation step to compute Jacobian elliptic functions efficiently, we created a fast method to calculate the complete elliptic integral of the first and second kinds, K( m) and E( m), for the standard domain of the elliptic parameter, 0 procedure to compute simultaneously three Jacobian elliptic functions, sn( u| m), cn( u| m), and dn( u| m), by repeated usage of the double argument formulae starting from the Maclaurin series expansions with respect to the elliptic argument, u, after its domain is reduced to the standard range, 0 ≤ u procedure is 25-70% faster than the methods based on the Gauss transformation such as Bulirsch’s algorithm, sncndn, quoted in the Numerical Recipes even if the acceleration of computation of K( m) is not taken into account.
Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media
Waheed, Umair bin
2014-05-01
Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.
Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media
Waheed, Umair bin; Alkhalifah, Tariq Ali
2014-01-01
Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.
Nonlinear elliptic equations and nonassociative algebras
Nadirashvili, Nikolai; Vlăduţ, Serge
2014-01-01
This book presents applications of noncommutative and nonassociative algebras to constructing unusual (nonclassical and singular) solutions to fully nonlinear elliptic partial differential equations of second order. The methods described in the book are used to solve a longstanding problem of the existence of truly weak, nonsmooth viscosity solutions. Moreover, the authors provide an almost complete description of homogeneous solutions to fully nonlinear elliptic equations. It is shown that even in the very restricted setting of "Hessian equations", depending only on the eigenvalues of the Hessian, these equations admit homogeneous solutions of all orders compatible with known regularity for viscosity solutions provided the space dimension is five or larger. To the contrary, in dimension four or less the situation is completely different, and our results suggest strongly that there are no nonclassical homogeneous solutions at all in dimensions three and four. Thus this book gives a complete list of dimensions...
Electromagnetic fields and Green functions in elliptical vacuum chambers
AUTHOR|(CDS)2084216; Biancacci, Nicolo; Migliorati, Mauro; Palumbo, Luigi; Vaccaro, Vittorio; CERN. Geneva. ATS Department
2017-01-01
In this paper, we discuss the electromagnetic interaction between a point charge travelling inside a waveguide of elliptical cross section, and the waveguide itself. By using a convenient expansion of the Mathieu functions, useful in particular for treating a variety of problems in applied mathematics and physics with elliptic geometry, we first obtain the longitudinal electromagnetic field of a point charge (Green function) in free space in terms of elliptical coordinates. This expression allows, then, to calculate the scattered field due to the boundary conditions in our geometry. By summing the contribution of the direct or primary field and the indirect field scattered by the boundary, after a careful choice of some expansion expressions, we derive a novel formula of the longitudinal electric field, in any transverse position of the elliptical cross section, generated by the charge moving along the longitudinal axis of the waveguide. The obtained expression is represented in a closed form, it can be diffe...
ELLIPT2D: A Flexible Finite Element Code Written Python
International Nuclear Information System (INIS)
Pletzer, A.; Mollis, J.C.
2001-01-01
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research
Energy Technology Data Exchange (ETDEWEB)
Lyra, Paulo Roberto Maciel [Pernambuco Univ., Recife, PE (Brazil). Dept. de Engenharia Civil
1991-12-31
This work describes a procedure for the adaptive time dependent Finite Element Method using an automatic mesh refinement (H-Version) that efficiently reduces estimated errors ( a posteriori) below pre-assigned limits. Classical model problem for steady-state heat transfer are investigated, and the results are compared with the analytical solution. Then some typical time-dependent problem are qualitatively analysed. (author) 10 refs., 7 figs.
Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations
Castrillon, Julio; Nobile, Fabio; Tempone, Raul
2016-01-01
In this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem
Diamantopoulos, Theodore; Rowe, Kristopher; Diamessis, Peter
2017-11-01
The Collocation Penalty Method (CPM) solves a PDE on the interior of a domain, while weakly enforcing boundary conditions at domain edges via penalty terms, and naturally lends itself to high-order and multi-domain discretization. Such spectral multi-domain penalty methods (SMPM) have been used to solve the Navier-Stokes equations. Bounds for penalty coefficients are typically derived using the energy method to guarantee stability for time-dependent problems. The choice of collocation points and penalty parameter can greatly affect the conditioning and accuracy of a solution. Effort has been made in recent years to relate various high-order methods on multiple elements or domains under the umbrella of the Correction Procedure via Reconstruction (CPR). Most applications of CPR have focused on solving the compressible Navier-Stokes equations using explicit time-stepping procedures. A particularly important aspect which is still missing in the context of the SMPM is a study of the Helmholtz equation arising in many popular time-splitting schemes for the incompressible Navier-Stokes equations. Stability and convergence results for the SMPM for the Helmholtz equation will be presented. Emphasis will be placed on the efficiency and accuracy of high-order methods.
FDM for Elliptic Equations with Bitsadze-Samarskii-Dirichlet Conditions
Directory of Open Access Journals (Sweden)
Allaberen Ashyralyev
2012-01-01
Full Text Available A numerical method is proposed for solving nonlocal boundary value problem for the multidimensional elliptic partial differential equation with the Bitsadze-Samarskii-Dirichlet condition. The first and second-orders of accuracy stable difference schemes for the approximate solution of this nonlocal boundary value problem are presented. The stability estimates, coercivity, and almost coercivity inequalities for solution of these schemes are established. The theoretical statements for the solutions of these nonlocal elliptic problems are supported by results of numerical examples.
Steady state solution of the Poisson-Nernst-Planck equations
International Nuclear Information System (INIS)
Golovnev, A.; Trimper, S.
2010-01-01
The exact steady state solution of the Poisson-Nernst-Planck equations (PNP) is given in terms of Jacobi elliptic functions. A more tractable approximate solution is derived which can be used to compare the results with experimental observations in binary electrolytes. The breakdown of the PNP for high concentration and high applied voltage is discussed.
Can elliptical galaxies be equilibrium systems
Energy Technology Data Exchange (ETDEWEB)
Caimmi, R [Padua Univ. (Italy). Ist. di Astronomia
1980-08-01
This paper deals with the question of whether elliptical galaxies can be considered as equilibrium systems (i.e., the gravitational + centrifugal potential is constant on the external surface). We find that equilibrium models such as Emden-Chandrasekhar polytropes and Roche polytropes with n = 0 can account for the main part of observations relative to the ratio of maximum rotational velocity to central velocity dispersion in elliptical systems. More complex models involving, for example, massive halos could lead to a more complete agreement. Models that are a good fit to the observed data are characterized by an inner component (where most of the mass is concentrated) and a low-density outer component. A comparison is performed between some theoretical density distributions and the density distribution observed by Young et al. (1978) in NGC 4473, but a number of limitations must be adopted. Alternative models, such as triaxial oblate non-equilibrium configurations with coaxial shells, involve a number of problems which are briefly discussed. We conclude that spheroidal oblate models describing elliptical galaxies cannot be ruled out until new analyses relative to more refined theoretical equilibrium models (involving, for example, massive halos) and more detailed observations are performed.
Positive solutions with single and multi-peak for semilinear elliptic ...
Indian Academy of Sciences (India)
LI WANG
2018-04-24
Apr 24, 2018 ... [2] Bahri A and Lions P, On the existence of a positive solution of semilinear elliptic equations in unbounded domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 14(3) (1997) 365–413. [3] Cao D, and Noussair E, Multiplicity of positive and nodal solutions for nonlinear elliptic problems in RN , Ann. Inst. H.
Rational points on elliptic curves
Silverman, Joseph H
2015-01-01
The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry. Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of this book. Topics covered include the geometry and ...
Energy and the Elliptical Orbit
Nettles, Bill
2009-03-01
In the January 2007 issue of The Physics Teacher, Prentis, Fulton, Hesse, and Mazzino describe a laboratory exercise in which students use a geometrical analysis inspired by Newton to show that an elliptical orbit and an inverse-square law force go hand in hand. The historical, geometrical, and teamwork aspects of the exercise are useful and important. This paper presents an exercise which uses an energy/angular momentum conservation model for elliptical orbits. This exercise can be done easily by an individual student and on regular notebook-sized paper.
Interstellar matter within elliptical galaxies
Jura, Michael
1988-01-01
Multiwavelength observations of elliptical galaxies are reviewed, with an emphasis on their implications for theoretical models proposed to explain the origin and evolution of the interstellar matter. Particular attention is given to interstellar matter at T less than 100 K (atomic and molecular gas and dust), gas at T = about 10,000 K, and gas at T = 10 to the 6th K or greater. The data are shown to confirm the occurrence of mass loss from evolved stars, significant accretion from companion galaxies, and cooling inflows; no evidence is found for large mass outflow from elliptical galaxies.
Hydrodynamic simulation of elliptic flow
Kolb, P F; Ruuskanen, P V; Heinz, Ulrich W
1999-01-01
We use a hydrodynamic model to study the space-time evolution transverse to the beam direction in ultrarelativistic heavy-ion collisions with nonzero impact parameters. We focus on the influence of early pressure on the development of radial and elliptic flow. We show that at high energies elliptic flow is generated only during the initial stages of the expansion while radial flow continues to grow until freeze-out. Quantitative comparisons with SPS data from semiperipheral Pb+Pb collisions suggest the applicability of hydrodynamical concepts already $\\approx$ 1 fm/c after impact.
Nonlinear singular elliptic equations
International Nuclear Information System (INIS)
Dong Minh Duc.
1988-09-01
We improve the Poincare inequality, the Sobolev imbedding theorem and the Trudinger imbedding theorem and prove a Mountain pass theorem. Applying these results we study a nonlinear singular mixed boundary problem. (author). 22 refs
Elliptic net and its cryptographic application
Muslim, Norliana; Said, Mohamad Rushdan Md
2017-11-01
Elliptic net is a generalization of elliptic divisibility sequence and in cryptography field, most cryptographic pairings that are based on elliptic curve such as Tate pairing can be improved by applying elliptic nets algorithm. The elliptic net is constructed by using n dimensional array of values in rational number satisfying nonlinear recurrence relations that arise from elliptic divisibility sequences. The two main properties hold in the recurrence relations are for all positive integers m>n, hm +nhm -n=hm +1hm -1hn2-hn +1hn -1hm2 and hn divides hm whenever n divides m. In this research, we discuss elliptic divisibility sequence associated with elliptic nets based on cryptographic perspective and its possible research direction.
Coercive properties of elliptic-parabolic operator
International Nuclear Information System (INIS)
Duong Min Duc.
1987-06-01
Using a generalized Poincare inequality, we study the coercive properties of a class of elliptic-parabolic partial differential equations, which contains many degenerate elliptic equations considered by the other authors. (author). 16 refs
Dynamic stress intensity factors for a longitudinal semi-elliptical ...
African Journals Online (AJOL)
elliptical crack in a thick-walled cylinder subjected to transient dynamic stresses. First, the problem of dynamic elasticity in a thick-walled cylinder is solved analytically using the finite Hankel transform. Transient pressure is assumed to act on ...
A Primer on Elliptic Functions with Applications in Classical Mechanics
Brizard, Alain J.
2009-01-01
The Jacobi and Weierstrass elliptic functions used to be part of the standard mathematical arsenal of physics students. They appear as solutions of many important problems in classical mechanics: the motion of a planar pendulum (Jacobi), the motion of a force-free asymmetric top (Jacobi), the motion of a spherical pendulum (Weierstrass) and the…
Newton flows for elliptic functions
Helminck, G.F.; Twilt, F.
2015-01-01
Newton flows are dynamical systems generated by a continuous, desingularized Newton method for mappings from a Euclidean space to itself. We focus on the special case of meromorphic functions on the complex plane. Inspired by the analogy between the rational (complex) and the elliptic (i.e., doubly
Diffeomorphisms of elliptic 3-manifolds
Hong, Sungbok; McCullough, Darryl; Rubinstein, J Hyam
2012-01-01
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small...
Elliptic curves and primality proving
Atkin, A. O. L.; Morain, F.
1993-07-01
The aim of this paper is to describe the theory and implementation of the Elliptic Curve Primality Proving algorithm. Problema, numeros primos a compositis dignoscendi, hosque in factores suos primos resolvendi, ad gravissima ac utilissima totius arithmeticae pertinere, et geometrarum tum veterum tum recentiorum industriam ac sagacitatem occupavisse, tam notum est, ut de hac re copiose loqui superfluum foret.
Color gradients in elliptical galaxies
International Nuclear Information System (INIS)
Franx, M.; Illingworth, G.
1990-01-01
The relationship of the color gradients within ellipticals and the color differences between them are studied. It is found that the local color appears to be strongly related to the escape velocity. This suggests that the local escape velocity is the primary factor that determines the metallicity of the stellar population. Models with and without dark halos give comparable results. 27 refs
Elliptical shape of the coma cluster
International Nuclear Information System (INIS)
Schipper, L.; King, I.R.
1978-01-01
The elliptical shape of the Coma cluster is examined quantitatively. The degree of ellipticity is high and depends to some extent on the radial distance of the sample from the Coma center as well as on the brightness of the sample. The elliptical shape does not appear to be caused by rotation; other possible causes are briefly discussed
A class of strongly degenerate elliptic operators
International Nuclear Information System (INIS)
Duong Minh Duc.
1988-04-01
Using a weighted Poincare inequality, we study (ω 1 ,...,ω n )-elliptic operators. This method is applicable to solve singular elliptic equations with conditions in W 1,2 on the boundary. We also get a result about the regularity of solutions of singular elliptic equations. An application to (ω 1 ,...ω n )-parabolic equations is given. (author). 33 refs
Elliptic Diophantine equations a concrete approach via the elliptic logarithm
Tzanakis, Nikos
2013-01-01
This book presents in a unified way the beautiful and deep mathematics, both theoretical and computational, on which the explicit solution of an elliptic Diophantine equation is based. It collects numerous results and methods that are scattered in literature. Some results are even hidden behind a number of routines in software packages, like Magma. This book is suitable for students in mathematics, as well as professional mathematicians.
Local parametric instability near elliptic points in vortex flows under shear deformation
Energy Technology Data Exchange (ETDEWEB)
Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru [Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation); Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022 (Russian Federation); Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950 (Russian Federation); Ryzhov, Eugene A., E-mail: ryzhovea@gmail.com [Pacific Oceanological Institute, FEB RAS, 43, Baltiyskaya Street, Vladivostok 690041 (Russian Federation)
2016-08-15
The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, the size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.
Efficient multigrid computation of steady hypersonic flows
Koren, B.; Hemker, P.W.; Murthy, T.K.S.
1991-01-01
In steady hypersonic flow computations, Newton iteration as a local relaxation procedure and nonlinear multigrid iteration as an acceleration procedure may both easily fail. In the present chapter, same remedies are presented for overcoming these problems. The equations considered are the steady,
Existence of solutions for some superlinear or sublinear elliptic systems on IRN
International Nuclear Information System (INIS)
Ding Yanheng; Li Shujie.
1993-10-01
The existence of solutions for some superlinear or sublinear elliptic systems on R N is demonstrated using a compact embedding lemma which enables the application of standard critical theory for such problems. 7 refs
RECTC/RECTCF, 2. Order Elliptical Partial Differential Equation, Arbitrary Boundary Conditions
International Nuclear Information System (INIS)
Hackbusch, W.
1983-01-01
1 - Description of problem or function: A general linear elliptical second order partial differential equation on a rectangle with arbitrary boundary conditions is solved. 2 - Method of solution: Multi-grid iteration
Elliptical and lenticular galaxies evolution
International Nuclear Information System (INIS)
Vigroux, L.
1981-01-01
Different evolutionnary models for elliptical and lenticular galaxies are discussed. In the first part, we show that, at least some peculiar early types galaxies exhibit some activity. Then we describe the observationnal constraints: the color-magnitude diagram, the color gradient and the high metallicity of intraclusters gas. Among the different models, only the dissipation collapse followed by a hot wind driven by supernovae explosion explain in a natural way these constraints. Finally, the origin of SO is briefly discussed [fr
Holomorphic bundles over elliptic manifolds
International Nuclear Information System (INIS)
Morgan, J.W.
2000-01-01
In this lecture we shall examine holomorphic bundles over compact elliptically fibered manifolds. We shall examine constructions of such bundles as well as (duality) relations between such bundles and other geometric objects, namely K3-surfaces and del Pezzo surfaces. We shall be dealing throughout with holomorphic principal bundles with structure group GC where G is a compact, simple (usually simply connected) Lie group and GC is the associated complex simple algebraic group. Of course, in the special case G = SU(n) and hence GC = SLn(C), we are considering holomorphic vector bundles with trivial determinant. In the other cases of classical groups, G SO(n) or G = Sympl(2n) we are considering holomorphic vector bundles with trivial determinant equipped with a non-degenerate symmetric, or skew symmetric pairing. In addition to these classical cases there are the finite number of exceptional groups. Amazingly enough, motivated by questions in physics, much interest centres around the group E8 and its subgroups. For these applications it does not suffice to consider only the classical groups. Thus, while often first doing the case of SU(n) or more generally of the classical groups, we shall extend our discussions to the general semi-simple group. Also, we shall spend a good deal of time considering elliptically fibered manifolds of the simplest type, namely, elliptic curves
Energy Technology Data Exchange (ETDEWEB)
Ramiere, I
2006-09-15
This work is dedicated to the introduction of two original fictitious domain methods for the resolution of elliptic problems (mainly convection-diffusion problems) with general and eventually mixed boundary conditions: Dirichlet, Robin or Neumann. The originality lies in the approximation of the immersed boundary by an approximate interface derived from the fictitious domain Cartesian mesh, which is generally not boundary-fitted to the physical domain. The same generic numerical scheme is used to impose the embedded boundary conditions. Hence, these methods require neither a surface mesh of the immersed boundary nor the local modification of the numerical scheme. We study two modelling of the immersed boundary. In the first one, called spread interface, the approximate immersed boundary is the union of the cells crossed by the physical immersed boundary. In the second one, called thin interface, the approximate immersed boundary lies on sides of mesh cells. Additional algebraic transmission conditions linking both flux and solution jumps through the thin approximate interface are introduced. The fictitious problem to solve as well as the treatment of the embedded boundary conditions are detailed for the two methods. A Q1 finite element scheme is implemented for the numerical validation of the spread interface approach while a new cell-centered finite volume scheme is derived for the thin interface approach with immersed jumps. Each method is then combined to multilevel local mesh refinement algorithms (with solution or flux residual) to increase the precision of the solution in the vicinity of the immersed interface. A convergence analysis of a Q1 finite element method with non-boundary fitted meshes is also presented. This study proves the convergence rates of the present methods. Among the various industrial applications, the simulation on a model of heat exchanger in french nuclear power plants enables us to appreciate the performances of the fictitious domain
The Transient Elliptic Flow of Power-Law Fluid in Fractal Porous Media
Institute of Scientific and Technical Information of China (English)
宋付权; 刘慈群
2002-01-01
The steady oil production and pressure distribution formulae of vertically fractured well for power-law non-Newtonian fluid were derived on the basis of the elliptic flow model in fractal reservoirs. The corresponding transient flow in fractal reservoirs was studied by numerical differentiation method: the influence of fractal index to transient pressure of vertically fractured well was analyzed. Finally the approximate analytical solution of transient flow was given by average mass conservation law. The study shows that using elliptic flow method to analyze the flow of vertically fractured well is a simple method.
Intrinsic shapes of discy and boxy ellipticals
International Nuclear Information System (INIS)
Fasano, Giovanni
1991-01-01
Statistical tests for intrinsic shapes of elliptical galaxies have given so far inconclusive and sometimes contradictory results. These failures have been often charged to the fact that classical tests consider only the two axisymmetric shapes (oblate versus prolate), while ellipticals are truly triaxial bodies. On the other hand, recent analyses indicate that the class of elliptical galaxies could be a mixture of (at least) two families having different morphology and dynamical behaviour: (i) a family of fast-rotating, disc-like ellipticals (discy); (ii) a family of slow-rotating, box-shaped ellipticals (boxy). In this paper we review the tests for instrinsic shapes of elliptical galaxies using data of better quality (CCD) with respect to previous applications. (author)
Flattening and radio emission among elliptical galaxies
International Nuclear Information System (INIS)
Disney, M.J.; Sparks, W.B.; Wall, J.V.
1984-01-01
In a sample of 132 bright elliptical galaxies it is shown that there is a strong correlation between radio activity and flattening in the sense that radio ellipticals are both apparently and inherently rounder than the average elliptical. Both extended and compact sources are subject to the same correlation. No galaxies with axial ratios below 0.65 are found to be radio emitters. (author)
Elliptic hypergeometric functions associated with root systems
Rosengren, Hjalmar; Warnaar, S. Ole
2017-01-01
We give a survey of elliptic hypergeometric functions associated with root systems, comprised of three main parts. The first two form in essence an annotated table of the main evaluation and transformation formulas for elliptic hypergeometric integeral and series on root systems. The third and final part gives an introduction to Rains' elliptic Macdonald-Koornwinder theory (in part also developed by Coskun and Gustafson).
Arbitrarily elliptical-cylindrical invisible cloaking
International Nuclear Information System (INIS)
Jiang Weixiang; Cui Tiejun; Yu Guanxia; Lin Xianqi; Cheng Qiang; Chin, J Y
2008-01-01
Based on the idea of coordinate transformation (Pendry, Schurig and Smith 2006 Science 312 1780), arbitrarily elliptical-cylindrical cloaks are proposed and designed. The elliptical cloak, which is composed of inhomogeneous anisotropic metamaterials in an elliptical-shell region, will deflect incoming electromagnetic (EM) waves and guide them to propagate around the inner elliptical region. Such EM waves will return to their original propagation directions without distorting the waves outside the elliptical cloak. General formulations of the inhomogeneous and anisotropic permittivity and permeability tensors are derived for arbitrarily elliptical axis ratio k, which can also be used for the circular cloak when k = 1. Hence the elliptical cloaks can make a large range of objects invisible, from round objects (when k approaches 1) to long and thin objects (when k is either very large or very small). We also show that the material parameters in elliptical cloaking are singular at only two points, instead of on the whole inner circle for circular cloaking, which are much easier to be realized in actual applications. Full-wave simulations are given to validate the arbitrarily elliptical cloaking
Elliptic-symmetry vector optical fields.
Pan, Yue; Li, Yongnan; Li, Si-Min; Ren, Zhi-Cheng; Kong, Ling-Jun; Tu, Chenghou; Wang, Hui-Tian
2014-08-11
We present in principle and demonstrate experimentally a new kind of vector fields: elliptic-symmetry vector optical fields. This is a significant development in vector fields, as this breaks the cylindrical symmetry and enriches the family of vector fields. Due to the presence of an additional degrees of freedom, which is the interval between the foci in the elliptic coordinate system, the elliptic-symmetry vector fields are more flexible than the cylindrical vector fields for controlling the spatial structure of polarization and for engineering the focusing fields. The elliptic-symmetry vector fields can find many specific applications from optical trapping to optical machining and so on.
Doppler Velocity Signatures of Idealized Elliptical Vortices
Directory of Open Access Journals (Sweden)
Wen-Chau Lee
2006-01-01
Full Text Available Doppler radar observations have revealed a class of atmospheric vortices (tropical cyclones, tornadoes, dust devils that possess elliptical radar reflectivity signatures. One famous example is Typhoon Herb (1996 that maintained its elliptical reflectivity structure over a 40-hour period. Theoretical work and dual-Doppler analyses of observed tropical cyclones have suggested two physical mechanisms that can explain the formation of two types of elliptical vortices observed in nature, namely, the combination of a circular vortex with either a wavenumber two vortex Rossby wave or a deformation field. The characteristics of these two types of elliptical vortices and their corresponding Doppler velocity signatures have not been previously examined.
Dark matter in elliptical galaxies
Carollo, C. M.; Zeeuw, P. T. DE; Marel, R. P. Van Der; Danziger, I. J.; Qian, E. E.
1995-01-01
We present measurements of the shape of the stellar line-of-sight velocity distribution out to two effective radii along the major axes of the four elliptical galaxies NGC 2434, 2663, 3706, and 5018. The velocity dispersion profiles are flat or decline gently with radius. We compare the data to the predictions of f = f(E, L(sub z)) axisymmetric models with and without dark matter. Strong tangential anisotropy is ruled out at large radii. We conclude from our measurements that massive dark halos must be present in three of the four galaxies, while for the fourth galaxy (NGC 2663) the case is inconclusive.
Stellar Populations in Elliptical Galaxies
Angeletti, Lucio; Giannone, Pietro
The R1/n law for the radial surface brightness of elliptical galaxies and the "Best Accretion Model" together with the "Concentration Model" have been combined in order to determine the mass and dynamical structure of largely-populated star systems. Families of models depending on four parameters have been used to fit the observed surface radial profiles of some spectro-photometric indices of a sample of eleven galaxies. We present the best agreements of the spectral index Mg2 with observations for three selected galaxies representative of the full sample. For them we have also computed the spatial distributions of the metal abundances, which are essential to achieve a population synthesis.
Yousfi, Ammar; Mechergui, Mohammed
2016-04-01
The seepage face is an important feature of the drainage process when recharge occurs to a permeable region with lateral outlets. Examples of the formation of a seepage face above the downstream water level include agricultural land drained by ditches. Flow problem to these drains has been investigated extensively by many researchers (e.g. Rubin, 1968; Hornberger et al. 1969; Verma and Brutsaert, 1970; Gureghian and Youngs, 1975; Vauclin et al., 1975; Skaggs and Tang, 1976; Youngs, 1990; Gureghian, 1981; Dere, 2000; Rushton and Youngs, 2010; Youngs, 2012; Castro-Orgaz et al., 2012) and may be tackled either using variably saturated flow models, or the complete 2-D solution of Laplace equation, or using the Dupuit-Forchheimer approximation; the most widely accepted methods to obtain analytical solutions for unconfined drainage problems. However, the investigation reported by Clement et al. (1996) suggest that accounting for the seepage face alone, as in the fully saturated flow model, does not improve the discharge estimate because of disregarding flow the unsaturated zone flow contribution. This assumption can induce errors in the location of the water table surface and results in an underestimation of the seepage face and the net discharge (e.g. Skaggs and Tang, 1976; Vauclin et al., 1979; Clement et al., 1996). The importance of the flow in the unsaturated zone has been highlighted by many authors on the basis of laboratory experiments and/or numerical experimentations (e.g. Rubin, 1968; Verma and Brutsaert, 1970; Todsen, 1973; Vauclin et al., 1979; Ahmad et al., 1993; Anguela, 2004; Luthin and Day, 1955; Shamsai and Narasimhan, 1991; Wise et al., 1994; Clement et al., 1996; Boufadel et al., 1999; Romano et al., 1999; Kao et al., 2001; Kao, 2002). These studies demonstrate the failure of fully saturated flow models and suggested that the error made when using these models not only depends on soil properties but also on the infiltration rate as reported by Kao et
Existence and multiplicity of solutions for divergence type elliptic equations
Directory of Open Access Journals (Sweden)
Lin Zhao
2011-03-01
Full Text Available We establish the existence and multiplicity of weak solutions of a problem involving a uniformly convex elliptic operator in divergence form. We find one nontrivial solution by the mountain pass lemma, when the nonlinearity has a $(p-1$-superlinear growth at infinity, and two nontrivial solutions by minimization and mountain pass when the nonlinear term has a $(p-1$-sublinear growth at infinity.
Elliptic equations with measure data in Orlicz spaces
Directory of Open Access Journals (Sweden)
Ge Dong
2008-05-01
Full Text Available This article shows the existence of solutions to the nonlinear elliptic problem $A(u=f$ in Orlicz-Sobolev spaces with a measure valued right-hand side, where $A(u=-mathop{ m div}a(x,u, abla u$ is a Leray-Lions operator defined on a subset of $W_{0}^{1}L_{M}(Omega$, with general $M$.
Optimal Control for the Degenerate Elliptic Logistic Equation
International Nuclear Information System (INIS)
Delgado, M.; Montero, J.A.; Suarez, A.
2002-01-01
We consider the optimal control of harvesting the diffusive degenerate elliptic logistic equation. Under certain assumptions, we prove the existence and uniqueness of an optimal control. Moreover, the optimality system and a characterization of the optimal control are also derived. The sub-supersolution method, the singular eigenvalue problem and differentiability with respect to the positive cone are the techniques used to obtain our results
Directory of Open Access Journals (Sweden)
Jorge Rodolfo Silva Zabadal
2006-06-01
Full Text Available Neste trabalho são apresentados métodos híbridos para solução de problemas difusivos relativos à dispersão de poluentes em meio aquático. Estes métodos aplicam variáveis complexas a fim de executar mapeamentos sobre a equação diferencial a ser resolvida bem como sobre o domínio considerado. O mapeamento sobre a equação diferencial converte o operador laplaciano bidimensional em uma derivada cruzada de segunda ordem na variável espacial. O mapeamento do domínio transforma regiões de formato complexo em regiões retangulares. Ambos mapeamentos são usados a fim de reduzir o tempo total requerido de processamento para solução de problemas difusivos não-homogêneos. Resultados numéricos são apresentados.In this work hybrid methods for solving diffusion problems related to pollutants dispersion in water bodies are presented. These methods employ complex variables in order to perform mappings over the differential equation to be solved as well as over the considered domain. The mapping over the differential equation converts the two dimensional laplacian operator into a second order mixed derivative in the complex variables. The mapping of the domain transforms complex-shaped regions into rectangular ones. Both mappings are used in order to reduce the total time proccessing required for solving non-homogeneous diffusion problems. Numerical results are reported.
Convex bodies with many elliptic sections
Arelio, Isaac; Montejano, Luis
2014-01-01
{We show in this paper that two normal elliptic sections through every point of the boundary of a smooth convex body essentially characterize an ellipsoid and furthermore, that four different pairwise non-tangent elliptic sections through every point of the $C^2$-differentiable boundary of a convex body also essentially characterize an ellipsoid.
Kinematically Decoupled Cores in Dwarf (Elliptical) Galaxies
Toloba, E.; Peletier, R. F.; Guhathakurta, P.; van de Ven, G.; Boissier, S.; Boselli, A.; Brok, M. d.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Paudel, S.; Ryś, A.; Salo, H.
An overview is given of what we know about the frequency of kinematically decoupled cores in dwarf elliptical galaxies. New observations show that kinematically decoupled cores happen just as often in dwarf elliptical as in ordinary early-type galaxies. This has important consequences for the
Drinfeld currents of dynamical elliptic algebra
International Nuclear Information System (INIS)
Hou Boyu; Fan Heng; Yang Wenli; Cao Junpeng
2000-01-01
From the generalized Yang-Baxter relations RLL=LLR*, where R and R* are the dynamical R-matrix of A n-1 (1) type face model with the elliptic module shifted by the center of the algebra, using the Ding-Frenkel correspondence, the authors obtain the Drinfeld currents of dynamical elliptic algebra
The elliptic genus and Hidden symmetry
International Nuclear Information System (INIS)
Jaffe, A.
2001-01-01
We study the elliptic genus (a partition function) in certain interacting, twist quantum field theories. Without twists, these theories have N=2 supersymmetry. The twists provide a regularization, and also partially break the supersymmetry. In spite of the regularization, one can establish a homotopy of the elliptic genus in a coupling parameter. Our construction relies on a priori estimates and other methods from constructive quantum field theory; this mathematical underpinning allows us to justify evaluating the elliptic genus at one endpoint of the homotopy. We obtain a version of Witten's proposed formula for the elliptic genus in terms of classical theta functions. As a consequence, the elliptic genus has a hidden SL(2,Z) symmetry characteristic of conformal theory, even though the underlying theory is not conformal. (orig.)
Multicolor surface photometry of 17 ellipticals
International Nuclear Information System (INIS)
Franx, M.; Illingworth, G.; Heckman, T.
1989-01-01
Multicolor two-dimensional surface photometry was used to obtain radial profiles for surface brightness, color, ellipticity, position angle, and the residuals from the fitted ellipses described by the cos(n phi) and sin(n phi) terms (where n = 3 and 4) for 17 elliptical galaxies. It is found that at radii as large as five times the seeing FWHM, seeing can affect the ellipticity at the 10 percent level and introduce uncertainty in the position angles of several degrees, particularly for very round ellipticals. The present profiles are found to agree well with previous data, with rms differences of 0.02 in ellipticity and 2 deg in position angle. The observed color gradients are consistent with a decrease in the metallicity by a factor of about 2 per decade in radius. 61 refs
Elliptical excisions: variations and the eccentric parallelogram.
Goldberg, Leonard H; Alam, Murad
2004-02-01
The elliptical (fusiform) excision is a basic tool of cutaneous surgery. To assess the design, functionality, ease of construction, and aesthetic outcomes of the ellipse. A systematic review of elliptical designs and their site-specific benefits and limitations. In particular, we consider the (1). context of prevailing relaxed skin tension lines and tissue laxity; and (2). removal of the smallest possible amount of tissue around the lesion and in the "dog-ears." Attention is focused on intuitive methods that can be reproducibly planned and executed. Elliptical variations are easily designed and can be adapted to many situations. The eccentric parallelogram excision is offered as a new technique that minimizes notching and focal tension in the center of an elliptical closure. Conclusion The elliptical (fusiform) excision is an efficient, elegant, and versatile technique that will remain a mainstay of the cutaneous surgical armamentarium.
Nonlinear dynamics of an elliptic vortex embedded in an oscillatory shear flow.
Ryzhov, Eugene A
2017-11-01
The nonlinear dynamics of an elliptic vortex subjected to a time-periodic linear external shear flow is studied numerically. Making use of the ideas from the theory of nonlinear resonance overlaps, the study focuses on the appearance of chaotic regimes in the ellipse dynamics. When the superimposed flow is stationary, two general types of the steady-state phase portrait are considered: one that features a homoclinic separatrix delineating bounded and unbounded phase trajectories and one without a separatrix (all the phase trajectories are bounded in a periodic domain). When the external flow is time-periodic, the ensuing nonlinear dynamics differs significantly in both cases. For the case with a separatrix and two distinct types of phase trajectories: bounded and unbounded, the effect of the most influential nonlinear resonance with the winding number of 1:1 is analyzed in detail. Namely, the process of occupying the central stability region associated with the steady-state elliptic critical point by the stability region associated with the nonlinear resonance of 1:1 as the perturbation frequency gradually varies is investigated. A stark increase in the persistence of the central regular dynamics region against perturbation when the resonance of 1:1 associated stability region occupies the region associated with the steady-state elliptic critical point is observed. An analogous persistence of the regular motion occurs for higher perturbation frequencies when the corresponding stability islands reach the central stability region associated with the steady-state elliptic point. An analysis for the case with the resonance of 1:2 is presented. For the second case with only bounded phase trajectories and, therefore, no separatrix, the appearance of much bigger stability islands associated with nonlinear resonances compared with the case with a separatrix is reported.
A new approach to flow through a region bounded by two ellipses of the same ellipticity
Lal, K.; Chorlton, F.
1981-05-01
A new approach is presented to calculate steady flow of a laminar viscous incompressible fluid through a channel whose cross section is bounded by two ellipses with the same ellipticity. The Milne-Thomas approach avoids the stream function and is similar to the Rayleigh-Ritz approximation process of the calculus of variations in its first satisfying boundary conditions and then adjusting constants or multiplying functions to fit the differential equation.
Comparison of elliptical and spherical mirrors for the grasshopper monochromators at SSRL
International Nuclear Information System (INIS)
Waldhauer, A.P.
1989-01-01
A comparison of the performance of a spherical and elliptical mirror in the grasshopper monochromator is presented. The problem was studied by ray tracing and then tested using visible (λ=633 nm) laser light. Calculations using ideal optics yield an improvement in flux by a factor of up to 2.7, while tests with visible light show an increase by a factor of 5 because the old spherical mirror is compared to a new, perfect elliptical one. The FWHM of the measured focus is 90 μm with a spherical mirror, and 25 μm with an elliptical one. Elliptical mirrors have been acquired and are now being installed in the two grasshoppers at SSRL
Excursion Processes Associated with Elliptic Combinatorics
Baba, Hiroya; Katori, Makoto
2018-06-01
Researching elliptic analogues for equalities and formulas is a new trend in enumerative combinatorics which has followed the previous trend of studying q-analogues. Recently Schlosser proposed a lattice path model in the square lattice with a family of totally elliptic weight-functions including several complex parameters and discussed an elliptic extension of the binomial theorem. In the present paper, we introduce a family of discrete-time excursion processes on Z starting from the origin and returning to the origin in a given time duration 2 T associated with Schlosser's elliptic combinatorics. The processes are inhomogeneous both in space and time and hence expected to provide new models in non-equilibrium statistical mechanics. By numerical calculation we show that the maximum likelihood trajectories on the spatio-temporal plane of the elliptic excursion processes and of their reduced trigonometric versions are not straight lines in general but are nontrivially curved depending on parameters. We analyze asymptotic probability laws in the long-term limit T → ∞ for a simplified trigonometric version of excursion process. Emergence of nontrivial curves of trajectories in a large scale of space and time from the elementary elliptic weight-functions exhibits a new aspect of elliptic combinatorics.
Elliptic hypergeometric functions and the representation theory
International Nuclear Information System (INIS)
Spiridonov, V.P.
2011-01-01
Full text: (author)Elliptic hypergeometric functions were discovered around ten years ago. They represent the top level known generalization of the Euler beta integral and Euler-Gauss 2 F 1 hypergeometric function. In general form they are defined by contour integrals involving elliptic gamma functions. We outline the structure of the simplest examples of such functions and discuss their relations to the representation theory of the classical Lie groups and their various deformations. In one of the constructions elliptic hypergeometric integrals describe purely group-theoretical objects having the physical meaning of superconformal indices of four-dimensional supersymmetric gauge field theories
Implementation of Pollard Rho attack on elliptic curve cryptography over binary fields
Wienardo, Yuliawan, Fajar; Muchtadi-Alamsyah, Intan; Rahardjo, Budi
2015-09-01
Elliptic Curve Cryptography (ECC) is a public key cryptosystem with a security level determined by discrete logarithm problem called Elliptic Curve Discrete Logarithm Problem (ECDLP). John M. Pollard proposed an algorithm for discrete logarithm problem based on Monte Carlo method and known as Pollard Rho algorithm. The best current brute-force attack for ECC is Pollard Rho algorithm. In this research we implement modified Pollard Rho algorithm on ECC over GF (241). As the result, the runtime of Pollard Rho algorithm increases exponentially with the increase of the ECC key length. This work also presents the estimated runtime of Pollard Rho attack on ECC over longer bits.
On mod 2 and higher elliptic genera
International Nuclear Information System (INIS)
Liu Kefeng
1992-01-01
In the first part of this paper, we construct mod 2 elliptic genera on manifolds of dimensions 8k+1, 8k+2 by mod 2 index formulas of Dirac operators. They are given by mod 2 modular forms or mod 2 automorphic functions. We also obtain an integral formula for the mod 2 index of the Dirac operator. As a by-product we find topological obstructions to group actions. In the second part, we construct higher elliptic genera and prove some of their rigidity properties under group actions. In the third part we write down characteristic series for all Witten genera by Jacobi theta-functions. The modular property and transformation formulas of elliptic genera then follow easily. We shall also prove that Krichever's genera, which come from integrable systems, can be written as indices of twisted Dirac operators for SU-manifolds. Some general discussions about elliptic genera are given. (orig.)
Constructing elliptic curves from Galois representations
Snowden, Andrew; Tsimerman, Jacob
2017-01-01
Given a non-isotrivial elliptic curve over an arithmetic surface, one obtains a lisse $\\ell$-adic sheaf of rank two over the surface. This lisse sheaf has a number of straightforward properties: cyclotomic determinant, finite ramification, rational traces of Frobenius, and somewhere not potentially good reduction. We prove that any lisse sheaf of rank two possessing these properties comes from an elliptic curve.
Elliptic and parabolic equations for measures
Energy Technology Data Exchange (ETDEWEB)
Bogachev, Vladimir I [M. V. Lomonosov Moscow State University, Moscow (Russian Federation); Krylov, Nikolai V [University of Minnesota, Minneapolis, MN (United States); Roeckner, Michael [Universitat Bielefeld, Bielefeld (Germany)
2009-12-31
This article gives a detailed account of recent investigations of weak elliptic and parabolic equations for measures with unbounded and possibly singular coefficients. The existence and differentiability of densities are studied, and lower and upper bounds for them are discussed. Semigroups associated with second-order elliptic operators acting in L{sup p}-spaces with respect to infinitesimally invariant measures are investigated. Bibliography: 181 titles.
A transmission line model for propagation in elliptical core optical fibers
Georgantzos, E.; Papageorgiou, C.; Boucouvalas, A. C.
2015-12-01
The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the case of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell's equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method.
A transmission line model for propagation in elliptical core optical fibers
International Nuclear Information System (INIS)
Georgantzos, E.; Boucouvalas, A. C.; Papageorgiou, C.
2015-01-01
The calculation of mode propagation constants of elliptical core fibers has been the purpose of extended research leading to many notable methods, with the classic step index solution based on Mathieu functions. This paper seeks to derive a new innovative method for the determination of mode propagation constants in single mode fibers with elliptic core by modeling the elliptical fiber as a series of connected coupled transmission line elements. We develop a matrix formulation of the transmission line and the resonance of the circuits is used to calculate the mode propagation constants. The technique, used with success in the case of cylindrical fibers, is now being extended for the case of fibers with elliptical cross section. The advantage of this approach is that it is very well suited to be able to calculate the mode dispersion of arbitrary refractive index profile elliptical waveguides. The analysis begins with the deployment Maxwell’s equations adjusted for elliptical coordinates. Further algebraic analysis leads to a set of equations where we are faced with the appearance of harmonics. Taking into consideration predefined fixed number of harmonics simplifies the problem and enables the use of the resonant circuits approach. According to each case, programs have been created in Matlab, providing with a series of results (mode propagation constants) that are further compared with corresponding results from the ready known Mathieu functions method
Energy Technology Data Exchange (ETDEWEB)
Castagnoli, G. (Dipt. di Informatica, Sistemistica, Telematica, Univ. di Genova, Viale Causa 13, 16145 Genova (IT))
1991-08-10
This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition.
International Nuclear Information System (INIS)
Castagnoli, G.
1991-01-01
This paper reports that current conceptions of quantum mechanical computers inherit from conventional digital machines two apparently interacting features, machine imperfection and temporal development of the computational process. On account of machine imperfection, the process would become ideally reversible only in the limiting case of zero speed. Therefore the process is irreversible in practice and cannot be considered to be a fundamental quantum one. By giving up classical features and using a linear, reversible and non-sequential representation of the computational process - not realizable in classical machines - the process can be identified with the mathematical form of a quantum steady state. This form of steady quantum computation would seem to have an important bearing on the notion of cognition
Fabrication of elliptical SRF cavities
Singer, W.
2017-03-01
The technological and metallurgical requirements of material for high-gradient superconducting cavities are described. High-purity niobium, as the preferred metal for the fabrication of superconducting accelerating cavities, should meet exact specifications. The content of interstitial impurities such as oxygen, nitrogen, and carbon must be below 10 μg g-1. The hydrogen content should be kept below 2 μg g-1 to prevent degradation of the quality factor (Q-value) under certain cool-down conditions. The material should be free of flaws (foreign material inclusions or cracks and laminations) that can initiate a thermal breakdown. Traditional and alternative cavity mechanical fabrication methods are reviewed. Conventionally, niobium cavities are fabricated from sheet niobium by the formation of half-cells by deep drawing, followed by trim machining and electron beam welding. The welding of half-cells is a delicate procedure, requiring intermediate cleaning steps and a careful choice of weld parameters to achieve full penetration of the joints. A challenge for a welded construction is the tight mechanical and electrical tolerances. These can be maintained by a combination of mechanical and radio-frequency measurements on half-cells and by careful tracking of weld shrinkage. The main aspects of quality assurance and quality management are mentioned. The experiences of 800 cavities produced for the European XFEL are presented. Another cavity fabrication approach is slicing discs from the ingot and producing cavities by deep drawing and electron beam welding. Accelerating gradients at the level of 35-45 MV m-1 can be achieved by applying electrochemical polishing treatment. The single-crystal option (grain boundary free) is discussed. It seems that in this case, high performance can be achieved by a simplified treatment procedure. Fabrication of the elliptical resonators from a seamless pipe as an alternative is briefly described. This technology has yielded good
Mantle cloaks for elliptical cylinders excited by an electric line source
DEFF Research Database (Denmark)
Kaminski, Piotr Marek; Yakovlev, Alexander B.; Arslanagic, Samel
2016-01-01
We investigate the ability of surface impedance mantle cloaks for cloaking of elliptical cylinders excited by an electric line source. The exact analytical solution of the problem utilizing Mathieu functions is obtained and is used to derive optimal surface impedances to cloak a number of configu......We investigate the ability of surface impedance mantle cloaks for cloaking of elliptical cylinders excited by an electric line source. The exact analytical solution of the problem utilizing Mathieu functions is obtained and is used to derive optimal surface impedances to cloak a number...
The effects of axis ratio on laminar fluid flow around an elliptical cylinder
International Nuclear Information System (INIS)
Faruquee, Zakir; Ting, David S-K.; Fartaj, Amir; Barron, Ronald M.; Carriveau, Rupp
2007-01-01
An elliptical cylinder is a generic shape which represents a flat plate at its minor to major axis ratio (AR) limits of zero and infinity, and a circular cylinder at AR of unity. While incompressible flows over a streamwise flat plate (AR = 0), a cross-stream flat plate (AR = ∞), and a circular cylinder have been studied extensively, the role of AR on the detailed flow structure is still not well understood. Therefore, a numerical study was conducted to examine the flow field around an elliptical cylinder over a range of ARs from 0.3 to 1, with the major axis parallel to the free-stream, at a Reynolds number of 40 based on the hydraulic diameter. The control volume approach of FLUENT was used to solve the fluid flow equations, assuming the flow over the cylinder is unbounded, steady, incompressible and two-dimensional. It has been found that a pair of steady vortices forms when AR reaches a critical value of 0.34; below this value no vortices are formed behind the elliptical cylinder. Various wake parameters, drag coefficient, pressure and velocity distributions, have been characterized as functions of AR. The wake size and the drag coefficient are found to increase with the increase of AR. Quadratic correlations have been obtained to describe the relations of wake length and drag coefficient with axis ratio
Transverse magnetic scattering by parallel conducting elliptic cylinders
Sebak, A.
1991-10-01
A boundary value solution to the problem of transverse magnetic multiple scattering by M parallel perfectly conducting elliptic cylinders is presented. The solution is an exact one and based on the separation-of-variables technique and the addition theorem for Mathieu functions. It is expressed in terms of a system of simultaneous linear equations of infinite order, which is then truncated for numerical computations. Representative numerical results for the scattered field by two cylinders are then generated, for some selected sizes and orientations parameters, and presented.
Surfaces immersed in Lie algebras associated with elliptic integrals
International Nuclear Information System (INIS)
Grundland, A M; Post, S
2012-01-01
The objective of this work is to adapt the Fokas–Gel’fand immersion formula to ordinary differential equations written in the Lax representation. The formalism of generalized vector fields and their prolongation structure is employed to establish necessary and sufficient conditions for the existence and integration of immersion functions for surfaces in Lie algebras. As an example, a class of second-order, integrable, ordinary differential equations is considered and the most general solutions for the wavefunctions of the linear spectral problem are found. Several explicit examples of surfaces associated with Jacobian and P-Weierstrass elliptic functions are presented. (paper)
Marketing aspects of steady growth business strategy
GONCHAR V.; KALININ O.
2015-01-01
The article analyzed the importance of marketing to achieve steady business growth, the main strategy of internal development and marketing of its level of development, achieving competitive advantage and the main directions of marketing management. The examples of marketing strategies for leading corporations were described. The problems and prospects of the business strategy of extensive growth and diversification were made.
Ultraluminous Infrared Mergers: Elliptical Galaxies in Formation?
Genzel, R.; Tacconi, L. J.; Rigopoulou, D.; Lutz, D.; Tecza, M.
2001-12-01
We report high-quality near-IR spectroscopy of 12 ultraluminous infrared galaxy mergers (ULIRGs). Our new VLT and Keck data provide ~0.5" resolution, stellar and gas kinematics of these galaxies, most of which are compact systems in the last merger stages. We confirm that ULIRG mergers are ``ellipticals in formation.'' Random motions dominate their stellar dynamics, but significant rotation is common. Gasdynamics and stellar dynamics are decoupled in most systems. ULIRGs fall on or near the fundamental plane of hot stellar systems, and especially on its less evolution-sensitive, reff-σ projection. The ULIRG velocity dispersion distribution, their location in the fundamental plane, and their distribution of vrotsini/σ closely resemble those of intermediate-mass (~L*), elliptical galaxies with moderate rotation. As a group ULIRGs do not resemble giant ellipticals with large cores and little rotation. Our results are in good agreement with other recent studies indicating that disky ellipticals with compact cores or cusps can form through dissipative mergers of gas-rich disk galaxies while giant ellipticals with large cores have a different formation history. Based on observations at the European Southern Observatory, Chile (ESO 65.N-0266, 65.N-0289), and on observations at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, The University of California, and the National Aeronautics and Space Administration. The Keck Observatory was made possible by the general financial support by the W. M. Keck Foundation.
The elliptic sine-Gordon equation in a half plane
International Nuclear Information System (INIS)
Pelloni, B; Pinotsis, D A
2010-01-01
We consider boundary value problems for the elliptic sine-Gordon equation posed in the half plane y > 0. This problem was considered in Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) using the classical inverse scattering transform approach. Given the limitations of this approach, the results obtained rely on a nonlinear constraint on the spectral data derived heuristically by analogy with the linearized case. We revisit the analysis of such problems using a recent generalization of the inverse scattering transform known as the Fokas method, and show that the nonlinear constraint of Gutshabash and Lipovskii (1994 J. Math. Sci. 68 197–201) is a consequence of the so-called global relation. We also show that this relation implies a stronger constraint on the spectral data, and in particular that no choice of boundary conditions can be associated with a decaying (possibly mod 2π) solution analogous to the pure soliton solutions of the usual, time-dependent sine-Gordon equation. We also briefly indicate how, in contrast to the evolutionary case, the elliptic sine-Gordon equation posed in the half plane does not admit linearisable boundary conditions
Hot interstellar matter in elliptical galaxies
Kim, Dong-Woo
2012-01-01
Based on a number of new discoveries resulting from 10 years of Chandra and XMM-Newton observations and corresponding theoretical works, this is the first book to address significant progress in the research of the Hot Interstellar Matter in Elliptical Galaxies. A fundamental understanding of the physical properties of the hot ISM in elliptical galaxies is critical, because they are directly related to the formation and evolution of elliptical galaxies via star formation episodes, environmental effects such as stripping, infall, and mergers, and the growth of super-massive black holes. Thanks to the outstanding spatial resolution of Chandra and the large collecting area of XMM-Newton, various fine structures of the hot gas have been imaged in detail and key physical quantities have been accurately measured, allowing theoretical interpretations/predictions to be compared and tested against observational results. This book will bring all readers up-to-date on this essential field of research.
Elliptical cross section fuel rod study II
International Nuclear Information System (INIS)
Taboada, H.; Marajofsky, A.
1996-01-01
In this paper it is continued the behavior analysis and comparison between cylindrical fuel rods of circular and elliptical cross sections. Taking into account the accepted models in the literature, the fission gas swelling and release were studied. An analytical comparison between both kinds of rod reveals a sensible gas release reduction in the elliptical case, a 50% swelling reduction due to intragranular bubble coalescence mechanism and an important swelling increase due to migration bubble mechanism. From the safety operation point of view, for the same linear power, an elliptical cross section rod is favored by lower central temperatures, lower gas release rates, greater gas store in ceramic matrix and lower stored energy rates. (author). 6 refs., 8 figs., 1 tab
Electromagnetic Invisibility of Elliptic Cylinder Cloaks
International Nuclear Information System (INIS)
Kan, Yao; Chao, Li; Fang, Li
2008-01-01
Structures with unique electromagnetic properties are designed based on the approach of spatial coordinate transformations of Maxwell's equations. This approach is applied to scheme out invisible elliptic cylinder cloaks, which provide more feasibility for cloaking arbitrarily shaped objects. The transformation expressions for the anisotropic material parameters and the field distribution are derived. The cloaking performances of ideal and lossy elliptic cylinder cloaks are investigated by finite element simulations. It is found that the cloaking performance will degrade in the forward direction with increasing loss. (fundamental areas of phenomenology (including applications))
Quantum W-algebras and elliptic algebras
International Nuclear Information System (INIS)
Feigin, B.; Kyoto Univ.; Frenkel, E.
1996-01-01
We define a quantum W-algebra associated to sl N as an associative algebra depending on two parameters. For special values of the parameters, this algebra becomes the ordinary W-algebra of sl N , or the q-deformed classical W-algebra of sl N . We construct free field realizations of the quantum W-algebras and the screening currents. We also point out some interesting elliptic structures arising in these algebras. In particular, we show that the screening currents satisfy elliptic analogues of the Drinfeld relations in U q (n). (orig.)
Abundance ratios in dwarf elliptical galaxies
Şen, Ş.; Peletier, R. F.; Boselli, A.; den Brok, M.; Falcón-Barroso, J.; Hensler, G.; Janz, J.; Laurikainen, E.; Lisker, T.; Mentz, J. J.; Paudel, S.; Salo, H.; Sybilska, A.; Toloba, E.; van de Ven, G.; Vazdekis, A.; Yesilyaprak, C.
2018-04-01
We determine abundance ratios of 37 dwarf ellipticals (dEs) in the nearby Virgo cluster. This sample is representative of the early-type population of galaxies in the absolute magnitude range -19.0 originate from late-type dwarfs or small spirals. Na-yields appear to be very metal-dependent, in agreement with studies of giant ellipticals, probably due to the large dependence on the neutron-excess in stars. We conclude that dEs have undergone a considerable amount of chemical evolution, they are therefore not uniformly old, but have extended SFH, similar to many of the Local Group galaxies.
Elliptic Curve Integral Points on y2 = x3 + 3x ‑ 14
Zhao, Jianhong
2018-03-01
The positive integer points and integral points of elliptic curves are very important in the theory of number and arithmetic algebra, it has a wide range of applications in cryptography and other fields. There are some results of positive integer points of elliptic curve y 2 = x 3 + ax + b, a, b ∈ Z In 1987, D. Zagier submit the question of the integer points on y 2 = x 3 ‑ 27x + 62, it count a great deal to the study of the arithmetic properties of elliptic curves. In 2009, Zhu H L and Chen J H solved the problem of the integer points on y 2 = x 3 ‑ 27x + 62 by using algebraic number theory and P-adic analysis method. In 2010, By using the elementary method, Wu H M obtain all the integral points of elliptic curves y 2 = x 3 ‑ 27x ‑ 62. In 2015, Li Y Z and Cui B J solved the problem of the integer points on y 2 = x 3 ‑ 21x ‑ 90 By using the elementary method. In 2016, Guo J solved the problem of the integer points on y 2 = x 3 + 27x + 62 by using the elementary method. In 2017, Guo J proved that y 2 = x 3 ‑ 21x + 90 has no integer points by using the elementary method. Up to now, there is no relevant conclusions on the integral points of elliptic curves y 2 = x 3 + 3x ‑ 14, which is the subject of this paper. By using congruence and Legendre Symbol, it can be proved that elliptic curve y 2 = x 3 + 3x ‑ 14 has only one integer point: (x, y) = (2, 0).
Index profile measurement of asymmetrical elliptical preforms or fibers
Blitterswijk, van W.; Smit, M.K.
1987-01-01
An extension of the beam-deflection method to the case of elliptical preforms with eccentric core (asymmetrical elliptical preforms) is presented, which can be easily implemented on automatic measurement equipment
Estimates of azimuthal numbers associated with elementary elliptic cylinder wave functions
Kovalev, V. A.; Radaev, Yu. N.
2014-05-01
The paper deals with issues related to the construction of solutions, 2 π-periodic in the angular variable, of the Mathieu differential equation for the circular elliptic cylinder harmonics, the associated characteristic values, and the azimuthal numbers needed to form the elementary elliptic cylinder wave functions. A superposition of the latter is one possible form for representing the analytic solution of the thermoelastic wave propagation problem in long waveguides with elliptic cross-section contour. The classical Sturm-Liouville problem for the Mathieu equation is reduced to a spectral problem for a linear self-adjoint operator in the Hilbert space of infinite square summable two-sided sequences. An approach is proposed that permits one to derive rather simple algorithms for computing the characteristic values of the angular Mathieu equation with real parameters and the corresponding eigenfunctions. Priority is given to the application of the most symmetric forms and equations that have not yet been used in the theory of the Mathieu equation. These algorithms amount to constructing a matrix diagonalizing an infinite symmetric pentadiagonal matrix. The problem of generalizing the notion of azimuthal number of a wave propagating in a cylindrical waveguide to the case of elliptic geometry is considered. Two-sided mutually refining estimates are constructed for the spectral values of the Mathieu differential operator with periodic and half-periodic (antiperiodic) boundary conditions.
Lq-perturbations of leading coefficients of elliptic operators: Asymptotics of eigenvalues
Directory of Open Access Journals (Sweden)
Vladimir Kozlov
2006-01-01
Full Text Available We consider eigenvalues of elliptic boundary value problems, written in variational form, when the leading coefficients are perturbed by terms which are small in some integral sense. We obtain asymptotic formulae. The main specific of these formulae is that the leading term is different from that in the corresponding formulae when the perturbation is small in L∞-norm.
ON THE FAMILY OF ELLIPTIC CURVES y2 = x3 − m2x + p 1 ...
Indian Academy of Sciences (India)
12
Tadić applied the results of [13] to prove the existence of two more families; ... [1, 4] is the source of inspiration for the problem of the presented work and methodology ... related material from [8] that includes some basic concepts of elliptic curves ... Fundamental Mordell Theorem [11] says that the group E(Q) of all rational ...
Removability of singularity for nonlinear elliptic equations with p(x-growth
Directory of Open Access Journals (Sweden)
Yongqiang Fu
2013-09-01
Full Text Available Using Moser's iteration method, we investigate the problem of removable isolated singularities for elliptic equations with p(x-type nonstandard growth. We give a sufficient condition for removability of singularity for the equations in the framework of variable exponent Sobolev spaces.
Thaning, Anna; Jaroszewicz, Zbigniew; Friberg, Ari T
2003-01-01
Axicons in oblique illumination produce broadened focal lines, a problem, e.g., in scanning applications. A compact mathematical description of the focal segment is presented, for the first time, to our knowledge, and the results are compared with elliptical axicons in normal illumination. In both cases, analytical expressions in the form of asteroid curves are obtained from asymptotic wave theory and caustic surfaces. The results are confirmed by direct diffraction simulations and by experiments. In addition we show that at a fixed angle an elliptical axicon can be used to compensate for the adverse effects of oblique illumination.
International Nuclear Information System (INIS)
Jarboe, T.R.
1982-01-01
A major effort is being made in the national program to make the operation of axisymmetric, toroidal confinement systems steady state by the application of expensive rf current drive. Described here is a method by which such a confinement system, the spheromak, can be refluxed indefinitely through the application of dc power. As a step towards dc sustainment we have operated the present CTX source in the slow source mode with a longer power application time (approx. 0.1 ms) and successfully generated long-lived spheromaks. If the erosion of the electrodes can be controlled as well as it is with MPD arcs then dc operation should be very clean. If only a small fraction (approx. 10% for an experiment) of the poloidal flux of the spheromak connects to the source then the dc sustainment can be very efficient. The amount of connecting flux that is necessary for sustainment needs to be determined experimentally
Elliptic genus of singular algebraic varieties and quotients
Libgober, Anatoly
2018-02-01
This paper discusses the basic properties of various versions of the two-variable elliptic genus with special attention to the equivariant elliptic genus. The main applications are to the elliptic genera attached to non-compact GITs, including the theories regarding the elliptic genera of phases on N = 2 introduced in Witten (1993 Nucl. Phys. B 403 159-222).
Impedances in lossy elliptical vacuum chambers
International Nuclear Information System (INIS)
Piwinski, A.
1994-04-01
The wake fields of a bunched beam caused by the resistivity of the chamber walls are investigated for a vacuum chamber with elliptical cross section. The longitudinal and transverse impedances are calculated for arbitrary energies and for an arbitrary position of the beam in the chamber. (orig.)
Carleman estimates for some elliptic systems
International Nuclear Information System (INIS)
Eller, M
2008-01-01
A Carleman estimate for a certain first order elliptic system is proved. The proof is elementary and does not rely on pseudo-differential calculus. This estimate is used to prove Carleman estimates for the isotropic Lame system as well as for the isotropic Maxwell system with C 1 coefficients
Spatial scan statistics using elliptic windows
DEFF Research Database (Denmark)
Christiansen, Lasse Engbo; Andersen, Jens Strodl; Wegener, Henrik Caspar
2006-01-01
The spatial scan statistic is widely used to search for clusters. This article shows that the usually applied elimination of secondary clusters as implemented in SatScan is sensitive to smooth changes in the shape of the clusters. We present an algorithm for generation of a set of confocal elliptic...
Vortex precession in thin elliptical ferromagnetic nanodisks
Energy Technology Data Exchange (ETDEWEB)
Zaspel, C.E., E-mail: craig.zaspel@umwestern.edu
2017-07-01
Highlights: • A general form for the magnetostatic energy is calculated for the vortex state in a ferromagnetic ellipse. • The ellipse magnetostatic energy is minimized by conformal mapping the circular disk onto the ellipse. • The gyrotropic precession frequency is obtained in general for a range of ellipticities. - Abstract: The magnetostatic energy is calculated for a magnetic vortex in a noncircular elliptical nanodisk. It is well-known that the energy of a vortex in the circular disk is minimized though an ansatz that eliminates the magnetostatic charge at the disk edge. Beginning with this ansatz for the circular disk, a conformal mapping of a circle interior onto the interior of an ellipse results in the magnetization of the elliptical disk. This magnetization in the interior of an ellipse also has no magnetostatic charge at the disk edge also minimizing the magnetostatic energy. As expected the energy has a quadratic dependence on the displacement of the vortex core from the ellipse center, but reflecting the lower symmetry of the ellipse. Through numerical integration of the magnetostatic integral a general expression for the energy is obtained for ellipticity values from 1.0 to about 0.3. Finally a general expression for the gyrotropic frequency as described by the Thiele equation is obtained.
Abundance Ratios in Dwarf Elliptical Galaxies
Sen, Seyda; Peletier, Reynier F.; Toloba, Elisa; Mentz, Jaco J.
The aim of this study is to determine abundance ratios and star formation histories (SFH) of dwarf ellipticals in the nearby Virgo cluster. We perform a stellar population analysis of 39 dEs and study them using index-index and scaling relations. We find an unusual behaviour where [Na/Fe] is
Elastic plastic buckling of elliptical vessel heads
International Nuclear Information System (INIS)
Alix, M.; Roche, R.L.
1981-08-01
The risks of buckling of dished vessel head increase when the vessel is thin walled. This paper gives the last results on experimental tests of 3 elliptical heads and compares all the results with some empirical formula dealing with elastic and plastic buckling
Hyper-and-elliptic-curve cryptography
Bernstein, D.J.; Lange, T.
2014-01-01
This paper introduces ‘hyper-and-elliptic-curve cryptography’, in which a single high-security group supports fast genus-2-hyperelliptic-curve formulas for variable-base-point single-scalar multiplication (for example, Diffie–Hellman shared-secret computation) and at the same time supports fast
Local identities involving Jacobi elliptic functions
Indian Academy of Sciences (India)
systematize the local identities by deriving four local 'master identities' analogous to the ... involving Jacobi elliptic functions can be explicitly evaluated and a number of .... most of these integrals do not seem to be known in the literature. In §6 ...
Elliptic genera from multi-centers
Energy Technology Data Exchange (ETDEWEB)
Gaddam, Nava [Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena,Utrecht University, 3508 TD Utrecht (Netherlands)
2016-05-13
I show how elliptic genera for various Calabi-Yau threefolds may be understood from supergravity localization using the quantization of the phase space of certain multi-center configurations. I present a simple procedure that allows for the enumeration of all multi-center configurations contributing to the polar sector of the elliptic genera — explicitly verifying this in the cases of the quintic in ℙ{sup 4}, the sextic in Wℙ{sub (2,1,1,1,1)}, the octic in Wℙ{sub (4,1,1,1,1)} and the dectic in Wℙ{sub (5,2,1,1,1)}. With an input of the corresponding ‘single-center’ indices (Donaldson-Thomas invariants), the polar terms have been known to determine the elliptic genera completely. I argue that this multi-center approach to the low-lying spectrum of the elliptic genera is a stepping stone towards an understanding of the exact microscopic states that contribute to supersymmetric single center black hole entropy in N=2 supergravity.
Numerical studies of time-independent and time-dependent scattering by several elliptical cylinders
Nigsch, Martin
2007-07-01
A numerical solution to the problem of time-dependent scattering by an array of elliptical cylinders with parallel axes is presented. The solution is an exact one, based on the separation-of-variables technique in the elliptical coordinate system, the addition theorem for Mathieu functions, and numerical integration. Time-independent solutions are described by a system of linear equations of infinite order which are truncated for numerical computations. Time-dependent solutions are obtained by numerical integration involving a large number of these solutions. First results of a software package generating these solutions are presented: wave propagation around three impenetrable elliptical scatterers. As far as we know, this method described has never been used for time-dependent multiple scattering.
The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces
Chen, Yujia
2015-01-01
© 2015 Society for Industrial and Applied Mathematics. Elliptic partial differential equations are important from both application and analysis points of view. In this paper we apply the closest point method to solve elliptic equations on general curved surfaces. Based on the closest point representation of the underlying surface, we formulate an embedding equation for the surface elliptic problem, then discretize it using standard finite differences and interpolation schemes on banded but uniform Cartesian grids. We prove the convergence of the difference scheme for the Poisson\\'s equation on a smooth closed curve. In order to solve the resulting large sparse linear systems, we propose a specific geometric multigrid method in the setting of the closest point method. Convergence studies in both the accuracy of the difference scheme and the speed of the multigrid algorithm show that our approaches are effective.
Optical asymmetric cryptography based on amplitude reconstruction of elliptically polarized light
Cai, Jianjun; Shen, Xueju; Lei, Ming
2017-11-01
We propose a novel optical asymmetric image encryption method based on amplitude reconstruction of elliptically polarized light, which is free from silhouette problem. The original image is analytically separated into two phase-only masks firstly, and then the two masks are encoded into amplitudes of the orthogonal polarization components of an elliptically polarized light. Finally, the elliptically polarized light propagates through a linear polarizer, and the output intensity distribution is recorded by a CCD camera to obtain the ciphertext. The whole encryption procedure could be implemented by using commonly used optical elements, and it combines diffusion process and confusion process. As a result, the proposed method achieves high robustness against iterative-algorithm-based attacks. Simulation results are presented to prove the validity of the proposed cryptography.
Broedel, Johannes; Duhr, Claude; Dulat, Falko; Tancredi, Lorenzo
2018-06-01
We introduce a class of iterated integrals that generalize multiple polylogarithms to elliptic curves. These elliptic multiple polylogarithms are closely related to similar functions defined in pure mathematics and string theory. We then focus on the equal-mass and non-equal-mass sunrise integrals, and we develop a formalism that enables us to compute these Feynman integrals in terms of our iterated integrals on elliptic curves. The key idea is to use integration-by-parts identities to identify a set of integral kernels, whose precise form is determined by the branch points of the integral in question. These kernels allow us to express all iterated integrals on an elliptic curve in terms of them. The flexibility of our approach leads us to expect that it will be applicable to a large variety of integrals in high-energy physics.
Elliptic Flow, Initial Eccentricity and Elliptic Flow Fluctuations in Heavy Ion Collisions at RHIC
Nouicer, Rachid; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holzman, B.; Iordanova, A.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.
2008-12-01
We present measurements of elliptic flow and event-by-event fluctuations established by the PHOBOS experiment. Elliptic flow scaled by participant eccentricity is found to be similar for both systems when collisions with the same number of participants or the same particle area density are compared. The agreement of elliptic flow between Au+Au and Cu+Cu collisions provides evidence that the matter is created in the initial stage of relativistic heavy ion collisions with transverse granularity similar to that of the participant nucleons. The event-by-event fluctuation results reveal that the initial collision geometry is translated into the final state azimuthal particle distribution, leading to an event-by-event proportionality between the observed elliptic flow and initial eccentricity.
Centrality dependence of directed and elliptic flow at the SPS
International Nuclear Information System (INIS)
Poskanzer, A.M.; Voloshin, S.A.; Baechler, J.; Barna, D.; Barnby, L.S.; Bartke, J.; Barton, R.A.; Betev, L.; Bialkowska, H.; Billmeier, A.; Blume, C.; Blyth, C.O.; Boimska, B.; Bracinik, J.; Brady, F.P.; Brockmann, R.; Brun, R.; Buncic, P.; Carr, L.; Cebra, D.; Cooper, G.E.; Cramer, J.G.; Csato, P.; Eckardt, V.; Eckhardt, F.; Ferenc, D.; Fischer, H.G.; Fodor, Z.; Foka, P.; Freund, P.; Friese, V.; Ftacnik, J.; Gal, J.; Ganz, R.; Gazdzicki, M.; Gladysz, E.; Grebieszkow, J.; Harris, J.W.; Hegyi, S.; Hlinka, V.; Hoehne, C.; Igo, G.; Ivanov, M.; Jacobs, P.; Janik, R.; Jones, P.G.; Kadija, K.; Kolesnikov, V.I.; Kowalski, M.; Lasiuk, B.; Levai, P.; Malakhov, A.I.; Margetis, S.; Markert, C.; Mayes, B.W.; Melkumov, G.L.; Molnar, J.; Nelson, J.M.; Odyniec, G.; Oldenburg, M.D.; Palla, G.; Panagiotou, A.D.; Petridis, A.; Pikna, M.; Pinsky, L.; Poskanzer, A.M.; Prindle, D.J.; Puehlhofer, F.; Reid, J.G.; Renfordt, R.; Retyk, W.; Ritter, H.G.; Roehrich, D.; Roland, C.; Roland, G.; Rybicki, A.; Sammer, T.; Sandoval, A.; Sann, H.; Semenov, A.Yu.; Schaefer, E.; Schmitz, N.; Seyboth, P.; Sikler, F.; Sitar, B.; Skrzypczak, E.; Snellings, R.; Squier, G.T.A.; Stock, R.; Strmen, P.; Stroebele, H.; Susa, T.; Szarka, I.; Szentpetery, I.; Sziklai, J.; Toy, M.; Trainor, T.A.; Trentalange, S.; Ullrich, T.; Varga, D.; Vassiliou, M.; Veres, G.I.; Vesztergombi, G.; Voloshin, S.; Vranic, D.; Wang, F.; Weerasundara, D.D.; Wenig, S.; Whitten, C.; Xu, N.; Yates, T.A.; Yoo, I.K.; Zimanyi, J.
1999-01-01
New data with a minimum bias trigger for 158 GeV/nucleon Pb + Pb have been analyzed. Directed and elliptic flow as a function of rapidity of the particles and centrality of the collision are presented. The centrality dependence of the ratio of elliptic flow to the initial space elliptic anisotropy is compared to models
Systematics of elliptic flow in heavy-ion collisions
Indian Academy of Sciences (India)
We analyze elliptic ﬂow from SIS to RHIC energies systematically in a realistic dynamical cascade model. We compare our results with the recent data from STAR and PHOBOS collaborations on elliptic ﬂow of charged particles at midrapidity in Au + Au collisions at RHIC. In the analysis of elliptic ﬂow at RHIC energy, we ﬁnd ...
Fast multipole preconditioners for sparse matrices arising from elliptic equations
Ibeid, Huda
2017-11-09
Among optimal hierarchical algorithms for the computational solution of elliptic problems, the fast multipole method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxable global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Here, we do not discuss the well developed applications of FMM to implement matrix-vector multiplications within Krylov solvers of boundary element methods. Instead, we propose using FMM for the volume-to-volume contribution of inhomogeneous Poisson-like problems, where the boundary integral is a small part of the overall computation. Our method may be used to precondition sparse matrices arising from finite difference/element discretizations, and can handle a broader range of scientific applications. It is capable of algebraic convergence rates down to the truncation error of the discretized PDE comparable to those of multigrid methods, and it offers potentially superior multicore and distributed memory scalability properties on commodity architecture supercomputers. Compared with other methods exploiting the low-rank character of off-diagonal blocks of the dense resolvent operator, FMM-preconditioned Krylov iteration may reduce the amount of communication because it is matrix-free and exploits the tree structure of FMM. We describe our tests in reproducible detail with freely available codes and outline directions for further extensibility.
Fast multipole preconditioners for sparse matrices arising from elliptic equations
Ibeid, Huda; Yokota, Rio; Pestana, Jennifer; Keyes, David E.
2017-01-01
Among optimal hierarchical algorithms for the computational solution of elliptic problems, the fast multipole method (FMM) stands out for its adaptability to emerging architectures, having high arithmetic intensity, tunable accuracy, and relaxable global synchronization requirements. We demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Here, we do not discuss the well developed applications of FMM to implement matrix-vector multiplications within Krylov solvers of boundary element methods. Instead, we propose using FMM for the volume-to-volume contribution of inhomogeneous Poisson-like problems, where the boundary integral is a small part of the overall computation. Our method may be used to precondition sparse matrices arising from finite difference/element discretizations, and can handle a broader range of scientific applications. It is capable of algebraic convergence rates down to the truncation error of the discretized PDE comparable to those of multigrid methods, and it offers potentially superior multicore and distributed memory scalability properties on commodity architecture supercomputers. Compared with other methods exploiting the low-rank character of off-diagonal blocks of the dense resolvent operator, FMM-preconditioned Krylov iteration may reduce the amount of communication because it is matrix-free and exploits the tree structure of FMM. We describe our tests in reproducible detail with freely available codes and outline directions for further extensibility.
A heterogeneous stochastic FEM framework for elliptic PDEs
International Nuclear Information System (INIS)
Hou, Thomas Y.; Liu, Pengfei
2015-01-01
We introduce a new concept of sparsity for the stochastic elliptic operator −div(a(x,ω)∇(⋅)), which reflects the compactness of its inverse operator in the stochastic direction and allows for spatially heterogeneous stochastic structure. This new concept of sparsity motivates a heterogeneous stochastic finite element method (HSFEM) framework for linear elliptic equations, which discretizes the equations using the heterogeneous coupling of spatial basis with local stochastic basis to exploit the local stochastic structure of the solution space. We also provide a sampling method to construct the local stochastic basis for this framework using the randomized range finding techniques. The resulting HSFEM involves two stages and suits the multi-query setting: in the offline stage, the local stochastic structure of the solution space is identified; in the online stage, the equation can be efficiently solved for multiple forcing functions. An online error estimation and correction procedure through Monte Carlo sampling is given. Numerical results for several problems with high dimensional stochastic input are presented to demonstrate the efficiency of the HSFEM in the online stage
International Nuclear Information System (INIS)
Podil'chuk, Yu.N.
1995-01-01
An explicit solution of the state thermoelasticity problem is constructed for an infinite transversally isotropic body containing an internal elliptical crack in the isotropy plane. It is assumed that a uniform heat flux is specified at the crack surface and the body is free of external loads. Values of the stress-intensity coefficients depending on the heat flux, the crack dimensions, and the thermoelastic properties of the material are obtained. Note that the analogous problem was considered for an isotropic body. The static thermoelasticity problem for a transversally isotropic body with an internal elliptical crack at whose surface linear temperature variation is specified was solved
Heterodyne detector for measuring the characteristic of elliptically polarized microwaves
DEFF Research Database (Denmark)
Leipold, Frank; Nielsen, Stefan Kragh; Michelsen, Susanne
2008-01-01
In the present paper, a device is introduced, which is capable of determining the three characteristic parameters of elliptically polarized light (ellipticity, angle of ellipticity, and direction of rotation) for microwave radiation at a frequency of 110 GHz. The device consists of two perpendicu......In the present paper, a device is introduced, which is capable of determining the three characteristic parameters of elliptically polarized light (ellipticity, angle of ellipticity, and direction of rotation) for microwave radiation at a frequency of 110 GHz. The device consists of two...... be calculated. Results from measured and calculated wave characteristics of an elliptically polarized 110 GHz microwave beam for plasma heating launched into the TEXTOR-tokamak experiment are presented. Measurement and calculation are in good agreement. ©2008 American Institute of Physics...
Developing a composite based elliptic spring for automotive applications
International Nuclear Information System (INIS)
Talib, Abdul Rahim Abu; Ali, Aidy; Goudah, G.; Lah, Nur Azida Che; Golestaneh, A.F.
2010-01-01
An automotive suspension system is designed to provide both safety and comfort for the vehicle occupants. In this study, finite element models were developed to optimize the material and geometry of the composite elliptical spring based on the spring rate, log life and shear stress parameters. The influence of the ellipticity ratio on the performance of woven roving-wrapped composite elliptical springs was investigated both experimentally and numerically. The study demonstrated that composite elliptical springs can be used for light and heavy trucks with substantial weight reduction. The results showed that the ellipticity ratio significantly influenced the design parameters. Composite elliptic springs with ellipticity ratios of a/b = 2 had the optimum spring parameters.
On the solution of elliptic partial differential equations on regions with corners
International Nuclear Information System (INIS)
Serkh, Kirill; Rokhlin, Vladimir
2016-01-01
In this paper we investigate the solution of boundary value problems on polygonal domains for elliptic partial differential equations. We observe that when the problems are formulated as the boundary integral equations of classical potential theory, the solutions are representable by series of elementary functions. In addition to being analytically perspicuous, the resulting expressions lend themselves to the construction of accurate and efficient numerical algorithms. The results are illustrated by a number of numerical examples.
Performance of an elliptically tapered neutron guide
International Nuclear Information System (INIS)
Muehlbauer, Sebastian; Stadlbauer, Martin; Boeni, Peter; Schanzer, Christan; Stahn, Jochen; Filges, Uwe
2006-01-01
Supermirror coated neutron guides are used at all modern neutron sources for transporting neutrons over large distances. In order to reduce the transmission losses due to multiple internal reflection of neutrons, ballistic neutron guides with linear tapering have been proposed and realized. However, these systems suffer from an inhomogeneous illumination of the sample. Moreover, the flux decreases significantly with increasing distance from the exit of the neutron guide. We propose using elliptically tapered guides that provide a more homogeneous phase space at the sample position as well as a focusing at the sample. Moreover, the design of the guide system is simplified because ellipses are simply defined by their long and short axes. In order to prove the concept we have manufactured a doubly focusing guide and investigated its properties with neutrons. The experiments show that the predicted gains using the program package McStas are realized. We discuss several applications of elliptic guides in various fields of neutron physics
A holomorphic anomaly in the elliptic genus
International Nuclear Information System (INIS)
Murthy, Sameer
2014-01-01
We consider a class of gauged linear sigma models (GLSMs) in two dimensions that flow to non-compact (2,2) superconformal field theories in the infra-red, a prototype of which is the SL(2,ℝ)/U(1) (cigar) coset. We compute the elliptic genus of the GLSMs as a path-integral on the torus using supersymmetric localization. We find that the result is a Jacobi-like form that is non-holomorphic in the modular parameter τ of the torus, with mock modular behavior. This agrees with a previously-computed expression in the cigar coset. We show that the lack of holomorphicity of the elliptic genus arises from the contributions of a compact boson carrying momentum and winding excitations. This boson has an axionic shift symmetry and plays the role of a compensator field that is needed to cancel the chiral anomaly in the rest of the theory.
On rotational solutions for elliptically excited pendulum
International Nuclear Information System (INIS)
Belyakov, Anton O.
2011-01-01
The author considers the planar rotational motion of the mathematical pendulum with its pivot oscillating both vertically and horizontally, so the trajectory of the pivot is an ellipse close to a circle. The analysis is based on the exact rotational solutions in the case of circular pivot trajectory and zero gravity. The conditions for existence and stability of such solutions are derived. Assuming that the amplitudes of excitations are not small while the pivot trajectory has small ellipticity the approximate solutions are found both for high and small linear dampings. Comparison between approximate and numerical solutions is made for different values of the damping parameter. -- Highlights: → We study rotations of the mathematical pendulum when its pivot moves along an ellipse. → There are stable exact solutions for a circular pivot trajectory and zero gravity. → Asymptotic solutions are found for an elliptical pivot trajectory
A FUNDAMENTAL LINE FOR ELLIPTICAL GALAXIES
International Nuclear Information System (INIS)
Nair, Preethi; Van den Bergh, Sidney; Abraham, Roberto G.
2011-01-01
Recent studies have shown that massive galaxies in the distant universe are surprisingly compact, with typical sizes about a factor of three smaller than equally massive galaxies in the nearby universe. It has been suggested that these massive galaxies grow into systems resembling nearby galaxies through a series of minor mergers. In this model the size growth of galaxies is an inherently stochastic process, and the resulting size-luminosity relationship is expected to have considerable environmentally dependent scatter. To test whether minor mergers can explain the size growth in massive galaxies, we have closely examined the scatter in the size-luminosity relation of nearby elliptical galaxies using a large new database of accurate visual galaxy classifications. We demonstrate that this scatter is much smaller than has been previously assumed, and may even be so small as to challenge the plausibility of the merger-driven hierarchical models for the formation of massive ellipticals.
Type A Jacobi Elliptic One-Monopole
International Nuclear Information System (INIS)
Teh, Rosy; Wong, Khai-Ming
2010-01-01
We present new classical generalized one-monopole solution of the SU(2) Yang-Mills-Higgs theory with the Higgs field in the adjoint representation. We show that this generalized solution with Θ-winding number m = 1 and φ-winding number n = 1 is an axially symmetric Jacobi elliptic generalization of the 't Hooft-Polyakov one-monopole. We construct this axially symmetric one-monopole solution by generalizing the large distance asymptotic solution of the 't Hooft-Polyakov one-monopole to the Jacobi elliptic functions and solving the second order equations of motion numerically when the Higgs potential is vanishing. This solution is a regular non-BPS finite energy solution.
Integrable mappings via rational elliptic surfaces
International Nuclear Information System (INIS)
Tsuda, Teruhisa
2004-01-01
We present a geometric description of the QRT map (which is an integrable mapping introduced by Quispel, Roberts and Thompson) in terms of the addition formula of a rational elliptic surface. By this formulation, we classify all the cases when the QRT map is periodic; and show that its period is 2, 3, 4, 5 or 6. A generalization of the QRT map which acts birationally on a pencil of K3 surfaces, or Calabi-Yau manifolds, is also presented
A Jacobian elliptic single-field inflation
Energy Technology Data Exchange (ETDEWEB)
Villanueva, J.R. [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile); Centro de Astrofisica de Valparaiso, Valparaiso (Chile); Gallo, Emanuel [FaMAF, Universidad Nacional de Cordoba, Cordoba (Argentina); Instituto de Fisica Enrique Gaviola (IFEG), CONICET, Cordoba (Argentina)
2015-06-15
In the scenario of single-field inflation, this field is described in terms of Jacobian elliptic functions. This approach provides, when constrained to particular cases, analytic solutions already known in the past, generalizing them to a bigger family of analytical solutions. The emergent cosmology is analyzed using the Hamilton-Jacobi approach and then the main results are contrasted with the recent measurements obtained from the Planck 2015 data. (orig.)
Fast Implicit Methods For Elliptic Moving Interface Problems
2015-12-11
surfaces [30], and has recently been employed in the geometric nonuniform fast Fourier transform [12] and in the finite element method [31]. We employ...analyzed, and tested for the Fourier transform of piecewise polynomials given on d-dimensional simplices in D-dimensional Euclidean space. These transforms ...evaluation, and one to three orders of magnitude slower than the classical uniform Fast Fourier Transform . Second, bilinear quadratures ---which
The discrete maximum principle for Galerkin solutions of elliptic problems
Czech Academy of Sciences Publication Activity Database
Vejchodský, Tomáš
2012-01-01
Roč. 10, č. 1 (2012), s. 25-43 ISSN 1895-1074 R&D Projects: GA AV ČR IAA100760702 Institutional research plan: CEZ:AV0Z10190503 Keywords : discrete maximum principle * monotone methods * Galerkin solution Subject RIV: BA - General Mathematics Impact factor: 0.405, year: 2012 http://www.springerlink.com/content/x73624wm23x4wj26
hp Spectral element methods for three dimensional elliptic problems
Indian Academy of Sciences (India)
This is the first of a series of papers devoted to the study of h-p spec- .... element functions defined on mesh elements in the new system of variables with a uni- ... the spectral element functions on these elements and give construction of the stability .... By Hm( ), we denote the usual Sobolev space of integer order m ≥ 0 ...
Nonconforming hp spectral element methods for elliptic problems
Indian Academy of Sciences (India)
Geometrical mesh; stability estimate; least-squares solution; preconditioners; condition numbers; exponential accuracy. ... Department of Mathematics, Indian Institute of Technology Kanpur, Kanpur 208 016, India; Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016, India ...
Infinitely many sign-changing solutions of an elliptic problem ...
Indian Academy of Sciences (India)
MOUSOMI BHAKTA
In recent years, a lot of attention has been given to the existence ... the crucial step is to show that the Mountain Pass value is strictly less than the first energy ... So far in the literature the only two papers that deal with the sign-changing solution.
The elliptic model for communication fluxes
International Nuclear Information System (INIS)
Herrera-Yagüe, C; Schneider, C M; González, M C; Smoreda, Z; Couronné, T; Zufiria, P J
2014-01-01
In this paper, a model (called the elliptic model) is proposed to estimate the number of social ties between two locations using population data in a similar manner to how transportation research deals with trips. To overcome the asymmetry of transportation models, the new model considers that the number of relationships between two locations is inversely proportional to the population in the ellipse whose foci are in these two locations. The elliptic model is evaluated by considering the anonymous communications patterns of 25 million users from three different countries, where a location has been assigned to each user based on their most used phone tower or billing zip code. With this information, spatial social networks are built at three levels of resolution: tower, city and region for each of the three countries. The elliptic model achieves a similar performance when predicting communication fluxes as transportation models do when predicting trips. This shows that human relationships are influenced at least as much by geography as is human mobility. (paper)
Cyclic Steady State Refinement
DEFF Research Database (Denmark)
Bocewicz, Grzegorz; Nielsen, Peter; Banaszak, Zbigniew
2012-01-01
This paper deals with the problem of finding optimal feeding sequence in a manufacturing cell with feeders fed by a mobile robot with manipulation arm. The performance criterion is to minimize total traveling time of the robot in a given planning horizon. Besides, the robot has to be scheduled...... in order to keep production lines within the cell working without any shortage of parts fed from feeders. A mixed-integer programming (MIP) model is developed to find the optimal solution for the problem. In the MIP formulation, a method based on the (s, Q) inventory system is applied to define time...... windows for multiple-part feeding tasks. A case study is implemented at an impeller production line in a factory to demonstrate the result of the proposed MIP model....
Boundary conditions for the numerical solution of elliptic equations in exterior regions
International Nuclear Information System (INIS)
Bayliss, A.; Gunzburger, M.; Turkel, E.
1982-01-01
Elliptic equations in exterior regions frequently require a boundary condition at infinity to ensure the well-posedness of the problem. Examples of practical applications include the Helmholtz equation and Laplace's equation. Computational procedures based on a direct discretization of the elliptic problem require the replacement of the condition at infinity by a boundary condition on a finite artificial surface. Direct imposition of the condition at infinity along the finite boundary results in large errors. A sequence of boundary conditions is developed which provides increasingly accurate approximations to the problem in the infinite domain. Estimates of the error due to the finite boundary are obtained for several cases. Computations are presented which demonstrate the increased accuracy that can be obtained by the use of the higher order boundary conditions. The examples are based on a finite element formulation but finite difference methods can also be used
Elliptical Galaxies: Rotationally Distorted, After All
Directory of Open Access Journals (Sweden)
Caimmi, R.
2009-12-01
Full Text Available On the basis of earlier investigations onhomeoidally striated Mac Laurin spheroids and Jacobi ellipsoids (Caimmi and Marmo2005, Caimmi 2006a, 2007, different sequences of configurations are defined and represented in the ellipticity-rotation plane, $({sf O}hat{e}chi_v^2$. The rotation parameter, $chi_v^2$, is defined as the ratio, $E_mathrm{rot}/E_mathrm{res}$, of kinetic energy related to the mean tangential equatorial velocity component, $M(overline{v_phi}^2/2$, to kineticenergy related to tangential equatorial component velocity dispersion, $Msigma_{phiphi}^2/2$, andresidual motions, $M(sigma_{ww}^2+sigma_{33}^2/2$.Without loss of generality (above a thresholdin ellipticity values, the analysis is restricted to systems with isotropic stress tensor, whichmay be considered as adjoint configurationsto any assigned homeoidally striated density profile with anisotropic stress tensor, different angular momentum, and equal remaining parameters.The description of configurations in the$({sf O}hat{e}chi_v^2$ plane is extendedin two respects, namely (a from equilibriumto nonequilibrium figures, where the virialequations hold with additional kinetic energy,and (b from real to imaginary rotation, wherethe effect is elongating instead of flattening,with respect to the rotation axis.An application is made toa subsample $(N=16$ of elliptical galaxies extracted from richer samples $(N=25,~N=48$of early type galaxies investigated within theSAURON project (Cappellari et al. 2006, 2007.Sample objects are idealized as homeoidallystriated MacLaurinspheroids and Jacobi ellipsoids, and theirposition in the $({sf O}hat{e}chi_v^2$plane is inferred from observations followinga procedure outlined in an earlier paper(Caimmi 2009b. The position of related adjoint configurations with isotropic stresstensor is also determined. With a singleexception (NGC 3379, slow rotators arecharacterized by low ellipticities $(0lehat{e}<0.2$, low anisotropy parameters$(0ledelta<0
Generalized multiscale finite element methods. nonlinear elliptic equations
Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael
2013-01-01
In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.
Model predictive control for spacecraft rendezvous in elliptical orbit
Li, Peng; Zhu, Zheng H.
2018-05-01
This paper studies the control of spacecraft rendezvous with attitude stable or spinning targets in an elliptical orbit. The linearized Tschauner-Hempel equation is used to describe the motion of spacecraft and the problem is formulated by model predictive control. The control objective is to maximize control accuracy and smoothness simultaneously to avoid unexpected change or overshoot of trajectory for safe rendezvous. It is achieved by minimizing the weighted summations of control errors and increments. The effects of two sets of horizons (control and predictive horizons) in the model predictive control are examined in terms of fuel consumption, rendezvous time and computational effort. The numerical results show the proposed control strategy is effective.
Elliptical optical solitary waves in a finite nematic liquid crystal cell
Minzoni, Antonmaria A.; Sciberras, Luke W.; Smyth, Noel F.; Worthy, Annette L.
2015-05-01
The addition of orbital angular momentum has been previously shown to stabilise beams of elliptic cross-section. In this article the evolution of such elliptical beams is explored through the use of an approximate methodology based on modulation theory. An approximate method is used as the equations that govern the optical system have no known exact solitary wave solution. This study brings to light two distinct phases in the evolution of a beam carrying orbital angular momentum. The two phases are determined by the shedding of radiation in the form of mass loss and angular momentum loss. The first phase is dominated by the shedding of angular momentum loss through spiral waves. The second phase is dominated by diffractive radiation loss which drives the elliptical solitary wave to a steady state. In addition to modulation theory, the "chirp" variational method is also used to study this evolution. Due to the significant role radiation loss plays in the evolution of an elliptical solitary wave, an attempt is made to couple radiation loss to the chirp variational method. This attempt furthers understanding as to why radiation loss cannot be coupled to the chirp method. The basic reason for this is that there is no consistent manner to match the chirp trial function to the generated radiating waves which is uniformly valid in time. Finally, full numerical solutions of the governing equations are compared with solutions obtained using the various variational approximations, with the best agreement achieved with modulation theory due to its ability to include both mass and angular momentum losses to shed diffractive radiation.
Energy Technology Data Exchange (ETDEWEB)
Djidel, S.; Bouamar, M.; Khedrouche, D., E-mail: dkhedrouche@yahoo.com [LASS (Laboratoired’Analyse des Signaux et Systèmes), Department of Electronics, University of M’sila BP.166, Route Ichebilia, M’sila, 28000 Algeria (Algeria)
2016-04-21
This paper presents a performances study of UWB monopole antenna using half-elliptic radiator conformed on elliptical surface. The proposed antenna, simulated using microwave studio computer CST and High frequency simulator structure HFSS, is designed to operate in frequency interval over 3.1 to 40 GHz. Good return loss and radiation pattern characteristics are obtained in the frequency band of interest. The proposed antenna structure is suitable for ultra-wideband applications, which is, required for many wearable electronics applications.
Steady states in conformal theories
CERN. Geneva
2015-01-01
A novel conjecture regarding the steady state behavior of conformal field theories placed between two heat baths will be presented. Some verification of the conjecture will be provided in the context of fluid dynamics and holography.
Steady State versus Pulsed Tokamak DEMO
Energy Technology Data Exchange (ETDEWEB)
Orsitto, F.P., E-mail: francesco.orsitto@enea.it [Associazione EURATOM-ENEA Unita Tecnica Fusione, Frascati (Italy); Todd, T. [CCFE/Fusion Association, Culham Science Centre, Abingdon (United Kingdom)
2012-09-15
Full text: The present report deals with a Review of problems for a Steady state(SS) DEMO, related argument is treated about the models and the present status of comparison between the characteristics of DEMO pulsed versus a Steady state device.The studied SS DEMO Models (SLIM CS, PPCS model C EU-DEMO, ARIES-RS) are analyzed from the point of view of the similarity scaling laws and critical issues for a steady state DEMO. A comparison between steady state and pulsed DEMO is therefore carried out: in this context a new set of parameters for a pulsed (6 - 8 hours pulse) DEMO is determined working below the density limit, peak temperature of 20 keV, and requiring a modest improvement in the confinement factor(H{sub IPBy2} = 1.1) with respect to the H-mode. Both parameters density and confinement parameter are lower than the DEMO models presently considered. The concept of partially non-inductive pulsed DEMO is introduced since a pulsed DEMO needs heating and current drive tools for plasma stability and burn control. The change of the main parameter design for a DEMO working at high plasma peak temperatures T{sub e} {approx} 35 keV is analyzed: in this range the reactivity increases linearly with temperature, and a device with smaller major radius (R = 7.5 m) is compatible with high temperature. Increasing temperature is beneficial for current drive efficiency and heat load on divertor, being the synchrotron radiation one of the relevant components of the plasma emission at high temperatures and current drive efficiency increases with temperature. Technology and engineering problems are examined including efficiency and availability R&D issues for a high temperature DEMO. Fatigue and creep-fatigue effects of pulsed operations on pulsed DEMO components are considered in outline to define the R&D needed for DEMO development. (author)
Equilibrium Figures inside the Dark-Matter Ring and the Shapes of Elliptical Galaxies
Directory of Open Access Journals (Sweden)
Kondratyev B. P.
2015-12-01
Full Text Available We solve the general problem of the theory of equilibrium figures and analyze two classes of liquid rotating gravitating figures residing inside a gravitating ring or torus. These figures form families of sequences of generalized oblate spheroids and triaxial ellipsoids, which at the lower limit of the tidal parameter α = 0 have the form of the Maclaurin spheroids and the Jacobi ellipsoids. In intermediate cases 0 < α ≤ αmax each new sequence of axisymmetric equilibrium figures has two non-rotating boundary spheroids. At the upper limit αmax/(πGρ = 0.1867 the sequence degenerates into a single non-rotating spheroid with the eccentricity ecr ≈ 0.96 corresponding to the flattening limit of elliptical galaxies (E7. We also perform a detailed study of the sequences of generalized triaxial ellipsoids and find bifurcation points of triaxial ellipsoids in the sequences of generalized spheroids. We use this method to explain the shapes of E-galaxies. According to observations, very slowly rotating oblate E-type galaxies are known that have the shapes, which, because of instability, cannot be supported by velocity dispersion anisotropy exclusively. The hypothesis of a massive dark-matter outer ring requires no extreme anisotropy of pressure; it not only explains the shape of these elliptical galaxies, but also sheds new light on the riddle of the ellipticity limit (E7 of elliptical galaxies.
Equilibrium figures inside the dark-matter ring and the shapes of elliptical galaxies
Kondratyev, B. P.; Trubitsyna, N. G.; Kireeva, E. N.
We solve the general problem of the theory of equilibrium figures and analyze two classes of liquid rotating gravitating figures residing inside a gravitating ring or torus. These figures form families of sequences of generalized oblate spheroids and triaxial ellipsoids, which at the lower limit of the tidal parameter α = 0 have the form of the Maclaurin spheroids and the Jacobi ellipsoids. In intermediate cases 0 equilibrium figures has two non-rotating boundary spheroids. At the upper limit αmax/(π Gρ ) = 0.1867 the sequence degenerates into a single non-rotating spheroid with the eccentricity {e cr} ≈ 0.96 corresponding to the flattening limit of elliptical galaxies (E7). We also perform a detailed study of the sequences of generalized triaxial ellipsoids and find bifurcation points of triaxial ellipsoids in the sequences of generalized spheroids. We use this method to explain the shapes of E-galaxies. According to observations, very slowly rotating oblate E-type galaxies are known that have the shapes, which, because of instability, cannot be supported by velocity dispersion anisotropy exclusively. The hypothesis of a massive dark-matter outer ring requires no extreme anisotropy of pressure; it not only explains the shape of these elliptical galaxies, but also sheds new light on the riddle of the ellipticity limit (E7) of elliptical galaxies.
Convective heat transfer from a heated elliptic cylinder at uniform wall temperature
Energy Technology Data Exchange (ETDEWEB)
Kaprawi, S.; Santoso, Dyos [Mechanical Department of Sriwijaya University, Jl. Raya Palembang-Prabumulih Km. 32 Inderalaya 50062 Ogan Ilir (Indonesia)
2013-07-01
This study is carried out to analyse the convective heat transfer from a circular and an elliptic cylinders to air. Both circular and elliptic cylinders have the same cross section. The aspect ratio of cylinders range 0-1 are studied. The implicit scheme of the finite difference is applied to obtain the discretized equations of hydrodynamic and thermal problem. The Choleski method is used to solve the discretized hydrodynamic equation and the iteration method is applied to solve the discretized thermal equation. The circular cylinder has the aspect ratio equal to unity while the elliptical cylinder has the aspect ratio less than unity by reducing the minor axis and increasing the major axis to obtain the same cross section as circular cylinder. The results of the calculations show that the skin friction change significantly, but in contrast with the elliptical cylinders have greater convection heat transfer than that of circular cylinder. Some results of calculations are compared to the analytical solutions given by the previous authors.
How Does Abundance Affect the Strength of UV Emission in Elliptical Galaxies?
Sonneborn, George (Technical Monitor); Brown, Thomas
2005-01-01
This program used the Far Ultraviolet Spectroscopic Explorer (FUSE) to observe elliptical galaxies with the intention of measuring the chemical abundances in their hot stellar populations. It was designed to complement an earlier FUSE program that observed elliptical galaxies with strong UV emission. The current program originally planned observations of two ellipticals with weak UV emission (M32 and M49). Once FUSE encountered pointing control problems in certain regions of the sky (particularly Virgo, which is very unfortunate for the study of ellipticals in general), M49 was replaced with the bulge of M31, which has a similar UV-to-optical flux ratio as the center of M49. As the closest elliptical galaxy and the one with the weakest UV-to-optical flux ratio, M32 was an obvious choice of target, but M49 was the ideal complementary target, because it has a very low reddening (unlike M32). With the inability of FUSE to point at Virgo, nearly all of the best elliptical galaxies (bright galaxies with low foreground extinction) were also lost, and this severely hampered three FUSE programs of the PI, all focused on the hot stellar populations of ellipticals. M31 was the best replacement for M49, but like M32, it suffers from significant foreground reddening. Strong Galactic ISM lines heavily contaminate the FUSE spectra of M31 and M32. These ISM lines are coincident with the photospheric lines from the stellar populations (whereas M49, with little foreground ISM and significant redshift, would not have suffered from this problem). We have reduced the faint (and thus difficult) data for M31 and M32, producing final co-added spectra representing all of the exposures, but we have not yet finished our analysis, due to the complication of the contaminating ISM. The silver lining here is the set of CHI lines at 1175 Angstroms, which are not significantly contaminated by the ISM. A comparison of the M31 spectrum with other galaxies observed by FEE showed a surprising result
Elliptic genus derivation of 4d holomorphic blocks
Poggi, Matteo
2018-03-01
We study elliptic vortices on ℂ × T 2 by considering the 2d quiver gauge theory describing their moduli spaces. The elliptic genus of these moduli spaces is the elliptic version of vortex partition function of the 4d theory. We focus on two examples: the first is a N = 1, U( N ) gauge theory with fundamental and anti-fundamental matter; the second is a N = 2, U( N ) gauge theory with matter in the fundamental representation. The results are instances of 4d "holomorphic blocks" into which partition functions on more complicated surfaces factorize. They can also be interpreted as free-field representations of elliptic Virasoro algebrae.
Note on twisted elliptic genus of K3 surface
Energy Technology Data Exchange (ETDEWEB)
Eguchi, Tohru, E-mail: eguchi@yukawa.kyoto-u.ac.j [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Hikami, Kazuhiro, E-mail: KHikami@gmail.co [Department of Mathematics, Naruto University of Education, Tokushima 772-8502 (Japan)
2011-01-03
We discuss the possibility of Mathieu group M{sub 24} acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M{sub 24} so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M{sub 24}. In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.
Note on twisted elliptic genus of K3 surface
International Nuclear Information System (INIS)
Eguchi, Tohru; Hikami, Kazuhiro
2011-01-01
We discuss the possibility of Mathieu group M 24 acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M 24 so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M 24 . In this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine.
Statistics about elliptic curves over finite prime fields
Gekeler, Ernst-Ulrich
2006-01-01
We derive formulas for the probabilities of various properties (cyclicity, squarefreeness, generation by random points) of the point groups of randomly chosen elliptic curves over random prime fields.
COLORS OF ELLIPTICALS FROM GALEX TO SPITZER
Energy Technology Data Exchange (ETDEWEB)
Schombert, James M., E-mail: jschombe@uoregon.edu [Department of Physics, University of Oregon, Eugene, OR 97403 (United States)
2016-12-01
Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.
Constraints on stellar populations in elliptical galaxies
International Nuclear Information System (INIS)
Rose, J.A.
1985-01-01
Photographic image-tube spectra in the wavelength interval 3400--4500 A have been obtained for 12 elliptical galaxy nuclei and for a number of Galactic globular and open clusters in integrated light. The spectra have a wavelength resolution of 2.5 A and a high signal-to-noise ratio. A new quantitative three-dimensional spectral-classification system that has been calibrated on a sample of approx.200 individual stars (Rose 1984) is used to analyze the integrated spectra of the ellipical galaxy nuclei and to compare them with those of the globular clusters. This system is based on spectral indices that are formed by comparing neighborhood spectral features and is unaffected by reddening. The following results have been found: (1) Hot stars (i.e., spectral types A and B) contribute only 2% to the integrated spectra of elliptical galaxies at approx.4000 A, except in the nucleus of NGC 205, where the hot component dominates. This finding is based on a spectral index formed from the relative central intensities in the Ca II H+Hepsilon and Ca II K lines, which is shown to be constant for late-type (i.e., F, G, and K) stars, but changes drastically at earlier types. The observed Ca II H+Hepsilon/Ca II K indices in ellipticals can be reproduced by the inclusion of a small metal-poor population (as in the globular cluster M5) that contributes approx.8% of the light at 4000 A. Such a contribution is qualitatively consistent with the amount of
COLORS OF ELLIPTICALS FROM GALEX TO SPITZER
International Nuclear Information System (INIS)
Schombert, James M.
2016-01-01
Multi-color photometry is presented for a large sample of local ellipticals selected by morphology and isolation. The sample uses data from the Galaxy Evolution Explorer ( GALEX ), Sloan Digital Sky Survey (SDSS), Two Micron All-Sky Survey (2MASS), and Spitzer to cover the filters NUV , ugri , JHK and 3.6 μ m. Various two-color diagrams, using the half-light aperture defined in the 2MASS J filter, are very coherent from color to color, meaning that galaxies defined to be red in one color are always red in other colors. Comparison to globular cluster colors demonstrates that ellipticals are not composed of a single age, single metallicity (e.g., [Fe/H]) stellar population, but require a multi-metallicity model using a chemical enrichment scenario. Such a model is sufficient to explain two-color diagrams and the color–magnitude relations for all colors using only metallicity as a variable on a solely 12 Gyr stellar population with no evidence of stars younger than 10 Gyr. The [Fe/H] values that match galaxy colors range from −0.5 to +0.4, much higher (and older) than population characteristics deduced from Lick/IDS line-strength system studies, indicating an inconsistency between galaxy colors and line indices values for reasons unknown. The NUV colors have unusual behavior, signaling the rise and fall of the UV upturn with elliptical luminosity. Models with blue horizontal branch tracks can reproduce this behavior, indicating the UV upturn is strictly a metallicity effect.
Guided modes of elliptical metamaterial waveguides
International Nuclear Information System (INIS)
Halterman, Klaus; Feng, Simin; Overfelt, P. L.
2007-01-01
The propagation of guided electromagnetic waves in open elliptical metamaterial waveguide structures is investigated. The waveguide contains a negative-index media core, where the permittivity ε and permeability μ are negative over a given bandwidth. The allowed mode spectrum for these structures is numerically calculated by solving a dispersion relation that is expressed in terms of Mathieu functions. By probing certain regions of parameter space, we find the possibility exists to have extremely localized waves that transmit along the surface of the waveguide
Evolution of Hot Gas in Elliptical Galaxies
Mathews, William G.
2004-01-01
This theory grant was awarded to study the curious nature, origin and evolution of hot gas in elliptical galaxies and their surrounding groups. Understanding the properties of this X-ray emitting gas has profound implications over the broad landscape of modern astrophysics: cosmology, galaxy formation, star formation, cosmic metal enrichment, galactic structure and dynamics, and the physics of hot gases containing dust and magnetic fields. One of our principal specific objectives was to interpret the marvelous new observations from the XMM and Chandru satellite X-ray telescopes.
Neutral hydrogen in elliptical and IO galaxies
International Nuclear Information System (INIS)
Bottinelli, L.; Gouguenheim, L.
1979-01-01
New HI detections have been obtained using the Nancay radiotelescope for NGC 2974 and 3962. These results and the large scale distribution obtained for NGC 3962 indicate that the HI-rich elliptical galaxies exhibit common properties which are not easily explained by accretion of an intergalactic cloud. The field aroud NGC 1052 has been mapped and there is an HI connection with the neighbouring galaxies. The HI content of several IO galaxies indicates that the galaxies which are members of groups are relatively HI-rich; this could be produced by additional HI coming from companion galaxies [fr
Violent Relaxation, Dynamical Instabilities and the Formation of Elliptical Galaxies
Aguilar, L. A.
1990-11-01
RESUMEN: El problema de la formaci6n de galaxias elfpticas por medjo de colapso gravitacional sin disipaci6n de energfa es estudiado usando un gran numero de simulaciones numericas. Se muestra que este tipo de colapsos, partiendo de condiciones iniciales frfas donde la energfa cinetica inicial representa s6lo un 5%, 0 , de a potencial inicial, produce sistemas relajados de forma triaxial muy similares a las galaxias elfpticas reales en sus formas y perfiles de densidad en proyecci6i . La forina triaxial resulta de la acci6n de una inestabilidad dinamica que aparece en sistemas 'inicos dominados por movimientos radiales, mientras que el perfil de densidad final Cs debido al llamado relajamiento violento que tiende a producir una distribuci6n en espacio fase unica. Estos dos fen6menos tienden a borrar los detalles particulares sobre las condiciones iniciales y dan lugar a una evoluci6n convergente hacia sistemas realistas, esto innecesario el uso de condiciones iniciales especiales (excepto por Ia condici6i de que estas deben ser frfas). Las condiciones iniciales frfas producen los movimientos radiales y fluctuaciones de la energfa potencial requeridos por ambos fen6menos. ABSTRACT: The problem of formation of elliptical galaxies via dissipationless collapse is studied using a large set of numerical simulations. It is shown that dissipationless collapses from cold initial conditions, where the total initial kinetic energy is less than 5% ofthe initial potential energy, lead to relaxed triaxial systems ery similar to real elliptical galaxies ii projected shape and density profiles. The triaxial shape is due to the of a dynamical instability that appears on systems dominated by radial orbits, while final density profile is due to violent relaxation that tends to produce a unique distribution iii space. These two phenomena erase memory of the initial prodtice a convergent evolution toward realistic systems, thus making unnecessary use o[special initial conditions (other
Analytic regularity and collocation approximation for elliptic PDEs with random domain deformations
Castrillon, Julio
2016-03-02
In this work we consider the problem of approximating the statistics of a given Quantity of Interest (QoI) that depends on the solution of a linear elliptic PDE defined over a random domain parameterized by N random variables. The elliptic problem is remapped onto a corresponding PDE with a fixed deterministic domain. We show that the solution can be analytically extended to a well defined region in CN with respect to the random variables. A sparse grid stochastic collocation method is then used to compute the mean and variance of the QoI. Finally, convergence rates for the mean and variance of the QoI are derived and compared to those obtained in numerical experiments.
On the classification of elliptic foliations induced by real quadratic fields with center
Puchuri, Liliana; Bueno, Orestes
2016-12-01
Related to the study of Hilbert's infinitesimal problem, is the problem of determining the existence and estimating the number of limit cycles of the linear perturbation of Hamiltonian fields. A classification of the elliptic foliations in the projective plane induced by the fields obtained by quadratic fields with center was already studied by several authors. In this work, we devise a unified proof of the classification of elliptic foliations induced by quadratic fields with center. This technique involves using a formula due to Cerveau & Lins Neto to calculate the genus of the generic fiber of a first integral of foliations of these kinds. Furthermore, we show that these foliations induce several examples of linear families of foliations which are not bimeromorphically equivalent to certain remarkable examples given by Lins Neto.
Fundamental structure of steady plastic shock waves in metals
Molinari, A.; Ravichandran, G.
2004-01-01
The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic–plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large de...
Directory of Open Access Journals (Sweden)
Lalsingh Khalsa
2018-01-01
Full Text Available This paper is an attempt to determine quasi-static thermal stresses in a thin elliptical plate which is subjected to transient temperature on the top face with zero temperature on the lower face and the homogeneous boundary condition of the third kind on the fixed elliptical curved surface. The solution to conductivity equation is elucidated by employing a classical method. The solution of stress components is achieved by using Goodier’s and Airy’s potential function involving the Mathieu and modified functions and their derivatives. The obtained numerical results are accurate enough for practical purposes, better understanding of the underlying elliptic object, and better estimates of the thermal effect on the thermoelastic problem. The conclusions emphasize the importance of better understanding of the underlying elliptic structure, improved understanding of its relationship to circular object profile, and better estimates of the thermal effect on the thermoelastic problem.
Ellipticity dependence of the near-threshold harmonics of H2 in an elliptical strong laser field.
Yang, Hua; Liu, Peng; Li, Ruxin; Xu, Zhizhan
2013-11-18
We study the ellipticity dependence of the near-threshold (NT) harmonics of pre-aligned H2 molecules using the time-dependent density functional theory. The anomalous maximum appearing at a non-zero ellipticity for the generated NT harmonics can be attributed to multiphoton effects of the orthogonally polarized component of the elliptical driving laser field. Our calculation also shows that the structure of the bound-state, such as molecular alignment and bond length, can be sensitively reflected on the ellipticity dependence of the near-threshold harmonics.
Can mergers make slowly rotating elliptical galaxies
International Nuclear Information System (INIS)
White, S.D.M.
1979-01-01
The results of numerical experiments are used to guide an analytic discussion of hyperbolic mergers among an uncorrelated galaxy population. The expected merger rate is derived as a function of progenitor mass and relative angular momentum, and is used to predict the distribution of the parameter V/sub c//sigma 0 for merger products where V/sub c/ is the maximum observed rotation velocity in a galaxy and sigma 0 is its central velocity dispersion. The median value of this parameter for mergers between comparable galaxies is estimated to be 0.65 and is higher than the observed value in any of the 14 galaxies for which data are available. It seems unlikely that most elliptical galaxies are the result of single or multiple mergers between initially unbound stellar systems; further observational and theoretical work is suggested which should lead to a conclusive test of this picture. The present arguments cannot, however, exclude formation from low angular momentum elliptical orbits
Thermodynamics of Inozemtsev's elliptic spin chain
International Nuclear Information System (INIS)
Klabbers, Rob
2016-01-01
We study the thermodynamic behaviour of Inozemtsev's long-range elliptic spin chain using the Bethe ansatz equations describing the spectrum of the model in the infinite-length limit. We classify all solutions of these equations in that limit and argue which of these solutions determine the spectrum in the thermodynamic limit. Interestingly, some of the solutions are not selfconjugate, which puts the model in sharp contrast to one of the model's limiting cases, the Heisenberg XXX spin chain. Invoking the string hypothesis we derive the thermodynamic Bethe ansatz equations (TBA-equations) from which we determine the Helmholtz free energy in thermodynamic equilibrium and derive the associated Y-system. We corroborate our results by comparing numerical solutions of the TBA-equations to a direct computation of the free energy for the finite-length hamiltonian. In addition we confirm numerically the interesting conjecture put forward by Finkel and González-López that the original and supersymmetric versions of Inozemtsev's elliptic spin chain are equivalent in the thermodynamic limit.
Development of a superconducting elliptically polarized undulator
International Nuclear Information System (INIS)
Chen, S D; Liang, K S; Jan, J C; Hwang, C S
2010-01-01
A superconducting, elliptically polarized undulator (SEPU24) with a period of length 24 mm was developed to provide first-harmonic photons from a 0.8 GeV storage ring for extreme-ultraviolet (EUV) lithography experiment. In SEPU24, two layers of a magnet array structure - with and without rotated magnet arrays - are combined to generate a helical field that provides radiation with wavelength 13.5 nm in the in-band energy. The arrays of iron and aluminium poles were wound with a racetrack coil vertically as for the magnet pole array. The elliptical field is created when the up and down magnet-pole arrays pass excitation currents in alternate directions. SEPU24 is designed with a magnet of gap 6.8 mm, yielding magnetic flux density B x =B z =0.61 T of the helical field. A prototype magnet was fabricated with a diode for quench protection, and assembled in a test dewar to test the magnet performance. A cryogenic Hall-probe system with a precise linear stage was used to measure the distribution of the magnetic field. We describe the design concept and algorithm, the engineering design, the calculation of the magnetic field, the construction and testing of the 10-pole prototype magnet and related issues.
Elliptic curves, modular forms, and their L-functions
Lozano-Robledo, Alvaro
2011-01-01
Many problems in number theory have simple statements, but their solutions require a deep understanding of algebra, algebraic geometry, complex analysis, group representations, or a combination of all four. The original simply stated problem can be obscured in the depth of the theory developed to understand it. This book is an introduction to some of these problems, and an overview of the theories used nowadays to attack them, presented so that the number theory is always at the forefront of the discussion. Lozano-Robledo gives an introductory survey of elliptic curves, modular forms, and L-functions. His main goal is to provide the reader with the big picture of the surprising connections among these three families of mathematical objects and their meaning for number theory. As a case in point, Lozano-Robledo explains the modularity theorem and its famous consequence, Fermat's Last Theorem. He also discusses the Birch and Swinnerton-Dyer Conjecture and other modern conjectures. The book begins with some moti...
Picone-type inequalities for nonlinear elliptic equations and their applications
Directory of Open Access Journals (Sweden)
Takaŝi Kusano
2001-01-01
Full Text Available Picone-type inequalities are derived for nonlinear elliptic equations, and Sturmian comparison theorems are established as applications. Oscillation theorems for forced super-linear elliptic equations and superlinear-sublinear elliptic equations are also obtained.
Elliptical Orbit [arrow right] 1/r[superscript 2] Force
Prentis, Jeffrey; Fulton, Bryan; Hesse, Carol; Mazzino, Laura
2007-01-01
Newton's proof of the connection between elliptical orbits and inverse-square forces ranks among the "top ten" calculations in the history of science. This time-honored calculation is a highlight in an upper-level mechanics course. It would be worthwhile if students in introductory physics could prove the relation "elliptical orbit" [arrow right]…
Newton flows for elliptic functions: A pilot study
Twilt, F.; Helminck, G.F.; Snuverink, M.; van den Brug, L.
2008-01-01
Elliptic Newton flows are generated by a continuous, desingularized Newton method for doubly periodic meromorphic functions on the complex plane. In the special case, where the functions underlying these elliptic Newton flows are of second-order, we introduce various, closely related, concepts of
Multiple solutions for a quasilinear (p,q-elliptic system
Directory of Open Access Journals (Sweden)
Seyyed Mohsen Khalkhali
2013-06-01
Full Text Available In this article we show the existence of three weak solutions of a Dirichlet quasilinear elliptic system of differential equations which involves a general (p,q-elliptic operator in divergence, with $1
Rotational magnetization of anisotropic media: Lag angle, ellipticity and accommodation
International Nuclear Information System (INIS)
Kahler, G.R.; Della Torre, E.
2006-01-01
This paper discusses the change in the ellipticity of two-dimensional magnetization trajectories as the applied field rotates from the easy axis to the hard axis of a material. Furthermore, the impact that the reversible magnetization has on the ellipticity is discussed, including the relationship between the magnetization squareness and the reversible component of the magnetization
Weierstrass Elliptic Function Solutions to Nonlinear Evolution Equations
International Nuclear Information System (INIS)
Yu Jianping; Sun Yongli
2008-01-01
This paper is based on the relations between projection Riccati equations and Weierstrass elliptic equation, combined with the Groebner bases in the symbolic computation. Then the novel method for constructing the Weierstrass elliptic solutions to the nonlinear evolution equations is given by using the above relations
Near-infrared photometry of bright elliptical galaxies
Peletier, R. F.; Valentijn, E. A.; Jameson, R. F.
High-quality visual-infrared color profiles have been determined for elliptical galaxies for the first time. Surface photometry in J and K is presented for 12 bright elliptical galaxies, and the results have been combined with CCD data in visual passbands. It is shown that the galaxies become bluer
On the Behavior of Eisenstein Series Through Elliptic Degeneration
Garbin, D.; Pippich, A.-M. V.
2009-12-01
Let Γ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane {mathbb{H}}, and let {M = Γbackslash mathbb{H}} be the associated finite volume hyperbolic Riemann surface. If γ is a primitive parabolic, hyperbolic, resp. elliptic element of Γ, there is an associated parabolic, hyperbolic, resp. elliptic Eisenstein series. In this article, we study the limiting behavior of these Eisenstein series on an elliptically degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. The elliptic Eisenstein series associated to a degenerating elliptic element converges up to a factor to the parabolic Eisenstein series associated to the parabolic element which fixes the newly developed cusp on the limit surface.
Ellipticity of near-threshold harmonics from stretched molecules.
Li, Weiyan; Dong, Fulong; Yu, Shujuan; Wang, Shang; Yang, Shiping; Chen, Yanjun
2015-11-30
We study the ellipticity of near-threshold harmonics (NTH) from aligned molecules with large internuclear distances numerically and analytically. The calculated harmonic spectra show a broad plateau for NTH which is several orders of magnitude higher than that for high-order harmonics. In particular, the NTH plateau shows high ellipticity at small and intermediate orientation angles. Our analyses reveal that the main contributions to the NTH plateau come from the transition of the electron from continuum states to these two lowest bound states of the system, which are strongly coupled together by the laser field. Besides continuum states, higher excited states also play a role in the NTH plateau, resulting in a large phase difference between parallel and perpendicular harmonics and accordingly high ellipticity of the NTH plateau. The NTH plateau with high intensity and large ellipticity provides a promising manner for generating strong elliptically-polarized extreme-ultraviolet (EUV) pulses.
Multipacting studies in elliptic SRF cavities
Prakash, Ram; Jana, Arup Ratan; Kumar, Vinit
2017-09-01
Multipacting is a resonant process, where the number of unwanted electrons resulting from a parasitic discharge rapidly grows to a larger value at some specific locations in a radio-frequency cavity. This results in a degradation of the cavity performance indicators (e.g. the quality factor Q and the maximum achievable accelerating gradient Eacc), and in the case of a superconducting radiofrequency (SRF) cavity, it leads to a quenching of superconductivity. Numerical simulations are essential to pre-empt the possibility of multipacting in SRF cavities, such that its design can be suitably refined to avoid this performance limiting phenomenon. Readily available computer codes (e.g.FishPact, MultiPac,CST-PICetc.) are widely used to simulate the phenomenon of multipacting in such cases. Most of the contemporary two dimensional (2D) codes such as FishPact, MultiPacetc. are unable to detect the multipacting in elliptic cavities because they use a simplistic secondary emission model, where it is assumed that all the secondary electrons are emitted with same energy. Some three-dimensional (3D) codes such as CST-PIC, which use a more realistic secondary emission model (Furman model) by following a probability distribution for the emission energy of secondary electrons, are able to correctly predict the occurrence of multipacting. These 3D codes however require large data handling and are slower than the 2D codes. In this paper, we report a detailed analysis of the multipacting phenomenon in elliptic SRF cavities and development of a 2D code to numerically simulate this phenomenon by employing the Furman model to simulate the secondary emission process. Since our code is 2D, it is faster than the 3D codes. It is however as accurate as the contemporary 3D codes since it uses the Furman model for secondary emission. We have also explored the possibility to further simplify the Furman model, which enables us to quickly estimate the growth rate of multipacting without
Fast Multipole-Based Elliptic PDE Solver and Preconditioner
Ibeid, Huda
2016-12-07
Exascale systems are predicted to have approximately one billion cores, assuming Gigahertz cores. Limitations on affordable network topologies for distributed memory systems of such massive scale bring new challenges to the currently dominant parallel programing model. Currently, there are many efforts to evaluate the hardware and software bottlenecks of exascale designs. It is therefore of interest to model application performance and to understand what changes need to be made to ensure extrapolated scalability. Fast multipole methods (FMM) were originally developed for accelerating N-body problems for particle-based methods in astrophysics and molecular dynamics. FMM is more than an N-body solver, however. Recent efforts to view the FMM as an elliptic PDE solver have opened the possibility to use it as a preconditioner for even a broader range of applications. In this thesis, we (i) discuss the challenges for FMM on current parallel computers and future exascale architectures, with a focus on inter-node communication, and develop a performance model that considers the communication patterns of the FMM for spatially quasi-uniform distributions, (ii) employ this performance model to guide performance and scaling improvement of FMM for all-atom molecular dynamics simulations of uniformly distributed particles, and (iii) demonstrate that, beyond its traditional use as a solver in problems for which explicit free-space kernel representations are available, the FMM has applicability as a preconditioner in finite domain elliptic boundary value problems, by equipping it with boundary integral capability for satisfying conditions at finite boundaries and by wrapping it in a Krylov method for extensibility to more general operators. Compared with multilevel methods, FMM is capable of comparable algebraic convergence rates down to the truncation error of the discretized PDE, and it has superior multicore and distributed memory scalability properties on commodity
Directory of Open Access Journals (Sweden)
Z. Khodadadi
2008-03-01
Full Text Available Let S be matrix of residual sum of square in linear model Y = Aβ + e where matrix e is distributed as elliptically contoured with unknown scale matrix Σ. In present work, we consider the problem of estimating Σ with respect to squared loss function, L(Σˆ , Σ = tr(ΣΣˆ −1 −I 2 . It is shown that improvement of the estimators were obtained by James, Stein [7], Dey and Srivasan [1] under the normality assumption remains robust under an elliptically contoured distribution respect to squared loss function
Perturbed asymptotically linear problems
Bartolo, R.; Candela, A. M.; Salvatore, A.
2012-01-01
The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...
A Gas-Kinetic Method for Hyperbolic-Elliptic Equations and Its Application in Two-Phase Fluid Flow
Xu, Kun
1999-01-01
A gas-kinetic method for the hyperbolic-elliptic equations is presented in this paper. In the mixed type system, the co-existence and the phase transition between liquid and gas are described by the van der Waals-type equation of state (EOS). Due to the unstable mechanism for a fluid in the elliptic region, interface between the liquid and gas can be kept sharp through the condensation and evaporation process to remove the "averaged" numerical fluid away from the elliptic region, and the interface thickness depends on the numerical diffusion and stiffness of the phase change. A few examples are presented in this paper for both phase transition and multifluid interface problems.
Magnetic elliptical polarization of Schumann resonances
International Nuclear Information System (INIS)
Sentman, D.D.
1987-01-01
Measurements of orthogonal, horizontal components of the magnetic field in the ELF range obtained during September 1985 show that the Schumann resonance eigenfrequencies determined separately for the north-south and east-west magnetic components differ by as much as 0.5 Hz, suggesting that the underlying magnetic signal is not linearly polarized at such times. The high degree of magnetic ellipticity found suggests that the side multiplets of the Schumann resonances corresponding to azimuthally inhomogeneous normal modes are strongly excited in the highly asymmetric earth-ionosphere cavity. The dominant sense of polarization over the measurement passband is found to be right-handed during local daylight hours, and to be left-handed during local nighttime hours. 16 references
Elliptic flow and incomplete equilibration at RHIC
Bhalerao, R S; Borghini, N; Ollitrault, Jean Yves
2005-01-01
We argue that RHIC data, in particular those on the anisotropic flow coefficients v_2 and v_4, suggest that the matter produced in the early stages of nucleus-nucleus collisions is incompletely thermalized. We interpret the parameter (1/S)(dN/dy), where S is the transverse area of the collision zone and dN/dy the multiplicity density, as an indicator of the number of collisions per particle at the time when elliptic flow is established, and hence as a measure of the degree of equilibration. This number serves as a control parameter which can be varied experimentally by changing the system size, the centrality or the beam energy. We provide predictions for Cu-Cu collisions at RHIC as well as for Pb-Pb collisions at the LHC.
Steady-State Process Modelling
DEFF Research Database (Denmark)
Cameron, Ian; Gani, Rafiqul
2011-01-01
illustrate the “equation oriented” approach as well as the “sequential modular” approach to solving complex flowsheets for steady state applications. The applications include the Williams-Otto plant, the hydrodealkylation (HDA) of toluene, conversion of ethylene to ethanol and a bio-ethanol process....
Obstacle problems in mathematical physics
Rodrigues, J-F
1987-01-01
The aim of this research monograph is to present a general account of the applicability of elliptic variational inequalities to the important class of free boundary problems of obstacle type from a unifying point of view of classical Mathematical Physics.The first part of the volume introduces some obstacle type problems which can be reduced to variational inequalities. Part II presents some of the main aspects of the theory of elliptic variational inequalities, from the abstract hilbertian framework to the smoothness of the variational solution, discussing in general the properties of the free boundary and including some results on the obstacle Plateau problem. The last part examines the application to free boundary problems, namely the lubrication-cavitation problem, the elastoplastic problem, the Signorini (or the boundary obstacle) problem, the dam problem, the continuous casting problem, the electrochemical machining problem and the problem of the flow with wake in a channel past a profile.
FUNPACK-2, Subroutine Library, Bessel Function, Elliptical Integrals, Min-max Approximation
International Nuclear Information System (INIS)
Cody, W.J.; Garbow, Burton S.
1975-01-01
1 - Description of problem or function: FUNPACK is a collection of FORTRAN subroutines to evaluate certain special functions. The individual subroutines are (Identification/Description): NATSI0 F2I0 Bessel function I 0 ; NATSI1 F2I1 Bessel function I 1 ; NATSJ0 F2J0 Bessel function J 0 ; NATSJ1 F2J1 Bessel function J 1 ; NATSK0 F2K0 Bessel function K 0 ; NATSK1 F2K1 Bessel function K 1 ; NATSBESY F2BY Bessel function Y ν ; DAW F1DW Dawson's integral; DELIPK F1EK Complete elliptic integral of the first kind; DELIPE F1EE Complete elliptic integral of the second kind; DEI F1EI Exponential integrals; NATSPSI F2PS Psi (logarithmic derivative of gamma function); MONERR F1MO Error monitoring package . 2 - Method of solution: FUNPACK uses evaluation of min-max approximations
A Novel Algorithm for the Sound Field of Elliptically Shaped Transducers
Ding, De-Sheng; Lü, Hua; Shen, Chang-Sheng
2014-06-01
An alternative extension to the Gaussian-beam expansion technique is presented for efficient computation of the Fresnel field integral for elliptically symmetric sources. With a known result that the circ function is approximately decomposed into a sum of Gaussian functions, the cosine function is similarly expanded by the Bessel—Fourier transform. Two expansions are together inserted into this integral, it is then expressible in terms of the simple algebraic functions. The numerical examples for the elliptical and uniform piston transducers are presented, in good agreement with the results given by other methods. The approach is applicable to treat the field radiation problem for a large and important group of piston sources in acoustics.
Asymptotic stability of steady compressible fluids
Padula, Mariarosaria
2011-01-01
This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...
Vanishing viscosity limits of mixed hyperbolic–elliptic systems arising in multilayer channel flows
International Nuclear Information System (INIS)
Papaefthymiou, E S; Papageorgiou, D T
2015-01-01
This study considers the spatially periodic initial value problem of 2 × 2 quasi-linear parabolic systems in one space dimension having quadratic polynomial flux functions. These systems arise physically in the interfacial dynamics of viscous immiscible multilayer channel flows. The equations describe the spatiotemporal evolution of phase-separating interfaces with dissipation arising from surface tension (fourth-order) and/or stable stratification effects (second-order). A crucial mathematical aspect of these systems is the presence of mixed hyperbolic–elliptic flux functions that provide the only source of instability. The study concentrates on scaled spatially 2π-periodic solutions as the dissipation vanishes, and in particular the behaviour of such limits when generalized dissipation operators (spanning second to fourth-order) are considered. Extensive numerical computations and asymptotic analysis suggest that the existence (or not) of bounded vanishing viscosity solutions depends crucially on the structure of the flux function. In the absence of linear terms (i.e. homogeneous flux functions) the vanishing viscosity limit does not exist in the L ∞ -norm. On the other hand, if linear terms in the flux function are present the computations strongly suggest that the solutions exist and are bounded in the L ∞ -norm as the dissipation vanishes. It is found that the key mechanism that provides such boundedness centres on persistent spatiotemporal hyperbolic–elliptic transitions. Strikingly, as the dissipation decreases, the flux function becomes almost everywhere hyperbolic except on a fractal set of elliptic regions, whose dimension depends on the order of the regularized operator. Furthermore, the spatial structures of the emerging weak solutions are found to support an increasing number of discontinuities (measure-valued solutions) located in the vicinity of the fractally distributed elliptic regions. For the unscaled problem, such spatially
Horimoto, Yasufumi; Simonet-Davin, Gabriel; Katayama, Atsushi; Goto, Susumu
2018-04-01
We experimentally investigate the flow transition to developed turbulence in a precessing spheroid with a small ellipticity. Fully developed turbulence appears through a subcritical transition when we fix the Reynolds number (the spin rate) and gradually increase the Poincaré number (the precession rate). In the transitional range of the Poincaré number, two qualitatively different turbulent states (i.e., fully developed turbulence and quiescent turbulence with a spin-driven global circulation) are stable and they are connected by a hysteresis loop. This discontinuous transition is in contrast to the continuous transition in a precessing sphere, for which neither bistable turbulent states nor hysteresis loops are observed. The small ellipticity of the container makes the global circulation of the confined fluid more stable, and it requires much stronger precession of the spheroid, than a sphere, for fully developed turbulence to be sustained. Nevertheless, once fully developed turbulence is sustained, its flow structures are almost identical in the spheroid and sphere. The argument [Lorenzani and Tilgner, J. Fluid Mech. 492, 363 (2003), 10.1017/S002211200300572X; Noir et al., Geophys. J. Int. 154, 407 (2003), 10.1046/j.1365-246X.2003.01934.x] on the basis of the analytical solution [Busse, J. Fluid Mech. 33, 739 (1968), 10.1017/S0022112068001655] of the steady global circulation in a weak precession range well describes the onset of the fully developed turbulence in the spheroid.
Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows
Pereira, Anselmo S.; Mompean, Gilmar; Thompson, Roney L.; Soares, Edson J.
2017-11-01
In the present paper, we investigate the polymer-turbulence interaction by discriminating between the mechanical responses of this system to three different subdomains: elliptical, parabolic, and hyperbolic, corresponding to regions where the magnitude of vorticity is greater than, equal to, or less than the magnitude of the rate of strain, respectively, in accordance with the Q-criterion. Recently, it was recognized that hyperbolic structures play a crucial role in the drag reduction phenomenon of viscoelastic turbulent flows, thanks to the observation that hyperbolic structures, as well as vortical ones, are weakened by the action of polymers in turbulent flows in a process that can be referred to as flow parabolization. We employ direct numerical simulations of a viscoelastic finite extensible nonlinear elastic model with the Peterlin approximation to examine the transient evolution and statistically steady regimes of a plane Couette flow that has been perturbed from a laminar flow at an initial time and developed a turbulent regime as a result of this perturbation. We have found that even more activity is located within the confines of the hyperbolic structures than in the elliptical ones, which highlights the importance of considering the role of hyperbolic structures in the drag reduction mechanism.
On-design solutions of hypersonic flows past elliptic-cone derived waveriders
International Nuclear Information System (INIS)
Yoon, Bok Hyun
1992-01-01
The hypersonic flows past a class of elliptic-conederived waverider at the on-design condition are analyzed. A CFD(Computational Fluid Dynamics) algorithm due to Lawrence is utilized to numerically integrate the steady Euler equations. The singular behavior at the sharp leading-edge of a waverider where a bow shock is to be attached for the ideal situation makes the computation extremely difficult for convergence of numerical solution. Various types of grids are generated and tested for converged solutions. A new formula for more accurate waverider shape is established and by means of this new waverider configuration the reason for the shock stand-off which was detected in previous investigations is clarified in this paper. (Author)
Convergence criteria for systems of nonlinear elliptic partial differential equations
International Nuclear Information System (INIS)
Sharma, R.K.
1986-01-01
This thesis deals with convergence criteria for a special system of nonlinear elliptic partial differential equations. A fixed-point algorithm is used, which iteratively solves one linearized elliptic partial differential equation at a time. Conditions are established that help foresee the convergence of the algorithm. Under reasonable hypotheses it is proved that the algorithm converges for such nonlinear elliptic systems. Extensive experimental results are reported and they show the algorithm converges in a wide variety of cases and the convergence is well correlated with the theoretical conditions introduced in this thesis
Dusty Feedback from Massive Black Holes in Two Elliptical Galaxies
Temi, P.; Brighenti, F.; Mathews, W. G.; Amblard, A.; Riguccini, L.
2013-01-01
Far-infrared dust emission from elliptical galaxies informs us about galaxy mergers, feedback energy outbursts from supermassive black holes and the age of galactic stars. We report on the role of AGN feedback observationally by looking for its signatures in elliptical galaxies at recent epochs in the nearby universe. We present Herschel observations of two elliptical galaxies with strong and spatially extended FIR emission from colder grains 5-10 kpc distant from the galaxy cores. Extended excess cold dust emission is interpreted as evidence of recent feedback-generated AGN energy outbursts in these galaxies, visible only in the FIR, from buoyant gaseous outflows from the galaxy cores.
Asymmetric design for Compound Elliptical Concentrators (CEC) and its geometric flux implications
Jiang, Lun; Winston, Roland
2015-08-01
The asymmetric compound elliptical concentrator (CEC) has been a less discussed subject in the nonimaging optics society. The conventional way of understanding an ideal concentrator is based on maximizing the concentration ratio based on a uniformed acceptance angle. Although such an angle does not exist in the case of CEC, the thermodynamic laws still hold and we can produce concentrators with the maximum concentration ratio allowed by them. Here we restate the problem and use the string method to solve this general problem. Built on the solution, we can discover groups of such ideal concentrators using geometric flux field, or flowline method.
Decagonal quasicrystal plate with elliptic holes subjected to out-of-plane bending moments
Energy Technology Data Exchange (ETDEWEB)
Li, Lian He, E-mail: nmglilianhe@163.com [College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022 (China); College of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Hohhot 010021 (China); Liu, Guan Ting [College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022 (China)
2014-02-01
In the present paper, we consider only the ideal elastic behavior, neglecting the dissipation associated with the atomic rearrangements. Under these conditions, the decagonal quasicrystal plate bending problems have been discussed. The Stroh-like formalism for the bending theory of decagonal quasicrystal plate is developed. The analytical solutions for problems of decagonal quasicrystal plate with elliptic hole subjected to out-of-plane bending moments are obtained directly by using the forms. The resultant bending moments around the hole boundaries are also given explicitly. When the phonon–phason coupling is absent, the results reduce to the corresponding solutions for the isotropic elastic plates.
Steady State Shift Damage Localization
DEFF Research Database (Denmark)
Sekjær, Claus; Bull, Thomas; Markvart, Morten Kusk
2017-01-01
The steady state shift damage localization (S3DL) method localizes structural deterioration, manifested as either a mass or stiffness perturbation, by interrogating the damage-induced change in the steady state vibration response with damage patterns cast from a theoretical model. Damage is, thus...... the required accuracy when examining complex structures, an extensive amount of degrees of freedom (DOF) must often be utilized. Since the interrogation matrix for each damage pattern depends on the size of the system matrices constituting the FE-model, the computational time quickly becomes of first......-order importance. The present paper investigates two sub-structuring approaches, in which the idea is to employ Craig-Bampton super-elements to reduce the amount of interrogation distributions while still providing an acceptable localization resolution. The first approach operates on a strict super-element level...
Steady state neutral beam injector
International Nuclear Information System (INIS)
Mattoo, S.K.; Bandyopadhyay, M.; Baruah, U.K.; Bisai, N.; Chakbraborty, A.K.; Chakrapani, Ch.; Jana, M.R.; Bajpai, M.; Jaykumar, P.K.; Patel, D.; Patel, G.; Patel, P.J.; Prahlad, V.; Rao, N.V.M.; Rotti, C.; Singh, N.P.; Sridhar, B.
2000-01-01
Learning from operational reliability of neutral beam injectors in particular and various heating schemes including RF in general on TFTR, JET, JT-60, it has become clear that neutral beam injectors may find a greater role assigned to them for maintaining the plasma in steady state devices under construction. Many technological solutions, integrated in the present day generation of injectors have given rise to capability of producing multimegawatt power at many tens of kV. They have already operated for integrated time >10 5 S without deterioration in the performance. However, a new generation of injectors for steady state devices have to address to some basic issues. They stem from material erosion under particle bombardment, heat transfer > 10 MW/m 2 , frequent regeneration of cryopanels, inertial power supplies, data acquisition and control of large volume of data. Some of these engineering issues have been addressed to in the proposed neutral beam injector for SST-1 at our institute; the remaining shall have to wait for the inputs of the database generated from the actual experience with steady state injectors. (author)
Asymptotic expansions for high-contrast elliptic equations
Calo, Victor M.; Efendiev, Yalchin R.; Galvis, Juan
2014-01-01
In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.
Asymptotic expansions for high-contrast elliptic equations
Calo, Victor M.
2014-03-01
In this paper, we present a high-order expansion for elliptic equations in high-contrast media. The background conductivity is taken to be one and we assume the medium contains high (or low) conductivity inclusions. We derive an asymptotic expansion with respect to the contrast and provide a procedure to compute the terms in the expansion. The computation of the expansion does not depend on the contrast which is important for simulations. The latter allows avoiding increased mesh resolution around high conductivity features. This work is partly motivated by our earlier work in [Domain decomposition preconditioners for multiscale flows in high-contrast media, Multiscale Model Simul. 8 (2010) 1461-1483] where we design efficient numerical procedures for solving high-contrast problems. These multiscale approaches require local solutions and our proposed high-order expansion can be used to approximate these local solutions inexpensively. In the case of a large-number of inclusions, the proposed analysis can help to design localization techniques for computing the terms in the expansion. In the paper, we present a rigorous analysis of the proposed high-order expansion and estimate the remainder of it. We consider both high-and low-conductivity inclusions. © 2014 World Scientific Publishing Company.
Vertical elliptic operator for efficient wave propagation in TTI media
Waheed, Umair bin; Alkhalifah, Tariq Ali
2015-01-01
Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.
Topology of the elliptical billiard with the Hooke's potential
Directory of Open Access Journals (Sweden)
Radnović Milena
2015-01-01
Full Text Available Using Fomenko graphs, we present a topological description of the elliptical billiard with Hooke's potential. [Projekat Ministarstva nauke Republike Srbije, br. 174020: Geometry and Topology of Manifolds and Integrable Dynamical Systems
Electron energy spectrum in core-shell elliptic quantum wire
Directory of Open Access Journals (Sweden)
V.Holovatsky
2007-01-01
Full Text Available The electron energy spectrum in core-shell elliptic quantum wire and elliptic semiconductor nanotubes are investigated within the effective mass approximation. The solution of Schrodinger equation based on the Mathieu functions is obtained in elliptic coordinates. The dependencies of the electron size quantization spectrum on the size and shape of the core-shell nanowire and nanotube are calculated. It is shown that the ellipticity of a quantum wire leads to break of degeneration of quasiparticle energy spectrum. The dependences of the energy of odd and even electron states on the ratio between semiaxes are of a nonmonotonous character. The anticrosing effects are observed at the dependencies of electron energy spectrum on the transversal size of the core-shell nanowire.
Vertical elliptic operator for efficient wave propagation in TTI media
Waheed, Umair bin
2015-08-19
Elliptic wave extrapolation operators require significantly less computational cost than the ones for transversely isotropic (TI) media. However, it does not provide accurate wavefield representation or imaging for the prevalent TI media. We propose a new vertical elliptically anisotropic (VEA) wave equation by decomposing the acoustic TI pseudo-differential wave equation. The decomposition results in a vertical elliptic differential equation and a scalar operator. The new VEA-like wave equation shares the same dispersion relation as that of the original acoustic TI wave equation. Therefore, the kinematic contents are correctly matched to the original equation. Moreover, the proposed decomposition yields better amplitude properties than the isotropic decomposition without increasing the computational load. Therefore, it exhibits better cost versus accuracy tradeoff compared to the isotropic or the tilted elliptic decompositions. We demonstrate with numerical examples that the proposed methodology is numerically stable for complex models and is free from shear-wave artifacts.
Orbits in general relativity: the Jacobian elliptic function
Energy Technology Data Exchange (ETDEWEB)
Miro Rodriguez, C
1987-03-11
The Jacobian elliptic functions are applied to the motion of nonzero-rest-mass particles in the Schwarzschild geometry. The bound and unbound trajectories are analysed together with their classical and special-relativity limits.
Jacobian elliptic function expansion solutions of nonlinear stochastic equations
International Nuclear Information System (INIS)
Wei Caimin; Xia Zunquan; Tian Naishuo
2005-01-01
Jacobian elliptic function expansion method is extended and applied to construct the exact solutions of the nonlinear Wick-type stochastic partial differential equations (SPDEs) and some new exact solutions are obtained via this method and Hermite transformation
Mergers of elliptical galaxies and the fundamental plane
Gonzalez-Garcia, AC; van Albada, TS; AvilaReese,; Firmani, C; Frenk, CS; Allen, YC
2003-01-01
N-body simulations have been carried out in order to explore the final state of elliptical galaxies after encounters and more expecifically whether the Fundamental Plane (FP hereafter) relation is affected by merging.
Optimal Rendezvous and Docking Simulator for Elliptical Orbits, Phase I
National Aeronautics and Space Administration — It is proposed to develop and implement a simulation of spacecraft rendezvous and docking guidance, navigation, and control in elliptical orbit. The foundation of...
Reduction of Elliptic Curves in Equal Characteristic 3 (and 2)
Miyamoto, Roland; Top, Jakob
2005-01-01
We determine conductor exponent, minimal discriminant and fibre type for elliptic curves over discrete valued fields of equal characteristic 3. Along the same lines, partial results are obtained in equal characteristic 2.
An imbedding theorem and its applications in degenerate elliptic equations
International Nuclear Information System (INIS)
Duong Minh Duc.
1988-06-01
We improve the Rellich-Kondrachov theorem and apply it to study strongly degenerate and singular elliptic equations. We obtain the maximum principle, Harnacks's inequality and global regularity for solutions of those equations. (author). 11 refs
Hasheminejad, Seyyed M.; Sanaei, Roozbeh
2007-11-01
Interaction of time harmonic fast longitudinal and shear incident plane waves with an elliptical fiber embedded in a porous elastic matrix is studied. The novel features of Biot dynamic theory of poroelasticity along with the classical method of eigen-function expansion and the pertinent boundary conditions are employed to develop a closed form series solution involving Mathieu and modified Mathieu functions of complex arguments. The complications arising due to the non-orthogonality of angular Mathieu functions corresponding to distinct wave numbers in addition to the problems associated with appearance of additional angular dependent terms in the boundary conditions are all avoided by expansion of the angular Mathieu functions in terms of transcendental functions and subsequent integration, leading to a linear set of independent equations in terms of the unknown scattering coefficients. A MATHEMATICA code is developed for computing the Mathieu functions in terms of complex Fourier coefficients which are themselves calculated by numerically solving appropriate sets of eigen-systems. The analytical results are illustrated with numerical examples in which an elastic fiber of elliptic cross section is insonified by a plane fast compressional or shear wave at normal incidence. The effects of fiber cross sectional ellipticity, angle of incidence (fiber two-dimensional orientation), and incident wave polarization (P, SV, SH) on dynamic stress concentrations are studied in a relatively wide frequency range. Limiting cases are considered and fair agreements with well-known solutions are established.
Calibration of Binocular Vision Sensors Based on Unknown-Sized Elliptical Stripe Images
Directory of Open Access Journals (Sweden)
Zhen Liu
2017-12-01
Full Text Available Most of the existing calibration methods for binocular stereo vision sensor (BSVS depend on a high-accuracy target with feature points that are difficult and costly to manufacture and. In complex light conditions, optical filters are used for BSVS, but they affect imaging quality. Hence, the use of a high-accuracy target with certain-sized feature points for calibration is not feasible under such complex conditions. To solve these problems, a calibration method based on unknown-sized elliptical stripe images is proposed. With known intrinsic parameters, the proposed method adopts the elliptical stripes located on the parallel planes as a medium to calibrate BSVS online. In comparison with the common calibration methods, the proposed method avoids utilizing high-accuracy target with certain-sized feature points. Therefore, the proposed method is not only easy to implement but is a realistic method for the calibration of BSVS with optical filter. Changing the size of elliptical curves projected on the target solves the difficulty of applying the proposed method in different fields of view and distances. Simulative and physical experiments are conducted to validate the efficiency of the proposed method. When the field of view is approximately 400 mm × 300 mm, the proposed method can reach a calibration accuracy of 0.03 mm, which is comparable with that of Zhang’s method.
Streamline integration as a method for two-dimensional elliptic grid generation
Energy Technology Data Exchange (ETDEWEB)
Wiesenberger, M., E-mail: Matthias.Wiesenberger@uibk.ac.at [Institute for Ion Physics and Applied Physics, Universität Innsbruck, A-6020 Innsbruck (Austria); Held, M. [Institute for Ion Physics and Applied Physics, Universität Innsbruck, A-6020 Innsbruck (Austria); Einkemmer, L. [Numerical Analysis group, Universität Innsbruck, A-6020 Innsbruck (Austria)
2017-07-01
We propose a new numerical algorithm to construct a structured numerical elliptic grid of a doubly connected domain. Our method is applicable to domains with boundaries defined by two contour lines of a two-dimensional function. Furthermore, we can adapt any analytically given boundary aligned structured grid, which specifically includes polar and Cartesian grids. The resulting coordinate lines are orthogonal to the boundary. Grid points as well as the elements of the Jacobian matrix can be computed efficiently and up to machine precision. In the simplest case we construct conformal grids, yet with the help of weight functions and monitor metrics we can control the distribution of cells across the domain. Our algorithm is parallelizable and easy to implement with elementary numerical methods. We assess the quality of grids by considering both the distribution of cell sizes and the accuracy of the solution to elliptic problems. Among the tested grids these key properties are best fulfilled by the grid constructed with the monitor metric approach. - Graphical abstract: - Highlights: • Construct structured, elliptic numerical grids with elementary numerical methods. • Align coordinate lines with or make them orthogonal to the domain boundary. • Compute grid points and metric elements up to machine precision. • Control cell distribution by adaption functions or monitor metrics.
Statistical steady states in turbulent droplet condensation
Bec, Jeremie; Krstulovic, Giorgio; Siewert, Christoph
2017-11-01
We investigate the general problem of turbulent condensation. Using direct numerical simulations we show that the fluctuations of the supersaturation field offer different conditions for the growth of droplets which evolve in time due to turbulent transport and mixing. This leads to propose a Lagrangian stochastic model consisting of a set of integro-differential equations for the joint evolution of the squared radius and the supersaturation along droplet trajectories. The model has two parameters fixed by the total amount of water and the thermodynamic properties, as well as the Lagrangian integral timescale of the turbulent supersaturation. The model reproduces very well the droplet size distributions obtained from direct numerical simulations and their time evolution. A noticeable result is that, after a stage where the squared radius simply diffuses, the system converges exponentially fast to a statistical steady state independent of the initial conditions. The main mechanism involved in this convergence is a loss of memory induced by a significant number of droplets undergoing a complete evaporation before growing again. The statistical steady state is characterised by an exponential tail in the droplet mass distribution.
Handbook of elliptic and hyperelliptic curve cryptography
Cohen, Henri; Avanzi, Roberto; Doche, Christophe; Lange, Tanja; Nguyen, Kim; Vercauteren, Frederik
2005-01-01
… very comprehensive coverage of this vast subject area … a useful and essential treatise for anyone involved in elliptic curve algorithms … this book offers the opportunity to grasp the ECC technology with a diversified and comprehensive perspective. … This book will remain on my shelf for a long time and will land on my desk on many occasions, if only because the coverage of the issues common to factoring and discrete log cryptosystems is excellent.-IACR Book Reviews, June 2011… the book is designed for people who are working in the area and want to learn more about a specific issue. The chapters are written to be relatively independent so that readers can focus on the part of interest for them. Such readers will be grateful for the excellent index and extensive bibliography. … the handbook covers a wide range of topics and will be a valuable reference for researchers in curve-based cryptography. -Steven D. Galbraith, Mathematical Reviews, Issue 2007f.
ON ELLIPTICALLY POLARIZED ANTENNAS IN THE PRESENCE OF GROUND
The effect of ground reflections upon the far field of an elliptically polarized antenna of ar itrary orientation with r spect to ground is...investigated. The equation of the polarization ellipse produced by an elliptically polarized antenna in the presence of ground is derived, AND SEVERAL...EXAMPLES ILLUSTRATE THE VARIATION IN THE AXIS RATIO OF THE POLARIZATION ELLIPSE AS A FUNCTION OF THE GEOMETRY OF THE MEASURING SETUP. A method is presented
Kerr ellipticity effect in a birefringent optical fiber
International Nuclear Information System (INIS)
Ishiekwene, G.C.; Mensah, S.Y.; Brown, C.S.
2004-09-01
An intensity-dependent change in the ellipticity of an input light beam leads to a characteristic shift in polarization instability. Dichroism gives rise to a self-induced ellipticity effect in the polarization state of an intense input light oriented along the fast axis of a birefringent optical fiber. The critical power at which the fiber effective beat length becomes infinite is reduced considerably in the presence of dichroism. (author)
Elliptic flow based on a relativistic hydrodynamic model
Energy Technology Data Exchange (ETDEWEB)
Hirano, Tetsufumi [Department of Physics, Waseda Univ., Tokyo (Japan)
1999-08-01
Based on the (3+1)-dimensional hydrodynamic model, the space-time evolution of hot and dense nuclear matter produced in non-central relativistic heavy-ion collisions is discussed. The elliptic flow parameter v{sub 2} is obtained by Fourier analysis of the azimuthal distribution of pions and protons which are emitted from the freeze-out hypersurface. As a function of rapidity, the pion and proton elliptic flow parameters both have a peak at midrapidity. (author)
Central $L$-values of elliptic curves and local polynomials
Ehlen, Stephan; Guerzhoy, Pavel; Kane, Ben; Rolen, Larry
2018-01-01
Here we study the recently introduced notion of a locally harmonic Maass form and its applications to the theory of $L$-functions. In particular, we find finite formulas for certain twisted central $L$-values of a family of elliptic curves in terms of finite sums over canonical binary quadratic forms. This yields vastly simpler formulas related to work of Birch and Swinnerton-Dyer for such $L$-values, and extends beyond their framework to special non-CM elliptic curves.
Radial, sideward and elliptic flow at AGS energies
Indian Academy of Sciences (India)
the sideward flow, the elliptic flow and the radial transverse mass distribution of protons data at. AGS energies. In order to ... data on both sideward and elliptic flow, NL3 model is better at 2 A¡GeV, while NL23 model is at 4–8. A¡GeV. ... port approach RBUU which is based on a coupled set of covariant transport equations for.
Regularity of spectral fractional Dirichlet and Neumann problems
DEFF Research Database (Denmark)
Grubb, Gerd
2016-01-01
Consider the fractional powers and of the Dirichlet and Neumann realizations of a second-order strongly elliptic differential operator A on a smooth bounded subset Ω of . Recalling the results on complex powers and complex interpolation of domains of elliptic boundary value problems by Seeley in ...
Thickness shear mode quartz crystal resonators with optimized elliptical electrodes
International Nuclear Information System (INIS)
Ma Ting-Feng; Feng Guan-Ping; Zhang Chao; Jiang Xiao-Ning
2011-01-01
Quartz crystal resonators (QCRs) with circular electrodes have been widely used for various liquid and gas sensing applications. In this work, quartz crystal resonators with elliptical electrodes were studied and tested for liquid property measurement. Mindlin's theory was used to optimize the dimension and geometry of the electrodes and a 5-MHz QCR with minimum series resistance and without any spurious modes was obtained. A series of AT-cut QCRs with elliptical electrodes of different sizes were fabricated and their sensing performances were compared to devices with circular electrodes. The experimental result shows that the device with elliptical electrodes can obtain lower resonance impedance and a higher Q factor, which results in a better loading capability. Even though the sensitivities of devices with elliptical and circular electrodes are found to be similar, the sensor with elliptical electrodes has much higher resolution due to a better frequency stability. The study indicates that the performance of QCRs with elliptical electrodes is superior to that of traditional QCRs with circular electrodes. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Multimode optical fibers: steady state mode exciter.
Ikeda, M; Sugimura, A; Ikegami, T
1976-09-01
The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.
Finite element modelling of creep process - steady state stresses and strains
Directory of Open Access Journals (Sweden)
Sedmak Aleksandar S.
2014-01-01
Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.
Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole
Storozhuk, E. A.; Chernyshenko, I. S.; Pigol', O. V.
2017-11-01
Static problems for an elastoplastic elliptical cylindrical shell with a circular hole are formulated and a numerical method for solving it is developed. The basic equations are derived using the Kirchhoff-Love theory of deep shells and the theory of small elastoplastic strains. The method employs the method of additional stresses and the finite-element method. The influence of plastic strains and geometrical parameters of the shell subject to internal pressure on the distributions of stresses, strains, and displacements in the zone of their concentration is studied.
Biala, T A; Jator, S N
2015-01-01
In this article, the boundary value method is applied to solve three dimensional elliptic and hyperbolic partial differential equations. The partial derivatives with respect to two of the spatial variables (y, z) are discretized using finite difference approximations to obtain a large system of ordinary differential equations (ODEs) in the third spatial variable (x). Using interpolation and collocation techniques, a continuous scheme is developed and used to obtain discrete methods which are applied via the Block unification approach to obtain approximations to the resulting large system of ODEs. Several test problems are investigated to elucidate the solution process.
Jin, Chunhua; Xu, Chunxiang; Zhang, Xiaojun; Zhao, Jining
2015-03-01
Radio Frequency Identification(RFID) is an automatic identification technology, which can be widely used in healthcare environments to locate and track staff, equipment and patients. However, potential security and privacy problems in RFID system remain a challenge. In this paper, we design a mutual authentication protocol for RFID based on elliptic curve cryptography(ECC). We use pre-computing method within tag's communication, so that our protocol can get better efficiency. In terms of security, our protocol can achieve confidentiality, unforgeability, mutual authentication, tag's anonymity, availability and forward security. Our protocol also can overcome the weakness in the existing protocols. Therefore, our protocol is suitable for healthcare environments.
International Nuclear Information System (INIS)
Durran, Richard; Neate, Andrew; Truman, Aubrey
2008-01-01
We consider the Bohr correspondence limit of the Schroedinger wave function for an atomic elliptic state. We analyze this limit in the context of Nelson's stochastic mechanics, exposing an underlying deterministic dynamical system in which trajectories converge to Keplerian motion on an ellipse. This solves the long standing problem of obtaining Kepler's laws of planetary motion in a quantum mechanical setting. In this quantum mechanical setting, local mild instabilities occur in the Keplerian orbit for eccentricities greater than (1/√(2)) which do not occur classically
Advantages of forced non-steady operated trickle-bed reactors
Boelhouwer, J.G.; Piepers, H.W.; Drinkenburg, A.A.H.
2002-01-01
Trickle-bed reactors are usually operated in the steady state trickle flow regime. Uneven liquid distribution and the formation of hot spots are the most serious problems experienced during trickle flow operation. In this paper, we advocate the use of non-steady state operation of trickle-bed
Advanced topics in the arithmetic of elliptic curves
Silverman, Joseph H
1994-01-01
In the introduction to the first volume of The Arithmetic of Elliptic Curves (Springer-Verlag, 1986), I observed that "the theory of elliptic curves is rich, varied, and amazingly vast," and as a consequence, "many important topics had to be omitted." I included a brief introduction to ten additional topics as an appendix to the first volume, with the tacit understanding that eventually there might be a second volume containing the details. You are now holding that second volume. it turned out that even those ten topics would not fit Unfortunately, into a single book, so I was forced to make some choices. The following material is covered in this book: I. Elliptic and modular functions for the full modular group. II. Elliptic curves with complex multiplication. III. Elliptic surfaces and specialization theorems. IV. Neron models, Kodaira-Neron classification of special fibers, Tate's algorithm, and Ogg's conductor-discriminant formula. V. Tate's theory of q-curves over p-adic fields. VI. Neron's theory of can...
The two-loop sunrise integral and elliptic polylogarithms
Energy Technology Data Exchange (ETDEWEB)
Adams, Luise; Weinzierl, Stefan [Institut fuer Physik, Johannes Gutenberg-Universitaet Mainz (Germany); Bogner, Christian [Institut fuer Physik, Humboldt-Universitaet zu Berlin (Germany)
2016-07-01
In this talk, we present a solution for the two-loop sunrise integral with arbitrary masses around two and four space-time dimensions in terms of a generalised elliptic version of the multiple polylogarithms. Furthermore we investigate the elliptic polylogarithms appearing in higher orders in the dimensional regularisation ε of the two-dimensional equal mass solution. Around two space-time dimensions the solution consists of a sum of three elliptic dilogarithms where the arguments have a nice geometric interpretation as intersection points of the integration region and an elliptic curve associated to the sunrise integral. Around four space-time dimensions the sunrise integral can be expressed with the ε{sup 0}- and ε{sup 1}-solution around two dimensions, mass derivatives thereof and simpler terms. Considering higher orders of the two-dimensional equal mass solution we find certain generalisations of the elliptic polylogarithms appearing in the ε{sup 0}- and ε{sup 1}-solutions around two and four space-time dimensions. We show that these higher order-solutions can be found by iterative integration within this class of functions.
Energy Technology Data Exchange (ETDEWEB)
Feng, Wenqiang, E-mail: wfeng1@vols.utk.edu [Department of Mathematics, The University of Tennessee, Knoxville, TN 37996 (United States); Salgado, Abner J., E-mail: asalgad1@utk.edu [Department of Mathematics, The University of Tennessee, Knoxville, TN 37996 (United States); Wang, Cheng, E-mail: cwang1@umassd.edu [Department of Mathematics, The University of Massachusetts, North Dartmouth, MA 02747 (United States); Wise, Steven M., E-mail: swise1@utk.edu [Department of Mathematics, The University of Tennessee, Knoxville, TN 37996 (United States)
2017-04-01
We describe and analyze preconditioned steepest descent (PSD) solvers for fourth and sixth-order nonlinear elliptic equations that include p-Laplacian terms on periodic domains in 2 and 3 dimensions. The highest and lowest order terms of the equations are constant-coefficient, positive linear operators, which suggests a natural preconditioning strategy. Such nonlinear elliptic equations often arise from time discretization of parabolic equations that model various biological and physical phenomena, in particular, liquid crystals, thin film epitaxial growth and phase transformations. The analyses of the schemes involve the characterization of the strictly convex energies associated with the equations. We first give a general framework for PSD in Hilbert spaces. Based on certain reasonable assumptions of the linear pre-conditioner, a geometric convergence rate is shown for the nonlinear PSD iteration. We then apply the general theory to the fourth and sixth-order problems of interest, making use of Sobolev embedding and regularity results to confirm the appropriateness of our pre-conditioners for the regularized p-Lapacian problems. Our results include a sharper theoretical convergence result for p-Laplacian systems compared to what may be found in existing works. We demonstrate rigorously how to apply the theory in the finite dimensional setting using finite difference discretization methods. Numerical simulations for some important physical application problems – including thin film epitaxy with slope selection and the square phase field crystal model – are carried out to verify the efficiency of the scheme.
Three dimensional steady subsonic Euler flows in bounded nozzles
Chen, Chao; Xie, Chunjing
The existence and uniqueness of three dimensional steady subsonic Euler flows in rectangular nozzles were obtained when prescribing normal component of momentum at both the entrance and exit. If, in addition, the normal component of the voriticity and the variation of Bernoulli's function at the entrance are both zero, then there exists a unique subsonic potential flow when the magnitude of the normal component of the momentum is less than a critical number. As the magnitude of the normal component of the momentum approaches the critical number, the associated flows converge to a subsonic-sonic flow. Furthermore, when the normal component of vorticity and the variation of Bernoulli function are both small, the existence and uniqueness of subsonic Euler flows with non-zero vorticity are established. The proof of these results is based on a new formulation for the Euler system, a priori estimate for nonlinear elliptic equations with nonlinear boundary conditions, detailed study for a linear div-curl system, and delicate estimate for the transport equations.
Elliptic flow from Coulomb interaction and low density elastic scattering
Sun, Yuliang; Li, Qingfeng; Wang, Fuqiang
2018-04-01
In high energy heavy ion collisions and interacting cold atom systems, large elliptic flow anisotropies have been observed. For the large opacity (ρ σ L ˜103 ) of the latter hydrodynamics is a natural consequence, but for the small opacity (ρ σ L ˜1 ) of the former the hydrodynamic description is questionable. To shed light onto the situation, we simulate the expansion of a low density argon ion (or atom) system, initially trapped in an elliptical region, under the Coulomb interaction (or elastic scattering). Significant elliptic anisotropy is found in both cases, and the anisotropy depends on the initial spatial eccentricity and the density of the system. The results may provide insights into the physics of anisotropic flow in high energy heavy ion collisions and its role in the study of quantum chromodynamics.
Iron abundance evolution in spiral and elliptical galaxies
International Nuclear Information System (INIS)
Matteucci, F.
1987-01-01
Chemical evolution models for the Galaxy and ellipticals, which take into account the most recent developments on theories of nucleosynthesis and supernova progenitors, are presented. The evolution of the abundance of iron in these systems, under the assumption that this element is mainly produced by type I SNe, originating from white dwarfs in binary systems, has been computed and the results have been compared with the observations. Overabundances of O, Si, Ne and Mg with respect to iron have been predicted for halo stars in their Galaxy. The existence of an Fe - total mass relation with a slope steeper than the corresponding relations for Mg and O has been predicted for ellipticals. The masses of Fe ejected by ellipticals of various masses into the intergalactic medium have also been computed in detail. The general agreement obtained between these theoretical models and the observations for galaxies of different morphological type supports the assumptions made about the origin of iron
Dirac Particles Emission from An Elliptical Black Hole
Directory of Open Access Journals (Sweden)
Yuant Tiandho
2017-03-01
Full Text Available According to the general theory of relativiy, a black hole is defined as a region of spacetime with super-strong gravitational effects and there is nothing can escape from it. So in the classical theory of relativity, it is safe to say that black hole is a "dead" thermodynamical object. However, by using quantum mechanics theory, Hawking has shown that a black hole may emit particles. In this paper, calculation of temperature of an elliptical black hole when emitting the Dirac particles was presented. By using the complexpath method, radiation can be described as emission process in the tunneling pictures. According to relationship between probability of outgoing particle with the spectrum of black body radiation for fermion particles, temperature of the elliptical black hole can be obtained and it depend on the azimuthal angle. This result also showed that condition on the surface of elliptical black hole is not in thermal equilibrium.
Modern cryptography and elliptic curves a beginner's guide
Shemanske, Thomas R
2017-01-01
This book offers the beginning undergraduate student some of the vista of modern mathematics by developing and presenting the tools needed to gain an understanding of the arithmetic of elliptic curves over finite fields and their applications to modern cryptography. This gradual introduction also makes a significant effort to teach students how to produce or discover a proof by presenting mathematics as an exploration, and at the same time, it provides the necessary mathematical underpinnings to investigate the practical and implementation side of elliptic curve cryptography (ECC). Elements of abstract algebra, number theory, and affine and projective geometry are introduced and developed, and their interplay is exploited. Algebra and geometry combine to characterize congruent numbers via rational points on the unit circle, and group law for the set of points on an elliptic curve arises from geometric intuition provided by Bézout's theorem as well as the construction of projective space. The structure of the...
Polarization characteristics of double-clad elliptical fibers.
Zhang, F; Lit, J W
1990-12-20
A scalar variational analysis based on a Gaussian approximation of the fundamental mode of a double-clad elliptical fiber with a depressed inner cladding is studied. The polarization properties and graphic results are presented; they are given in terms of three parameters: the ratio of the major axis to the minor axis of the core, the ratio of the inner cladding major axis to the core major axis, and the difference between the core index and the inner cladding index. The variations of both the spot size and the field intensity with core ellipticity are examined. It is shown that high birefringence and dispersion-free orthogonal polarization modes can be obtained within the single-mode region and that the field intensity distribution may be more confined to the fiber center than in a single-clad elliptical fiber.
System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow
Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.
2007-06-01
This Letter presents measurements of the elliptic flow of charged particles as a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and 200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider. The elliptic flow in Cu-Cu collisions is found to be significant even for the most central events. For comparison with the Au-Au results, it is found that the detailed way in which the collision geometry (eccentricity) is estimated is of critical importance when scaling out system-size effects. A new form of eccentricity, called the participant eccentricity, is introduced which yields a scaled elliptic flow in the Cu-Cu system that has the same relative magnitude and qualitative features as that in the Au-Au system.
Skrypnyk, T.
2017-08-01
We study the problem of separation of variables for classical integrable Hamiltonian systems governed by non-skew-symmetric non-dynamical so(3)\\otimes so(3) -valued elliptic r-matrices with spectral parameters. We consider several examples of such models, and perform separation of variables for classical anisotropic one- and two-spin Gaudin-type models in an external magnetic field, and for Jaynes-Cummings-Dicke-type models without the rotating wave approximation.
Transfer coefficients for plate fin and elliptical tube heat exchangers
International Nuclear Information System (INIS)
Saboya, S.M.; Saboya, F.E.M.
1981-01-01
In order to determine transfer coefficients for plate fin and elliptical tube exchangers, mass transfer experiments have been performed using the naphthalene sublimation technique. By means of the heat-mass transfer analogy, the results can be converted to heat transfer results. The transfer coefficients were compared with those for circular tube exchangers and the comparison revealed no major differences. This is a positive outcome, since the use of elliptical tubes may reduce substantially the pressure drop, without affecting the transfer characteristics.(Author) [pt
Landau-Ginzburg Orbifolds, Mirror Symmetry and the Elliptic Genus
Berglund, P.; Henningson, M.
1994-01-01
We compute the elliptic genus for arbitrary two dimensional $N=2$ Landau-Ginzburg orbifolds. This is used to search for possible mirror pairs of such models. We show that if two Landau-Ginzburg models are conjugate to each other in a certain sense, then to every orbifold of the first theory corresponds an orbifold of the second theory with the same elliptic genus (up to a sign) and with the roles of the chiral and anti-chiral rings interchanged. These orbifolds thus constitute a possible mirr...
UV Visibility of Moderate-Redshift Giant Elliptical Galaxies
Directory of Open Access Journals (Sweden)
Myung-Hyun Rhee
1998-06-01
Full Text Available We show quantitatively whether giant elliptical galaxies would be visible at far UV wavelengths if they were placed at moderate redshift of 0.4-0.5. On the basis of simple cosmological tests, we conclude that giant elliptical galaxies can be detectable upto the redshift of 0.4-0.5 in the proposed GALEX (Galaxy Evolution Explorer Deep Imaging Survey. We also show that obtaining UV color index such as m_1550 - V from upcoming GALEX and SDSS (Sloan Digital Sky Survey observations should be feasible.
Plasma blob generation due to cooperative elliptic instability.
Manz, P; Xu, M; Müller, S H; Fedorczak, N; Thakur, S C; Yu, J H; Tynan, G R
2011-11-04
Using fast-camera measurements the generation mechanism of plasma blobs is investigated in the linear device CSDX. During the ejection of plasma blobs the plasma is dominated by an m=1 mode, which is a counterrotating vortex pair. These flows are known to be subject to the cooperative elliptic instability, which is characterized by a cooperative disturbance of the vortex cores and results in a three-dimensional breakdown of two-dimensional flows. The first experimental evidence of a cooperative elliptic instability preceding the blob-ejection is provided in terms of the qualitative evolution of the vortex geometries and internal wave patterns.
Inflation of polymer melts into elliptic and circular cylinders
DEFF Research Database (Denmark)
Rasmussen, Henrik Koblitz; Christensen, Jens Horslund; Gøttsche, Søren
2000-01-01
A thin sheet (membrane) of the polymeric material is clamped between a Teflon-coated thermostated plate and a thermostated aluminium cylinder. By applying thermostated air through the plate, the polymer membrane deforms into an elliptic or a circular cylinder. The position of the top of the infla......A thin sheet (membrane) of the polymeric material is clamped between a Teflon-coated thermostated plate and a thermostated aluminium cylinder. By applying thermostated air through the plate, the polymer membrane deforms into an elliptic or a circular cylinder. The position of the top...
Large N elliptic genus and AdS/CFT Correspondence
International Nuclear Information System (INIS)
Boer, Jan de
1998-01-01
According to one of Maldacena's dualities, type IIB string theory on AdS 3 x S 3 x K3 is equivalent to a certain N = (4, 4) superconformal field theory. In this note we compute the elliptic genus of the boundary theory in the supergravity approximation. A finite quantity is obtained once we introduce a particular exclusion principle. In the regime where the supergravity approximation is reliable, we find exact agreement with the elliptic genus of a sigma model with target space K3 N /S N
Elliptic interpretation of black holes and quantum mechanics
International Nuclear Information System (INIS)
Gibbons, G.W.
1987-01-01
The lectures as delivered contained an elementary introduction to the classical theory of black holes together with an account of Hawking's original derivation of the thermal emission from black holes in the quantum theory. Also described here is what is here called the elliptic interpretation partly because of its possible relevance to the lectures of Professor 't Hooft. A rather more detailed account of the elliptic interpretation is given and the reader is referred to the original literature for the elementary material. 22 references
An electrostatic elliptical mirror for neutral polar molecules.
González Flórez, A Isabel; Meek, Samuel A; Haak, Henrik; Conrad, Horst; Santambrogio, Gabriele; Meijer, Gerard
2011-11-14
Focusing optics for neutral molecules finds application in shaping and steering molecular beams. Here we present an electrostatic elliptical mirror for polar molecules consisting of an array of microstructured gold electrodes deposited on a glass substrate. Alternating positive and negative voltages applied to the electrodes create a repulsive potential for molecules in low-field-seeking states. The equipotential lines are parallel to the substrate surface, which is bent in an elliptical shape. The mirror is characterized by focusing a beam of metastable CO molecules and the results are compared to the outcome of trajectory simulations.
Elliptic Genera of Symmetric Products and Second Quantized Strings
Dijkgraaf, R; Verlinde, Erik; Verlinde, Herman L
1997-01-01
In this note we prove an identity that equates the elliptic genus partition function of a supersymmetric sigma model on the $N$-fold symmetric product $M^N/S_N$ of a manifold $M$ to the partition function of a second quantized string theory on the space $M \\times S^1$. The generating function of these elliptic genera is shown to be (almost) an automorphic form for $O(3,2,\\Z)$. In the context of D-brane dynamics, this result gives a precise computation of the free energy of a gas of D-strings inside a higher-dimensional brane.
Event-by-Event Elliptic Flow Fluctuations from PHOBOS
Wosiek, B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Woźniak, K.; Wyngaardt, S.; Wysłouch, B.
2009-04-01
Recently PHOBOS has focused on the study of fluctuations and correlations in particle production in heavy-ion collisions at the highest energies delivered by the Relativistic Heavy Ion Collider (RHIC). In this report, we present results on event-by-event elliptic flow fluctuations in (Au+Au) collisions at sqrt {sNN}=200 GeV. A data-driven method was used to estimate the dominant contribution from non-flow correlations. Over the broad range of collision centralities, the observed large elliptic flow fluctuations are in agreement with the fluctuations in the initial source eccentricity.
Elliptic flow in Au+Au collisions at RHIC
Vale, Carla M.; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Ngyuen, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J.-L.; Tonjes, M. B.; Trzupek, A.; van Nieuwenhuizen, G. J.; Verdier, R.; Veres, G.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.
2005-04-01
Elliptic flow is an interesting probe of the dynamical evolution of the dense system formed in the ultrarelativistic heavy ion collisions at the relativistic heavy ion collider (RHIC). The elliptic flow dependences on transverse momentum, centrality and pseudorapidity were measured using data collected by the PHOBOS detector, which offers a unique opportunity to study the azimuthal anisotropies of charged particles over a wide range of pseudorapidity. These measurements are presented, together with an overview of the analysis methods and a discussion of the results.
On Attainability of Optimal Solutions for Linear Elliptic Equations with Unbounded Coefficients
Directory of Open Access Journals (Sweden)
P. I. Kogut
2011-12-01
Full Text Available We study an optimal boundary control problem (OCP associated to a linear elliptic equation —div (Vj/ + A(xVy = f describing diffusion in a turbulent flow. The characteristic feature of this equation is the fact that, in applications, the stream matrix A(x = [a,ij(x]i,j=i,...,N is skew-symmetric, ац(х = —a,ji(x, measurable, and belongs to L -space (rather than L°°. An optimal solution to such problem can inherit a singular character of the original stream matrix A. We show that optimal solutions can be attainable by solutions of special optimal boundary control problems.
Essential imposition of Neumann condition in Galerkin-Legendre elliptic solvers
Auteri, F; Quartapelle, L
2003-01-01
A new Galerkin-Legendre direct spectral solver for the Neumann problem associated with Laplace and Helmholtz operators in rectangular domains is presented. The algorithm differs from other Neumann spectral solvers by the high sparsity of the matrices, exploited in conjunction with the direct product structure of the problem. The homogeneous boundary condition is satisfied exactly by expanding the unknown variable into a polynomial basis of functions which are built upon the Legendre polynomials and have a zero slope at the interval extremes. A double diagonalization process is employed pivoting around the eigenstructure of the pentadiagonal mass matrices in both directions, instead of the full stiffness matrices encountered in the classical variational formulation of the problem with a weak natural imposition of the derivative boundary condition. Nonhomogeneous Neumann data are accounted for by means of a lifting. Numerical results are given to illustrate the performance of the proposed spectral elliptic solv...
Bernoulli Variational Problem and Beyond
Lorz, Alexander; Markowich, Peter A.; Perthame, Benoî t
2013-01-01
The question of 'cutting the tail' of the solution of an elliptic equation arises naturally in several contexts and leads to a singular perturbation problem under the form of a strong cut-off. We consider both the PDE with a drift and the symmetric
The steady-state tokamak program
International Nuclear Information System (INIS)
Politzer, D.A.; Nevins, W.M.
1992-01-01
This paper reports on a steady-state tokamak experiment (STE) needed to develop the technology and physics data base required for construction of a steady-state fusion power demonstration reactor in the early 21st century. The STE will provide an integrated facility for the development and demonstration of steady-state and particle handling, low-activation high-heat-flux components and materials, efficient current drive, and continuous plasma performance in steady-state, with reactor-like plasma conditions under severe conditions of heat and particle bombardment of the wall. The STE facility will also be used to develop operation and control scenarios for ITER
Tugendhat, Tim M.; Schäfer, Björn Malte
2018-05-01
We investigate a physical, composite alignment model for both spiral and elliptical galaxies and its impact on cosmological parameter estimation from weak lensing for a tomographic survey. Ellipticity correlation functions and angular ellipticity spectra for spiral and elliptical galaxies are derived on the basis of tidal interactions with the cosmic large-scale structure and compared to the tomographic weak-lensing signal. We find that elliptical galaxies cause a contribution to the weak-lensing dominated ellipticity correlation on intermediate angular scales between ℓ ≃ 40 and ℓ ≃ 400 before that of spiral galaxies dominates on higher multipoles. The predominant term on intermediate scales is the negative cross-correlation between intrinsic alignments and weak gravitational lensing (GI-alignment). We simulate parameter inference from weak gravitational lensing with intrinsic alignments unaccounted; the bias induced by ignoring intrinsic alignments in a survey like Euclid is shown to be several times larger than the statistical error and can lead to faulty conclusions when comparing to other observations. The biases generally point into different directions in parameter space, such that in some cases one can observe a partial cancellation effect. Furthermore, it is shown that the biases increase with the number of tomographic bins used for the parameter estimation process. We quantify this parameter estimation bias in units of the statistical error and compute the loss of Bayesian evidence for a model due to the presence of systematic errors as well as the Kullback-Leibler divergence to quantify the distance between the true model and the wrongly inferred one.
The Closest Point Method and Multigrid Solvers for Elliptic Equations on Surfaces
Chen, Yujia; Macdonald, Colin B.
2015-01-01
© 2015 Society for Industrial and Applied Mathematics. Elliptic partial differential equations are important from both application and analysis points of view. In this paper we apply the closest point method to solve elliptic equations on general
Efficient method for finding square roots for elliptic curves over OEF
CSIR Research Space (South Africa)
Abu-Mahfouz, Adnan M
2009-01-01
Full Text Available Elliptic curve cryptosystems like others public key encryption schemes, require computing a square roots modulo a prime number. The arithmetic operations in elliptic curve schemes over Optimal Extension Fields (OEF) can be efficiently computed...
Design of an elliptical solenoid magnet for transverse beam matching to the spiral inflector
International Nuclear Information System (INIS)
Goswami, A.; Sing Babu, P.; Pandit, V.S.
2013-01-01
In this work, we present the design study of an elliptical solenoid magnet to be used for transverse beam matching at the input of a spiral inflector for efficient transmission. We have studied the dependence of axial field and gradients in the transverse directions of the elliptical solenoid magnet with ellipticity of the aperture. Using the beam envelope equations we have studied the feasibility of using an elliptical solenoid for transverse beam matching to the acceptance of a spiral inflector. (author)
Optimization of elliptic neutron guides for triple-axis spectroscopy
International Nuclear Information System (INIS)
Janoschek, M.; Boeni, P.; Braden, M.
2010-01-01
In the last decade the performance of neutron guides for the transport of neutrons has been significantly increased. The most recent developments have shown that elliptic guide systems can be used to focus neutron beams while simultaneously reducing the number of neutron reflections, hence, leading to considerable gains in neutron flux. We have carried out Monte-Carlo simulations for a new triple-axis spectrometer that will be built at the end position of the conventional cold guide NL-1 in the neutron guide hall of the research reactor FRM-II in Munich, Germany. Our results demonstrate that an elliptic guide section at the end of a conventional guide can be used to at least maintain the total neutron flux onto the sample, while significantly improving the energy resolution of the spectrometer. The simulation further allows detailed insight how the defining parameters of an elliptic guide have to be chosen to obtain optimum results. Finally, we show that the elliptic guide limits losses in the neutron flux that generally arise at the gaps, where the monochromator system of the upstream instrument is situated.
The dynamical fingerprint of core scouring in massive elliptical galaxies
International Nuclear Information System (INIS)
Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.
2014-01-01
The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r b , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.
Monotone difference schemes for weakly coupled elliptic and parabolic systems
P. Matus (Piotr); F.J. Gaspar Lorenz (Franscisco); L. M. Hieu (Le Minh); V.T.K. Tuyen (Vo Thi Kim)
2017-01-01
textabstractThe present paper is devoted to the development of the theory of monotone difference schemes, approximating the so-called weakly coupled system of linear elliptic and quasilinear parabolic equations. Similarly to the scalar case, the canonical form of the vector-difference schemes is
Global weighted estimates for second-order nondivergence elliptic ...
Indian Academy of Sciences (India)
Fengping Yao
2018-03-21
Mar 21, 2018 ... One of the key a priori estimates in the theory of second-order elliptic .... It is well known that the maximal functions satisfy strong p–p .... Here we prove the following auxiliary result, which will be a crucial ingredient in the proof.
Acoustic scattering by multiple elliptical cylinders using collocation multipole method
International Nuclear Information System (INIS)
Lee, Wei-Ming
2012-01-01
This paper presents the collocation multipole method for the acoustic scattering induced by multiple elliptical cylinders subjected to an incident plane sound wave. To satisfy the Helmholtz equation in the elliptical coordinate system, the scattered acoustic field is formulated in terms of angular and radial Mathieu functions which also satisfy the radiation condition at infinity. The sound-soft or sound-hard boundary condition is satisfied by uniformly collocating points on the boundaries. For the sound-hard or Neumann conditions, the normal derivative of the acoustic pressure is determined by using the appropriate directional derivative without requiring the addition theorem of Mathieu functions. By truncating the multipole expansion, a finite linear algebraic system is derived and the scattered field can then be determined according to the given incident acoustic wave. Once the total field is calculated as the sum of the incident field and the scattered field, the near field acoustic pressure along the scatterers and the far field scattering pattern can be determined. For the acoustic scattering of one elliptical cylinder, the proposed results match well with the analytical solutions. The proposed scattered fields induced by two and three elliptical–cylindrical scatterers are critically compared with those provided by the boundary element method to validate the present method. Finally, the effects of the convexity of an elliptical scatterer, the separation between scatterers and the incident wave number and angle on the acoustic scattering are investigated.
Three dimensional alignment of molecules using elliptically polarized laser fields
DEFF Research Database (Denmark)
Larsen, J.J.; Bjerre, N.; Hald, K.
2000-01-01
We demonstrate, theoretically and experimentally, that an intense, elliptically polarized, nonresonant laser field can simultaneously force all three axes of a molecule to align along given axes fixed in space, thus inhibiting the free rotation in all three Euler angles. Theoretically, the effect...
Generation of Elliptically Polarized Terahertz Waves from Antiferromagnetic Sandwiched Structure.
Zhou, Sheng; Zhang, Qiang; Fu, Shu-Fang; Wang, Xuan-Zhang; Song, Yu-Ling; Wang, Xiang-Guang; Qu, Xiu-Rong
2018-04-01
The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector. In numerical calculations, the AF layer is FeF2 and the dielectric layers are ZnF2. Although the effect originates from the AF layer, it can be also influenced by the sandwiched structure. We found that the ZnF2/FeF2/ZnF2 structure possesses optimal rotation of the principal axis and ellipticity, which can reach up to about thrice that of a single FeF2 layer.
Eliminating line of sight in elliptic guides using gravitational curving
DEFF Research Database (Denmark)
Klenø, Kaspar H.; Willendrup, Peter Kjær; Bergbäck Knudsen, Erik
2011-01-01
result in a breakdown of the geometrical focusing mechanism inherent to the elliptical shape, resulting in unwanted reflections and loss of transmission. We present a new and yet untried idea by curving a guide in such a way as to follow the ballistic curve of a neutron in the gravitational field, while...
Refined functional relations for the elliptic SOS model
Energy Technology Data Exchange (ETDEWEB)
Galleas, W., E-mail: w.galleas@uu.nl [ARC Centre of Excellence for the Mathematics and Statistics of Complex Systems, University of Melbourne, VIC 3010 (Australia)
2013-02-21
In this work we refine the method presented in Galleas (2012) [1] and obtain a novel kind of functional equation determining the partition function of the elliptic SOS model with domain wall boundaries. This functional relation arises from the dynamical Yang-Baxter relation and its solution is given in terms of multiple contour integrals.
Influence of Some Variable Parameters on Horizontal Elliptic Micro ...
African Journals Online (AJOL)
The study investigates the laminar flow and heat transfer characteristics in elliptic micro-channels of varying axis ratios and with internal longitudinal fins, operating in a region that is hydrodynamically and thermally fully developed; purposely to determine the effects of some salient fluid and geometry parameters such as ...
Recombination plus fragmentation model at RHIC: elliptic flow
Energy Technology Data Exchange (ETDEWEB)
Nonaka, C [Department of Physics, Duke University, Durham, NC 27708 (United States); Fries, R J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Mueller, B [Department of Physics, Duke University, Durham, NC 27708 (United States); Bass, S A [Department of Physics, Duke University, Durham, NC 27708 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States); Asakawa, M [Department of Physics, Osaka University, Toyonaka 560-0043 (Japan)
2005-04-01
We discuss hadron production in relativistic heavy-ion collisions in the framework of the recombination and fragmentation model. We propose elliptic flow as a useful tool for exploring final interactions of resonances, the hadron structure of exotic particles and the phase structure of the reaction.
Tearing mode stability of tokamak plasmas with elliptical cross section
International Nuclear Information System (INIS)
Carreras, B.A.; Holmes, J.A.; Hicks, H.R.; Lynch, V.E.
1981-02-01
The effect of the ellipticity of the plasma cross section on tearing mode stability is investigated. The induced coupling between modes is shown to be destabilizing; however, the modification of the equilibrium tends to stabilize the tearing modes. The net effect depends on the manner in which the equilibrium is modified as the plasma cross-section shape is changed
The shortage of long-period comets in elliptical orbits
International Nuclear Information System (INIS)
Everhart, E.
1979-01-01
Based on the number of 'new' comets seen on near-parabolic orbits, one can predict the number of comets that should be found on definitely elliptical orbits on their subsequent returns. The author shows that about three out of four of these returning comets are not observed. (Auth.)
Flexible hardware design for RSA and Elliptic Curve Cryptosystems
Batina, L.; Bruin - Muurling, G.; Örs, S.B.; Okamoto, T.
2004-01-01
This paper presents a scalable hardware implementation of both commonly used public key cryptosystems, RSA and Elliptic Curve Cryptosystem (ECC) on the same platform. The introduced hardware accelerator features a design which can be varied from very small (less than 20 Kgates) targeting wireless
Fast elliptic-curve cryptography on the Cell Broadband Engine
Costigan, N.; Schwabe, P.; Preneel, B.
2009-01-01
This paper is the first to investigate the power of the Cell Broadband Engine for state-of-the-art public-key cryptography. We present a high-speed implementation of elliptic-curve Diffie-Hellman (ECDH) key exchange for this processor, which needs 697080 cycles on one Synergistic Processor Unit for
Implementing parallel elliptic solver on a Beowulf cluster
Directory of Open Access Journals (Sweden)
Marcin Paprzycki
1999-12-01
Full Text Available In a recent paper cite{zara} a parallel direct solver for the linear systems arising from elliptic partial differential equations has been proposed. The aim of this note is to present the initial evaluation of the performance characteristics of this algorithm on Beowulf-type cluster. In this context the performance of PVM and MPI based implementations is compared.
Radial solutions to semilinear elliptic equations via linearized operators
Directory of Open Access Journals (Sweden)
Phuong Le
2017-04-01
Full Text Available Let $u$ be a classical solution of semilinear elliptic equations in a ball or an annulus in $\\mathbb{R}^N$ with zero Dirichlet boundary condition where the nonlinearity has a convex first derivative. In this note, we prove that if the $N$-th eigenvalue of the linearized operator at $u$ is positive, then $u$ must be radially symmetric.
Nonlinear anisotropic elliptic equations with variable exponents and degenerate coercivity
Directory of Open Access Journals (Sweden)
Hocine Ayadi
2018-02-01
Full Text Available In this article, we prove the existence and the regularity of distributional solutions for a class of nonlinear anisotropic elliptic equations with $p_i(x$ growth conditions, degenerate coercivity and $L^{m(\\cdot}$ data, with $m(\\cdot$ being small, in appropriate Lebesgue-Sobolev spaces with variable exponents. The obtained results extend some existing ones [8,10].
An elliptic analogue of the Franklin-Schneider theorem
Bijlsma, A.
1980-01-01
Let p be a Weierstrass elliptic function with algebraic invariants g2 and g3. Let a and b be complex numbers such that a and b are not among the poles of p. A lower bound is given for the simultaneous approximation of p(a), b and p(ab) by algebraic numbers, expressed in their heights and degrees. By
Transfer coefficients in elliptical tubes and plate fin heat exchangers
International Nuclear Information System (INIS)
Saboya, S.M.
1979-09-01
Mean transfer coefficients in elliptical tubes and plate fin heat exchangers were determined by application of heat and mass transfer analogy in conjunction with the naphthalene sublimation technique. The transfer coefficients are presented in a dimensionless form as functions of the Reynolds number. By using the least squares method analytical expressions for the transfer coefficients were determined with low scattering. (E.G.) [pt
Refined functional relations for the elliptic SOS model
International Nuclear Information System (INIS)
Galleas, W.
2013-01-01
In this work we refine the method presented in Galleas (2012) [1] and obtain a novel kind of functional equation determining the partition function of the elliptic SOS model with domain wall boundaries. This functional relation arises from the dynamical Yang–Baxter relation and its solution is given in terms of multiple contour integrals.
Elliptic hypergeometric integrals and 't Hooft anomaly matching conditions
International Nuclear Information System (INIS)
Spiridonov, V.P.; Vartanov, G.S.
2012-03-01
Elliptic hypergeometric integrals describe superconformal indices of 4d supersymmetric field theories. We show that all 't Hooft anomaly matching conditions for Seiberg dual theories can be derived from SL(3, Z)-modular transformation properties of the kernels of dual indices.
On the elliptic flow for nearly symmetric collisions and nuclear ...
Indian Academy of Sciences (India)
10Ne20+13Al27, 18Ar40+21Sc45, 30Zn64+28Ni58, 36Kr86+41Nb93) using the quantum molecular dynamics (QMD) model. General features of elliptic ﬂow are investigated with the help of theoretical simulations. The simulations are ...
Chen, Zi-Yu; Li, Xiao-Ya; Li, Bo-Yuan; Chen, Min; Liu, Feng
2018-02-19
The production of intense isolated attosecond pulse is a major goal in ultrafast research. Recent advances in high harmonic generation from relativistic plasma mirrors under oblique incidence interactions gave rise to photon-rich attosecond pulses with circular or elliptical polarization. However, to achieve an isolated elliptical attosecond pulse via polarization gating using currently available long driving pulses remains a challenge, because polarization gating of high harmonics from relativistic plasmas is assumed only possible at normal or near-normal incidence. Here we numerically demonstrate a scheme around this problem. We show that via control of plasma dynamics by managing laser polarization, it is possible to gate an intense single attosecond pulse with high ellipticity extending to the soft X-ray regime at oblique incidence. This approach thus paves the way towards a powerful tool enabling high-time-resolution probe of dynamics of chiral systems and magnetic materials with current laser technology.
International Nuclear Information System (INIS)
Kim, Jong Wook; Lee, Gyu Mahn; Jeong, Kyeong Hoon; Kim, Tae Wan; Park, Keun Bae
2001-01-01
As actual cracks found in practical structures are mostly three-dimensional surface cracks, such cracks give rise to the important problem when the structural integrity is evaluated in a viewpoint of fracture mechanics. The case of a semi-elliptical surface crack is more complicated than that of the embedded elliptical crack since the crack front intersects the free surface. Therefore, the exact expression of stress field according to the boundary condition can be the prior process for the structural integrity evaluation . The commercial code, I-DEAS does not provide the family of strain singular element for the cracked-body analysis. This means that the user cannot make use of the pre-processing function of I-DEAS effectively. But I-DEAS has the capability to hold input data in common with computational fracture mechanics program like ABAQUS. Hence, user can construct the optimized analysis method for the generation of input data of program like ABAQUS using the I-DEAS. In the present study, a procedure for the generation of input data for the optimized 3-dimensional computational fracture mechanics is developed as a series of effort to establish the structural integriyt evaluation procedure of SMART reactor vessel assembly. Input data for the finite element analysis are made using the commercial code, I-DEAS program, The stress analysis is performed using the ABAQUS. To demonstrate the validation of the developed procedure in the present sutdy, semi-elliptic surface crack in a half space subjected to uniform tension are solved, and the effects of crack configuration ratio are discussed in detail. The numerical results are presented and compared to those presented by Raju and Newman. Also, we have established the structural integrity evaluation procedure through the 3-D crack modeling
Resolving the faint end of the satellite luminosity function for the nearest elliptical Centaurus A
Crnojevic, Denija
2014-10-01
We request HST/ACS imaging to follow up 15 new faint candidate dwarfs around the nearest elliptical Centaurus A (3.8 Mpc). The dwarfs were found via a systematic ground-based (Magellan/Megacam) survey out to ~150 kpc, designed to directly confront the "missing satellites" problem in a wholly new environment. Current Cold Dark Matter models for structure formation fail to reproduce the shallow slope of the satellite luminosity function in spiral-dominated groups for which dwarfs fainter than M_V<-14 have been surveyed (the Local Group and the nearby, interacting M81 group). Clusters of galaxies show a better agreement with cosmological predictions, suggesting an environmental dependence of the (poorly-understood) physical processes acting on the evolution of low mass galaxies (e.g., reionization). However, the luminosity function completeness for these rich environments quickly drops due to the faintness of the satellites and to the difficult cluster membership determination. We target a yet unexplored "intermediate" environment, a nearby group dominated by an elliptical galaxy, ideal due to its proximity: accurate (10%) distance determinations for its members can be derived from resolved stellar populations. The proposed observations of the candidate dwarfs will confirm their nature, group membership, and constrain their luminosities, metallicities, and star formation histories. We will obtain the first complete census of dwarf satellites of an elliptical down to an unprecedented M_V<-9. Our results will crucially constrain cosmological predictions for the faint end of the satellite luminosity function to achieve a more complete picture of the galaxy formation process.
Stellar populations as a function of radius in giant elliptical galaxies
Peletier, Reynier F.; Valentijn, Edwin A.
Accurate surface photometry has been obtained in J and K for 12 giant elliptical galaxies. Ellipses have been fitted, to obtain luminosity, ellipticity, and major axis position angle profiles. The results have been combined with visual profiles from CCD observations. It is found that elliptical
Steady turbulent flow in curved rectangular channels
De Vriend, H.J.
1979-01-01
After the study of fully developed and developing steady laminar flow in curved channels of shallow rectangular wet cross-section (see earlier reports in this series), steady turbulent flow in such channels is investigated as a next step towards a mathematical model of the flow in shallow river
New Tore Supra steady state operating scenario
International Nuclear Information System (INIS)
Martin, G.; Parlange, F.; van Houtte, D.; Wijnands, T.
1995-01-01
This document deals with plasma control in steady state conditions. A new plasma control systems enabling feedback control of global plasma equilibrium parameters has been developed. It also enables to operate plasma discharge in steady state regime. (TEC). 4 refs., 5 figs
Bifurcation of steady tearing states
International Nuclear Information System (INIS)
Saramito, B.; Maschke, E.K.
1985-10-01
We apply the bifurcation theory for compact operators to the problem of the nonlinear solutions of the 3-dimensional incompressible visco-resistive MHD equations. For the plane plasma slab model we compute branches of nonlinear tearing modes, which are stationary for the range of parameters investigated up to now
Structure and stellar content of dwarf elliptical galaxies
International Nuclear Information System (INIS)
Caldwell, N.
1983-01-01
A small number of low-luminosity elliptical galaxies in the Virgo cluster and around other prominent galaxies have been studied using photoelectric and photographic techniques. The color-magnitude relation for ellipticals now extends from M/sub v/ = -23 to -15, and is linear over that range with a slope of 0.10 in U-V per visual magnitude. Galaxies which are known to contain a large number of young stars (''extreme cases'') are from 0.10 to 0.20 mag bluer in U-V than the lower envelope of the dwarf elliptical color-magnitude relation. This difference can be accounted for if the dwarf elliptical galaxies are young, but do not contain the massive blue stars that probably exist in the young populations of the extreme cases. Surface brightness profiles of the dwarfs have revealed some interesting distinctions between themselves and the brighter E's. In general, their intensity profiles are shallower than those of the bright E's, meaning they are of lower mean density. These mean densities are also a function of the total luminosity. Unlike the bright E's, the surface brightnesses near the centers are also a strong function of the total luminosity. The presence of a nucleation, which can be as much as 2 mag brighter than what the outer envelope would predict, does not appear to depend on any other measurable property of the galaxies. The variation in surface brightness profiles at the same total luminosity is suggestive that the low-luminosity dwarfs formed in more than one way. The flattening distribution of the dwarfs is like that of the bright ellipticals, and is also similar to the flattening distribution of field irregular galaxies
Hall, Eric Joseph
2016-12-08
We derive computable error estimates for finite element approximations of linear elliptic partial differential equations with rough stochastic coefficients. In this setting, the exact solutions contain high frequency content that standard a posteriori error estimates fail to capture. We propose goal-oriented estimates, based on local error indicators, for the pathwise Galerkin and expected quadrature errors committed in standard, continuous, piecewise linear finite element approximations. Derived using easily validated assumptions, these novel estimates can be computed at a relatively low cost and have applications to subsurface flow problems in geophysics where the conductivities are assumed to have lognormal distributions with low regularity. Our theory is supported by numerical experiments on test problems in one and two dimensions.
Steady State Stokes Flow Interpolation for Fluid Control
DEFF Research Database (Denmark)
Bhatacharya, Haimasree; Nielsen, Michael Bang; Bridson, Robert
2012-01-01
— suffer from a common problem. They fail to capture the rotational components of the velocity field, although extrapolation in the normal direction does consider the tangential component. We address this problem by casting the interpolation as a steady state Stokes flow. This type of flow captures......Fluid control methods often require surface velocities interpolated throughout the interior of a shape to use the velocity as a feedback force or as a boundary condition. Prior methods for interpolation in computer graphics — velocity extrapolation in the normal direction and potential flow...
Structure and Formation of Elliptical and Spheroidal Galaxies
Kormendy, John; Fisher, David B.; Cornell, Mark E.; Bender, Ralf
2009-05-01
New surface photometry of all known elliptical galaxies in the Virgo cluster is combined with published data to derive composite profiles of brightness, ellipticity, position angle, isophote shape, and color over large radius ranges. These provide enough leverage to show that Sérsic log I vprop r 1/n functions fit the brightness profiles I(r) of nearly all ellipticals remarkably well over large dynamic ranges. Therefore, we can confidently identify departures from these profiles that are diagnostic of galaxy formation. Two kinds of departures are seen at small radii. All 10 of our ellipticals with total absolute magnitudes MVT 4 uncorrelated with MVT . They also are α-element enhanced, implying short star-formation timescales. And their stellar populations have a variety of ages but mostly are very old. Extra light ellipticals generally rotate rapidly, are more isotropic than core Es, and have disky isophotes. We show that they have n sime 3 ± 1 almost uncorrelated with MVT and younger and less α-enhanced stellar populations. These are new clues to galaxy formation. We suggest that extra light ellipticals got their low Sérsic indices by forming in relatively few binary mergers, whereas giant ellipticals have n > 4 because they formed in larger numbers of mergers of more galaxies at once plus later heating during hierarchical clustering. We confirm that core Es contain X-ray-emitting gas whereas extra light Es generally do not. This leads us to suggest why the E-E dichotomy arose. If energy feedback from active galactic nuclei (AGNs) requires a "working surface" of hot gas, then this is present in core galaxies but absent in extra light galaxies. We suggest that AGN energy feedback is a strong function of galaxy mass: it is weak enough in small Es not to prevent merger starbursts but strong enough in giant Es and their progenitors to make dry mergers dry and to protect old stellar populations from late star formation. Finally, we verify that there is a strong
Limit moments for non circular cross-section (elliptical) pipe bends
International Nuclear Information System (INIS)
Spence, J.
1977-01-01
A number of experiment studies have been reported or are underway which investigate limit moments applied to pipe bends. Some theoretical work is also available. However, most of the work has been confined to nominally circular cross-section bends and little account has been taken of the practical problem of manufacturing tolerances. Many methods of manufacture result in bends which are not circular in cross-section but have an oval or elliptical shape. The present paper extends previous analyses on circular bends to cater for initially elliptical cross-sections. The loading is primarily in plane bending but out of plane is also considered and several independent methods are presented. No previous information is known to the authors. Upper and lower bound limit moments are derived first of all from existing linear elastic analyses and secondly upper bound moments are derived via a plastic analogy from existing stationary creep results. It is also shown that the creep information on design factors for bends can be used to obtain a reasonable estimate of the complete moment/strain behaviour of a bend or indeed a system. (Auth.)
Directory of Open Access Journals (Sweden)
SK Hafizul Islam
2014-01-01
Full Text Available Several certificateless short signature and multisignature schemes based on traditional public key infrastructure (PKI or identity-based cryptosystem (IBC have been proposed in the literature; however, no certificateless short sequential (or serial multisignature (CL-SSMS or short broadcast (or parallel multisignature (CL-SBMS schemes have been proposed. In this paper, we propose two such new CL-SSMS and CL-SBMS schemes based on elliptic curve bilinear pairing. Like any certificateless public key cryptosystem (CL-PKC, the proposed schemes are free from the public key certificate management burden and the private key escrow problem as found in PKI- and IBC-based cryptosystems, respectively. In addition, the requirements of the expected security level and the fixed length signature with constant verification time have been achieved in our schemes. The schemes are communication efficient as the length of the multisignature is equivalent to a single elliptic curve point and thus become the shortest possible multisignature scheme. The proposed schemes are then suitable for communication systems having resource constrained devices such as PDAs, mobile phones, RFID chips, and sensors where the communication bandwidth, battery life, computing power and storage space are limited.
Non-symmetric elliptic operators on bounded Lipschitz domains in the plane
Directory of Open Access Journals (Sweden)
David J. Rule
2007-10-01
Full Text Available We consider divergence form elliptic operators $L = mathop{ m div} A abla$ in $mathbb{R}^2$ with a coefficient matrix $A = A(x$ of bounded measurable functions independent of the $t$-direction. The aim of this note is to demonstrate how the proof of the main theorem in [4] can be modified to bounded Lipschitz domains. The original theorem states that the $L^p$ Neumann and regularity problems are solvable for $1 < p < p_0$ for some $p_0$ in domains of the form ${(x,t : phi(x < t}$, where $phi$ is a Lipschitz function. The exponent $p_0$ depends only on the ellipticity constants and the Lipschitz constant of $phi$. The principal modification of the argument for the original result is to prove the boundedness of the layer potentials on domains of the form ${X = (x,t : phi(mathbf{e}cdot X < mathbf{e}^perpcdot X }$, for a fixed unit vector $mathbf{e} = (e_1,e_2$ and $mathbf{e}^perp = (-e_2,e_1$. This is proved in [4] only in the case $mathbf{e} = (1,0$. A simple localisation argument then completes the proof.
Constraint of semi-elliptical surface cracks in T and L-joints
International Nuclear Information System (INIS)
Lee, Hyung Yil
2001-01-01
Critical defects in pressure vessels and pipes are generally found in the form of a semi-elliptical surface crack, and the analysis of which is consequently an important problem in engineering fracture mechanics. Furthermore, in addition to the traditional single parameter K or J-integral, the second parameter like T-stress should be measured to quantify the constraint effect. In this work, the validity of the line-spring finite element is investigated by comparing line-spring J-T solutions to the reference 3D finite element J-T solutions. A full 3D-mesh generating program for semi-elliptical surface cracks is employed to provide such reference 3D solutions. Then some structural characteristics of the surface-cracked T and L-joints are studied by mixed mode line-spring finite element. Negative T-stresses observed in T and L-joints indicate the necessity of J-T two parameter approach for analyses of surface-cracked T and L-joints
Almost monotonicity formulas for elliptic and parabolic operators with variable coefficients
Matevosyan, Norayr
2010-10-21
In this paper we extend the results of Caffarelli, Jerison, and Kenig [Ann. of Math. (2)155 (2002)] and Caffarelli and Kenig [Amer. J. Math.120 (1998)] by establishing an almost monotonicity estimate for pairs of continuous functions satisfying u± ≥ 0 Lu± ≥ -1, u+ · u_ = 0 ;in an infinite strip (global version) or a finite parabolic cylinder (localized version), where L is a uniformly parabolic operator Lu = LA,b,cu := div(A(x, s)∇u) + b(x,s) · ∇u + c(x,s)u - δsu with double Dini continuous A and uniformly bounded b and c. We also prove the elliptic counterpart of this estimate.This closes the gap between the known conditions in the literature (both in the elliptic and parabolic case) imposed on u± in order to obtain an almost monotonicity estimate.At the end of the paper, we demonstrate how to use this new almost monotonicity formula to prove the optimal C1,1-regularity in a fairly general class of quasi-linear obstacle-type free boundary problems. © 2010 Wiley Periodicals, Inc.
New stress intensity factor solutions for an elliptical crack in a plate
International Nuclear Information System (INIS)
Delliou, P.L.; Barthelet, B.
2005-01-01
Crack assessment in engineering structures relies first on accurate evaluation of the stress intensity factors. In recent years, a large work has been conducted in France by the Atomic Energy Commission to develop influence coefficients for surface cracks in pipes. However, the problem of embedded cracks in plates (and pipes) which is also of practical importance has not received so much attention. Presently, solutions for elliptical cracks are available either in infinite solid with a polynomial distribution of normal loading or in plate, but restricted to constant or linearly varying tension. This paper presents the work conducted at EDF R and D to obtain influence coefficients for plates containing an elliptical crack with a wide range of the parameters : relative size (2a/t ratio), shape (a/c ratio) and free surface proximity (a/d ratio where d is the distance from the center of the ellipse to the closest free surface). These coefficients were developed through extensive 3D finite element calculations : 200 geometrical configurations were modeled, each containing from 18000 to 26000 nodes. The limiting case of the tunnel crack (a/c = 0) was also analyzed with 2D finite element calculation (50 geometrical configurations). The accuracy of the results was checked by comparison with analytical solutions for infinite solids and, when possible, with solutions for finite-thickness plates (generally loaded in constant tension). (authors)
Steady-state and dynamic models for particle engulfment during solidification
Tao, Yutao; Yeckel, Andrew; Derby, Jeffrey J.
2016-06-01
Steady-state and dynamic models are developed to study the physical mechanisms that determine the pushing or engulfment of a solid particle at a moving solid-liquid interface. The mathematical model formulation rigorously accounts for energy and momentum conservation, while faithfully representing the interfacial phenomena affecting solidification phase change and particle motion. A numerical solution approach is developed using the Galerkin finite element method and elliptic mesh generation in an arbitrary Lagrangian-Eulerian implementation, thus allowing for a rigorous representation of forces and dynamics previously inaccessible by approaches using analytical approximations. We demonstrate that this model accurately computes the solidification interface shape while simultaneously resolving thin fluid layers around the particle that arise from premelting during particle engulfment. We reinterpret the significance of premelting via the definition an unambiguous critical velocity for engulfment from steady-state analysis and bifurcation theory. We also explore the complicated transient behaviors that underlie the steady states of this system and posit the significance of dynamical behavior on engulfment events for many systems. We critically examine the onset of engulfment by comparing our computational predictions to those obtained using the analytical model of Rempel and Worster [29]. We assert that, while the accurate calculation of van der Waals repulsive forces remains an open issue, the computational model developed here provides a clear benefit over prior models for computing particle drag forces and other phenomena needed for the faithful simulation of particle engulfment.
Veliz-Cuba, Alan; Aguilar, Boris; Hinkelmann, Franziska; Laubenbacher, Reinhard
2014-06-26
A key problem in the analysis of mathematical models of molecular networks is the determination of their steady states. The present paper addresses this problem for Boolean network models, an increasingly popular modeling paradigm for networks lacking detailed kinetic information. For small models, the problem can be solved by exhaustive enumeration of all state transitions. But for larger models this is not feasible, since the size of the phase space grows exponentially with the dimension of the network. The dimension of published models is growing to over 100, so that efficient methods for steady state determination are essential. Several methods have been proposed for large networks, some of them heuristic. While these methods represent a substantial improvement in scalability over exhaustive enumeration, the problem for large networks is still unsolved in general. This paper presents an algorithm that consists of two main parts. The first is a graph theoretic reduction of the wiring diagram of the network, while preserving all information about steady states. The second part formulates the determination of all steady states of a Boolean network as a problem of finding all solutions to a system of polynomial equations over the finite number system with two elements. This problem can be solved with existing computer algebra software. This algorithm compares favorably with several existing algorithms for steady state determination. One advantage is that it is not heuristic or reliant on sampling, but rather determines algorithmically and exactly all steady states of a Boolean network. The code for the algorithm, as well as the test suite of benchmark networks, is available upon request from the corresponding author. The algorithm presented in this paper reliably determines all steady states of sparse Boolean networks with up to 1000 nodes. The algorithm is effective at analyzing virtually all published models even those of moderate connectivity. The problem for
Random source generating far field with elliptical flat-topped beam profile
International Nuclear Information System (INIS)
Zhang, Yongtao; Cai, Yangjian
2014-01-01
Circular and rectangular multi-Gaussian Schell-model (MGSM) sources which generate far fields with circular and rectangular flat-topped beam profiles were introduced just recently (Sahin and Korotkova 2012 Opt. Lett. 37 2970; Korotkova 2014 Opt. Lett. 39 64). In this paper, a random source named an elliptical MGSM source is introduced. An analytical expression for the propagation factor of an elliptical MGSM beam is derived. Furthermore, an analytical propagation formula for an elliptical MGSM beam passing through a stigmatic ABCD optical system is derived, and its propagation properties in free space are studied. It is interesting to find that an elliptical MGSM source generates a far field with an elliptical flat-topped beam profile, being qualitatively different from that of circular and rectangular MGSM sources. The ellipticity and the flatness of the elliptical flat-topped beam profile in the far field are determined by the initial coherence widths and the beam index, respectively. (paper)
Influences of magma chamber ellipticity on ring fracturing and eruption at collapse calderas
International Nuclear Information System (INIS)
Holohan, Eoghan P; Walsh, John J; Vries, Benjamin van Wyk de; Troll, Valentin R; Walter, Thomas R
2008-01-01
Plan-view ellipticity of a pre-caldera magma reservoir, and its influence on the development of caldera ring fracturing and eruptive behaviour, have not previously been subjected to dedicated evaluation. We experimentally simulated caldera collapse into elliptical magma chambers and found that collapse into highly-elliptical chambers produced a characteristic pattern of ring-fault localization and lateral propagation. Although results are preliminary, the general deformation pattern for elliptical resurgence shows strong similarities to elliptical collapse. Ring faults accommodating uplift again initiate around the chamberos short axis and are reverse, but dip inward. Field and geophysical observations at several elliptical calderas of varying scale (e.g. Long Valley, Katmai, and Rabaul calderas) are consistent with a control from elliptical magma chamber geometry on ring fracturing and eruption, as predicted from our experiments.
Influences of magma chamber ellipticity on ring fracturing and eruption at collapse calderas
Energy Technology Data Exchange (ETDEWEB)
Holohan, Eoghan P; Walsh, John J [Fault Analysis Group, School of Geological Sciences, University College Dublin, Belfield, Dublin 4 (Ireland); Vries, Benjamin van Wyk de [Laboratoire Magmas et Volcans, 5 rue Kessler, 63038 Clermont-Ferrand (France); Troll, Valentin R [Department of Earth Sciences, Uppsala University, SE-752 36, Uppsala (Sweden); Walter, Thomas R [GFZ Potsdam, Telegrafenberg, Potsdam, D-14473 (Germany)], E-mail: Eoghan.Holohan@ucd.ie
2008-10-01
Plan-view ellipticity of a pre-caldera magma reservoir, and its influence on the development of caldera ring fracturing and eruptive behaviour, have not previously been subjected to dedicated evaluation. We experimentally simulated caldera collapse into elliptical magma chambers and found that collapse into highly-elliptical chambers produced a characteristic pattern of ring-fault localization and lateral propagation. Although results are preliminary, the general deformation pattern for elliptical resurgence shows strong similarities to elliptical collapse. Ring faults accommodating uplift again initiate around the chamberos short axis and are reverse, but dip inward. Field and geophysical observations at several elliptical calderas of varying scale (e.g. Long Valley, Katmai, and Rabaul calderas) are consistent with a control from elliptical magma chamber geometry on ring fracturing and eruption, as predicted from our experiments.
Fiedler, Anna; Raeth, Sebastian; Theis, Fabian J; Hausser, Angelika; Hasenauer, Jan
2016-08-22
Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the
Contraction rate, flow modification and bed layering impact on scour at the elliptical guide banks
Gjunsburgs, B.; Jaudzems, G.; Bizane, M.; Bulankina, V.
2017-10-01
Flow contraction by the bridge crossing structures, intakes, embankments, piers, abutments and guide banks leads to general scour and the local scour in the vicinity of the structures. Local scour is depending on flow, river bed and structures parameters and correct understanding of the impact of each parameter can reduce failure possibility of the structures. The paper explores hydraulic contraction, the discharge redistribution between channel and floodplain during the flood, local flow modification and river bed layering on depth, width and volume of scour hole near the elliptical guide banks on low-land rivers. Experiments in a flume, our method for scour calculation and computer modelling results confirm a considerable impact of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater and river bed layering on the depth, width, and volume of scour hole in steady and unsteady flow, under clear water condition. With increase of the contraction rate of the flow, the discharge redistribution between channel and floodplain, the local velocity, backwater values, the scour depth increases. At the same contraction rate, but at a different Fr number, the scour depth is different: with increase in the Fr number, the local velocity, backwater, scour depth, width, and volume is increasing. Acceptance of the geometrical contraction of the flow, approach velocity and top sand layer of the river bed for scour depth calculation as accepted now, may be the reason of the structures failure and human life losses.
Strack, O. D. L.
2009-01-01
We present in this paper a new method for deriving discharge potentials for groundwater flow. Discharge potentials are two-dimensional functions; the discharge potential to be presented represents steady groundwater flow with an elliptical pond of constant rate of extraction or infiltration. The method relies on Wirtinger calculus. We demonstrate that it is possible, in principle, to construct a holomorphic function Ω(z), defined so as to produce the same gradient vector in two dimensions as that obtained from an arbitrary function F(x, y) along any Jordan curve ?. We will call Ω(z) the holomorphic match of F(x, y) along ?. Let the line ? be a closed contour bounding a domain ?, and let F(x, y) be defined in ? and represent the discharge potential for some case of divergent groundwater flow. Holomorphic matching makes it possible to create a function Ω(z), valid outside ?, such that ?Ω equals F(x, y) and the gradient of ?Ω equals that of F(x, y) along ?. (Note that the technique applies also if ? is the domain outside ?.) We can use this technique to construct solutions for cases of flow where there is nonzero divergence (due to infiltration or leakage, for example) in ? but zero divergence outside ?. The special case that the divergence within ? is constant and is zero outside ? is chosen to illustrate the approach and to obtain a solution that, to the knowledge of the author, does not exist in the field of groundwater flow.
A semilinear parabolic–elliptic chemotaxis system with critical mass in any space dimension
International Nuclear Information System (INIS)
Montaru, Alexandre
2013-01-01
We study radial solutions in a ball of R N of a semilinear, parabolic–elliptic Patlak–Keller–Segel system with a nonlinear sensitivity involving a critical power. For N = 2, the latter reduces to the classical ‘linear’ model, well known for its critical mass 8π. We show that a critical mass phenomenon also occurs for N ⩾ 3, but with a strongly different qualitative behaviour. More precisely, if the total mass of cells is smaller or equal to the critical mass M-bar , then the cell density converges to a regular steady state that is supported strictly inside the ball as time goes to infinity. In the case of the critical mass, this result is nontrivial since there exists a continuum of stationary solutions and is moreover in sharp contrast with the case N = 2 where infinite-time blow-up occurs. If the total mass of cells is larger than M-bar , then all radial solutions blow up in finite time. This actually follows from the existence (unlike for N = 2) of a family of self-similar, blowing-up solutions that are supported strictly inside the ball. (paper)
A design of steady state fusion burner
International Nuclear Information System (INIS)
Hasegawa, Akira; Hatori, Tadatsugu; Itoh, Kimitaka; Ikuta, Takashi; Kodama, Yuji.
1975-01-01
We present a brief design of a steady state fusion burner in which a continuous burning of nuclear fuel may be achieved with output power of a gigawatt. The laser fusion is proposed to ignite the fuel. (auth.)
M-strings, Elliptic Genera and N=4 String Amplitudes
Hohenegger, Stefan
2014-01-01
We study mass-deformed N=2 gauge theories from various points of view. Their partition functions can be computed via three dual approaches: firstly, (p,q)-brane webs in type II string theory using Nekrasov's instanton calculus, secondly, the (refined) topological string using the topological vertex formalism and thirdly, M theory via the elliptic genus of certain M-strings configurations. We argue for a large class of theories that these approaches yield the same gauge theory partition function which we study in detail. To make their modular properties more tangible, we consider a fourth approach by connecting the partition function to the equivariant elliptic genus of R^4 through a (singular) theta-transform. This form appears naturally as a specific class of one-loop scattering amplitudes in type II string theory on T^2, which we calculate explicitly.
Subcycle dynamics of Coulomb asymmetry in strong elliptical laser fields.
Li, Min; Liu, Yunquan; Liu, Hong; Ning, Qicheng; Fu, Libin; Liu, Jie; Deng, Yongkai; Wu, Chengyin; Peng, Liang-You; Peng, Liangyou; Gong, Qihuang
2013-07-12
We measure photoelectron angular distributions of noble gases in intense elliptically polarized laser fields, which indicate strong structure-dependent Coulomb asymmetry. Using a dedicated semiclassical model, we have disentangled the contribution of direct ionization and multiple forward scattering on Coulomb asymmetry in elliptical laser fields. Our theory quantifies the roles of the ionic potential and initial transverse momentum on Coulomb asymmetry, proving that the small lobes of asymmetry are induced by direct ionization and the strong asymmetry is induced by multiple forward scattering in the ionic potential. Both processes are distorted by the Coulomb force acting on the electrons after tunneling. Lowering the ionization potential, the relative contribution of direct ionization on Coulomb asymmetry substantially decreases and Coulomb focusing on multiple rescattering is more important. We do not observe evident initial longitudinal momentum spread at the tunnel exit according to our simulation.
Seiberg-Witten curves and double-elliptic integrable systems
International Nuclear Information System (INIS)
Aminov, G.; Braden, H.W.; Mironov, A.; Morozov, A.; Zotov, A.
2015-01-01
An old conjecture claims that commuting Hamiltonians of the double-elliptic integrable system are constructed from the theta-functions associated with Riemann surfaces from the Seiberg-Witten family, with moduli treated as dynamical variables and the Seiberg-Witten differential providing the pre-symplectic structure. We describe a number of theta-constant equations needed to prove this conjecture for the N-particle system. These equations provide an alternative method to derive the Seiberg-Witten prepotential and we illustrate this by calculating the perturbative contribution. We provide evidence that the solutions to the commutativity equations are exhausted by the double-elliptic system and its degenerations (Calogero and Ruijsenaars systems). Further, the theta-function identities that lie behind the Poisson commutativity of the three-particle Hamiltonians are proven.
Dynamic separation of nanomagnet sublattices by orientation of elliptical elements
Yahagi, Y.; Berk, C. R.; Harteneck, B. D.; Cabrini, S. D.; Schmidt, H.
2014-04-01
We report the separation of the magnetization dynamics of densely packed nanomagnets depending on their orientation. The arrays consist of interleaved sublattices of identical nickel elliptical disks. By controlling the orientation of the elliptic disks relative to the external field in each sublattice, we simultaneously analyzed the magnetization dynamics in each sublattice using a time-resolved magnetooptic Kerr effect (TR-MOKE) microscopy system. The Fourier spectra showed clearly separated precession modes for sublattices with different orientations. The spectra were shown to be robust against the error in applied field orientation. The sublattice response can be tuned to a single collective frequency by choosing a symmetric field orientation. We analyzed the effect of the interelement coupling with various spacing between nanomagnets and found a relatively weak dependence on dipolar interactions in good agreement with micromagnetic simulations.
Nuclear limits on gravitational waves from elliptically deformed pulsars
International Nuclear Information System (INIS)
Krastev, Plamen G.; Li Baoan; Worley, Aaron
2008-01-01
Gravitational radiation is a fundamental prediction of General Relativity. Elliptically deformed pulsars are among the possible sources emitting gravitational waves (GWs) with a strain-amplitude dependent upon the star's quadrupole moment, rotational frequency, and distance from the detector. We show that the gravitational wave strain amplitude h 0 depends strongly on the equation of state of neutron-rich stellar matter. Applying an equation of state with symmetry energy constrained by recent nuclear laboratory data, we set an upper limit on the strain-amplitude of GWs produced by elliptically deformed pulsars. Depending on details of the EOS, for several millisecond pulsars at distances 0.18 kpc to 0.35 kpc from Earth, the maximalh 0 is found to be in the range of ∼[0.4-1.5]x10 -24 . This prediction serves as the first direct nuclear constraint on the gravitational radiation. Its implications are discussed