WorldWideScience

Sample records for status nuclear training

  1. Investigation on Current Status of World Nuclear Education and Training

    International Nuclear Information System (INIS)

    Shin, J. Y.; Min, M. J.; Noh, B. C.

    2010-04-01

    All over the world, the interest of nuclear energy is increasing and the expectations of it are getting more as one of the most practical alternative energy resources. However, since 1990s, as a lot of nuclear specialists are being retired, now the problem of manpower shortage is taken into consideration for all of us and will be continued until 2011. In this point of view, the good quality of the professional nuclear training and education systems and the nuclear education centers are requested in order to breed and supply the next generation nuclear scientists and engineers. Thus, the objective of this study is to explore the current status of world nuclear education for both of nuclear power countries and potential nuclear power utilization countries in the near future. This report introduces the importance of nuclear energy, the current status of world nuclear power plants operation and the contribution of nuclear energy. Besides, it also includes the nuclear energy development plan of potential nuclear developing countries in the near future. In addition, this study also explores the nuclear training and education systems of the nuclear development countries and the current status of nuclear education in various fields such as government, industries, nuclear power plants ect. Especially, as considering the status of nuclear education classified such as Asia, the Americas, East and West Europe, the Middle East and Africa, it shows the different characteristics of nuclear education systems in each regions aimed to identify the good practices on the nuclear education systems. Finally, through observation of international cooperation and networks of the various nuclear organizations, this will be contributed to the development of nuclear education for member states and be suggested the various of the direction of development for nuclear education in Korea. The report presents in the basis of the recent status data of the world nuclear education systems collected

  2. Present status of nuclear education and training in Japan

    International Nuclear Information System (INIS)

    Kiyose, R.; Sumita, K.; Moriya, F.

    1994-01-01

    In Japan, where about 30% of electricity is supplied by nuclear actives require a good number of able and ambitious young scientists and engineers especially in the future. On the other hand, almost all Japanese electric power companies, which operate nuclear power plants, are striving to keep expertise of reactor operators as high as possible. Present status in Japan of education at universities, research and training reactors, training courses at governmental institutions and nonprofit organizations, and operator training centers of electric power companies, are reviewed. 3 tabs

  3. Present status of nuclear science education and training in Sri Lanka

    International Nuclear Information System (INIS)

    Hewamanna, R.

    2007-01-01

    Like others Sri Lankans too have fear of nuclear radiation, probably because of the weak system of proper radiation education. Some National Institutes and few Universities are involved in nuclear science teaching and research. There are two major levels of obtaining radiation or nuclear education and training in Sri Lanka : the University and training courses in nuclear related technology and radiation protection offered by the Atomic Energy Authority of the Ministry of Science and Technology. This paper summarizes the status, some of the activities and problems of radiation education in Sri Lanka. (author)

  4. Current status of international training center for nuclear security and security issues in Korea

    International Nuclear Information System (INIS)

    Lee, Jong-UK; Sin, Byung Woo

    2013-01-01

    During the 2010 Nuclear Security Summit (NSS) President Lee declared that Korea will establish an international training center (ITC) for nuclear security near the Korea Institute of Nuclear Nonproliferation and Control (KINAC). It will be open to the world in 2014. The government's long term goal is to make the center a hub for education and training in the nuclear field in Asia. The ITC will accomplish this by establishing facilities for practical and realistic exercises through the use of a test bed and various other experiments. The center will also provide comprehensive educational programs for nuclear newcomers. Its main programs include: a well designed educational program, customized training courses, and on-the-job training. This paper will discuss the current status of the ITC and describe practical plans for solving current security issues in Korea. (authors)

  5. Current status nuclear training and education in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Nuclear technology was officially recognized through the setting up Panitia Negara untuk Penyelidikan Radioaktivitet in 1954, and the founding of Dewan Tenaga Atom Nasional and Lembaga Tenaga Atom (National Atomic Energy Board) in 1958 which then further reorganized and named BATAN (National Atomic Energy Agency) in 1964. Since the construction of the first research reactor in 1965, BATAN has been operating 3 research reactors. The application of nuclear technology in research, which was started in 1960's, was followed by application in non energy sectors such as agriculture and industries, and the utilization of radiation and radioisotopes in medical therapy and diagnostic. In 1997, in order to separate the control function and the promotion function of the application of nuclear energy in Indonesia, the Government set up two nuclear administrative agencies, i.e. the National Nuclear Energy Agency (BATAN) and the Nuclear Energy Control Board (BAPETEN). To provide well-educated and well-trained personnel in the fields of research, development, and application of nuclear technology, BATAN implementing its education and training program through the ETC (BATAN Education and Training Center) and STTN (Polytechnic Institute of Nuclear Technology), which were set up in 1981 and 1991, respectively. While STTN, formerly known as PATN, offers formal education at D3-level and D4-level in Technophysics and Techno-chemistry, the ETC is responsible for implementing education and training program, mainly in nuclear science and technology. In conducting education and training, ETC cooperates also with other education and training institutions, domestic as well as overseas institutions. ETC has set up a national network of nuclear education and training which involves some state universities and school, such as University of Indonesia, University of Gadjah Mada, Bandung Institute of Technology, Bogor Agriculture Institute, University of Pajajaran, and School of Medical

  6. Nuclear science training in Sri Lanka

    International Nuclear Information System (INIS)

    Hewamanna, R.

    2007-01-01

    There are two major levels of obtaining radiation or nuclear education and training in Sri Lanka : the University and training courses in nuclear related technology and radiation protection offered by the Atomic Energy Authority of the Ministry of Science and Technology . This paper summarizes the status, some of the activities and problems of radiation education in Sri Lanka. (author)

  7. The present status of international training and education in nuclear field held in Japan for Asian countries

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-11-01

    This report summarizes the training and educational courses for Asian countries carried out in Japan by the related institutions. The 2nd Workshop on Human Resources Development in the Nuclear Field was held on 27 and 28 of November 2000, based on FNCA (Forum for Nuclear Cooperation in Asia) organized by the Nuclear Energy Commission, and then the following day ''The Present Status of the International Training and Education in Japan for Asian Countries'' was reported for Asian participants on 29, November. This report is the Japanese edition of the handout distributed at the meeting. I believe it can be helpful for the related institutions in Japan to support the human resources development in the nuclear field efficiently and effectively in future. (author)

  8. Present status of the Nuclear Maintenance Training Center

    International Nuclear Information System (INIS)

    Kotani, Fumio

    1995-01-01

    The education and training to keep and improve the knowledge and skills of the maintenance personnel and to hand down the skills undoubtedly play important roles in safe operation and increased reliability to a nuclear power station. The Nuclear Maintenance Training Center (hereafter called the Center) provides a variety of education and training curriculums based on the levels and abilities of the trainees. The Center aims to enhance the personnel's maintenance technique by offering the curriculums on maintenance basic education for operators and supporting education and training for the personnel of contractors. The Center has two main features: first, it has the actual components or the equipment similar to the actual components which will enable the practical training; second, we regard the past troubles as valuable experiences and, therefore, focuses on the education to prevent recurrence of troubles by teaching the trainees the meaning and necessity of the training they take. For eleven years since the establishment of the Center, it has been utilized by the total number of about 60,000 people. As for the tasks in the future, the Center is expected to vitalize itself to give attractive education and training and become more actively involved in development of the maintenance personnel with the adequate knowledge and skills. (author)

  9. Current status of education and training in nuclear technology in Bangladesh

    International Nuclear Information System (INIS)

    Ahmed, F.U.

    2007-01-01

    Bangladesh Atomic Energy Commission (BAEC) is the national authority for the introduction, promotion and safety issues of nuclear science and technology in the country. During the last four decades, a significant development has been achieved in the field of food and agriculture, medicine, industries and environment using nuclear technology. Education and training in science and technology played a vital role to achieve the significant development in these fields. Some local public universities and BAEC training facilities at home and abroad have played mainly a key role to develop the human resource in the field of nuclear science and technology. Over the last four decades, BAEC with its various specialized establishments has played a focused role in the advancement, understanding and usage of nuclear science and technologies in the country. Through years of cumulative efforts, BAEC has developed a pool of research infrastructure, capacity and human resources having been trained extensively at home and abroad in their respective fields. The trained manpower in the different fields of science and technology are working in the country to solve some national problems like arsenic contamination in drinking water, iodine deficiency disease goitre, cancer and many others. BAEC is going to establish a Nuclear Training Institute which will also have residential facilities. Government has already assured to fund to establish the Nuclear Training Centre in the campus of AERE, Savar. BAEC placed a formal proposal for Affiliation with Jahangirnagar University for Awarding Post Graduate Degrees in different specialized fields of nuclear science and technology. As this might take some time for implementation; therefore, BAEC has decided to start the academic program immediately under the present set-up of the organization. With this view, BAEC proposes to affiliate its Nuclear Training Institute with the Jahangirnagar University for pursuing academic degree programmes i.e. post

  10. The simulator Neck-Mfgs and its training status

    International Nuclear Information System (INIS)

    Setnikar, T.; Pribozic, F.; Srebotnjak, E.; Gortnar, O.; Kovacic, J.; Stritar, A.

    1998-01-01

    This paper presents the status and training possibilities on Krsko NPP Multi-Functional Simulator (NEK-MFS). Since spring 1997 it serves as a training facility in Nuclear Training Center. During first year of operation the simulator NEK-MFS was found to be a very useful Krsko NPP specific tool which is capable to support both the initial operator training program and licensed operator retraining activities.(author)

  11. Data management strategies for nuclear training

    International Nuclear Information System (INIS)

    Zerbo, J.N.; Gwinn, A.E.

    1993-01-01

    Use of systematic training development technologies has become a standard for the commercial nuclear power industry and for many Department of Energy facilities. Such systems involve detailed analysis of job functions, tasks and skill requirements and correlation of that information to the courses, curricula and testing instruments used in the training process. Nuclear training programs are subject to audit and evaluation by a number of government and industry organizations. The ability to establish an audit trail, from initial task analysis to final examination is crucial to demonstrating the completeness and validity of a systematic training program. This paper provides perspective on aspects of the training data management problem, status of technological solutions, and characteristics of data base management systems that are best suited for application to training programs

  12. Status of radiation education and training in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Bernido, C.C. [Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon (Philippines)

    1999-09-01

    There are three major sources and levels of obtaining radiation or nuclear education and training in the Philippines: the secondary schools or high schools; colleges and universities; and training courses in nuclear science and radiation protection offered by government agencies such as the Philippine Nuclear Research Institute (PNRI) of the Department of Science and Technology and the Radiation Health Service (RHS) of the Department of Health. This paper summarizes the status, some of the activities and some of the problems of radiation education in the Philippines. (author)

  13. Status of radiation education and training in the Philippines

    International Nuclear Information System (INIS)

    Bernido, C.C.

    1999-01-01

    There are three major sources and levels of obtaining radiation or nuclear education and training in the Philippines: the secondary schools or high schools; colleges and universities; and training courses in nuclear science and radiation protection offered by government agencies such as the Philippine Nuclear Research Institute (PNRI) of the Department of Science and Technology and the Radiation Health Service (RHS) of the Department of Health. This paper summarizes the status, some of the activities and some of the problems of radiation education in the Philippines. (author)

  14. Training of troubleshooting skills in nuclear power plants

    International Nuclear Information System (INIS)

    Rhodes, W.; Szlapetis, I.J.; Casselman, K.

    1995-12-01

    This report details the study of training of troubleshooting skills for Canadian nuclear power plant operators and maintainers. The study was conducted in three distinct stages: 1) literature review and production of annotated bibliographies; 2) survey of experts in training for troubleshooting skills in North America; 3) survey of Canadian nuclear power plant training centres. Within this report are 12 annotated bibliographies of significant documents and an extensive bibliographic listing of relevant literature. The review of the literature and the survey of training experts identified the state-of-art in troubleshooting training with respect to training approaches and training tools. Trainers in the military, pharmaceutical, petro-chemical, and nuclear industries were surveyed and/or interviewed to determine the current approaches and technologies used in training for troubleshooting. Training personnel responsible for Canada's major nuclear generating stations (Bruce, Darlington, Pickering, and Point Lepreau) were interviewed and surveyed to determine the status of troubleshooting training in the Canadian nuclear industry. This information has been integrated and presented in this report. Conclusions and recommendations regarding the nature of the troubleshooting tasks performed by operators and maintainers and the related training were submitted. (author). 152 refs., 7 tabs., 1 fig

  15. Training of troubleshooting skills in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, W; Szlapetis, I J; Casselman, K [Rhodes and Associates, Inc., Willowdale, ON (Canada)

    1995-12-01

    This report details the study of training of troubleshooting skills for Canadian nuclear power plant operators and maintainers. The study was conducted in three distinct stages: (1) literature review and production of annotated bibliographies; (2) survey of experts in training for troubleshooting skills in North America; (3) survey of Canadian nuclear power plant training centres. Within this report are 12 annotated bibliographies of significant documents and an extensive bibliographic listing of relevant literature. The review of the literature and the survey of training experts identified the state-of-art in troubleshooting training with respect to training approaches and training tools. Trainers in the military, pharmaceutical, petro-chemical, and nuclear industries were surveyed and/or interviewed to determine the current approaches and technologies used in training for troubleshooting. Training personnel responsible for Canada`s major nuclear generating stations (Bruce, Darlington, Pickering, and Point Lepreau) were interviewed and surveyed to determine the status of troubleshooting training in the Canadian nuclear industry. This information has been integrated and presented in this report. Conclusions and recommendations regarding the nature of the troubleshooting tasks performed by operators and maintainers and the related training were submitted. (author). 152 refs., 7 tabs., 1 fig.

  16. Status and problem for Nuclear Power Plant Maintenance Training Center

    International Nuclear Information System (INIS)

    Nanjoh, Takuo

    1991-01-01

    The Nuclear Power Plant Maintenance Training Center of Kansai Electric Power Co., Inc. was founded in October, 1983, and seven years elapsed since then. The education and training of 37,000 persons were carried out to meet the situation in the plants and to enhance the facilities. Though the main policy of the practical training for preventing the recurrence of troubles does not change, the situation changed from the time of the foundation, and the role has expanded, including PA activities. The see-through plant model installed for technical education in April, 1989 is the about 1/25 scale model of the actual machine with two loops, which actually generates steam and slight electric power, and is useful for promoting the understanding of nuclear power generation theory. It accomplishes the important role that the visitors to the Center (7500 persons in 1989 fiscal year) understand the mechanism of nuclear power generation. In 1990, the education curriculum, the method of education, the time of education and so on are reviewed, aiming at the improvement of education. The execution of education and training, the training of practical techniques, the reflection of the examples of troubles to education, and the expansion of facilities are reported. (K.I.)

  17. Nuclear power plant status diagnostics using artificial neural networks

    International Nuclear Information System (INIS)

    Bartlett, E.B.; Uhrig, R.E.

    1991-01-01

    In this work, the nuclear power plant operating status recognition issue is investigated using artificial neural networks (ANNs). The objective is to train an ANN to classify nuclear power plant accident conditions and to assess the potential of future work in the area of plant diagnostics with ANNS. To this end, an ANN was trained to recognize normal operating conditions as well as potentially unsafe conditions based on nuclear power plant training simulator generated accident scenarios. These scenarios include; hot and cold leg loss of coolant, control rod ejection, loss of offsite power, main steam line break, main feedwater line break and steam generator tube leak accidents. Findings show that ANNs can be used to diagnose and classify nuclear power plant conditions with good results

  18. Nuclear Manpower Training

    International Nuclear Information System (INIS)

    Min, B. J.; Yoo, B. H.; Lee, E. J.

    2007-01-01

    Nuclear Training Center (NTC) has concentrated its efforts on the systemisation and specialization of education and training and has actively carried out diverse activities to create new education courses based on the experience accumulated so far. The systematic and comprehensive education systems have been set up by streamlining the education systems for internal employees conducted sporadically over the past years and expansion and diversification of education and training has been built through a study on Systematic Approach to Training (SAT) methodology for the development of efficient education courses and a survey of manpower development in on-site industry. The 6 education programs have been developed and 15 courses were newly developed and improved. Especially to be noted in relation to education program development is that NTC has compiled and published a book titled 'current status of research ethics of science and technology and cases' and has also conducted a survey targeted at the 30 electric power/electricity industries related to nuclear power. The total number of people who receive education for the year of 2006 was 4,186 and a total of 130 training courses were established and 125 times operated. Among them, the number of collective education was 64 courses, 104 times operated and 3,190 persons participated while as for cyber education(on-line language education), 39 courses in 3 foreign language areas established, 21 times operated and 996 persons participated

  19. Nuclear Manpower Training

    International Nuclear Information System (INIS)

    Han, K. W.; Lee, H. Y.; Lee, E. J. and others

    2004-12-01

    Through the project on nuclear human resources development in 2004, the Nuclear Training Center of KAERI has provided various nuclear education and training courses for 1,962 persons from the domestic nuclear related organizations such as Government Agencies, nuclear industries, R and D institutes, universities, and public as well as from IAEA Member States. The NTC has developed education programs for master/doctorial course on advanced nuclear engineering in cooperation with the University of Science and Technology which was established in 2003. Additionally, nuclear education programs such as nuclear technical training courses for the promotion of cooperation with member countries, have developed during the project period. The center has also developed and conducted 7 training courses on nuclear related technology. In parallel, the center has produced 20 training materials including textbooks, 3 multi-media education materials, and 56 Video On Demand (VOD) cyber training materials. In order to promote international cooperation for human resources development, the NTC has implemented a sub-project on the establishment of a web-portal including database for the exchange of information and materials within the framework of ANENT. Also, the center has cooperated with FNCA member countries to establish a model of human resources development, as well as with member countries on bilateral cooperation bases to develop training programs. The International Nuclear Training and Education Center (INTEC), which was opened in 2002, has hosted 318 international and domestic events (training courses, conferences, workshops, etc.) during the project period

  20. Nuclear manpower training

    International Nuclear Information System (INIS)

    Suh, In Suk; Lee, H. Y.; Joe, B. J.; Lee, S. H.; Lee, E. J.; Yoo, B. H.; Seo, K. W.; Lee, W. K.; Jun, H. I.; Yang, K. N.; Kim, Y. J.; Kim, I. H.; Kim, M. Y.; Ju, Y. C.; Hyun, H. Y.; Choi, I. G.; Hong, C. S.; Won, J. Y.; Nam, J. Y.; Lee, H. J.

    1997-01-01

    This report describes the annual results of training courses. the scope and contents are as follows: 1. Regional and interregional training courses 2. Training courses assisted by foreign experts 3. Training courses for nuclear industry personnel 4. Training courses for internal staff-members 5. Training courses under the law. This Nuclear Training Center executed the open-door training courses for 2,400 engineers/scientists from the regulatory body, nuclear industries, research institutes and other related organizations by means of offering 51 training courses during the fiscal year 1996. (author). 23 refs

  1. Nuclear manpower training

    Energy Technology Data Exchange (ETDEWEB)

    Suh, In Suk; Lee, H. Y.; Joe, B. J.; Lee, S. H.; Lee, E. J.; Yoo, B. H.; Seo, K. W.; Lee, W. K.; Jun, H. I.; Yang, K. N.; Kim, Y. J.; Kim, I. H.; Kim, M. Y.; Ju, Y. C.; Hyun, H. Y.; Choi, I. G.; Hong, C. S.; Won, J. Y.; Nam, J. Y.; Lee, H. J.

    1997-01-01

    This report describes the annual results of training courses. the scope and contents are as follows: 1. Regional and interregional training courses 2. Training courses assisted by foreign experts 3. Training courses for nuclear industry personnel 4. Training courses for internal staff-members 5. Training courses under the law. This Nuclear Training Center executed the open-door training courses for 2,400 engineers/scientists from the regulatory body, nuclear industries, research institutes and other related organizations by means of offering 51 training courses during the fiscal year 1996. (author). 23 refs.

  2. Computerized training program usage at the Fort Calhoun Nuclear Power Station

    International Nuclear Information System (INIS)

    Ruzic, D.H.; Reed, W.H.; Lawton, R.K.; Fluehr, J.J.

    1987-01-01

    The increased US Nuclear Regulatory Commission and Institute of Nuclear Power Operations (INPO) interest in the nuclear power industry training programs resulted in the Omaha Public Power District staff at the Fort Calhoun Nuclear Power Station investigating the potential for computerizing their recently accredited training records, student training requirements, and the process of determining student certification status. Additional areas that were desirable were a computerized question data bank with random test generation, maintaining history of question usage, and tracking of the job task analysis process and course objectives. SCI Software's online personnel training information management system (OPTIM) was selected, subsequent to a bid evaluation, to provide these features while operating on the existing corporate IBM mainframe

  3. Nuclear manpower training

    International Nuclear Information System (INIS)

    Suh, In Suk; Lee, H. Y.; Lee, E. J.; Yang, K. N.; Jun, H. R.; Seo, K. W.; Lee, S. H.; Kim, Y. J.; Kim, I. H.; Joe, B. J.; Koh, Y. S.; Yoo, B. H.; Kim, M. Y.; Ju, Y. C.; Hyun, H. U.; Choi, I. K.; Hong, C. S.; Won, J. Y.; Nam, J. Y.; Lee, H. J.

    1997-12-01

    This report describes the annual results of training courses. The scope and contents are as follows: 1. Education program development of nuclear field 2. International training courses for foreigners 3. Training courses for industry personnel 4. Training courses for R and D staff-members 5. Training courses under the law. The nuclear training center executed 65 training courses for 2,700 engineers/ scientists from the regulatory body, nuclear industries, research institutes and other related organizations during the fiscal year 1997. (author). 18 refs., 3 tabs

  4. Nuclear manpower training

    Energy Technology Data Exchange (ETDEWEB)

    Suh, In Suk; Lee, H. Y.; Lee, E. J.; Yang, K. N.; Jun, H. R.; Seo, K. W.; Lee, S. H.; Kim, Y. J.; Kim, I. H.; Joe, B. J.; Koh, Y. S.; Yoo, B. H.; Kim, M. Y.; Ju, Y. C.; Hyun, H. U.; Choi, I. K.; Hong, C. S.; Won, J. Y.; Nam, J. Y.; Lee, H. J

    1997-12-01

    This report describes the annual results of training courses. The scope and contents are as follows: 1. Education program development of nuclear field 2. International training courses for foreigners 3. Training courses for industry personnel 4. Training courses for R and D staff-members 5. Training courses under the law. The nuclear training center executed 65 training courses for 2,700 engineers/ scientists from the regulatory body, nuclear industries, research institutes and other related organizations during the fiscal year 1997. (author). 18 refs., 3 tabs.

  5. Nuclear Manpower Training

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. J.; Han, K. W.; Lee, H. Y. and others

    2006-01-15

    Through the project on nuclear human resources development in 2005, the Nuclear Training Center of KAERI has provided 67 nuclear education and training courses for 3,658 persons from the domestic nuclear related organizations such as Government Agencies, nuclear industries, R and D institutes, universities, and public as well as from IAEA Member States. In addition, 6 students (MS and Ph D.) have taken nuclear technology related courses offered by UST-KAERI. The project has developed 8 programs and 12 courses. They includes programs for IAEA training, bilateral education and training, and in-house training as well as courses dealing with maintenance of nuclear power plants and management of electricity generation, thermal-hydraulics nuclear hydrogen, nuclear safeguards, radiation emergency preparedness and etc. National and international cooperation has been promoted. For ANENT, test operation, data loading and revision of the web-portal have been undertaken. Also the web-portal operation system has been established. For FNCA, NTC has cooperated for the establishment of a model of human resource development and the exchange of information/materials. With WNU, the NTC has made an effort for hosting 2007 WNU Summer Institute. The infrastructure for nuclear education and training has been strengthened. Basic directions for providing the customers with better service, This includes showing kindness to the customer, renovation of the interior of training facilities, and upgrading of web-based management system for learning and using facilities of NTC. Other efforts have resulted in the publication of 25 course materials (10 for international courses and 15 for national courses), and the improvement of education and training equipment. The International Nuclear Training and Education Center (INTEC), which was opened in 2002, has hosted 296 international and domestic events in 2005.

  6. Education and training in nuclear science/engineering in Taiwan

    International Nuclear Information System (INIS)

    Chung, C.

    1994-01-01

    The present status of nuclear education and training in Taiwan is reviewed. The nuclear science/engineering program has been established in Taiwan under the College of Nuclear Science at the National Tsing Hua University since 1956; it remains the only program among 123 universities and colleges in Taiwan where education and training in nuclear fields are offered. The program, with 52 faculty members, offers advanced studies leading to BSc, MSc, and PhD degrees. Lectures and lab classes are given to 600 students currently registered in the program. Career placement program geared for the 200 graduate and 400 undergraduate students is to orientate them into the local nuclear power utilities as well as agricultural, medical, industrial, academic and governmental sectors where nuclear scientists and engineers at all levels are needed. 8 refs., 1 fig

  7. Cooperation in education and training in nuclear- and radiochemistry in Europe

    International Nuclear Information System (INIS)

    John, J.; Čuba, V.; Němec, M.

    2014-01-01

    In this paper, the motivation, history and status of coordination of education and training in nuclear- and radiochemistry in Europe will be reviewed and correlated to similar activities in other nuclear fields such as the nuclear engineering of radiological protection. The achievements of the Euratom FP7 project 'Cooperation In education in Nuclear CHemistry (CINCH)' will be described in detail. This description will cover both the status review and the development activities of this collaboration. In the status review field, the results of a detailed survey of the universities and curricula in nuclear- and radiochemistry in Europe and Russia will be presented. In the development activities field, the main achievements of the CINCH project will be presented. They are particularly the NukWik - an open platform for collaboration and sharing teaching materials in nuclear- and radiochemistry based on a wiki engine

  8. Nuclear instrument technician training

    International Nuclear Information System (INIS)

    Wollesen, E.S.

    1991-01-01

    This paper reports on Nuclear Instrument Technician (NIT) training that has developed at an accelerated rate over the past three decades. During the 1960's commercial nuclear power plants were in their infancy. For that reason, there is little wonder that NIT training had little structure and little creditability. NIT training, in many early plants, was little more than On-The Job Training (OJT). The seventies brought changes in Instrumentation and Controls as well as emphasis on the requirements for more in depth training and documentation. As in the seventies, the eighties saw not only changes in technologies but tighter requirements, standardized training and the development of accredited Nuclear Instrument Training; thus the conclusion: Nuclear Instrument Training Isn't What It Used To Be

  9. Training of nuclear power plant personnel in the member states of the European Community

    International Nuclear Information System (INIS)

    Misenta, R.; Matfield, R.S.; Volta, G.; Ancarani, A.; Lhoir, J.

    1981-01-01

    After the Three Mile Island accident the Commission of the European Communities undertook various actions in order to assess the status of the training of nuclear power plant personnel with particular attention to their training for incidents and accidents. This presentation attempts a review of the training situation in the six member states of the European Community together with some other European states, that are operating nuclear power plants. Schemes for the training of control room operators, shift leaders, major European training centres and simulator training will be described

  10. Nuclear manpower planning and personnel training

    International Nuclear Information System (INIS)

    Chen, J.H.

    1984-01-01

    Taiwan Power Company has established a nuclear manpower program to identify human resources, selection and recruitment of entry level engineers and technicians of Nuclear Energy Group. The methodology to estimate the future nuclear manpower demand of Taipower has been clearly described in this article. Also, the manpower program is being used as the bases for nuclear training program development. For safe, reliable and efficient operation of nuclear power plants, Taipower has established a systematic training program for nuclear power stations and headquarter personnel. The training program has been implemented in three stages with different patterns of training program. The first stage of nuclear training before 1975 was completed successfully. The second stage of nuclear training currently conducted since 1975 enlarges domestic training capability. The third stage of nuclear training with a long term training program is now under a systematic and compositive development effort

  11. Management of nuclear training center

    International Nuclear Information System (INIS)

    Seo, In Suk; Lee, Han Young; Cho, Boung Jae; Lee, Seung Hee; Lee, Eoi Jin; You, Byung Hoon; Lee, Won Ku; Jeon, Hyung Ryeon; Seo, Kyung Won; Kim, Young Joong; Kim, Ik Hyun; Hyun, Ha Il; Choi, Il Ki; Hong, Choon Sun; Won, Jong Yeul; Joo, Yong Chang; Nam, Jae Yeul; Sin, Eun Jeong

    1996-02-01

    This report describes the annual results of training courses. The scope and contents are as follows : 1. Regional and interregional training courses, 2. Training courses assisted by foreign experts, 3. Training courses for nuclear industry personnel, 4. Training courses for internal staff-members, 5. Training courses under the law. The nuclear training center executed the open-door training courses for 2,699 engineers/scientists from the regulatory body, nuclear industries, research institutes and other related organizations by means of offering 69 training courses during the fiscal year 1995. (Author) .new

  12. Special feature article-very urgent nuclear energy personnel training

    International Nuclear Information System (INIS)

    Saito, Shinzo; Tsujikura, Yonezo; Kawahara, Akira

    2007-01-01

    Securing human resources is important for the sustainable development of research, development and utilization of nuclear energy. However, concerns have been raised over the maintenance of human resources due to the decline of public and private investment in research and development of nuclear energy in recent years. To that end, it is essential for the workplace in the field of nuclear energy to be engaging. This special feature article introduced the Government's fund program supporting universities and vocational colleges to develop human resources in the area of nuclear energy. Electric utilities, nuclear industries, nuclear safety regulators and related academia presented respective present status and issues of nuclear energy personnel training with some expectations to the program to secure human resources with professional qualifications. (T. Tanaka)

  13. Development of plant status display system for on-site educational training system

    International Nuclear Information System (INIS)

    Yoshimura, Seiichi; Fujimoto, Junzo; Okamoto, Hisatake; Tsunoda, Ryohei; Watanabe, Takao; Masuko, Jiro.

    1986-01-01

    The purpose of this system is to make easy the comprehension of the facility and dynamics of nuclear power plants. This report describes the tendency and future position of how the educational training system should be, and furthermore describes the experiment. Main results are as follows. 1. The present status and the future tendency of educational training system for nuclear power plant operators. CAI (Computer Assisted Instruction) system has following characteristics. (1) It is easy to introduce plant specific characteristics to the educational training. (2) It is easy to execute the detailed training for the compensation of the full-scale simulator. 2. Plant status display system for on-site educational training system. The fundamental function of the system is as follows. (1) It has 2 CRT displays and voice output devices. (2) It has easy manupulation type of man-machine interface. (3) It has the function for the evaluation of the training results. 3. The effectiveness of this system. The effectiveness evaluation test has been carried out by using this system actually. (1) This system has been proved to be essentially effective and some improvements for the future utilization has been pointed out. (2) It should be faster when the CRT displayes are changed, and it should have the explanation function when the plant transients are displayed. (author)

  14. The Text of the Fifth Agreement to Extend the 1987 Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology (RCA). Extension of Agreement. Latest Status

    International Nuclear Information System (INIS)

    2012-01-01

    The Text of the Fifth Agreement to Extend the 1987 Regional Cooperative Agreement for Research, Development and Training Related to Nuclear Science and Technology (RCA). Extension of Agreement. Latest Status [es

  15. Training in nuclear and radiation safety in Latin American and Caribbean

    International Nuclear Information System (INIS)

    Papadopulos, S.; Diaz, O.; Larcher, A.; Echenique, L.; Nicolas, R.; Lombardi, R.; Quintana, G.

    2013-01-01

    From thirty-three years, Argentina has taken the commitment to train professionals in the field of nuclear and radiation safety for the care and protection of workers and public in general. Sponsored by the IAEA and supported by the Faculty of Engineering of the University of Buenos Aires (FIUBA), an undertaking was made to encourage the training of scientists and experts in the countries of the region in order to establish a strong safety culture in radiation in individuals and maintaining high standards of safety practices using ionizing radiation. In 2012, the Graduate Course in Radiation Protection and Safety of Radiation Sources has acquired the status of 'Specialization' of the FIUBA, a category that further hierarchies skills training in the subject. This is a highly anticipated achievement by the implications for academic institutions, national and regional level, contributing to the strengthening of the Regional Training Center for Latin America and the Caribbean, acknowledged in a long-term agreement between the IAEA and Argentina in September 2008. Due to increased demand for nuclear activity, it is important to continue and deepen further training in radiological and nuclear areas. In order to satisfy both national and regional needs a process of increase on training offer training is being carried out, under the jurisdiction frame of the Nuclear Regulatory Authority. This paper presents the achievements of the country so far as regards training of human resource in radiation protection and nuclear safety in the region and highlights the challenges ahead for the extension of the offer in education and training. (author)

  16. Nuclear education, training and support

    International Nuclear Information System (INIS)

    Vityazev, Vsevolod; Ushakov Artem

    2016-01-01

    The structure and key elements of the ROSATOM education and training system are presented. Educational and training services and technical support are provided during the NPP lifetime, including nuclear Infrastructure, nuclear power plant personnel training, equipment and post-warranty spare parts, nuclear power plant operation support, maintenance and repair, modernization and lifetime extension

  17. Nuclear power training courses

    International Nuclear Information System (INIS)

    1977-01-01

    The training of technical manpower for nuclear power projects in developing countries is now a significant part of the IAEA Technical Assistance Programme. Two basic courses are the cornerstones of the Agency's training programme for nuclear power: a course in planning and implementation, and a course in construction and operation management. These two courses are independent of each other. They are designed to train personnel for two distinct phases of project implementation. The nuclear power project training programme has proven to be successful. A considerable number of highly qualified professionals from developing countries have been given the opportunity to learn through direct contact with experts who have had first-hand experience. It is recognized that the courses are not a substitute for on-the-job training, but their purpose is achieved if they have resulted in the transfer of practical, reliable information and have helped developing countries to prepare themselves for the planning, construction and operation management of nuclear power stations

  18. A nuclear power plant status monitor

    International Nuclear Information System (INIS)

    Chu, B.B.; Conradi, L.L.; Weinzimmer, F.

    1986-01-01

    Power plant operation requires decisions that can affect both the availability of the plant and its compliance with operating guidelines. Taking equipment out of service may affect the ability of the plant to produce power at a certain power level and may also affect the status of the plant with regard to technical specifications. Keeping the plant at a high as possible production level and remaining in compliance with the limiting conditions for operation (LCOs) can dictate a variety of plant operation and maintenance actions and responses. Required actions and responses depend on the actual operational status of a nuclear plant and its attendant systems, trains, and components which is a dynamic situation. This paper discusses an Electric Power Research Institute (EPRI) Research Project, RP 2508, the objective of which is to combine the key features of plant information management systems with systems reliability analysis techniques in order to assist nuclear power plant personnel to perform their functions more efficiently and effectively. An overview of the EPRI Research Project is provided along with a detailed discussion of the design and operation of the PSM portion of the project

  19. AKR-1 nuclear training reactor of Dresden Technical University turns twenty-five

    International Nuclear Information System (INIS)

    Hansen, W.

    2003-01-01

    Twenty-five years ago, in the night of July 27 to 28, 1978, the AKR-1 nuclear training reactor of the Dresden Technical University went critical for the first time and was commissioned. On the occasion of this anniversary, a colloquy was arranged with representatives from science, politics and industry, at which the reactor's history, the excellent achievements in research and training with the reactor, and the status and perspectives of this research facility were described. The AKR-1 had been built within the framework of the Nuclear Development Program of the then German Democratic Republic (GDR). The Nuclear Power Scientific Division of the Dresden Technical University had been entrusted with the responsibility, among other things, to train university personnel for the GDR Nuclear Power Program. The review by an expert group in 1996 of this plant had resulted in a recommendation in favor of long-term plant operation. A nuclear licensing procedure to this effect was initiated, and the necessary technical backfitting measures were implemented. The AKR-1 plant now equally serves for the specialized training of students and for research. (orig.) [de

  20. Cooperation in regional nuclear training

    International Nuclear Information System (INIS)

    Newstead, C.M.; Lee, D.S.; Spitalnik, J.

    1985-01-01

    This paper presents an overview of the nuclear training currently being undertaken in the countries of the co-authors, and considers the degree to which training problems are amenable to common solutions such as cooperative regional training programs. Different types of cooperation are discussed including the development of regional and international training centers, cooperative bilateral and multilateral training, and the proposed US International Nuclear Safety Training Academy. The paper provides suggestions of ways for enhancing regional cooperation

  1. Training enhancement of Japanese nuclear international talented staffs hurried by rushing in global age

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Saito, Masaki; Ahn, Joonhong

    2010-01-01

    Nuclear power has attracted international attention with its beneficial roles in realizing a low-carbon society and serving as an energy source. Many countries would expect cooperation with Japanese nuclear industry continuing construction of nuclear power plants. Such global requests would inevitably require training enhancement of Japanese international talented staffs and establishment of human networks in younger generation. This feature article collected related activities of academia and electric utilities, status of Asian trainee acceptance and proposals from persons with experience of studying abroad and staying overseas organization. Issues related with training enhancement and their countermeasures were broadly discussed. (T. Tanaka)

  2. Nuclear power training programmes in Spain

    International Nuclear Information System (INIS)

    Tanarro, A.; Izquierdo, L.

    1977-01-01

    The introduction of nuclear power in Spain is developing very rapidly. At present 1.1GW(e) are installed in Spain and this is expected to increase to 8GW(e) in 1980 and to 28GW(e) in 1990. Spanish industry and technology are also rapidly increasing their participation in building nuclear stations, in manufacturing the necessary components and in the activities related to the nuclear fuel cycle. All of this requires properly trained personnel, which is estimated to become approximately 1200 high-level technicians, 1100 medium-level technicians and 1500 technical assistants by 1980. This personnel is trained: (a) in engineering schools; (b) in the Nuclear Studies Institute; (c) in the electric companies with nuclear programmes. The majority of the high-level engineering schools in the country include physics and basic nuclear technology courses in their programmes. Some of them have an experimental low-power nuclear reactor. The Nuclear Studies Institute is an official organism dependent on the Nuclear Energy Commission and responsible, among other subjects, for training personnel for the peaceful use and development of nuclear energy in the country. The electric companies also participate in training personnel for future nuclear stations and they plan to have advanced simulators of PWR and BWR type stations for operator training. The report deals with the personnel requirement forecasts and describes the training programmes. (author)

  3. The text of the Agreement to Extend the Regional Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology, 1987. Status of acceptances as of 28 February 1993

    International Nuclear Information System (INIS)

    1993-04-01

    The document gives the status of acceptances as of 28 February 1993 of the agreement to extend regional co-operative agreement for research, development and training related to nuclear science and technology from 1987

  4. The development of nuclear power and nuclear manpower training in China

    International Nuclear Information System (INIS)

    Yang Lin; Xu Xiyue

    2000-01-01

    There are two nuclear power plants (NPP) in operation in China. The Qinshan NPP was the first that was constructed by China's own efforts and went into operation on 1991. The Daya Bay NPP was constructed using foreign funds, technology and went into operation on 1994. Four nuclear power projects with 8 units were initiated during the State Ninth Five-years Plan. The 8 units are expected for commercial operation between 2002 and 2005. China is preparing for the Tenth Five-Year Plan, in which China will develop the nuclear power at a moderate pace. The 13 universities and colleges were offering nuclear science educations. The students from these universities and college can meet the needs of nuclear institutes and enterprises. China National Nuclear Corporation (CNNC) owns the Graduated School of Nuclear Industry and the Nuclear Industry Administrative Cadre College, which will turn into the nuclear training center in future. Besides, CNNC also owns 4 institutions awarding Doctorate and 9 institutes awarding Master Degree. Many programs for education and training carried out by CNNC are presented, such as direct education supported by CNNC's finances, on job training, education for the second bachelor degree, training for senior economic professionals, research course for senior professionals, short time training course and training for license. China trained nuclear personnel by international cooperation with other countries both through multilateral and bilateral cooperation programs. CNNC has established scientific and economic ties with over 40 countries. CNNC has held diversified training for nuclear industry professionals with our own efforts and with the support from the State for many years. Today, the rapid development of nuclear industry needs more professionals. We must make greater efforts to enhance human resources development. Nuclear Safety is very important for nuclear energy development. Nuclear safety is closely related to each person who works in

  5. Nuclear safeguards research and development program. Status report, January--April 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sapir, J.L. (comp.)

    1977-06-01

    The status of the Nuclear Safeguards Research and Development program pursued by LASL Safeguards Groups Q-1, Q-2, Q-3, and Q-4 is presented . Topics covered include nondestructive assay technology development and applications, international safeguards, perimeter safeguards and surveillance, concepts and subsystems development (e.g., DYMAC program), integrated safeguards systems, training courses, and technology transfer.

  6. Nuclear safeguards research and development program. Status report, January--April 1977

    International Nuclear Information System (INIS)

    Sapir, J.L.

    1977-06-01

    The status of the Nuclear Safeguards Research and Development program pursued by LASL Safeguards Groups Q-1, Q-2, Q-3, and Q-4 is presented . Topics covered include nondestructive assay technology development and applications, international safeguards, perimeter safeguards and surveillance, concepts and subsystems development (e.g., DYMAC program), integrated safeguards systems, training courses, and technology transfer

  7. Recruitment, qualification and training of personnel for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of this Safety Guide is to outline the various factors that should to be considered in order to ensure that the operating organization has a sufficient number of qualified personnel for safe operation of a nuclear power plant. In particular, the objective of this publication is to provide general recommendations on the recruitment and selection of plant personnel and on the training and qualification practices that have been adopted in the nuclear industry since the predecessor Safety Guide was published in 1991. In addition, this Safety Guide seeks to establish a framework for ensuring that all managers and staff employed at a nuclear power plant demonstrate their commitment to the management of safety to high professional standards. This Safety Guide deals specifically with those aspects of qualification and training that are important to the safe operation of nuclear power plants. It provides recommendations on the recruitment, selection, qualification, training and authorization of plant personnel. That is, of all personnel in all safety related functions and at all levels of the plant. Some parts or all of this Safety Guide may also be used, with due adaptation, as a guide to the recruitment, selection, training and qualification of staff for other nuclear installations (such as research reactors or nuclear fuel cycle facilities). Section 2 gives guidance on the recruitment and selection of suitable personnel for a nuclear power plant. Section 3 gives guidance on the establishment of personnel qualification, explains the relationship between qualification and competence, and identifies how competence may be developed through education, experience and training. Section 4 deals with general aspects of the training policy for nuclear power plant personnel: the systematic approach, training settings and methods, initial and continuing training, and the keeping of training records. Section 5 provides guidance on the main aspects of training programmes

  8. Recruitment, qualification and training of personnel for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this Safety Guide is to outline the various factors that should to be considered in order to ensure that the operating organization has a sufficient number of qualified personnel for safe operation of a nuclear power plant. In particular, the objective of this publication is to provide general recommendations on the recruitment and selection of plant personnel and on the training and qualification practices that have been adopted in the nuclear industry since the predecessor Safety Guide was published in 1991. In addition, this Safety Guide seeks to establish a framework for ensuring that all managers and staff employed at a nuclear power plant demonstrate their commitment to the management of safety to high professional standards. This Safety Guide deals specifically with those aspects of qualification and training that are important to the safe operation of nuclear power plants. It provides recommendations on the recruitment, selection, qualification, training and authorization of plant personnel; that is, of all personnel in all safety related functions and at all levels of the plant. Some parts or all of this Safety Guide may also be used, with due adaptation, as a guide to the recruitment, selection, training and qualification of staff for other nuclear installations (such as research reactors or nuclear fuel cycle facilities). Section 2 gives guidance on the recruitment and selection of suitable personnel for a nuclear power plant. Section 3 gives guidance on the establishment of personnel qualification, explains the relationship between qualification and competence, and identifies how competence may be developed through education, experience and training. Section 4 deals with general aspects of the training policy for nuclear power plant personnel: the systematic approach, training settings and methods, initial and continuing training, and the keeping of training records. Section 5 provides guidance on the main aspects of training programmes

  9. Cooperation in education and training in nuclear- and radiochemistry in Europe

    International Nuclear Information System (INIS)

    Jan John; Jukka Lehto; Teija Koivula; Jon Petter Omtvedt

    2015-01-01

    The motivation, history and status of coordination of education and training in nuclear- and radiochemistry in Europe are reviewed. The achievements of the Euratom FP7 project 'Cooperation In education in Nuclear CHemistry (CINCH)' are described. Attention is paid to the results of the survey of universities teaching nuclear chemistry and their respective curricula evaluation, to the plan to introduce the EuroMaster in nuclear- and radiochemistry quality label recognized and guaranteed by the European Association for Chemical and Molecular Sciences (EuCheMS), and to CINCH NucWik - an interactive database proposed and implemented as an open structure in the form of a 'Wiki'. (author)

  10. Nuclear power status 1999

    International Nuclear Information System (INIS)

    2000-01-01

    The document gives statistical information on nuclear power plants status in the world in 1999, including the number of reactors in operation or under construction, the electricity supplied by nuclear power reactors and the respective percentage of electricity produced by nuclear energy in 1999, and the total operating experience to 31 December 1999, by country

  11. Nuclear and training

    International Nuclear Information System (INIS)

    Xiaofeng, T.; Perotin, J.P.; Gavrilovic, M.; Vermot-Desroches, J.P.; Leflefian, Ch.

    2009-01-01

    The present text presents the characteristics of a project of a nuclear power plant construction and the notion of culture of safety and explains the necessity of the implementation of the management team asked to diffuse the culture of nuclear safety and to insure it the control and analyzes the example of the nuclear power plant construction of Ling Ao in China. To complete the different training in nuclear field are reviewed through National education. (N.C.)

  12. Managerial challenges in nuclear training

    International Nuclear Information System (INIS)

    Scholand, G.W.

    1985-01-01

    Nuclear personnel training programs have existed since the infancy of the commercial nuclear power industry. The scope and complexity of these programs have increased dramatically, especially since the Three Mile Island mishap in 1979. Whether voluntary or regulated, the changes of the past several years have greatly increased the responsibilities and roles of the nuclear training managers. Events and our own diligence have compounded two problems (or challenges) that have been with us all along. First, training managers have frequently been excluded from the change-making process, leaving them to react as best they can to new regulatory mandates and new utility innovations in a de facto fashion. Second, the additional resources needed to meet new requirements (personnel, equipment, facilities, and funds) have not been made available, or have been insufficient to accomplish new tasks. This paper discusses these challenges and considers several responses (including a national nuclear trainers association) that can go a long way to place nuclear training managers and their employees more in control of their own fate

  13. Training options for countering nuclear smuggling

    International Nuclear Information System (INIS)

    Ball, D Y; Erickson, S A

    1999-01-01

    The burden of stopping a nuclear smuggling attempt at the border rests most heavily on the front-line customs inspector. He needs to know how to use the technological tools at his disposal, how to discern tell-tale anomalies in export documents and manifests, how to notice psychological signs of a smuggler's tension, and how to search anything that might hide nuclear material. This means that assistance in the counter-nuclear smuggling training of customs officers is one of the most critical areas of help that the United States can provide. This paper discusses the various modes of specialized training, both in the field and in courses, as well as the types of assistance that can be provided. Training for nuclear customs specialists, and supervisors and managers of nuclear smuggling detection systems is also important, and differs from front-line inspector training in several aspects. The limitations of training and technological tools such as expert centers that will overcome these limitations are also discussed. Training assistance planned by DOE/NN-43 to Russia within the Second Line of Defense program is discussed in the light of these options, and future possibilities for such training are projected

  14. Nuclear power manpower and training requirements

    International Nuclear Information System (INIS)

    Whan, G.A.

    1984-01-01

    A broad spectrum of technical personnel is required to conduct a national nuclear power program, predominantly electrical, mechanical, and nuclear engineers and health physicists. The need for nuclear education and training, even in the early planning states, is the topic of this paper. Experience gained in the United States can provide useful information to Asia-Pacific countries developing nuclear power programs. Including both on-site and off-site personnel, U.S. plants average about 570 workers for BWRs and 700 for PWRs. The need for an additional 57,000 technical employees over the next decade is projected. The technical backgrounds of the manpower required to operate and support a nuclear power plant are distinctly different from those used by non-nuclear utilities. Manpower cannot be transferred from fossil fuel plants without extensive training. Meeting the demand for nuclear education and training must be a friendly partnership among universities, government, and industry. The long-term supply of nuclear-educated personnel requires strong, government-supported universities. Most specific training, however, must be provided by industry. (author)

  15. Deregulation and Nuclear Training: Cost Effective Alternatives

    International Nuclear Information System (INIS)

    Richard P. Coe; Patricia A. Lake

    2000-01-01

    Training is crucial to the success of any organization. It is also expensive, with some estimates exceeding $50 billion annually spent on training by U.S. corporations. Nuclear training, like that of many other highly technical organizations, is both crucial and costly. It is unlikely that the amount of training can be significantly reduced. If anything, current trends indicate that training needs will probably increase as the industry and workforce ages and changes. With the advent of energy deregulation in the United States, greater pressures will surface to make the costs of energy more cost-competitive. This in turn will drive businesses to more closely examine existing costs and find ways to do things in a more cost-effective way. The commercial nuclear industry will be no exception, and nuclear training will be equally affected. It is time for nuclear training and indeed the entire nuclear industry to begin using more aggressive techniques to reduce costs. This includes the need for nuclear training to find alternatives to traditional methods for the delivery of cost-effective high-quality training that meets regulatory requirements and produces well-qualified personnel capable of working in an efficient and safe manner. Computer-based and/or Web-based training are leading emerging technologies

  16. Nuclear education in Russia: Status, peculiarities, problems and perspectives

    International Nuclear Information System (INIS)

    Onykii, B.N.; Kryuchkov, E.F.

    2004-01-01

    Full text: For longer than 50-year period of nuclear industry development in the USSR, the specialists training system has been created to meet completely the industrial branch's demands for the specialists of all possible qualifications for research, engineering and production activities. This educational system does exist in Russia till now. In the presentation the following items will be addressed: Nuclear Engineering education in Russia: status and peculiarities; Demands of nuclear enterprises for the alumni. Role of the Universities in these problems solution; Nuclear engineering education problems in Russia; Master of science education in nuclear aria; Perspectives of nuclear education in Russia; Integration of nuclear education in Europe: perspectives and problems. The educational system in nuclear engineering, like an educational system in any other knowledge area in Russia, includes the training activities limited by Russian legislation only: academic training of the specialists with award of the State certificates (higher education, re-training, qualification upgrade); qualification upgrade of the specialists without award of the State certificates. The system of education represents a multi-level structure oriented at any possible needs of industrial branches. At present, more than 20 Russian higher education institutions train the specialists in nuclear engineering. The specialists training in nuclear engineering is being conducted in all these universities in full accordance with common educational curricula and standards which define some peculiarities of the specialists training in this area: 1) Combination of fundamental knowledge in physics and mathematics with profound engineering skills; 2) Large share of laboratory works; 3) Participation at the research work starting from the 4th year student; 4) Long education time (5-6 years) and period for thesis preparation (1/2 year - pre-diploma internship and 1/2 year of thesis preparation); 5) High

  17. Nuclear safety education and training network

    International Nuclear Information System (INIS)

    Bastos, J.; Ulfkjaer, L.

    2004-01-01

    In March 2001, the Secretariat convened an Advisory Group on Education and Training in nuclear safety. The Advisory Group considered structure, scope and means related to the implementation of an IAEA Programme on Education and Training . A strategic plan was agreed and the following outputs were envisaged: 1. A Training Support Programme in nuclear safety, including a standardized and harmonized approach for training developed by the IAEA and in use by Member States. 2. National and regional training centres, established to support sustainable national nuclear safety infrastructures. 3. Training material for use by lecturers and students developed by the IAEA in English and translated to other languages. The implementation of the plan was initiated in 2002 emphasizing the preparation of training materials. In 2003 a pilot project for a network on Education and Training in Asia was initiated

  18. Nuclear safety training program (NSTP) for dismantling

    International Nuclear Information System (INIS)

    Cretskens, Pieter; Lenie, Koen; Mulier, Guido

    2014-01-01

    European Control Services (GDF Suez) has developed and is still developing specific training programs for the dismantling and decontamination of nuclear installations. The main topic in these programs is nuclear safety culture. We therefore do not focus on technical training but on developing the right human behavior to work in a 'safety culture' environment. The vision and techniques behind these programs have already been tested in different environments: for example the dismantling of the BN MOX Plant in Dessel (Belgium), Nuclear Safety Culture Training for Electrabel NPP Doel..., but also in the non-nuclear industry. The expertise to do so was found in combining the know-how of the Training and the Nuclear Department of ECS. In training, ECS is one of the main providers of education in risky tasks, like elevation and manipulation of charges, working in confined spaces... but it does also develop training on demand to improve safety in a certain topic. Radiation Protection is the core business in the Nuclear Department with a presence on most of the nuclear sites in Belgium. Combining these two domains in a nuclear safety training program, NSTP, is an important stage in a dismantling project due to specific contamination, technical and other risks. It increases the level of safety and leads to a harmonization of different working cultures. The modular training program makes it possible to evaluate constantly as well as in group or individually. (authors)

  19. Virtual-Reality training system for nuclear security

    International Nuclear Information System (INIS)

    Nonaka, Nobuyuki

    2012-01-01

    At the Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN) of the Japan Atomic Energy Agency, the virtual reality (VR) training system is under development for providing a practical training environment to implement experience-oriented and interactive lessons on nuclear security for wide range of participants in human resource development assistance program mainly to Asian emerging nuclear-power countries. This system electrically recreates and visualizes nuclear facilities and training conditions in stereoscopic (3D) view on a large-scale display (CAVE system) as virtual reality training facility (VR facility) and it provides training participants with effective environments to learn installation and layout of security equipment in the facility testing and verifying visually the protection performances under various situations such as changes in day-night lighting and weather conditions, which may lead to practical exercise in the design and evaluation of the physical protection system. This paper introduces basic concept of the system and outline of training programs as well as featured aspects in using the VR technology for the nuclear security. (author)

  20. Nuclear training and education

    International Nuclear Information System (INIS)

    Sandklef, S.

    2008-01-01

    There is a large need in this period of anticipated growth of the nuclear industry to keep and increase the level of competence beyond that provided by universities, technical institutes and on-the-job training. ANT International has developed several programs to assist the nuclear industry in meeting this need. The programs are based on utilizing the experience and skills of a network of experts who have a wide experience in the relevant technical areas of importance to nuclear power operations. Examples of these programs are given in this report together with an extensive list of ANT International reports in the field of nuclear fuel technology, water chemistry and reactor materials. These reports have been and are used for training and education in Europe, North America and Asia. (author)

  1. Upgrade the website of Nuclear Training Center for online training

    International Nuclear Information System (INIS)

    Nguyen Minh Duc; Nguyen Thuy Hang; Nguyen Thi Lien; Luu Thi Thu Hoa; Pham Thi Thu Trang

    2017-01-01

    In 2016, Nuclear Training Center (NTC) proposed the task of improving and upgrading NTC website’s technology for better performance, more attractive interface and more accessible information to site visitors. This website will be designed to meet the demand for integrated online training site, integrated training management page later. For this task, it is expected to build a website with full modules, English interface of website and especially, the professional website to apply online training technology and tightly integrated close to the present site of a nuclear training center. (author)

  2. Nuclear education and training: from concern to capability

    International Nuclear Information System (INIS)

    2012-01-01

    The OECD Nuclear Energy Agency (NEA) first published in 2000 Nuclear Education and Training: Cause for Concern?, which highlighted significant issues in the availability of human resources for the nuclear industry. Ten years on, Nuclear Education and Training: From Concern to Capability considers what has changed in that time and finds that, while some countries have taken positive actions, in a number of others human resources could soon be facing serious challenges in coping with existing and potential new nuclear facilities. This is exacerbated by the increasing rate of retirement as the workforce ages. This report provides a qualitative characterisation of human resource needs and appraises instruments and programmes in nuclear education and training initiated by various stakeholders in different countries. In this context, it also examines the current and future uses of nuclear research facilities for education and training purposes. Regarding the nuclear training component of workforce competence, it outlines a job taxonomy which could be a basis for addressing the needs of workers across this sector. It presents the taxonomy as a way of enhancing mutual recognition and increasing consistency of education and training for both developed and developing countries. Contents: 1 - A decade of change: Background; The evolving environment; A key resource - a competent workforce; 2 - Review of nuclear education and associated facilities: Introduction; Education and training - progress over the last decade; Present use of research infrastructure for education and training in NEA member countries; 3 - Towards a blueprint for workforce development: The benefits of a competent nuclear workforce; Classifying competence; Analysis ; 4 - Ensuring capability - the recommendations: Nuclear human resource features and requirements; Ten years on - the developments; Approach to developing a common job taxonomy; 5 - Appendices: Recommendations from Nuclear Education and Training

  3. Conceptions of nuclear threshold status

    International Nuclear Information System (INIS)

    Quester, G.H.

    1991-01-01

    This paper reviews some alternative definitions of nuclear threshold status. Each of them is important, and major analytical confusions would result if one sense of the term is mistaken for another. The motives for nations entering into such threshold status are a blend of civilian and military gains, and of national interests versus parochial or bureaucratic interests. A portion of the rationale for threshold status emerges inevitably from the pursuit of economic goals, and another portion is made more attraction by the derives of the domestic political process. Yet the impact on international security cannot be dismissed, especially where conflicts among the states remain real. Among the military or national security motives are basic deterrence, psychological warfare, war-fighting and, more generally, national prestige. In the end, as the threshold phenomenon is assayed for lessons concerning the role of nuclear weapons more generally in international relations and security, one might conclude that threshold status and outright proliferation coverage to a degree in the motives for all of the states involved and in the advantages attained. As this paper has illustrated, nuclear threshold status is more subtle and more ambiguous than outright proliferation, and it takes considerable time to sort out the complexities. Yet the world has now had a substantial amount of time to deal with this ambiguous status, and this may tempt more states to exploit it

  4. Nuclear safeguards research. Program status report. Progress report, September--December 1975

    International Nuclear Information System (INIS)

    1976-04-01

    This report presents the status of the Nondestructive Assay R and D program of the LASL Nuclear Safeguards Research Group, R-1, covering the period September-December 1975. It covers: holdup measurements at the Kerr-McGee Pu facility at Crescent, Okla.; calculations for Random Driver; instrument development and measurement controls; ERDA nondestructive assay training program; and in-plant dynamic materials control (DYMAC) program. 22 figures, 5 tables

  5. Training Nuclear Power Specialists

    International Nuclear Information System (INIS)

    Paulikas, V.

    2003-01-01

    Situation of preparation of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. In view with decision to decommission Unit 1, the Ignalina NPP is limiting the number of new personnel to fill in vacancies. The main attention is given to the training courses for improvement skills of existing Ignalina NPP, VATESI personnel. Main topics of the training courses are listed. Comparison with previous years on personnel hired and dismissed in Ignalina NPP is made

  6. The role of nuclear education and training in Korea

    International Nuclear Information System (INIS)

    Min, B.J.; Han, K.W.; Lee, E.J.

    2007-01-01

    Since the commercial operation of the first nuclear power plant in April 1978, Korea has achieved a rapid growth in nuclear power. In 2004, 19 nuclear power plants are currently in operation and 8 nuclear power plants are under construction. The installed nuclear capacity is 16,716MW. Also nuclear power generation reached 129,672GWh which are about 40% of the total electricity generation. Nuclear energy has been a backbone for Korea's economic growth over the past decades, and will continue to play role for the prosperity of next generation in this century. In this context, Korean Standard Nuclear Power Plant and Advanced Power Reactor-1400 have been developed, and System-Integrated Modular Advanced Reactor for desalination of seawater, Advanced Liquid Metal Reactor and Direct Use of Spent PWR Fuel in CANDU are being developed. In parallel, a Radiation Technology R and D Center and a High Power Proton Accelerator Center are being established. Along with the progress of the nuclear energy program, the nuclear education and training has been progressed stepwise, i.e. overseas training, basic training, domestic nuclear human resource development, IAEA regional training, and global nuclear human resource development. Nuclear engineering education program started at Universities from 1958. In order to provide training courses for nuclear personnel, the Nuclear Training Center was established at KAERI in 1967. During the construction of the first nuclear power plant, basic training courses were conducted at NTC/KAERI. And specific training courses were conducted by the reactor suppliers in Korea and the supplier's countries. During this period, reactor operation license laws and the national technical qualification system (engineer, technician, craftsman) with a linkage to the national education system were established in 1970, 1975, respectively. When the utility (now the Korea Hydro and Nuclear Company) started operation of the first nuclear power plant in 1978, the

  7. Contribution of Nuclear Training Centre in Ljubljana to Training and Information in the Area of Nuclear Technology

    International Nuclear Information System (INIS)

    Stritar, A.

    1998-01-01

    Nuclear Training Centre in Ljubljana ia a part of the Jozef Stefan Institute. The paper presents its main activities, which consist of training for NPP Krsko staff, training in the area of radiation protection, organization of international training courses and public information. NPP Krsko personnel obtains initial technical training at our training centre. We are also offering training courses and licensing for people working with radioactive substances in medicine, industry and science. We are internationally recognized training centre for organization of regional and interregional courses and meeting. Our fourth activity is public information. We are visited by around 7000 students per year and answer to every question about nuclear energy. (author)

  8. Training and Public Information Activities of the Milan Copic Nuclear Training Centre

    International Nuclear Information System (INIS)

    Jencic, I.

    2006-01-01

    The mission of the Milan Copic Nuclear Training Centre is training in the field of nuclear technologies and radioactivity. In addition we are actively informing general public about those technologies. Activities can be divided into four areas: training in the area of nuclear technologies, radiological protection training, organization of international training courses and public information. Training in the area of nuclear technologies is the primary mission. Two types of courses are regularly offered: The Theory of nuclear technology is the initial training of future control room operators, and the Basics of nuclear technology is intended for non-control room personnel of Krsko NPP and for staff of some other organizations. Each year there are also some specific courses in this area, mainly for the regulatory body and for the NPP. Jozef Stefan Institute is one of the two institutions in Slovenia, authorized for radiological protection training and the training centre is the actual performer. About 15 courses yearly are organized for people from medicine, industry and science courses about open, closed and industrial sources of ionizing radiation. We are also responsible for the training of NPP Krsko personnel in that area. Organization of international courses is a usually a collaboration with the International Atomic Energy Agency (IAEA), but we have worked also with other international organizations, such as European Commission, US Department of Energy etc. The topics of international courses and workshops cover a wide range from nuclear safety to radiological protection or illegal trafficking of nuclear materials etc. Depending on the subject, part of lectures on these courses is given by domestic experts. 6 - 10 international courses are organized yearly. Very important is the area of public information. Groups of school children and other visitors are coming regularly to listen to a lecture and to visit the exhibition. In 2005, both the lecture and the

  9. Nuclear education, training and knowledge management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Beeley, Phil; Slugen, Vladimir; Kyrki-Rajamaeki, Rita [European Nuclear Society ENS, Brussels (Belgium). ENS High Scientific Council

    2010-04-15

    The situation in the nuclear education today is complex as it relates to nuclear technology for both peaceful and security applications. After more than 20 years period of depression in nuclear facility construction (significant mainly in Europe and USA), there is strong renewed interest in nuclear-generated electricity. Many factors have contributed to ''nuclear renaissance'' including concerns about possible climate changes due to carbon emissions. The Nuclear Energy Agency (OECD/NEA) study in 2000, ''Nuclear Education and Training. Cause for Concern'', highlighted the necessity for a renaissance in nuclear education and training with some recommendations. The European Nuclear Energy Forum (ENEF) identified the nuclear education as one of highest risks in nuclear industry. The nuclear renaissance depends on the increased number of engineers properly educated in wide spectrum of nuclear disciplines. The world has responded. Networks have been established to respond to the necessity to maintain and perpetuate nuclear knowledge in order to provide a suitably qualified workforce for the future operation of nuclear power plants. The quality in Education, Training and Knowledge Management (ETKM) is strongly influenced and supported by development of nuclear research, exploitation of experimental and training facilities, existence of proper education and training networks, software tools, distance and e-learning and a variety of knowledge management activities. The projected global annual requirements for new nuclear engineers over the next 10 years will challenge existing academic and training institutions with respect to capacity and load factors on classrooms, laboratories and other facilities such as basic principles simulators. Additionally, the nuclear academic workforce may need to increase to meet the demand for educating/training the new industrial workforce and this will take time. Within the European context many of the

  10. Nuclear education, training and knowledge management in Europe

    International Nuclear Information System (INIS)

    Beeley, Phil; Slugen, Vladimir; Kyrki-Rajamaeki, Rita

    2010-01-01

    The situation in the nuclear education today is complex as it relates to nuclear technology for both peaceful and security applications. After more than 20 years period of depression in nuclear facility construction (significant mainly in Europe and USA), there is strong renewed interest in nuclear-generated electricity. Many factors have contributed to ''nuclear renaissance'' including concerns about possible climate changes due to carbon emissions. The Nuclear Energy Agency (OECD/NEA) study in 2000, ''Nuclear Education and Training. Cause for Concern'', highlighted the necessity for a renaissance in nuclear education and training with some recommendations. The European Nuclear Energy Forum (ENEF) identified the nuclear education as one of highest risks in nuclear industry. The nuclear renaissance depends on the increased number of engineers properly educated in wide spectrum of nuclear disciplines. The world has responded. Networks have been established to respond to the necessity to maintain and perpetuate nuclear knowledge in order to provide a suitably qualified workforce for the future operation of nuclear power plants. The quality in Education, Training and Knowledge Management (ETKM) is strongly influenced and supported by development of nuclear research, exploitation of experimental and training facilities, existence of proper education and training networks, software tools, distance and e-learning and a variety of knowledge management activities. The projected global annual requirements for new nuclear engineers over the next 10 years will challenge existing academic and training institutions with respect to capacity and load factors on classrooms, laboratories and other facilities such as basic principles simulators. Additionally, the nuclear academic workforce may need to increase to meet the demand for educating/training the new industrial workforce and this will take time. Within the European context many of the programmes will continue through

  11. Training in nuclear and radiation safety in Latin American and Caribbean; Capacitacion en seguridad nuclear y radiologica en America Latina y el Caribe

    Energy Technology Data Exchange (ETDEWEB)

    Papadopulos, S.; Diaz, O.; Larcher, A.; Echenique, L.; Nicolas, R., E-mail: spapadopulos@arn.gob.ar, E-mail: odiaz@arn.gob.ar, E-mail: alarcher@arn.gob.ar, E-mail: lechenique@arn.gob.ar, E-mail: rnicolas@arn.gob.ar [Autoridad Regulatoria Nuclear (ARN), Buenos Aires (Argentina); Lombardi, R.; Quintana, G., E-mail: alombar@fi.uba, E-mail: quinta@fi.uba.ar [Universidad de Buenos Aires (FI/UBA), (Argentina). Facultad de Ingenieria

    2013-07-01

    From thirty-three years, Argentina has taken the commitment to train professionals in the field of nuclear and radiation safety for the care and protection of workers and public in general. Sponsored by the IAEA and supported by the Faculty of Engineering of the University of Buenos Aires (FIUBA), an undertaking was made to encourage the training of scientists and experts in the countries of the region in order to establish a strong safety culture in radiation in individuals and maintaining high standards of safety practices using ionizing radiation. In 2012, the Graduate Course in Radiation Protection and Safety of Radiation Sources has acquired the status of 'Specialization' of the FIUBA, a category that further hierarchies skills training in the subject. This is a highly anticipated achievement by the implications for academic institutions, national and regional level, contributing to the strengthening of the Regional Training Center for Latin America and the Caribbean, acknowledged in a long-term agreement between the IAEA and Argentina in September 2008. Due to increased demand for nuclear activity, it is important to continue and deepen further training in radiological and nuclear areas. In order to satisfy both national and regional needs a process of increase on training offer training is being carried out, under the jurisdiction frame of the Nuclear Regulatory Authority. This paper presents the achievements of the country so far as regards training of human resource in radiation protection and nuclear safety in the region and highlights the challenges ahead for the extension of the offer in education and training. (author)

  12. The World Nuclear Industry Status Report 2017

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Rodriguez, Juan C.; Ruedinger, Andreas; Stienne, Agnes

    2017-09-01

    The World Nuclear Industry Status Report 2017 (WNISR2017) provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. The WNISR2017 edition includes a new assessment from an equity analyst view of the financial crisis of the nuclear sector and some of its biggest industrial players. The Fukushima Status Report provides not only an update on onsite and offsite issues six years after the beginning of the catastrophe, but also the latest official and new independent cost evaluations of the disaster. Focus chapters provide in-depth analysis of France, Japan, South Korea, the United Kingdom and the United States. The Nuclear Power vs. Renewable Energy chapter provides global comparative data on investment, capacity, and generation from nuclear, wind and solar energy. Finally, Annex 1 presents a country-by-country overview of all other countries operating nuclear power plants

  13. The World Nuclear Industry Status Report 2013

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hosokawa, Komei; Thomas, Steve; Yamaguchi, Yukio; Hazemann, Julie; Bradford, Peter A.

    2013-07-01

    Two years after the Fukushima disaster started unfolding on 11 March 2011, its impact on the global nuclear industry has become increasingly visible. Global electricity generation from nuclear plants dropped by a historic 7 percent in 2012, adding to the record drop of 4 percent in 2011. This World Nuclear Industry Status Report 2013 (WNISR) provides a global overview of the history, the current status and the trends of nuclear power programs worldwide. It looks at nuclear reactor units in operation and under construction. Annex 1 provides 40 pages of detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the second time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. Annex 6 provides an overview table with key data on the world nuclear industry by country. The 2013 edition of the World Nuclear Industry Status Report also includes an update on nuclear economics as well as an overview of the status, on-site and off-site, of the challenges triggered by the Fukushima disaster. However, this report's emphasis on recent post-Fukushima developments should not obscure an important fact: as previous editions (see www.WorldNuclearReport.org) detail, the world nuclear industry already faced daunting challenges long before Fukushima, just as the U.S. nuclear power industry had largely collapsed before the 1979 Three Mile Island accident. The nuclear promoters' invention that a global nuclear renaissance was flourishing until 3/11 is equally false: Fukushima only added to already grave problems, starting with poor economics. The performance of the nuclear industry over the year from July 2012 to July 2013 is summed up in this report

  14. Training in nuclear engineering companies

    International Nuclear Information System (INIS)

    Perezagua, R. L.

    2013-01-01

    The importance of training is growing in all business areas and fields and especially in hi-tech companies like engineering firms. Nuclear projects are highly multidisciplinary and, even in the initial awarding and pre-construction phases, need to be staffed with personnel that is well-prepared and highly-qualified in areas that, in most cases, are not covered by university studies. This article examines the variables that influence the design of specific training for nuclear projects in engineering firms, along with new training technologies (e-learning) and new regulatory aspects (IS-12). (Author)

  15. Nuclear training: we just keep learning!

    International Nuclear Information System (INIS)

    Long, R.L.

    1996-01-01

    Years ago GPU Nuclear made a commitment to behavioral based training and to the development of high quality training for the personnel running their nuclear plants. The paper shares some of our latest developments and techniques being used to achieve outstanding results. (author)

  16. Nuclear safeguards research and development. Program status report, October 1980-January 1981

    International Nuclear Information System (INIS)

    Henry, C.N.

    1981-11-01

    This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security

  17. Nuclear safeguards research and development. Program status report, October 1980-January 1981

    Energy Technology Data Exchange (ETDEWEB)

    Henry, C.N. (comp.)

    1981-11-01

    This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  18. Basic training of nuclear power reactor personnel

    International Nuclear Information System (INIS)

    Palabrica, R.J.

    1981-01-01

    The basic training of nuclear power reactor personnel should be given very close attention since it constitutes the foundation of their knowledge of nuclear technology. Emphasis should be given on the thorough understanding of basic nuclear concepts in order to have reasonable assurance of successful assimilation by those personnel of more specialized and advanced concepts to which they will be later exposed. Basic training will also provide a means for screening to ensure that those will be sent for further spezialized training will perform well. Finally, it is during the basic training phase when nuclear reactor operators will start to acquire and develop attitudes regarding reactor operation and it is important that these be properly founded. (orig.)

  19. Training of nuclear power facility personnel. Part 1

    International Nuclear Information System (INIS)

    1989-06-01

    The proceedings of the conference entitled ''Training of Nuclear Power Facility Personnel'' and held in Tale, Czechoslovakia, on 24 - 27 April 1989, contain full texts of 58 contributions, 57 of which fall in the INIS subject scope. The aim of the conference was to summarize experience gained during the training and education of Czechoslovak nuclear power plants operating personnel, to put forth new suggestions for increasing the safety and reliability of nuclear power plants, and to establish the needs and new trends in the training and education of nuclear power plants personnel. The topics treated at the conference can be divided into three basic groups as follows: 1. professional qualification of nuclear power plant staff members; 2. development of technical means for the nuclear power plants personnel training; and 3. training of maintenance personnel, the system and organization of this training and education. The proceedings are published in two volumes. Part 1 contains the texts of 25 papers falling in the INIS subject scope. (Z.M.)

  20. 1982 annual status report. Nuclear measurements

    International Nuclear Information System (INIS)

    1983-01-01

    The Nuclear Measurement programme is briefly presented in this status report, it is divided in two main projects, Nuclear Data on the one hand (neutron data, non neutron nuclear data) and Nuclear Reference Materials and Techniques on the other (nuclear reference materials, samples and targets for nuclear measurements, development of reference techniques, study for the production of enriched actinide isotopes)

  1. Nuclear criticality safety department training implementation

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-01-01

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document

  2. The World Nuclear Industry Status Report: 1992

    International Nuclear Information System (INIS)

    Flavin, Christopher; Lenssen, Nicholas; Froggatt, Antony; Willis, John; Kondakji, Assad; Schneider, Mycle

    1992-05-01

    The World Nuclear Industry Status Report provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. This first WNISR Report was issued in 1992 in a joint publication with WISE-Paris, Greenpeace International and the World Watch Institute, Washington

  3. Operator training and requalification at GPU Nuclear

    International Nuclear Information System (INIS)

    Long, R.L.; Barrett, R.J.; Newton, S.L.

    1982-01-01

    The operator training and requalification programs at GPU Nuclear's Oyster Creek (650 MWe BWR) and Three Mile Island-1 (776 MWe PWR) nuclear plants have undergone significant revisions since the Three Mile Island-2 accident. This paper describes the Training and Education organization, the expanded training facilities, including basic principle trainers and replica simulators, and the present operator training and requalification programs

  4. The status of nuclear power plants in the People's Republic of China

    International Nuclear Information System (INIS)

    Puckett, J.

    1991-05-01

    China's main energy source is coal, but transportation and environmental problems make that fuel less than desirable. Therefore, the Chinese, as part of an effort toward alternative energy sources, are developing nuclear power plants. In addition to providing a cleaner power source, development of nuclear energy would improve the Chinese economic condition and give the nation greater world status. China's first plants, at Qinshan and Daya Bay, are still incomplete. However, China is working toward completion of those reactors and planning the training and operating procedures needed to operate them. At the same time, it is improving its nuclear fuel exports. As they develop the capability for generating nuclear power, the Chinese seem to be aware of the accompanying quality and safety considerations, which they have declared to be first priorities. 50 refs., 7 figs

  5. Status of Nuclear Science Education and the Needs for Competency Based Education at the Beginning of Nuclear Power Programme in Turkey

    International Nuclear Information System (INIS)

    Yücel, H.

    2016-01-01

    Full text: In Turkey, in recent years, public opinion is mostly positive towards the establishment of NPPs because electricity demand is ever-increasing with a growing population and developing economy. For peaceful nuclear energy use, Turkey ratified the NPT in 1979 and has had a safeguards agreement, and its Additional Protocol since 2001. However, Turkey has not accumulated the essential nuclear knowledge and experience until now. The present nuclear education and training programmes are not focused on nuclear safety and power technology. There is lack of competencies concerned with measuring and monitoring, instrumentation and control for a safe operation of a reactor, and other specific nuclear equipment and facilities on site. The urgent needs should be determined to commence a competency based education in which the younger generations will instill confidence to nuclear technology. In nuclear training and education programs, it should be given a priority to nuclear safety and security culture. This should be a key requirement for newcomers to nuclear technology. In this presentation, the present status of nuclear science education in Turkey is discussed briefly and the fundamental arguments are dealt to focus on competency based nuclear education. Within international community, Turkey can seek collaborations and can consider the new challenges to tackle with the present difficulties in nuclear education programmes as a newcomer country. (author

  6. Development of training courses in the field of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Young; Soe, In Seok; Lee, Ui Jin; Park, Jae Chang; Kim, Ik Hyeon; Won, Jong Yeol; Nam, Jae Yeol

    1993-12-01

    The nuclear training center provides various training courses in such areas of nuclear energy as nuclear power technology, radioisotope applications technology, non-destructive technology, nuclear safety, etc. The center also provides in-house staff training courses in project management, computer applications, and other research areas. The objective of the project is to develop new specialized training courses not only nuclear energy areas but also in management, so that localization of nuclear project can be accomplished as early as possible. The scope and contents of the project envision the following aims; 1. to develop specialized nuclear training programs; 2. to develop project management training courses for KAERI staff; 3. to collect and analyze foreign training programs and materials; 4. to develop foreign-assisted training courses; and 5. to develop international training courses for developing country trainese

  7. Nuclear criticality safety training: guidelines for DOE contractors

    International Nuclear Information System (INIS)

    Crowell, M.R.

    1983-09-01

    The DOE Order 5480.1A, Chapter V, Safety of Nuclear Facilities, establishes safety procedures and requirements for DOE nuclear facilities. This guide has been developed as an aid to implementing the Chapter V requirements pertaining to nuclear criticality safety training. The guide outlines relevant conceptual knowledge and demonstrated good practices in job performance. It addresses training program operations requirements in the areas of employee evaluations, employee training records, training program evaluations, and training program records. It also suggests appropriate feedback mechanisms for criticality safety training program improvement. The emphasis is on academic rather than hands-on training. This allows a decoupling of these guidelines from specific facilities. It would be unrealistic to dictate a universal program of training because of the wide variation of operations, levels of experience, and work environments among DOE contractors and facilities. Hence, these guidelines do not address the actual implementation of a nuclear criticality safety training program, but rather they outline the general characteristics that should be included

  8. The World Nuclear Industry Status Report 2014

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Ayukawa, Yurika; Burnie, Shaun; Piria, Raffaele; Thomas, Steve; Hazemann, Julie; Suzuki, Tatsujiro

    2014-07-01

    The World Nuclear Industry Status Report 2014 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. A 20-page chapter on nuclear economics looks at the rapidly changing market conditions for nuclear power plants, whether operating, under construction, or in the planning stage. Reactor vendor strategies and the 'Hinkley Point C Deal' are analyzed in particular. The performance on financial markets of major utilities is documented. The WNISR2013 featured for the first time a Fukushima Status Report that triggered widespread media and analyst attention. The 2014 edition entirely updates that Fukushima chapter. The Nuclear Power vs. Renewable Energy chapter that provides comparative data on investment, capacity, and generation has been greatly extended by a section on system issues. How does nuclear power perform in systems with high renewable energy share? Is this the end of traditional baseload/ peak-load concepts? Finally, the 45-page Annex 1 provides a country-by-country overview of all 31 countries operating nuclear power plants, with extended Focus sections on China, Japan, and the United States

  9. Establishment of the International Nuclear Education/Training and its Cooperation Framework for Nuclear Transparency

    International Nuclear Information System (INIS)

    Min, B. J.; Han, K. W.; Lee, E. J.

    2009-02-01

    This project covered development and implementation of international nuclear education/training programs, cooperation for nuclear human resource development and education/training. provision of MS and PhD courses for qualified students from developing countries, and strengthening of infrastructure for the nuclear education/training. The WNU one week summer course was held for domestic future generation in nuclear field. NTC operated the ANENT web portal and cyber platform, supported training on their use, and prepared a KAERI-IAEA Practical Arrangement for the promotion of web-base nuclear education/training. For FNCA, an analysis was conducted on the need of nuclear education/training in South East Asian countries. The bilateral cooperation included cooperation with Vietnam. provision of Korean experience for nuclear power personnel from Egypt, and commencing of cooperation with South Africa. Also, NTC participated in GENEP for sharing Korean experience in the nuclear human resource development project. KAERI-UST MA and PhD courses with 3 foreign students started in spring 2008 and implemented. The courses were advance nuclear reactor system engineering, accelerator and nano-beam engineering, and radiation measurement science. 13 international nuclear education/training courses (IAEA, KOICA, RCARO and bilateral) were implemented for 226 foreign trainees. A reference education/training program was developed, which consisted of 15 courses that can be customized to learner levels and project stages of countries in question (e.g. Middle East. Africa). A textbook entitled 'Research Reactor Design, Management and Utilization' was developed presenting Korean experience with research reactors

  10. Nuclear Training Excellence Project in Slovenské elektrárne

    International Nuclear Information System (INIS)

    Kvočková, Alena; Tonkovičová, Martina; Baláž, Martin

    2014-01-01

    Goals 2013-2015: • Set and implement nuclear training in accordance with the best nuclear practice: → Change understanding of nuclear training by line management – nuclear training is part of core business; → Apply Systematic Approach to Training methodology thoroughly; → Develop and start implementing new training programs. • Prepare practical training centers in EBO and EMO for real operation

  11. Training device for nuclear power plant operators

    International Nuclear Information System (INIS)

    Schoessow, G. J.

    1985-01-01

    A simulated nuclear energy power plant system with visible internal working components comprising a reactor adapted to contain a liquid with heating elements submerged in the liquid and capable of heating the liquid to an elevated temperature, a steam generator containing water and a heat exchanger means to receive the liquid at an elevated temperature, transform the water to steam, and return the spent liquid to the reactor; a steam turbine receiving high energy steam to drive the turbine and discharging low energy steam to a condenser where the low energy steam is condensed to water which is returned to the steam generator; an electric generator driven by the turbine; indicating means to identify the physical status of the reactor and its contents; and manual and automatic controls to selectively establish normal or abnormal operating conditions in the reactor, steam generator, pressurizer, turbine, electric generator, condenser, and pumps; and to be selectively adjusted to bring the reactor to acceptable operating condition after being placed in an abnormal operation. This device is particularly useful as an education device in demonstrating nuclear reactor operations and in training operating personnel for nuclear reactor systems and also as a device for conducting research on various safety systems to improve the safety of nuclear power plants

  12. Operator training simulator for nuclear power plant

    International Nuclear Information System (INIS)

    Shiozuka, Hiromi

    1977-01-01

    In nuclear power plants, training of the operators is important. In Japan, presently there are two training centers, one is BWR operation training center at Okuma-cho, Fukushima Prefecture, and another the nuclear power generation training center in Tsuruga City, Fukui Prefecture, where the operators of PWR nuclear power plants are trained. This report describes the BWR operation training center briefly. Operation of a nuclear power plant is divided into three stages of start-up, steady state operation, and shut down. Start-up is divided into the cold-state start-up after the shut down for prolonged period due to periodical inspection or others and the hot-state start-up from stand-by condition after the shut down for a short time. In the cold-state start-up, the correction of reactivity change and the heating-up control to avoid excessive thermal stress to the primary system components are important. The BWR operation training center offers the next three courses, namely beginner's course, retraining course and specific training course. The training period is 12 weeks and the number of trainees is eight/course in the beginner's course. The simulator was manufactured by modeling No. 3 plant of Fukushima First Nuclear Power Station, Tokyo Electric Power Co. The simulator is composed of the mimic central control panel and the digital computer. The software system comprises the monitor to supervise the whole program execution, the logic model simulating the plant interlock system and the dynamic model simulating the plant physical phenomena. (Wakatsuki, Y.)

  13. Training in radiological protection for nuclear programmes

    International Nuclear Information System (INIS)

    1975-01-01

    Many Member States are developing or already have developed their own national training programmes. The IAEA is actively involved in promoting training in radiological protection for nuclear programmes. The various types of training are fully discussed, with suggested curricula. An earlier report was published as Technical Reports Series No.31 in 1964. In 1973, new and additional information was received from Member States which is reflected in the present report. Training programmes are classified, according to those requiring training: specialists; persons whose work is closely related to radiological protection (administrators, public health officers and industrial health personnel, safety inspectors and engineers in nuclear installations, public service personnel); persons working with radiation; and the general public. Forms, scope and duration of training are discussed. Different types of training programmes are currently required for training of medical doctors (those providing medical surveillance for radiation workers and others dealing with public health aspects of radiation hazards), for technical supervisors, radiologists, and qualified workers in nuclear medicine, technological staff, administrators, persons working with radiation, and public service personnel. Standard curricula and desirable experiments and exercises are discussed. The organization of training together with the facilities, equipment and teaching staff required are considered, as is follow-up training. Annexes 1 to 4 give examples of training curricula and training courses available in various countries, a suggested syllabus for training of technical supervisors, and a bibliography consisting of 210 references dealing with general topics, nuclear radiation physics, radiochemistry and radiation chemistry, radiation biology and biophysics, dosimetry and health physics and radiation protection, medical aspects and toxicology, and environmental aspects

  14. Nuclear Manpower Training

    International Nuclear Information System (INIS)

    Min, B. J.; Yoo, B. H.; Lee, E. J.

    2007-12-01

    Nuclear Training Center (NTC) has concentrated its efforts on the systemisation and specialization of education and training and has actively carried out diverse activities to create new education courses based on the experience accumulated so far. The systematic and comprehensive education system(KAERI-ACE) has been set up by streamlining the education systems for internal employees conducted sporadically over the past year and expansion and diversification of education and training has been built through a study on Systematic Approach Training (SAT) methodology for the development of efficient education courses and a survey of manpower development in on-site industry. The 6 education programs have been developed and 18 courses were newly developed and improved. Especially to be noted in relation to education program development is that NTC has compiled and published a book titled 'Practical Research Ethics'. NTC has played a leading role in providing a research ethics education, in helping to promote the importance of research ethics by publishing a research ethics book and distributing them to government, research institutes, universities, etc. The total number of people who receive education for the year of 2007 was 2,998 and a total of 65 training courses were established and 106 times operated. The number of industry courses was 31, 56 times operated, and 1,309 persons participated and that nuclear R and D personnel education areas (internal employees' education) was 34 courses, 50 times operated, 2,689 persons participated

  15. Training and qualification of nuclear power plant operators

    International Nuclear Information System (INIS)

    Ohsuga, Y.

    2008-01-01

    Based on training experiences of the nuclear power plant operators of pressurized water reactors (PWR) at the Nuclear Power Training Center Ltd. (NTC) in Japan, training programs were reviewed referring to US training programs. A systematic approach is deployed to them, which mainly consist of on-the-job training and the NTC training courses to meet the needs of all operators from beginners to experienced veterans according to their experiences and objectives. The NTC training is conducted using the simulators that simulate the nuclear power plant dynamics through the use of computers. The operators trained at the NTC work in the central control room of every PWR power plant. The NTC also carries out the qualification examinations for the shift managers. (T. Tanaka)

  16. Nuclear energy and education and training

    International Nuclear Information System (INIS)

    Soentono, S.

    1996-01-01

    In the modern society, education and training is a must since without it one is impossible to a part of the society. It is also indispensable since human resource is more important than natural resources to sustain the development. The modern society needs, and is also the product of a very long effort of human race, 'education and training'. Nuclear energy education and trainings, as one of the efforts to enhance the modern society, are currently demanded to assure the quality and reliability of personnel being involved in various kinds, levels, and stages of nuclear industries. These education and trainings are also required to suffice the demand for assurance of the quality and reliability of the products, e.g. nuclear components, systems, installations, other products, techniques, and services. Linking and matching of these education and trainings are also required. In the developing countries, it will be better to start with the non-energy application, e.g. application of isotopes and radiation in various fields. There must be cooperation giving rise to strong links between universities. The mechanism and cooperation should facilitate the character building of nuclear energy man power covering attitudes for pioneering, having scientific tradition and industrial orientated views, considering the safety first toward safety culture, and mastering communication. (J.P.N.)

  17. Nuclear-related training and education offered by nonacademic organizations (preliminary)

    International Nuclear Information System (INIS)

    Howard, L.

    1981-11-01

    The results of a survey of nuclear-related training and education provided by nonacademic training organizations are presented in this report. The survey instrument was distributed by the Institute of Nuclear Power Operations to 136 training organizations. The scope of the survey was not intended to be comprehensive, but rather to include the primary sources of nonacademic nuclear-related training and education offered to utility personnel. The survey universe was compiled from training organizations listed in the 1981 Nuclear News Buyer's Guide. Forty-three percent of the survey population (59 organizations) responded to the questionnaire of which 31 percent (42) reported they offered nuclear-related training programs and 12 percent (17) reported they did not offer any nuclear-related training

  18. Education and training of experts for the nuclear power sector at the Faculty of Electrical Engineering and Information Technologies, Slovak University of Technology in Bratislava

    International Nuclear Information System (INIS)

    Lipka, J.; Slugen, V.; Miglierini, M.; Necas, V.; Hascik, J.; Pavlovic, M.

    2003-01-01

    The Faculty of Electrical Engineering and Information Technologies, Slovak University of Technology in Bratislava has been training experts for the nuclear sector for over 40 years now. Current status and trends in nuclear education within the faculty's educational system, encompassing BSc, MSc and PhD studies, are highlighted. Dedicated training courses in the safety aspects of operation of the nuclear power installations are also organized for NPP staff. Periodical training is also provided to supervising physicists at the Jaslovske Bohunice and Mochovce nuclear power plants. Major international projects aimed at nuclear knowledge management and preservation are highlighted and the ENEN - European Nuclear Education Network project is described. (P.A.)

  19. Description of the Nuclear Training Centre

    International Nuclear Information System (INIS)

    Wagadarikar, V.K.

    1974-01-01

    The Department of Atomic Energy, Government of India has developed an on-going programme for constructing and operating heavy water moderated, natural uranium fuelled power stations of the CANDU-type. With the view to train personnel required for operation and maintenance of these stations, a Nuclear Training Centre has been set up at the site of the Rajasthan Atomic Power Station. A description of the nuclear training centre with its facilities is given. The training programme for engineers, operators, mechanical, electrical and control maintainers etc. is given in detail, along with the actual syllabi for respective courses. Examples of the typical field check list are provided. (K.B.)

  20. International cooperation experiences of Korea in nuclear education and training

    International Nuclear Information System (INIS)

    Suh, In-Suk

    1996-01-01

    Man power development is an essential key to success in implementing nuclear projects, especially when maximum local participation is an important issue in every sector of nuclear industry. Bearing this in mind, the Korean Atomic Energy Research Institute (KAERI) founded the Nuclear Training Center (NTC). The Center began to train technical personnel in the fields of radioisotope utilization and radiation protection in 1960s. During the first stage of nuclear power project in ROK in 1970s, the main effort was exerted to the training of those in nuclear power and nuclear engineering sectors. During the stage of increased technical self-reliance in 1980s, its training role was extended to the implementation of more specific training courses on nuclear power and safety fields. As of the end of 1995, about 23,000 people received the training courses. In an attempt to upgrade the nuclear technology, the advanced training courses at the NTC by invited foreign experts and by IAEA technical cooperation program have been implemented. Also the training under IAEA Regional Cooperative Agreement in Asia Pacific Region has been offered. The change of the NTC to the International Training Center is recommended. (K.I.)

  1. Training of nuclear facility personnel: boon or boondoggle

    International Nuclear Information System (INIS)

    Remick, F.J.

    1975-01-01

    The training of nuclear facility personnel has been a requirement of the reactor licensing process for over two decades. However, the training of nuclear facility personnel remains a combination of boon and boondoggle. The opportunity to develop elite, well trained, professionally aggressive reactor operation staffs is not being realized to its full potential. Improvements in the selection of personnel, training programs, operational tools and professional pride can result in improved plant operation and contribute to improved plant capacity factors. Industry, regulatory agencies, professional societies and universities can do much to improve standards and quality of the training of nuclear facility personnel and to improve the professional level of plant operation

  2. Experimental nuclear physics in Vietnam - recent status

    International Nuclear Information System (INIS)

    Tran Thanh Minh

    1995-01-01

    Status of research works on experimental nuclear physics in Vietnam is reviewed. Vietnam institutions and main instruments for nuclear research are listed. The results on physics and technology of nuclear reactor, neutron physics, nuclear reactions, radiological safety are mentioned. (N.H.A). 6 tabs, 4 figs

  3. Training and qualification of nuclear power plant operators (4)

    International Nuclear Information System (INIS)

    Ohsuga, Y.

    2009-01-01

    Training center using the simulators, instructor training, training upgrade, deployment of digital control panel and review of training were described with overseas practice. Recently, nuclear power plant on-site simulators were also used for respective operator training. Operator teamwork training, training team performance upgrade, reflection of operating experiences in nuclear power plant accidents, development of training support equipments and management of training records were needed to review and upgrade training and qualification programs. (T. Tanaka)

  4. Nuclear training and experience feedback in Sweden

    International Nuclear Information System (INIS)

    Olofsson, B.G.

    1987-01-01

    There are several different ways of educating and training the personnel at the Swedish nuclear power plants: centralized training in full-scale and part-task simulators; centralized education in the form of technical academic courses where computerized teaching is also used; extensive decentralized training out at the nuclear power plants, where compact simulators are also used; and experience feedback forms an important part of the training. Five performance indicators will be identified and the results will be presented. The excellent results are a good indication of the fact that well-executed education and training and smoothly functioning experience feedback give results

  5. The study for the high qualification of international nuclear training

    International Nuclear Information System (INIS)

    Noh, Byong Chull; Kim, Hyun Jin

    2012-12-01

    It is suggested how to reach high qualification of KAERI international nuclear training and how to play a leading role for new paradigm on the international training on the world. 1. The formulation of the core nuclear training framework- The systematic formulation of nuclear training framework based on the existing turning course design 2. Planning and operation of KAERI- Excellent Technology Series training course- The advertisement for KAERI Excellent Technology through the continuous international training and the future market development on the world for the nuclear technology 3. e-Learning training contents development- e-Learning training contents development to play a leading role for new training paradigm on the world and to overcome the limit of time/spacy

  6. The study for the high qualification of international nuclear training

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Byong Chull; Kim, Hyun Jin

    2012-12-15

    It is suggested how to reach high qualification of KAERI international nuclear training and how to play a leading role for new paradigm on the international training on the world. 1. The formulation of the core nuclear training framework- The systematic formulation of nuclear training framework based on the existing turning course design 2. Planning and operation of KAERI- Excellent Technology Series training course- The advertisement for KAERI Excellent Technology through the continuous international training and the future market development on the world for the nuclear technology 3. e-Learning training contents development- e-Learning training contents development to play a leading role for new training paradigm on the world and to overcome the limit of time/spacy.

  7. Status of nuclear energy in Slovakia

    International Nuclear Information System (INIS)

    Tomek, J.

    2008-01-01

    In this work author presents the status of nuclear energy in Slovakia. There are the electricity production; NPP operating results in 2007; ENEL-SE vision, mission and strategy, Continuous improvement programs as well as public acceptance of nuclear presented.

  8. Ukrainian Nuclear Data Centre status report

    International Nuclear Information System (INIS)

    Gritzay, O.O.

    2002-01-01

    This paper is the status report of the Ukrainian Nuclear Data Center, Institute for Nuclear Research, Kyiv. It describes the collection and compilation of new experimental data, the collaboration with other institutes, customer services and experimental neutron data measurements. (a.n.)

  9. The European Nuclear Safety Training and Tutoring Institute

    International Nuclear Information System (INIS)

    2012-01-01

    The European Nuclear Safety Training and Tutoring Institute, ENSTTI, is an initiative of European Technical Safety Organizations (TSO) in order to provide vocational training and tutoring in the methods and practices required to perform assessment in nuclear safety, nuclear security and radiation protection. ENSTTI calls on TSOs' expertise to maximize the transmission of safety and security knowledge, practical experience and culture. Training, tutoring and courses for specialists are achieved through practical lectures, working group and technical visits and lead to a certificate after knowledge testing. ENSTTI contributes to the harmonization of nuclear safety and security practices and to the networking of today and future nuclear safety experts in Europe and beyond. (A.C.)

  10. Systematic evaluation of nuclear operator team skills training

    International Nuclear Information System (INIS)

    Harrington, D.K.; Kello, J.E.

    1991-01-01

    In recent years, the nuclear industry has increasingly recognized with the technical training given its control room operators. As yet, however, little has been done to determine the actual effectiveness of such nontechnical training. Thus, the questions of how team training should be carried out for maximum impact on the safety and efficiency of control room operation and just what the benefits of such training might be remain open. We are in the early stages of establishing a systematic evaluation process that will help nuclear utilities assess the effectiveness of their existing team skills training programs for control room operators. Research focuses on defining the specific behavioral and attitudinal objectives of team skills training. Simply put, what does good practice look like and sound like in the control room environment? What specific behaviors and attitudes should the training be directed toward? Obviously, the answers to the questions have clear implications for the design of nuclear team skills training programs

  11. Nuclear security officer training

    International Nuclear Information System (INIS)

    Harrington, W.F.

    1981-01-01

    Training has become complex and precise in today's world of critical review and responsibility. Entrusted to a security officer is the success or demise of large business. In more critical environments the security officer is entrusted with the monitoring and protection of life sensitive systems and devices. The awareness of this high visibility training requirement has been addressed by a limited few. Those involved in the nuclear power industry through dedication and commitment to the American public have without a doubt become leading pioneers in demanding training excellence

  12. Hungarian-Vietnamese Nuclear Energy Train the Trainers Course

    International Nuclear Information System (INIS)

    Aszódi, Attila; Boros, Ildikó; Czifrus, Szabolcs; Kiss, István

    2014-01-01

    HUVINETT 2012-2013: Hungarian-Vietnamese Nuclear Energy „Train the Trainers” Course: HUVINETT Courses at Paks NPP - • 3 weeks of practice oriented training; • Practical application of nuclear theory and knowledge; • Plant technology; • Importance of nuclear safety; • Behavioral standards and required attitude in a nuclear power plant; • Practice in real working environment: – Maintenance Performance Improvement Center; – Simulator; – Labs and workshops of the plant

  13. Certification of the instructional competence of nuclear training specialists

    International Nuclear Information System (INIS)

    Wollert, T.N.

    1990-01-01

    This study was designed to identify the qualification requirements and the means to assess the unique knowledge and skills necessary to perform the instructional activities needed by nuclear training specialist at Fort Saint Vrain Nuclear Generating Station. A survey questionnaire with 233 task statements categorized into eleven duty areas was distributed to twenty-three nuclear training specialists at Fort Saint Vrain Nuclear Generating Station. On the basis of the data accumulated for this study, the researcher identified the following findings. A list of 158 task statements were identified as being relevant; this list was considered a core knowledge, skills, and abilities needed as a nuclear training specialist. The list consisted of ten duty areas which were relevant to the effective performance of a nuclear training specialist. Thirty-three task statements were identified as being relevant for the duty area Conductive Training. These were considered the core of knowledge, skills, and abilities needed in the development of the initial test instrument and the instructor classroom skills observation checklist. The significant correlation between the results of these two instruments, using a rank-order correlation coefficient, was interpreted by the researcher as indicating that the initial test instrument possessed concurrent validity. The researcher interpreted the reliability value as a positive indicator that the initial test instrument demonstrated internal consistency. It was concluded that it could be determined whether personnel possessed the level of competence needed to perform the instructional duties of a nuclear training specialist by using a written test. Data from this research supported the use of the initial test developed for this study as a valid means to certify nuclear training specialists for the duty area Conducting Training

  14. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course

  15. Nuclear criticality safety: 2-day training course

    Energy Technology Data Exchange (ETDEWEB)

    Schlesser, J.A. [ed.] [comp.

    1997-02-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: be able to define terms commonly used in nuclear criticality safety; be able to appreciate the fundamentals of nuclear criticality safety; be able to identify factors which affect nuclear criticality safety; be able to identify examples of criticality controls as used as Los Alamos; be able to identify examples of circumstances present during criticality accidents; have participated in conducting two critical experiments; be asked to complete a critique of the nuclear criticality safety training course.

  16. Training within the French nuclear power program

    International Nuclear Information System (INIS)

    Jusselin, F.

    1987-01-01

    Training dispensed by the EDF Nuclear and Fossil Generation Division has contributed significantly toward successful startup and operation of French nuclear power plants. In 1986, the time-based availability of 900 MW PWRs totaled 85 %. This is just one example of how EDF training programs have benefited from 150 reactor-years of operating experience and the ensuing opportunities for perfecting and testing of training tool effectiveness. These programs have been adopted by utilities in other countries where suitable local facilities are making advantageous use of EDF training experience and methods. EDF expertise is also transferred to these countries indirectly through the simulator manufacturer

  17. Nuclear Business Acumen Training for Executives

    International Nuclear Information System (INIS)

    Blomgren, Jan

    2014-01-01

    The presentation is structured as follows: Failure in large technology projects; Simulations in industry; Training in reactor simulators; Business simulation; NPP business simulation Nuclear Inc.; Knowledge retention; Boosting the effect of training; Contact

  18. Current status of medical training for facing chemical, biological and nuclear disasters

    International Nuclear Information System (INIS)

    Guerra Cepena, Eulises; Gell Labannino, Adia; Perez Perez, Aristides

    2013-01-01

    A descriptive, longitudinal and prospective study was conducted in 200 sixth year-medical students from the Faculty 2 of Medical University in Santiago de Cuba during 2011-2012, with the purpose of determining some of deficiencies affecting their performance during chemical, biological or nuclear disasters, for which an unstructured survey and an observation guide were applied. In the series demotivation of some students regarding the topic, poor theoretical knowledge of the topic, the ignorance of ways to access information and the little use of this topic in college scientific events were evidenced, which also involved the little systematization of the content on disasters and affected the objectives of medical training with comprehensive profile

  19. Evolution of GPU nuclear's training program

    International Nuclear Information System (INIS)

    Long, R.L.; Coe, R.P.

    1987-01-01

    GPU Nuclear Corporation (GPUN) manages the operators of Three Mile Island Unit 1 and Oyster Creek Nuclear Generating Stations and the recovery activities at the Three Mile Island Unit 2 plant. From the time it was formed in January 1980 GPUN emphasized the use of behavioral learning objectives as the basis for all its training programs. This paper describes the evolution to a formalized performance based Training System Development (TSD) Process. The Training and Education Department staff increased from 10 in 1979 to the current 120 dedicated professionals, with a corresponding increase in facilities and acquisition of sophisticated Basic Principles Training Simulators and a Three Mile Island Unit 1 control Room Replica Simulator. The impact of these developments and achievement of full INPO accreditation are discussed and related to plant performance improvements

  20. Background and future activities of PBNCC's nuclear training working group

    International Nuclear Information System (INIS)

    Rieh, C.H.; Chung, K.; Hamlin, K.W.

    1988-01-01

    This paper presents a review of the background and activities of the nuclear training working group of the Pacific Basin Nuclear Cooperation Committee. The working group has examined various mechanisms for regional cooperation including the development of a regional catalog of training programs and the conceptualization of sharing training facilities among nuclear operators in the region. The working group has focused its attention on the exchange of information on the on-going training programs, operator training facilities, available resources for training assistance and proposed cooperative schemes. These activities are expected to continue and will provide invaluable information for nuclear power programs in the Pacific Basin region. The group also reviewed problems and issues associated with developing regional cooperation

  1. Background and future activities of PBNCC's nuclear training working group

    International Nuclear Information System (INIS)

    Chong Hun Rieh; Kunmo Chung; Hamlin, K.W.

    1987-01-01

    This paper presents a review of the background and activities of the nuclear training working group of the Pacific Basin Nuclear Cooperation Committee. The working group has examined various mechanisms for regional cooperation including the development of aregional catalog of training programs and the conceptualization of sharing training facilities among nuclear operators in the region. The working group has focused its attention on the exchange of information on the on-going training programs, operator training facilities, available resources for training assistance and proposed cooperative schemes. These activities are expected to continue and will provide invaluable information for nuclear power programs in the Pacific Basin region. The group also reviewed problems and issues associated with developing regional cooperation. (author)

  2. Status and prospects of nuclear desalination

    International Nuclear Information System (INIS)

    Kupitz, J.; Konishi, T.

    2000-01-01

    While availability of potable water is an important prerequisite for socio-economic development, about 1/3 of the world's population is suffering from inadequate potable water supplies. Seawater desalination with nuclear energy could help to cope with the fresh water shortages and several countries are investigating nuclear desalination. Status and future prospects of nuclear desalination and the role of the IAEA in this area are discussed in this paper. (author)

  3. The World Nuclear Industry Status Report 2012

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie

    2012-07-01

    Twenty years after its first edition, World Nuclear Industry Status Report 2012 portrays an industry suffering from the cumulative impacts of the world economic crisis, the Fukushima disaster, ferocious competitors and its own planning and management difficulties. The report provides a global overview of the history, the current status and trends of nuclear power programs in the world. It looks at units in operation and under construction. Annex 1 also provides detailed country-by-country information. A specific chapter assesses the situation in potential newcomer countries. For the first time, the report looks at the credit-rating performance of some of the major nuclear companies and utilities. A more detailed chapter on the development patterns of renewable energies versus nuclear power is also included. The performance of the nuclear industry over the 18 months since the beginning of 2011 is summed up in this report

  4. Training of operating personnel for nuclear ships

    International Nuclear Information System (INIS)

    Lakey, J.R.A.; Gibbs, D.C.C.

    1983-01-01

    Training for Nuclear Power Plant Operators is provided by the Royal Navy in support of the Nuclear Submarine Programme which is based on the Pressurised Water Reactor. The Royal naval college has 21 years of experience in this training field in which the core is the preparation of graduate electro-mechanical engineers to assume the duties of marine engineer in command of a team of supporting Engineer Officers of the Watch and Fleet Chief Petty Officers. The paper describes the training programme and shows how it is monitored by academic, professional and naval authorities and indicates the use of feedback from the user. The lynch pin of the programme is a post-graduate diploma course in Nuclear Reactor Technology attended by graduates after gaining some practical experience at sea. The course which is described in detail makes use of simplified simulators and models to develop the principles, these are applied on the JASON Training Reactor with the emphasis on in-core experiments demonstrating reactivity effects and instrumentation interpretation. The training programme provides for interaction between academic education, practical experience, applied education, full plant simulation training and on-the-job training in which boards or examinations have to be successfully passed at each stage. (author)

  5. Nuclear science and technology education and training in Indonesia

    International Nuclear Information System (INIS)

    Karsono

    2007-01-01

    Deployment of nuclear technology requires adequate nuclear infrastructure which includes governmental infrastructure, science and technology infrastructure, education and training infrastructure, and industrial infrastructure. Governmental infrastructure in nuclear, i.e. BATAN (the National Nuclear Energy Agency) and BAPETEN (the Nuclear Energy Control Agency), need adequate number of qualified manpower with general and specific knowledge of nuclear. Science and technology infrastructure is mainly contained in the R and D institutes, education and training centers, scientific academies and professional associations, and national industry. The effectiveness of this infrastructure mainly depends on the quality of the manpower, in addition to the funding and available facilities. Development of human resource needed for research, development, and utilization of nuclear technology in the country needs special attention. Since the national industry is still in its infant stage, the strategy for HRD (human resource development) in the nuclear field addresses the needs of the following: BATAN for its research and development, promotion, and training; BAPETEN for its regulatory functions and training; users of nuclear technology in industry, medicine, agriculture, research, and other areas; radiation safety officers in organizations or institutions licensed to use radioactive materials; the education sector, especially lecturers and teachers, in tertiary and secondary education. Nuclear science and technology is a multidisciplinary and a highly specialized subject. It includes areas such as nuclear and reactor physics, thermal hydraulics, chemistry, material science, radiation protection, nuclear safety, health science, and radioactive waste management. Therefore, a broad nuclear education is absolutely essential to master the wide areas of science and technology used in the nuclear domain. The universities and other institutions of higher education are the only

  6. Nuclear power internationally, status and trends

    International Nuclear Information System (INIS)

    Laue, H.J.

    1988-01-01

    The recent events have stimulated the discussion concerning the human factor in nuclear engineering. Without a guarantee of the reliability and responsibility of everybody concerned, both directly and indirectly, the future of nuclear power will look bleak in an increasing number of countries. The present status and probable future development of nuclear power are outlined, and general trends are discussed. The future use of nuclear power will be concentrated in countries of high political stability which can assure safety, availability and economic efficiency. (orig.) [de

  7. Training and manpower development for nuclear energy programme

    International Nuclear Information System (INIS)

    Ajakaiye, D.E.; Elegba, S.B.

    1990-01-01

    The purpose is to train and develop the adequately qualified manpower in the areas of nuclear science and technology. Various options were introduced by the science departments, based on the existing facilities within the university. Twenty final year students were selected annually to attend a summer school in reactor physics and technology at the Karlsruhe Institute for Nuclear Research in West Germany. Also, there was approval for an annual recruitment quota of twelve graduate assistants for the nuclear project. Fifty qualified students were trained for various courses in nuclear science and technology both in the country and abroad. There had been graduates in nuclear science and technology courses up to the doctorate degree level. Part of efforts in the manpower has been directed towards the acquisition of adequate equipment for the teaching laboratories. The establishment of a training center in nuclear technology at Ahmadu Bello University and at University of Ife can only be considered as the zero phase in the nuclear programme of Nigeria. Funding of the nuclear programme must be guaranteed. It is also suggested that the nuclear project be allocated sufficient foreign exchange to meet all its commitments. (A.S.)

  8. Harmonization of nuclear education and training in Europe

    International Nuclear Information System (INIS)

    Miglierin, M.

    2005-01-01

    Full text: At the Lisbon 2000 summit, a strategic goal was proposed for the European Union: to become the most competitive knowledge-based economy with more and better employment and social cohesion by 2010. In the particular case of nuclear fission technologies, this EC initiative was widely accepted by the stake holders concerned. In Europe, the main 'end users' of nuclear research or stake holders are actually: the research organisations (with mixed public / private funding), the manufacturing industry, the utilities and waste management organisations, the regulatory bodies (or technical safety organisations) and the academic (e.g. universities). With the aim to better integrate European education and training in nuclear engineering and safety in order to combat the decline in both student numbers and teaching establishments a FP6 EU project entitled NEPTUNO (Nuclear European Platform of Training and University Organizations) has started in 2004. In total 35 partner institutions from 17 countries have formed a network aimed in providing the necessary competence and expertise for the continued safe use of nuclear energy and other uses of radiation in industry and medicine. The project focuses on a harmonised approach for education and training in nuclear engineering in Europe and its implementation, including the better integration of national resources and capabilities. The expected result is an operational network for training and lifelong learning schemes as well as on academic education at the master, doctoral and post-doctoral level, underpinning: Substantiality of Europe's excellence in nuclear technology; Harmonised approaches to safety and best practices, both operational and regulatory, at European level in Member States and Accession Countries; Preservation of competence and expertise for the continued safe use of nuclear energy and other uses of radiation in industry and medicine; Harmonised approach for training and education in nuclear engineering

  9. Training of nuclear disasters at Fukui prefecture in 2002

    International Nuclear Information System (INIS)

    Takayama, Hiromi; Yoshioka, Mitsuo; Hayakawa, Hironobu

    2004-01-01

    A large scale of training of nuclear disasters was carried out by Fukui prefecture, reference cities, towns, organizations and residents in Japan on November 7, 2003. Its abstract, the nuclear disaster measures system of Fukui and the emergency monitoring system, the principle and characteristics of nuclear disaster measure plans and emergency monitoring, abstract of training of the emergency monitoring from fiscal 2000 to 2002 are described. On the training of emergency monitoring in fiscal 2003, abstract, assumption of accident, training contents and evaluation are stated. Table of training schedule of emergency monitoring, measurement results of the fixed points, Ohi nuclear power plant accident scenario, the conditions of the plant at accident, forecast and simulation of effective dose by external exposure, change of space dose rate at the fixed observation points, measurement values of monitoring cars are illustrated. (S.Y.)

  10. Nuclear energy - status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Rogner, Hans-Holger; MacDonald, Alan

    2007-07-01

    Rising expectations best characterize the current prospects of nuclear power in a world that is confronted with a burgeoning demand for energy, higher energy prices, energy supply security concerns and growing environmental pressures. It appears that the inherent economic and environmental benefits of the technology and its excellent performance record over the last twenty years are beginning to tilt the balance of political opinion and public acceptance in favour of nuclear power. Nuclear power is a cost-effective supply-side technology for mitigating climate change and can make a substantial contribution to climate protection. This paper reviews the current status of nuclear power and its fuel cycle and provides an outlook on where nuclear power may be headed in the short-to-medium run (20 to 40 years from now). (auth)

  11. Westinghouse Nuclear Core Design Training Center - a design simulator

    International Nuclear Information System (INIS)

    Altomare, S.; Pritchett, J.; Altman, D.

    1992-01-01

    The emergence of more powerful computing technology enables nuclear design calculations to be done on workstations. This shift to workstation usage has already had a profound effect in the training area. In 1991, the Westinghouse Electric Corporation's Commercial Nuclear Fuel Division (CNFD) developed and implemented a Nuclear Core Design Training Center (CDTC), a new concept in on-the-job training. The CDTC provides controlled on-the-job training in a structured classroom environment. It alllows one trainer, with the use of a specially prepared training facility, to provide full-scope, hands-on training to many trainees at one time. Also, the CDTC system reduces the overall cycle time required to complete the total training experience while also providing the flexibility of individual training in selected modules of interest. This paper provides descriptions of the CDTC and the respective experience gained in the application of this new concept

  12. Instructor training at the Swedish Nuclear Power Training and Safety Centre

    International Nuclear Information System (INIS)

    Persson, P.-E.

    1988-01-01

    In spite of the fact that full-scope simulators are very powerful training tools, the transfer of knowledge and skills to the trainees during simulator training is completely dependent on the instructors' technical competence and their ability to transfer it to the trainees by efficient use of these training tools. Accordingly, the instructor candidates must pass a technical training programme equivalent to that for shift supervisors and have at least a few months of experience in each operator position at a nuclear power plant. To be authorized, the instructors must also pass a teacher training programme consisting of four 2 week instructor courses. To stay authorized the instructors must pass an annual retraining programme consisting of at least two weeks of technical refresher and one week teacher retraining. The retraining programme also includes at least three weeks of operational practice at a nuclear power plant. (author)

  13. Experience with training of operating and maintenance personnel of nuclear power plants

    International Nuclear Information System (INIS)

    Pospisil, M.; Cencinger, F.

    1988-01-01

    The system is described of the specialist training of personnel for Czechoslovak nuclear power plants. Training consists of basic training, vocational training and training for the respective job. Responsible for the training is the Research Institute for Nuclear Power Plants; actual training takes place at three training centres. Personnel are divided into seven categories for training purposes: senior technical and economic staff, shift leaders, whose work has immediate effect on nuclear safety, engineering and technical personnel of technical units, shift leaders of technical units, personnel in technical units, shift service personnel and operating personnel, maintenance workers. Experience with training courses run at the training centre is summed up. Since 1980 the Centre has been training personnel mainly for the Dukovany nuclear power plant. Recommendations are presented for training personnel for the Temelin nuclear power plant. (Z.M.)

  14. IAEA world survey on nuclear power plant personnel training

    International Nuclear Information System (INIS)

    1999-01-01

    Training of personnel is acknowledged to be essential for safe and reliable operation of nuclear power plants. The preparation of this TECDOC was recommended by the IAEA International Working group on Nuclear Power Plant Personnel Training and Qualification and represents a unique compilation of information including all aspects of NPP personnel training from 23 Member States and 129 training organizations. The basic aims of this survey are: to provide a worldwide overview of all aspects of NPP personnel training; to foster both national and international cooperation between organizations involved in nuclear training; to provide the means of exchange of experiences and practices in systematic approach to training (SAT). The survey provides information for each corresponding country on the: national system and organization of training; job positions for which SAT is used; training programmes for key operations, maintenance, instructor and other jobs; role of management and the regulatory body; training facilities; recommended training practices; availability of training personnel from organizations outside the country; and contact points. The three main parts of the publication are the summary, the analysis of training programmes for each job position and the analysis of training resources, and the country reports

  15. Operator training simulator for BWR nuclear power plant

    International Nuclear Information System (INIS)

    Watanabe, Tadasu

    1988-01-01

    For the operation management of nuclear power stations with high reliability and safety, the role played by operators is very important. The effort of improving the man-machine interface in the central control rooms of nuclear power stations is energetically advanced, but the importance of the role of operators does not change. For the training of the operators of nuclear power stations, simulators have been used from the early stage. As the simulator facilities for operator training, there are the full scope simulator simulating faithfully the central control room of an actual plant and the small simulator mainly aiming at learning the plant functions. For BWR nuclear power stations, two full scope simulators are installed in the BWR Operator Training Center, and the training has been carried out since 1974. The plant function learning simulators have been installed in respective electric power companies as the education and training facilities in the companies. The role of simulators in operator training, the BTC No.1 simulator of a BWR-4 of 780 MWe and the BTC No.2 simulator of a BWR-5 of 1,100 MWe, plant function learning simulators, and the design of the BTC No.2 simulator and plant function learning simulators are reported. (K.I.)

  16. The World Nuclear Industry Status Report 2004

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony

    2004-12-01

    Fifty years ago, in September 1954, the head of the US Atomic Energy Commission stated that nuclear energy would become 'too cheap to meter': The cost to produce energy by nuclear power plants would be so low that the investment into electricity meters would not be justified. By coincidence the US prophecy came within three months of the announcement of the world's first nuclear power plant being connected to the grid in.. the then Soviet Union. In June 2004, the international nuclear industry celebrated the anniversary of the grid connection at the site of the world's first power reactor in Obninsk, Russia, under the original slogan '50 Years of Nuclear Power - The Next 50 Years'. This report aims to provide a solid basis for analysis into the prospects for the nuclear power industry. Twelve years ago, the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the World Nuclear Industry Status Report 1992. In the current international atmosphere of revival of the nuclear revival debate - it has been a periodically recurring phenomenon for the past twenty years - two of the authors of the 1992 report, now independent consultants, have carried out an updated review of the status of the world nuclear industry. The performance of the nuclear industry over the past year is summed up in this report

  17. Nuclear training facilities at the Royal Naval College, Greenwich

    International Nuclear Information System (INIS)

    Head, J.L.; Lowther, C.A.; Marsh, J.R.W.

    1986-01-01

    The paper describes some of the nuclear training facilities at the Royal Naval College and the way the facilities are used in the training of personnel for the Naval nuclear propulsion programme. (author)

  18. Education and training in nuclear materials

    International Nuclear Information System (INIS)

    Falcon, S.; Marco, M.

    2014-01-01

    CIEMAT participates in the European project Matisse (Materials Innovations for a Safe and Sustainable nuclear in Europe) belonging to FP7, whose main objective is to promote the link between the respective national research programs through networking and integration of activities for innovation in materials for advanced nuclear systems, sharing among partners best practices and implementation of training tools and efficient communication. The draft four years, from 2013 to 2017, includes aspects such as the interaction between infrastructure, R and D programs and postgraduate education and training. (Author)

  19. Nuclear education and training in OECD member countries

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi

    2001-01-01

    Mankind now enjoys many benefits from nuclear-related technologies. There is, however, growing concern in many OECD countries that nuclear education and training is decreasing, perhaps to problematic levels. This report conveys the results of a pioneering survey on nuclear education and training in almost 200 organizations in 16 countries. In most countries there are now fewer comprehensive, high-quality nuclear technology programs at universities than before. Facilities and faculties for nuclear education are aging, and the number of nuclear programs is declining. The principal reason for the deterioration of nuclear education is the downward spiral of budgetary cut and low enrolment of student whose perception is affected by the educational circumstances, negative public perception, the downsizing of the industry, and reductions in government-funded nuclear programmes, where little strategic planning is occurring. Unless something is done to arrest it, this downward spiral of declining student interest and academic opportunities will continue. Failure to take appropriate steps now will seriously jeopardize the provision of adequate expertise tomorrow. We must act now on the following recommendations: strategic role of governments; the challenges of revitalizing nuclear education by university; vigorous research and maintaining high-quality training; and benefits of collaboration and sharing best practices. (author)

  20. Nuclear power plant personnel training process management system

    International Nuclear Information System (INIS)

    Arjona Vazquez, Orison; Venegas Bernal, Maria del Carmen; Armeteros Lopez, Ana L.

    1996-01-01

    The system in charge the management of the training process personnel from a nuclear power plant was designed taking into account all the requirements stated in the training guide for nuclear power plant personnel and their evaluation, which were prepared by the IAEA in 1995 in order to implement the SAT in the training programs for nuclear plant personnel. In the preparations of formats and elements that shape the system, account has been taken of the views expressed in such a guide, in some other bibliography that was consulted, and in the authors own opinion mainly with regard to those issues which the guide does not go deeper into

  1. Operational status of nuclear facilities in Japan. 2012 edition

    International Nuclear Information System (INIS)

    2012-01-01

    This document is a compilation which provides an outline of the administration of nuclear facility safety regulations as well as various data including operational status, the status of periodical and safety inspections, the status of issues, and radiation management on nuclear power reactor facilities, reactor facilities in the research and development stage, and fabrication, reprocessing, disposal, and storage facilities in fiscal year 2011 (from April 2011 to March 2012). (J.P.N.)

  2. Nuclear education and training: cause for concern?

    International Nuclear Information System (INIS)

    2000-01-01

    Mankind now enjoys many benefits from nuclear-related technologies. There is, however, growing concern in many OECD countries that nuclear education and training is decreasing, perhaps to problematic levels. This booklet, a summary of the full report, conveys the results of a pioneering survey on nuclear education and training in almost 200 organisations in 16 countries. The current situation is presented and causes for concern are examined. Recommendations are made as to the actions governments, academia and industry must take in order to assure that crucial present requirements are met and future options are not precluded. (authors)

  3. Nuclear medicine training and practice in the Czech Republic

    International Nuclear Information System (INIS)

    Kaminek, Milan; Koranda, Pavel

    2014-01-01

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  4. Nuclear medicine training and practice in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kaminek, Milan; Koranda, Pavel [University Hospital Olomouc, Department of Nuclear Medicine, Olomouc (Czech Republic)

    2014-08-15

    Nuclear medicine in the Czech Republic is a full specialty with an exclusive practice. Since the training program was organized and structured in recent years, residents have had access to the specialty of nuclear medicine, starting with a two-year general internship (in internal medicine or radiology). At present, nuclear medicine services are provided in 45 departments. In total, 119 nuclear medicine specialists are currently registered. In order to obtain the title of Nuclear Medicine Specialist, five years of training are necessary; the first two years consist of a general internship in internal medicine or radiology. The remaining three years consist of training in the nuclear medicine specialty itself, but includes three months of practice in radiology. Twenty-one physicians are currently in nuclear medicine training and a mean of three specialists pass the final exam per year. The syllabus is very similar to that of the European Union of Medical Specialists (UEMS), namely concerning the minimum recommended numbers for diagnostic and therapeutic procedures. In principle, the Czech law requires continuous medical education for all practicing doctors. The Czech Medical Chamber has provided a continuing medical education (CME) system. Other national CMEs are not accepted in Czech Republic. (orig.)

  5. Inr training programme in nuclear research

    International Nuclear Information System (INIS)

    Cretu, I.; Ionila, M.; Gyongyosi, E.; Dragan, E.; Petra, M.

    2013-01-01

    The field of scientific research goes through rapid changes to which organizations must dinamically and efficiently adapt, which leads to the need to develop a continuous learning process that should be the basis for a long-term operational performance. Thus, human resource management systems and continuous learning should be perfectly correlated/alligned with the organizational strategy and knowledge. The research institutes through the nature of their activity are constantly undergoing a transformation process by exploring new research areas which presumes ensuring competent human resources who have to continuously learn and improve. The «learning organization » concept represents a metaphor rooted in the search of a strategy for promoting the personal development of the individual within an organization through a continuous transformation. Learning is associated with the idea of continuous transformation based on the individual and organizational development. Within « learning organizations » the human development strategy occupies a central role in management strategies. It was learned that organizations which perform excellently depend on the employees committment, especially in the budget constraints environment. For this, the human resources have to be used at maximum capacity but this is possible only with an increased committment of the employee towards the organization. The purpose of this paper is to present the basic training programme for the new employees which is part of the training strategy which carry out activities in the nuclear field of SCN Pitesti. With the majority of the research personnel aged between 45 and 60 years old there is the risk of loosing the knowledge gained in this domain. The expertise gained by experienced experts in the institute nationally and internationally can be exploited through the knowledge transfer to the new employees by organizing training programmes. The knowledge transfer between generations is one of the

  6. Training Tomorrow's Nuclear Workforce

    International Nuclear Information System (INIS)

    2013-01-01

    Training tomorrow's Nuclear Workforce Start with the children. That is the message Brian Molloy, a human resources expert in the IAEA's Nuclear Power Engineering Section, wants to convey to any country considering launching or expanding a nuclear power programme. Mathematics and science curricular and extra-curricular activities at secondary and even primary schools are of crucial importance to future recruiting efforts at nuclear power plants, he says:''You need to interest children in science and physics and engineering. The teaching needs to be robust enough to teach them, but it must also gain their interest.'' Recruiting high-calibre engineers needed for the operation of nuclear power plants is a growing challenge, even for existing nuclear power programmes, because of a wave of retirements combined with increasing global demand. But essential as engineers are, they are only a component of the staff at any nuclear power plant. In fact, most employees at nuclear power plants are not university graduates - they are skilled technicians, electricians, welders, fitters, riggers and people in similar trades. Molloy argues that this part of the workforce needs more focus. ''It's about getting a balance between focusing on the academic and the skilled vocational'', he says, adding that countries considering nuclear power programmes often initially place undue focus on nuclear engineers.

  7. Current status and improvement of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology

    International Nuclear Information System (INIS)

    Qu Guopu; Guo Lanying

    1999-01-01

    The author reviews the current status of the nuclear physics experiment course for speciality of nuclear physics and nuclear technology in higher education and expresses author's views on the future improvement of the nuclear physics experiment course

  8. China Nuclear Data Center (CNDC) status report

    International Nuclear Information System (INIS)

    Zhuang Youxiang

    2002-01-01

    This paper is the status report of the China Nuclear Data Center, Beijing. It describes the nuclear data evaluation, the validation of CENDL-3.0, the CINDA and EXFOR compilation and gives a list of meetings in this subject area. (a.n.)

  9. Assessment of field training for nuclear operations personnel

    International Nuclear Information System (INIS)

    White, M.

    1995-08-01

    Training of station personnel is an important component of the safe operation of the nuclear generating station. On-the-job training (OJT) is an important component of training. The AECB initiated this project to develop a process to assess the effectiveness of OJT for field operators, and perform an initial trial of the developed process. This report describes the recommended process to assess the effectiveness of OJT for field operators, as well as the results of the initial assessment at Pickering Nuclear Generating Station. The assessment's conclusions included: (1) Ontario Hydro policies and procedures are generally consistent with industry guidelines requiring a systematic approach to training; (2) Pickering NGS field operator performance is not always consistent with documented station requirements and standards, nor industry guidelines and practices; and (3) The Pickering NGS field operator on-the-job training is not consistent with a systematic approach to training, a requirement recognized in Ontario Hydro's Policy NGD 113, and does not contribute to a high level of performance in field operator tasks. Recommendations are made regarding the use of the developed process for future assessments of on-the-job training at nuclear power plants. (author). 36 refs., 4 tabs., 3 figs

  10. The world nuclear industry status report 2007

    International Nuclear Information System (INIS)

    Schneider, M.; Froggatt, A.

    2007-11-01

    for all operating reactors and those that are currently under construction and have calculated how many plants would be shut down year by year. The exercise enables an evaluation of the number of plants that would have to come on-line over the next decades in order to maintain the same number of operating plants. In addition to the units currently under construction with a scheduled start-up date, 69 reactors (42,000 MW) would have to be planned, built and started up until 2015 - one every month and a half - and an additional 192 units over the following 10-year period - one every 18 days. The result has not changed from the 2004 analysis. Even if Finland and France build a European Pressurized water Reactor (EPR), China went for an additional 20 plants and Japan, Korea or Eastern Europe added one or the other plant, the overall worldwide trend will most likely be downwards over the next two or three decades. With extremely long lead times of 10 years and more, it is practically impossible to maintain or even increase the number of operating nuclear power plants over the next 20 years, unless operating lifetimes would be substantially increased beyond 40 years on average. There is currently no basis for such an assumption. Lack of trained workforce, massive loss of competence, severe manufacturing bottlenecks (a single facility in the world, Japan Steel Works, can cast large forgings for reactor pressure vessels) lack of confidence of international finance institutions, strong competitors from highly dynamic natural gas and renewable energy systems exacerbate the aging problems of the industry. Two years after construction start, the world's largest nuclear builder's show case pilot project, AREVA's EPR reactor Olkiluoto-3 in Finland, is two years behind schedule and euro 1.5 billion (50%) beyond budget. In June 2005, the trade journal Nuclear Engineering International published the analysis of the 2004 Edition of the World Nuclear Industry Status Report under their

  11. The world nuclear industry status report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, M.; Froggatt, A

    2007-11-15

    The status and perspectives of the nuclear industry in the world have been subject to a large number of publications and considerable media attention over the last few years. The present report attempts to provide solid elements of key information for intelligent analysis and informed decision-making. As of 1 November 2007 there are 439 nuclear reactors operating in the world. That is five less than five years ago. There are 32 units listed by the International Atomic Energy Agency (IAEA) as 'under construction'. That is about 20 less than in the late 1990's. In 1989 a total of 177 nuclear reactors had been operated in what are now the 27 EU Member States. That number shrank to 146 units as of 1 November 2007. In 1992 the Worldwatch Institute in Washington, WISE-Paris and Greenpeace International published the first World Nuclear Industry Status Report. As a first updated review in 2004 showed the 1992 analyses proved correct. In reality, the combined installed nuclear capacity of the 436 units operating in the world in the year 2000 was less than 352,000 megawatts - to be compared with the forecast of the International Atomic Energy Agency (IAEA) from the 1970's of up to 4,450,000 megawatts. Today the 439 worldwide operating reactors total 371,000 megawatts. Nuclear power plants provide 16% of the electricity, 6% of the commercial primary energy and 2-3% of the final energy in the world - the tendency is downwards - less than hydropower alone. Twenty-one of the 31 countries operating nuclear power plants decreased their share of nuclear power within the electricity mix if compared with 2003. The average age of the operating power plants is 23 years. Some nuclear utilities envisage reactor lifetimes of 40 years or more. Considering the fact that the average age of all 117 units that have already been closed is equally about 22 years, the doubling of the operational lifetime seems already rather optimistic. However, we have assumed an average

  12. IAEA activities in nuclear power plant personnel training and qualification

    International Nuclear Information System (INIS)

    Mautner-Markhof, F.

    1993-01-01

    Training to achieve and maintain the qualification and competence of nuclear power personnel is essential for safe and economic nuclear power. Technical Cooperation Meeting on Training-Related Activities for Nuclear Power Plant (NPP) Personnel in the countries of Central and Eastern Europe (CEEC) and of the former Soviet Union (FSU) has as its main objective the identification, through information exchange and discussion, of possible Technical Cooperation (TC) projects to assist Member States in meeting NPP personnel training needs and priorities, including the enhancing of training capabilities

  13. Development of Training Aids for Nuclear Forensics Exercises

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangjun; Lee, Seungmin; Lim, Hobin; Hyung, Sangcheol; Kim, Jaekwang [Korea Institute of Nuclear Nonproliferation and Control, Daejeon (Korea, Republic of)

    2015-05-15

    Current radioactive-related training has focused on the prevention of a radiation disaster. Procedures to recover nuclear and radiological materials have been simplified due to the lack of training tools to reproduce real conditions for security and staff at nuclear facilities. The process of recovering materials is crucial in order to collect evidence and secure the safety of response forces. Moreover, exercises for recovering lost or missing a low dose radiation sources, does not well match with explosive like RDD blast situations. Therefore KINAC has been developing training aids in order to closely reproduce conditions of an actual terrorist attack and enhance effectiveness of exercises. These tools will be applied to Nuclear Forensics Exercises in which evidence collection is important at the time of an incident. KINAC has been developing training aids to enhance the effectiveness of such exercises by providing simulated conditions of actual terrorist incidents. Simulated training aids, based on the beacon system, operate with electromagnetic waves. These tools are able to simulate environments close to actual conditions by supplying similar properties of radioactivity. Training aids will be helpful in giving experience to security personnel and staff in the event of a terrorist incident. This experience includes collecting evidence for nuclear forensics. KINAC also has a plan to hold drills using these tools this year with The Armed Force CBR Defense Command.

  14. Development of Training Aids for Nuclear Forensics Exercises

    International Nuclear Information System (INIS)

    Lee, Sangjun; Lee, Seungmin; Lim, Hobin; Hyung, Sangcheol; Kim, Jaekwang

    2015-01-01

    Current radioactive-related training has focused on the prevention of a radiation disaster. Procedures to recover nuclear and radiological materials have been simplified due to the lack of training tools to reproduce real conditions for security and staff at nuclear facilities. The process of recovering materials is crucial in order to collect evidence and secure the safety of response forces. Moreover, exercises for recovering lost or missing a low dose radiation sources, does not well match with explosive like RDD blast situations. Therefore KINAC has been developing training aids in order to closely reproduce conditions of an actual terrorist attack and enhance effectiveness of exercises. These tools will be applied to Nuclear Forensics Exercises in which evidence collection is important at the time of an incident. KINAC has been developing training aids to enhance the effectiveness of such exercises by providing simulated conditions of actual terrorist incidents. Simulated training aids, based on the beacon system, operate with electromagnetic waves. These tools are able to simulate environments close to actual conditions by supplying similar properties of radioactivity. Training aids will be helpful in giving experience to security personnel and staff in the event of a terrorist incident. This experience includes collecting evidence for nuclear forensics. KINAC also has a plan to hold drills using these tools this year with The Armed Force CBR Defense Command

  15. Development of training courses in the field of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Young; Seo, In Seok; Lee, Eui Jin; Seo, Kyung Won; Won, Jong Yeol; Nam, Jae Yeol

    1996-02-01

    This report describes the final results of D evelopment of training courses in the field of nuclear energy . The scope and contents are as follows : 1. to develop specialized nuclear training programs. 2. to collect and analyze foreign training programs and materials. 3. to develop foreign assisted training courses. 4. to develop interregional training courses for developing country trainees. and 5. to develop text materials for the implementation of training courses. 16 refs. (Author)

  16. Development of a Virtual Reality (VR) system for nuclear security training

    International Nuclear Information System (INIS)

    Yamaguchi, Yasuo; Hanai, Tasuku

    2014-01-01

    The Integrated Support Center for Nuclear nonproliferation and Nuclear Security (ISCN) under the Japan Atomic Energy Agency (JAEA) began the development of Virtual Reality (VR) training system for the purpose of teaching trainees nuclear security. ISCN set up two VR training courses by 2013. One is for teaching a nuclear security system of nuclear plants. The VR training system allows trainees to have virtual experiences visiting a nuclear plant. Through these experiences, trainees are able to learn how physical protection systems work in the plant. The course focuses on learning fundamental knowledge and is suitable for trainees having little experiences in the field of nuclear security. The other is for teaching fundamental skills corresponding to a contingency plan in a Central Alarm Station (CAS) of nuclear power plant. Computers of the VR training system deploy an intrusion scenario in a virtual space. Trainees in a group sit in front of 3-D screens and play a role play game in a virtual CAS. Through the exercise, trainees are able to learn skills necessary to the contingency case of nuclear plants. In my presentation, I will introduce the two training courses, advantages and disadvantages of the VR training system, reactions of trainees and future plans. (author)

  17. Guidebook on the education and training of technicians for nuclear power

    International Nuclear Information System (INIS)

    1989-01-01

    The IAEA Guidebook on the Education and Training of Technicians for Nuclear Power aims to assist Member States, especially the developing countries which are in the process of implementing, or intending to implement, a nuclear power programme, to understand and meet their requirements for qualified technicians in the most effective and efficient manner. It specifically seeks to assist policy makers and planners, as well as those designing and implementing education and training programmes. In this Guidebook, technician level occupations include those filled by technicians and higher level technicians (techniciens superieurs or technologists) and also by non-graduate engineers. The Guidebook complements the IAEA Guidebook on Manpower Development for Nuclear Power, as well as the IAEA Guidebook on the Qualification of Nuclear Power Plant Operations Personnel. The key objectives of this Guidebook are to describe: (1) the level and content of conventional education and training which a technician must have before nuclear oriented education and training can begin; (2) the level and content of nuclear oriented education and training; (3) measures to bridge the gap between the education and training acquired by technicians in the national technical schools (i.e. the level attained before upgrading) and the level of education and training qualifications needed for technicians to work in the nuclear power programme (i.e. the level attained after completion of nuclear oriented education and training). Valuable information on the national experiences of IAEA Member States in the education and training of technicians for nuclear power, as well as examples of such education and training from various Member States, are included in IAEA-TECDOC-526, which should be read in conjunction with the present text. 3 refs, 13 figs, 3 tabs

  18. Computer training aids for nuclear operator training

    International Nuclear Information System (INIS)

    Phillips, J.G.P.; Binns, J.B.H.

    1983-01-01

    The Royal Navy's Nuclear Propulsion School at HMS SULTAN which is responsible for training all ratings and officers who operate Submarine Pressurised Water Reactor plants, has available a varied selection of classroom simulator training aids as well as purpose built Submarine Manoeuvring Room simulators. The use of these classroom training aids in the twelve months prior to Autumn 1981 is discussed. The advantages and disadvantages of using relatively expensive computer based aids to support classroom instruction for students who do not investigate mathematically the dynamics of the Reactor Plant are identified. The conclusions drawn indicate that for students of limited academic ability the classroom simulators are disproportionately expensive in cost, maintenance load, and instructional time. Secondly, the experience gained in the use of the Manoeuvring Room Simulators to train future operators who have just finished the academic phase of their training is outlined. The possible pitfalls for the instructor are discussed and the lessons learnt, concluding that these simulators provide a valuable substitute for the live plant enabling trainees to be brought up to a common standard and reducing their on job training time to an acceptable level. (author)

  19. Training programs for the systems approach to nuclear security

    International Nuclear Information System (INIS)

    Ellis, D.

    2005-01-01

    Full text: In support of United States Government (USG) and International Atomic Energy Agency (IAEA) nuclear security programs, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been developed and implemented as the basis for a performance-based methodology for the design and evaluation of physical protection systems against a design basis threat (DBT) for theft and sabotage of nuclear and/or radiological materials. Integrated systems must include technology, people, and the man-machine interface. A critical aspect of the human element is training on the systems-approach for all the stakeholders in nuclear security. Current training courses and workshops have been very beneficial but are still rather limited in scope. SNL has developed two primary international classes - the international training course on the physical protection of nuclear facilities and materials, and the design basis threat methodology workshop. SNL is also completing the development of three new courses that will be offered and presented in the near term. They are vital area identification methodology focused on nuclear power plants to aid in their protection against radiological sabotage, insider threat analysis methodology and protection schemes, and security foundations for competent authority and facility operator stakeholders who are not security professionals. In the long term, we envision a comprehensive nuclear security curriculum that spans policy and technology, regulators and operators, introductory and expert levels, classroom and laboratory/field, and local and offsite training options. This training curriculum will be developed in concert with a nuclear security series of guidance documents that is expected to be forthcoming from the IAEA. It is important to note that while appropriate implementation of systems based on such training and documentation can improve the risk reduction, such a

  20. Nuclear education and training: cause for concern?

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi

    2000-01-01

    Nuclear power plants have played an important role in electricity generation in the OECD member countries, contributing an average 24% over the past few years. One major criterion for the success of this technology has always been the education and training of competent personnel in all sectors of nuclear development and application. The high level of competence and know-how reached must be maintained in the future. Qualified personnel is required for running existing plants, building new nuclear power plants - at present especially in Japan and Korea - and for all activities associated with supply and waste management, decommissioning, and for all applications of nuclear technology above and beyond energy generation. The number of university graduates in the OECD countries is decreasing alarmingly, among other reasons because of the diminished attractiveness of these courses as a consequence of the reduced number of nuclear engineering courses offered in curricula. A broad-based program of disseminating basic information in nuclear technology in university curricula is urgently required. In industry, internal advanced and in-career training measures and programs are offered to ensure broad-based qualification as well as specialization in nuclear subjects of the staff, as demands are rising and flexibility is required of all staff members. This development implies that governments in particular are called upon to ensure, by long-term planning, that nuclear competence is preserved in science and research, in industry and applications, as part of their areas of responsibility and competence. Note: The full text of the study on which this contribution is based has been published under the title of 'Nuclear Education and Training: Cause for Concern?' by OECD-NEA, Paris, 2000, 124 pages. (orig.) [de

  1. Impact evaluation of the nuclear training program of the Philippine Nuclear Research Institute

    International Nuclear Information System (INIS)

    Relunia, Estrella D.

    2000-01-01

    This study attempted to determine the factors that influenced the impact of the institute's training program in nuclear science and technology to the institution where the trainee works and to the trainee himself and this study involved engineers, scientists, teachers, medical doctor, technologist and professionals who have successfully completed the PNRI nuclear science and technology training courses

  2. ICT based training on nuclear technology applications in Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Mdoe, S.L. [Nuclear Technology Applications Directorate, Tanzania Atomic Energy Commission, P.O. Box 743, Arusha (Tanzania)]. E-mail: slcmdoe@yahoo.com; Kimaro, E. [Nuclear Technology Applications Directorate, Tanzania Atomic Energy Commission, P.O. Box 743, Arusha (Tanzania)]. E-mail: taec@habari.co.tz

    2006-07-01

    Peaceful application of nuclear technology has contributed to socio-economic resource development in Tanzania. The Tanzania Atomic Energy Commission has taken some active steps for the incorporation and or adoption of ICT-based training modules in nuclear science and technology and its applications. The overall objective of this programme is to establish a sustainable national capability for using the potential of information communication technologies (ICTs) for training and education in the field of nuclear science and technology. This paper reviews some of the experience which the authors gained in the area of ICT based training in nuclear technology applications, it describes some of the challenges experienced, and some proposals to address the issues involved. (author)

  3. ICT based training on nuclear technology applications in Tanzania

    International Nuclear Information System (INIS)

    Mdoe, S.L.; Kimaro, E.

    2006-01-01

    Peaceful application of nuclear technology has contributed to socio-economic resource development in Tanzania. The Tanzania Atomic Energy Commission has taken some active steps for the incorporation and or adoption of ICT-based training modules in nuclear science and technology and its applications. The overall objective of this programme is to establish a sustainable national capability for using the potential of information communication technologies (ICTs) for training and education in the field of nuclear science and technology. This paper reviews some of the experience which the authors gained in the area of ICT based training in nuclear technology applications, it describes some of the challenges experienced, and some proposals to address the issues involved. (author)

  4. Activities of nuclear training centre in Ljubljana for nuclear community in Slovenia and internationally

    International Nuclear Information System (INIS)

    Stritar, Andrej

    1998-01-01

    It is the vision of the Nuclear Training Centre to be a respected source of knowledge about nuclear technologies in the country and internationally. Our main mission is training of NPP Krsko personnel. For that purpose the training centre was established ten years ago. In addition we are spreading our activities also to other users. We are organizing international training courses, mainly under the sponsorship of the International Atomic Energy Agency. We are also authorized to train professionals, dealing with ionizing radiation in medicine, industry and science. Growing importance is given to our public information activity in our information centre. (author)

  5. Workshop on postgraduate training in nuclear medicine in Europe, Innsbruck, April 1984, sponsored by the Council of Europe, the Society of Nuclear Medicine Europe and the Medical Faculty of the University of Innsbruck

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The aims of the workshop were the following ones: 1) to give a definition of the actual status of Nuclear Medicine in Europe and existing postgraduate training programs, 2) to provide a training catalogue in Nuclear Medicine which must be realistic and yet adequate and which can be implemented in all Member states of the Council of Europe, 3) to achieve a conclusion which could serve as recommendation for the European authorities in Strasbourg and should hopefully lead to appropriate legal actions by the governments represented at the Council of Europe. (orig./MG)

  6. Simulators for training nuclear power plant personnel

    International Nuclear Information System (INIS)

    1993-01-01

    Simulator training and retraining of operations personnel is essential for their acquiring the necessary knowledge, skills and qualification for operating a nuclear power plant, and for effective feedback of experience including human based operating errors. Simulator training is the most effective way by far of training operations personnel in co-operation and communication in a team, which also involves instilling attitudes and approaches for achieving excellence and individual responsibility and alertness. This technical document provides guidance to Member States on the procurement, setting up and utilization of a simulator training centre; it will also be useful for organizations with previous experience in the use of simulators for training. The document is the result of a series of advisory and consultants meetings held in the framework of the International Working Group on Nuclear Power Plant Control and Instrumentation in 1989-1992. 17 refs, 2 tabs

  7. Nuclear Power Reactor simulator - based training program

    International Nuclear Information System (INIS)

    Abdelwahab, S.A.S.

    2009-01-01

    nuclear power stations will continue playing a major role as an energy source for electric generation and heat production in the world. in this paper, a nuclear power reactor simulator- based training program will be presented . this program is designed to aid in training of the reactor operators about the principles of operation of the plant. also it could help the researchers and the designers to analyze and to estimate the performance of the nuclear reactors and facilitate further studies for selection of the proper controller and its optimization process as it is difficult and time consuming to do all experiments in the real nuclear environment.this program is written in MATLAB code as MATLAB software provides sophisticated tools comparable to those in other software such as visual basic for the creation of graphical user interface (GUI). moreover MATLAB is available for all major operating systems. the used SIMULINK reactor model for the nuclear reactor can be used to model different types by adopting appropriate parameters. the model of each component of the reactor is based on physical laws rather than the use of look up tables or curve fitting.this simulation based training program will improve acquisition and retention knowledge also trainee will learn faster and will have better attitude

  8. Simulators in the training program for nuclear power plants

    International Nuclear Information System (INIS)

    Grimm, E.

    1988-01-01

    The principle simulator of the reactor school of the Paul Scherrer Institute is described. A compact simulator at the nuclear power plant Beznau is used for beginners as well as for refresher courses. Full simulator training cannot be taken in Switzerland. The Swiss nuclear power plants take advantage of the services of foreign nuclear power plants or training centers. The role of the instructor is discussed

  9. Good practices in provision of nuclear safeguards and security training courses at the Integrated Support Center for Nuclear Nonproliferation and Nuclear Security

    Directory of Open Access Journals (Sweden)

    Kobayashi Naoki

    2017-01-01

    Full Text Available More than five years have passed since the Integrated Support Center for Nuclear Nonproliferation and Nuclear Security (ISCN was established under the Japan Atomic Energy Agency (JAEA in December 2010 and started its activities, in response to the commitment of Japan at the Nuclear Security Summit in Washington D.C.. The ISCN has been vigorously involved in capacity building assistance on nuclear nonproliferation (safeguards and nuclear security, mainly in the Asian region. It has provided 105 training courses to 2901 participants in total as of August 2016. The ISCN plays a major role in strengthening nuclear nonproliferation and nuclear security in the region, and this can be considered one of the great results of the Nuclear Security Summit process. The ISCN has cooperated with the US Department of Energy/National Nuclear Security Administration (DOE/NNSA and Sandia National Laboratories (SNL to establish a base of instructors, particularly for the Center's flagship two-week courses, the Regional Training Course on Physical Protection of Nuclear Material and Facilities (RTC on PP and the Regional Training Course on State Systems of Accounting for and Control of Nuclear Material (RTC on SSAC. Furthermore, the ISCN has provided training courses for experts in Japan, making the best use of the Center's knowledge and experience of organizing international courses. The ISCN has also started joint synchronized training with the Joint Research Centre of the European Commission (EC JRC on nuclear safeguards. This paper describes the good practices at the ISCN through its five years of activities, focusing on its progress in nuclear safeguards and nuclear security training.

  10. 3. national conference on training of personnel for nuclear power

    International Nuclear Information System (INIS)

    Jacko, J.

    1983-01-01

    A national conference with international participation was held in Podbanske to evaluate the results and experiences with the training of personnel for nuclear power in training centres of the sector of fuel and energy, within the educational system and at other workplaces. The rational development of the system of personnel training must contribute towards reducing the hazards of nuclear power caused by the human factor. The results and experiences were evaluated gained in the process of the unified system of training personnel for nuclear power plants, namely training centres of various institutions, institutions of higher education and in-operation training of personnel. In 1984, the first Czechoslovak simulator of a WWER 440 unit will be put into operation. (M.D.)

  11. Assessment of field training for nuclear operations personnel

    Energy Technology Data Exchange (ETDEWEB)

    White, M [Safety Management Services, Inc. (Canada)

    1995-08-01

    Training of station personnel is an important component of the safe operation of the nuclear generating station. On-the-job training (OJT) is an important component of training. The AECB initiated this project to develop a process to assess the effectiveness of OJT for field operators, and perform an initial trial of the developed process. This report describes the recommended process to assess the effectiveness of OJT for field operators, as well as the results of the initial assessment at Pickering Nuclear Generating Station. The assessment`s conclusions included: (1) Ontario Hydro policies and procedures are generally consistent with industry guidelines requiring a systematic approach to training; (2) Pickering NGS field operator performance is not always consistent with documented station requirements and standards, nor industry guidelines and practices; and (3) The Pickering NGS field operator on-the-job training is not consistent with a systematic approach to training, a requirement recognized in Ontario Hydro`s Policy NGD 113, and does not contribute to a high level of performance in field operator tasks. Recommendations are made regarding the use of the developed process for future assessments of on-the-job training at nuclear power plants. (author). 36 refs., 4 tabs., 3 figs.

  12. Education and training for nuclear scientists and engineers at NuTEC/JAEA

    International Nuclear Information System (INIS)

    Kushita, Kouhei; Sugimoto, Jun; Sakamoto, Ryuichi; Arai, Nobuyoshi; Hattori, Takamitsu; Matsuda, Kenji; Ikuta, Yuko; Sato, K.

    2009-01-01

    Because of the increasing demand of nuclear engineers in recent years, which is sometimes called as the age of nuclear Renaissance, while nuclear engineers have been decreasing and technical knowledge and expertise have not necessarily been transferred to the younger generations, human resources development (HRD) has been regarded as one of the most important issues in the nuclear field in Japan as well as in the world. Nuclear Technology and Education Center (NuTEC) at Japan Atomic Energy Agency (JAEA) have conducted comprehensive nuclear education and training activities in the past half century, which cover; 1) education and training for domestic nuclear engineers, 2) cooperation with universities, and 3) international cooperation. The main feature of NuTEC's training programs is that emphasis is placed on the laboratory exercise with well-equipped training facilities and expertise of lecturers mostly from JAEA. The wide spectrum of cooperative activities have been pursued with universities, which includes newly developed remote-education system, and also with international organizations, such as with FNCA countries and IAEA. For the nuclear education and trainings, utilization of nuclear reactors is of special importance. Examples of training programs using nuclear reactors are reported. Future plan to use nuclear reactors such as JMTR for the nuclear educations is also introduced. (author)

  13. The problems and countermeasures of staff training in nuclear power plants

    International Nuclear Information System (INIS)

    Xie Bo

    2013-01-01

    With the rapid development of nuclear energy, China faces a great challenge to meet its increasing demand on a large amount of well-educated and highly-trained nuclear workforce. The above demands make it uniquely important for the nuclear industry in both improving nuclear education and in attracting young talents. Good practices in staff training have been identified and are summarized, through which CNNC's nuclear power plants have developed a systematic approach for new employee training to support the development of strategies. (author)

  14. Training implementation matrix. Spent Nuclear Fuel Project (SNFP)

    International Nuclear Information System (INIS)

    EATON, G.L.

    2000-01-01

    This Training Implementation Matrix (TIM) describes how the Spent Nuclear Fuel Project (SNFP) implements the requirements of DOE Order 5480.20A, Personnel Selection, Qualification, and Training Requirements for Reactor and Non-Reactor Nuclear Facilities. The TIM defines the application of the selection, qualification, and training requirements in DOE Order 5480.20A at the SNFP. The TIM also describes the organization, planning, and administration of the SNFP training and qualification program(s) for which DOE Order 5480.20A applies. Also included is suitable justification for exceptions taken to any requirements contained in DOE Order 5480.20A. The goal of the SNFP training and qualification program is to ensure employees are capable of performing their jobs safely and efficiently

  15. The INSTN trains the future professionals of nuclear industry

    International Nuclear Information System (INIS)

    Correa, P.

    2017-01-01

    The INSTN (Institute for Nuclear Sciences and Nuclear Technologies) is the applied school in nuclear technologies that has been present for 60 years for specialized training and vocational training. The integration of numerical technologies has allowed INSTN to adapt its way of teaching and to overcome difficulties like distances and to propose for instance practical exercises on the ISIS experimental reactor through the web for foreign graduate schools. The INSTN has realized its first SPOC (Small Private Online Course) and is preparing 2 MOOC (Massive Open Online Course). Since 2016, the INSTN has become 1 of the 2 training centers appointed as 'collaborating center' by the IAEA in the field of nuclear technologies and their industrial and radio-pharmaceutical applications. (A.C.)

  16. Current status of Chinese nuclear power industry and technology

    International Nuclear Information System (INIS)

    Kim, Hyun Min; Kim, Min; Jeong, Hee Jong; Hwang, Jeong Ki; Cho, Chung Hee

    1996-10-01

    China has been carrying out active international cooperation aiming to be a country where is to be an economical super power and an advanced country in nuclear power technology by the year early 2000, and China also has begun to be recognized as the largest potential market for the construction of nuclear power plants(NPPs) expecting to construct more than thirty nuclear power units by the year 2020. China has advanced technology in the basic nuclear science including liquid metal breeder reactor technology, nuclear material, medium and small size power plants, and isotope production technology, and also China has complete nuclear fuel cycle technology. However, China still has low NPP technology. Therefore, it is expected that China may have complementary cooperative relationship with China, it is expected that Korea may have an access to the advanced Chinese nuclear science technology, and may have a good opportunity to explore the Chinese market actively exporting excellent Korean NPP technology, and further may have a good position to the neighboring Asian countries' NPP markets. From this perspective, general Chinese social status, major nuclear R and D activity status, and correct NPP and technology status have been analyzed in this report, and this report is expected to be a useful resource for cooperating with China in future. 10 tabs., 6 figs., 16 refs. (Author)

  17. Status of Korean nuclear industry and Romania-Korea cooperation in nuclear field

    International Nuclear Information System (INIS)

    Myung-Key, Lee

    2005-01-01

    Current status of electric power in Korea is characterized by the end of August 2004 by a total installed capacity of about 62,000 MW while the total electricity generation is about 342,000 GWh. The installed capacity of nuclear power is 17,716 MW, sharing 29% of total installed capacity and presenting 38% of total electricity generation in Korea. In accordance with the provisions of the Long Term Energy Plan during the past 40 years, the installed capacity in Korea has been drastically increased. In the 1960's, major sources of electricity generation were locally-mined anthracite coal and hydro, but in the 1970's it was the imported oil. However, through diversification policy the dependence of the imported oil has been rapidly reduced and the share of coal , gas and nuclear generation has been steadily increased. According to the long-term power development plan updated last year, which is extended to 2017, the installed capacity in the year 2017 will be about 88,000 MW. At that time nuclear power will become the largest, sharing 30% and the shares of coal and gas fired power will be steadily decreased. Concerning the Nuclear Power Projects, there are four different nuclear power sites along the coast of Korean peninsula, Yonggwang, Kori, Wolsong and Ulchin. In addition to the currently operating 20 nuclear power plants, there are 6 more nuclear power plants under construction at Shin-Wolsong and Shin-Kori sites. Our efforts to enhance the technology, economy and safety of the nuclear power plants will be continuously pursued. Wolsong unclear power units 1, 2, 3 and 4 are CANDU type reactors which are same type as Romanian Cernavoda nuclear power plants. Operational performance, in terms of capacity factor of NPPs, has remained well above the world average and recorded 91.4% last year. Also, last year, the frequency of unplanned trip was 0.6 time per reactor. In 2004, ten NPPs achieved OCTF, which stands for One Cycle Trouble Free in 2004. Wolsong unit 1

  18. Digital innovations for teaching and nuclear training

    International Nuclear Information System (INIS)

    Fanjas, Y.; Schoevaerts, D.; Beliazi, L.

    2017-01-01

    The article reviews various digital tools that have been developed for nuclear training. The 'internet virtual laboratory' has been developed by the IAEA, it allows the live broadcasting through the web of experiments and practical exercises performed on the ISIS reactor located in France at Saclay. Virtual reality is booming and allows professionals to move in a nuclear facility virtually. For instance the SecureVI tool is based on 360 degrees photographs of the facility that are associated with goggles to get the immersive effect. The last generation of full-scale reactor simulators are based on 3-dimensional calculations made by the latest version of neutron transport codes and thermal-hydraulic codes. The EPR-FA3 simulator represents the control room of the Flamanville EPR, it is used for the training of reactor operators. The X1300 simulator replicates PWR operations and the SOFIA tool allows the trainees to understand how a nuclear reactor works. The CAVE tool was first developed to be used as an help to engineers and now it has been adapted to training purposes: CAVE allows a complete immersion in a nuclear facility. (A.C.)

  19. Status of higher education in nuclear technology in Pakistan

    International Nuclear Information System (INIS)

    Sadiq, A.

    2007-01-01

    Pakistan's nuclear power program was formally launched in 1959 with the establishment of the Pakistan Atomic Energy Commission (PAEC). The first research reactor, the Pakistan Research Reactor (PARR1), went critical in 1965, while the first nuclear power plant, the Karachi Nuclear Power Plant (KANUPP), was connected to the grid in 1972. PARR1, a 5 MW highly enriched uranium swimming pool reactor, has been upgraded to 10 MW low enriched reactor and KANUPP is a 137 MWe CANDU reactor. Later during the mid eighties PAEC added another small research reactor, PARR2, a miniature neutron source, and in 2000 a 325 MW PWR at Chashma, the Chashma Nuclear Power Plant (CHASHNUPP). Thus PAEC currently owns and operates two nuclear power plants and two research reactors. KANUPP has completed its design life of 30 years and is now undergoing the re-licensing process. CHASNUPP has just completed its first refuelling outage. Negotiations for the third nuclear power plant, also a 300 MW PWR from China, are continuing. The training and education programs in nuclear technology were initiated in the early 1960's soon after the establishment of PAEC. Initially the cream of fresh graduates in engineering, medicine and natural sciences, who were inducted in PAEC were given short training before they were sent for higher studies abroad. The availability of a nucleus of highly qualified professionals in nuclear power and allied disciplines, the lack of adequate facilities in the local educational institutions in these fields and the realization that many more professionals will be needed than could be trained abroad led to the establishment of coherent indigenous training and education program in the late sixties. Given below is a brief description of the centers set up by the PAEC for providing manpower for its nuclear power program

  20. Education and training of operators and maintenance staff at Hamaoka Nuclear Power Stations

    International Nuclear Information System (INIS)

    Makido, Hideki; Hayashi, Haruhisa

    1999-01-01

    At Hamaoka Nuclear Power Station, in order to ensure higher safety and reliability of plant operation, education and training is provided consistently, on a comprehensive basis, for all operating, maintenance and other technical staff, aimed at developing more capable human resources in the nuclear power division. To this end, Hamaoka Nuclear Power Station has the 'Nuclear Training Center' on its site. The training center provides the technical personnel including operators and maintenance personnel with practical training, utilizing simulators for operation training and the identical facilities with those at the real plant. Thus, it plays a central role in promoting comprehensive education and training concerning nuclear power generation. Our education system covers knowledge and skills necessary for the safe and stable operation of nuclear power plant, targeting new employees to managerial personnel. It is also organized systematically in accordance with experience and job level. We will report the present education and training of operators and maintenance personnel at Hamaoka Nuclear Training Center. (author)

  1. The application of the assessment of nuclear accident status in emergency decision-making during nuclear accident

    International Nuclear Information System (INIS)

    Yang Ling

    2011-01-01

    Nuclear accident assessment is one of the bases for emergency decision-making in the situation of nuclear accident in NPP. Usually, the assessment includes accident status and consequence assessment. It is accident status assessment, and its application in emergency decision-making is introduced here. (author)

  2. Principles of education and training of plant engineers for nuclear power stations

    International Nuclear Information System (INIS)

    Ackermann, G.; Meyer, K.; Brune, W.

    1978-01-01

    Experience in education and advanced training of nuclear engineers in the GDR is reviewed. The basic education of engineers is carried out at universities and colleges. Graduate engineers who have been working in non-nuclear industries for a longer time receive their basic education in nuclear engineering through postgraduate studies. Graduate engineers with a basic knowledge of nuclear engineering are trained at the Nuclear Power Plant School of the Rheinsberg nuclear power plant and at the nuclear power plants of the GDR under operational conditions relating to their future job. In addition to basic theoretical knowledge, training at a nuclear power plant simulator plays an important role. This permits training of the staff under normal operating conditions including transient processes and under unusual conditions. Further particular modes of advanced professional training such as courses in radiation protection and further postgraduate studies are described. This system of education has proved successful. It will be developed further to meet the growing demands. (author)

  3. Nuclear engineering training and advanced training at universities and in manufacturing industries

    International Nuclear Information System (INIS)

    Sauer, A.

    1984-01-01

    The lecture describes: the qualification of the staff of one nuclear power plant building company, the structure of university studies in the Federal Republic of Germany, in the USA and in the GDR, technical colleges, continuation studies, in-service training in the manufacturing industry, training programmes for short-term benefits, training of German and foreign operating personnel by the manufacturers, training within the framework of technology transfer. (HSCH) [de

  4. Nuclear criticality safety specialist training and qualification programs

    International Nuclear Information System (INIS)

    Hopper, C.M.

    1993-01-01

    Since the beginning of the Nuclear Criticality Safety Division of the American Nuclear Society (ANS) in 1967, the nuclear criticality safety (NCS) community has sought to provide an exchange of information at a national level to facilitate the education and development of NCS specialists. In addition, individual criticality safety organizations within government contractor and licensed commercial nonreactor facilities have developed training and qualification programs for their NCS specialists. However, there has been substantial variability in the content and quality of these program requirements and personnel qualifications, at least as measured within the government contractor community. The purpose of this paper is to provide a brief, general history of staff training and to describe the current direction and focus of US DOE guidance for the content of training and qualification programs designed to develop NCS specialists

  5. Cook's Carteaux: Trends in nuclear training

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The following Nuclear News interview, conducted by associate editor Gregg M. Taylor, is with Paul F. Carteaux, training superintendent at Indiana/Michigan Power Company's Cook nuclear power plant. The site has two Westinghouse pressurized water reactors. Cook-1, rated 1020-MWe (net), started commercial operation in August 1975, and the 1060-MWe Cook-2 began operation in July 1978

  6. Development of Capacity Building Training Programs for Nuclear R and D Personnel

    International Nuclear Information System (INIS)

    Lee, Eui Jin; Nam, Youngmi; Hwang, Hyeseon; Jang, Eunsook; Song, Eun Ju

    2016-01-01

    The Nuclear Training and Education Center of the Korea Atomic Energy Research Institute has been operating technical training courses on nuclear engineering, engineering mathematics, management leadership training, out sourced practical training, legal education, etc. Strengthening nuclear R and D capacity is essential for the long-term mission and goals of the institute. Therefore, it requires a comprehensive training program to strengthen the unique capability of the institute that reflects diversity and differentiation. In this regard, the capacity building training program has developed on a modular basis, and the developed training program should be tailored to operate according to the institute needs. The capacity building training program for nuclear R and D personnel was developed to reflect the technology strengths of the institute. The developed training program will be developed into a leading branded education of the institute in the future

  7. Development of Capacity Building Training Programs for Nuclear R and D Personnel

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eui Jin; Nam, Youngmi; Hwang, Hyeseon; Jang, Eunsook; Song, Eun Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The Nuclear Training and Education Center of the Korea Atomic Energy Research Institute has been operating technical training courses on nuclear engineering, engineering mathematics, management leadership training, out sourced practical training, legal education, etc. Strengthening nuclear R and D capacity is essential for the long-term mission and goals of the institute. Therefore, it requires a comprehensive training program to strengthen the unique capability of the institute that reflects diversity and differentiation. In this regard, the capacity building training program has developed on a modular basis, and the developed training program should be tailored to operate according to the institute needs. The capacity building training program for nuclear R and D personnel was developed to reflect the technology strengths of the institute. The developed training program will be developed into a leading branded education of the institute in the future.

  8. A present status for dry storage of spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K. S.; Lee, J. C.; Park, H. Y.; Seo, K. S

    2003-04-01

    National policy for management of a spent nuclear fuel does not establish in Korea yet. A storage capacity of a storage pool that is to store the spent nuclear fuel will be exceeded an amount of accumulation from the first Woljin nuclear power plant in 2007. Therefore it is necessary that dry storage facility is secured to store safely the spent nuclear fuel on site of the nuclear power plant until national policy for a back-end spent nuclear fuel cycle is established. In order to store safely spent nuclear fuel, it is important that the present status and technology on dry storage of spent nuclear fuel is looked over. Therefore, the present status on dry storage of spent nuclear fuel was analyzed so as to develop dry storage system and choose a proper dry storage method domestic.

  9. Status of nuclear desalination in IAEA member states

    International Nuclear Information System (INIS)

    2007-01-01

    Some of the IAEA Member States have active nuclear desalination programmes and, during the last few years, substantial overall progress has been made in this field. As part of the ongoing activities within the IAEA's nuclear power programme, it was thus decided to prepare a status report, which would briefly describe the recent nuclear seawater desalination related developments and relevant IAEA activities. This status report briefly covers salient aspects of the new generation reactors and a few innovative reactors being considered for desalination and other non-electrical applications, the recent advances in the commonly employed desalination processes and their coupling to nuclear reactors. A summary of techno-economic feasibility studies carried out in interested Member States has been presented and the potable water cost reduction strategies from nuclear desalination plants have been discussed. The socio-economic and environmental benefits of nuclear power driven desalination plants have been elaborated. It is expected that the concise information provided in this report would be useful to the decision makers in the Member States and would incite them to consider or to accelerate the deployment of nuclear desalination projects in their respective countries

  10. Nuclear education and training: assuring a competent workforce

    International Nuclear Information System (INIS)

    Urso, M.E.; Murphy, B.P.; Giot, M.

    2011-01-01

    Over the years the NEA has been instrumental in raising awareness on issues related to education and training (E and T) in nuclear science and technology. Ten years ago the OECD/NEA report 'Nuclear Education and Training: Cause for Concern?' [Ref. 1] highlighted that core competencies in nuclear technology were suffering a significant decline, becoming increasingly difficult to sustain. The study acted as a wake-up call, urging prompt and decisive actions by governments and other stakeholders to avert the risk of irreversible consequences. Combined with more recent studies and activities subsequently undertaken by OECD/NEA [Ref. 2 and 3] and following a policy debate on 'Nuclear Research' [Ref. 4], a statement on the need for qualified human resources in the nuclear field was unanimously adopted by the NEA Steering Committee [Ref. 5], underlying the prime responsibilities of governments. After 10 years, awareness has generally grown on the gravity and urgency of the issue, triggering, in some cases, significant initiatives. However, in a much altered context of growing nuclear reactor fleets, concerns still prevail regarding the availability of sufficient, skilled manpower and the adequacy of infrastructures. Strains in the human resources capacity still remain high and any potential increase in use of nuclear power might be hampered by a dearth of qualified personnel. The current NEA project has thus been undertaken to revise and update the 2000 OECD/NEA publication [Ref. 1]. The study provides a qualitative characterisation of human resource needs, distinguishing among nuclear professionals, technical staff and crafts: categories which require different types and degrees of E and T. Instruments to address such needs, already available, underway or planned are appraised. An assessment on the current and future uses of nuclear research facilities for E and T purposes was also undertaken, based on the factual foundation of data gathered through quantitative surveys

  11. Education, training and work experience among nuclear power plant workers

    International Nuclear Information System (INIS)

    Blair, L.M.; Doggette, J.

    1980-01-01

    This paper uses a unique data set to examine the prior work experience, training, and education of skilled and technical workers in United States nuclear power plants. The data were collected in the latter half of 1977 by the International Brotherhood of Electrical Workers (IBEW) in a survey of union locals in nuclear power plants. The survey results provided substantial evidence that workers in United States nuclear power plants have a relatively high level of education, training, and skill development. Analysis of average education by age did not reveal any significant differences in years of schooling between younger and older workers. Very high rates of participation in formal training programmes were reported by all types of workers. The most common type of training programme was held on-site at the power plant and was provided by utility personnel. The majority of workers reported previous work experience related to nuclear power plant activities. Almost one-third of the workers had been directly involved in nuclear energy in a previous job, the majority of these through the United States Navy nuclear programme. However, the newer plants are hiring relatively fewer persons with previous nuclear experience. (author)

  12. National Nuclear Data Center status report

    International Nuclear Information System (INIS)

    2002-01-01

    This paper is the status report of the US National Nuclear Data Center, Brookhaven. It describes the new NDS approach to customer services, which is based on users initiating wish lists on topics of interest with the possibility to receive reports in hardcopy or electronically forms. After completion within the next two years of the multi platform software for management and data retrievals from shared databases, users will have the opportunity to install directly their own local nuclear data center for desktop applications. The paper describes the computer facilities, the nuclear reaction data structure, the database migration and the customer services. (a.n.)

  13. Nuclear training as the integral part of managing of human resources

    International Nuclear Information System (INIS)

    Kazennov, A.Yu.; )

    2010-01-01

    The author reports on the personnel training that is one of important measures to achieve and maintain the required competence of various categories of nuclear facility employees, including nuclear power plants, and one of important activities in the framework of overall management system to improve organizational and human performance of a nuclear facility. The role of the IAEA in the assistance in the development of training systems for nuclear power plants is described, in particular the activity of the Technical Working Group on Managing Human Resources in the Field of Nuclear Energy (TWG-MHR) and The Education and Training Support Group (ETSG) [ru

  14. Computerized based training in nuclear safety in the nuclear research center Negev

    International Nuclear Information System (INIS)

    Ben-Shachar, B.; Krubain, H.; Sberlo, E.

    2002-01-01

    The Department of Human Resources and Training in the Nuclear Research Center, Negev, in collaboration with the Department of Radiation Protection and Safety used to organize different kinds of training and refresher courses for different aspects of safety in nuclear centers (radiation safety, biological effects of ionizing radiation, industrial safety, fire fighting, emergency procedures, etc.). All radiation workers received a training program of several days in all these subjects, each year. The administrative employees received a shorter training, each second year. The training included only frontal lectures and no quiz or exams were done. No feedback of the employees was received after the training, as well. Recently, a new training program was developed by the NRC-Negev and the CET (Center for Educational Technology), in order to perform the refresher courses. The training includes CBT-s (Computer Based Training), e.g. tutorials and quiz. The tutorial is an interactive course in one subject, including animations, video films and photo stills. The employee gets a simple and clear explanation (including pictures). After each tutorial there is a quiz which includes 7 American style questions. In the following lecture different parts from two of the tutorials used for the refresher courses, will be presented

  15. European Nuclear Education Network Association - Support for nuclear education, training and knowledge management

    International Nuclear Information System (INIS)

    Ghitescu, Petre

    2009-01-01

    Developed in 2002-2003 the FP5 EURATOM project 'European Nuclear Engineering Network - ENEN' aimed to establish the basis for conserving nuclear knowledge and expertise, to create an European Higher Education Area for nuclear disciplines and to facilitate the implementation of the Bologna declaration in the nuclear disciplines. In order to ensure the continuity of the achievements and results of the ENEN project, on 22 September 2003, the European Nuclear Higher Education Area was formalized by creating the European Nuclear Education Network Association. ENEN Association goals are oriented towards universities by developing a more harmonized approach for education in the nuclear sciences and engineering in Europe, integrating European education and training in nuclear safety and radiation protection and achieving a better cooperation and sharing of resources and capabilities at the national and international level. At the same time it is oriented towards the end-users (industries, regulatory bodies, research centers, universities) by creating a secure basis of knowledge and skills of value to the EU. It maintains an adequate supply of qualified human resources for design, construction, operation and maintenance of nuclear infrastructures and plants. Also it maintains the necessary competence and expertise for the continued safe use of nuclear energy and applications of radiation in industry and medicine. In 2004-2005, 35 partners continued and expanded the started in FP 5 ENEN Association activities with the FP6 project 'NEPTUNO- Nuclear Education Platform for Training and Universities Organizations'. Thus ENEN established and implemented the European Master of Science in Nuclear Engineering, expanded its activities from education to training, organized and coordinated training sessions and pilot courses and included in its activities the Knowledge Management. At present, the ENEN Association gathers 45 universities, 7 research centers and one multinational company

  16. The World Nuclear Industry Status Report 2015

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Thomas, Steve; Porritt, Jonathon

    2015-07-01

    The World Nuclear Industry Status Report 2015 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. Japan without nuclear power for a full calendar year for the first time since the first commercial nuclear power plant started up in the country 50 years ago. Nuclear plant construction starts plunge from fifteen in 2010 to three in 2014. 62 reactors under construction - five fewer than a year ago - of which at least three-quarters delayed. In 10 of the 14 building countries all projects are delayed, often by years. Five units have been listed as 'under construction' for over 30 years. Share of nuclear power in global electricity mix stable at less than 11% for a third year in a row. AREVA, technically bankrupt, downgraded to 'junk' by Standard and Poor's, sees its share value plunge to a new historic low on 9 July 2015-a value loss of 90 percent since 2007 China, Germany, Japan-three of the world's four largest economies-plus Brazil, India, Mexico, the Netherlands, and Spain, now all generate more electricity from non-hydro renewables than from nuclear power. These eight countries represent more than three billion people or 45 percent of the world's population. In the UK, electricity output from renewable sources, including hydropower, overtook the output from nuclear. Compared to 1997, when the Kyoto Protocol on climate change was signed, in 2014 there was an additional 694 TWh per year of wind power and 185 TWh of solar photovoltaics- each exceeding nuclear's additional 147 TWh

  17. Training programs for the systems approach to nuclear security

    International Nuclear Information System (INIS)

    Ellis, Doris E.

    2005-01-01

    In support of the US Government and the International Atomic Energy Agency (IAEA) Nuclear Security Programmes, Sandia National Laboratories (SNL) has advocated and practiced a risk-based, systematic approach to nuclear security. The risk equation has been implemented as the basis for a performance methodology for the design and evaluation of Physical Protection Systems against a Design Basis Threat (DBT) for theft or sabotage of nuclear and/or radiological materials. Since integrated systems must include people as well as technology and the man-machine interface, a critical aspect of the human element is to train all stakeholders in nuclear security on the systems approach. Current training courses have been beneficial but are still limited in scope. SNL has developed two primary international courses and is completing development of three new courses that will be offered and presented in the near term. In the long-term, SNL envisions establishing a comprehensive nuclear security training curriculum that will be developed along with a series of forthcoming IAEA Nuclear Security Series guidance documents.

  18. Training warning flags

    International Nuclear Information System (INIS)

    Miller, Richard C.

    2003-01-01

    Problems in accredited training programmes at US nuclear stations have resulted in several programmes having their accreditation status designated as probationary. A limited probationary period allows time for problem resolution before the programmes are again reviewed by the National Nuclear Accrediting Board. A careful study of these problems has resulted in the identification of several 'Training Warning Flags' that singularly, or in concert, may indicate or predict degraded training programme effectiveness. These training warning flags have been used by several US nuclear stations as a framework for self-assessments, as a reference in making changes to training programmes, and as a tool in considering student and management feedback on training activities. Further analysis and consideration of the training warning flags has developed precursors for each of the training warning flags. Although more subjective than the training warning flags, the precursors may represent early indicators of factors that may lead to or contribute to degraded training programme effectiveness. Used as evaluative tools, the training warning flags and the precursors may help identify areas for improvements in training programmes and help prioritize training programme improvement efforts. (author)

  19. Instructional skills evaluation in nuclear industry training

    International Nuclear Information System (INIS)

    Mazour, T.J.; Ball, F.M.

    1985-11-01

    This report provides information to nuclear power plant training managers and their staffs concerning the job performance requirements of instructional personnel to implement prformance-based training programs (also referred to as the Systems Approach Training). The information presented in this report is a compilation of information and lessons learned in the nuclear power industry and in other industries using performance-based training programs. The job performance requirements in this report are presented as instructional skills objectives. The process used to develop the instructional skills objectives is described. Each objective includes an Instructional Skills Statement describing the behavior that is expected and an Instructional Skills Standard describing the skills/knowledge that the individual should possess in order to have achieved mastery. The instructional skills objectives are organized according to the essential elements of the Systems Approach to Training and are cross-referenced to three categories of instructional personnel: developers of instruction, instructors, and instructional managers/supervisors. Use of the instructional skills objectives is demonstrated for reviewing instructional staff training and qualification programs, developing criterion-tests, and reviewing the performance and work products of individual staff members. 22 refs

  20. Nuclear power: Status report and future prospects

    International Nuclear Information System (INIS)

    Budnitz, Robert J.

    2016-01-01

    This article reviews the current status and future prospects of commercial nuclear electric power, with emphasis on issues of safety, physical security, proliferation, and economics. Discussions of these issues are presented separately for the current operating fleet, for new reactor designs similar in size to the current fleet, and for prospective new reactors of substantially smaller size. This article also discusses the issue of expansion of commercial nuclear power into new countries. The article concludes with recommendations, related both to technical issues and policy considerations. The major implications for policy are that although the level of safety and security achieved in today's operating reactor fleet worldwide is considered broadly acceptable, some advanced designs now under development potentially offer demonstrably safer performance, and may offer improved financial performance also. Management and safety culture are vital attributes for achieving adequate safety and security, as are a strong political culture that includes an absence of corruption, an independent regulatory authority, and a separation of nuclear operation from day-to-day politics. In some countries that are now considering a nuclear-power program for the first time, careful attention to these attributes will be essential for success. - Highlights: •Current status of nuclear reactor safety and security is judged to be adequate. •Strong management and safety culture are vital to achieve adequate nuclear safety. •Advanced reactor designs offer important safety advantages. •Maintaining and strengthening international nuclear institutions is important. •Achieving nuclear safety in “newcomer” countries requires a strong political culture.

  1. Principles of education and training of industrial engineers for nuclear power plants

    International Nuclear Information System (INIS)

    Ackermann, G.; Meyer, K.; Brune, W.

    1977-01-01

    The report gives a short account of the development and experience of the education and advanced professional training system for engineers for the nuclear power stations of the GDR. The basic education for engineers is carried out at universities and colleges. Graduate engineers who have been working in industrial establishments outside nuclear power stations for a longer time get their basic education in nuclear engineering through postgraduate studies. Graduate engineers with a basic knowledge of nuclear engineering are trained at the Nuclear Power Plant School of the nuclear power station Rheinsberg and at the nuclear power stations of the GDR under practical conditions relating to their future job. In addition to basic theoretical knowledge, training at a nuclear power plant simulator plays an important role. This permits the training of the staff under regular operating conditions including transient processes and under unusual conditions. Further particular modes of advanced professional training such as courses in radiation protection and further postgraduate studies are described. This system of education has proved successful. It will be developed further to meet the growing demands. (author)

  2. Role of INPO in improving training in the US nuclear power industry

    International Nuclear Information System (INIS)

    Mangin, A.M.

    1982-01-01

    In response to their newly recognized degree of interdependence, the US nuclear utilities formed the Institute of Nuclear Power Operations (INPO) in late 1979 to enhance nuclear plant safety and reliability nationwide. Because this interdependence extends across national boundaries, in 1981 INPO began accepting participants from outside the United States. To promote excellence in nuclear power plant training, INPO's Training and Education Division has established three objectives: to establish standards of excellence for industry training; to evaluate the quality and effectiveness of industry training programs; and to assist member utilities in providing high quality performance-based training. A variety of activities and projects have been undertaken to accomplish these objectives

  3. Nuclear renaissance in the reactor training of Areva

    International Nuclear Information System (INIS)

    De Braquilanges, Bertrand; Napior, Amy; Schoenfelder, Christian

    2010-01-01

    Because of the perspectives of new builds, a significant increase in the number of design, construction and management personnel working in AREVA, their clients and sub-contractors has been estimated for the next future. In order to cope with the challenge to integrate newly hired people quickly and effectively into the AREVA workforce, a project - 'Training Task Force (TTF)' - was launched in 2008. The objective was to develop introductory and advanced courses and related tools harmonized between AREVA Training Centers in France, Germany and USA. First, a Global Plants Introductory Session (GPIS) was developed for newly hired employees. GPIS is a two weeks training course introducing in a modular way AREVA and specifically the activities and the reactors technical basics. As an example, design and operation of a nuclear power plant is illustrated on EPRTM. Since January 2009, these GPIS are held regularly in France, Germany and the US with a mixing of employees from these 3 regions. Next, advanced courses for more experienced employees were developed: - Advanced EPR TM , giving a detailed presentation of the EPR TM reactor design; - Codes and Standards; - Technical Nuclear Safety. Finally, feasibility studies on a Training Material Management (TMM) system, able to manage the training documentation, and on a worldwide training administration tool, were performed. The TTF project was completed mid of 2009; it transferred their recurrent activities to a new AREVA training department. This unit now consists of the French, German and US Reactors Training Centers. In particular, all courses developed by the TTF are now implemented worldwide with an opening to external trainees. The current worldwide course catalogue includes training courses for operation and maintenance personnel as well as for managers, engineers and non technical personnel of nuclear operators, suppliers, safety authorities and expert organizations. Training delivery is supported effectively by tools

  4. Selection, qualification and training of personnel for nuclear power plants

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This standard provides criteria for the selection, qualification and training of personnel for stationary nuclear power plants. Qualifications, responsibilities, and training of personnel in operating and support organizations appropriate for the safe and efficient operation of nuclear power plants are addressed

  5. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    For non-reactor nuclear facilities, the U.S. Department of Energy (DOE) does not require that nuclear criticality safety engineers demonstrate qualification for their job. It is likely, however, that more formalism will be required in the future. Current DOE requirements for those positions which do have to demonstrate qualification indicate that qualification should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis is incompletely developed in some areas

  6. Development of an Integrated Education/Training based Nuclear Outreach Model

    International Nuclear Information System (INIS)

    Han, Kyongwon; Nam, Youngmi; Hwang, Ina; Lee, Jisuk; Ko, Hansuk; Lee, Taejoon

    2013-01-01

    The Korean nuclear community also recognizes the importance of outreach from its experience with rad waste and nuclear power programs. Accordingly, nationwide programs dealing with public information, support for local community development, and HRD are implemented continuously involving a number of organizations concerned. The Nuclear Training and Education Center (NTC) of the Korea Atomic Energy Research Institute (KAERI), with its unique function and capability as a national research organization, has needs for the enhancement of public acceptance for KAERI programs, a better contribution to the national effort, and addressing the emerging needs for international education/training on nuclear outreach. This paper presents an integrated education/training based nuclear outreach model with a set of reference program, which is developed for NTC. An integrated education/training based nuclear outreach model for NTC is developed addressing the increasing needs for public acceptance on the peaceful use of nuclear energy, in terms of supporting KAERI activities, contributing to the national nuclear outreach efforts, and promoting international education and training on nuclear outreach. The model, harmonized with the national nuclear outreach system, consists of objectives, target audiences, a set of reference program supported by infrastructure and networking, and an evaluation system. The program is further specified into sub-programs with detailed design for the respective audiences. The developed model with a reference program is characterized by its integrity in terms of encompassing the whole outreach process cycle, and setting up of a target audience based total program structure with existing and new sub-programs. Also, it intends to be sustainable by addressing future generations' needs as well as innovative in the program delivery. The model will be continuously upgraded and applied addressing respective needs of the audiences

  7. Development of an Integrated Education/Training based Nuclear Outreach Model

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyongwon; Nam, Youngmi; Hwang, Ina; Lee, Jisuk; Ko, Hansuk; Lee, Taejoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The Korean nuclear community also recognizes the importance of outreach from its experience with rad waste and nuclear power programs. Accordingly, nationwide programs dealing with public information, support for local community development, and HRD are implemented continuously involving a number of organizations concerned. The Nuclear Training and Education Center (NTC) of the Korea Atomic Energy Research Institute (KAERI), with its unique function and capability as a national research organization, has needs for the enhancement of public acceptance for KAERI programs, a better contribution to the national effort, and addressing the emerging needs for international education/training on nuclear outreach. This paper presents an integrated education/training based nuclear outreach model with a set of reference program, which is developed for NTC. An integrated education/training based nuclear outreach model for NTC is developed addressing the increasing needs for public acceptance on the peaceful use of nuclear energy, in terms of supporting KAERI activities, contributing to the national nuclear outreach efforts, and promoting international education and training on nuclear outreach. The model, harmonized with the national nuclear outreach system, consists of objectives, target audiences, a set of reference program supported by infrastructure and networking, and an evaluation system. The program is further specified into sub-programs with detailed design for the respective audiences. The developed model with a reference program is characterized by its integrity in terms of encompassing the whole outreach process cycle, and setting up of a target audience based total program structure with existing and new sub-programs. Also, it intends to be sustainable by addressing future generations' needs as well as innovative in the program delivery. The model will be continuously upgraded and applied addressing respective needs of the audiences.

  8. Experience with performance based training of nuclear criticality safety engineers

    International Nuclear Information System (INIS)

    Taylor, R.G.

    1993-01-01

    Historically, new entrants to the practice of nuclear criticality safety have learned their job primarily by on-the-job training (OJT) often by association with an experienced nuclear criticality safety engineer who probably also learned their job by OJT. Typically, the new entrant learned what he/she needed to know to solve a particular problem and accumulated experience as more problems were solved. It is likely that more formalism will be required in the future. Current US Department of Energy requirements for those positions which have to demonstrate qualification indicate that it should be achieved by using a systematic approach such as performance based training (PBT). Assuming that PBT would be an acceptable mechanism for nuclear criticality safety engineer training in a more formal environment, a site-specific analysis of the nuclear criticality safety engineer job was performed. Based on this analysis, classes are being developed and delivered to a target audience of newer nuclear criticality safety engineers. Because current interest is in developing training for selected aspects of the nuclear criticality safety engineer job, the analysis i's incompletely developed in some areas. Details of this analysis are provided in this report

  9. Improvement of quality with Nuclear Power Training Center (NTC) operator training

    International Nuclear Information System (INIS)

    Matsumoto, Y.

    2005-01-01

    Nuclear Power Training Center (NTC) was established in 1972 for PWR operator training. As the result of introduction of quality assurance management into NTC operator training, it became possible to confirm each step of systematic approach to training (SAT) process and then feedback process became clearer. Simulation models were modified based on domestic or overseas accidents cases and so training was improved using simulators closer to actual plants. Also a new multipurpose simulator with modified reactor coolant system (RCS) visual display device (RVD) and parameter-event-log (PEL) device was introduced in 2003 to provide more information so as to upgrade knowledge level of operators. (T. Tanaka)

  10. Indian experience in the training of manpower for nuclear power programme

    International Nuclear Information System (INIS)

    Iyengar, P.K.; Damodaran, K.K.; Sarma, M.S.R.; Wagadarikar, V.K.

    1977-01-01

    In India manpower training for the nuclear power programme started several years before the introduction of nuclear power plants. Early efforts were concentrated on developing manpower in basic sciences related to nuclear power; for example, nuclear physics, chemistry, metallurgy of nuclear materials, aspects of chemical engineering etc. The setting up of the research centre viz. Atomic Energy Establishment Trombay, now named the Bhabha Atomic Research Centre, was an important step in this direction. A programme of design and construction of research reactors and its utilization formed the backbone of manpower development. This enabled the first batch of engineers and scientists to be trained on the design and operation in the programmes connected with research reactors and use of isotopes in industry, agriculture and medicine. The next step was to establish a Training School in the Bhabha Atomic Research Centre in which fresh graduates from the Universities could be given courses both in their own disciplines and in other inter-connected disciplines of nuclear sciences. About 200 such graduates are being trained every year since 1957. An inter-disciplinary approach with teaching by working scientists and engineers and the attachment for short periods to the research laboratories is the framework of this training programme. At present about 3000 graduates from this Training School are involved in various capacities in India's nuclear power programme. With the commissioning of the first power reactors, it became necessary to conceive of training engineers, scientists and technicians, particularly for operation and maintenance of such systems on a larger scale. For this purpose, a separate training institute at Rajasthan Atomic Power Project near Rana Pratapsagar was set up. Models, simulators and courses, particularly emphasizing the heavy water system of reactors was introduced. In addition, a number of craftsmen for servicing equipment have also been trained as

  11. Training of personnel for nuclear power in Ceske Energeticke Zavody Concern

    International Nuclear Information System (INIS)

    Hodny, J.; Krestan, J.

    1983-01-01

    The projects of training of personnel and recruitment of apprentices have to be started 10 years prior to the commissioning of a nuclear power plant. Training starts three years prior to the physical start-up. The education and training of personnel in the nuclear programme including the implementation of their social background is an equivalent component of nuclear safety. The most important aspects are presented of personnel training with regard to organization, recruitment, theoretical and practical education and training, material and technical provisions and social programme. At present personnel training and the education of specialists have reached a high standard but the problem of social care of personnel in future plants is serious and has not been solved. (M.D.)

  12. Development of cyber training system for nuclear fields

    International Nuclear Information System (INIS)

    Kim, Young Taek; Park, Jong Kyun; Lee, Eui Jin; Lee, Han Young; Choi, Nan Young

    2002-02-01

    This report describes on technical contents related cyber training system construct on KAERI Nuclear Training Center, and on using cases of cyber education in domestic and foreign countries. Also realtime training system through the internet and cyber training management system for atomic fields is developed. All users including trainee, course managers and lecturers can use new technical for create new paradigm

  13. Redox, iron, and nutritional status of children during swimming training.

    Science.gov (United States)

    Kabasakalis, Athanasios; Kalitsis, Konstantinos; Nikolaidis, Michalis G; Tsalis, George; Kouretas, Dimitris; Loupos, Dimitris; Mougios, Vassilis

    2009-11-01

    Effects of exercise training on important determinants of children's long-term health, such as redox and iron status, have not been adequately investigated. The aim of the present study was to examine changes in markers of the redox, iron and nutritional status of boy and girl swimmers during a prolonged period of training. 11 boys and 13 girls, aged 10-11 years, were members of a swimming club. They were assessed at the beginning of the training season, at 13 weeks and at 23 weeks through blood sampling and recording of the diet. Reduced glutathione increased at 13 and 23 weeks, whereas oxidised glutathione decreased at 13 weeks, resulting in an increase of the reduced/oxidised glutathione ratio at 13 and 23 weeks. Total antioxidant capacity, catalase, thiobarbituric acid-reactive substances, hemoglobin, transferrin saturation and ferritin did not change significantly. Carbohydrate intake was below 50% of energy and fat intake was above 40% of energy. Intakes of saturated fatty acids and cholesterol were excessive. Iron intake was adequate but intakes of folate, vitamin E, calcium and magnesium did not meet the recommended daily allowances. No significant differences were found between sexes in any of the parameters measured. In conclusion, child swimmers improved the redox status of glutathione during training, although the intake of antioxidant nutrients did not change. The iron status was not impaired by training. Suboptimal intake of several nutrients suggests the need for nutritional monitoring and education of children athletes.

  14. Nuclear Criticality Safety Organization training implementation. Revision 4

    International Nuclear Information System (INIS)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-01-01

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document provides a listing of the roles and responsibilities of NCSO personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This Training Implementation document is applicable to all technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who are in a qualification program

  15. Nuclear Criticality Safety Organization training implementation. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1997-05-19

    The Nuclear Criticality Safety Organization (NCSO) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. This document provides a listing of the roles and responsibilities of NCSO personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This Training Implementation document is applicable to all technical and managerial NCSO personnel, including temporary personnel, sub-contractors and/or LMES employees on loan to the NCSO, who are in a qualification program.

  16. Status of the civilian nuclear industry in Asia

    International Nuclear Information System (INIS)

    Heim, Alexandre; Laconde, Thibault

    2011-01-01

    The main nuclear actors in Asia are China, South Korea, India and Japan. The authors indicate the share of nuclear energy in their energy mix, the number of operating reactors, the total installed power, and the number of projects. Then, for each of these four countries, and for Pakistan and Taiwan, they propose a brief history of the nuclear program and briefly present its current status. They also evoke the official reactions after the Fukushima accident. Finally, they briefly discuss some issues for the development of civilian nuclear industry in Asia: uranium supplies, nuclear waste processing, development of a national nuclear sector

  17. Common modelling approaches for training simulators for nuclear power plants

    International Nuclear Information System (INIS)

    1990-02-01

    Training simulators for nuclear power plant operating staff have gained increasing importance over the last twenty years. One of the recommendations of the 1983 IAEA Specialists' Meeting on Nuclear Power Plant Training Simulators in Helsinki was to organize a Co-ordinated Research Programme (CRP) on some aspects of training simulators. The goal statement was: ''To establish and maintain a common approach to modelling for nuclear training simulators based on defined training requirements''. Before adapting this goal statement, the participants considered many alternatives for defining the common aspects of training simulator models, such as the programming language used, the nature of the simulator computer system, the size of the simulation computers, the scope of simulation. The participants agreed that it was the training requirements that defined the need for a simulator, the scope of models and hence the type of computer complex that was required, the criteria for fidelity and verification, and was therefore the most appropriate basis for the commonality of modelling approaches. It should be noted that the Co-ordinated Research Programme was restricted, for a variety of reasons, to consider only a few aspects of training simulators. This report reflects these limitations, and covers only the topics considered within the scope of the programme. The information in this document is intended as an aid for operating organizations to identify possible modelling approaches for training simulators for nuclear power plants. 33 refs

  18. Nuclear medicine training and practice in Poland

    International Nuclear Information System (INIS)

    Teresinska, Anna; Birkenfeld, Bozena; Krolicki, Leszek; Dziuk, Miroslaw

    2014-01-01

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes regular

  19. Nuclear medicine training and practice in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Teresinska, Anna [Institute of Cardiology, Department of Nuclear Medicine, Warsaw (Poland); Birkenfeld, Bozena [Pomeranian Medical University, Department of Nuclear Medicine, Szczecin (Poland); Krolicki, Leszek [Warsaw Medical University, Department of Nuclear Medicine, Warsaw (Poland); Dziuk, Miroslaw [Military Institute of Medicine, Department of Nuclear Medicine, Warsaw (Poland)

    2014-10-15

    In Poland, nuclear medicine (NM) has been an independent specialty since 1988. At the end of 2013, the syllabus for postgraduate specialization in NM has been modified to be in close accordance with the syllabus approved by the European Union of Medical Specialists and is expected to be enforced before the end of 2014. The National Consultant in Nuclear Medicine is responsible for the specialization program in NM. The Medical Center of Postgraduate Training is the administrative body which accepts the specialization programs, supervises the training, organizes the examinations, and awards the specialist title. Specialization in NM for physicians lasts for five years. It consists of 36 months of training in a native nuclear medicine department, 12 months of internship in radiology, 3 months in cardiology, 3 months in endocrinology, 3 months in oncology, and 3 months in two other departments of NM. If a NM trainee is a specialist of a clinical discipline and/or is after a long residency in NM departments, the specialization in NM can be shortened to three years. During the training, there are obligatory courses to be attended which include the elements of anatomy imaging in USG, CT, and MR. Currently, there are about 170 active NM specialists working for 38.5 million inhabitants in Poland. For other professionals working in NM departments, it is possible to get the title of a medical physics specialist after completing 3.5 years of training (for those with a master's in physics, technical physics or biomedical engineering) or the title of a radiopharmacy specialist after completing 3 years of training (for those with a master's in chemistry or biology). At present, the specialization program in NM for nurses is being developed by the Medical Centre of Postgraduate Education. Continuing education and professional development are obligatory for all physicians and governed by the Polish Medical Chamber. The Polish Society of Nuclear Medicine (PTMN) organizes

  20. ACR-SNM Task Force on Nuclear Medicine Training: report of the task force.

    Science.gov (United States)

    Guiberteau, Milton J; Graham, Michael M

    2011-06-01

    The expansion of knowledge and technological advances in nuclear medicine and radiology require physicians to have more expertise in functional and anatomic imaging. The convergence of these two specialties into the new discipline of molecular imaging has also begun to place demands on residency training programs for additional instruction in physiology and molecular biology. These changes have unmasked weaknesses in current nuclear medicine and radiology training programs. Adding to the impetus for change are the attendant realities of the job market and uncertain employment prospects for physicians trained in nuclear medicine but not also trained in diagnostic radiology. With this background, the ACR and the Society of Nuclear Medicine convened the Task Force on Nuclear Medicine Training to define the issues and develop recommendations for resident training.

  1. The nuclear technology education consortium: an innovative approach to nuclear education and training

    International Nuclear Information System (INIS)

    Roberts, Dzh.; Klark, Eh.

    2010-01-01

    The authors report on the Nuclear Technology Education Consortium (NTEC) that includes 12 UK universities and Higher Education Institutes. It was established in 2005 to provide nuclear education and training at the Masters, Diploma, Certificate and Continuing Professional Development (CPD) levels. Module and providers of the NTEC are described (all modules are available in industry-friendly short formats). Students are allowed to select from 22 different modules, taught by experts, covering all aspects of nuclear education and training. It is the acknowledgement by each partner that they cannot deliver the range of modules individually but by cooperating. The NTEC program structure is given [ru

  2. Progress report of Cekmece Nuclear Research and Training Center for 1980

    International Nuclear Information System (INIS)

    1982-01-01

    Presented are the research works carried out in 1980 in Physics, Chemistry, Nuclear engineering, Radiobiology, Reactor operation and reactor enlargement, Health physics, Radioisotope production, Electronic, Industrial application of radioisotopes, Nuclear fuel technology, Technical services, Construction control, Publication and documentation, Training division of Cekmece Nuclear Research and Training Center

  3. Measurement implications for effective testing in nuclear training

    International Nuclear Information System (INIS)

    Zaret, R.; Pawlowski, V.

    1983-01-01

    The primary thrust of this paper is to present an overview of the measurement concepts of reliability and validity. Techniques and issues are presented which will allow Nuclear Training Personnel to have greater confidence in the accuracy of scores obtained from in-house developed tests. While it is realized that the conditions under which tests are developed in Nuclear Training environments are less than ideal, the concepts and techniques addressed can be applied under any conditions

  4. Training practices to support decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Bourassa, J.; Clark, C.R.; Kazennov, A.; Laraia, M.; Rodriguez, M.; Scott, A.; Yoder, J.

    2006-01-01

    Adequate numbers of competent personnel must be available during any phase of a nuclear facility life cycle, including the decommissioning phase. While a significant amount of attention has been focused on the technical aspects of decommissioning and many publications have been developed to address technical aspects, human resource management issues, particularly the training and qualification of decommissioning personnel, are becoming more paramount with the growing number of nuclear facilities of all types that are reaching or approaching the decommissioning phase. One of the keys to success is the training of the various personnel involved in decommissioning in order to develop the necessary knowledge and skills required for specific decommissioning tasks. The operating organisations of nuclear facilities normally possess limited expertise in decommissioning and consequently rely on a number of specialized organisations and companies that provide the services related to the decommissioning activities. Because of this there is a need to address the issue of assisting the operating organisations in the development and implementation of human resource management policies and training programmes for the facility personnel and contractor personnel involved in various phases of decommissioning activities. The lessons learned in the field of ensuring personnel competence are discussed in the paper (on the basis of information and experiences accumulated from various countries and organizations, particularly, through relevant IAEA activities). Particularly, the following aspects are addressed: transition of training from operational to decommissioning phase; knowledge management; target groups, training needs analysis, and application of a systematic approach to training (SAT); content of training for decommissioning management and professional staff, and for decommissioning workers; selection and training of instructors; training facilities and tools; and training as

  5. Development of instructors for nuclear power plant personnel training

    International Nuclear Information System (INIS)

    2004-06-01

    In 1996 the IAEA published Technical Reports Series No. 380, Nuclear Power Plant Personnel Training and its Evaluation, A Guidebook, which provides guidance with respect to development, implementation and evaluation of training programmes. The IAEA Technical Working Group on Training and Qualification of Nuclear Power Plant Personnel recommended that an additional publication be prepared to provide further details concerning the development of instructors for NPP personnel training. The quality of nuclear power plant personnel training is strongly dependent on the availability of competent instructors. Instructors must have a comprehensive practical as well as theoretical understanding of all aspects of the subjects being taught and the relationship of the subject to nuclear plant operation. Instructors should have the appropriate knowledge, skills and attitudes (KSAs) in their assigned areas of responsibility. They should thoroughly understand all aspects of the contents of the training programmes and the relationship between these contents and overall plant operation. This means that they should be technically competent and show credibility with the trainees and other plant personnel. In addition, the instructors should be familiar with the basics of adult learning and a systematic approach to training, and should have adequate instructional and assessment skills. This TECDOC provides practical guidance on various aspects of instructor selection, development and deployment, by quoting actual examples from different countries. It highlights the importance of having an appropriate training policy, especially considering the various organisational arrangements that exist in different utilities/countries. This should result in: plant performance improvement, improved human performance, meeting goals and objectives of the business (quality, safety, productivity), and improving training programs. This publication is available in two formats - as a conventional printed

  6. Education and Training, and Knowledge Networks for Capacity-Building in Nuclear Security

    International Nuclear Information System (INIS)

    Mrabit, Khammar

    2014-01-01

    Conclusions: • Capacity Building (CB) is critical for States to establish and maintain effective and sustainable nuclear security regime. • IAEA is a worldwide platform promoting international cooperation for CB in nuclear security involving more than 160 countries and over 20 Organizations and Initiatives. • IAEA Division of Nuclear Security is ready to continue supporting States in developing their CB through: – Comprehensive Training Programme: more than 80 training events annually – International Nuclear Security Training and Support Centre Network (NSSC) – Comprehensive Education Programme – International Nuclear Security Network (INSEN)

  7. Neptuno-nuclear European platform of training and university organizations project

    International Nuclear Information System (INIS)

    Comsa, Olivia; Meglea, Claudia; Banutoiu, Marina; Paraschiva, M. V.; Meglea, S.

    2003-01-01

    The project focuses on a harmonised approach to education and training in nuclear engineering in Europe and its implementation, including better integration of national resources and capabilities. The expected result is an operational network for training and life-long learning schemes as well as for academic education at the master, doctoral and post doctoral degree, underpinning: - sustainability of European's excellence in nuclear technology; - harmonised approaches to safety and best practices, both operational and regulatory at European level in Member States and Accession Countries; - preservation of competence and expertise for the continued safe use of nuclear energy and other uses of irradiations in industry and medicine; - harmonised approach for training and education in nuclear engineering. In the network: - we implement the roadmap for nuclear education in Europe as developed and demonstrated in the ongoing Euratom FP5 project ENEM; - we warrant the end-user relevance of the education at all levels by recruiting (part-time) professors out of industry and by providing (re-)training of nuclear industry personnel; - we teach advanced courses preferably at selected centres of excellence; - bridging leading edge research and new knowledge generation with teaching and education; -creating nuclei of excellence for doctoral schools in nuclear engineering and sciences; - we facilitate transnational access to research infrastructure. The final aim of the NEPTUNO initiative is to guarantee sufficient people, means and knowledge (resources) to make possible the safe and efficient applications of the nuclear technology to the civil and industry in the medium and long term. This will be accomplished by the design, development and testing of a system able to achieve the sustainable integration of education and training in nuclear engineering and safety in Europe. Thus, by responding to the EC objective for call for proposals, a joint approach to be widely applied in

  8. Transmutation of radioactive nuclear waste – present status and ...

    Indian Academy of Sciences (India)

    Transmutation of long-lived actinides and fission products becomes an important issue of the overall nuclear fuel cycle assessment, both for existing and future reactor systems. Reliable nuclear data are required for analysis of associated neutronics. The present paper gives a review of the status of nuclear data analysis ...

  9. ENEN's approaches and initiatives for nuclear education and training

    International Nuclear Information System (INIS)

    Safieh, Joseph; De Regge, Peter; Kusumi, Ryoko

    2011-01-01

    The European Nuclear Education Network (ENEN), established in 2003 through the EU Fifth Framework Programme (FP) project, was given a more permanent character by the foundation of the ENEN Association, a legal nonprofit-making body pursuing an instructive and scientific aim. Its main objective is the preservation and further development of expertise in the nuclear fields by higher education and training. This objective is realized through the cooperation between EU universities involved in education and research in nuclear disciplines, nuclear research centers and the nuclear industry. As of May 2009, the ENEN has 47 members in 17 EU countries. Since 2007 the ENEN Association has concluded a Memorandum of Understanding (MoU) with partners beyond Europe for further cooperation, such as South Africa, Russian Federation and Japan. The ENEN has good collaboration with national networks and international organizations, like Belgian Nuclear Education Network (BNEN) and the International Atomic Energy Agency (IAEA). The ENEN has provided support to its Members for the organization of and participation to selected E and T courses in nuclear fields. Based on the mutual recognition of those courses, the ENEN developed a reference curriculum in nuclear engineering, consisting of a core package of courses and optional substitute courses in nuclear disciplines, to be realized as the European Master of Science in Nuclear Engineering (EMSNE). From the experience gained through the EMSNE, a European Master of Science in Nuclear Disciplines will be delivered in the near future, extending ENEN's certification to other disciplines such as radiation protection and waste management and disposal. The ENEN-II Coordination Action consolidated and expanded the achievements of the ENEN and the NEPTUNO projects attained by the ENEN in respectively the 5th and 6th Framework Programmes. The objective of the ENEN-II project was to develop the ENEN Association in a sustainable way in the areas

  10. Description of training activities and re-training system for nuclear professionals at the Paks Nuclear Power Plant, Hungary

    International Nuclear Information System (INIS)

    Jambrich, I.; Trampus, P.

    1993-01-01

    The nuclear power units of Paks, Hungary, have always been operated by Hungarian personnel, from the very beginning. The operator staff of unit 1 acquired its knowledge primarily outside of the country, but since 1983 the overall training process has been run entirely in Hungary, in Paks. This report gives details of present system of training programme in Hungary. The system of training for professionals builds up in vertically linked modules and is job oriented. It begins with theoretical training, followed by programmed on-the-job training which must successfully be finished before a release onto in-company or authority licensing exams for individual job performance

  11. Experiences in the use of systematic approach to training (SAT) for nuclear power plant personnel training. Working material. Final draft

    International Nuclear Information System (INIS)

    1997-07-01

    This document complements two previous IAEA documents: the Guidebook on Nuclear Power Plant Personnel Training and its Evaluation (IAEA-TRS 380) and the IAEA World Survey of Nuclear Power Plant Personnel Training. It provides a detailed overview and analysis of the experience gained world-wide on the introduction and use of SAT, including the reasons why SAT was introduced and important lessons learned. The Technical Document will be especially useful for nuclear power plant management and supervisors, all those responsible for the training of nuclear power plant personnel, and those in regulatory bodies whose duties relate to nuclear power plant personnel training and qualification. 41 refs, figs, tabs

  12. Experiences in the use of systematic approach to training (SAT) for nuclear power plant personnel training. Working material. Final draft

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This document complements two previous IAEA documents: the Guidebook on Nuclear Power Plant Personnel Training and its Evaluation (IAEA-TRS 380) and the IAEA World Survey of Nuclear Power Plant Personnel Training. It provides a detailed overview and analysis of the experience gained world-wide on the introduction and use of SAT, including the reasons why SAT was introduced and important lessons learned. The Technical Document will be especially useful for nuclear power plant management and supervisors, all those responsible for the training of nuclear power plant personnel, and those in regulatory bodies whose duties relate to nuclear power plant personnel training and qualification. 41 refs, figs, tabs.

  13. Training of nuclear power plant personnel in Canada

    International Nuclear Information System (INIS)

    Tennant, D.

    1993-01-01

    All of the utilities, Ontario Hydro, Hydro Quebec and New Brunswick Power, operating Nuclear Power Plants in Canada have Training Centres which provide training for all of their plant personnel whose job activities could affect plant and personnel safety. This report points out the methods used for training, which generally conform to that described by the IAEA as a Systematic Approach to Training (SAT)

  14. The method research of the simulator training and examination of the nuclear electricity staff

    International Nuclear Information System (INIS)

    Huang Fangzhi; Zhang Yuanfang

    1994-01-01

    The simulator training and examination of nuclear power plant operator are of an important guarantee for the nuclear power plant operation safety. The authors introduce various training courses which have been held in the Nuclear Power Plant Simulation Training Center of Tsinghua University since 1988, and analyze the different requirements and features for different classes such as operator candidate training course, operator retraining course and nuclear and electricity staff course. The lesson arrangement, examination method and mark standard are presented, which is carried out in the Nuclear Power Plant Simulation Training Center of Tsinghua University

  15. Current status of nuclear power

    International Nuclear Information System (INIS)

    Behnke, W.B.

    1984-01-01

    The decision to devote the 1984 conference to nuclear power is timely and appropriate. Illinois has a long, and distinguished history in the development of civilian nuclear power. The concept was born at the University of Chicago, developed at Argonne National Laboratory and demonstrated on the Commonwealth Edison system at our pioneer Dresden Nuclear Station. Today, Illinois ranks number one in the nation in nuclear generation. With over a quarter century of commercial operating experience, nuclear power has proven its worth and become a significant and growing component of electric power supply domestically and throughout the world. Despite its initial acceptance, however, the nuclear power industry in the U.S. is now in the midst of a difficult period of readjustment stemming largely from the economic and regulatory problems of the past decade. As a result, the costs of plants under construction have increased dramatically, causing serious financial difficulties for several projects and their owners. At the same time, the U.S. is facing hard choices concerning its future energy supplies. Conferences such as this have an important role in clarifying the issues and helping to find solutions to today's pressing energy problems. This paper summarizes the status of nuclear power both here and abroad, discussing the implications of current events in the context of national energy policy and economic development here in Illinois

  16. Nuclear instrument maintenance and technical training in Nuclear Energy Unit

    International Nuclear Information System (INIS)

    Mohamad Nasir Abdul Wahid

    1987-01-01

    Instrument maintenance service is a necessity in a Nuclear Research Institute, such as the Nuclear Energy Unit (NEU) to ensure the smooth running of our research activities. However, realising that maintenance back-up service for either nuclear or other scientific equipment is a major problem in developing countries such as Malaysia, NEU has set up an Instrumentation and Control Department to assist in rectifying the maintenance problem. Beside supporting in house activities in NEU, the Instrumentation and Control Department (I and C) is also geared into providing services to other organisations in Malaysia. This paper will briefly outline the activities of NEU in nuclear instrument maintenance as well as in technical training. (author)

  17. Status and Trends of Nuclear Power World-wide

    International Nuclear Information System (INIS)

    Gueorguiev, B.; Spiegelberg-Planer, R.

    1996-01-01

    The reliable and adequate supply of energy, especially electricity, is necessary not only for economic development but to enhance the quality of life. Nuclear power is a proven technology which already supplies about 17% of the world''s electricity generation. In 1995, seven countries produce more than 40% of their electricity from nuclear power plants: Lithuanian, France, Belgium, Sweden, Bulgaria, Slovak and Hungary. It is quite clear that many countries are heavily reliant on nuclear power and are well beyond the point where nuclear power could be replaced by some other source, so, nuclear power remains one of the few technologically proven, economically promising and environmentally benign energy sources. An important factor in the continued development of nuclear power is the extent to which nuclear generated electricity remains economically competitive. Factors such as plant availability, standardisation of systems, components and equipment, as well as the cost of equipment to meet safety and environmental regulations play also an important role in determining the relative competitiveness of nuclear power plants. Many operating organizations have already impressive results in the reduction of plant unavailability. The number of nuclear power plants currently operating with annual availability factor exceeding 85% is increasing. Good performance of some operators should establish performance targets for operators everywhere. The International Atomic Energy Agency (IAEA) has the only international and almost complete information system, the Power Reactor Information System (PRIS) with nuclear power plant status and performance data. This paper presents the current status of nuclear power plants, according to information contained in the IAEA. It discusses the plant performance indicators available in PRIS and the improvement trend in the performance of nuclear power plants based on these indicators. It also presents the future trends of nuclear power focusing

  18. Nuclear power, nuclear fuel cycle and waste management: Status and trends, 1993

    International Nuclear Information System (INIS)

    1993-09-01

    This report was jointly prepared by the Division of Nuclear Power and the Division of Nuclear Fuel Cycle and Waste Management as part of an annual overview of both global nuclear industry activities and related IAEA programmes. This year's report focuses on activities during 1992 and the status at the end of that year. The trends in the industry are projected to 2010. Special events and highlights of IAEA activities over the past year are also presented. Refs, figs and tabs

  19. Virginia power nuclear power station engineer training program

    International Nuclear Information System (INIS)

    Williams, T.M.; Haberstroh-Timpano, S.

    1987-01-01

    In response to the Institute of Nuclear Power Operations (INPO) accreditation requirements for technical staff and manager, Virginia Power developed the Nuclear Power Station Engineer Training Programs (NPSETP). The NPSETP is directed toward enhancing the specific knowledge and skills of company engineers, especially newly hired engineers. The specific goals of the program are to promote safe and reliable plant operation by providing engineers and appropriate engineering technicians with (1) station-specific basic skills; (2) station-specific specialized skills in the areas of surveillance and test, plant engineering, nuclear safety, and in-service inspection. The training is designed to develop, maintain, and document through demonstration the required knowledge and skills of the engineers in the identified groups at North Anna and Surry Power Stations. The program responds to American National Standards Institute, INPO, and US Nuclear Regulatory Commission standards

  20. The role of staff training in the safety of nuclear facilities

    International Nuclear Information System (INIS)

    Koechlin, J.C.; Tanguy, P.

    1980-01-01

    Although nuclear energy largely involves automatic protection systems enabling the effects of human error to be mitigated, the human factor still remains of extreme importance in nuclear risk analysis. Hence, the attainment of the high safety standards sought after for nuclear energy must of necessity entail staff training programmes which take into account the concern for nuclear safety. It is incumbent upon constructors and operators to evolve a training programme suited to each job, and the safety authorities are responsible for assessing whether the programme is satisfactory from the standpoint of safety and, where necessary, for issuing the relevant certificates or permits. The paper makes some comments on the cost of human error and the profitability of investment in training, on the importance of practical training and of the role of simulators, and on the need for operators to note and analyse all operational abnormalities, which are so often an advance warning of accidents. The training of special safety teams is examined, with consideration of three aspects: safety assessment, inspection, and action to be taken in the event of accident. Finally, some information is given on the human reliability studies under way and their implications for nuclear safety and training, with emphasis on the valuable assistance rendered in this matter by international organizations. (author)

  1. Nuclear education in Russia : Status, peculiarities, perspectives and international cooperation

    NARCIS (Netherlands)

    Kryuchkov, Eduard F.

    2008-01-01

    The paper is devoted to analysis of Russian nuclear education system: its current status, specific features, difficulties and prospects. Russian higher education system in nuclear engineering has been created simultaneously with development of nuclear industry, and the system completely satisfied

  2. Nuclear renaissance in the reactor training of Areva

    Energy Technology Data Exchange (ETDEWEB)

    De Braquilanges, Bertrand [Reactor Training Center/France Manager, La Tour Areva - 1, place Jean Millier - 92084 Paris - La Defense (France); Napior, Amy [Reactor Training Center/USA Manager, 1300 Old Graves Mill Road - Lynchburg VA, 2450 (United States); Schoenfelder, Christian [Reactor Training Center/Germany Manager, Kaiserleistrasse 29 - 63067 Offenbach (Germany)

    2010-07-01

    Because of the perspectives of new builds, a significant increase in the number of design, construction and management personnel working in AREVA, their clients and sub-contractors has been estimated for the next future. In order to cope with the challenge to integrate newly hired people quickly and effectively into the AREVA workforce, a project - 'Training Task Force (TTF)' - was launched in 2008. The objective was to develop introductory and advanced courses and related tools harmonized between AREVA Training Centers in France, Germany and USA. First, a Global Plants Introductory Session (GPIS) was developed for newly hired employees. GPIS is a two weeks training course introducing in a modular way AREVA and specifically the activities and the reactors technical basics. As an example, design and operation of a nuclear power plant is illustrated on EPRTM. Since January 2009, these GPIS are held regularly in France, Germany and the US with a mixing of employees from these 3 regions. Next, advanced courses for more experienced employees were developed: - Advanced EPR{sup TM}, giving a detailed presentation of the EPR{sup TM} reactor design; - Codes and Standards; - Technical Nuclear Safety. Finally, feasibility studies on a Training Material Management (TMM) system, able to manage the training documentation, and on a worldwide training administration tool, were performed. The TTF project was completed mid of 2009; it transferred their recurrent activities to a new AREVA training department. This unit now consists of the French, German and US Reactors Training Centers. In particular, all courses developed by the TTF are now implemented worldwide with an opening to external trainees. The current worldwide course catalogue includes training courses for operation and maintenance personnel as well as for managers, engineers and non technical personnel of nuclear operators, suppliers, safety authorities and expert organizations. Training delivery is supported

  3. Present status and needs of human resource development in nuclear field in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young-Myung; Lee, Eui-Jin [Nuclear Training Center, Korea Atomic Energy Research Institute, Taejon (Korea)

    2000-12-01

    The Nuclear Training Center (NTC) of KAERI (Korea Atomic Energy Research Institute) began training technical personnel in the field of radioisotope utilization and radiation protection during the 1960's. During the first stage of the nation's nuclear power project in the 1970's, the main effort of the Center focused on training those in nuclear power and nuclear engineering. During a stage of increased technical self-reliance in the 1980's, the Center extended its training role to implement more specific training courses on nuclear power and safety fields. Since 1983, the Center has been empowered at the request of government to provide retraining courses for nuclear-related license holders and qualified engineers. The Center has offered IAEA regional training course annually for Asia and Pacific region member states since 1988. Since 1967, the total number of trainees is up to 27,777 as of the end of 1998. KEPCO (Korea Electric Power Corporation) started Nuclear Power Education Center (NPEC) in 1990. The outlines of KEPCO's in-house training programs are presented in the report. The reactor operators, and the persons engaged in nuclear fuel materials, radioisotope or radiation generating devices need particular licenses in accordance with Korean Atomic Energy Laws and Regulation. NTC/KAERI and NPEC/KEPCO should report annual retraining programs for licensed personnel to Ministry Of Science and Technology (MOST) every year. The outlines of projects, which are directly related to human resources development in nuclear field in Korea, are described in the paper. The International Atomic Energy Agency (IAEA) has made efforts to provide training programs for technical personnel of developing countries for the peaceful uses of nuclear energy. Korea has also received lots of assistance for her manpower development from the Agency. Korea is now on the verge of transforming herself from a technology recipient country in some practical and

  4. Present status and needs of human resource development in nuclear field in Korea

    International Nuclear Information System (INIS)

    Choi, Young-Myung; Lee, Eui-Jin

    2000-01-01

    The Nuclear Training Center (NTC) of KAERI (Korea Atomic Energy Research Institute) began training technical personnel in the field of radioisotope utilization and radiation protection during the 1960's. During the first stage of the nation's nuclear power project in the 1970's, the main effort of the Center focused on training those in nuclear power and nuclear engineering. During a stage of increased technical self-reliance in the 1980's, the Center extended its training role to implement more specific training courses on nuclear power and safety fields. Since 1983, the Center has been empowered at the request of government to provide retraining courses for nuclear-related license holders and qualified engineers. The Center has offered IAEA regional training course annually for Asia and Pacific region member states since 1988. Since 1967, the total number of trainees is up to 27,777 as of the end of 1998. KEPCO (Korea Electric Power Corporation) started Nuclear Power Education Center (NPEC) in 1990. The outlines of KEPCO's in-house training programs are presented in the report. The reactor operators, and the persons engaged in nuclear fuel materials, radioisotope or radiation generating devices need particular licenses in accordance with Korean Atomic Energy Laws and Regulation. NTC/KAERI and NPEC/KEPCO should report annual retraining programs for licensed personnel to Ministry Of Science and Technology (MOST) every year. The outlines of projects, which are directly related to human resources development in nuclear field in Korea, are described in the paper. The International Atomic Energy Agency (IAEA) has made efforts to provide training programs for technical personnel of developing countries for the peaceful uses of nuclear energy. Korea has also received lots of assistance for her manpower development from the Agency. Korea is now on the verge of transforming herself from a technology recipient country in some practical and fundamental fields. The

  5. A report on disaster prevention trainings of nuclear energy, in fiscal year 2000

    International Nuclear Information System (INIS)

    Nomura, Tamotsu; Katagiri, Hiromi; Akiyama, Takashi; Kikuchi, Masayuki

    2001-05-01

    Trainings on nuclear disaster prevention are often planned and practiced since early times at the nuclear energy relating organizations on many courses. A training carried out in fiscal year 2000 by the Emergent Assistance and Training Center in the Japan Nuclear Cycle Development Institute is decided to a portion on disaster prevention measure at a viewpoint of 'Crisis Management' which is essential element in present disaster prevention measure to fall short at present. In concrete, a crisis management training for nuclear disaster prevention (senior and business courses), an emergent publicity response training, and a disaster prevention training planning training were designed and decided. These trainings were established according to experiences accumulated by inter-company crisis management learning, and were constructed by containing items relating to respective special knowledge, conditions on chemical plants and disaster prevention measure system in U.S.A. and Europe, and so on. Here was described on design and practice of training plan, and practice of the trainings. (G.K)

  6. Present status of nuclear containments in Korea

    International Nuclear Information System (INIS)

    Park, Jihong; Hong, Jaekeun; Lee, Byunghoon; Son, Youngho

    2007-01-01

    Since the first nuclear power plant in Korea, Kori unit no.1, was started in commercial service in 1978, 20 units including Kori unit no.1 have been operated and maintained until now in Korea. Recently several units were started to be constructed and also, additionally more than 4 units were planned to be constructed in the near future. The importance of nuclear containments has been always one of the hottest issues for the safety and protection of nuclear power plants until now. At the beginning of nuclear power plants construction in Korea, several typed nuclear containment systems were adopted. For those reasons, various codes, standards, and inspection technologies are applied to nuclear containment systems differently. In this study, the status of inservice inspection performed for the safety and maintenance of nuclear containments in Korea was researched. Overall nuclear containment systems and inspections performed up to recently in Korea including trends, inspection items, periods, and regulations were described briefly. (author)

  7. Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within First Phase

    International Nuclear Information System (INIS)

    Nguyen Xuan Hai; Nguyen Nhi Dien; Pham Dinh Khang; Pham Ngoc Tuan; Tuong Thi Thu Huong

    2016-01-01

    This report presents results of a research project “Improving practical training ability at Nuclear Research Institute oriented to nuclear human resource development within first phase”. In the frameworks of the project, a guiding document on 27 Ortec’s experiments was translated into Vietnamese. Several equipment are used in the experiments such as neutron howitzer, gamma counter, multi-channel analyzer and alpha-gamma coincidence spectroscopy were designed and fabricated. These products contributed to improving the ability of research and training of Training and Education Center, Nuclear Research Institute (NRI). (author)

  8. The Utilization of Dalat nuclear research reactor for education and training purposes

    International Nuclear Information System (INIS)

    Luong, Ba Vien; Nguyen, Nhi Dien; Le, Vinh Vinh; Nguyen, Xuan Hai

    2017-01-01

    The Dalat Nuclear Research Reactor (DNRR) with the nominal power of 500 kWt is today the unique one in Vietnam. It was designed for the purposes of radioisotope production, neutron activation analysis, basic and applied researches, and nuclear education and training. With the rising demand in development of human resources for utilization of atomic energy in the country, the DNRR has been playing an important role in the nuclear education and training for students from universities and professionals who are interested in reactor engineering. At present, the Dalat Nuclear Research Institute (DNRI) offers two types of training course utilizing the research reactor: an one-week practical training course is applied for undergraduate students and a two-week training course on reactor engineering is applied for the professionals. This paper presents the reactor facility and experiments performed at the DNRR for education and training purposes. In addition, the co-operation between the DNRI with national and international educational organizations for nuclear human resource development for national and regional demands is also mentioned in the paper. (author)

  9. Training and research on the nuclear reactor VR-1

    International Nuclear Information System (INIS)

    Matejka, K.

    1998-01-01

    The VR-1 training reactor is a light water reactor of the pool type using enriched uranium as the fuel. The moderator is demineralized light water, which also serves as the neutron reflector, biological shielding, and coolant. Heat evolved during the fission process is removed by natural convection. The reactor is used in the education of students in the field of reactor and neutron physics, dosimetry, nuclear safety, and instrumentation and control systems for nuclear facilities. Although primarily intended for students in various branches of technology (power engineering, nuclear engineering, physical engineering), this specialized facility is also used by students of faculties educating future natural scientists and teachers. Typical tasks trained at the VR-1 reactor include: measurement of delayed neutrons; examination of the effect of various materials on the reactivity of the reactor; measurement of the neutron flux density by various procedures; measurement of reactivity by various procedures; calibration of reactor control rods by various procedures; approaching the critical state; investigation of nuclear reactor dynamics; start-up, control and operation of a nuclear reactor; and investigation of the effect of a simulated nucleate boil on reactivity. In addition to the education of university-level students, training courses are also organized for specialists in the Czech nuclear programme

  10. Crew resource management training adapted to nuclear power plant operators for enhancing safety attitude

    International Nuclear Information System (INIS)

    Ishibashi, Akira; Kitamura, Masaharu; Takahashi, Makoto

    2015-01-01

    A conventional training program for nuclear power plant operators mainly focuses on the improvement of knowledge and skills of individual operators. Although it has certainly contributed to safety operation of nuclear power plants, some recent incidents have indicated the necessity of an additional training program aiming at the improvement of team performance. In the aviation domain, crew resource management (CRM) training has demonstrated the effectiveness in resolving team management issues of flight crews, aircraft maintenance crews, and so on. In the present research, we attempt to introduce the CRM concept into operator training in nuclear power plant for the training of conceptual skill (that is, non-technical skill). In this paper an adapted CRM training for nuclear power plant operators is proposed. The proposed training method has been practically utilized in the training course of the managers of nuclear power plants. (author)

  11. Development of training system to prevent accidents during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, Kwanseong; Moon, Jeikwon; Choi, Byungseon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, Geunho; Seo, Jaeseok

    2014-01-01

    Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities

  12. Development of training system to prevent accidents during decommissioning of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwanseong; Moon, Jeikwon; Choi, Byungseon; Hyun, Dongjun; Lee, Jonghwan; Kim, Ikjune; Kim, Geunho; Seo, Jaeseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities.

  13. Nuclear Education & Training — Showcasing the Best Practices of the United Kingdom and France

    International Nuclear Information System (INIS)

    Dato Syed Ahmad Idid, S.N. K. A.-I.

    2015-01-01

    Skilled, competent and sufficient human resources is fundamental for the safe and successful implementation and expansion of a nuclear power programme (NPP). As nuclear education and training (E&T) stakeholders deliberate and discuss to identify suitable syllabus and courses to offer for education and training to support NPP, it is critical that the nuclear fuel cycle as well as the nuclear power value-chain is taken into consideration in the selection and introduction of relevant courses by Universities and Institutions to nurture and educate skilled manpower for the nuclear power industry. This paper strives to share with the education and training stakeholders, that the task of educating and training students is not solely to prepare them to work in a nuclear power plant, but importantly also to train human resources to support other organizations that require skilled and competent personnel in nuclear related field including Government agencies and Ministries, Business and Industry, Financial sector, International agencies and media agencies, amongst others. Additionally this paper aims to dovetail that a critical mass of skilled manpower along the entire value-chain or scope of nuclear power sector covering planning, construction, manufacturing, commissioning, operation and maintenance and decommissioning must be trained to implement the related tasks required to support NPP competently. Thus, it is within this context, that this paper will outline best practices in nuclear education and training offered by the United Kingdom and France which trains students, professionals, technicians as well as craftsmen not only for employment in a nuclear power plant but also for supporting the nuclear policy formulation in Government Agencies and for supporting nuclear power industry sectors including engineering, construction, manufacturing and services. This paper will offer recommendations for enhancing cooperation in nuclear education and training aimed at building

  14. Monitoring training status with HR measures: do all roads lead to Rome?

    Directory of Open Access Journals (Sweden)

    Martin eBuchheit

    2014-02-01

    Full Text Available Monitoring an athlete's physiological status in response to various types and volumes of (aerobic-oriented training can provide useful information for optimizing training programs. Measures of resting, exercise and recovery heart rate (HR are receiving increasing interest for monitoring fatigue, fitness and endurance performance responses, which has direct implications for adjusting training load 1 daily during specific training blocks and 2 throughout the competitive season. These measures are still not widely implemented to monitor athletes’ responses to training load, probably because of apparent contradictory findings in the literature. In this review I contend that most of the contradictory findings are related to methodological inconsistencies and/or misinterpretation of the data rather than to limitations of heart rate measures to accurately inform on training status. I also provide evidence that measures derived from 5-min (almost daily recordings of resting (indices capturing beat-to-beat changes in HR, reflecting parasympathetic activity and submaximal exercise (30- to 60-s average HR are likely the most useful monitoring tools. For appropriate interpretation at the individual level, changes in a given measure should be interpreted by taking into account the error of measurement and the smallest important change of the measure, as well as the training context (training phase, load and intensity distribution. The decision to use a given measure should be based upon the level of information that is required by the athlete, the marker’s sensitivity to changes in training status and the practical constrains required for the measurements. However, measures of HR cannot inform on all aspects of wellness, fatigue and performance, so their use in combination with daily training logs, psychometric questionnaires and non-invasive, cost-effective performance tests such as a countermovement jump may offer a complete solution to monitor

  15. Training in nuclear engineering companies; La formacion en las empresas de ingenieria del ambito nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Perezagua, R. L.

    2013-03-01

    The importance of training is growing in all business areas and fields and especially in hi-tech companies like engineering firms. Nuclear projects are highly multidisciplinary and, even in the initial awarding and pre-construction phases, need to be staffed with personnel that is well-prepared and highly-qualified in areas that, in most cases, are not covered by university studies. This article examines the variables that influence the design of specific training for nuclear projects in engineering firms, along with new training technologies (e-learning) and new regulatory aspects (IS-12). (Author)

  16. Present status and perspectives of nuclear power in Latin America

    International Nuclear Information System (INIS)

    Mondino, M.A.

    1995-01-01

    The paper describes the present status of nuclear power in Latin America, giving an analysis of Argentina, Brazil, Cuba and Mexico - the countries that have committed themselves to nuclear power undertakings. The historical development of the energy sector is studied and analysed, comparing Latin America with developed countries and groups of countries. Projected data are also studied and analysed, defining the present status of nuclear power in Latin American and its future possibilities. The region's future needs are analyzed on the basis of various indicators and the most important conclusions are highlighted. (author). 10 refs, 9 figs, 21 tabs

  17. Issues of improving quality of training personnel for nuclear power facilities

    International Nuclear Information System (INIS)

    Jacko, J.

    1987-01-01

    The basic stages are characterized of the development of a standard system of personnel training for the start-up, operation and maintenance of nuclear power facilities. The experience is analyzed gained by the Branch Training Centre of the Nuclear Power Plant Research Institute. Suggestions are submitted for improving the quality of personnel training based on Czechoslovak and foreign experiences. (author). 3 refs

  18. Training of fire protection personnel in nuclear power plants

    International Nuclear Information System (INIS)

    Blaser, W.

    1980-01-01

    Training of fire protection personnel in nuclear power plants is divided up in three categories: training of fire protection commissioners which is mostly carried out externally; training of fire fighting personnel in the form of basic and repeated training usually by the fire protection commissioner; training of other employers with regard to behaviour in case of fire and during work involving a fire hazard. (orig.) [de

  19. Cultivating Safety Culture in Malaysia Nuclear Industries through Education and Training

    International Nuclear Information System (INIS)

    Ibrahim, Sabariah Kader; Choi, Kwang Sik

    2012-01-01

    Malaysian Nuclear Agency (Nuclear Malaysia) is a national R and D organisation under Ministry of Science, Technology and the Innovation Malaysia, focusing on the application and promotion of nuclear and related technologies for national development. The core business of Nuclear Malaysia is R and D, and our approach has been customer focused, and remains in line with the mainstream of national socio-economic agenda. Thus Nuclear Malaysia.s activities support the short and long- terms national developmental programme. As a result of conducting R and D we generate products and services, including marketing of products and providing technical services, consultancy and training. Hence we would be able to move forwards towards achieving self-reliance and sustainability. Training service centre has been entrusted to enhance the application of nuclear technology in various socio-economic sectors i.e. industry, medical, agricultural and the environment. Thus, skill manpower should be developed and able to participate in various activities to support national development agenda. In executing the functions, the Centre has sufficient resources in term of manpower (for coordinating and training), finance and facilities. In addition, the Centre is backed by a pool of experienced and skilled personnel from other divisions in Nuclear Malaysia and also from our associates or partners to ensure smooth implementation of training

  20. Cultivating Safety Culture in Malaysia Nuclear Industries through Education and Training

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Sabariah Kader [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Choi, Kwang Sik [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    Malaysian Nuclear Agency (Nuclear Malaysia) is a national R and D organisation under Ministry of Science, Technology and the Innovation Malaysia, focusing on the application and promotion of nuclear and related technologies for national development. The core business of Nuclear Malaysia is R and D, and our approach has been customer focused, and remains in line with the mainstream of national socio-economic agenda. Thus Nuclear Malaysia.s activities support the short and long- terms national developmental programme. As a result of conducting R and D we generate products and services, including marketing of products and providing technical services, consultancy and training. Hence we would be able to move forwards towards achieving self-reliance and sustainability. Training service centre has been entrusted to enhance the application of nuclear technology in various socio-economic sectors i.e. industry, medical, agricultural and the environment. Thus, skill manpower should be developed and able to participate in various activities to support national development agenda. In executing the functions, the Centre has sufficient resources in term of manpower (for coordinating and training), finance and facilities. In addition, the Centre is backed by a pool of experienced and skilled personnel from other divisions in Nuclear Malaysia and also from our associates or partners to ensure smooth implementation of training

  1. Pilot training of non-nuclear professionals within CORONA project

    International Nuclear Information System (INIS)

    Ilieva, K.; Manolova, M.; Belousov, S.

    2013-01-01

    The pilot training results shown that the used approach is appropriate and could be disseminate among the interested parties. • The interest from the side of the different professionals is an important indicator about the necessity to care such courses for non-nuclear professionals.The effectiveness of the training program for non-nuclear specialists will be assessed using the replies of the Course evaluation form as well as the feedback from employers, trainers and observers

  2. Cyber Learning Platform for Nuclear Education and Training

    International Nuclear Information System (INIS)

    Vojtela, Martin

    2014-01-01

    Cyber Learning Platform for Nuclear Education and Training: … support capacity building and knowledge transfer in the nuclear sector by empowering web-based development and dissemination of high-quality learning resources in a way that is cost-effective, scalable and easy to use …

  3. Professionalism in nuclear training

    International Nuclear Information System (INIS)

    Bruno, R.

    1983-01-01

    The approach of an individual in the nuclear training environment to his colleagues, trainees, and his own personal growth should be determined by his desire to be a professional. This paper discusses professionalism as an on-going process. That is, professionalism is not an entity that a person can acquire; rather it is a complicated superposition of many facets of an individual's attempt to work for solutions to problems, not problems with solutions

  4. Proceedings of the eighth symposium on training of nuclear facility personnel

    International Nuclear Information System (INIS)

    1989-04-01

    This conference brought together those persons in the nuclear industry who have a vital interest in the training and licensing of nuclear reactor and nuclear fuel processing plant operators, senior operators, and support personnel for the purpose of an exchange of ideas and information related to the various aspects of training, retraining, examination, and licensing. The document contains 64 papers; each paper was abstracted for the data

  5. Proceedings of the eighth symposium on training of nuclear facility personnel

    Energy Technology Data Exchange (ETDEWEB)

    1989-04-01

    This conference brought together those persons in the nuclear industry who have a vital interest in the training and licensing of nuclear reactor and nuclear fuel processing plant operators, senior operators, and support personnel for the purpose of an exchange of ideas and information related to the various aspects of training, retraining, examination, and licensing. The document contains 64 papers; each paper was abstracted for the data.

  6. Safer nuclear power. Strengthening training for operational safety at Paks nuclear power plant - Hungary

    International Nuclear Information System (INIS)

    2003-01-01

    For a nuclear power plant, safety must always be paramount. There can be no compromise on safety to meet production targets or to reduce costs. For any reactor, and in particular where older type reactors are in place, their operational safety can be enhanced by upgrading the training of personnel responsible for operating and maintaining the plant. The Department of Technical Co-operation is sponsoring a programme with technical support from the Nuclear Energy and Nuclear Safety Departments to help improve facilities at the PAKS plant in Hungary and establish self sufficiency in training to the highest international standards for all levels of nuclear power plant manpower. The Model Project described will have a direct impact on the improvement of operational safety and performance at PAKS NPP. It will lead to a more efficient use of resources which in turn will result in lower electricity generation costs. The impact of the project is not expected to be limited to Hungary. WWER reactors are common in Eastern Europe and provide one third to one half of the electricity supply to the region. The training programmes and facilities at PAKS offer a possibility in the future to provide training to experts from other countries operating WWER units and serve as a model to be emulated. Slovakia and the Czech Republic have already expressed interest in using the PAKS experience

  7. Study on Nuclear Facility Cyber Security Awareness and Training Programs

    International Nuclear Information System (INIS)

    Lee, Jung-Woon; Song, Jae-Gu; Lee, Cheol-Kwon

    2016-01-01

    Cyber security awareness and training, which is a part of operational security controls, is defined to be implemented later in the CSP implementation schedule. However, cyber security awareness and training is a prerequisite for the appropriate implementation of a cyber security program. When considering the current situation in which it is just started to define cyber security activities and to assign personnel who has responsibilities for performing those activities, a cyber security awareness program is necessary to enhance cyber security culture for the facility personnel to participate positively in cyber security activities. Also before the implementation of stepwise CSP, suitable education and training should be provided to both cyber security teams (CST) and facility personnel who should participate in the implementation. Since such importance and urgency of cyber security awareness and training is underestimated at present, the types, trainees, contents, and development strategies of cyber security awareness and training programs are studied to help Korean nuclear facilities to perform cyber security activities more effectively. Cyber security awareness and training programs should be developed ahead of the implementation of CSP. In this study, through the analysis of requirements in the regulatory standard RS-015, the types and trainees of overall cyber security training programs in nuclear facilities are identified. Contents suitable for a cyber security awareness program and a technical training program are derived. It is suggested to develop stepwise the program contents in accordance with the development of policies, guides, and procedures as parts of the facility cyber security program. Since any training programs are not available for the specialized cyber security training in nuclear facilities, a long-term development plan is necessary. As alternatives for the time being, several cyber security training courses for industrial control systems by

  8. Study on Nuclear Facility Cyber Security Awareness and Training Programs

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung-Woon; Song, Jae-Gu; Lee, Cheol-Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Cyber security awareness and training, which is a part of operational security controls, is defined to be implemented later in the CSP implementation schedule. However, cyber security awareness and training is a prerequisite for the appropriate implementation of a cyber security program. When considering the current situation in which it is just started to define cyber security activities and to assign personnel who has responsibilities for performing those activities, a cyber security awareness program is necessary to enhance cyber security culture for the facility personnel to participate positively in cyber security activities. Also before the implementation of stepwise CSP, suitable education and training should be provided to both cyber security teams (CST) and facility personnel who should participate in the implementation. Since such importance and urgency of cyber security awareness and training is underestimated at present, the types, trainees, contents, and development strategies of cyber security awareness and training programs are studied to help Korean nuclear facilities to perform cyber security activities more effectively. Cyber security awareness and training programs should be developed ahead of the implementation of CSP. In this study, through the analysis of requirements in the regulatory standard RS-015, the types and trainees of overall cyber security training programs in nuclear facilities are identified. Contents suitable for a cyber security awareness program and a technical training program are derived. It is suggested to develop stepwise the program contents in accordance with the development of policies, guides, and procedures as parts of the facility cyber security program. Since any training programs are not available for the specialized cyber security training in nuclear facilities, a long-term development plan is necessary. As alternatives for the time being, several cyber security training courses for industrial control systems by

  9. Enhancing Nuclear Training with 3D Visualization

    International Nuclear Information System (INIS)

    Gagnon, V.; Gagnon, B.

    2016-01-01

    Full text: While the nuclear power industry is trying to reinforce its safety and regain public support post-Fukushima, it is also faced with a very real challenge that affects its day-to-day activities: a rapidly aging workforce. Statistics show that close to 40% of the current nuclear power industry workforce will retire within the next five years. For newcomer countries, the challenge is even greater, having to develop a completely new workforce. The workforce replacement effort introduces nuclear newcomers of a new generation with different backgrounds and affinities. Major lifestyle differences between the two generations of workers result, amongst other things, in different learning habits and needs for this new breed of learners. Interactivity, high visual content and quick access to information are now necessary to achieve a high level of retention. To enhance existing training programmes or to support the establishment of new training programmes for newcomer countries, L-3 MAPPS has devised learning tools to enhance these training programmes focused on the “Practice-by-Doing” principle. L-3 MAPPS has coupled 3D computer visualization with high-fidelity simulation to bring real-time, simulation-driven animated components and systems allowing immersive and participatory, individual or classroom learning. (author

  10. Training at the Australian School of Nuclear Technology

    International Nuclear Information System (INIS)

    Culley, D.; Fredsall, J.R.; Toner, B.

    1987-01-01

    The Australian School of Nuclear Technology was founded in 1964 as a joint enterprise of the Australian Atomic Energy Commission and the University of New South Wales to support nuclear developments primarily in Australia. However, ASNT has developed into an important centre for nuclear science and technology training within the South East Asian Region with participants also attending from countries outside this Region. (author)

  11. Training at the Australian School of Nuclear Technology

    International Nuclear Information System (INIS)

    Culley, D.; Fredsall, J.R.; Toner, B.

    1987-04-01

    The Australian School of Nuclear Technology (ASNT) was founded in 1964 as a joint enterprise of the Australian Atomic Energy Commission and the University of New South Wales to support nuclear developments primarily in Australia. However, ASNT has developed into an important centre for nuclear science and technology training within the South East Asian Region with participants also attending from countries outside this Region

  12. 10 CFR 50.120 - Training and qualification of nuclear power plant personnel.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Training and qualification of nuclear power plant... Training and qualification of nuclear power plant personnel. (a) Applicability. The requirements of this... each holder of a combined license issued under part 52 of this chapter for a nuclear power plant of the...

  13. Systematic Approach to Training for System Engineers in Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jeong-keun [Korea Hydro and Nuclear Power Co., Ulsan (Korea, Republic of)

    2015-10-15

    In my paper, comprehensive preparations, tangible applications, and final establishments of training for system engineers are described using practical materials in KHNP. The purpose of this paper is to formulate SAT based training in KHNP, especially for system engineers. Hence, to achieve this goal, over one year study was performed considering voluminous materials and working experiences. Through the process, SAT based training package for system engineers was finished, in the end. In terms of training in NPPs, SAT methodology is the unwavering trend in South Korea since NPPs export to UAE. Therefore, materialization of SAT based training for system engineers from the origin of SAT to the finalization of SAT should not be overlooked. A variety of accident preventive approaches have been adopted since the first commercial NPP operation in Calder Hall, United Kingdom. Among diverse event preventive ways, training has played an important role for the improvement of NPPs reliability and safety. This is reason why nuclear industry in every country has established and maintained own training institutes and methods. Since the Three Mile Island (TMI) accident, United States Nuclear Regulatory Commission (USNRC) recommended many betterment plans to US nuclear industry for the elevation of NPPs safety. In the suggested considerations, systematic approach to training, so called SAT appeared in the world. Basically, SAT is composed of five stages, what is called ADDIE. Hence, through ADDIE process, holistic and trustworthy training could be realized in the actual NPPs operation and maintenance. For this reason, SAT is the representative training methodology in the US nuclear business.

  14. Systematic Approach to Training for System Engineers in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Kwak, Jeong-keun

    2015-01-01

    In my paper, comprehensive preparations, tangible applications, and final establishments of training for system engineers are described using practical materials in KHNP. The purpose of this paper is to formulate SAT based training in KHNP, especially for system engineers. Hence, to achieve this goal, over one year study was performed considering voluminous materials and working experiences. Through the process, SAT based training package for system engineers was finished, in the end. In terms of training in NPPs, SAT methodology is the unwavering trend in South Korea since NPPs export to UAE. Therefore, materialization of SAT based training for system engineers from the origin of SAT to the finalization of SAT should not be overlooked. A variety of accident preventive approaches have been adopted since the first commercial NPP operation in Calder Hall, United Kingdom. Among diverse event preventive ways, training has played an important role for the improvement of NPPs reliability and safety. This is reason why nuclear industry in every country has established and maintained own training institutes and methods. Since the Three Mile Island (TMI) accident, United States Nuclear Regulatory Commission (USNRC) recommended many betterment plans to US nuclear industry for the elevation of NPPs safety. In the suggested considerations, systematic approach to training, so called SAT appeared in the world. Basically, SAT is composed of five stages, what is called ADDIE. Hence, through ADDIE process, holistic and trustworthy training could be realized in the actual NPPs operation and maintenance. For this reason, SAT is the representative training methodology in the US nuclear business

  15. Course in fire protection training for nuclear power plant personnel

    International Nuclear Information System (INIS)

    Walker, K.L.; Bates, E.F.; Randall, J.D.

    1979-01-01

    Proposed Regulatory Guide 1.120, entitled ''Fire Protection Guidelines for Nuclear Power Plants,'' provides detailed requirements for the overall fire protection programs at nuclear power plant sites in the United States. An essential element in such a program in the training of plant fire brigade personnel is the use of proper firefighting techniques and equipment. The Texas A and M University Nuclear Science Center (NSC) in conjunction with the Fire Protection Training Division of the Texas Engineering Extension Service has developed a one-week course to meet this training need. The program emphasizes hands-on exercises. The course is designed for up to 18 students with all protective clothing provided. Fire instructors are certified by the State of Texas, and registered nuclear engineers and certified health physicists supervise the radiological safety exercises. The first course was conducted during the week of January 8--12, 1979

  16. The training and assessment of operations engineers at Hinkley Point 'B' nuclear power station

    International Nuclear Information System (INIS)

    Walsey, B.A.; Howard, J.D.

    1986-01-01

    The Nuclear Power Training Centre at Oldbury-on-Severn was established to provide a common training of staff at all nuclear power stations operated by the Central Electricity Generating Board, following the ''Standard Specification for the Nuclear Training of Staff at CEGB Nuclear Power Stations''. The paper deals with the following aspects of AGR Stations: The Legislation applicable to these stations. The current training requirements for Operations Staff. The development of training for operations staff at Hinkley Point 'B' including training for career progression within the Operations Department. A detailed explanation of the training package developed for Reactor Desk Drivers at Hinkley 'B'. Revision training of Operations staff to ensure that they continue to run the plant in a safe and commercially viable manner. The training of Shift Operations Engineers for their duties under the Station Emergency Plan. (author)

  17. Current Status of Yongbyon Nuclear Complex

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Yong Soo [Korea Institute of Nuclear Non-proliferation and Control, Daejeon (Korea, Republic of)

    2016-05-15

    The DPRK has developed Yongbyon Nuclear Complex in Figure 1 since 1960's. Currently it is composed of the reactor facility, fuel fabrication facility including the enrichment center, and the radiochemistry center. Even though many facilities are not modern and economic in the western standards, Yongbyon Nuclear Complex is fully equipped with the entire life cycle of the nuclear installation. The key facilities have been added step by step. For example, the DPRK's nuclear reactor fleet started with the 2 MW IRT-2000 reactor in the middle of 80's. It started with a small scale radioactive isotope separation center nearby. But nowadays the DPRK is constructing a much more larger isotope separation center in the vicinity of its enrichment center along with a potential new UF6 conversion center. The general description over Yongbyon Nuclear Complex is given in this paper. More detailed context of the current status of the center will be discussed in the main symposium purely based on the open source information study.

  18. Training the staff of the regulatory body for nuclear facilities: A competency framework

    International Nuclear Information System (INIS)

    2001-11-01

    The uncertainties about the future of nuclear power in many countries, the ageing of the existing work force, and the consequential lack of interest of new professionals to engage in the nuclear field represent developments of major current international concern. The situation is compounded by the great reduction in higher education opportunities in the field of nuclear engineering and the elimination of nuclear engineering departments and research reactors in many universities and the loss of nuclear research facilities generally. Competence of regulatory staff is one of the prerequisites for the safety of nuclear facilities in the IAEA Member States. Recruitment of competent regulatory staff is difficult in many countries. Also, replacement of retiring staff members requires active efforts from the management of regulatory bodies for establishing staff qualification and training programmes. International support is needed in this domain. In 2000, the General Conference resolution GC(44)IRES/13 on education and training in radiation protection, nuclear safety and waste management urged the secretariat to 'strengthen, within available financial resources, its current efforts in this area' Several elements required for the implementation of the above resolution are already in place. A strategy paper on training in nuclear, radiation and waste safety, including specialized training courses for specific target groups, has been developed at the IAEA. The international working group on training and qualification recommended in its March meeting in 2000 that a technical document be produced on good training practices of regulatory bodies with advanced training programmes. Such a technical document would be of considerable value to many bodies. The technical document would address how training programmes for regulatory staff have been developed and implemented and include examples of training currently available. Of particular interest to regulatory agencies that have

  19. Training the staff of the regulatory body for nuclear facilities: A competency framework

    International Nuclear Information System (INIS)

    2002-11-01

    The uncertainties about the future of nuclear power in many countries, the ageing of the existing work force, and the consequential lack of interest of new professionals to engage in the nuclear field represent developments of major current international concern. The situation is compounded by the great reduction in higher education opportunities in the field of nuclear engineering and the elimination of nuclear engineering departments and research reactors in many universities and the loss of nuclear research facilities generally. Competence of regulatory staff is one of the prerequisites for the safety of nuclear facilities in the IAEA Member States. Recruitment of competent regulatory staff is difficult in many countries. Also, replacement of retiring staff members requires active efforts from the management of regulatory bodies for establishing staff qualification and training programmes. International support is needed in this domain. In 2000, the General Conference resolution GC(44)IRES/13 on education and training in radiation protection, nuclear safety and waste management urged the secretariat to 'strengthen, within available financial resources, its current efforts in this area' Several elements required for the implementation of the above resolution are already in place. A strategy paper on training in nuclear, radiation and waste safety, including specialized training courses for specific target groups, has been developed at the IAEA. The international working group on training and qualification recommended in its March meeting in 2000 that a technical document be produced on good training practices of regulatory bodies with advanced training programmes. Such a technical document would be of considerable value to many bodies. The technical document would address how training programmes for regulatory staff have been developed and implemented and include examples of training currently available. Of particular interest to regulatory agencies that have

  20. Expert training on physical protection of nuclear materials at universities of Russia

    International Nuclear Information System (INIS)

    Pogozhin, N.S.; Bondarev, P.V.; Geraskin, N.I.; Kryuchkov, E.F.; Tolstoy, A.I.

    2002-01-01

    Full text: The expert training on physical protection of nuclear materials in Russia is carry out by the universities on the following directions: 'Physical Protection, Control and Accountability of Nuclear Materials (MPCA)' master educational program. 'Physical and technical problems of atomic engineering' master educational standard. 'Technical Physics' direction. Qualification - master of physics. Duration of training - two years. 'Physical protection of nuclear objects' specialization. 'Nuclear physics and technology' educational standard of a direction for professionally qualified expert training. 'Safety and nonproliferation of nuclear materials' specialty. Qualification - engineer-physician. Duration of training - five years. The Master educational program is intended for the expert training with fundamental knowledge. The masters are assigned to work at the establishments of the Ministry of Atomic Energy of Russia and at the state committee on nuclear supervision (Gosatomnaozor). Many graduates continue their education as post-graduate students. The program is designed for the experts having education of an engineer or a bachelor. The program concept consists in integration in a uniform educational process: profound scientific and technical knowledge; system approach to designing MPCA systems; knowledge of scientific and technical principles, means, devices; MPCA facilities and tools; legal, political and economic aspects of nuclear material management; modern computer and information technologies for MPCA systems; research work and practice of the students. The educational program for 'physical protection of nuclear objects' specialization is intended for the expert training of a practical orientation. Engineer-physicians are assigned as a rule to work at the nuclear objects and are intended for operation and servicing of the certain physical protection systems (PPS). The program concept consists in training not only fundamental aspects of an engineering

  1. Improving Insider Threat Training Awareness and Mitigation Programs at Nuclear Facilities.

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, Shannon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-06-01

    In recent years, insider threat programs have become an important aspect of nuclear security, and nuclear security training courses. However, many nuclear security insider threat programs fail to address the insider threat attack and monitoring potential that exists on information technology (IT) systems. This failure is critical because of the importance of information technology and networks in today’s world. IT systems offer an opportunity to perpetrate dangerous insider attacks, but they also present an opportunity to monitor for them and prevent them. This paper suggests a number of best practices for monitoring and preventing insider attacks on IT systems, and proposes the development of a new IT insider threat tabletop that can be used to help train nuclear security practitioners on how best to implement IT insider threat prevention best practices. The development of IT insider threat best practices and a practical tabletop exercise will allow nuclear security practitioners to improve nuclear security trainings as it integrates a critical part of insider threat prevention into the broader nuclear security system.

  2. Promoting excellence in nuclear power plant training in the United States

    International Nuclear Information System (INIS)

    Mangin, A.M.

    1983-01-01

    The Institute of Nuclear Power Operations (INPO) was formed in late 1979 by U.S. nuclear utilities to enhance the operational safety and reliability of their nuclear plants. One of INPO's major functions is to promote excellence in industry training and qualification programs. To accomplish this objective, INPO develops and uses guidelines and evaluation criteria to assist utilities in developing and implementing high quality training and education programs. The training guidelines permit utilities to develop performance-based programs which meet their specific need with minimal duplication of effort. INPO regularly evaluates each utility's training programs and practices in the plant evaluation and accreditation processes using criteria based on the training guidelines. In the accreditation process, INPO examines training programs and training organizations to determine whether they have the potential to produce individuals qualified to perform assigned tasks. During plant evaluations, INPO examines the implementation of the programs and their effectiveness in producing qualified individuals. After each accreditation review and plant evaluation, INPO recommends improvements and follows up to ensure they are made. (author)

  3. Review of training methods employed in nuclear fuel fabrication plants

    International Nuclear Information System (INIS)

    Box, W.D.; Browder, F.N.

    1975-01-01

    A search of the literature through the Nuclear Safety Information Center revealed that 86 percent of the incidents that have occurred in fuel fabrication plants can be traced directly or indirectly to insufficient operator training. In view of these findings, a review was made of the training programs now employed by the nuclear fuel fabrication industry. Most companies give the new employee approximately 20 hours of orientation courses, followed by 60 to 80 hours of on-the-job training. It was concluded that these training programs should be expanded in both scope and depth. A proposed program is outlined to offer guidance in improving the basic methods currently in use

  4. Training requirements for chemists in radiotracer development for nuclear medicine

    International Nuclear Information System (INIS)

    Finn, R.; Fowler, J.

    1988-01-01

    This panel was organized to address the current and anticipated future shortage of chemists with advanced training to fill positions in the nuclear medicine field. Although hard data and statistics are difficult to acquire, we will attempt to highlight the impact of chemistry on nuclear medicine and to describe the growth of the field which has led to an increasing need for chemists resulting in the current manpower shortage. We also will make recommendations for attracting Ph.D. chemists to careers in nuclear medicine research and possible mechanisms for postgraduate training. Solving this problem and establishing a long term committment and mechanism for advanced training is critically important to meet the current needs of the profession and to assure future growth and innovation. 3 tabs

  5. The European Nuclear Safety Training and Tutoring Institute (ENSTTI). Annex III [Example of Knowledge Management and Training for TSOs

    International Nuclear Information System (INIS)

    2018-01-01

    ENSTTI is an initiative of members of the ETSON. It was created in 2010 to put in place a high quality training mechanism to meet the training needs of experts at nuclear regulatory authorities and TSOs; to ensure the continuous development of qualified experts in this area; and to foster harmonization of technical practices in nuclear safety, nuclear security and radiation protection. This is achieved through the regular provision of vocational training and tutoring exclusively delivered by senior professionals of European TSOs that take into consideration the latest technical developments and is continuously up-dated and improved by applying a systematic approach to training.

  6. Master Training in Radiological Protection Facilities Radioactive and Nuclear

    International Nuclear Information System (INIS)

    Verdu, G.; Mayo, P.; Campayo, J. M.

    2011-01-01

    The master includes general aspects of radiation protection in nuclear facilities. also an advanced module to acquire a high level training highlights as nuclear decommissioning, shielding calculation using advanced codes, particle accelerators, international law, etc.

  7. Establishment of Oversea HRD Network and Operation of International Nuclear Education/Training Program

    International Nuclear Information System (INIS)

    Lee, E. J.; Min, B. J.; Han, K. W.

    2008-02-01

    The project deals with establishment of international network for human resources and the development of international nuclear education and training programs. The primary result is the establishment of KAERI International Nuclear R and D Academy as a new activity on cooperation for human resource development and building network. For this purpose, KAERI concluded the MOU with Vietnamese Universities and selected 3 students to provide Master and Ph. D. Courses in 2008. KAERI also held the 3rd World Nuclear University Summer Institute, in which some 150 international nuclear professionals attended for 6 weeks. Also, as part of regional networking, the Asian Network for Education in Nuclear Technology (ANENT) was promoted through development of a cyber platform and accomplishment the first IAEA e-training course. There were 3 kind of development activities for the international cooperation of human resources development. Firstly, the project provided training courses on nuclear energy development for the Egyptian Nuclear personnel under the bilateral cooperation. Secondly, the project published the English textbook and its lecture materials on introduction to nuclear engineering and fundamentals on OPR 1000 system technology. Lastly, the project developed a new KOICA training course on research reactor and radioisotope application technology to expand the KOICA sponsorship from 2008. The international nuclear education/training program had offered 15 courses to 314 people from 52 countries. In parallel, the project developed 11 kinds of lecturer materials and also developed 29 kinds of cyber lecturer materials. The operation of the International Nuclear Training and Education Center (INTEC) has contributed remarkably not only to the effective implementation of education/training activities of this project, but also to the promotion of other domestic and international activities of KAERI and other organizations

  8. Establishment of Oversea HRD Network and Operation of International Nuclear Education/Training Program

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. J.; Min, B. J.; Han, K. W. (and others)

    2008-02-15

    The project deals with establishment of international network for human resources and the development of international nuclear education and training programs. The primary result is the establishment of KAERI International Nuclear R and D Academy as a new activity on cooperation for human resource development and building network. For this purpose, KAERI concluded the MOU with Vietnamese Universities and selected 3 students to provide Master and Ph. D. Courses in 2008. KAERI also held the 3rd World Nuclear University Summer Institute, in which some 150 international nuclear professionals attended for 6 weeks. Also, as part of regional networking, the Asian Network for Education in Nuclear Technology (ANENT) was promoted through development of a cyber platform and accomplishment the first IAEA e-training course. There were 3 kind of development activities for the international cooperation of human resources development. Firstly, the project provided training courses on nuclear energy development for the Egyptian Nuclear personnel under the bilateral cooperation. Secondly, the project published the English textbook and its lecture materials on introduction to nuclear engineering and fundamentals on OPR 1000 system technology. Lastly, the project developed a new KOICA training course on research reactor and radioisotope application technology to expand the KOICA sponsorship from 2008. The international nuclear education/training program had offered 15 courses to 314 people from 52 countries. In parallel, the project developed 11 kinds of lecturer materials and also developed 29 kinds of cyber lecturer materials. The operation of the International Nuclear Training and Education Center (INTEC) has contributed remarkably not only to the effective implementation of education/training activities of this project, but also to the promotion of other domestic and international activities of KAERI and other organizations.

  9. Risk informed analysis of training effectiveness for mitigating accidents of nuclear power plants

    International Nuclear Information System (INIS)

    Lee, Chang Ju

    2012-01-01

    A critical area for deriving expected benefits from training and exercise is the measurement of 'training effectiveness'-how well the training inputs are serving the intended purpose. This aspect is often neglected by nuclear organizations, saying that measurement is difficult. However, I believe that a technique in nuclear society has developed sufficiently to measure most important aspects of training by way of human reliability analysis (HRA) used in probabilistic safety assessment (PSA) of nuclear power plants (NPPs). The consequences of errors caused by lack of training can be evaluated in terms of the overall vulnerability to human error of the facility under consideration. This study presents current situation and considerations for measures of robustness on nuclear accidents and HRA technique on the training effectiveness. In view of risk informed approach with this consideration and an example case, I'd like to identify appropriate relationship between risk measures of robustness and training effectiveness

  10. Present status of space nuclear reactor

    International Nuclear Information System (INIS)

    Kaneko, Yoshihiko

    1996-01-01

    USA and former USSR led space development, and had the experience of launching nuclear reactor satellites. In USA, the research and development of space nuclear reactor were advanced mainly by NASA, and in 1965, the nuclear reactor for power source ''SNAP-10A'' was launched and put on the orbit around the earth. Thereafter, the reactor was started up, and the verifying test at 500 We was successfully carried out. Also for developing the reactor for thermal propulsion, NERVA/ROVER project was done till 1973, and the technological basis was established. The space Exploration Initiative for sending mankind to other solar system planets than the earth is the essential point of the future projects. In former USSR, the ground experiment of the reactor for 800 We power source ''Romashka'', the development of the reactor for 10 kWe power source ''Topaz-1 and 2'', the flight of the artificial satellites, Cosmos 954 and Cosmos 1900, on which nuclear reactors were mounted, and the operation of 33 ocean-monitoring satellites ''RORSAT'' using small fast reactors were carried out. The mission of space development and the nuclear reactors as power source, the engineering of space nuclear reactors, the present status and the trend of space nuclear reactor development, and the investigation by the UN working group on the safety problem of space nuclear reactors are described. (K.I.)

  11. Indian experience in the training of manpower for a nuclear power programme

    International Nuclear Information System (INIS)

    Iyengar, P.K.; Damodaran, K.K.; Sarma, M.S.R.; Wagadarikar, V.K.

    1977-01-01

    In India manpower training for the nuclear power programme started several years before the introduction of nuclear power plants. Early efforts were concentrated on developing manpower in basic sciences related to nuclear power. The setting up of the Bhabha Atomic Research Centre was an important step in this direction. This enabled the first batch of engineers and scientists to be trained on design and operation in the programmes connected with research reactors and use of isotopes in industry, agriculture and medicine. The next step was to establish a Training School in the Centre where young university graduates could be given courses in their own and interconnected disciplines of nuclear sciences. An interdisciplinary approach with teaching by working scientists and engineers and attachment for short periods to the research laboratories is the framework of this training programme. At present about 3000 graduates from this Training School are involved in various capacities in India's nuclear power programme. With the commissioning of the first power reactors, it became necessary to train engineers, scientists and technicians for the operation and maintenance of such systems on a larger scale. For this purpose, a separate training centre at Rajasthan Atomic Power Project was set up. Models, simulators and courses with emphasis on heavy water reactors were introduced. In addition, a number of craftsmen for servicing equipment have also been trained in power station equipment maintenance. The paper describes the development of this programme in its present form. (author)

  12. Training and education in nuclear medicine at the Medical Faculty of the University of Zagreb

    International Nuclear Information System (INIS)

    Ivancevic, D.; Popovic, S.; Simonovic, I.; Vlatkovic, M.

    1986-01-01

    Training for specialization in nuclear medicine in Yugoslavia includes 12 months of training in departments of clinical medicine and 24 months of training in departments of nuclear medicine. Since 1974 many physicians have passed the specialist examination in Zagreb. A postgraduate study in nuclear medicine began at the Medical Faculty of the University of Zagreb in 1979. It includes four semesters of courses and research on a selected subject leading to the degree of Magister (Master of Science). Most of the training is conducted by the Institute of Nuclear Medicine at the University Hospital, Rebro, in Zagreb, which has the necessary teaching staff, equipment and space. Forty-four students have completed this postgraduate study. Nuclear medicine in a developing country faces several problems. Scarcity of expensive equipment and radiopharmaceuticals calls for modifications of methods, home made products and instrument maintenance. These, mostly economic, factors are given special emphasis during training. Nuclear power generation may solve some of the country's energy problems; therefore, specialists in nuclear medicine must obtain additional knowledge about the medical care and treatment of persons who might be subject to irradiation and contamination in nuclear power plants. Lower economic resources in developing countries require better trained personnel, stressing the need for organized training and education in nuclear medicine. With some support the Institute of Nuclear Medicine will be able to offer various forms of training and education in nuclear medicine for physicians, chemists, physicists, technologists and other personnel from developing countries. (author)

  13. Nuclear criticality safety: 2-day training course

    International Nuclear Information System (INIS)

    Schlesser, J.A.

    1992-11-01

    This compilation of notes is presented as a source reference for the criticality safety course. At the completion of this training course, the attendee will: (1) be able to define terms commonly used in nuclear criticality safety; (2) be able to appreciate the fundamentals of nuclear criticality safety; (3) be able to identify factors which affect nuclear criticality safety; (4) be able to identify examples of criticality controls as used at Los Alamos; (5) be able to identify examples of circumstances present during criticality accidents; (6) have participated in conducting two critical experiments

  14. Development of Reference Training Courses for the Countries Introducing Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eui-Jin; Han, Kyong-Won; Min, Byung-Joo; Nam, Young-Mi [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Human resources development is an important issue for the countries introducing their first nuclear power plant. Countries, which are considering introducing the nuclear power programs, will have to establish their infrastructure required for such programs. Since Korea has successfully achieved her self-reliance in nuclear power technology over the last 3 decades with a rapid expansion of nuclear power program, most of the countries have been interested in the Korean experience on human resources development and also hoped to share the experiences on nuclear training and education. The purpose of this paper is to present reference training courses developed at KAERI which can be shared with countries that need an infrastructure development for nuclear power.

  15. Effect of trainings on attitude formation towards nuclear science and technology

    International Nuclear Information System (INIS)

    Asuncion, Alvie J.; Loterina, Roel A.; Cansino, Percedita T.

    2011-01-01

    Nuclear energy's critical role in sustainable development has been highlighted in various reports and studies. This role, however, has been hampered by many influences; one of the most notable is public support which has been correlated with public attitudes. Public support drops rapidly in the midst of nuclear crises as in the case of the recent Fukushima accident, and unless interventions are made, this drop can become irreversible. Information dissemination and brief public communication may serve as short-term solutions, but these interventions appeal to opinions which are relatively more volatile than attitudes. Previous studies have shown that there are different pathways to attitude formation which include education and knowledge-building activities. In this study, the effect of training of the attitudes of participants towards nuclear science and technology was investigated. A questionnaire was designed and validated to measure attitudes towards Nuclear Science and Technology (NST) and was administered to participants of training courses conducted by the PNRI Nuclear Training Center. A total of 111 participants from five training courses were included as respondents which is 91% of the target population, of these, 30.6% are Educators, 44.1% are Medical Practitioners, and 25.2% are Licensees. Mean scores obtained from the questionnaire were analyzed and significant difference has been found at 0.05 confidence level, between participants' attitudes before and after attending a training course. There were slight differences observed from each group of respondents but over-all results show that knowledge-building activities like trainings can be utilized to improve public attitudes towards nuclear science and technology in the Philippine context. (author)

  16. 3D virtual facilities with interactive instructions for nuclear education and training

    International Nuclear Information System (INIS)

    Satoh, Yoshinori; Li, Ye; Zhu, Yuefeng; Rizwan-uddin

    2015-01-01

    Efficient and effective education and training of nuclear engineering students and future operators are critical for the safe operation and maintenance of nuclear power plants. Students and future operators used to receive some of the education and training at university laboratories and research reactors. With many university research reactors now shutdown, both students and future operators are deprived of this valuable training source. With an eye toward this need and to take advantage of recent developments in human machine interface technologies, we have focused on the development of 3D virtual laboratories for nuclear engineering education and training as well as to conduct virtual experiments. These virtual laboratories are expected to supplement currently available resources and education and training experiences. Resent focus is on adding interactivity and physics model to allow trainees to conduct virtual experiments. This paper reports some recent extensions to our virtual nuclear education laboratory and research reactor laboratory. These include head mounted display as well as hand tracking devices for virtual operations. (author)

  17. Assessment of the current status of basic nuclear data compilations

    International Nuclear Information System (INIS)

    1985-01-01

    Topics discussed include: the status of mass-chain evaluations, remote terminal access, other US Nuclear Data Network publications, formats and procedures subcommittee report, keyword follow-up (Phys. Rev. C), and atomic data and nuclear data tables

  18. Study on status of nuclear export/import implementation in KAERI

    International Nuclear Information System (INIS)

    Kim, H. J.; Lee, B. D.; Lee, S. H.; Park, H. J.; So, D. S.

    2004-01-01

    As Korea is the member of ZC(Zangger Committee) and NSG(Nuclear Suppliers Group), domestic legislation reflected their guideline of nuclear export. The paper investigate the status of implementation procedures of nuclear export and import in KAERI based on domestic and international law. In addition, the paper analyzes on problem of export/import implementation system and also extract the efficient implementation system of nuclear export and import

  19. Certified training for nuclear and radioactive source security management

    International Nuclear Information System (INIS)

    Johnson, Daniel

    2017-01-01

    Radioactive sources are used by hospitals, research facilities and industry for such purposes as diagnosing and treating illnesses, sterilising equipment and inspecting welds. Unfortunately, many States, regulatory authorities and licensees may not appreciate how people with malevolent intentions could use radioactive sources, and statistics confirm that a number of security incidents happen around the globe. The adversary could be common thieves, activists, insiders, terrorists and organised crime groups. Mitigating this risk requires well trained and competent staff who have developed the knowledge, attributes and skills necessary to successfully discharge their security responsibilities. The International Atomic Energy Agency and the World Institute for Nuclear Security are leading international training efforts. The target audience is a multi-disciplinary group of professionals with management responsibilities for security at facilities with radioactive sources. These efforts to promote training and competence amongst practitioners have been recognised at the 2014 and 2016 Nuclear Security and Nuclear Industry Summits. (author)

  20. A study on the status of nuclear development and utilization in North Korea

    International Nuclear Information System (INIS)

    Choi, Young Myung; Oh, Keun Bae; Lee, Kwang Seok; Ham, Cheol Hoon; Lee, Byeong Uk; Lee, Jae Seong; Choi, Yeong Rok; Ko, Han Seong

    1994-01-01

    The objective of this project is to propose strategies and tactics for nuclear cooperation between the South and the North in the perspective of the unification of the Korean Peninsula, based on proper and objective understanding of the status of nuclear development and utilization activities in North Korea, especially those for peaceful purposes. This study analyzes the nuclear development and utilization status of North Korea in terms of nuclear development history and policies, nuclear research and development, nuclear power generation, nuclear fuel cycle, production and uses of radiation and isotopes, manufacturing of equipment and components of nuclear power plants, and international nuclear cooperation. Based on the analysis, this study proposes basic directions for nuclear cooperation between South and North Korea. (Author)

  1. Education and training on nuclear security in Greece

    International Nuclear Information System (INIS)

    Pafilis, C. N.; Kamenopoulou, V.; Maltezos, A.; Seferlis, S.; Dimitriou, P.; Matikas, T. E.

    2009-01-01

    The Greek Atomic Energy Commission is the competent authority responsible for designing, implementing and supervising the radiation protection programme in Greece. According to its statutory law one of its main responsibilities is the provision of education and training to people involved in the national emergency response plan against nuclear and radiological threats. Due to the high requirements demanded for the safe conduct of the Athens 2004 Olympic Games, a nuclear security programme was established and the nuclear security infrastructure of the country was upgraded. Under this framework, GAEC provided training on radiation protection, prevention, detection, emergency preparedness and response to the personnel involved in the emergency plan. Since that time, the GAEC continues to organize seminars frequently addressed to the organizations involved in the emergency plan, in order to establish the sustainability of national operational capability on preparedness and response. (authors)

  2. Nuclear education in Russia: Status, peculiarities, problems and perspectives

    International Nuclear Information System (INIS)

    Onykiy, B.N.; Kryuchkov, E.F.

    2005-01-01

    The paper is devoted to analysis of Russian nuclear education system: its current status, specific features, difficulties and prospects. Russian higher education system in nuclear engineering has been created simultaneously with the development of nuclear industry, and the system completely satisfied all industrial demands for the specialists of different qualification levels. For the past several decades, nuclear education has lost its attractiveness to young people. The paper discusses the actions to be undertaken for reversing the situation. The paper underlines particularly the special role of international collaboration and all-European integration of nuclear educational programmes for further development of nuclear education all over the world. (author)

  3. Review of training methods employed in nuclear fuel fabrication plants

    International Nuclear Information System (INIS)

    Box, W.D.; Browder, F.N.

    A search of the literature through the Nuclear Safety Information Center revealed that approximately 86 percent of the incidents that have occurred in fuel fabrication plants can be traced directly or indirectly to insufficient operator training. In view of these findings, a review was made of the training programs now employed by the nuclear fuel fabrication industry. Most companies give the new employee approximately 20 h of orientation courses, followed by 60 to 80 h of on-the-job training. It was concluded that these training programs should be expanded in both scope and depth. A proposed program is outlined to offer guidance in improving the basic methods currently in use. (U.S.)

  4. A systematic approach to the training in the nuclear power industry: The need for standard

    International Nuclear Information System (INIS)

    Wilkinson, J.D.

    1995-01-01

    The five elements of a open-quotes Systematic Approach to Trainingclose quotes (SAT) are analysis, design, development, implementation and evaluation. These elements are also present in the effective application of basic process control. The fundamental negative feedback process control loop is therefore an excellent model for a successful, systematic approach to training in the nuclear power industry. Just as standards are required in today's manufacturing and service industries, eg ISO 9000, so too are control standards needed in the training industry and in particular in the training of nuclear power plant staff. The International Atomic Energy Agency (IAEA) produced its TECDOC 525 on open-quotes Training to Establish and Maintain the Qualification and Competence of Nuclear Power Plant Operations Personnelclose quotes in 1989 and the American Nuclear Society published its open-quotes Selection, Qualification, and Training of Personnel for Nuclear Power Plants, an American National Standardclose quotes in 1993. It is important that community colleges, training vendors and organizations such as the Instrument Society of America (ISA), who may be supplying basic or prerequisite training to the nuclear power industry, become aware of these and other standards relating to training in the nuclear power industry

  5. Study on training of nuclear power system operators

    International Nuclear Information System (INIS)

    Guo Lifeng; Zhou Gang; Yu Lei

    2012-01-01

    In order to satisfy new requirements about operators of nuclear power system, which are brought up by development and changes of social environment, science and technology, we do research on and make analysis of the problem of operator training. This paper focuses on development and changes of operator training system and content, mentality training, application of new technology to training, feedback of experience and so on. Analysis showed that the content of operator training is also confronted with some new requirements. So we bring up the new requirements to the operator, such as mentality training, cognizance ability training, adaptability training of special environment and endurance training. Besides, it is important for perfecting operator cultivation mechanism and improving training effect to feed back experience and apply new technology. So the trainer must improve training content and cultivation mechanism continuously. (authors)

  6. The status of ISI in the UK nuclear industry

    Energy Technology Data Exchange (ETDEWEB)

    Bann, T.; Rogerson, A. [AEA Technology, Risley (United Kingdom). Nuclear NDE Services

    1999-08-01

    This paper reviews the status of in-service inspection (ISI) in UK nuclear power generation industry through the experience of its nuclear utilities. The paper is intended to be a summary of some of the most recent and relevant ISI issues facing the utilities and the solutions devised to address those issues. (orig.)

  7. Evaluation of training programs and entry-level qualifications for nuclear-power-plant control-room personnel based on the systems approach to training

    International Nuclear Information System (INIS)

    Haas, P.M.; Selby, D.L.; Hanley, M.J.; Mercer, R.T.

    1983-09-01

    This report summarizes results of research sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research to initiate the use of the Systems Approach to Training in the evaluation of training programs and entry level qualifications for nuclear power plant (NPP) personnel. Variables (performance shaping factors) of potential importance to personnel selection and training are identified, and research to more rigorously define an operationally useful taxonomy of those variables is recommended. A high-level model of the Systems Approach to Training for use in the nuclear industry, which could serve as a model for NRC evaluation of industry programs, is presented. The model is consistent with current publically stated NRC policy, with the approach being followed by the Institute for Nuclear Power Operations, and with current training technology. Checklists to be used by NRC evaluators to assess training programs for NPP control-room personnel are proposed which are based on this model

  8. Evaluation of training programs and entry-level qualifications for nuclear-power-plant control-room personnel based on the systems approach to training

    Energy Technology Data Exchange (ETDEWEB)

    Haas, P M; Selby, D L; Hanley, M J; Mercer, R T

    1983-09-01

    This report summarizes results of research sponsored by the US Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research to initiate the use of the Systems Approach to Training in the evaluation of training programs and entry level qualifications for nuclear power plant (NPP) personnel. Variables (performance shaping factors) of potential importance to personnel selection and training are identified, and research to more rigorously define an operationally useful taxonomy of those variables is recommended. A high-level model of the Systems Approach to Training for use in the nuclear industry, which could serve as a model for NRC evaluation of industry programs, is presented. The model is consistent with current publically stated NRC policy, with the approach being followed by the Institute for Nuclear Power Operations, and with current training technology. Checklists to be used by NRC evaluators to assess training programs for NPP control-room personnel are proposed which are based on this model.

  9. Training in nuclear safety and technology at Ciemat (Spain)

    International Nuclear Information System (INIS)

    Galan, M.; Rodriguez, M.; Hernando, E.

    2006-01-01

    Fission nuclear energy acceptance has suffered great change from its discovery. During 50 s and 70 s, was worldwide approved but a high social repulse is experimented nowadays in some societies. This fact has led to a contradictory situation in the world. We can find some countries where the majority of their electric energy is produced in nuclear power plants (NPPs). In Europe, France produces over the 75% of the electric energy consumed, moreover, in Asia, new NPPs are being constructed in China, Japan or India; but on the contrary, other countries, such as Spain, has signed the nuclear moratorium. The result of this situation has conducted to a lower interest in nuclear training at universities and few implementation of superior studies in Nuclear Technology. But nuclear and radioactive installations are still opened and need qualified staff. The training Unit of C.I.E.M.A.T. has been organizing courses on nuclear energy and radiation protection for more than 30 years and develops all the educational program which has been required by Spanish Radiation Protection Education. Within the training courses variety, a course of about 68 E.C.T.S. (following Bologna Process, 1999) to permit young graduated to be specialized in this area, has been organised. E.C.T.S. credits indicate the average student work load to successfully complete a course. 68 E.C.T.S. represents, in terms of workload, near one year of study. The programme contents subjects like Fission, Fusion, NPPs Operation and Control, Nuclear Fuel and Cycle. At a more interdisciplinary level, the programme also provides knowledge in other fields of application such as Nuclear Medicine, Radiation Effects, Radiation Protection, Shielding against Radiation, Material Science, Radiation Measurements and Instruments, Waste Management and Decommissioning, Environmental Impact of NPPs and National and International Regulation. The theoretical schedules are completed by practical sessions on computational codes

  10. Status and future plan of nuclear data activities in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang Youxiang; Tang Hongqing [Academia Sinica, Beijing, BJ (China). Inst. of Atomic Energy

    1997-03-01

    The present status and future plan of nuclear data measurement and evaluation in China are presented, including the supplement, improvement on CENDL-2.1 and benchmark test of CENDL-2.1, the progress on nuclear data measurement and CENDL-3. (author)

  11. Proceedings of the seventh symposium on training of nuclear facility personnel

    International Nuclear Information System (INIS)

    1987-04-01

    Separate abstracts were prepared for 45 papers in this conference proceedings. Topics covered include influences on nuclear training, the relationship between human factors and training, factors affecting job performance, current training methods, the relationship between training and education, emerging training techniques, evaluation to improve performance, and measurement of the impact of training

  12. US Nuclear Engineering Education: Status and prospects

    International Nuclear Information System (INIS)

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study, as described in this report resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the ageing of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 24 figs., 49 tabs

  13. US nuclear engineering education: Status and prospects

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This study, conducted under the auspices of the Energy Engineering Board of the National Research Council, examines the status of and outlook for nuclear engineering education in the United States. The study resulted from a widely felt concern about the downward trends in student enrollments in nuclear engineering, in both graduate and undergraduate programs. Concerns have also been expressed about the declining number of US university nuclear engineering departments and programs, the aging of their faculties, the appropriateness of their curricula and research funding for industry and government needs, the availability of scholarships and research funding, and the increasing ratio of foreign to US graduate students. A fundamental issue is whether the supply of nuclear engineering graduates will be adequate for the future. Although such issues are more general, pertaining to all areas of US science and engineering education, they are especially acute for nuclear engineering education. 30 refs., 12 figs., 20 tabs.

  14. Extension of the African regional co-operative agreement for research, development and training related to nuclear science and technology (AFRA)

    International Nuclear Information System (INIS)

    1998-01-01

    The document presents the status of acceptances as of 21 September 1998 of the extension of the African Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology (AFRA) which entered into force on 4 April 1995, upon expiration of the original Agreement, and will remain in force for an additional period of 5 years, i.e. through 3 April 2000

  15. Extension of the African regional co-operative agreement for research, development and training related to nuclear science and technology (AFRA)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-13

    The document presents the status of acceptances as of 21 September 1998 of the extension of the African Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology (AFRA) which entered into force on 4 April 1995, upon expiration of the original Agreement, and will remain in force for an additional period of 5 years, i.e. through 3 April 2000

  16. Health physics training at V.C. Summer Nuclear Station

    International Nuclear Information System (INIS)

    Blue, L.A.; Bellmore, J.R.; Shultz, P.A.

    1981-01-01

    Health Physics training for radiation workers and Health Physics Specialists continues to receive full attention by regulatory agencies such as the NRC and ANI. Guidance for such training continues to develop in a direction which forces utilities to continuously increase the quality and quantity of their Health Physics Training Program. This occurs at a time when our rapidly growing industry is placing greatly increased demands on the available work force of highly trained nuclear workers

  17. International conference on strengthening of nuclear safety in Eastern Europe. Armenian Nuclear Regulatory Authority

    International Nuclear Information System (INIS)

    Nersesyan, V.

    1999-01-01

    The status of the Armenian Nuclear Regulatory Authority (ANRA) are described in detail with its main task and responsibilities concerning regulations and surveillance of nuclear and radiation safety. The following issues are presented: nuclear legislation; inspection activities; licensing of significant safety related modifications and modernization of NPPs; incidents at NPPs; personnel training; emergency planning; surveillance of nuclear materials; radioactive waste management; and plan of the ANRA perspective development

  18. Academic training for nuclear power plant operators

    International Nuclear Information System (INIS)

    Jones, D.W.

    1982-01-01

    In view of the increasing emphasis being placed upon academic training of nuclear power plant operators, it is important that institutions of higher education develop and implement programs which will meet the educational needs of operational personnel in the nuclear industry. Two primary objectives must be satisfied by these programs if they are to be effective in meeting the needs of the industry. One objective is for academic quality. The other primary objective is for programs to address the specialized needs of the nuclear plant operator and to be relevant to the operator's job. The Center for Nuclear Studies at Memphis State University, therefore, has developed a total program for these objectives, which delivers the programs, and/or appropriate parts thereto, at ten nuclear plant sites and with other plants in the planning stage. The Center for Nuclear Studies program leads to a Bachelor of Professional Studies degree in nuclear industrial operations, which is offered through the university college of Memphis State University

  19. IAEA education and training programme in nuclear safety

    International Nuclear Information System (INIS)

    Bastos, J.L.F.; Lederman, L.

    2003-01-01

    This paper presents the IAEA education and training (E and T) programme in nuclear safety. A strategic planning for the programme implementation is described in terms of objectives, outputs and activities. A framework based on areas of competency and the level of depth of the training is presented as well as the main achievements to date. (author)

  20. Clinical Training of Medical Physicists Specializing in Nuclear Medicine

    International Nuclear Information System (INIS)

    2011-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  1. Computer aided instruction in the nuclear training classroom

    International Nuclear Information System (INIS)

    McFarlane, A.F.

    1983-01-01

    The objectives formulated for introducing computer aided instruction into the nuclear training programme are discussed and the process of comparative evaluation which was followed to arrive at a preferred system is described. Three points must be remembered. First it is unlikely that specialized training will benefit from any cost reduction since the total manpower invested can seldom be applied over enough students to represent an overall cost saving when compared with conventional classroom methods. Second it is unnecessary to present on a video screen material which would be better left in its original printed textbook or manual. Thirdly care must be taken not to assume too much or too little prior knowledge in the student. In nuclear training, concentrated information transfer is required in a short period of time. Carefully planned and executed computer assisted instruction can improve teaching effectiveness and provide a welcome alternative to conventional classroom instruction. (U.K.)

  2. Instructional skills training - the Westinghouse program to insure competence of nuclear training instructors

    International Nuclear Information System (INIS)

    Widen, W.C.

    1983-01-01

    The nuclear training engineer as well as being competent technically must be able to teach effectively. Westinghouse have developed a course for training instructors which aims to improve their teaching skills. The course, which has both theoretical and practical content covers the role of the instructor, the learning process, communications, test construction and analysis and stress identification and analysis. (U.K.)

  3. Minority and female training programs at the Ford Nuclear Reactor, University of Michigan

    International Nuclear Information System (INIS)

    Burn, R.R.

    1992-01-01

    Nuclear power industry operations staffs are composed predominantly of white males because most of the personnel come from the nuclear submarine and surface branches of the U.S. Navy. The purpose of the minority and female training programs sponsored by the Ford Nuclear Reactor at the University of Michigan is to provide a path for minorities and women to enter the nuclear industry as operators, technicians, and, in the long term, as graduate engineers. The training programs are aimed at high school students, preferably juniors. While the training is directed toward operation of a nuclear reactor, it is equally applicable to careers in most other technical fields. It is hoped that some of the participants will remain at the Ford Nuclear Reactor as reactor operators, enter college, and obtain college degrees, after which they will enter the nuclear industry as graduate engineers

  4. Innovative training techniques in the Canadian nuclear regulatory environment

    International Nuclear Information System (INIS)

    Martin, D.J.

    1996-01-01

    One of the contributors to the safety of nuclear installations is properly-trained personnel. This applies equally to the staff of a regulatory agency, as they are charged with the task of evaluating the safety of installations and operations involving radioactive materials. In 1990, the nuclear regulatory agency of Canada, the Atomic Energy Control Board, set up a Training Center to train AECB staff and to provide assistance to foreign regulatory agencies who had asked for such assistance. In setting up the Training Centre, the authors considered factors which adversely affect the efficacy of training courses. The technical content must, of course, be of sufficiently high quality, but there are other, significant factors which are independent of the content: consider a presentation in which the lecturer shows a slide which is unreadable from the back of the room. The training value of this slide is zero, even though the content may be sound. Pursuing this thought, they decided to examine the mechanics of presentations and the form of training materials, with a view to optimizing their effectiveness in training. The results of this examination were that they decided to use three technologies as the basis for production of training, support and presentation materials. This paper briefly describes these technologies and their advantages. The technologies are: desktop publishing, video and multimedia

  5. The Present Status of Nuclear Medicine in Korea

    International Nuclear Information System (INIS)

    Lee, Mun Ho

    1968-01-01

    It is my privilege to give you a brief history on the status of nuclear medicine in Korea. There is nothing much to mention, as the history of the peaceful use of atomic energy is rather short and the RI facilities are limited in the number. It is my sincere hope, however, that you may understand what steps nuclear medicine in the developing countries did take and how it has been developed, seeing the present status of nuclear medicine in Korea, as one of the models. In our country, the peaceful use of atomic energy was actualized since the Law of Atomic Energy had been enacted in March 1959, and the Office of Atomic Energy and the Atomic Energy Research Institute had been established. The Korea Society of Nuclear Medicine was organized in 1961, which i think is one of the older in the Far East area. The Society now held about 170 members and the annual meetings in addition to the quarterly meeting have been held. The 6th general scientific meeting for 1967 is scheduled to be held in 25 November. The society publishes the Korean Journal of Nuclear Medicine twice a year, and the second issue appeared Oct. 1967. The instruments used in nuclear medicine are mostly expensive, therefore, the hospitals equipped with such instruments are inevitably limited in number and the after-service or repair of such instruments are technically not easy. Some of these difficulties, i hope, shall be overcome in the near future.

  6. Education and training in nuclear engineering and safety

    International Nuclear Information System (INIS)

    Moons, F.; Safieh, J.; Giot, M.; Mavko, B.; Sehgal, Raj B.; Schaefer, A.; Van Goethem, G.; D'haeseleer, W.

    2007-01-01

    The need to preserve, enhance or strengthen nuclear knowledge is worldwide recognized since a couple of years. Within the 5th framework program the European Commission supports the European nuclear higher education network. The ENEN contract started on Jan 1, 2002 and lasts for 24 months. The Commission support for this 'accompanying measure' amounts to EUR 197 716. Based upon a year-long extensive exchange of views between the partners of ENEN, consisting of a representative cross section of nuclear academic institutions and research laboratories of the EU-25, a coherent and practicable concept for a European Master of Science in Nuclear Engineering has emerged. The concept is compatible with the Bologna philosophy of higher education for academic education in Europe. Pursuing the sustainability of the concept, the ENEN partners organized themselves in a non-profit-making association. Within the 6th framework program, the Commission services favourably evaluated the proposal: 'Nuclear European Platform of Training and University Organisations'. The objectives of the NEPTUNO co-ordination action are to establish a fair dialogue and a strong interaction between the academic and the industrial world and to bring all nuclear education and training activities under a common strategy of the ENEN type. The present proposal schedules for 18 months and the Commission earmarked a financial contribution of EUR 830 619. (author)

  7. Training of nuclear power professionals in international courses

    International Nuclear Information System (INIS)

    Kanter, M.A.

    1979-01-01

    Argonne National Laboratory has presented nine international courses in the IAEA Nuclear Power Training Program. Five have been overview courses fifteen weeks in length and four have been specialized courses ranging from five to nine weeks. A total of 286 participants from 38 countries have been traned in these courses. The Argonne courses comprise approximately 40% of the Agency's program, which is also carried out in France, Spain, and the Federal Republic of Germany. The two types of overview courses, one covering the planning phase of a project and the other the construction and operation phase, surveyed all aspects of nuclear power programs--economic, managerial, regulatory, and technical. Experience has shown that the majority of the participants in those courses had concentrated interest in specialized areas. Specialized courses have now been offered on five specific subjects. Based on past course evaluations by our staff, 37% of those trained were judged capable of making significant contribution to their country's nuclear program, 44% were judged potentially capable of such contributions, 17% were capable of only limited contribution, and 2% were inappropriately selected. Participation in international training has been very useful because of the exposure to working experts and because of the interaction between participants from the different developing countries. It is clear that such courses of moderate length sometimes attract senior management personnel, but in general can best be directed to responsible staff at middle management levels. More junior staff would be more effectively trained at the national level. Preliminary results of a Center survey of those participants who were trained two years ago have confirmed these conclusions

  8. The Nuclear Safeguards and Security Activities under Euratom Research and Training Programme

    International Nuclear Information System (INIS)

    Abousahl, S.; Palajova, Z.; Janssens, W.A.M.; Luetzenkirchen, K.; Goncalves, J.G.M.; Aregbe, Y.; )

    2015-01-01

    Nuclear safeguards and security are absolute priorities for the EU. At technical level, the Joint Research Centre (JRC) as the European Commission's in-house science service plays an important role in the field of nuclear research, training and education that include nuclear safety, safeguards and security. The JRC's nuclear research activities are defined in a Council Regulation on the research and training programme of the European Atomic Energy Community. The JRC works closely with EC safeguards authority, whose mission is to ensure that nuclear material within the EU is not diverted from its intended use according to Euratom treaty. Technologies, methodologies and trainings are developed according to the Euratom Safeguards inspectorate's needs. In the area of nuclear security, the JRC contributes to the development of specific expertise in the field of nuclear forensics and border security detection as well as related training efforts for first front-line responders and national experts. The JRC provides its expert support for the implementation of internal EU action plans mainly in the field of radiological and nuclear security. At an international level, the JRC cooperates with the IAEA mainly through the EC support programme on the control of nuclear materials and facilities in order to avoid proliferation or diversion. Close cooperation with IAEA nuclear security is developed through the recent signature of a dedicated practical arrangement. Key partnerships have also been developed in the field of safeguards and security with the US-DoE, Russia, Japan and China. In addition, JRC contributes significantly to the EU nuclear safeguards and security outreach activities implemented under the Instrument for Nuclear Safety Cooperation and Instrument contributing to Stability and Peace. In this paper we will highlight some of the JRC contributions to the enhancement of nuclear safeguards and security at EU and international levels. (author)

  9. Nuclear energy education and training in France

    International Nuclear Information System (INIS)

    2010-01-01

    In its continuing use of nuclear power, France faces numerous challenges, including the operation and maintenance of its existing array of reactors, waste management, the decommissioning of obsolete reactors, and research and development for future nuclear systems. All of these efforts must recognize and conform to international requirements. These activities mean that all participants in the French nuclear industry must continually update their approaches and skills, with respect to both domestic and worldwide nuclear power development. This requirement calls for the hiring and training of thousands of scientists and engineers each year in France and its partner or customer countries. Over the next ten years, domestic and international nuclear power activities in France will call for the recruitment of about 13,000 engineers with Master of Science or Ph.D. degrees, and 10,000 science technicians and operators with Bachelor of Science degrees. The chief employers will be EDF, AREVA, GDF-Suez, national agencies such as the Agence nationale pour la gestion des dechets radioactifs (ANDRA), sub-contractors, and R and D agencies such as the Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), and the technical safety organization, Institut de Radioprotection et de Surete Nucleaire (IRSN). France has made a commitment to support countries that are ready to create the human, institutional, and technical conditions required to establish a civilian nuclear energy programme that meets all the requirements of safety, security, non-proliferation and environmental protection for present and future generations. These efforts are conducted through the France International Nuclear Agency (AFNI). In response to the need for competence-building in nuclear energy production, France now offers training opportunities in both French and English education programmes. Partnerships created by French nuclear energy participants and by AFNI can provide dedicated programmes

  10. Nuclear power in the world: Its present status and development trends

    International Nuclear Information System (INIS)

    Bennett, L.L.

    1994-01-01

    Present status of nuclear power development in the world is presented showing data on power reactors in operation and under construction, on growth of nuclear electricity generation since 1970, the distribution of nuclear electricity generation during 1993. Development trends in the field are also outlined. 7 figs, 5 tabs

  11. Evaluating the effectiveness of training for nuclear facility personnel. Proceedings of the specialists' meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    One of the essential requirements for safe and reliable nuclear power plant operation and maintenance is the availability of competent personnel. The systematic approach to training (SAT) is recognized world-wide as the international best practice for attaining and maintaining the qualification and competence of nuclear power plant personnel. Many countries have applied and are now implementing or enhancing the use of SAT in their training systems, as demonstrated by the results of the IAEA World Survey on Nuclear Power Plant Personnel Training published in the beginning of 1999. Among the major challenges of human resource professionals is the need to measure the effectiveness of their training programs. Most training programs in the nuclear industry are effective because they are meeting legitimate needs and are conducted by competent, professional staff. Unfortunately, the extent of the impact of teaming is usually unknown or vague at best. Measurement and evaluation processes and procedures are usually inadequate or need further development and refinement. The IAEA has already been addressing the NPP personnel teaming problem during the last several years. Nevertheless, the scope of the problem is widening and new solutions are being developed. Therefore, the IAEA has decided to invite teaming professionals to a Specialists' Meeting to learn about and discuss NPP personnel training trends. The topic of this meeting, evaluating the effectiveness of training for nuclear facility personnel, was selected by the IAEA International Working Group on Training and Qualification of Nuclear Power Plant Personnel. A Specialists' Meeting on Evaluating the Effectiveness of Training for Nuclear Facility Personnel, organized in co-operation with EXITECH Corporation, the US DOE was attended by participants from 12 countries presenting 21 papers.

  12. Evaluating the effectiveness of training for nuclear facility personnel. Proceedings of the specialists' meeting

    International Nuclear Information System (INIS)

    2003-01-01

    One of the essential requirements for safe and reliable nuclear power plant operation and maintenance is the availability of competent personnel. The systematic approach to training (SAT) is recognized world-wide as the international best practice for attaining and maintaining the qualification and competence of nuclear power plant personnel. Many countries have applied and are now implementing or enhancing the use of SAT in their training systems, as demonstrated by the results of the IAEA World Survey on Nuclear Power Plant Personnel Training published in the beginning of 1999. Among the major challenges of human resource professionals is the need to measure the effectiveness of their training programs. Most training programs in the nuclear industry are effective because they are meeting legitimate needs and are conducted by competent, professional staff. Unfortunately, the extent of the impact of teaming is usually unknown or vague at best. Measurement and evaluation processes and procedures are usually inadequate or need further development and refinement. The IAEA has already been addressing the NPP personnel teaming problem during the last several years. Nevertheless, the scope of the problem is widening and new solutions are being developed. Therefore, the IAEA has decided to invite teaming professionals to a Specialists' Meeting to learn about and discuss NPP personnel training trends. The topic of this meeting, evaluating the effectiveness of training for nuclear facility personnel, was selected by the IAEA International Working Group on Training and Qualification of Nuclear Power Plant Personnel. A Specialists' Meeting on Evaluating the Effectiveness of Training for Nuclear Facility Personnel, organized in co-operation with EXITECH Corporation, the US DOE was attended by participants from 12 countries presenting 21 papers

  13. Certified Training for Nuclear and Radioactive Source Security Management.

    Science.gov (United States)

    Johnson, Daniel

    2017-04-01

    Radioactive sources are used by hospitals, research facilities and industry for such purposes as diagnosing and treating illnesses, sterilising equipment and inspecting welds. Unfortunately, many States, regulatory authorities and licensees may not appreciate how people with malevolent intentions could use radioactive sources, and statistics confirm that a number of security incidents happen around the globe. The adversary could be common thieves, activists, insiders, terrorists and organised crime groups. Mitigating this risk requires well trained and competent staff who have developed the knowledge, attributes and skills necessary to successfully discharge their security responsibilities. The International Atomic Energy Agency and the World Institute for Nuclear Security are leading international training efforts. The target audience is a multi-disciplinary group of professionals with management responsibilities for security at facilities with radioactive sources. These efforts to promote training and competence amongst practitioners have been recognised at the 2014 and 2016 Nuclear Security and Nuclear Industry Summits. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Personnel training at EDF's nuclear and fossil generation division and its application for the personnel of a nuclear power station abroad

    International Nuclear Information System (INIS)

    Rabouhams, J.

    1991-01-01

    Safety in nuclear power stations relies so much upon human competence that the training of the personnel has to respond to the basic need of having personnel who are competent in their job permanently available. EDF has designed, organized and managed a large volume of training in order to provide its personnel involved in the operation of nuclear power station with initial training, training, retraining and improvement within the framework of quality organization. To deal with this training in the most efficient way EDF has developed various training aids ranging from booklets to fullscope simulator or fullscope mockups which are continually updated. All EDF experience has been used to train Daya Bay nuclear power plant personnel who have been monitored throughout the training programmes. Adequate safety conduct and attitudes including the socio-cultural background have been developed during the training. The principle teaching method was shadow training in other words the transfer in situ of knowledge, know how, and conduct from an experienced engineer. (author)

  15. Supporting project on international education and training in cooperated program for Radiation Technology with World Nuclear University

    International Nuclear Information System (INIS)

    Yoo, Byung Duk; Nam, Y. M.; Noh, S. P.; Shin, J. Y.

    2010-08-01

    The objective is promote national status and potential of Nuclear radiation industry, and take a world-wide leading role in radiation industry, by developing and hosting the first WNU Radiation Technology School. RI School (World Nuclear University Radioisotope School) is the three-week program designed to develop and inspire future international leaders in the field of radioisotope for the first time. The project would enable promote abilities of radioactive isotopes professions, and to build the human network with future leaders in the world-wide nuclear and radiation field. Especially by offering opportunity to construct human networks between worldwide radiation field leaders of next generation, intangible assets and pro-Korean human networks are secured among international radiation industry personnel. This might enhance the power and the status of Korean radiation industries, and establish the fundamental base for exporting of radiation technology and its products. We developed the performance measurement method for the school. This shows that 2010 WNU RI School was the first training program focusing on the radioisotope and very useful program for the participants in view of knowledge management and strengthening personal abilities. Especially, the experiences and a human network with world-wide future-leaders in radiation field are most valuable asset. It is expected that the participants could this experience and network developed in the program as a stepping stone toward the development of Korea's nuclear and radiation industry

  16. Status of higher education in nuclear technology in Pakistan

    International Nuclear Information System (INIS)

    Ahmad, N.

    2007-01-01

    To harness the benefits of nuclear energy and the applications of radiation and radionuclides in various disciplines, a broad and deeply rooted nuclear education is essential. To cater to its needs, the Pakistan Atomic Energy Commission has established training institutes/centres of higher education. This paper briefly describes the programmes offered by these institutes/centres. (author)

  17. Education and training requirements of nuclear power plant personnel

    International Nuclear Information System (INIS)

    Donato, R.; Perlas, C.A.; Conti, E.

    1978-01-01

    This bibliography was compiled by the Scientific Library staff to help in the intensified training program being undertaken by the Philippine Atomic Energy Commission (PAEC) for the nuclear power plant personnel of the Philippines' first nuclear power reactor. This bibliography covers the period 1955 - 1976 of the Nuclear Science Abstracts and is composed of 281 entries. Arrangement of these entries is by broad subject category

  18. Training of engineers for nuclear power station operation

    International Nuclear Information System (INIS)

    Myerscough, P.B.

    1980-01-01

    The requirements for staffing and training of a nuclear electric utility are described. Current training facilities at the Central Electricity Generating Board are applicable to gas-cooled technology with the possibility of the introduction of a thermal water system and fast reactors in the future. The CEGB training centres provide for the initial training of operational staff, revision training of experienced operational staff, and training of non-operational staff from the stations and supporting departments. Details are given of the content of the training courses which also provide simulation facilities of the basic dynamics of the CEGB stations. Further developments in simulation will include dynamics of the boiler and turbine plants in Magnox stations. The flexibility of the AGR simulations will enable the training exercises to be adjusted to meet changing operating patterns for each AGR station. (U.K.)

  19. Supplementary training of nuclear power plant occupational physicians

    International Nuclear Information System (INIS)

    Letard, H.; Carre, M.

    1980-01-01

    A short description is given of the supplementary training course given to nuclear power plant occupational physicians within the frame of the Division of occupational medicine at Electricite de France. Such training is necessary to deal with the specific problems involved. However, it is only a complement to medical studies and the special degree in occupational medicine and industrial hygiene [fr

  20. Personal training and others problems in the nuclear power future development

    International Nuclear Information System (INIS)

    Stefanescu, P.

    2009-01-01

    For satisfaction of international growing demand for electrical energy it is impossible to ignore contribution of nuclear power. With an expected lifespan for nuclear plants estimated to 50-60 years of operation (years for decommissioning added), there is a need for a steady multi-generational stream of competent staff to ensure safe operations of nuclear plants. It is incumbent to governments to invest in education, research, and training for the three to five generations of people who will construct, operate and eventually decommission nuclear plants over the duration of their life cycle. To develop sustained nuclear programs it is necessary to carry out a lot of major problems, but three of them look like as most important: 1. Training a qualified and competent personal to ensure all nuclear activities; 2. Multilateral approach for nuclear fuel cycle, with a guaranteed framework for ensuring the supply of NPP owners with the necessary nuclear fuel; 3. Strengthening the international trust by a sure safeguards and non-proliferation regime. (author)

  1. Training of nuclear power plant personnel on Czechoslovak WWER-440 simulator

    International Nuclear Information System (INIS)

    Dugovic, M.

    1985-01-01

    The aim of simulator training is to train personnel for control work observing technical and technological regulations of nuclear power plant operation. Training is implemented in two forms: basic training and recurrent training. The daily regime of the training course is divided into theoretical education, simulator training and evaluation. Simulator training is oriented to the preparation of the workplace, presentation, controlled intermittent work and independent control work. (J.C.)

  2. CORONA project -contribution to VVER nuclear education and training

    International Nuclear Information System (INIS)

    Ilieva, M.; Miteva, R.; Takov, T.

    2016-01-01

    CORONA Project is established to stimulate the transnational mobility and lifelong learning amongst VVER end users. The project aims to provide a special purpose structure for training of specialists and to maintain the nuclear expertise by gathering the existing and generating new knowledge in the VVER area. CORONA Project consists of two parts: CORONA I (2011-2014) ''Establishment of a regional center of competence for VVER technology and Nuclear Applications'', co-financed by the Framework Program 7 of the European Union (EU) and CORONA II (2015-2018) ''Enhancement of training capabilities in VVER technology through establishment of VVER training academy'', co-financed by HORIZON 2020, EURATOM 2014-2015. The selected form of the CORONA Academy, together with the online availability of the training opportunities will allow trainees from different locations to access the needed knowledge on demand. The project will target also new-comers in VVER community like Vietnam, Turkey, Belarus, etc. (authors)

  3. Status, problems and perspectives of the education on nuclear energetics and nuclear safety within the Technical University of Sofia

    International Nuclear Information System (INIS)

    Lakov, M.; Bonev, B.; Stoyanov, S.; Velev, V.

    2004-01-01

    Education on nuclear energetic within the Technical University of Sofia is conducted since 1966 within the framework of the specialty 'Thermal energetic' at that time, and since 1973, within the specialty 'Thermal and nuclear energetic'. In 1986 is opened a college on nuclear energetic teaching on specialty 'Nuclear Energetic' and 'Automation in Energetic'. Since 1998 the department 'Thermal and nuclear energetic' is the only one within the Republic of Bulgaria having the legal rights to train 'engineers-bachelors' and 'engineers-master of science' on 'Thermal and nuclear energetic', as well as doctors - engineers of the same specialty. The bachelor course is graduated from between 40 and 60 students annually. The training within the bachelor level is 4 years and finishes by defending diploma thesis. Part of the graduated bachelors (between 20 and 30 students) are closely specialized in the area of Nuclear Energetic. The specialization is trained through preparation of diploma thesis within the nuclear area. The master course has 3 semesters including preparation of diploma thesis. Within the master level are prepared 25 students annually. Within the sub-division 'Nuclear Energetic' are promulgated between 2 and 4 competitions for preparation of doctoral thesis annually. At the moment 7 students are preparing doctoral thesis. Graduated engineers on 'Nuclear Energetic' are engaged as operative personnel mainly in Kozloduy NPP. The rest of them are engaged within the engineering and scientific organizations, connected to nuclear energetic

  4. Nuclear power in Russia: status, problems, prospects

    International Nuclear Information System (INIS)

    Ponomarev-Stepnoy, N.

    1992-01-01

    To solve the problem of atomic bomb, a powerful nuclear industrial complex has been established in the Soviet Union. This complex has developed a high scientific and engineering potential and enlisted the best science and engineering experts. Strict administration, rigid discipline in execution and operation, to secrecy limiting both internal and external interactions were typical of the complex which presented a state within the state with the inside divide by rigid barriers and protected from the outside by iron curtain. When the atomic bomb was designed and tested the search for a field of application for the nuclear potential available was started: nuclear power plants, nuclear power facilities for submarines and ships, nuclear aircraft and rocket engines, space nuclear facilities. Such were the conditions of forming the nuclear power in USSR. But this nuclear military complex has failed to prevent the Chelyabinsk accident which involved considerable radiological effects. The national industry could not adopt quickly the work style established in a nuclear complex and relative high technologies because of low educational and technical level and poor technological discipline. The results are known: the Chernobyl accident coincided in time with the beginning of the reconstruction of the System, the result of which was this accident. This paper describes the current status of the nuclear park, shows the problems of safety, maintenance, retrofitting, reconstruction or decommissioning. Statistical data on nuclear power in the power production program are also given

  5. Nuclear-related training and education offered by academic institutions (less-than-baccalaureate degree)

    International Nuclear Information System (INIS)

    Howard, L.

    1982-01-01

    Current projections indicate that in addition to the 10,100 technician positions and 6100 existing operator positions in the nuclear power industry, another 9100 technicians and 9700 operators will be required over the next decade. With 56 nuclear plants currently in operation and an additional 35 plants under construction, it is essential that trained technical personnel be available for employment in the nuclear utilities. Because of the growing demand for technicians in the nuclear utility industry, this report has been prepared to identify the nuclear-related, less-than-baccalaureate, technical educational programs provided by academic institutions and to ascertain both the current number of students and the maximum number that could be trained, given present staff and facilities. The data serve as a gauge for the proportion of technician training required by the nuclear industry that can be provided by academic institutions

  6. Training of technical staff for nuclear power station operation

    International Nuclear Information System (INIS)

    Haire, T.P.; Myerscough, P.B.

    1981-01-01

    The statutory training requirements covering the technical staff in the CEGB (Central Electricity Generating Board) are discussed. Details of the training programmes emphasize the importance of the staff having a thorough understanding of the nuclear processes involved in the station operation and not relying solely upon a mechanistic approach to operating procedures. The impact of this philosophy on the design of training simulators is examined and a brief comparison is made with the training philosophies in other countries. (U.K.)

  7. International inventory of training facilities in nuclear power and its fuel cycle 1978

    International Nuclear Information System (INIS)

    1979-01-01

    The revised inventory is arranged according to the following subject areas: nuclear power plant (NPP) engineering, nuclear safety, quality assurance, NPP operation and maintenance, NPP instrumentation and control, nuclear fuel management, nuclear materials control. Training in each subject area is classified into five groups depending on the type of organization offering the training courses. Each course is briefly described by its name or purpose, institution and location, duration, frequency, language, and content

  8. The training for nuclear fuel handling at EDF

    International Nuclear Information System (INIS)

    Marion, J.P.

    1999-01-01

    The handling of fuel assemblies in a nuclear power plant presents 3 types of work: the taking delivery of fresh fuel, the refueling and the disposal of spent fuel. These operations are realized by teams made up of 3 handling operators and a supervisor. The refueling is made by 3*8-hour teams. These handling operations are important for the nuclear safety, a mishandling can damage the fuel cladding which is the first containment barrier, so a training center (CETIC) has been created. This center was founded in 1986 by EDF and Framatome, the purpose was to validate maintenance procedures, to test handling equipment and to train the teams which work on site. Various training programmes have been set up and a system of qualification degrees has been organized. The CETIC is fitted up with equipment that are full-sized mockups of real installations. Fuel assemblies don't react in a similar way to the different mechanical and neutronic stresses they undergo while they are in the core, they get deformed and the handling operations become more delicate. The mockup fuel assemblies are quite deformed to train the teams and prepare them to face any real situation. (A.C.)

  9. An international comparison of nuclear plant training programs

    International Nuclear Information System (INIS)

    Mason, J.H.

    1993-01-01

    In 1990, I visited four utility companies that own and operate pressurized water reactor (PWR) plants in different countries. The purpose of my visits and associated research was to compare nuclear power plant operator and technician training programs. The companies were: Duke Power Company (DUKE) in the United States, Electricite de France (EDF) in France, Kansai Electric Power Company (KEPCO) in Japan, and RWE Energie AG (RWE) in Germany. The purpose of this paper is to highlight selected aspects of the comparison. First, comparisons of the four subject utilities and four typical nuclear power stations operated by each company, McGuire, Paluel, Ohi, and Biblis, are provided. Then comparisons of new employee demographics and training program specific content are provided. Finally, some general observations are drawn from the comparisons. The comparisons are based on information obtained from documents, interviews, and visits to stations and training centers. However, some interpretation of the information was necessary in order to enable a comparison. For example, categorization of training modules requires judgement, interpretation, and translation. In all cases, the information is intended to be representative or typical, rather than statistically precise

  10. Developing a Systematic Education and Training Approach Using Personal Computer Based Simulators for Nuclear Power Programmes. Proceedings of a Technical Meeting

    International Nuclear Information System (INIS)

    2018-01-01

    This publication compiles the output and findings of a technical meeting organized by the IAEA. The use of personal computer (PC) based basic principle simulators in education and training is aimed at enhancing understanding of nuclear technologies through “learning by doing”. This hands-on experiential training is highly suitable for operators, maintenance technicians, suppliers, regulators, students and engineers. Experts from 21 Member States, together with IAEA staff, presented the current status of the PC based basic principle simulators, their applications in education and training and identified relevant gaps and needs for improvements and/or new development. The resultant publication includes summaries of the presentations, follow-up discussions as well as conclusions and recommendations for possible future activities.

  11. Application of Nuclear Power Plant Simulator for High School Student Training

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Chi Dong; Choi, Soo Young; Park, Min Young; Lee, Duck Jung [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of)

    2014-10-15

    In this context, two lectures on nuclear power plant simulator and practical training were provided to high school students in 2014. The education contents were composed of two parts: the micro-physics simulator and the macro-physics simulator. The micro-physics simulator treats only in-core phenomena, whereas the macro-physics simulator describes whole system of a nuclear power plant but it considers a reactor core as a point. The high school students showed strong interests caused by the fact that they operated the simulation by themselves. This abstract reports the training detail and evaluation of the effectiveness of the training. Lectures on nuclear power plant simulator and practical exercises were performed at Ulsan Energy High School and Ulsan Meister High School. Two simulators were used: the macro- and micro-physics simulator. Using the macro-physics simulator, the following five simulations were performed: reactor power increase/decrease, reactor trip, single reactor coolant pump trip, large break loss of coolant accident, and station black-out with D.C. power loss. Using the micro-physics simulator, the following three analyses were performed: the transient analysis, fuel rod performance analysis, and thermal-hydraulics analysis. The students at both high schools showed interest and strong support for the simulator-based training. After the training, the students showed passionate responses that the education was of help for them to get interest in a nuclear power plant.

  12. Application of Nuclear Power Plant Simulator for High School Student Training

    International Nuclear Information System (INIS)

    Kong, Chi Dong; Choi, Soo Young; Park, Min Young; Lee, Duck Jung

    2014-01-01

    In this context, two lectures on nuclear power plant simulator and practical training were provided to high school students in 2014. The education contents were composed of two parts: the micro-physics simulator and the macro-physics simulator. The micro-physics simulator treats only in-core phenomena, whereas the macro-physics simulator describes whole system of a nuclear power plant but it considers a reactor core as a point. The high school students showed strong interests caused by the fact that they operated the simulation by themselves. This abstract reports the training detail and evaluation of the effectiveness of the training. Lectures on nuclear power plant simulator and practical exercises were performed at Ulsan Energy High School and Ulsan Meister High School. Two simulators were used: the macro- and micro-physics simulator. Using the macro-physics simulator, the following five simulations were performed: reactor power increase/decrease, reactor trip, single reactor coolant pump trip, large break loss of coolant accident, and station black-out with D.C. power loss. Using the micro-physics simulator, the following three analyses were performed: the transient analysis, fuel rod performance analysis, and thermal-hydraulics analysis. The students at both high schools showed interest and strong support for the simulator-based training. After the training, the students showed passionate responses that the education was of help for them to get interest in a nuclear power plant

  13. Status of nuclear power in developing countries

    International Nuclear Information System (INIS)

    Laue, H.J.

    1982-01-01

    In the context of the world-wide energy situation and the key position energy plays and will play for the economic and social development of any country, the energy demand situation up to the year 2000 is analysed. As a result, the world-wide energy demand will continue to increase, however, mainly in the developing world. Nuclear power is one of the important component in the energy mix of today and in the future. Status of nuclear power application in developing countries up to the end of the century. Any further growth of the peaceful use of nuclear power in developing countries is closely linked with the following requirements: - qualified manpower, - industrial infrastructure, - energy demand and supply assessments, - high investments, - assurance of supply of nuclear fuel and fuel cycle services, - availability of small and medium power reactors. The possible role of the IAEA in developing countries and international measures to remove some of the limitations for the peaceful use of nuclear energy in developing countries are discussed. (orig.)

  14. Romanian nuclear power program - status and trends

    International Nuclear Information System (INIS)

    Chirica, T.; Condu, M.; Stiopol, M.; Bilegan, I. C.; Glodeanu, F.; Popescu, D.

    1997-01-01

    This paper presents the status and the forecast for the Romanian Nuclear Power Program, as a component of the national strategy of power sector in Romania. The successful commissioning and operation of Cernavoda NPP - Unit 1 consolidated the opinion to go further for completion of Unit 2 to 5 on Cernavoda site. The focus is now on Unit 2, planed to be commissioned in 2001, and on the related projects for radioactive waste treatment and disposal. The Romanian national infrastructure supporting this program is also presented, including the research and development facilities. Romanian nuclear industry represent today one of the most advanced sector in engineering and technology and has the ability to meet the requirements of international codes and standards, proving also excellent quality assurance skills. Romanian nuclear industry has also the capability to compete on third markets, for nuclear projects, together with the traditional suppliers. The conclusion of the paper is that for Romania the nuclear energy is the best solution for future development of power sector, is safe, economic and ethical. Nuclear sector created in Romania new jobs and activities, contributing to the progress of Romanian society. (author). 5 refs

  15. Romanian nuclear power program - status and trends

    International Nuclear Information System (INIS)

    Chirica, T.; Condu, M.; Bilegan, I.C.; Glodeanu, F.; Popescu, D.

    1997-01-01

    The paper presents the status and the forecast for the Romanian Nuclear Power Program, as a component of the national strategy of power sector in Romania. The successful commissioning and operation of Cernavoda NPP - Unit 1 consolidated the opinion to go further for completion of Unit 2 to 5 on Cernavoda site. The focus is now on Unit 2, planned to be commissioned in 2001, and on the related projects for radioactive waste treatment and disposal. The Romanian national infrastructure supporting this program is also presented, including the research and development facilities. Romanian nuclear industry represents today one of the most advanced sector in engineering and technology and has the ability to meet the requirements of international codes and standards, proving also excellent quality assurance skills. Romanian nuclear industry has also the capability to compete on third market, for nuclear projects, together with the traditional suppliers. The conclusion of the paper is that for Romania, the nuclear energy is the best solution for future development of power sector, is safe, economic, and ethical. Nuclear sector created in Romania new jobs and activities contributing to the progress of Romanian society. (authors)

  16. The nuclear power program in CIS-countries, status and trends

    International Nuclear Information System (INIS)

    Gagarinski, A.Yu.

    1995-01-01

    The status and prospects of nuclear power development in the newly-independent state in the territory of the former Soviet Union are considered. The prerequisites as well as the scientific - technical and industrial basis for the implementation of the national nuclear programs - technical and industrial basis for the implementation of the national nuclear programs are discussed. The tendencies in development of a new generation of advanced reactors are described. (author)

  17. Approach to team skills training of nuclear power plant control room crews

    International Nuclear Information System (INIS)

    Davis, L.T.; Gaddy, C.D.; Turney, J.R.

    1985-07-01

    An investigation of current team skills training practices and research was conducted by General Physics Corporation for the Office of Nuclear Reactor Regulation. The methodology used included a review of relevant team skills training literature and a workshop to collect inputs from team training practitioners and researchers from the public and private sectors. The workshop was attended by representatives from nuclear utility training organizations, the commercial airline industry, federal agencies, and defense training and research commands. The literature reviews and workshop results provided the input for a suggested approach to team skills training that can be integrated into existing training programs for control room operating crews. The approach includes five phases: (1) team skills objectives development, (2) basic team skills training, (3) team task training, (4) team skills evaluation, and (5) team training program evaluation. Supporting background information and a user-oriented description of the approach to team skills training are provided. 47 refs

  18. Selected topics in nuclear electronics

    International Nuclear Information System (INIS)

    1988-03-01

    The IAEA training courses in the field of nuclear electronics heavily rely upon practical work in the laboratory. Accordingly, the IAEA has produced and published the Nuclear Electronics Laboratory Manual (TECDOC 309) where the experience on organizing the efficient practical training in nuclear electronics was compiled. The present publication is focused on the theoretical understanding of basic electronic circuits and is of particular importance to the attendees of the IAEA training course. The present publication does not copy any available book on nuclear electronics and instrumentation. On purpose, it does not describe the elementary electronics circuits as applied in nuclear instruments; they can be found in books. It starts the nuclear electronics study on the instruments level, continues to describe the technology and circuitries on the board level, and only in some exceptional cases investigates the circuits on the components level. It is believed that such an approach better reflects the advanced status of nuclear electronics and the philosophy of the modern design of nuclear instruments. For illustration, and wherever it appeared useful, some commercial instruments are described and analyzed. Figs and tabs

  19. Selected topics in nuclear electronics

    International Nuclear Information System (INIS)

    1986-01-01

    The IAEA training courses in the field of nuclear electronics heavily rely upon practical work in the laboratory. Accordingly, the IAEA has produced and published the Nuclear Electronics Laboratory Manual (TECDOC 309) where the experience on organizing the efficient practical training in nuclear electronics was compiled. The present publication is focused on the theoretical understanding of basic electronic circuits and is of particular importance to the attendees of the IAEA training course. The present publication does not copy any available book on nuclear electronics and instrumentation. On purpose, it does not describe the elementary electronics circuits as applied in nuclear instruments; they can be found in books. It starts the nuclear electronics study on the instruments level, continues to describe the technology and circuitries on the board level, and only in some exceptional cases investigates the circuits on the components level. It is believed that such an approach better reflects the advanced status of nuclear electronics and the philosophy of the modern design of nuclear instruments. For illustration, and wherever it appeared useful, some commercial instruments are described and analyzed

  20. Some aspects of increasing the quality of personnel training for nuclear power plants in Czechoslovakia

    International Nuclear Information System (INIS)

    Jacko, J.; Frimmelova, A.

    1989-01-01

    Nuclear power plant personnel in Czechoslovakia is subject to periodical training in accordance with the Unified System of Nuclear Facility Personnel Training. This training is the responsibility of the Educational and Training Centre of the Nuclear Plant Research Institute in Trnava. Nuclear plant personnel is divided into 7 groups as follows: A - supervisory technical-administrative management staff; B - selected operating personnel such as shift supervisors, unit supervisors, reactor operators and secondary circuit operators; C - engineering-technical personnel of technical and maintenance departments; D - managing shift-operating staff; E - workers at technical plant departments; F - operational shift workers and servicemen; and G - maintenance personnel. These groups are respected in the training, which includes basic training, re-training and additional training. The basic training comprises 8 stages: general theoretical education; specialized theoretical education; on-the-job training in a plant designated for training; training on a simulator (group B); preparing for and taking final examinations for the certificate; doubling in the NPP designated for training (groups B, D, F); preparation in the NPP of future employment; preparing for and taking the state examination for obtaining the license (group B). Details of the management of the training process, experience gained during the implementation of the training and challenges for future improvement of the system are outlined. (P.A.)

  1. Nuclear Regulatory Authority Personnel Educating and Training within the National Nuclear Program Development

    International Nuclear Information System (INIS)

    Potapov, V.; Goryaeva, T.; Moiseenko, A.; Kapralov, E.; Museridze, A.

    2014-01-01

    International Cooperation for Nuclear Education and Knowledge: Aims: •Creation of system of continuous personnel training for EvrAzES states in the field of nuclear power applications based on the international standards; •Development of educational service export as following of export of Russian nuclear technology; • Development of educational and scientific contacts to IAEA, WNU, ENEN, ANENT, biggest scientific centers and universities of USA, EU and Asia. Directions of activities: • Education. Transfer of knowledge to new generation, to new developing countries and cooperation with the nuclear education of leading powers; • Scientific enlightening activity – students, specialists, decision makers; • Informational and analytical work

  2. Training of nuclear power plant operating personnel

    International Nuclear Information System (INIS)

    Anon.

    1980-04-01

    A collection is presented containing 11 papers submitted at a conference on the selection and education of specialists for operation and maintenance of nuclear power plants. The conference was attended by specialists from universities and colleges, research institutes and production plants. It debated the methods and aims of both general and specialized theoretical and practical personnel education, the proposals for teaching centre equipment, the use of simulators, computers and other aids in the teaching process; training on school reactors was included. A proposal was put forward of the system of education, the teaching process itself, the content of the basic theoretical subjects, and the method of testing pupils' knowledge. The importance was stressed of establishing a national coordination centre to safeguard the syllabus, methodology, teaching aids, and also the training proper. The system of personnel education in the Paks nuclear power plant, Hungary, is presented as an example. (M.S.)

  3. Country report present status and need of human resource development in nuclear field in Vietnam

    International Nuclear Information System (INIS)

    Ngo Qui Viet; Vu Dang Ninh

    2000-01-01

    Vietnam Atomic Energy Commission (VAEC) was officially established in 1976, and is a national research and development organization in the field of nuclear science and technology for peaceful purposes in Vietnam. Under the VAEC, there are three institutes and one center. Status of main facilities, such as TRIGA MARK II, neutron generator, electron accelerator MT-17, and irradiation facilities are outlined in the paper. At present, the VAEC has a total staff of about 540 persons. The number of staff appears adequate to fulfill the present task on application of isotopes and nuclear techniques. When Vietnam decides to develop nuclear power program, the demand for human resources will be significantly high. During the last five years, Vietnam has been developing and implementing a national regulatory program on Radiation Protection and Nuclear Safety. The Ministry of Science, Technology and Environment (MOSTE) have established independent Vietnam Radiation Protection and Nuclear Safety Authority (VRPA) in 1994. If the Vietnamese Government approves the proposed nuclear power program, human resources training should be a key point for all research and development directions at all revel of personnel. When looking back in the history of formation and development of nuclear science and technology in Vietnam, the international cooperation has played an extremely important role in promoting the program. The exchange of information and direct participation in concrete cooperation activities under the framework of the Forum are expected. (Tanaka, Y.)

  4. Country report present status and need of human resource development in nuclear field in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Ngo Qui Viet [Department of Organization and Scientific Human Resource Development, The Ministry of Science, Technology and Environment, Hanoi (Viet Nam); Vu Dang Ninh [Department of Administration and Personnel, The Vietnam Atomic Energy Commission, Hanoi (Viet Nam)

    2000-12-01

    Vietnam Atomic Energy Commission (VAEC) was officially established in 1976, and is a national research and development organization in the field of nuclear science and technology for peaceful purposes in Vietnam. Under the VAEC, there are three institutes and one center. Status of main facilities, such as TRIGA MARK II, neutron generator, electron accelerator MT-17, and irradiation facilities are outlined in the paper. At present, the VAEC has a total staff of about 540 persons. The number of staff appears adequate to fulfill the present task on application of isotopes and nuclear techniques. When Vietnam decides to develop nuclear power program, the demand for human resources will be significantly high. During the last five years, Vietnam has been developing and implementing a national regulatory program on Radiation Protection and Nuclear Safety. The Ministry of Science, Technology and Environment (MOSTE) have established independent Vietnam Radiation Protection and Nuclear Safety Authority (VRPA) in 1994. If the Vietnamese Government approves the proposed nuclear power program, human resources training should be a key point for all research and development directions at all revel of personnel. When looking back in the history of formation and development of nuclear science and technology in Vietnam, the international cooperation has played an extremely important role in promoting the program. The exchange of information and direct participation in concrete cooperation activities under the framework of the Forum are expected. (Tanaka, Y.)

  5. The German simulator center for the training of nuclear power plant operators

    International Nuclear Information System (INIS)

    Hoffmann, E.

    1996-01-01

    Simulator training for nuclear power plant operators in Germany is conducted in The Simulator Center in Essen. The companies operating The Center are KSG/GfS. KSG provides simulators, GfS performs the training. The German Simulator Center is equipped with five simulators in training, nine simulators are under construction and will be ready for training until the beginning of 1997. This institution serves 22 nuclear power plants units in Germany, Switzerland (NPP Goesgen-Daeniken) and the Netherlands (NPP Borssele) and trains 1,800 persons every year. As a common enterprise the company is owned by 12 utilities, which leads to the necessity to prepare common rules and guidelines for simulator specification, training of instructors, assessment of trainees, training material and preparation and methodical running of simulator courses

  6. Nuclear-produced hydrogen by a thermochemical Cu-Cl plant for passenger hydrogen trains

    International Nuclear Information System (INIS)

    Marin, G.; Naterer, G.; Gabriel, K.

    2010-01-01

    This paper compares the technical and economic aspects of electrification of a passenger-train operation in Ontario Canada, versus operation with hydrogen trains using nuclear-produced hydrogen. A local GO Transit diesel operation in Ontario has considered electrification as an alternative to reduce greenhouse gas emissions of passenger trains in the Toronto area. Hydrogen production from nuclear energy via a thermo-chemical Copper-Chlorine (Cu-Cl) cycle for train operation is shown to have lower emissions than direct electrification. It significantly reduces the greenhouse gas emissions compared to diesel operation. A bench-mark reference case used for the nuclear thermo-chemical Cu-Cl cycle is the Sulfur-Iodine (S-I) cycle, under investigation in the USA, Japan, and France, among others. The comparative study in this paper considers a base case of diesel operated passenger trains, within the context of a benefits case analysis for train electrification, for GO Transit operations in Toronto, and the impact of each cost component is discussed. The cost analysis includes projected prices of fuel cell trains, with reference to studies performed by train operators. (author)

  7. Extensive utilisation of VR-1 reactor for nuclear education and training

    International Nuclear Information System (INIS)

    Rataj, J.

    2010-01-01

    The paper presents utilisation of the VR-1 reactor for nuclear education and training at national and international level. VR-1 reactor has been operating by the Czech Technical University since December 1990. The reactor is a pool-type light water reactor based on enriched uranium (19.7% 235 U) with maximum thermal power 1kW and for short time period up to 5kW. The moderator of neutrons is light water, which is also used as a reflector, a biological shielding and a coolant. Heat is removed from the core by natural convection. The pool disposition of the reactor facilitates access to the core, setting and removing of various experimental samples and detectors, easy and safe handling of fuel assemblies. The reactor core can contain from 17 to 21 fuel assemblies IRT-4M, depending on the geometric arrangement and kind of experiments to be performed in the reactor. The reactor is equipped with several experimental devices; e.g. horizontal, radial and tangential channels used to take out a neutron beam, reactivity oscillator for dynamics study and bubble boiling simulator. The reactor has been used very efficiently especially for education and training of university students and NPP's specialists for more than 18 years. The VR-1 reactor is utilised within various national and international activities such as Czech Nuclear Education Network (CENEN), European Nuclear Education Network and also Eastern European Research Reactor Initiative (EERRI). The reactor is well equipped for education and training not only by the experimental facility itself but also by incessant development of training methods and improvement of education experiments. The education experiments can be combined into training courses attended by students according to their study specialization and knowledge level. The training programme is aimed to the reactor and neutron physics, dosimetry, nuclear safety, and control of nuclear installations. Every year, approximately 250 university students undergo

  8. Decommissioning of Nuclear Facilities: Training and Human Resource Considerations

    International Nuclear Information System (INIS)

    2008-01-01

    One of the cornerstones of the success of nuclear facility decommissioning is the adequate competence of personnel involved in decommissioning activities. The purpose of this publication is to provide methodological guidance for, and specific examples of good practices in training as an integral part of human resource management for the personnel performing decommissioning activities. The use of the systematic methodology and techniques described in this publication may be tailored and applied to the development of training for all types of nuclear facilities undergoing decommissioning. Examples of good practices in other aspects of human resources, such as knowledge preservation, management of the workforce and improvement of human performance, are also covered. The information contained in this publication, and the examples provided in the appendices and enclosed CD-ROM, are representative of the experience of decommissioning of a wide variety of nuclear facilities.

  9. Nuclear power plant personnel entry level qualifications and training

    International Nuclear Information System (INIS)

    Jorgensen, C.C.; Haas, P.M.; Selby, D.L.; Lowry, J.C.

    1983-01-01

    This paper summarizes the early results and current status of a research program at ORNL which is intended to provide the methods and technical basis for NRC to initiate the use of the Systems Approach to Training (SAT) in the evaluation of training programs and entry level qualifications for NPP control room personnel. The program is an outgrowth of previous studies of simulator hardware and simulator training requirements under the Safety Related Operator Actions Program which recommended adaptation of a systems methodology to development and evaluation of NPP training programs

  10. Nuclear power plant personnel training and its evaluation. A guidebook

    International Nuclear Information System (INIS)

    1996-01-01

    The Guidebook will prove especially useful for, and is addressed primarily to: nuclear power operating organizations establishing or upgrading their NPP personnel training systems; regulatory personnel responsible for setting requirements and/or evaluating NPP personnel training; and organizations (within or outside the operating organization) responsible for the development, implementation and evaluation of training programmes for NPP personnel. Figs, tabs

  11. Group fellowship training in nuclear spectroscopy instrumentation maintenance at the Seibersdorf Laboratories

    International Nuclear Information System (INIS)

    Xie, Y.; Abdel-Rassoul, A.A.

    1989-01-01

    Nuclear spectroscopy instruments are important tools for nuclear research and applications. Several types of nuclear spectrometers are being sent to numerous laboratories in developing countries through technical co-operation projects. These are mostly sophisticated systems based on different radiation detectors, analogue and digital circuitry. In most cases, they use microprocessor or computer techniques involving software and hardware. Maintenance service and repair of these systems is a major problem in many developing countries because suppliers do not set up service stations. The Agency's Laboratories at Seibersdorf started conducting group fellowship training on nuclear spectroscopy instrumentation maintenance in 1987. This article describes the training programme

  12. Studies in training nuclear plant personnel

    International Nuclear Information System (INIS)

    Hamlin, K.W.

    1987-01-01

    One of the lessons learned from the Three Mile Island (TMI) accident was that the nuclear industry was ineffective in learning from previous events at other plants. As training programs and methods have improved since TMI, the nuclear industry has searched for effective methods to teach the lessons learned from industry events. The case study method has great potential as a solution. By reviewing actual plant events in detail, trainees can be challenged with solving actual problems. When used in a seminar or discussion format, these case studies also help trainees compare their decision-making processes with other trainees, the instructor, and the personnel involved in the actual case study event

  13. Status and strategy for technical cooperation between Korea and nuclear advanced countries

    International Nuclear Information System (INIS)

    Kim, Kyoung Pyo; Noh, In Young

    1998-12-01

    As part of its efforts to promote peaceful used of nuclear energy as well as achieve self-reliance in nuclear technology on a national level, 7 nuclear joint coordination committees and consultation meeting are in operation. These committees include. The R.O.K./U.K. Nuclear Energy Consultation Meeting, the Korea-France Joint Coordination Committee, the Korea-Russia coordination committee and the Korea/Australia nuclear policy consultation. As a means not only to enhance the status of Korea in the international community, but also to effectively and positively cope with rapidly changing international nuclear developments, the current status of nuclear power programs in nuclear advanced countries, including United Kingdom, France and Russia and of technical cooperation with Australia, were covered in this report. This report can be also help in setting up our position and discussion plans for each item to be discussed in bilateral cooperation meetings through an understanding background and results of technical cooperation implemented so far with KAERI and reviewing the agreed items. (author). 9 tabs., 6 figs

  14. Present status and prospects of nuclear power development in China

    International Nuclear Information System (INIS)

    Zhao Renkai

    1994-01-01

    The current status and the guiding principles of nuclear power in China are discussed. With the expansion of China's reform and opening to outside world policy, the national economy growth was increased very rapidly. For continuous, stable and fast development of national economy, the safe, clean and economic nuclear energy will play an even more important role. It is envisaged that by 2020 nuclear power will account for about 20%. 1 ref., 4 tabs

  15. Progress report of Cekmece Nuclear Research and Training Center for 1981

    International Nuclear Information System (INIS)

    1982-01-01

    Presented are the research works carried out in 1981 in Energy, Radiological Safety, Radioisotope, Application of Nuclear Techniques and Basic Research of Cekmece Nuclear Research and Training Center. (author)

  16. Status Report Kuwait Nuclear Data Project

    Energy Technology Data Exchange (ETDEWEB)

    Farhan, A. [Kuwait Nuclear Data Center, Kuwait University, Kuwait (Kuwait)

    2013-08-15

    This report covers the Kuwaiti group's activities for the period April 2011 - January 2013. The Kuwait Group will continue its collaboration in order to fulfill its commitments. The Kuwait Nuclear Data Project has permanent responsibility for evaluating and updating ENSDF for A = 74 -80. The status of the mass chains is: - A = 74 (2006), - A = 75 (1999) {radical}, - A = 76 (1995) {radical}, - A = 77 (2012), - A = 78 (2009), - A = 79 (2002), - A = 80 (2005)

  17. Utilization of a full-scope simulation for training the operating personel of nuclear power plants

    International Nuclear Information System (INIS)

    Mathias, S.G.

    1987-01-01

    A full-scope simulator of the Angra-2 Nuclear Power Plant has been installed at the NUCLEBRAS Training Center in Mambucaba - close to the site where that Plant is being built -, the goal of providing training for the operating personnel of the KWU-design nuclear power plants to be installed in Brazil. Due to the delays which occurred in the construction of Angra-2, NUCLEBRAS has established an extensive program for the utilization of the simulator for the training of operators for German nuclear power plants and for Spain's Trillo Plant. Besides yielding profits to NUCLEBRAS, that program is resulting in considerable experience in the area of nuclear power plant operators' training generating international recognition to the NUCLEBRAS Training Center. (Author) [pt

  18. Pioneer robot testing and training status

    International Nuclear Information System (INIS)

    Herndon, J.; Nosovsky, A.; Garin, E.; Goncharov, B.; Neretin, Y.

    2001-01-01

    The U. S. Department of Energy developed the Pioneer Robot and provided it to the Chornobyl Nuclear Power Plant (ChNPP) within the framework of international technical assistance. At the Pioneer Robot has been transferred to ChNPP ownership for broad use in ChNPP activities related to decommissioning and emergency response, as well as in Unit Shelter. Oak Ridge National Laboratory is working with ChNPP and SLIRT to test the Pioneer Robot operation in a broader scope, and to provide additional operational training

  19. Activities and cooperation opportunities at Cekmece Nuclear Research and Training Center

    International Nuclear Information System (INIS)

    Can, S.

    2004-01-01

    Turkey's familiarization with nuclear energy began in July 1955, when it signed a bilateral agreement with the USA to cooperate in the 'peaceful uses of nuclear energy'. In 1956, the Turkish Atomic Energy Commission (TAEK) was created. Cekmece Nuclear Research and Training Center (CNAEM) was formally established in 1962. Turkey's first research reactor, a pool-type 1 MW reactor at CNAEM site, known as TR-1, went critical in 1962 and was shut down in September 1977. Strong collaborations with national and international organizations have been achieved for the promotion of the peaceful uses of nuclear energy and its applications in Turkey. Meanwhile the TR-2 reactor (5 MW) was commissioned in 1984 in order to meet the increasing demand of radioisotopes.CNAEM as a subsidiary of TAEK is charged to perform R and D activities on whole area of nuclear science and technology, such as research reactor, nuclear safety, nuclear fuel technology and fuel analysis codes, nuclear materials, NDT, nuclear electronics, accelerator, radiobiology, cytogenetics (bio dosimetry), radioecology, marine radioactivity, radiation safety, dosimetry, radioactive waste management, calibration of nuclear instruments, environmental monitoring. Possible cooperation fields between CNAEM and other institutions are as follows: measurements of radioactivity in the environment, radioecological studies of radioactivity levels in environmental samples, indoor radon measurements, development and production of radiopharmaceuticals, radiation cytogenetics (bio dosimetry), training in NDT, certification of industrial workers who use non-destructive testing devices, production of UO 2 and (U,Th)O 2 based fuel material, development and construction of radiation measurement instrument, analysis of all kind of uranium and thorium, training on processing and storage of low level radioactive waste

  20. Activities and cooperation opportunities at Cekmece nuclear research and training center

    International Nuclear Information System (INIS)

    Can, S.

    2004-01-01

    Full text: Turkey's familiarization with nuclear energy began in July 1955, when it signed a bilateral agreement with the USA to cooperate in the p eaceful uses of nuclear energy . In 1956, the Turkish Atomic Energy Commission (TAEK) was created. Cekmece Nuclear Research and Training Center (CNAEM) was formally established in 1962. Turkey's first research reactor, a pool-type 1 MW reactor at CNAEM site, known as TR-1, went critical in 1962 and was shut down in September 1977. Strong collaborations with national and international organizations have been achieved for the promotion of the peaceful uses of nuclear energy and its applications in Turkey. Meanwhile the TR-2 reactor (5 MW) was commissioned in 1984 in order to meet the increasing demand of radioisotopes.CNAEM as a subsidiary of TAEK is charged to perform R and D activities on whole area of nuclear science and technology, such as research reactor, nuclear safety, nuclear fuel technology and fuel analysis codes, nuclear materials, NDT, nuclear electronics, accelerator, radiobiology, cytogenetics (bio dosimetry), radioecology, marine radioactivity, radiation safety, dosimetry, radioactive waste management, calibration of nuclear instruments, environmental monitoring. Possible cooperation fields between CNAEM and other institutions are as follows: measurements of radioactivity in the environment, radioecological studies of radioactivity levels in environmental samples, indoor radon measurements, development and production of radiopharmaceuticals, radiation cytogenetics (bio dosimetry), training in NDT, certification of industrial workers who use non-destructive testing devices, production of UO 2 and (U,Th)O 2 based fuel material, development and construction of radiation measurement instrument, analysis of all kind of uranium and thorium, training on processing and storage of low level radioactive waste

  1. The use of virtual reality for training professionals of nuclear medicine

    International Nuclear Information System (INIS)

    Carvalho, Juliane S.; Nascimento, Ana Cristina H.; Mól, Antônio Carlos A.; Suita, Julio Cézar; Marins, Eugênio R.; Silva, Marcio H. da

    2017-01-01

    The use of virtual reality has becoming an important tool for training purposes, with emphasis to those procedures that involve risk to professionals, as those associated with occupational exposure to ionizing radiation in nuclear medicine services. According to the basic safety standards (BSS), published by International Atomic Energy Agency (IAEA), the qualification and training of all personnel of a nuclear medicine service should be performed periodically in order to ensure its understanding and better performance of their respective duties. In face of that, this work consists in research, analysis and unification of requirements and specifications for the radiological protection of nuclear medicine workers, specifically those of radiopharmacy. To this end, a detailed study of the radiological safety and workflow related to radiopharmacy procedures is under development considering the radiological recommendations and safety standards of nuclear medicine services. As a result, it is expected a set of information that will enable the development of a virtual training environment in radiological protection for such professionals aiming the development of skills and the improvement of competencies by means of the simulation with lower cost, unlimited number of repetitions of training, without interference in the laboratory routine and the primary purpose of this work: in safe conditions. (author)

  2. The use of virtual reality for training professionals of nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Juliane S.; Nascimento, Ana Cristina H.; Mól, Antônio Carlos A.; Suita, Julio Cézar; Marins, Eugênio R.; Silva, Marcio H. da, E-mail: julianedesacarvalho@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    The use of virtual reality has becoming an important tool for training purposes, with emphasis to those procedures that involve risk to professionals, as those associated with occupational exposure to ionizing radiation in nuclear medicine services. According to the basic safety standards (BSS), published by International Atomic Energy Agency (IAEA), the qualification and training of all personnel of a nuclear medicine service should be performed periodically in order to ensure its understanding and better performance of their respective duties. In face of that, this work consists in research, analysis and unification of requirements and specifications for the radiological protection of nuclear medicine workers, specifically those of radiopharmacy. To this end, a detailed study of the radiological safety and workflow related to radiopharmacy procedures is under development considering the radiological recommendations and safety standards of nuclear medicine services. As a result, it is expected a set of information that will enable the development of a virtual training environment in radiological protection for such professionals aiming the development of skills and the improvement of competencies by means of the simulation with lower cost, unlimited number of repetitions of training, without interference in the laboratory routine and the primary purpose of this work: in safe conditions. (author)

  3. Sustainable training for customs officer involved in illicit nuclear trafficking detection: national solutions

    International Nuclear Information System (INIS)

    Paredes Gilisman, Jorge Luis; Lopez Forteza, Yamil

    2008-01-01

    Full text: The illicit nuclear trafficking detection capabilities demand adequate training, cooperation and equipment. Often customs personnel changing takes place in our countries. A sustainable training strategy should be implemented for avoiding forfeit on detection capabilities. Cuba, not excluded from this particular, designed an Action Plan to provide Customs authorities with basic tools for their own training. The Nuclear Regulatory Authority developed three main addresses: initial training, development of e-tools and preparation of train-of-trainers. Experiences, outcomes and challenges are shown in the present paper. In a simple, quick and not expensive way answer has been given to a national sustainable training strategy. (author)

  4. Training method for enhancement of safety attitude in nuclear power plant based on crew resource management

    International Nuclear Information System (INIS)

    Ishibashi, Akira; Karikawa, Daisuke; Takahashi, Makoto; Wakabayashi, Toshio; Kitamura, Masaharu

    2010-01-01

    A conventional training program for nuclear power plant operators has been developed with emphasis on improvement of knowledge and skills of individual operators. Although it has certainly contributed to safety operation of nuclear power plants, some recent incidents have indicated the necessity of an improved training program aiming at improvement of the performance of operators working as a team. In the aviation area, crew resource management (CRM) training has shown the effect of resolving team management issues of flight crews, aircraft maintenance crews, and so on. In the present research, we attempted to introduce the CRM concept into operator training in nuclear power plants as training for conceptual skill enhancement. In this paper, a training method specially customized for nuclear power plant operators based on CRM is proposed. The proposed method has been practically utilized in the management training course of Japan Nuclear Technology Institute. The validity of the proposed method has been evaluated by means of a questionnaire survey. (author)

  5. Building trust with the schoolchildren in the nuclear training centre

    International Nuclear Information System (INIS)

    Stritar, Andrej; Istenie, Radko

    1995-01-01

    Although Krsko Nuclear Power Plant has been in operation for more than ten years, comparatively little has been done in the field of systematic education and public information. Deficiencies in this field are causing serious misunderstandings about the role of nuclear power and is having a negative impact on its public acceptance. At The Nuclear Training Centre Milan Copic (NTC) in Ljubljana we have prepared a presentation on nuclear energy encompassing a short description of a PWR nuclear power plant, importance of nuclear power in the world and in Slovenia, basic ideas of nuclear safety and radioactive waste disposal

  6. Effects of exercise training on pulmonary mechanics and functional status in patients with prolonged mechanical ventilation.

    Science.gov (United States)

    Chen, Yen-Huey; Lin, Hui-Ling; Hsiao, Hsiu-Feng; Chou, Lan-Ti; Kao, Kuo-Chin; Huang, Chung-Chi; Tsai, Ying-Huang

    2012-05-01

    The functional status and outcomes in patients with prolonged mechanical ventilation (PMV) are often limited by poor endurance and pulmonary mechanics, which result from the primary diseases or prolonged time bedridden. We evaluate the impact of exercise training on pulmonary mechanics, physical functional status, and hospitalization outcomes in PMV patients. Twenty-seven subjects with PMV in our respiratory care center (RCC) were divided randomly into an exercise training group (n = 12) and a control group (n = 15). The exercise program comprised 10 sessions of exercise training. The measurement of pulmonary mechanics and physical functional status (Functional Independence Measurement and Barthel index) were performed pre-study and post-study. The hospitalization outcomes included: days of mechanical ventilation, hospitalization days, and weaning and mortality rates during RCC stay. The training group had significant improvement in tidal volume (143.6 mL vs 192.5 mL, P = .02) and rapid shallow breathing index after training (162.2 vs 110.6, P = .009). No significant change was found in the control group except respiratory rate. Both groups had significant improvement in functional status during the study. However, the training group had greater changes in FIM score than the control group (44.6 vs 34.2, P = .024). The training group also had shorter RCC stay and higher weaning and survival rates than the control group, although no statistical difference was found. Subjects with PMV in our RCC demonstrated significant improvement in pulmonary mechanics and functional status after exercise training. The application of exercise training may be helpful for PMV patients to improve hospitalization outcomes.

  7. Nuclear science teaching

    International Nuclear Information System (INIS)

    1968-01-01

    A Panel of Experts on Nuclear Science Teaching met in Bangkok from 15 to 23 July 1968 to review the present status of an need for teaching of topics related to nuclear science at the secondary and early university level including teacher training, and to suggest appropriate ways of introducing these topics into the science curricula. This report contains the contributions of the members of the Panel, together with the general conclusions and recommendations for the development of school and early university curricula and training programs, for the improvement of teaching materials and for the safest possible handing of radioactive materials in school and university laboratories. It is hoped that the report will be of use to all nuclear scientists and science educators concerned with modernizing their science courses by introducing suitable topics and experiments in nuclear science

  8. Radiation protection courses in the Milan Copic Nuclear Training Centre

    International Nuclear Information System (INIS)

    Kozelj, M.; Stritar, A.

    1998-01-01

    We have briefly described the legal framework for the radiation protection training in Slovenia. The history of that activity at the Milan Copic Nuclear Training Center in Ljubljana is than described with the detailed description and summary of all performed courses.(author)

  9. Proceedings of the ninth symposium on the training of nuclear facility personel

    International Nuclear Information System (INIS)

    1991-04-01

    This document provides reports presented on training of nuclear facility personnel. The papers were presented in the following categories: engineering technical staff; specialty training; customer perspective/plant side; human factors/soft science; maintenance; simulator centered training; hands-on training devices; management training; and reduced O ampersand M costs through training. Individual papers have been cataloged separately. (FI)

  10. Training needs for chemists in nuclear medicine research and production

    International Nuclear Information System (INIS)

    Welch, M.J.

    1993-01-01

    The field Nuclear Medicine has expanded rapidly over the last two decades. Individuals with training in radiochemistry are needed in industry, medical centers and hospitals. Although basic training in organic chemistry, inorganic chemistry, biochemistry or pharmacy are required, radiochemistry knowledge is essential for all these individuals. Opportunities and training requirements in these areas will be discussed. (author) 7 refs.; 5 tabs

  11. Physics teachers' nuclear in-service training in Hungary

    International Nuclear Information System (INIS)

    Ujvari, Sandor

    2005-01-01

    Teaching of science subjects, specifically physics among others, is important in Hungarian schools. The paper starts with some historical aspects on how the modern physics reached Hungarian schools, what kinds of methods the physics teachers use for their in-service training and what is their success. In 1985 Hungarian Government introduced the system of physics teacher's in-service training for a year. The courses end with a thesis and examination. Teachers have a possibility to join the nuclear physics intensive course of Nuclear Physics Department at Eottvos University. Curriculum and topics of laboratory practice are given together with some dissertations of the course. Moreover, several competition (Leo Szilard competition) is mentioned with starting that in each year the 5 best students get free entrance to the Hungarian universities. (S. Ohno)

  12. Experience with Nuclear Inspector Training at JRC, Ispra

    International Nuclear Information System (INIS)

    Berndt, R.; Mortreau, P.

    2013-01-01

    About 500 nuclear safeguards inspectors are working at the IAEA, EURATOM and as national inspectors in Europe. Up to 50 of them are recruited every year and need training for their new work, comprising all its aspects. More than 1050 trainees have attended nuclear inspector training courses at the Ispra site of the Joint Research Centre of the EU within more than 20 years. A higher number of inspectors need refreshment courses or introductions into new working fields. Moreover, new instruments or techniques require special training, in class, laboratory or in field. The Preparatory course, 'NDA (Non-Destructive Assay of nuclear material) basic physics', is held at the EURATOM headquarters at Luxembourg. It is foreseen mainly for new inspectors. The four NDA laboratory courses in PERLA are of special importance for the inspectors. They demonstrate clearly the possibility for an inspector to verify with non-destructive methods the presence of nuclear material, its quality and its quantity. Most of the EURATOM inspectors have followed them at the beginning of their inspector service. The advanced/special laboratory courses in PERLA combine different elements: the 'Pu physical inventory verification course' comprises inspection planning, qualitative and quantitative measurements and statistical data evaluation. The 'Advanced hands-on RADAR/CRISP/XSEAT course' combines automatic measurement stations, installation of informatics tools, unattended data collection, data evaluation and inspection report. The reaction of course participants proofed that these demanding courses are good for the motivation of experienced inspectors. Special instrument courses are always changing and often held only one or two times. The paper is followed by the slides of the presentation

  13. Supporting project on international education and training in cooperated program for Radiation Technology with World Nuclear University

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Duk; Nam, Y. M.; Noh, S. P.; Shin, J. Y. [KAERI, Daejeon (Korea, Republic of)

    2010-08-15

    The objective is promote national status and potential of Nuclear radiation industry, and take a world-wide leading role in radiation industry, by developing and hosting the first WNU Radiation Technology School. RI School (World Nuclear University Radioisotope School) is the three-week program designed to develop and inspire future international leaders in the field of radioisotope for the first time. The project would enable promote abilities of radioactive isotopes professions, and to build the human network with future leaders in the world-wide nuclear and radiation field. Especially by offering opportunity to construct human networks between worldwide radiation field leaders of next generation, intangible assets and pro-Korean human networks are secured among international radiation industry personnel. This might enhance the power and the status of Korean radiation industries, and establish the fundamental base for exporting of radiation technology and its products. We developed the performance measurement method for the school. This shows that 2010 WNU RI School was the first training program focusing on the radioisotope and very useful program for the participants in view of knowledge management and strengthening personal abilities. Especially, the experiences and a human network with world-wide future-leaders in radiation field are most valuable asset. It is expected that the participants could this experience and network developed in the program as a stepping stone toward the development of Korea's nuclear and radiation industry.

  14. Exploratory study of the radiation-protection training programs in nuclear power plants

    International Nuclear Information System (INIS)

    Fields, C.D.

    1982-06-01

    The objective of the study was to examine current radiation training programs at a sample of utilities operating nuclear reactors and to evaluate employee information on radiation health. The study addressed three elements: (1) employee perceptions and understanding of ionizing radiation; (2) utility trainers-their background, training, and problems; (3) the content, materials, and conduct of training programs; (4) program uniformity and completeness. These areas were examined through visits to utilities, surveys, and employee interviews. The programs reviewed were developed by utility personnel who have backgrounds, for the most part, in health physics but who may have little formal training in adult education. This orientation, coupled with the inherent nature of the subject, has produced training programs that appear to be too technical to achieve the educational job intended. The average nuclear power plant worker does not have the level of sophistication needed to understand some of the information. It became apparent that nuclear power plant workers have concerns that do not necessarily reflect those of the scientific community. Many of these result from misunderstandings about radiation. Unfortunately, the training programs do not always address these unfounded but very real fears

  15. Status of nuclear data for use in neutron therapy

    International Nuclear Information System (INIS)

    White, R.M.

    1992-03-01

    Optimization of neutron therapy requires nuclear cross section data for: (1) the selection of source reaction for neutron production, (2) the design of collimators and shields, (3) the calculation of absorbed dose in the irradiation tissues, including heterogeneity corrections, (4) microdosimetry, and (5) studies of the influence of radiation quality on biological effects. Under the auspices of the International Atomic Energy Agency (IAEA), a Coordinated Research Program (CRP) has been underway since 1987 to assess the status of these nuclear data, to coordinate research efforts, to report recent progress, and to recommend acceptance of appropriate data and further research where necessary. In this paper, we outline the results of the CRP's final report to be published and evaluate the status of the most critical nuclear data needs for therapy, i.e., kerma calculations and measurements, from low neutron energies to 70 MeV. Recommended values for (n,p) kerma and the carbon-to-oxygen neutron kerma factor ratios up to 70 MeV are given with estimates of their current uncertainties

  16. Simulation in training for nuclear power plant operators

    International Nuclear Information System (INIS)

    Stammers, R.B.

    1979-08-01

    The need for simulation in nuclear operator training is reviewed, and the use of simulators is justified on a number of criteria. The role of simulators is discussed against the background of training media that are or could be used. The question of the degree of realism or fidelity of simulation is tackled, with comparisons being made between views from the industry and views from the area of instructional technology. Training research in the general area of process control is outlined and emphasis is placed on the importance of instructional control. Finally, some future directions for study are sketched. (author)

  17. Hydration Status and Fluid Balance of Elite European Youth Soccer Players during Consecutive Training Sessions.

    Science.gov (United States)

    Phillips, Saun M; Sykes, Dave; Gibson, Neil

    2014-12-01

    The objective of the study was to investigate the hydration status and fluid balance of elite European youth soccer players during three consecutive training sessions. Fourteen males (age 16.9 ± 0.8 years, height 1.79 ± 0.06 m, body mass (BM) 70.6 ± 5.0 kg) had their hydration status assessed from first morning urine samples (baseline) and pre- and post-training using urine specific gravity (USG) measures, and their fluid balance calculated from pre- to post-training BM change, corrected for fluid intake and urine output. Most participants were hypohydrated upon waking (USG >1.020; 77% on days 1 and 3, and 62% on day 2). There was no significant difference between first morning and pre-training USG (p = 0.11) and no influence of training session (p = 0.34) or time (pre- vs. post-training; p = 0.16) on USG. Significant BM loss occurred in sessions 1-3 (0.69 ± 0.22, 0.42 ± 0.25, and 0.38 ± 0.30 kg respectively, p sessions 1-3 was 425 ± 185, 355 ± 161, and 247 ± 157 ml, respectively (p sessions. Body mass loss, fluid intake, and USG measures showed large inter-individual variation. Elite young European soccer players likely wake and present for training hypohydrated, when a USG threshold of 1.020 is applied. When training in a cool environment with ad libitum access to fluid, replacing ~71% of sweat losses results in minimal hypohydration (training appears to prevent excessive (≥2% BM) dehydration, as advised by current fluid intake guidelines. Current fluid intake guidelines appear applicable for elite European youth soccer players training in a cool environment. Key PointsThe paper demonstrates a notable inter-participant variation in first morning, pre- and post-training hydration status and fluid balance of elite young European soccer players.On average, elite young European soccer players are hypohydrated upon waking and remain hypohydrated before and after training.Elite young European soccer players display varied fluid intake volumes during training

  18. Nuclear education in Russia. Status, peculiarities, perspectives and international cooperation

    International Nuclear Information System (INIS)

    Kryuchkov, Eduard F.

    2008-01-01

    The paper is devoted to analysis of Russian nuclear education system: its current status, specific features, difficulties and prospects. Russian higher education system in nuclear engineering has been created simultaneously with development of nuclear industry, and the system completely satisfied all industrial demands for the specialists of different qualification level. The specific features of PhD level (doctoral program) of education in Russia are discussed. The paper underlines particularly a special role of international collaboration in the field of nuclear education for further development of nuclear education all over the world. Some examples of international cooperation in the frames of new educational programs development are considered. (author)

  19. Appendices to the guidebook on the education and training of technicians for nuclear power

    International Nuclear Information System (INIS)

    1989-10-01

    The current publication, a supplement to the IAEA Guidebook on the Education and Training of Technicians for Nuclear Power, in conjunction with which it should be read, aims to assist Member States, especially the developing countries which are in the process of implementing, or intending to implement, a nuclear power programme, to understand and meet their requirements for qualified technicians in the most effective and efficient manner. It specifically seeks to assist policy makers and planners, as well as those designing and implementing education and training programmes. The Guidebook and this TECDOC complement the IAEA Guidebook on Manpower Development for Nuclear Power, as well as the IAEA Guidebook on the Qualification of Nuclear Power Plant Operations Personnel. This TECDOC supplements the Guidebook with valuable information on the national experience of IAEA Member States in the education and training of technicians for nuclear power, as well as examples of such education and training from various Member States. Figs and tabs

  20. A method for determining the content of knowledge training for nuclear professionals

    International Nuclear Information System (INIS)

    Scott, C.K.

    2004-01-01

    A developer of knowledge training materials for nuclear professionals is faced with the challenge of determining the appropriate scope and depth of training. This paper presents a method for establishing the content starting from overall objectives of the activity and breaking it down into the job and task level of an individual's specific jobs and tasks. Nuclear safety training is used as an example. In this case there are four stages of break down in the knowledge base before its implementation in jobs and tasks of the station's work processes. This process also satisfies the training principles for enabling effective operational decision making. (author)

  1. The Nuclear Department, Royal Naval School of Marine Engineering - Provision of nuclear education and training to the naval nuclear propulsion programme and beyond

    International Nuclear Information System (INIS)

    Trethewey, K.R.; Beeley, P.A.; Lockwood, R.S.; Harrop, I.

    2004-01-01

    The Nuclear Department at HMS SULTAN provides education, training and research support to the Royal Navy Nuclear Propulsion Programme, as well as a growing number of civilian programmes within the wider British nuclear industry. As an aspiring centre of excellence in nuclear engineering, the Department will play an important role as a repository of nuclear knowledge for the foreseeable future. (author)

  2. European Nuclear Decommissioning Training Facility II

    International Nuclear Information System (INIS)

    Demeulemeester, Y.

    2005-01-01

    SCK-CEN co-ordinates a project called European Nuclear Decommissioning Training Facility II (EUNDETRAF II) in the Sixth Framework Programme on Community activities in the field of research, technological development and demonstration for the period 2002 to 2006. This was a continuation of the FP5 project EUNDETRAF. EUNDETRAF II is a consortium of main European decommissioners, such as SCK-CEN, EWN (Energie Werke Nord, Greifswald Germany), Belgatom (Belgium), SOGIN Societa Gestione Impiantio Nucleari, Italy), Universitaet Hannover (Germany), RWE NUKEM (United Kingdom), DECOM Slovakia Slovakia), CEA Centre d'Energie Atomique, France), UKAEA (United Kingdom's Atomic Energy Agency, United Kingdom) and NRG (Nuclear Research and consultancy Group, Netherlands). The primary objective of this project is to bring together this vast skill base and experience; to consolidate it for easy assimilation and to transfer to future generations by organising a comprehensive training programme.Each training course has a one-week theoretical and a one-week practical component. The theoretical part is for a broader audience and consists of lectures covering all the main aspects of a decommissioning. The practical part of the course includes site visits and desk top solutions of anticipated decommissioning problems. Due to operational constraints and safety considerations, the number of participants to this part of the course is strictly limited. The partners intend to organise altogether two two-week EUNDETRAF II training courses over a period of three years. Another goal is to disseminate the existing theory as well as the practical know-how to personnel of the third countries. Finally it is important to bring together the principal decommissioning organisations undertaking various decommissioning activities. The project creates a forum for regular contacts to exchange information and experiences for mutual benefit of these organisations as well as to enhance skill base in Europe to

  3. Use of control room simulators for training of nuclear power plant personnel

    International Nuclear Information System (INIS)

    2004-09-01

    Safety analysis and operational experience consistently indicate that human error is the greatest contributor to the risk of a severe accident in a nuclear power plant. Subsequent to the Three Mile Island accident, major changes were made internationally in reducing the potential for human error through improved procedures, information presentation, and training of operators. The use of full scope simulators in the training of operators is an essential element of these efforts to reduce human error. The operators today spend a large fraction of their time training and retraining on the simulator. As indicated in the IAEA Safety Guide on Recruitment, Qualification and Training of Personnel for Nuclear Power Plants, NS-G-2.8, 2002, representative simulator facilities should be used for training of control room operators and shift supervisors. Simulator training should incorporate normal, abnormal and accident conditions. The ability of the simulator to closely represent the actual conditions and environment that would be experienced in a real situation is critical to the value of the training received. The objective of this report is to provide nuclear power plant (NPP) managers, training centre managers and personnel involved with control room simulator training with practical information they can use to improve the performance of their personnel. While the emphasis in this publication is on simulator training of control room personnel using full scope simulators, information is also provided on how organizations have effectively used control room simulators for training of other NPP personnel, including simulators other than full-scope simulators

  4. The training of operating personnel at Spanish nuclear power plant

    International Nuclear Information System (INIS)

    Diaz, Antonio Burgos

    2011-01-01

    An essential condition in order to ensure that nuclear power plants are operated reliably and safely is the availability in the Control Room of duly qualified persons capable both of preventing accidents and of responding to them should they occur. Training of the Control Room operating crews is accomplished in two major stages: a lengthy process of initial training in which the knowledge acquired at high school and university is built upon, leading to the specialisation required to appropriately carry out the tasks to be performed in the Control Room, and a continuous training program aimed at maintaining and improving the knowledge and skills required to operate the plant, with feedback of the lessons learned from the industry's operating experience. The use of full-scope simulators replicating the physical conditions and environment of the Control Room allows the period of initial training to be reduced and is the most appropriate method for the continuous training program of the control room personnel, since these simulators increase the realism of the training scenarios, help to better understand the response of the plant and provide an accurate idea of transient response times. Tecnatom is the Training Centre for Spanish Operators; it is the 'Operator Training Factory' and its mission is to train the nuclear power plant operating personnel in both technological fundamentals and the development of diagnostic skills through practical scenarios on the simulator and on-the-job training. Our training programmes are based on a SAT (Systematic Approach to Training) methodology that has been implemented at both Spanish and overseas plants. (author)

  5. Current status of the nuclear medicine in Japan

    International Nuclear Information System (INIS)

    Torizuka, K.

    1974-01-01

    A brief survey of the current status of Japan nuclear medicine is given. The following data are described (from the material of the 11th Japan Conference of Radioisotopes): 1. the increase of the number of nuclear instruments between 1971 and 1973; 2. the total amount of the cobalt radiation apparatur (inclusive of the cesium apparatus) in the hospitals in 1971- and 1972; 3. the radioactive medicines and nuclids used in Japan; 4. the radioactive isotopes used generally in the therapeutics in 1971 and 1972; 5. the question of labour. (K.A.)

  6. Education and training - prerequisites for the safe use of nuclear energy

    International Nuclear Information System (INIS)

    Steuer, J.; Rehak, W.

    1988-01-01

    The system of training measures for persons engaged in the application of atomic energy in the German Democratic Republic is described. Sufficient qualification is a precondition for granting the state licence necessary for work with nuclear energy and application of ionizing radiation sources. Training of graduates, technicians and workers in nuclear power plants, hospitals, enterprises and others is described in detail. It includes college and university studies as well as courses on the application of radiation sources. In the fields of atomic safety and radiation protection the National Board for Atomic Safety and Radiation Protection exercises the function of a national training centre. (author)

  7. Training Activities to Maintain Competences in Nuclear Safety and Security: A Case Study of the Belgian Nuclear Research Centre

    International Nuclear Information System (INIS)

    Kesteloot, N.; Clarijs, T.; Coeck, M.; Vermeersch, F.

    2016-01-01

    Full text: The Belgian Nuclear Research Centre, SCK•CEN, is one of the largest research centers in Belgium. More than 700 employees advance research into nuclear energy and ionizing radiation for civilian use, and develop nuclear technologies for socially valuable purposes. Next to independent fundamental and applied research SCK-CEN provides advice, training, services and products. This paper describes the general approach towards the continuous professional development of all SCK-CEN personnel. The objective of these training activities is to maintain and increase the required competences, in order to optimize the output and the wellbeing on the work floor. Given the nature of the SCK-CEN activities, special attention is given to themes like radiation protection, security and industrial safety. A combination of classical face-to-face training, e-learning and on-the-job training is offered during the onboarding and further career path of an SCK-CEN employee. (author

  8. Practical approach in training (on-the-job) for workers in nuclear industries

    International Nuclear Information System (INIS)

    Vianna, Vilson Bedim; Rocha, Janine Gandolpho da

    2005-01-01

    This work approaches the 'on-the-job training' - a method of practical training - used in nuclear industries for workers who handle radioactive nuclides. The required training must, in accordance with the ISO 9000 standard, be geared to meet the needs of the organization, including the minimization of errors in operation with radionuclides, which involves various aspects (standard, social, environmental, personal and process safety etc.). Therefore, the training process must have the commitment of everybody and have a logical and documented sequence, where both the individual and the needs of the company are raised and analyzed. The clear identification of the radiological risks associated to the hands-on training is critical to the safety of who is being trained and should be part of the training content. However, the greatest challenge is a mechanism allowing to transform the hands-on training in practical learning. The role of training in the modern nuclear industry should not be restricted to provide conditions for better training or development of the employee, but also motivate the continuous improvement of the company and of the productive process

  9. Manpower development in the US nuclear power industry

    International Nuclear Information System (INIS)

    Todreas, N.E.; Foulke, L.R.

    1985-01-01

    This paper reviews the history and current status of the university nuclear education sector and the utility training sector of the United States (US) nuclear power industry. Recently, the number of programs in the university nuclear education sector has declined, and the remaining programs are in need of both strong governmental and industrial assistance if they are to remain a stable source for educating nuclear engineers and health physicists to staff the resurgence of the nuclear power industry. The utility training sector has undergone remarkable development since the TMI-2 accident. Programs to recruit, train, and qualify the variety of personnel needed, as well as the steps to accredit these programs, are being developed on a systematic, industry-wide basis. A number of new technologies for educating and training personnel are emerging which may be used to create or improve learning environments. Manpower development for the US nuclear power industry is a shared responsibility among the universities, the nuclear utilities, and the nuclear suppliers. This shared responsibility can continue to be best discharged by enhancement of the interaction among all parties with respect to evaluating the proper level of cognitive development within the utility training program

  10. Predicting the outcomes of performance error indicators on accreditation status in the nuclear power industry

    International Nuclear Information System (INIS)

    Wilson, P.A.

    1986-01-01

    The null hypothesis for this study suggested that there was no significant difference in the types of performance error indicators between accredited and non-accredited programs on the following types of indicators: (1) number of significant event reports per unit, (2) number of forced outages per unit, (3) number of unplanned automatic scrams per unit, and (4) amount of equivalent availability per unit. A sample of 90 nuclear power plants was selected for this study. Data were summarized from two data bases maintained by the Institute of Nuclear Power Operations. Results of this study did not support the research hypothesis. There was no significant difference between the accredited and non-accredited programs on any of the four performance error indicators. The primary conclusions of this include the following: (1) The four selected performance error indicators cannot be used individually or collectively to predict accreditation status in the nuclear power industry. (2) Annual performance error indicator ratings cannot be used to determine the effects of performance-based training on plant performance. (3) The four selected performance error indicators cannot be used to measure the effect of operator job performance on plant effectiveness

  11. Strategic planning approach to nuclear training

    International Nuclear Information System (INIS)

    Mills, R.J.

    1985-01-01

    Detroit Edison Company's Nuclear Training group used an organizational planning process that yielded significant results in 1984. At the heart of the process was a concept called the Driving Force which served as the basis for the development of goals, objectives, and action plants. A key ingredient of the success of the planning process was the total, voluntary participation by all members of the organization

  12. Nuclear electricity in the U.S.A. - A status report

    Energy Technology Data Exchange (ETDEWEB)

    Loewenstein, W B [American Nuclear Society, Hinsdale, IL (United States)

    1990-06-01

    The status of nuclear electricity programs in the USA is reviewed. About 20% of the electricity in the USA comes from nuclear generating stations. The potential impact of greenhouse concerns is prominent in plans for the future. Advanced reactor programs for water, liquid metal and gas cooled systems is reviewed. Safety and plant economics feature prominently in future considerations. The increasing average availability of nuclear stations in the USA provides some insights on lessons to be learned for the future. (author)

  13. Nuclear electricity in the U.S.A. - A status report

    International Nuclear Information System (INIS)

    Loewenstein, W.B.

    1990-01-01

    The status of nuclear electricity programs in the USA is reviewed. About 20% of the electricity in the USA comes from nuclear generating stations. The potential impact of greenhouse concerns is prominent in plans for the future. Advanced reactor programs for water, liquid metal and gas cooled systems is reviewed. Safety and plant economics feature prominently in future considerations. The increasing average availability of nuclear stations in the USA provides some insights on lessons to be learned for the future. (author)

  14. Extension of the African regional co-operative agreement for research, development and training related to nuclear science and technology (AFRA)

    International Nuclear Information System (INIS)

    1999-01-01

    The document presents the status of acceptances as of 16 March 1999 of the extension of the African Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology (AFRA) which entered into force on 4 April 1995, upon expiration of the original Agreement, and will remain in force for an additional period of 5 years, i.e. through 3 April 2000. There are 25 States which notified the acceptance of the Agreement extension

  15. Extension of the African Regional Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology (AFRA)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-23

    The document presents the status of acceptances as of 6 October 1999 of the extension of the African Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology (AFRA) which entered into force on 4 April 1995, upon expiration of the original Agreement, and will remain in force for an additional period of 5 years, i.e. through 3 April 2000. There are 26 States which notified the acceptance of the Agreement extension.

  16. Extension of the African regional co-operative agreement for research, development and training related to nuclear science and technology (AFRA)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-04-19

    The document presents the status of acceptances as of 16 March 1999 of the extension of the African Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology (AFRA) which entered into force on 4 April 1995, upon expiration of the original Agreement, and will remain in force for an additional period of 5 years, i.e. through 3 April 2000. There are 25 States which notified the acceptance of the Agreement extension

  17. VR-1 training reactor in use for twelve years to train experts for the Czech nuclear power sector

    International Nuclear Information System (INIS)

    Matejka, K.; Sklenka, L.

    2003-01-01

    The VR-1 training reactor has been serving students of the Faculty of Nuclear Science and Physical Engineering, Czech Technical University in Prague, for more than 12 years now. The operation history of the reactor is highlighted. The major changes made at the VR-1 reactor are outlined and the main experimentally verified core configurations are shown. Some components of the new equipment installed on the VR-1 reactor are described in detail. The fields of application are shown: the reactor serves not only the training of university students within whole Czech Republic but also the training of specialists, research activities, and information programmes in the nuclear power domain. (P.A.)

  18. Hydration status in adolescent runners: pre and post training

    Science.gov (United States)

    Ashadi, K.; Mirza, D. N.; Siantoro, G.

    2018-01-01

    The adequacy of body fluids is important for athletes in supporting performance. The purpose of this research was to determine the hydration status of athletes before and after training. The study was a qualitative descriptive by using random sampling. All athletes were trained for approximately 60 minutes. And they were asked to analyze their body fluid pattern routinely. Data were obtained through urine color measurement. The urinary was taken at pre and post training and was immediately assessed in the afternoon. Based on pre-training urine samples, a mean of urine color scale was 3.1 point. It meant that only 31.2% of the athletes were in dehydrated condition. However, after exercising, urine color index showed scale 4.1. And 62.5% of the athletes experienced dehydration. The results showed that there was a significant change in hydration level before and after training. It can be concluded that training for a long time increases the risk of dehydration. It is important for athletes to meet the needs of body fluids in order to avoid functional impairment in the body during sports activities.

  19. Evaluating training and information to teachers on nuclear energy issues

    International Nuclear Information System (INIS)

    Gunnell, B.J.

    1994-01-01

    In England and Wales, school programs are defined by National Curricula; the method of teaching is left for the teacher to determine. This establishes the framework within which nuclear energy issues are taught. Teachers need a good understanding of what they teach and competence in the appropriate and effective learning strategies. A range of training opportunities is available to teachers (conferences from Local Education Authority, etc.), but the attention given to nuclear energy matters and controversial issues varies significantly between them. Many teaching resources are available but alone they cannot satisfy the training needs of all teachers (practical works, visits). 2 refs

  20. Nuclear plant simulation using the Nuclear Plant Analyzer

    International Nuclear Information System (INIS)

    Beelman, R.J.; Laats, E.T.; Wagner, R.J.

    1984-01-01

    The Nuclear Plant Analyzer (NPA), a state-of-the-art computerized safety analysis and engineering tool, was employed to simulate nuclear plant response to an abnormal transient during a training exercise at the US Nuclear Regulatory Commission (USNRC) in Washington, DC. Information relative to plant status was taken from a computer animated color graphics display depicting the course of the transient and was transmitted to the NRC Operations Center in a manner identical to that employed during an actual event. Recommendations from the Operations Center were implemented during on-line, interactive execution of the RELAP5 reactor systems code through the NPA allowing a degree of flexibility in training exercises not realized previously. When the debriefing was conducted, the RELAP5 calculations were replayed by way of the color graphics display, adding a new dimension to the debriefing and greatly enhancing the critique of the exercise

  1. Continuity and Innovation. 25 years of simulator training for nuclear power plants in Germany

    International Nuclear Information System (INIS)

    Lindauer, E.

    2002-01-01

    The first training simulator for nuclear power plant personnel in Germany was commissioned twenty-five years ago. This date was rather early, both when measured by the development of the German nuclear power program and when compared with the international situation. This farsighted decision demonstrates the importance nuclear power plant operators attach to the sound training of plant personnel. The consistent, and also costly, further development over the past twenty-five years shows that this attitude has not changed. A modern simulator center was built at a total cost of approx. 250 million Euro which can be characterized briefly as follows: - 13 full simulators cover most specific features of existing nuclear power plants. These simulators are backfitted continuously and represent the current state of simulation technology. - Their experience over many years has allowed the staff of approx. 140 to accumulate a high level of know-how in training and simulator operation. Learning from experience is greatly assisted by the fact that all activities are concentrated at one center. - The way in which the center is organized ensures close cooperation with the nuclear power plants responsible for the training of their personnel. - There is a systematic training concept which is being actively developed further. Some of the main developments in recent years include training for emergencies; intensified training in behavioral aspects, such as communication and leadership; the use of simulators for emergency drills; testing of modifications, etc. (orig.) [de

  2. Korean efforts for education and training network in nuclear technology

    International Nuclear Information System (INIS)

    Han, Kyong-Won; Lee, Eui-Jin

    2007-01-01

    Nuclear energy has been a backbone for Korea's remarkable economic growth, and will continue its essential role with 18 nuclear power plants in operation, 2 more units under construction, 6 more units in planning. Korea is operating its own designed nuclear power plants, such as KSNP, 1400, as well as self-design and operation of 30 MW Hanaro research reactor. Korea makes strong efforts to develop future nuclear technology. They are the System-Integrated Modular Advanced Reactor, SMART, Korea Advanced Liquid Metal reactor, KALIMER, Hydrogen Production reactor, and Proliferation-resistant Nuclear Fuel Cycle. In parallel, Korea is establishing an Advanced Radiation Technology R and D Center and a High Power Proton Accelerator Center. International, next generation nuclear power technologies are being developed through projects such as the IAEA Innovative Nuclear Reactors and Fuel Cycle, INPRO, Generation IV International Forum, GIF, and International thermonuclear Experimental reactor, ITER. In the new millennium, Korea expects that radiation technology combined with bio, nano, and space technology will sustain our civilization. About 21,000 qualified nuclear human resources are engaged in power and non-power fields such as design and manufacturing of equipment, plant operation and maintenance, safety, RI production, R and D, etc. However, it is recognized that the first generation of nuclear work force is getting older and retired, less of our youth are studying nuclear science and engineering. Korean Government has established a promotion program on nuclear human resources development, which is needed until 2010. For the sustainable development of nuclear science and technology, it calls for more qualified human resources. We ought to encourage our youth to become more interested in nuclear studies and careers. Korea is making strong efforts to support nuclear education and training for young generations. It is believed that internationally accepted advanced

  3. Status of nuclear technology education in Mongolia

    International Nuclear Information System (INIS)

    Davaa, S.; Khuukhenkhuu, G.

    2007-01-01

    industry, scientific institutions that use nuclear technology and also will become secondary schools' and colleges' physics teachers. Requirement for Educational Institution: An institution that conducts training in Nuclear Technology major should meet requirements for providing training, sanitary and safe environment and possess sufficient physical space, technology and equipment to conduct courses included in curriculum. For each course included in the curriculum of Nuclear Technology bachelor major there should be sufficient information database and books in line with the content of courses to be taught. Nuclear physics related journals are to be regularly subscribed

  4. Initiatives in training program evaluation outside the nuclear utility industry

    International Nuclear Information System (INIS)

    Allen, C.J.

    1987-01-01

    Training literature is reviewed, and program evaluative practices outside the nuclear utility industry are reported. The findings indicate some innovations in philosophy and practice and program evaluation, although not necessarily in the context of evaluation as a route to assessing the impact of training. Program evaluation is described in the context of the impact of training, suggesting continued efforts to accept a multivariate concept of individual and organizational performance

  5. Manpower training and development for nuclear power

    International Nuclear Information System (INIS)

    Bauer, E.

    1979-01-01

    Determination of the manpower required for implementation of a nuclear programme is a very important factor from the national viewpoint, as it is drawn from many sectors of industry. The author provides a case-study of manpower requirements in France. He is in favour of the establishment of a manpower programme within the educational system, involving schools and universities since technicians and engineers have an important role to play throughout the different stages of a nuclear programme. In this context, he describes the IAEA contribution to acquisition of know-how by means of training courses for developing countries. (NEA) [fr

  6. Establishment of Experimental Equipment for Training of Professionals in the Nuclear Radiation Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, S. K.; Seo, K. W.; Joo, Y. C.; Kim, I. C.; Woo, C. K.; Yoo, B. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-09-15

    The main purpose of this project is to establish experimental equipment for training of professionals and students in the field of radiation measurement, and settle the foundation for the advanced education system and program. The priority for the experimental equipment had been deduced by reviewing of the Nuclear Training and Education Center of KAERI and other country's training courses. Equipment for training of radiation professionals are High-Purity Germanium spectroscopic systems, alpha analyzers, and hand-held gamma/neutron inspector systems. For the basic experiments, electric personal dosimeters and a reader, radiation survey meters, and various alpha, beta and gamma radiation isotopes have been equipped. Some old or disused equipment and devices were disposed and re-arranged, and a new experiment lab had been settled for gamma spectroscopy. Along with the preparation of equipment, 14 experimental modules have been selected for practical and essential experiments training to professionals from industries, universities and research organizations. Among the modules, 7 important experiment notes had been prepared in Korea and also in English. As a consequence, these advanced radiation experimental setting would be a basis to cooperate with IAEA or other countries for international training courses. These activities would be a foundation for our contribution to the international nuclear society and for improving our nuclear competitiveness. The experimental equipment and application notes developed in this study will be used also by other training institutes and educational organizations through introducing and encouraging to use them to the nuclear society.

  7. Establishment of Experimental Equipment for Training of Professionals in the Nuclear Radiation Measurement

    International Nuclear Information System (INIS)

    Ahn, S. K.; Seo, K. W.; Joo, Y. C.; Kim, I. C.; Woo, C. K.; Yoo, B. H.

    2008-09-01

    The main purpose of this project is to establish experimental equipment for training of professionals and students in the field of radiation measurement, and settle the foundation for the advanced education system and program. The priority for the experimental equipment had been deduced by reviewing of the Nuclear Training and Education Center of KAERI and other country's training courses. Equipment for training of radiation professionals are High-Purity Germanium spectroscopic systems, alpha analyzers, and hand-held gamma/neutron inspector systems. For the basic experiments, electric personal dosimeters and a reader, radiation survey meters, and various alpha, beta and gamma radiation isotopes have been equipped. Some old or disused equipment and devices were disposed and re-arranged, and a new experiment lab had been settled for gamma spectroscopy. Along with the preparation of equipment, 14 experimental modules have been selected for practical and essential experiments training to professionals from industries, universities and research organizations. Among the modules, 7 important experiment notes had been prepared in Korea and also in English. As a consequence, these advanced radiation experimental setting would be a basis to cooperate with IAEA or other countries for international training courses. These activities would be a foundation for our contribution to the international nuclear society and for improving our nuclear competitiveness. The experimental equipment and application notes developed in this study will be used also by other training institutes and educational organizations through introducing and encouraging to use them to the nuclear society

  8. IAEA Technical Co-operation activities: Asia and the Pacific. Workshop on training nuclear laboratory technicians

    International Nuclear Information System (INIS)

    Roeed, S.S.

    1976-01-01

    The workshop was held to exchange information on existing facilities and programmes in Asia and the Pacific for training nuclear laboratory technicians, to identify future training needs and to assess the need for IAEA's involvement in this field. As the participants outlined the requirements for nuclear laboratory technician training and the facilities available in their respective countries, it became evident that, in addition to the training of radioisotope laboratory technicians, they also wished to review the need for technician training for the operation of nuclear power plants and industrial application of atomic energy. The terms of reference of the workshop were extended accordingly. The opening address by Chang Suk Lee, the Korean Vice Minister of Science and Technology, noted the valuable contribution to quality control and other industrial uses that nuclear techniques have made in his country. He also reviewed the application of nuclear techniques in Korean agriculture and medicine. The participants explored various forms of co-operation that could be established between countries of the region. Exchange programmes, not only for students but also for expert teachers, and the exchange or loan of equipment were suggested. It was felt that some generalized training courses could be organized on a regional basis, and two countries advocated the setting up of a regional training centre. One suggestion was to arrange regional training courses in special fields that would move from one country to another. The need was felt for periodic regional meetings on training methods, course content and other questions relating to training of laboratory technicians. The IAEA was requested to act as a clearinghouse for information on available training facilities in the region and to advise on the curricula for technician training courses. The Agency was also asked to organize short courses for the training of instructors of technicians in the various fields of atomic

  9. Nuclear power in the Asia-Pacific region. Current status and future perspective

    International Nuclear Information System (INIS)

    Hao, Jia; Otsuki, Takashi; Irie, Kazutomo

    2017-01-01

    This paper presents the current status and future perspective of nuclear power in the APEC region. We design three scenarios, including Low-nuclear Scenario, Business-as-Usual Scenario (BAU) as well as High-nuclear Scenario, in order to quantitatively evaluate contribution of nuclear power to the low-carbon energy system. Preliminary results from the modeling are presented in the paper, and the drivers and challenges for nuclear power development in the APEC region are discussed. (author)

  10. Safety and health education and training of contract workers in nuclear power plants

    International Nuclear Information System (INIS)

    Matsumoto, Akikuni; Hara, Hisayuki; Nawata, Kazumitsu

    2008-01-01

    Nuclear power plants have used many contract workers. Their safety and health conditions are very important in Japan. Several amendments, which deregulate temporary personnel service and employment agency markets, have been done in recent years. The number of contract and temporary help agency workers have been rapidly increasing especially since the 1990s. As a result, ensuring the level of safety and health education and training of workers becomes a serious problem. This paper examines the possibility that the level of safety training of the contract workers is less than that of the direct-hire employees in nuclear power plants. We show that (1) the use of contract workers could be less efficient for ensuring the level of safety training, and (2) nuclear power plants still use contract workers in some situations in spite of the loss of efficiency. We also study legislations and past cases relating to nuclear power generation. We find that there are some structural problems that might make the contract workers less trained. (author)

  11. Current status of endoscopic simulation in gastroenterology fellowship training programs.

    Science.gov (United States)

    Jirapinyo, Pichamol; Thompson, Christopher C

    2015-07-01

    Recent guidelines have encouraged gastroenterology and surgical training programs to integrate simulation into their core endoscopic curricula. However, the role that simulation currently has within training programs is unknown. This study aims to assess the current status of simulation among gastroenterology fellowship programs. This questionnaire study consisted of 38 fields divided into two sections. The first section queried program directors' experience on simulation and assessed the current status of simulation at their institution. The second portion surveyed their opinion on the potential role of simulation on the training curriculum. The study was conducted at the 2013 American Gastroenterological Association Training Directors' Workshop in Phoenix, Arizona. The participants were program directors from Accreditation Council for Graduate Medical Education accredited gastroenterology training programs, who attended the workshop. The questionnaire was returned by 69 of 97 program directors (response rate of 71%). 42% of programs had an endoscopic simulator. Computerized simulators (61.5%) were the most common, followed by mechanical (30.8%) and animal tissue (7.7%) simulators, respectively. Eleven programs (15%) required fellows to use simulation prior to clinical cases. Only one program has a minimum number of hours fellows have to participate in simulation training. Current simulators are deemed as easy to use (76%) and good educational tools (65%). Problems are cost (72%) and accessibility (69%). The majority of program directors believe that there is a need for endoscopic simulator training, with only 8% disagreeing. Additionally, a majority believe there is a role for simulation prior to initiation of clinical cases with 15% disagreeing. Gastroenterology fellowship program directors widely recognize the importance of simulation. Nevertheless, simulation is used by only 42% of programs and only 15% of programs require that trainees use simulation prior to

  12. Review of the 6th Pacific Basin Nuclear Conference

    International Nuclear Information System (INIS)

    Zhao Renkai; Jiang Yue; Yao Minzhi; Tong Yunxian; Ruan Keqiang; Luo Cheng; Liu Dingqin; Yang Chuande; Tu Zhuguo.

    1987-01-01

    This paper reviews the 6th Pacific Basin Nuclear Conference on eight monographs. These monographs are present status and prospects of nucliar energy, advancement of commercial power reactor, advanced nuclear reactor and research and test reactor, perspectives on nuclear power safety in 1990's, application of radioisotope and irradiation technique, advancement in nuclear fuel, improvement of nuclear power plant management and regional cooperation and personnel training

  13. Enhancing international radiation/nuclear detection training opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Thomas L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bersell, Bridget M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Booker, Paul M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Anderson, Gerald E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Leitch, Rosalyn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meagher, John B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Siefken, Rob R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spracklen, James L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-23

    The United States has worked domestically to develop and provide radiological and nuclear detection training and education initiatives aimed at interior law enforcement, but the international community has predominantly focused efforts at border and customs officials. The interior law enforcement officials of a State play a critical role in maintaining an effective national-level nuclear detection architecture. To meet this vital need, DNDO was funded by the U.S. Department of State (DOS) to create and deliver a 1-week course at the International Law Enforcement Academy (ILEA) in Budapest, Hungary to inform interior law enforcement personnel of the overall mission, and to provide an understanding of how the participants can combat the threats of radiological and nuclear terrorism through detection efforts. Two courses, with approximately 20 students in each course, were delivered in fiscal year (FY) 2013, two were delivered in FY 2014 and FY 2015, and as of this report’s writing more are planned in FY 2016. However, while the ILEA courses produced measurable success, DNDO requested Pacific Northwest National Laboratory (PNNL) research potential avenues to further increase the course impact.In a multi-phased approach, PNNL researched and analyzed several possible global training locations and venues, and other possible ways to increase the impact of the course using an agreed-to data-gathering format.

  14. Nuclear utility education and training becoming too plant specific?

    International Nuclear Information System (INIS)

    Wicks, F.

    1986-01-01

    As the Supervisor of a university nuclear reactor and operations curriculum, the author has also been offering education and training programs for nuclear utility technical support and operations personnel. Similar results have been reported by other universities offering similar programs. These programs also provide very important benefits to university nuclear engineering departments in terms of much needed revenues during this time of declining student enrollment and also by the information flow from the nuclear utility participants to the university personnel, which can yield both improved courses and identify research opportunities. University programs serve an important complementary function to plant-specific programs and should be continued and supported

  15. Nuclear liability legislation in Russia - current status and expected developments

    International Nuclear Information System (INIS)

    Karpov, A. E.; Borisov, D. G.

    2000-01-01

    Present report is provided by the experts of the Russian insurance business, a company member of the Russian Nuclear Pool, and not the experts of the Ministry of Atomic Energy of Russian Federation (RF Minatom). Considering the above, the following document will outline the current status of nuclear liability legislation and insurance in Russia from a viewpoint of the insurance companies and not RF Minatom. (author)

  16. The World Nuclear Industry Status Report 2016

    International Nuclear Information System (INIS)

    Schneider, Mycle; Froggatt, Antony; Hazemann, Julie; Katsuta, Tadahiro; Ramana, M.V.; Fairlie, Ian; Maltini, Fulcieri; Thomas, Steve; Kaaberger, Tomas

    2016-07-01

    The World Nuclear Industry Status Report 2015 provides a comprehensive overview of nuclear power plant data, including information on operation, production and construction. The WNISR assesses the status of new-build programs in current nuclear countries as well as in potential newcomer countries. Nuclear power generation in the world increased by 1.3%, entirely due to a 31% increase in China. Ten reactors started up in 2015-more than in any other year since 1990-of which eight were in China. Construction on all of them started prior to the Fukushima disaster. Eight construction starts in the world in 2015-to which China contributed six-down from 15 in 2010 of which 10 were in China. No construction starts in the world in the first half of 2016. The number of units under construction is declining for the third year in a row, from 67 reactors at the end of 2013 to 58 by mid-2016, of which 21 are in China. China spent over US$100 billion on renewables in 2015, while investment decisions for six nuclear reactors amounted to US$18 billion. Eight early closure decisions taken in Japan, Sweden, Switzerland, Taiwan and the U.S. Nuclear phase-out announcements in the U.S. (California) and Taiwan. In nine of the 14 building countries all projects are delayed, mostly by several years. Six projects have been listed for over a decade, of which three for over 30 years. China is no exception here, at least 10 of 21 units under construction are delayed. With the exception of United Arab Emirates and Belarus, all potential newcomer countries delayed construction decisions. Chile suspended and Indonesia abandoned nuclear plans. AREVA has accumulated US$11 billion in losses over the past five years. French government decides euro 5.6 billion bailout and breaks up the company. Share value 95 percent below 2007 peak value. State utility EDF struggles with US$ 41.5 billion debt, downgraded by S and P. Chinese utility CGN, EDF partner for Hinkley Point C, loses 60% of its share value

  17. Nuclear power plant personnel qualifications and training. TSORT: an automated technique to assign tasks to training strategies. Volume 1

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1984-10-01

    This report discusses TSORT, a technique to assist the Nuclear Regulatory Commission (NRC) in evaluating whether training program developers have allocated nuclear power plant tasks to appropriate training strategies. The TSORT structure is presented including training categories selected, dimensions of task information considered, measurement metrics used, and a guide to application. TSORT is implemented as an automated software tool for an IBM-PC. It uses full color graphics and interactive menu selection to provide NRC with a variety of evaluation options including: rank ordering of training strategies reasonable for each task, rank ordering of tasks within strategies, and a variety of special analyses. The program code is also presented along with a comprehensive example of 20 realistic tasks illustrating each of 17 options available

  18. The Czech Republic programme and experiences on training and qualification for NPPs personnel

    International Nuclear Information System (INIS)

    Kovar, P.

    1993-01-01

    The nuclear power programme in Czech Republic is based on commercial use of WWER-type reactors. This document discusses future scope of nuclear programme in Czech Republic and status of training programme for NPP personnel

  19. Proceedings of the international topical meeting on nuclear and hazardous waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book contains the proceedings of the 1988 International Topical Meeting on Nuclear and Hazardous Waste Management. Included are the following articles: Defense radioactive waste management: status and challenges, Secrets of successful siting legislation for low-level radioactive waste disposal facilities, A generic hazardous waste management training program, Status of industry standards for decommissioning of nuclear facilities

  20. Current status and technology development tendency of research reactors in china

    International Nuclear Information System (INIS)

    Ke Guotu; Shen Feng; Zhao Shouzhi; Zhang Weiguo; Yuan Luzheng

    2009-01-01

    The current status and development history of domestic and abroad research reactors (RRs) are mentioned. The representative RRs and their respective technology characteristics are introduced. The utilizations of China's RRs, mainly included as nuclear engineering technology, basic research applications of nuclear technology, teaching and personnel training, are explained. (authors)

  1. Asian network for education in nuclear technology: An initiative to promote education and training in nuclear technology

    International Nuclear Information System (INIS)

    Kosilov, A.

    2006-01-01

    It has become increasingly clear that there is a need to consolidate the efforts of academia and industry in education and training. Partnerships of operating organizations with educational institutions and universities that provide qualified professionals for the nuclear industry should be assessed based upon medium and long term needs and strengthened where needed. In this regard the IAEA is taking the necessary action to initiate this kind of partnership through continuous networking. The paper describes the IAEA approach to promoting education and training through the Asian Network for Education in Nuclear Technology (ANENT). (author)

  2. Shaping talent for sustainable business development - Nuclear training practices

    International Nuclear Information System (INIS)

    Caillot, V.; Thoral, F.

    2007-01-01

    Full text: The AREVA group, which is committed to offering its customers technological solutions for reliable CO 2 -free power generation, is both a designer and vendor of nuclear units and operator of nuclear facilities. The group's ambitions are to maintain its knowledge capabilities and develop skills at the level necessary to respond to its business objectives around the world. The AREVA Human Resources department has developed an action plan to support business strategy which aims to accelerate its investment in people, to reinforce recruitment and retain high quality talents and valuable skills and knowledge. Today, there is a global challenge for attracting the best talent and becoming an employer of choice. The group must be creative in attracting, retaining, mobilising, engaging, developing and rewarding its people. AREVA has 61 100 employees worldwide, of which 38 000 work in nuclear activities. In 2006, some 10% of the nuclear workforce represented newcomers, and the group anticipates recruiting a similar significant ratio in 2007. The group has to be ready to tackle a surge in recruitment which is believed will continue over the next 5 years. AREVA has developed, on an international level, networks and partnerships with academic institutions. New programs are being created and promoted to prepare for the integration of future skills needed in the nuclear business. The group has coordinated and pooled resources to gain efficiencies and to strengthen its presence on the employment market. Plans are in place for employee integration and development, mobility, and managing the transfer of knowledge and specific skills. In this context, internal professional training paths are being developed and reinforced, including geology of uranium, dismantling, reactors, nuclear safety and the environment. AREVA is developing a common methodology to lever the transfer of knowledge through training modules, sharing experience and mentoring. Mentoring programs have been

  3. The Text of a Regional Co-operative Agreement for Research, Development and Training related to Nuclear Science and Technology. Latest Status. Declarations/Reservations

    International Nuclear Information System (INIS)

    1972-01-01

    The text of a Regional Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology between the Agency and Member States is reproduced herein for the information of all Members. Section 9 thereof specifies the Members that may become party to it

  4. The Text of a Regional Co-operative Agreement for Research, Development and Training related to Nuclear Science and Technology. Latest Status. Declarations/Reservations

    International Nuclear Information System (INIS)

    1972-01-01

    The text of a Regional Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology between the Agency and Member States is reproduced herein for the information of all Members. Section 9 thereof specifies the Members that may become party to it [es

  5. The Text of a Regional Co-operative Agreement for Research, Development and Training related to Nuclear Science and Technology. Latest Status. Declarations/Reservations

    International Nuclear Information System (INIS)

    1972-01-01

    The text of a Regional Co-operative Agreement for Research, Development and Training Related to Nuclear Science and Technology between the Agency and Member States is reproduced herein for the information of all Members. Section 9 thereof specifies the Members that may become party to it [fr

  6. Nuclear power plant diagnostics study at the Midland training simulator

    International Nuclear Information System (INIS)

    Reifman, J.; Rank, P.; Lee, J.C.

    1991-01-01

    Training simulators provide a real world environment for testing advanced diagnostic and control systems as an aid to nuclear power plant operators. The simulators not only duplicate the hardware din the actual control room, allowing for analysis of man-machine interface, but also represent the dynamic behavior of the reference plant in real-time, in a realistic manner. Training simulators provide the means to representing the reference plant operations in a wide range of operation conditions including off-normal and emergency conditions. Transient events with very low probability of occurrence can then be represented and used to test the capabilities of advanced diagnostic and control systems. For these reasons, full-scope operator training simulators have been used as a test bed for a number of advanced diagnostic concepts. The University of Michigan and Consumers Power Company have been collaborating in a program devoted to the development and study of advanced concepts for automatic diagnostics and control of nuclear power plants. The program has been focused on the use of the full-scope operator training Midland Nuclear Power Plant Unit 2 (MNP-2) Simulator for development, testing, and verification of advanced diagnostics concepts. In their current efforts, the authors have developed two artificial intelligent (AI) diagnostic concepts that have been applied to the MNP-2 Simulator: the systematic generation and updating of a rule-based knowledge system for nuclear power plant diagnostics and a nonlinear parameter estimation algorithm called the simulation filter. The simulation filter algorithm is used with the MNP-2 Simulator to improve the simulation of the Three Mile Island Unit 2 (TMI-2) accident. 11 refs., 4 figs

  7. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training

    Science.gov (United States)

    Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325

  8. Regulatory evaluation of nuclear power plant on-the-job training programmes

    International Nuclear Information System (INIS)

    Wilkinson, J.

    1996-01-01

    It is now well recognized internationally in the nuclear industry that a Systematic Approach to Training (SAT), as described in IAEA-TECDOC-525, represents the currently most effective method of providing effective, efficient training to Nuclear Power Plant (NPP) personnel. For this reason the Canadian regulator, the Atomic Energy Control Board (AECB), has made SAT a requirement for the training of NPP personnel whose job activities could affect plant or public safety. In this respect the AECB recognizes that the SAT process will dictate on-the-job-training (OJT) and the prudent use of Job Performance Measures (JPMs) as the most effective method of providing parts of the required training to some work groups. The AECB has adopted a process of training program evaluation for NPP operations personnel which comprises methods to evaluate all types of training including OJT. This paper describes some variations which have been identified in the conduct of OJT at Canadian utilities. It then presents the three step process established by the AECB to effectively evaluate training programs expertise is required. The concept of utility self-evaluations is introduced. Finally, the importance of consistency on the part of the regulator in following a systematic approach to evaluation through the application of a viable standard is addressed. (author). 2 figs

  9. Technicians for the Brazilian nuclear power programme

    International Nuclear Information System (INIS)

    Martins Pinto, C.S.; Spitalnik, J.; Meakins, E.J.; Hurley, I.

    1980-01-01

    The technician has a responsible role to fulfil in nuclear industry, acting as a bridge between the engineer and the skilled worker. Technicians must have sufficient theoretical knowledge to communicate with engineers, and a thorough understanding of technological practice; the nuclear industry demands both theory and practice of a high standard. In Brazil the essential role of the technician in industry is in general recognized. However, the lack of a nationally recognized Nuclear Technician and Nuclear Technologist qualification, as well as a desire of the best technicians to quality as engineers and, in some areas, inadequate salaries has resulted in a shortage of well-trained technicians. A first step to ensure availability of these technicians is to improve their career prospects and status through definition of appropriate career standards and salaries. Practical training by the industry can only be given in factories, plants and construction sites where nuclear work is done. It is proposed to extend apprentice training centres at three sites, to give the most promising students after two years of apprentice training two further years of instruction and practice to qualify as Nuclear Technicians. The training centres are chosen to cover the three sectors of nuclear industry where special training of technicians is important: manufacture and construction; operation and maintenance; and testing and analysis for process control and safety. (author)

  10. Analysis phase of systematic approach to training (SAT) for nuclear plant personnel

    International Nuclear Information System (INIS)

    2000-08-01

    The IAEA and many Member States have recognized the benefits of a systematic approach when training nuclear power plant personnel. The Systematic Approach to Training (SAT) fully described in the IAEA publications, is recommended as the best practice for attaining and maintaining the competence and qualification of NPP personnel. Typically, SAT is organised into distinct phases of Analysis, Design, Development, Implementation, and Evaluation, and relies on Feedback as a process for continuous improvement This document is addressed to nuclear power operating organisations facing the challenge of developing training programs for their own personnel. The intention was to provide Member States with examples of the Analysis phase to form foundation of SAT-based training programs. This document is also available in CD form

  11. Current status of training and informing teachers on nuclear energy education

    International Nuclear Information System (INIS)

    Ondo, T.

    1994-01-01

    In Japan, school education is conducted under a national unified system and the subject of nuclear energy is dealt with at lower and upper secondary level in social studies and science lessons. However, since opposition to nuclear energy is strong in Japan, the Ministry of Education does not provide any education on the subject for teachers. Some organizations, not related to the Ministry of Education, provide information for teachers (experiments, computer-assisted instruction, forums, conferences). A survey of awareness on energy and environment, carried out by JAERO amongst Japanese and European upper secondary school students, is presented

  12. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (Spanish Edition)

    International Nuclear Information System (INIS)

    2013-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  13. Clinical Training of Medical Physicists Specializing in Nuclear Medicine (French Edition)

    International Nuclear Information System (INIS)

    2012-01-01

    The application of radiation in human health, for both diagnosis and treatment of disease, is an important component of the work of the IAEA. The responsibility for the increasingly technical aspects of this work is undertaken by the medical physicist. To ensure good practice in this vital area, structured clinical training programmes are required to complement academic learning. This publication is intended to be a guide to the practical implementation of such a programme for nuclear medicine. There is a general and growing awareness that radiation medicine is increasingly dependent on well trained medical physicists who are based in a clinical setting. However an analysis of the availability of medical physicists indicates a large shortfall of qualified and capable professionals. This is particularly evident in developing countries. While strategies to increase educational opportunities are critical to such countries, the need for guidance on structured clinical training was recognized by the members of the Regional Cooperative Agreement for Research, Development and Training related to Nuclear Science and Technology (RCA) for the Asia-Pacific region. Consequently, a technical cooperation regional project (RAS6038) under the RCA programme was formulated to address this need in this region by developing suitable material and establishing its viability. Development of a clinical training guide for medical physicists specialising in nuclear medicine was started in 2009 with the appointment of a core drafting committee of regional and international experts. The publication drew on the experience of clinical training in Australia, Croatia and Sweden and was moderated by physicists working in the Asian region. The present publication follows the approach of earlier IAEA publications in the Training Course Series, specifically Nos 37 and 47, Clinical Training of Medical Physicists Specializing in Radiation Oncology and Clinical Training of Medical Physicists

  14. Enhanced erythrocyte antioxidant status following an 8-week aerobic exercise training program in heavy drinkers.

    Science.gov (United States)

    Georgakouli, Kalliopi; Manthou, Eirini; Fatouros, Ioannis G; Georgoulias, Panagiotis; Deli, Chariklia K; Koutedakis, Yiannis; Theodorakis, Yannis; Jamurtas, Athanasios Z

    2018-06-01

    Alcohol-induced oxidative stress is involved in the development and progression of various pathological conditions and diseases. On the other hand, exercise training has been shown to improve redox status, thus attenuating oxidative stress-associated disease processes. The purpose of the present study was to evaluate the effect of an exercise training program that has been previously reported to decrease alcohol consumption on blood redox status in heavy drinkers. In a non-randomized within-subject design, 11 sedentary, heavily drinking men (age: 30.3 ± 3.5 years; BMI: 28.4 ± 0.86 kg/m 2 ) participated first in a control condition for 4 weeks, and then in an intervention where they completed an 8-week supervised aerobic training program of moderate intensity (50-60% of the heart rate reserve). Blood samples were collected in the control condition (pre-, post-control) as well as before, during (week 4 of the training program), and after intervention (week 8 of the training program). Samples were analyzed for total antioxidant capacity (TAC), thiobarbituric acid reactive substances (TBARS), protein carbonyls (PC), uric acid (UA), bilirubin, reduced glutathione (GSH), and catalase activity. No significant change in indices of redox status in the pre- and post-control was observed. Catalase activity increased (p program enhanced erythrocyte antioxidant status in heavy drinkers, indicating that aerobic training may attenuate pathological processes caused by alcohol-induced oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Development of the scenario-based training system to reduce hazards and prevent accidents during decommissioning of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, KwanSeong; Choi, Jong-Won; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Kang, ShinYoung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Decommissioning of nuclear facilities has to be accomplished by assuring the safety of workers. Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities. In the end, the safety during decommissioning of nuclear facilities will be guaranteed under the principle of ALARA.

  16. Development of the scenario-based training system to reduce hazards and prevent accidents during decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Jeong, KwanSeong; Choi, Jong-Won; Moon, JeiKwon; Choi, ByungSeon; Hyun, Dongjun; Lee, Jonghwan; Kim, IkJune; Kim, GeunHo; Kang, ShinYoung

    2015-01-01

    Decommissioning of nuclear facilities has to be accomplished by assuring the safety of workers. Decommissioning workers need familiarization with working environments because working environment is under high radioactivity and work difficulty during decommissioning of nuclear facilities. On-the-job training of decommissioning works could effectively train decommissioning workers but this training approach could consume much costs and poor modifications of scenarios. The efficiency of virtual training system could be much better than that of physical training system. This paper was intended to develop the training system to prevent accidents for decommissioning of nuclear facilities. The requirements for the training system were drawn. The data management modules for the training system were designed. The training system of decommissioning workers was developed on the basis of virtual reality which is flexibly modified. The visualization and measurement in the training system were real-time done according as changes of the decommissioning scenario. It can be concluded that this training system enables the subject to improve his familiarization about working environments and to prevent accidents during decommissioning of nuclear facilities. In the end, the safety during decommissioning of nuclear facilities will be guaranteed under the principle of ALARA

  17. The status of Nuclear Power Plant personnel training and qualification in Hungary, 2002

    International Nuclear Information System (INIS)

    Kiss, I.

    2003-01-01

    In recent years, Hungary has experienced a stable and smooth economic development. The country is prepared and looking forward to the accession to the EU, political stability characterizes public life and decreasing inflation unemployment rate are typical to the domestic market. In this context, the energy demand increases in a slow but steady rate. From the beginning of 2003, large customers will have been given the freedom to procure electric energy from the liberal world market. The life extension of NPPs lays significant emphasis on the thoughtful management of the human resources. Currently, the mean age of the plant personnel is 46 years and the age distribution reflects that the core of the plant staff is yet composed of professionals having worked for the plant since the very beginning. In 2000, the plant's Human Resources Division, for excellence in HRM, commenced the establishment of an integrated human resource management system for a new organizational structure. The management of the previously mentioned, already realized technical and human changes, as well as of the challenges of the future put the in-site training organization on the test. For this, a good basis is ensured by the training developments in the training infrastructure, methodology and staff, accomplished in the period between 1994-1998 - primarily in frame of the Hungarian Model Project. Today the Training Department, subordinated to the Human Resources Division, works with 70 persons out of which 25 instructors perform skills and technological training activities. The instructor staff partly imported from maintenance and operations areas and partly developed from young university graduates successfully managed with the training tasks associated with the grand plant reconstruction programs. The professional and age composition of the instructors allow for a smooth transition and transfer of knowledge and experience accumulated at the plant as well as for the apprehension of new

  18. Game-based training environment for nuclear plant control room

    International Nuclear Information System (INIS)

    Hung Tamin; Sun Tienlung; Yang Chihwei; Yang Lichen; Cheng Tsungchieh; Wang Jyhgang

    2011-01-01

    Nuclear power plant's safety is very important problem. In this very conscientious environment if operator has a little mistake, they may threaten with many people influence their safety. Therefore, operating training of control room is very important. However, the operator training is in limited space and time. Each operator must go to simulative control room do some training. If we can let each trainee having more time to do training and does not go to simulative control room. It may have some advantages for trainee. Moreover, in the traditional training ways, each operator may through the video, teaching manual or through the experienced instructor to learn the knowledge. This training way may let operator feel bored and stressful. So, in this paper aims, we hope utilizing virtual reality technology developing a game-based virtual training environment of control room. Finally, we will use presence questionnaire evaluating realism and feasibility of our virtual training environment. Expecting this initial concept of game-based virtual training environment can attract trainees having more learning motivation to do training in off-hour. (author)

  19. International Nuclear Security Education Network (INSEN) and the Nuclear Security Training and Support Centre (NSSC) Network

    International Nuclear Information System (INIS)

    Nikonov, Dmitriy

    2013-01-01

    International Nuclear Security Education Network established in 2010: A partnership between the IAEA and universities, research institutions and other stakeholders - •Promotion of nuclear security education; • Development of educational materials; • Professional development for faculty members; • Collaborative research and resource sharing. Currently over 90 members from 38 member states. Mission: to enhance global nuclear security by developing, sharing and promoting excellence in nuclear security education. Nuclear Security Support Centre: Primary objectives are: • Develop human resources through the implementation of a tailored training programme; • Develop a network of experts; • Provide technical support for lifecycle equipment management and scientific support for the detection of and the response to nuclear security events

  20. Current status and future prospects on nuclear industry in Korea

    International Nuclear Information System (INIS)

    Lee, Joongjae

    2006-01-01

    It is ny great pleasure to have this chance of speaking at twenty-first KAIF/KNS Annual Conference, with the subject of the current status and future prospects of nuclear industry in Korea. As you all know, since the start of operation in Obninsk, the former Soviet Union, on June 26th, 1954, nuclear generation in the world has expanded continuously for the past 50 years. In 1973, when the first oil crisis hit the world, there were 147 nuclear power plants in operation, supplying only 0.8% of the world energy demand. About 30 years later, by the end of last year, 443 plants were in operation in 32 countries, supplying about 16% of the world power demand. Nuclear power generation is greatly contributing to the energy security of many countries and preservation of global environments. Recently, countries all over the world are becoming aware of the values and importance of nuclear energy which can help respond to energy crises caused by a sharp rise in oil prices and protect the earth from global warming. Due to its high energy density and ability to secure fuel supply at a lower cost, in addition to its cleanliness resulting from almost no emission of greenhouse gases, nuclear power generation is the practical alternative for energy security and the prevention of global warming. However, in the rapidly changing 21st century, the nuclear industries of the world, as well as Korea, are facing more challenges than ever before. The political and social disputes on nuclear generation are continuing while we all are facing urgent challenges, including the concerns about the safety of nuclear generation, procuring site to build nuclear power plants, and the improvement of competitiveness. Please allow me to remind you that it is very important for the world's nuclear societies to cooperate together in order to overcome diverse difficulties along our path and to contribute to the development of mankind and preservation of natural environments with nuclear power as a

  1. Global Status of Nuclear Power: Prospects and Challenges

    International Nuclear Information System (INIS)

    Tayobeka, B. M.

    2010-01-01

    Global energy requirements and the share of electricity in total energy consumption are increasing rapidly, and the contribution of nuclear power is projected to increase significantly. Out of the 29 countries currently using nuclear power for electricity generation, 22 intend to allow new plants to be built, and, of those, the majority are actively supporting the increased use of nuclear power, some by providing incentives. Most of these countries are expected to build reactors with a generating capacity of over 1000 MW(e). Only three countries continue to have a policy to phase out the use of nuclear energy in the future by not replacing existing operating nuclear power plants and with no consideration of the option of new nuclear plants.In addition, a growing number of countries are expressing interest in introducing nuclear power. Of the more than 60 countries that have expressed such an interest in recent years, over 20 are actively considering nuclear power programmes to meet their energy needs and the others have expressed interest in understanding the issues associated with the introduction of nuclear power.The drivers for rising expectations for nuclear power include: growing energy demand, concern over national energy supply security, the increasingly volatile price of fossil fuels and global environmental concerns. The drivers appear to be the same for countries expanding existing nuclear programmes and those seeking to introduce programmes. The projections made by different international organizations indicate a significant growth in the use of nuclear power. The IAEA projections indicate a world total for nuclear electrical generating capacity of between 445 and 543 GW(e) by 2020 and between 511 and 807 GW(e) by 2030. This paper takes a detailed look into the global status of nuclear power, highlighting challenges and prospects of the technology going into the next century.(author).

  2. Recruitment training and licensing of operating personnel for nuclear power plants

    International Nuclear Information System (INIS)

    Palabrica, R.J.

    1979-01-01

    This article covers the step-by-step and most rigid recruitment, training, and licensing procedures undertaken in the selection for personnel involved in nuclear power plant operations. These procedures are true to all countries. However, for developing countries such as the Philippines, a bachelor's degree may be required as compared with the U.S. wherein a high school diploma is the minimum requirement. Because of the complexity of a nuclear facility, the work will require highly capable individuals with mature judgement who can render correct decisions even under highly stressed conditions. Thus during the selection and recruitment of applicants for the operator position, they are not only given aptitude tests but are also subjected to a series of psychological examintions. Once they are accepted, they are made to undergo a comprehensive and in-depth training to ensure that they will be capable of operating the nuclear power plant safely and effectively. Finally, those prospective operators have to pass licensing examinations in order to prove their competence and skills. Retraining programs follow after their training to maintain their skills. (RTD)

  3. Measuring the Return on Investment of Nuclear Security Training: The Case of the WINS Academy Professional Society

    International Nuclear Information System (INIS)

    Battistella, B.; Howsley, R.; Johnson, D.

    2015-01-01

    The challenges inherent in managing nuclear and radiological materials are complex and growing; ensuring that such materials remain secure requires competent management supported by ongoing training. The nuclear industry is increasingly becoming aware of the need for nuclear security: numerous dedicated training centres have been established worldwide and the IAEA holds approximately 60 international nuclear security training events annually. International training programmes have been conducted in various fields over decades but assessing their value and having the assurance that these training have had a sustainable impact remain difficult. In the field of nuclear security training, no assessment is being made of the degree to which the investment made is making a difference in building sustainable capacity and capability. This paper aims to discuss a methodology to assess the return on investment of nuclear security training. WINS has established a new professional society called the WINS Academy Alumni, for those individuals who have achieved certification through the WINS Academy. This platform proposes a structure, based on established competency frameworks, through which to measure the return on investment and performance improvement of nuclear security training. The objectives of the WINS Academy society are to stay engaged with certified Alumni, track their continued professional development progress, provide them with additional opportunities, and encourage their continued security competence through recertification. We envision that these certified practitioners will in turn promote certification and continual professional development among their peers to help build a network of security-trained professionals that will lead to meaningful and sustainable changes to security culture worldwide. In the long run (5–10 years), we envision that this group will be at the forefront of new professional requirements for nuclear security competence, with

  4. The regulatory evaluation of radiation protection training programmes at Canadian nuclear power plants

    International Nuclear Information System (INIS)

    Legare, M.; Tennant, D.

    1996-01-01

    The responsibility for providing the necessary assurance that the use of nuclear energy in Canada does not pose undue risk to health, safety, security and the environment is vested with the Atomic Energy Control Board (AECB). This responsibility has led the Operator Certification Division of the AECB to develop methods to obtain assurance that nuclear power plant operations personnel are well trained and adequately competent to perform their duties. The features of the AECB approach to evaluation of training programmes based on a systematic approach to training is described. An overview of the Canadian nuclear power plants' radiation protection qualification levels is given. The developing evaluation process is contributing to the improvement of licensee radiation protection training programmes. This is making possible the transfer of part of the responsibility for licensed personnel radiation protection qualification assessment to the licensees, thus enabling a reduction in the operator certification division formal qualification activities. (author)

  5. Overview of the French offer in nuclear training: 60 years to serve development and knowledge transfer

    International Nuclear Information System (INIS)

    Fanjas, Y.; Navon-Gross, A.; Mougel, B.; Verdier, A.

    2017-01-01

    As early as the beginning of its nuclear program, France has developed a wide range of higher education programs and occupational training in nuclear sciences, nuclear technologies and nuclear engineering. INSTN (Institute for Nuclear Sciences and Nuclear Technologies) was founded in 1956 inside CEA premises at Saclay to issue the diploma of 'ingenieur en genie atomique'. This diploma is still delivered and celebrated its 60. anniversary in 2016. A large course offering has been added to the sole initial INSTN diploma. Throughout France and each year about 2000 students are awarded a diploma opening the gates of nuclear industry or research from vocational baccalaureates (130) to doctoral thesis (200) via engineer/master degrees (1270). Continuous training has also been developed, employees from the nuclear industry benefit from 16 days a year of training in average. French high education systems are open to foreign students and 9 master degrees in nuclear engineering are entirely taught in English. (A.C.)

  6. Training for effective environmental protection in the nuclear industry

    International Nuclear Information System (INIS)

    Parkinson, D.; Brake, J.; Hickman, C.; Tamm, J.

    2007-01-01

    This paper examines the role of environmental training in the delivery of effective environmental protection programs for construction projects in the nuclear industry. The paper uses a case study approach, based on Point Lepreau Generating Station's Refurbishment Project, to demonstrate how the underpinning principles of 'training, awareness and competence' can be delivered within a structured environmental management framework, to achieve sustained excellence in environmental management and performance. Key issues addressed by the paper include the early identification of different target audiences, making effective use of communication themes, and the importance of reinforcement and follow-up in support of training goals. (author)

  7. Effect of dietary antioxidants, training, and performance correlates on antioxidant status in competitive rowers.

    Science.gov (United States)

    Braakhuis, Andrea J; Hopkins, Will G; Lowe, Timothy E

    2013-09-01

    The beneficial effects of exercise and a healthy diet are well documented in the general population but poorly understood in elite athletes. Previous research in subelite athletes suggests that regular training and an antioxidant-rich diet enhance antioxidant defenses but not performance. To investigate whether habitual diet and/or exercise (training status or performance) affect antioxidant status in elite athletes. Antioxidant blood biomarkers were assessed before and after a 30-min ergometer time trial in 28 male and 34 female rowers. The antioxidant blood biomarkers included ascorbic acid, uric acid, total antioxidant capacity (TAC), erythrocyte- superoxide dismutase, glutathione peroxidase (GPx), and catalase. Rowers completed a 7-d food diary and an antioxidant-intake questionnaire. Effects of diet, training, and performance on resting biomarkers were assessed with Pearson correlations, and their effect on exercise-induced changes in blood biomarkers was assessed by a method of standardization. With the exception of GPx, there were small to moderate increases with exercise for all markers. Blood resting TAC had a small correlation with total antioxidant intake (correlation .29; 90% confidence limits, ±.27), and the exercise-induced change in TAC had a trivial to small association with dietary antioxidant intake from vitamin C (standardized effect .19; ±.22), vegetables (.20; ±.23), and vitamin A (.25; ±.27). Most other dietary intakes had trivial associations with antioxidant biomarkers. Years of training had a small inverse correlation with TAC (-.32; ±.19) and a small association with the exercise-induced change in TAC (.27; ±.24). Training status correlates more strongly with antioxidant status than diet does.

  8. Nuclear power for sustainable development. Current status and future prospects

    International Nuclear Information System (INIS)

    Adamantiades, A.; Kessides, I.

    2009-01-01

    Interest in nuclear power has been revived as a result of volatile fossil fuel prices, concerns about the security of energy supplies, and global climate change. This paper describes the current status and future plans for expansion of nuclear power, the advances in nuclear reactor technology, and their impacts on the associated risks and performance of nuclear power. Advanced nuclear reactors have been designed to be simpler and safer, and to have lower costs than currently operating reactors. By addressing many of the public health and safety risks that plagued the industry since the accidents at Three Mile Island and Chernobyl, these reactors may help break the current deadlock over nuclear power. In that case, nuclear power could make a significant contribution towards reducing greenhouse gas emissions. However, significant issues persist, fueling reservations among the public and many decision makers. Nuclear safety, disposal of radioactive wastes, and proliferation of nuclear explosives need to be addressed in an effective and credible way if the necessary public support is to be obtained. (author)

  9. Gonadal hormone status in highly trained sprinters and in untrained men.

    Science.gov (United States)

    Grandys, Marcin; Majerczak, Joanna; Zapart-Bukowska, Justyna; Kulpa, Jan; Zoladz, Jerzy A

    2011-04-01

    It is a common view that strength and sprint trained athletes are characterized by high plasma/serum testosterone (T) concentration, which is believed to be partly responsible for their performance level. This opinion, however, has poor scientific background. The aim of this study was to give evidence-based information on this issue. We examined gonadal hormone status at rest after overnight fasting in high and top-class track and field sprinters (n = 16) and in untrained men (n = 15). It was shown that basal T, free testosterone (fT), bioavailable testosterone (bio-T), and sex hormone-binding globulin concentrations were not significantly different (p > 0.05) in sprinters vs. untrained subjects. Further comparison of the results of the basal serum T concentration in 8 sprinters showed its significant changes during an annual training period. Significantly higher T concentration during a low-intensity training period (beginning of December) than during heavy sprint specific training period (end of March) was observed in these athletes (n = 8) (mean ± SD; 23.37 ± 5.28 vs. 20.99 ± 4.74 nmol · L(-1), respectively, p = 0.04). We have concluded that basal gonadal hormone concentration in high and top-class athletes (sprinters and jumpers) did not appear to be significantly different when compared with untrained subjects. Moreover, basal T concentration in sprinters can differ significantly during an annual training period. This fact should be taken into consideration when interpreting the results of gonadal hormone status in athletes at varied training stages.

  10. Evaluation of the status of national nuclear infrastructure development

    International Nuclear Information System (INIS)

    2008-01-01

    An appropriate infrastructure is essential for the safe, reliable and peaceful use of nuclear power. The IAEA was encouraged to assess ways to meet infrastructure needs and to provide guidance to Member States considering the introduction of nuclear power. All of these countries face the challenge of building the necessary nuclear infrastructure for the first nuclear power plant. The IAEA is responding to this demand through increased technical assistance, missions and workshops, and with new and updated technical publications. A holistic view of the infrastructure for nuclear power was published in Considerations to Launch a Nuclear Power Programme (GOV/INF/2007), targeted mainly at policy makers. Milestones in the Development of a National Infrastructure for Nuclear Power, an IAEA Nuclear Energy Series publication (No. NG-G-3.1) issued in 2007, provided more detailed guidance on the three phases of development outlined in Considerations to Launch a Nuclear Power Programme. It describes the sequential development through the three phases for each of 19 infrastructure issues, ranging from a government's national position on nuclear power to the procurement of items and services for the first nuclear power plant. Member States requested additional guidance on determining how to assess the progress of their infrastructure development for nuclear power programmes. This report was prepared in response to their request. It provides an evaluation approach for the status of national nuclear infrastructure development based upon the guidance presented in the Milestones publication mentioned above. The evaluation approach provides a comprehensive means to determine the status of the infrastructure conditions covering all of the 19 issues identified in the Milestones publication. This approach can be used by any interested Member State for self-evaluation in order to establish what additional work needs to be completed to develop the appropriate national infrastructure. In

  11. The status report on the nuclear data project in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.N.; Baek, W.Y.; Kang, H.S.; Choi, J.Y.; Cho, M.H.; Ko, I.S.; Namkung, W. [Pohang Accelerator Laboratory, POSTECH, Pohang (Korea, Republic of); Chang, J.H.

    1999-03-01

    The nuclear data project as one of the nation-wide nuclear R and D programs was launched by the Korea Atomic Energy Research Institute (KAERI) in 1996. Its main goals are to establish a nuclear data system, to construct the infrastructure for the nuclear data productions and evaluations, and to develop a highly reliable nuclear data system. In order to build the infrastructure for the nuclear data production, KAERI wants to build an intense pulsed neutron source by utilizing accelerator facilities, technologies, and manpower at the Pohang Accelerator Laboratory (PAL). The PAL proposed the Pohang Neutron Facility (PNF), which consists of a 100-MeV electron linac, a water-cooled Ta target, and at least three different time-of-flight (TOF) paths. The 100-MeV electron linac was designed and constructed based on experiences obtained from construction and operation of the 2-GeV linac at PAL. We report a status report on the nuclear data production and evaluation in Korea. (author)

  12. The application of utility analysis processes to estimate the impact of training for nuclear maintenance personnel

    International Nuclear Information System (INIS)

    Groppel, C.F.

    1991-01-01

    The primary objectives of this study were to test two utility analysis models, the Cascio-Ramos Estimate of Performance in Dollars (CREPID) model and Godkewitsch financial utility analysis model and to determine their appropriateness as tools for evaluating training. This study was conducted in conjunction with Philadelphia Electric Company's Nuclear Training Group. Job performance of nuclear maintenance workers was assessed to document the impact of the training program. Assessment of job performance covered six job performance themes. Additionally, front-line nuclear maintenance supervisors were interviewed to determine their perceptions of the nuclear maintenance training. A comparison of supervisor's perceptions and outcomes of the utility analysis models was made to determine the appropriateness of utility analysis as quantitative tools for evaluating the nuclear maintenance training program. Application of the CREPID utility analysis model indicated the dollar value of the benefits of training through utility analysis was $5,843,750 which represented only four of the job performance themes. Application of the Godkewitsch utility analysis model indicated the dollar value of the benefits of training was $3,083,845 which represented all six performance themes. A comparison of the outcomes indicated a sizeable difference between the dollar values produced by the models. Supervisors indicated training resulted in improved productivity, i.e., improved efficiency and effectiveness. Additionally, supervisors believed training was valuable because it provided nonmonetary benefits, e.g., improved self-esteem and confidence. The application of utility analysis addressed only monetary benefits of training. The variation evidenced by the difference in the outcome of the two models suggests that utility analysis open-quotes estimatesclose quotes may not accurately reflect the impact of training

  13. Experience with quality of training of personnel in start-up, operation and maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Ziman, V.; Alaxin, E.

    1983-01-01

    The theoretical education of personnel takes place in the branch training centre in Jaslovske Bohunice and in the concern training centre of the Slovak Power Plants. Practical training takes place in the Bohunice V-1 power plant. Selected specialists are trained in the training centre of the Novo Voronezh nuclear power plant, at the Paks nuclear plant and in the training centre of the Tusimice power plant. The recruitment, selection, schooling, practical training and placement of personnel and their assignment to posts is done in such a manner as to make sure that the complexly trained personnel is available 6 months to 3 years prior to the physical start-up of the nuclear power plant. The training of university graduates for the post of reactor operator takes 18 months or more. Trained personnel attend in-service training courses in form of complementary courses whose content includes such problems as the elimination of typified possible accidents, on the basis of the analysis of all failures which occurred in the previous period. The rising quality of personnel training at the Bohunice V-1 nuclear power plant is reflected in the decreasing number of failures caused by the human factor and in the increased availability of the power units. (M.D.)

  14. Enhancing Nuclear Newcomer Training with 3D Visualization Learning Tools

    International Nuclear Information System (INIS)

    Gagnon, V.

    2016-01-01

    Full text: While the nuclear power industry is trying to reinforce its safety and regain public support post-Fukushima, it is also faced with a very real challenge that affects its day-to-day activities: a rapidly aging workforce. Statistics show that close to 40% of the current nuclear power industry workforce will retire within the next five years. For newcomer countries, the challenge is even greater, having to develop a completely new workforce. The workforce replacement effort introduces nuclear newcomers of a new generation with different backgrounds and affinities. Major lifestyle differences between the two generations of workers result, amongst other things, in different learning habits and needs for this new breed of learners. Interactivity, high visual content and quick access to information are now necessary to achieve a high level of retention. To enhance existing training programmes or to support the establishment of new training programmes for newcomer countries, L-3 MAPPS has devised learning tools to enhance these training programmes focused on the “Practice-by-Doing” principle. L-3 MAPPS has coupled 3D computer visualization with high-fidelity simulation to bring real-time, simulation-driven animated components and systems allowing immersive and participatory, individual or classroom learning. (author

  15. Training methods and facilities on reactor and simulators at the Grenoble Nuclear Research Centre

    International Nuclear Information System (INIS)

    Destot, M.; Siebert, S.

    1987-01-01

    Siloette is a CEA unit with a threshold vocation: operation of the Siloette 100 KW pool-type research reactor; basic training in reactor physics for nuclear power plant operators; and production of nuclear power plant simulators: PWR, GCR and more generally of all types of industrial unit simulators, thermal power plant, network, chemical plant, etc. From this experience, they would emphasize in particular the synergy arising from these complementary activities, the essential role of training in basic principles as a complement to operation training, and the ever-increasing importance of design ergonomics of the training means

  16. Status of Simulations for the Cyclotron Laboratory at the Institute for Nuclear Research and Nuclear Energy

    Science.gov (United States)

    Asova, G.; Goutev, N.; Tonev, D.; Artinyan, A.

    2018-05-01

    The Institute for Nuclear Research and Nuclear Energy is preparing to operate a high-power cyclotron for production of radioisotopes for nuclear medicine, research in radiochemistry, radiobiology, nuclear physics, solid state physics. The cyclotron is a TR24 produced by ASCI, Canada, capable to deliver proton beams in the energy range of 15 to 24 MeV with current as high as 400 µA. Multiple extraction lines can be fed. The primary goal of the project is the production of PET and SPECT isotopes as 18F, 67,68Ga, 99mTc, etc. This contribution reports the status of the project. Design considerations for the cyclotron vault will be discussed for some of the target radioisotopes.

  17. International training course on nuclear materials accountability for safeguards purposes

    International Nuclear Information System (INIS)

    1980-12-01

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the first week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control

  18. International training course on nuclear materials accountability for safeguards purposes

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The two volumes of this report incorporate all lectures and presentations at the International Training Course on Nuclear Materials Accountability and Control for Safeguards Purposes, held May 27-June 6, 1980, at the Bishop's Lodge near Santa Fe, New Mexico. The course, authorized by the US Nuclear Non-Proliferation Act and sponsored by the US Department of Energy in cooperation with the International Atomic Energy Agency, was developed to provide practical training in the design, implementation, and operation of a National system of nuclear materials accountability and control that satisfies both National and IAEA International safeguards objectives. Volume I, covering the first week of the course, presents the background, requirements, and general features of material accounting and control in modern safeguard systems. Volume II, covering the second week of the course, provides more detailed information on measurement methods and instruments, practical experience at power reactor and research reactor facilities, and examples of operating state systems of accountability and control.

  19. Status of the JEFF nuclear data library

    International Nuclear Information System (INIS)

    Koning, A.J.; Bauge, E.; Dean, C.J.; Dupont, E.; Nordborg, C.; Rugama, Y.; Fischer, U.; Forrest, R.A.; Kellett, M.A.; Jacqmin, R.; Leeb, H.; Mills, R.W.; Pescarini, M.; Rullhusen, P.

    2011-01-01

    The status of the Joint Evaluated Fission and Fusion file (JEFF) is described. Recently, the JEFF-3.1.1 nuclear data library was released and shortly after adopted by the French nuclear power industry for inclusion in their production and analysis codes. Recent updates include actinide evaluations, materials evaluations that have emerged from various European nuclear data projects, the activation library, the decay data and fission yield sub-libraries, and fusion-related data files from the European F4E project. The revisions were motivated by the availability of new measurements, modelling capabilities and trends from integral experiments. Validations have been performed, mainly for criticality, reactivity temperature coefficients, fuel inventory, decay heat and shielding of thermal and fast systems. The next release of the library, JEFF-3.2, will be discussed. This will contain among others a significant increase of covariance data evaluations, modern evaluations for various structural materials, a larger emphasis on minor actinides and addition of high-quality gamma production data for many fission products. (authors)

  20. Nuclear safety in Slovak Republic. Status of safety improvements

    International Nuclear Information System (INIS)

    Toth, A.

    1999-01-01

    Status of the safety improvements at Bohunice V-1 units concerning WWER-440/V-230 design upgrading were as follows: supplementing of steam generator super-emergency feed water system; higher capacity of emergency core cooling system; supplementing of automatic links between primary and secondary circuit systems; higher level of secondary system automation. The goal of the modernization program for Bohunice V-1 units WWER-440/V-230 was to increase nuclear safety to the level of the proposals and IAEA recommendations and to reach probability goals of the reactor concerning active zone damage, leak of radioactive materials, failures of safety systems and damage shields. Upgrading program for Mochovce NPP - WWER-440/V-213 is concerned with improving the integrity of the reactor pressure vessel, steam generators 'leak before break' methods applied for the NPP, instrumentation and control of safety systems, diagnostic systems, replacement of in-core monitoring system, emergency analyses, pressurizers safety relief valves, hydrogen removal system, seismic evaluations, non-destructive testing, fire protection. Implementation of quality assurance has a special role in improvement of operational safety activities as well as safety management and safety culture, radiation protection, decommissioning and waste management and training. The Year 2000 problem is mentioned as well

  1. Experience in the use of systematic approach to training (SAT) for nuclear power plant personnel

    International Nuclear Information System (INIS)

    1998-12-01

    One of the essential requirements for safe and reliable nuclear power plant operation and maintenance is the availability of competent personnel, and thus systematic approach to training (SAT) is recognized world-wide. Many countries have applied and implemented the use of SAT in their training systems as demonstrated by the results of the IAEA World Survey on Nuclear Power Plant Personnel Training. This report complements two IAEA publications, the Guidebook on Nuclear Power Plant Personnel and its Evaluation (Technical Reports Series No. 380) and the IAEA World Survey of Nuclear Power Plant Personnel Training (IAEA-TECDOC-1063). It provides a detailed overview and analysis of the experience gained worldwide on the introduction and application of SAT, including the reasons why SAT was introduced and lessons learned. The technical document will be of use for nuclear power plant managers and supervisors and all those responsible for training of personnel. The report was initiated by the International Working Group at a Technical Committee Meeting. Experiences gained from the application of SAT in the following Member States are included: Armenia, Bulgaria, Canada, China, Czech Republic, Finland, France, Germany, Hungary, India, Kazakhstan, Lithuania, Mexico, Romania, Russian Federation, Slovenia, Slovakia, Spain, Sweden, Ukraine, United Kingdom and United States of America

  2. Experience in the use of systematic approach to training (SAT) for nuclear power plant personnel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    One of the essential requirements for safe and reliable nuclear power plant operation and maintenance is the availability of competent personnel, and thus systematic approach to training (SAT) is recognized world-wide. Many countries have applied and implemented the use of SAT in their training systems as demonstrated by the results of the IAEA World Survey on Nuclear Power Plant Personnel Training. This report complements two IAEA publications, the Guidebook on Nuclear Power Plant Personnel and its Evaluation (Technical Reports Series No. 380) and the IAEA World Survey of Nuclear Power Plant Personnel Training (IAEA-TECDOC-1063). It provides a detailed overview and analysis of the experience gained worldwide on the introduction and application of SAT, including the reasons why SAT was introduced and lessons learned. The technical document will be of use for nuclear power plant managers and supervisors and all those responsible for training of personnel. The report was initiated by the International Working Group at a Technical Committee Meeting. Experiences gained from the application of SAT in the following Member States are included: Armenia, Bulgaria, Canada, China, Czech Republic, Finland, France, Germany, Hungary, India, Kazakhstan, Lithuania, Mexico, Romania, Russian Federation, Slovenia, Slovakia, Spain, Sweden, Ukraine, United Kingdom and United States of America. Refs, figs, tabs

  3. Nuclear safeguards research and development

    Science.gov (United States)

    Henry, C. N.

    1981-11-01

    The status of a nuclear safeguard research and development program is presented. Topics include nondestructive assay technology development and applications, international safeguards, training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

  4. Equipment and performance upgrade of compact nuclear simulator

    International Nuclear Information System (INIS)

    Park, J. C.; Kwon, K. C.; Lee, D. Y.; Hwang, I. K.; Park, W. M.; Cha, K. H.; Song, S. J.; Lee, J. W.; Kim, B. G.; Kim, H. J.

    1999-01-01

    The simulator at Nuclear Training Center in KAERI became old and has not been used effectively for nuclear-related training and researches due to the problems such as aging of the equipment, difficulties in obtaining consumables and their high cost, and less personnel available who can handle the old equipment. To solve the problems, this study was performed for recovering the functions of the simulator through the technical design and replacement of components with new ones. As results of this study, our test after the replacement showed the same simulation status as the previous one, and new graphic displays added to the simulator was effective for the training and easy for maintenance. This study is meaningful as demonstrating the way of upgrading nuclear training simulators that lost their functioning due to the obsolescence of simulators and the unavailability of components

  5. EVMS for nuclear power plant construction: status and implementation

    International Nuclear Information System (INIS)

    Roh, M. S.; Kwak, J. K.; Park, S. Y.

    2012-01-01

    The Earned Value Management System (EVMS) method integrates three critical elements of project management scope, cost and time management. It requires the periodic monitoring of actual expenditures and physical scope accomplishments and allows calculation of cost and schedule variances along with performance indices. It allows for casting of project cost and schedule at completion and highlights the possible need for corrective action. It is anticipated that there will be intense competition in the nuclear industry as the cost and time for nuclear power plant construction. In order to attain competitive advantages, utilizing advanced project control systems by integrating cost and time management is of great concern for practitioners. This paper is to review the status of EVMS and its effective implementation to nuclear power plant construction

  6. Simulator training and licensing examination for nuclear power station operator

    International Nuclear Information System (INIS)

    Xu Pingsheng

    2007-01-01

    For the recruitment, training and position qualification of the simulator instructors and feedback of training effect, the management approaches are formulated in 'The System for Simulator Training and Licensing Examination of Daya Bay Nuclear Power Station Operators'. The concrete requirements on the professional knowledge, work experience and foreign language ability of a simulator instructor are put forward. The process of instructor training is designed. The training items include the trainer training, pedagogy training, time management training, operation activities training during outage of unit, 'shadow' training and on-the-jot training on simulator courses. Job rotation is realized between simulator instructor and licensing personnel on site. New simulator instructor must pass the qualification identification. After a duration of 2 years, re-qualification has to be carried out. On the basis of the operator training method introduced from EDF (electricite De France), some new courses are developed and the improvement on the initial training, retaining courses, the technical support and the experience feedback by using the simulator is done also. (authors)

  7. Compilation status and research topics in Hokkaido University Nuclear Reaction Data Centre

    International Nuclear Information System (INIS)

    Aikawa, M.; Furutachi, N.; Katō, K.; Ebata, S.; Ichinkhorloo, D.; Imai, S.; Sarsembayeva, A.; Zhou, B.; Otuka, N.

    2015-01-01

    Nuclear reaction data are necessary and applicable for many application fields. The nuclear reaction data must be compiled into a database for convenient availability. One such database is the EXFOR database maintained by the International Network of Nuclear Reaction Data Centres (NRDC). As a member of the NRDC, the Hokkaido University Nuclear Reaction Data Centre (JCPRG) compiles charged-particle induced reaction data and contributes about 10 percent of the EXFOR database. In this paper, we show the recent compilation status and related research topics of JCPRG. (author)

  8. International inventory of training facilities in nuclear power and its fuel cycle

    International Nuclear Information System (INIS)

    1977-01-01

    Because the development of trained manpower is important for full use of nuclear power, the International Atomic Energy Agency has compiled this first inventory of training facilities and programs. It is based on information submitted by Member States and received up to 31 January 1977. The inventory is arranged by country, type of training organization, and by subject

  9. Nuclear power plant personnel training and its evaluation. A guidebook. Executive summary

    International Nuclear Information System (INIS)

    1997-05-01

    The Guidebook will prove especially useful for, and is addressed primarily to: nuclear power operating organizations establishing or upgrading their NPP personnel training systems; regulatory personnel responsible for setting requirements and/or evaluating NPP personnel training; and organizations (within or outside the operating organization) responsible for the development, implementation and evaluation of training programmes for NPP personnel. Figs

  10. Nuclear power worldwide: Status and outlook

    International Nuclear Information System (INIS)

    2008-01-01

    environmental constraints such as entry-into-force of the Kyoto Protocol and the European carbon trading scheme mean there is now a real financial benefit to avoiding greenhouse gas emissions, adding to the appeal of low-carbon electricity generation, including nuclear power and renewables. The complete nuclear power chain - including uranium mining, reactor construction and waste disposal - emits only 3 - 24 grams of carbon dioxide per kilowatt-hour, about the same as wind and hydro power, and well below coal, oil and natural gas, Mr. Rogner added. The IAEA provides energy planning assistance to its 145 member states. When a state considers launching a nuclear energy programme for the first time, the IAEA has established a set of milestones for it to follow. Audio Q and A with IAEA, is available here. For further information, please contact: IAEA Division of Public Information, Media and Outreach Section, tel. [43-1] 2600-21273. For further details on the current status of the nuclear industry, go to the IAEA's Power Reactor Information System (PRIS). Related Resources: Nuclear's Great Expectations; Energy, Electricity and Nuclear Power Estimates for the Period up to 2030, Report; Nuclear Power in Focus. (IAEA)

  11. Training at the masters degree level in physics and technology of nuclear reactors in the uk

    International Nuclear Information System (INIS)

    Weaver, D.R.

    2000-01-01

    This paper discusses the current situation of university-based training for the nuclear power industry in the UK, drawing on information gathered as part of the survey for a review currently being undertaken by the Committee for Technical and Economic Studies on Nuclear Energy Development and Fuel Cycle (NDC) of the Nuclear Energy Agency (NEA) of the OECD. A particular focus will be the Physics and Technology of Nuclear Reactors MSc course at the University of Birmingham. In the past there were other similar MSc courses in the UK, but through the evolution of time the Birmingham course is now unique in its role of providing masters level training so specifically aimed at the commercial nuclear programme. Mention will, however, be made of other training at the postgraduate level elsewhere in the UK. A description is given of the need to consider a new form of relationship between industry and university in order to provide optimise the provision of masters level training. (author)

  12. Euratom research and training in nuclear reactor safety: Towards European research and the higher education area

    International Nuclear Information System (INIS)

    Goethem, G. van

    2004-01-01

    In this invited lecture, research and training in nuclear fission are looked at from a European perspective with emphasis on the three success factors of any European policy, namely: common needs, vision and instruments, that ought to be strongly shared amongst the stakeholders across the Member States concerned. As a result, the following questions are addressed: What is driving the current EU trend towards more research, more education and more training, in general? Regarding nuclear fission, in particular, who are the end-users of Euratom 'research and training' and what are their expectations from EU programmes? Do all stakeholders share the same vision about European research and training in nuclear fission? What are the instruments proposed by the European Commission (EC) to conduct joint research programmes of common interest for the nuclear fission community? In conclusion, amongst the stakeholders in Europe, there seems to be a wide consensus about common needs and instruments, but not about a common vision regarding nuclear. (author)

  13. Status and developing of nuclear emergency response techniques in China

    International Nuclear Information System (INIS)

    Jiangang, Zhang; Bing, Zhao; Rongyao, Tang; Xiaoxiao, Xu

    2008-01-01

    Full text: Nuclear Emergency preparedness and response in China is consistent with international basic principle of nuclear safety and emergency response. Nuclear emergency response techniques in China developed with nuclear power from 1980s. The status of nuclear emergency techniques in China are: 1) China have plentiful experiences and abilities in the fields of nuclear facility emergency planning and preparedness, nuclear accident consequence assessment, emergency monitoring, and emergency advisory; 2) Emergency assistance ability in China has a foundation, however it cannot satisfy national requirement; 3) Emergency planning and preparedness is not based on hazard assessment; 4) Remote monitoring and robot techniques in not adaptable to the requirements of nuclear emergency response; 5) A consistent emergency assessment system is lack in China. In this paper, it is analyzed what is the developing focal points of nuclear emergency response techniques in China, and it is proposed that the main points are: a) To develop the research of emergency preparedness on the base of hazard analysis; b) To improve remote monitoring and robot ability during nuclear emergency; c) To develop the response technique research with anti-terrorism. (author)

  14. The nuclear industry in transition: Methods and effects of cross training

    International Nuclear Information System (INIS)

    Starrett, D.M.; Wilczek, T.A.; Armstrong, D.L.

    1996-01-01

    As DOE facilities transition from defense programs to environmental management, cross training is becoming increasingly important as an essential component of change management. When applied to those specific segments of nuclear industry undergoing transition, cross training methods can be especially effective. Use of methodologies such as team approach, change agents, strategic plans, operations plans, specific training, and formal transition techniques can generate many positive benefits to the industry. This paper explores the benefits of cross training, proposes methodology for use when developing cross training for the transition of employees from DOE defense programs to environmental projects, and provides two examples of successful implementation of cross training methods

  15. The contribution of nuclear training staff to human factors work in the CEGB and Nuclear Electric PLC

    International Nuclear Information System (INIS)

    Madden, V.J.

    1990-01-01

    The staff and simulators of utility's nuclear training function are being utilized in support of a wide range of human factor related activities. In addition to work on man machines interface review, operating procedures, operator support system and VDU format design and validation for the Magnox and AGR series of nuclear power plants, support is also being provided to the PWR Project Team through staff who have undergone extensive and comprehensive overseas PWR training programs. This paper discusses how recent initiatives in connection with a survey on operator stress and the possible use of psychometric testing in support of the selection of reactor desk engineers are also being supported

  16. An analysis of the current educational status and future training needs of China's rural doctors in 2011.

    Science.gov (United States)

    Li, Xingming; Liu, Juyuan; Huang, Jianshi; Qian, Yunliang; Che, Lu

    2013-04-01

    To analyse the educational status and future training needs of China's rural doctors and provide a basis to improve their future training. A cross-sectional epidemiological survey was used for the analysis, and 17 954 rural doctors chosen randomly from the eastern, central and western regions of China in 2009-2010 were surveyed to ascertain their average training time and the methods used for and content of their training. In general, 8671/17 778 (48.77%) of respondents received less than 12 days of training in a year. Conference sessions seemed to be the major route of training, with 10 150/17 925 respondents (56.62%). Clinical skills, with a response rate of 14 441/17 926 (80.56%), seemed to be the most popular training content. With regard to the general needs for training time received, 6547/18 255 (35.86%) of respondents hoped the average training time received a year would be less than 12 days; on-site guidance from a senior doctor was the most popular training method with response rate of 10 109/17 976 (56.24%), and clinical skills was what rural doctors wished to study the most, with a positive response of 16 744/17 962 (93.22%). Statistically significant differences existed in the current status and training time, training method and training content needs of China's rural doctors. Our results suggest that the training status and needs of China's rural doctors are still disjointed; measures including the introduction of remote education and clinical further education, extended training time and more clinical skills training should be adopted.

  17. Qualifications and training of staff of the regulatory body for nuclear power plants

    International Nuclear Information System (INIS)

    1979-01-01

    This Safety Guide was prepared as part of the Agency's programme, referred to as the NUSS programme, for establishing Codes of Practice and Safety Guides relating to nuclear power plants. It supplements the Agency's Safety Series No.50-C-G, entitled ''Governmental Organization for the Regulation of Nuclear Power Plants: A Code of Practice'', and is mainly concerned with the qualifications and training requirements of the staff of bodies regulating nuclear power plants. It is not concerned with staff for regulating other phases of the fuel cycle, such as fuel fabrication and management. This Guide provides recommendations and guidance for establishing the qualifications required for the staff of the regulatory body. These requirements include academic training, work experience and other abilities. It also establishes the training programmes and activities necessary for personnel within the regulatory body

  18. An intelligent tool for the training of nuclear plant operators

    International Nuclear Information System (INIS)

    Cordier, B.

    1990-01-01

    A new type of pedagogical tool has been developped for the training of nuclear power plant operation. This tool combines simulation and expert system. The first process developped is about Steam Generator Tube Rupture (S.G.T.R.). All nuclear power plants will be equiped with this system in 1989 and 1990. After this first experiment, others processes will be developped for this tool

  19. Regulation imposed to nuclear facility operators for the elaboration of 'waste studies' and 'waste statuses'

    International Nuclear Information System (INIS)

    2001-01-01

    This decision from the French authority of nuclear safety (ASN) aims at validating the new versions of the guidebook for the elaboration of 'waste studies' for nuclear facilities and of the specifications for the elaboration of 'waste statuses' for nuclear facilities. This paper includes two documents. The first one is a guidebook devoted to nuclear facility operators which fixes the rules of production of waste studies according to the articles 20 to 26 of the inter-ministry by-law from December 31, 1999 (waste zoning conditions and ASN's control modalities). The second document concerns the specifications for the establishment of annual waste statuses according to article 27 of the inter-ministry by-law from December 31, 1999 (rational management of nuclear wastes). (J.S.)

  20. Application status of on-line nuclear techniques in analysis of coal quality

    International Nuclear Information System (INIS)

    Cai Shaohui

    1993-01-01

    Nuclear techniques are favourable for continuous on-line analysis, because they are fast, non-intrusive. They can be used in the adverse circumstances in coal industry. The paper reviews the application status of on-line nuclear techniques in analysis of coal quality and economic benefits derived from such techniques in developed countries