WorldWideScience

Sample records for statistically significant network

  1. Detecting Statistically Significant Communities of Triangle Motifs in Undirected Networks

    Science.gov (United States)

    2016-04-26

    Systems, Statistics & Management Science, University of Alabama, USA. 1 DISTRIBUTION A: Distribution approved for public release. Contents 1 Summary 5...13 5 Application to Real Networks 18 5.1 2012 FBS Football Schedule Network... football schedule network. . . . . . . . . . . . . . . . . . . . . . 21 14 Stem plot of degree-ordered vertices versus the degree for college football

  2. Statistically significant relational data mining :

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Jonathan W.; Leung, Vitus Joseph; Phillips, Cynthia Ann; Pinar, Ali; Robinson, David Gerald; Berger-Wolf, Tanya; Bhowmick, Sanjukta; Casleton, Emily; Kaiser, Mark; Nordman, Daniel J.; Wilson, Alyson G.

    2014-02-01

    This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publications that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.

  3. Statistical Significance for Hierarchical Clustering

    Science.gov (United States)

    Kimes, Patrick K.; Liu, Yufeng; Hayes, D. Neil; Marron, J. S.

    2017-01-01

    Summary Cluster analysis has proved to be an invaluable tool for the exploratory and unsupervised analysis of high dimensional datasets. Among methods for clustering, hierarchical approaches have enjoyed substantial popularity in genomics and other fields for their ability to simultaneously uncover multiple layers of clustering structure. A critical and challenging question in cluster analysis is whether the identified clusters represent important underlying structure or are artifacts of natural sampling variation. Few approaches have been proposed for addressing this problem in the context of hierarchical clustering, for which the problem is further complicated by the natural tree structure of the partition, and the multiplicity of tests required to parse the layers of nested clusters. In this paper, we propose a Monte Carlo based approach for testing statistical significance in hierarchical clustering which addresses these issues. The approach is implemented as a sequential testing procedure guaranteeing control of the family-wise error rate. Theoretical justification is provided for our approach, and its power to detect true clustering structure is illustrated through several simulation studies and applications to two cancer gene expression datasets. PMID:28099990

  4. Statistical significance versus clinical relevance.

    Science.gov (United States)

    van Rijn, Marieke H C; Bech, Anneke; Bouyer, Jean; van den Brand, Jan A J G

    2017-04-01

    In March this year, the American Statistical Association (ASA) posted a statement on the correct use of P-values, in response to a growing concern that the P-value is commonly misused and misinterpreted. We aim to translate these warnings given by the ASA into a language more easily understood by clinicians and researchers without a deep background in statistics. Moreover, we intend to illustrate the limitations of P-values, even when used and interpreted correctly, and bring more attention to the clinical relevance of study findings using two recently reported studies as examples. We argue that P-values are often misinterpreted. A common mistake is saying that P < 0.05 means that the null hypothesis is false, and P ≥0.05 means that the null hypothesis is true. The correct interpretation of a P-value of 0.05 is that if the null hypothesis were indeed true, a similar or more extreme result would occur 5% of the times upon repeating the study in a similar sample. In other words, the P-value informs about the likelihood of the data given the null hypothesis and not the other way around. A possible alternative related to the P-value is the confidence interval (CI). It provides more information on the magnitude of an effect and the imprecision with which that effect was estimated. However, there is no magic bullet to replace P-values and stop erroneous interpretation of scientific results. Scientists and readers alike should make themselves familiar with the correct, nuanced interpretation of statistical tests, P-values and CIs. © The Author 2017. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  5. Statistical Models for Social Networks

    NARCIS (Netherlands)

    Snijders, Tom A. B.; Cook, KS; Massey, DS

    2011-01-01

    Statistical models for social networks as dependent variables must represent the typical network dependencies between tie variables such as reciprocity, homophily, transitivity, etc. This review first treats models for single (cross-sectionally observed) networks and then for network dynamics. For

  6. Statistical significance of cis-regulatory modules

    Directory of Open Access Journals (Sweden)

    Smith Andrew D

    2007-01-01

    Full Text Available Abstract Background It is becoming increasingly important for researchers to be able to scan through large genomic regions for transcription factor binding sites or clusters of binding sites forming cis-regulatory modules. Correspondingly, there has been a push to develop algorithms for the rapid detection and assessment of cis-regulatory modules. While various algorithms for this purpose have been introduced, most are not well suited for rapid, genome scale scanning. Results We introduce methods designed for the detection and statistical evaluation of cis-regulatory modules, modeled as either clusters of individual binding sites or as combinations of sites with constrained organization. In order to determine the statistical significance of module sites, we first need a method to determine the statistical significance of single transcription factor binding site matches. We introduce a straightforward method of estimating the statistical significance of single site matches using a database of known promoters to produce data structures that can be used to estimate p-values for binding site matches. We next introduce a technique to calculate the statistical significance of the arrangement of binding sites within a module using a max-gap model. If the module scanned for has defined organizational parameters, the probability of the module is corrected to account for organizational constraints. The statistical significance of single site matches and the architecture of sites within the module can be combined to provide an overall estimation of statistical significance of cis-regulatory module sites. Conclusion The methods introduced in this paper allow for the detection and statistical evaluation of single transcription factor binding sites and cis-regulatory modules. The features described are implemented in the Search Tool for Occurrences of Regulatory Motifs (STORM and MODSTORM software.

  7. The thresholds for statistical and clinical significance

    DEFF Research Database (Denmark)

    Jakobsen, Janus Christian; Gluud, Christian; Winkel, Per

    2014-01-01

    BACKGROUND: Thresholds for statistical significance are insufficiently demonstrated by 95% confidence intervals or P-values when assessing results from randomised clinical trials. First, a P-value only shows the probability of getting a result assuming that the null hypothesis is true and does...... not reflect the probability of getting a result assuming an alternative hypothesis to the null hypothesis is true. Second, a confidence interval or a P-value showing significance may be caused by multiplicity. Third, statistical significance does not necessarily result in clinical significance. Therefore...... of the probability that a given trial result is compatible with a 'null' effect (corresponding to the P-value) divided by the probability that the trial result is compatible with the intervention effect hypothesised in the sample size calculation; (3) adjust the confidence intervals and the statistical significance...

  8. The insignificance of statistical significance testing

    Science.gov (United States)

    Johnson, Douglas H.

    1999-01-01

    Despite their use in scientific journals such as The Journal of Wildlife Management, statistical hypothesis tests add very little value to the products of research. Indeed, they frequently confuse the interpretation of data. This paper describes how statistical hypothesis tests are often viewed, and then contrasts that interpretation with the correct one. I discuss the arbitrariness of P-values, conclusions that the null hypothesis is true, power analysis, and distinctions between statistical and biological significance. Statistical hypothesis testing, in which the null hypothesis about the properties of a population is almost always known a priori to be false, is contrasted with scientific hypothesis testing, which examines a credible null hypothesis about phenomena in nature. More meaningful alternatives are briefly outlined, including estimation and confidence intervals for determining the importance of factors, decision theory for guiding actions in the face of uncertainty, and Bayesian approaches to hypothesis testing and other statistical practices.

  9. Statistical mechanics of complex networks

    CERN Document Server

    Rubi, Miguel; Diaz-Guilera, Albert

    2003-01-01

    Networks can provide a useful model and graphic image useful for the description of a wide variety of web-like structures in the physical and man-made realms, e.g. protein networks, food webs and the Internet. The contributions gathered in the present volume provide both an introduction to, and an overview of, the multifaceted phenomenology of complex networks. Statistical Mechanics of Complex Networks also provides a state-of-the-art picture of current theoretical methods and approaches.

  10. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs......To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social......), and stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative example of a model for a strategic information network within a local government. We draw inferences about the structural role played by individuals recognized as key innovators and conclude that such an approach...

  11. Neural networks and statistical learning

    CERN Document Server

    Du, Ke-Lin

    2014-01-01

    Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardw...

  12. Swiss solar power statistics 2007 - Significant expansion

    International Nuclear Information System (INIS)

    Hostettler, T.

    2008-01-01

    This article presents and discusses the 2007 statistics for solar power in Switzerland. A significant number of new installations is noted as is the high production figures from newer installations. The basics behind the compilation of the Swiss solar power statistics are briefly reviewed and an overview for the period 1989 to 2007 is presented which includes figures on the number of photovoltaic plant in service and installed peak power. Typical production figures in kilowatt-hours (kWh) per installed kilowatt-peak power (kWp) are presented and discussed for installations of various sizes. Increased production after inverter replacement in older installations is noted. Finally, the general political situation in Switzerland as far as solar power is concerned are briefly discussed as are international developments.

  13. Significant Statistics: Viewed with a Contextual Lens

    Science.gov (United States)

    Tait-McCutcheon, Sandi

    2010-01-01

    This paper examines the pedagogical and organisational changes three lead teachers made to their statistics teaching and learning programs. The lead teachers posed the research question: What would the effect of contextually integrating statistical investigations and literacies into other curriculum areas be on student achievement? By finding the…

  14. Statistical analysis of network data with R

    CERN Document Server

    Kolaczyk, Eric D

    2014-01-01

    Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

  15. How to construct the statistic network? An association network of herbaceous

    Directory of Open Access Journals (Sweden)

    WenJun Zhang

    2012-06-01

    Full Text Available In present study I defined a new type of network, the statistic network. The statistic network is a weighted and non-deterministic network. In the statistic network, a connection value, i.e., connection weight, represents connection strength and connection likelihood between two nodes and its absolute value falls in the interval (0,1]. The connection value is expressed as a statistical measure such as correlation coefficient, association coefficient, or Jaccard coefficient, etc. In addition, all connections of the statistic network can be statistically tested for their validity. A connection is true if the connection value is statistically significant. If all connection values of a node are not statistically significant, it is an isolated node. An isolated node has not any connection to other nodes in the statistic network. Positive and negative connection values denote distinct connectiontypes (positive or negative association or interaction. In the statistic network, two nodes with the greater connection value will show more similar trend in the change of their states. At any time we can obtain a sample network of the statistic network. A sample network is a non-weighted and deterministic network. Thestatistic network, in particular the plant association network that constructed from field sampling, is mostly an information network. Most of the interspecific relationships in plant community are competition and cooperation. Therefore in comparison to animal networks, the methodology of statistic network is moresuitable to construct plant association networks. Some conclusions were drawn from this study: (1 in the plant association network, most connections are weak and positive interactions. The association network constructed from Spearman rank correlation has most connections and isolated taxa are fewer. From net linear correlation,linear correlation, to Spearman rank correlation, the practical number of connections and connectance in the

  16. Statistical Mechanics of Temporal and Interacting Networks

    Science.gov (United States)

    Zhao, Kun

    In the last ten years important breakthroughs in the understanding of the topology of complexity have been made in the framework of network science. Indeed it has been found that many networks belong to the universality classes called small-world networks or scale-free networks. Moreover it was found that the complex architecture of real world networks strongly affects the critical phenomena defined on these structures. Nevertheless the main focus of the research has been the characterization of single and static networks. Recently, temporal networks and interacting networks have attracted large interest. Indeed many networks are interacting or formed by a multilayer structure. Example of these networks are found in social networks where an individual might be at the same time part of different social networks, in economic and financial networks, in physiology or in infrastructure systems. Moreover, many networks are temporal, i.e. the links appear and disappear on the fast time scale. Examples of these networks are social networks of contacts such as face-to-face interactions or mobile-phone communication, the time-dependent correlations in the brain activity and etc. Understanding the evolution of temporal and multilayer networks and characterizing critical phenomena in these systems is crucial if we want to describe, predict and control the dynamics of complex system. In this thesis, we investigate several statistical mechanics models of temporal and interacting networks, to shed light on the dynamics of this new generation of complex networks. First, we investigate a model of temporal social networks aimed at characterizing human social interactions such as face-to-face interactions and phone-call communication. Indeed thanks to the availability of data on these interactions, we are now in the position to compare the proposed model to the real data finding good agreement. Second, we investigate the entropy of temporal networks and growing networks , to provide

  17. Statistical Power in Longitudinal Network Studies

    NARCIS (Netherlands)

    Stadtfeld, Christoph; Snijders, Tom A. B.; Steglich, Christian; van Duijn, Marijtje

    2018-01-01

    Longitudinal social network studies may easily suffer from a lack of statistical power. This is the case in particular for studies that simultaneously investigate change of network ties and change of nodal attributes. Such selection and influence studies have become increasingly popular due to the

  18. Testing the Difference of Correlated Agreement Coefficients for Statistical Significance

    Science.gov (United States)

    Gwet, Kilem L.

    2016-01-01

    This article addresses the problem of testing the difference between two correlated agreement coefficients for statistical significance. A number of authors have proposed methods for testing the difference between two correlated kappa coefficients, which require either the use of resampling methods or the use of advanced statistical modeling…

  19. Significance levels for studies with correlated test statistics.

    Science.gov (United States)

    Shi, Jianxin; Levinson, Douglas F; Whittemore, Alice S

    2008-07-01

    When testing large numbers of null hypotheses, one needs to assess the evidence against the global null hypothesis that none of the hypotheses is false. Such evidence typically is based on the test statistic of the largest magnitude, whose statistical significance is evaluated by permuting the sample units to simulate its null distribution. Efron (2007) has noted that correlation among the test statistics can induce substantial interstudy variation in the shapes of their histograms, which may cause misleading tail counts. Here, we show that permutation-based estimates of the overall significance level also can be misleading when the test statistics are correlated. We propose that such estimates be conditioned on a simple measure of the spread of the observed histogram, and we provide a method for obtaining conditional significance levels. We justify this conditioning using the conditionality principle described by Cox and Hinkley (1974). Application of the method to gene expression data illustrates the circumstances when conditional significance levels are needed.

  20. Caveats for using statistical significance tests in research assessments

    DEFF Research Database (Denmark)

    Schneider, Jesper Wiborg

    2013-01-01

    controversial and numerous criticisms have been leveled against their use. Based on examples from articles by proponents of the use statistical significance tests in research assessments, we address some of the numerous problems with such tests. The issues specifically discussed are the ritual practice......This article raises concerns about the advantages of using statistical significance tests in research assessments as has recently been suggested in the debate about proper normalization procedures for citation indicators by Opthof and Leydesdorff (2010). Statistical significance tests are highly...... argue that applying statistical significance tests and mechanically adhering to their results are highly problematic and detrimental to critical thinking. We claim that the use of such tests do not provide any advantages in relation to deciding whether differences between citation indicators...

  1. Statistical physics of interacting neural networks

    Science.gov (United States)

    Kinzel, Wolfgang; Metzler, Richard; Kanter, Ido

    2001-12-01

    Recent results on the statistical physics of time series generation and prediction are presented. A neural network is trained on quasi-periodic and chaotic sequences and overlaps to the sequence generator as well as the prediction errors are calculated numerically. For each network there exists a sequence for which it completely fails to make predictions. Two interacting networks show a transition to perfect synchronization. A pool of interacting networks shows good coordination in the minority game-a model of competition in a closed market. Finally, as a demonstration, a perceptron predicts bit sequences produced by human beings.

  2. Two statistical mechanics aspects of complex networks

    Science.gov (United States)

    Thurner, Stefan; Biely, Christoly

    2006-12-01

    By adopting an ensemble interpretation of non-growing rewiring networks, network theory can be reduced to a counting problem of possible network states and an identification of their associated probabilities. We present two scenarios of how different rewirement schemes can be used to control the state probabilities of the system. In particular, we review how by generalizing the linking rules of random graphs, in combination with superstatistics and quantum mechanical concepts, one can establish an exact relation between the degree distribution of any given network and the nodes’ linking probability distributions. In a second approach, we control state probabilities by a network Hamiltonian, whose characteristics are motivated by biological and socio-economical statistical systems. We demonstrate that a thermodynamics of networks becomes a fully consistent concept, allowing to study e.g. ‘phase transitions’ and computing entropies through thermodynamic relations.

  3. Functional abilities and cognitive decline in adult and aging intellectual disabilities. Psychometric validation of an Italian version of the Alzheimer's Functional Assessment Tool (AFAST): analysis of its clinical significance with linear statistics and artificial neural networks.

    Science.gov (United States)

    De Vreese, L P; Gomiero, T; Uberti, M; De Bastiani, E; Weger, E; Mantesso, U; Marangoni, A

    2015-04-01

    (a) A psychometric validation of an Italian version of the Alzheimer's Functional Assessment Tool scale (AFAST-I), designed for informant-based assessment of the degree of impairment and of assistance required in seven basic daily activities in adult/elderly people with intellectual disabilities (ID) and (suspected) dementia; (b) a pilot analysis of its clinical significance with traditional statistical procedures and with an artificial neural network. AFAST-I was administered to the professional caregivers of 61 adults/seniors with ID with a mean age (± SD) of 53.4 (± 7.7) years (36% with Down syndrome). Internal consistency (Cronbach's α coefficient), inter/intra-rater reliabilities (intra-class coefficients, ICC) and concurrent, convergent and discriminant validity (Pearson's r coefficients) were computed. Clinical significance was probed by analysing the relationships among AFAST-I scores and the Sum of Cognitive Scores (SCS) and the Sum of Social Scores (SOS) of the Dementia Questionnaire for Persons with Intellectual Disabilities (DMR-I) after standardisation of their raw scores in equivalent scores (ES). An adaptive artificial system (AutoContractive Maps, AutoCM) was applied to all the variables recorded in the study sample, aimed at uncovering which variable occupies a central position and supports the entire network made up of the remaining variables interconnected among themselves with different weights. AFAST-I shows a high level of internal homogeneity with a Cronbach's α coefficient of 0.92. Inter-rater and intra-rater reliabilities were also excellent with ICC correlations of 0.96 and 0.93, respectively. The results of the analyses of the different AFAST-I validities all go in the expected direction: concurrent validity (r=-0.87 with ADL); convergent validity (r=0.63 with SCS; r=0.61 with SOS); discriminant validity (r=0.21 with the frequency of occurrence of dementia-related Behavioral Excesses of the Assessment for Adults with Developmental

  4. On detection and assessment of statistical significance of Genomic Islands

    Directory of Open Access Journals (Sweden)

    Chaudhuri Probal

    2008-04-01

    Full Text Available Abstract Background Many of the available methods for detecting Genomic Islands (GIs in prokaryotic genomes use markers such as transposons, proximal tRNAs, flanking repeats etc., or they use other supervised techniques requiring training datasets. Most of these methods are primarily based on the biases in GC content or codon and amino acid usage of the islands. However, these methods either do not use any formal statistical test of significance or use statistical tests for which the critical values and the P-values are not adequately justified. We propose a method, which is unsupervised in nature and uses Monte-Carlo statistical tests based on randomly selected segments of a chromosome. Such tests are supported by precise statistical distribution theory, and consequently, the resulting P-values are quite reliable for making the decision. Results Our algorithm (named Design-Island, an acronym for Detection of Statistically Significant Genomic Island runs in two phases. Some 'putative GIs' are identified in the first phase, and those are refined into smaller segments containing horizontally acquired genes in the refinement phase. This method is applied to Salmonella typhi CT18 genome leading to the discovery of several new pathogenicity, antibiotic resistance and metabolic islands that were missed by earlier methods. Many of these islands contain mobile genetic elements like phage-mediated genes, transposons, integrase and IS elements confirming their horizontal acquirement. Conclusion The proposed method is based on statistical tests supported by precise distribution theory and reliable P-values along with a technique for visualizing statistically significant islands. The performance of our method is better than many other well known methods in terms of their sensitivity and accuracy, and in terms of specificity, it is comparable to other methods.

  5. Synchronization from second order network connectivity statistics

    Directory of Open Access Journals (Sweden)

    Liqiong eZhao

    2011-07-01

    Full Text Available We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks (SONETs, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by a pool and redistribute mechanism. The pooling of many inputs averages out independent fluctuations, amplifying weak correlations in the inputs. With increased chain connections, neurons with many inputs tend to have many outputs. Hence, chains ensure that the amplified correlations in the neurons with many inputs are redistributed throughout the network, enhancing the development of synchrony across the network.

  6. Your Chi-Square Test Is Statistically Significant: Now What?

    Science.gov (United States)

    Sharpe, Donald

    2015-01-01

    Applied researchers have employed chi-square tests for more than one hundred years. This paper addresses the question of how one should follow a statistically significant chi-square test result in order to determine the source of that result. Four approaches were evaluated: calculating residuals, comparing cells, ransacking, and partitioning. Data…

  7. Statistical Significance and Effect Size: Two Sides of a Coin.

    Science.gov (United States)

    Fan, Xitao

    This paper suggests that statistical significance testing and effect size are two sides of the same coin; they complement each other, but do not substitute for one another. Good research practice requires that both should be taken into consideration to make sound quantitative decisions. A Monte Carlo simulation experiment was conducted, and a…

  8. Reporting effect sizes as a supplement to statistical significance ...

    African Journals Online (AJOL)

    The purpose of the article is to review the statistical significance reporting practices in reading instruction studies and to provide guidelines for when to calculate and report effect sizes in educational research. A review of six readily accessible (online) and accredited journals publishing research on reading instruction ...

  9. Test for the statistical significance of differences between ROC curves

    International Nuclear Information System (INIS)

    Metz, C.E.; Kronman, H.B.

    1979-01-01

    A test for the statistical significance of observed differences between two measured Receiver Operating Characteristic (ROC) curves has been designed and evaluated. The set of observer response data for each ROC curve is assumed to be independent and to arise from a ROC curve having a form which, in the absence of statistical fluctuations in the response data, graphs as a straight line on double normal-deviate axes. To test the significance of an apparent difference between two measured ROC curves, maximum likelihood estimates of the two parameters of each curve and the associated parameter variances and covariance are calculated from the corresponding set of observer response data. An approximate Chi-square statistic with two degrees of freedom is then constructed from the differences between the parameters estimated for each ROC curve and from the variances and covariances of these estimates. This statistic is known to be truly Chi-square distributed only in the limit of large numbers of trials in the observer performance experiments. Performance of the statistic for data arising from a limited number of experimental trials was evaluated. Independent sets of rating scale data arising from the same underlying ROC curve were paired, and the fraction of differences found (falsely) significant was compared to the significance level, α, used with the test. Although test performance was found to be somewhat dependent on both the number of trials in the data and the position of the underlying ROC curve in the ROC space, the results for various significance levels showed the test to be reliable under practical experimental conditions

  10. Multilayer Statistical Intrusion Detection in Wireless Networks

    Science.gov (United States)

    Hamdi, Mohamed; Meddeb-Makhlouf, Amel; Boudriga, Noureddine

    2008-12-01

    The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs). This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT) is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.

  11. Increasing the statistical significance of entanglement detection in experiments.

    Science.gov (United States)

    Jungnitsch, Bastian; Niekamp, Sönke; Kleinmann, Matthias; Gühne, Otfried; Lu, He; Gao, Wei-Bo; Chen, Yu-Ao; Chen, Zeng-Bing; Pan, Jian-Wei

    2010-05-28

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. Experimentally, we observe this phenomenon in a four-photon experiment, testing the Mermin and Ardehali inequality for different levels of noise. Furthermore, we provide a way to develop entanglement tests with high statistical significance.

  12. Synchronization from Second Order Network Connectivity Statistics

    Science.gov (United States)

    Zhao, Liqiong; Beverlin, Bryce; Netoff, Theoden; Nykamp, Duane Q.

    2011-01-01

    We investigate how network structure can influence the tendency for a neuronal network to synchronize, or its synchronizability, independent of the dynamical model for each neuron. The synchrony analysis takes advantage of the framework of second order networks, which defines four second order connectivity statistics based on the relative frequency of two-connection network motifs. The analysis identifies two of these statistics, convergent connections, and chain connections, as highly influencing the synchrony. Simulations verify that synchrony decreases with the frequency of convergent connections and increases with the frequency of chain connections. These trends persist with simulations of multiple models for the neuron dynamics and for different types of networks. Surprisingly, divergent connections, which determine the fraction of shared inputs, do not strongly influence the synchrony. The critical role of chains, rather than divergent connections, in influencing synchrony can be explained by their increasing the effective coupling strength. The decrease of synchrony with convergent connections is primarily due to the resulting heterogeneity in firing rates. PMID:21779239

  13. Common pitfalls in statistical analysis: "P" values, statistical significance and confidence intervals

    Directory of Open Access Journals (Sweden)

    Priya Ranganathan

    2015-01-01

    Full Text Available In the second part of a series on pitfalls in statistical analysis, we look at various ways in which a statistically significant study result can be expressed. We debunk some of the myths regarding the ′P′ value, explain the importance of ′confidence intervals′ and clarify the importance of including both values in a paper

  14. Common pitfalls in statistical analysis: “P” values, statistical significance and confidence intervals

    Science.gov (United States)

    Ranganathan, Priya; Pramesh, C. S.; Buyse, Marc

    2015-01-01

    In the second part of a series on pitfalls in statistical analysis, we look at various ways in which a statistically significant study result can be expressed. We debunk some of the myths regarding the ‘P’ value, explain the importance of ‘confidence intervals’ and clarify the importance of including both values in a paper PMID:25878958

  15. Performance modeling, stochastic networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi R

    2013-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan

  16. Performance modeling, loss networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi

    2009-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I

  17. Statistical significance of epidemiological data. Seminar: Evaluation of epidemiological studies

    International Nuclear Information System (INIS)

    Weber, K.H.

    1993-01-01

    In stochastic damages, the numbers of events, e.g. the persons who are affected by or have died of cancer, and thus the relative frequencies (incidence or mortality) are binomially distributed random variables. Their statistical fluctuations can be characterized by confidence intervals. For epidemiologic questions, especially for the analysis of stochastic damages in the low dose range, the following issues are interesting: - Is a sample (a group of persons) with a definite observed damage frequency part of the whole population? - Is an observed frequency difference between two groups of persons random or statistically significant? - Is an observed increase or decrease of the frequencies with increasing dose random or statistically significant and how large is the regression coefficient (= risk coefficient) in this case? These problems can be solved by sttistical tests. So-called distribution-free tests and tests which are not bound to the supposition of normal distribution are of particular interest, such as: - χ 2 -independence test (test in contingency tables); - Fisher-Yates-test; - trend test according to Cochran; - rank correlation test given by Spearman. These tests are explained in terms of selected epidemiologic data, e.g. of leukaemia clusters, of the cancer mortality of the Japanese A-bomb survivors especially in the low dose range as well as on the sample of the cancer mortality in the high background area in Yangjiang (China). (orig.) [de

  18. Systematic reviews of anesthesiologic interventions reported as statistically significant

    DEFF Research Database (Denmark)

    Imberger, Georgina; Gluud, Christian; Boylan, John

    2015-01-01

    statistically significant meta-analyses of anesthesiologic interventions, we used TSA to estimate power and imprecision in the context of sparse data and repeated updates. METHODS: We conducted a search to identify all systematic reviews with meta-analyses that investigated an intervention that may......: From 11,870 titles, we found 682 systematic reviews that investigated anesthesiologic interventions. In the 50 sampled meta-analyses, the median number of trials included was 8 (interquartile range [IQR], 5-14), the median number of participants was 964 (IQR, 523-1736), and the median number...

  19. Increasing the statistical significance of entanglement detection in experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jungnitsch, Bastian; Niekamp, Soenke; Kleinmann, Matthias; Guehne, Otfried [Institut fuer Quantenoptik und Quanteninformation, Innsbruck (Austria); Lu, He; Gao, Wei-Bo; Chen, Zeng-Bing [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei (China); Chen, Yu-Ao; Pan, Jian-Wei [Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei (China); Physikalisches Institut, Universitaet Heidelberg (Germany)

    2010-07-01

    Entanglement is often verified by a violation of an inequality like a Bell inequality or an entanglement witness. Considerable effort has been devoted to the optimization of such inequalities in order to obtain a high violation. We demonstrate theoretically and experimentally that such an optimization does not necessarily lead to a better entanglement test, if the statistical error is taken into account. Theoretically, we show for different error models that reducing the violation of an inequality can improve the significance. We show this to be the case for an error model in which the variance of an observable is interpreted as its error and for the standard error model in photonic experiments. Specifically, we demonstrate that the Mermin inequality yields a Bell test which is statistically more significant than the Ardehali inequality in the case of a photonic four-qubit state that is close to a GHZ state. Experimentally, we observe this phenomenon in a four-photon experiment, testing the above inequalities for different levels of noise.

  20. Sibling Competition & Growth Tradeoffs. Biological vs. Statistical Significance.

    Science.gov (United States)

    Kramer, Karen L; Veile, Amanda; Otárola-Castillo, Erik

    2016-01-01

    Early childhood growth has many downstream effects on future health and reproduction and is an important measure of offspring quality. While a tradeoff between family size and child growth outcomes is theoretically predicted in high-fertility societies, empirical evidence is mixed. This is often attributed to phenotypic variation in parental condition. However, inconsistent study results may also arise because family size confounds the potentially differential effects that older and younger siblings can have on young children's growth. Additionally, inconsistent results might reflect that the biological significance associated with different growth trajectories is poorly understood. This paper addresses these concerns by tracking children's monthly gains in height and weight from weaning to age five in a high fertility Maya community. We predict that: 1) as an aggregate measure family size will not have a major impact on child growth during the post weaning period; 2) competition from young siblings will negatively impact child growth during the post weaning period; 3) however because of their economic value, older siblings will have a negligible effect on young children's growth. Accounting for parental condition, we use linear mixed models to evaluate the effects that family size, younger and older siblings have on children's growth. Congruent with our expectations, it is younger siblings who have the most detrimental effect on children's growth. While we find statistical evidence of a quantity/quality tradeoff effect, the biological significance of these results is negligible in early childhood. Our findings help to resolve why quantity/quality studies have had inconsistent results by showing that sibling competition varies with sibling age composition, not just family size, and that biological significance is distinct from statistical significance.

  1. Sibling Competition & Growth Tradeoffs. Biological vs. Statistical Significance.

    Directory of Open Access Journals (Sweden)

    Karen L Kramer

    Full Text Available Early childhood growth has many downstream effects on future health and reproduction and is an important measure of offspring quality. While a tradeoff between family size and child growth outcomes is theoretically predicted in high-fertility societies, empirical evidence is mixed. This is often attributed to phenotypic variation in parental condition. However, inconsistent study results may also arise because family size confounds the potentially differential effects that older and younger siblings can have on young children's growth. Additionally, inconsistent results might reflect that the biological significance associated with different growth trajectories is poorly understood. This paper addresses these concerns by tracking children's monthly gains in height and weight from weaning to age five in a high fertility Maya community. We predict that: 1 as an aggregate measure family size will not have a major impact on child growth during the post weaning period; 2 competition from young siblings will negatively impact child growth during the post weaning period; 3 however because of their economic value, older siblings will have a negligible effect on young children's growth. Accounting for parental condition, we use linear mixed models to evaluate the effects that family size, younger and older siblings have on children's growth. Congruent with our expectations, it is younger siblings who have the most detrimental effect on children's growth. While we find statistical evidence of a quantity/quality tradeoff effect, the biological significance of these results is negligible in early childhood. Our findings help to resolve why quantity/quality studies have had inconsistent results by showing that sibling competition varies with sibling age composition, not just family size, and that biological significance is distinct from statistical significance.

  2. Applications of spatial statistical network models to stream data

    Science.gov (United States)

    Daniel J. Isaak; Erin E. Peterson; Jay M. Ver Hoef; Seth J. Wenger; Jeffrey A. Falke; Christian E. Torgersen; Colin Sowder; E. Ashley Steel; Marie-Josee Fortin; Chris E. Jordan; Aaron S. Ruesch; Nicholas Som; Pascal. Monestiez

    2014-01-01

    Streams and rivers host a significant portion of Earth's biodiversity and provide important ecosystem services for human populations. Accurate information regarding the status and trends of stream resources is vital for their effective conservation and management. Most statistical techniques applied to data measured on stream networks were developed for...

  3. A tutorial on hunting statistical significance by chasing N

    Directory of Open Access Journals (Sweden)

    Denes Szucs

    2016-09-01

    Full Text Available There is increasing concern about the replicability of studies in psychology and cognitive neuroscience. Hidden data dredging (also called p-hacking is a major contributor to this crisis because it substantially increases Type I error resulting in a much larger proportion of false positive findings than the usually expected 5%. In order to build better intuition to avoid, detect and criticise some typical problems, here I systematically illustrate the large impact of some easy to implement and so, perhaps frequent data dredging techniques on boosting false positive findings. I illustrate several forms of two special cases of data dredging. First, researchers may violate the data collection stopping rules of null hypothesis significance testing by repeatedly checking for statistical significance with various numbers of participants. Second, researchers may group participants post-hoc along potential but unplanned independent grouping variables. The first approach 'hacks' the number of participants in studies, the second approach ‘hacks’ the number of variables in the analysis. I demonstrate the high amount of false positive findings generated by these techniques with data from true null distributions. I also illustrate that it is extremely easy to introduce strong bias into data by very mild selection and re-testing. Similar, usually undocumented data dredging steps can easily lead to having 20-50%, or more false positives.

  4. Statistical Network Analysis for Functional MRI: Mean Networks and Group Comparisons.

    Directory of Open Access Journals (Sweden)

    Cedric E Ginestet

    2014-05-01

    Full Text Available Comparing networks in neuroscience is hard, because the topological properties of a given network are necessarily dependent on the number of edges of that network. This problem arises in the analysis of both weighted and unweighted networks. The term density is often used in this context, in order to refer to the mean edge weight of a weighted network, or to the number of edges in an unweighted one. Comparing families of networks is therefore statistically difficult because differences in topology are necessarily associated with differences in density. In this review paper, we consider this problem from two different perspectives, which include (i the construction of summary networks, such as how to compute and visualize the mean network from a sample of network-valued data points; and (ii how to test for topological differences, when two families of networks also exhibit significant differences in density. In the first instance, we show that the issue of summarizing a family of networks can be conducted by either adopting a mass-univariate approach, which produces a statistical parametric network (SPN, or by directly computing the mean network, provided that a metric has been specified on the space of all networks with a given number of nodes. In the second part of this review, we then highlight the inherent problems associated with the comparison of topological functions of families of networks that differ in density. In particular, we show that a wide range of topological summaries, such as global efficiency and network modularity are highly sensitive to differences in density. Moreover, these problems are not restricted to unweighted metrics, as we demonstrate that the same issues remain present when considering the weighted versions of these metrics. We conclude by encouraging caution, when reporting such statistical comparisons, and by emphasizing the importance of constructing summary networks.

  5. Conducting tests for statistically significant differences using forest inventory data

    Science.gov (United States)

    James A. Westfall; Scott A. Pugh; John W. Coulston

    2013-01-01

    Many forest inventory and monitoring programs are based on a sample of ground plots from which estimates of forest resources are derived. In addition to evaluating metrics such as number of trees or amount of cubic wood volume, it is often desirable to make comparisons between resource attributes. To properly conduct statistical tests for differences, it is imperative...

  6. Estimation of global network statistics from incomplete data.

    Directory of Open Access Journals (Sweden)

    Catherine A Bliss

    Full Text Available Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics describing the overall network topology. We generate scaling methods to predict true network statistics, including the degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our treatment allows us to find support for Dunbar's hypothesis in detecting an upper threshold for the number of active social contacts that individuals maintain over the course of one week.

  7. Statistical characteristics of serious network failures in Japan

    International Nuclear Information System (INIS)

    Uchida, Masato

    2014-01-01

    Due to significant environmental changes in the telecommunications market, network failures affect socioeconomic activities more than ever before. However, the health of public networks at a national level has not been investigated in detail. In this paper, we investigate the statistical characteristics of interval, duration, and the number of users affected for serious network failures, which are defined as network failures that last for more than two hours and affect more than 30,000 users, that occurred in Japan during Japanese fiscal years 2008–2012 (April 2008–March 2013). The results show that (i) the interval follows a Poisson process, (ii) the duration follows a Pareto distribution, (iii) the number of users affected follows a piecewise Pareto distribution, (iv) the product of duration and the number of users affected roughly follow a distribution that can be derived from a convolution of two distributions of duration and the number of users affected, and (v) the relationship between duration and the number of users affected differs from service to service. - Highlights: • The statistical characteristics of serious network failures in Japan are analyzed. • The analysis is based on public information that is available at the moment. • The interval follows a Poisson process. • The duration follows a Pareto distribution. • The number of users affected follows a piecewise Pareto distribution

  8. Statistical properties of random clique networks

    Science.gov (United States)

    Ding, Yi-Min; Meng, Jun; Fan, Jing-Fang; Ye, Fang-Fu; Chen, Xiao-Song

    2017-10-01

    In this paper, a random clique network model to mimic the large clustering coefficient and the modular structure that exist in many real complex networks, such as social networks, artificial networks, and protein interaction networks, is introduced by combining the random selection rule of the Erdös and Rényi (ER) model and the concept of cliques. We find that random clique networks having a small average degree differ from the ER network in that they have a large clustering coefficient and a power law clustering spectrum, while networks having a high average degree have similar properties as the ER model. In addition, we find that the relation between the clustering coefficient and the average degree shows a non-monotonic behavior and that the degree distributions can be fit by multiple Poisson curves; we explain the origin of such novel behaviors and degree distributions.

  9. After statistics reform : Should we still teach significance testing?

    NARCIS (Netherlands)

    A. Hak (Tony)

    2014-01-01

    textabstractIn the longer term null hypothesis significance testing (NHST) will disappear because p- values are not informative and not replicable. Should we continue to teach in the future the procedures of then abolished routines (i.e., NHST)? Three arguments are discussed for not teaching NHST in

  10. Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks.

    Science.gov (United States)

    Tian, Ye; Zhang, Bai; Hoffman, Eric P; Clarke, Robert; Zhang, Zhen; Shih, Ie-Ming; Xuan, Jianhua; Herrington, David M; Wang, Yue

    2014-07-24

    Modeling biological networks serves as both a major goal and an effective tool of systems biology in studying mechanisms that orchestrate the activities of gene products in cells. Biological networks are context-specific and dynamic in nature. To systematically characterize the selectively activated regulatory components and mechanisms, modeling tools must be able to effectively distinguish significant rewiring from random background fluctuations. While differential networks cannot be constructed by existing knowledge alone, novel incorporation of prior knowledge into data-driven approaches can improve the robustness and biological relevance of network inference. However, the major unresolved roadblocks include: big solution space but a small sample size; highly complex networks; imperfect prior knowledge; missing significance assessment; and heuristic structural parameter learning. To address these challenges, we formulated the inference of differential dependency networks that incorporate both conditional data and prior knowledge as a convex optimization problem, and developed an efficient learning algorithm to jointly infer the conserved biological network and the significant rewiring across different conditions. We used a novel sampling scheme to estimate the expected error rate due to "random" knowledge. Based on that scheme, we developed a strategy that fully exploits the benefit of this data-knowledge integrated approach. We demonstrated and validated the principle and performance of our method using synthetic datasets. We then applied our method to yeast cell line and breast cancer microarray data and obtained biologically plausible results. The open-source R software package and the experimental data are freely available at http://www.cbil.ece.vt.edu/software.htm. Experiments on both synthetic and real data demonstrate the effectiveness of the knowledge-fused differential dependency network in revealing the statistically significant rewiring in biological

  11. Distinguishing between statistical significance and practical/clinical meaningfulness using statistical inference.

    Science.gov (United States)

    Wilkinson, Michael

    2014-03-01

    Decisions about support for predictions of theories in light of data are made using statistical inference. The dominant approach in sport and exercise science is the Neyman-Pearson (N-P) significance-testing approach. When applied correctly it provides a reliable procedure for making dichotomous decisions for accepting or rejecting zero-effect null hypotheses with known and controlled long-run error rates. Type I and type II error rates must be specified in advance and the latter controlled by conducting an a priori sample size calculation. The N-P approach does not provide the probability of hypotheses or indicate the strength of support for hypotheses in light of data, yet many scientists believe it does. Outcomes of analyses allow conclusions only about the existence of non-zero effects, and provide no information about the likely size of true effects or their practical/clinical value. Bayesian inference can show how much support data provide for different hypotheses, and how personal convictions should be altered in light of data, but the approach is complicated by formulating probability distributions about prior subjective estimates of population effects. A pragmatic solution is magnitude-based inference, which allows scientists to estimate the true magnitude of population effects and how likely they are to exceed an effect magnitude of practical/clinical importance, thereby integrating elements of subjective Bayesian-style thinking. While this approach is gaining acceptance, progress might be hastened if scientists appreciate the shortcomings of traditional N-P null hypothesis significance testing.

  12. Network Data: Statistical Theory and New Models

    Science.gov (United States)

    2016-02-17

    and with environmental scientists at JPL and Emory University to retrieval from NASA MISR remote sensing images aerosol index AOD for air pollution ...Beijing, May, 2013 Beijing Statistics Forum, Beijing, May, 2013 Statistics Seminar, CREST-ENSAE, Paris , March, 2013 Statistics Seminar, University...to retrieval from NASA MISR remote sensing images aerosol index AOD for air pollution monitoring and management. Satellite- retrieved Aerosol Optical

  13. Network similarity and statistical analysis of earthquake seismic data

    OpenAIRE

    Deyasi, Krishanu; Chakraborty, Abhijit; Banerjee, Anirban

    2016-01-01

    We study the structural similarity of earthquake networks constructed from seismic catalogs of different geographical regions. A hierarchical clustering of underlying undirected earthquake networks is shown using Jensen-Shannon divergence in graph spectra. The directed nature of links indicates that each earthquake network is strongly connected, which motivates us to study the directed version statistically. Our statistical analysis of each earthquake region identifies the hub regions. We cal...

  14. Statistical mechanics of the international trade network.

    Science.gov (United States)

    Fronczak, Agata; Fronczak, Piotr

    2012-05-01

    Analyzing real data on international trade covering the time interval 1950-2000, we show that in each year over the analyzed period the network is a typical representative of the ensemble of maximally random weighted networks, whose directed connections (bilateral trade volumes) are only characterized by the product of the trading countries' GDPs. It means that time evolution of this network may be considered as a continuous sequence of equilibrium states, i.e., a quasistatic process. This, in turn, allows one to apply the linear response theory to make (and also verify) simple predictions about the network. In particular, we show that bilateral trade fulfills a fluctuation-response theorem, which states that the average relative change in imports (exports) between two countries is a sum of the relative changes in their GDPs. Yearly changes in trade volumes prove that the theorem is valid.

  15. A statistical analysis of UK financial networks

    Science.gov (United States)

    Chu, J.; Nadarajah, S.

    2017-04-01

    In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.

  16. A statistical framework for differential network analysis from microarray data

    Directory of Open Access Journals (Sweden)

    Datta Somnath

    2010-02-01

    Full Text Available Abstract Background It has been long well known that genes do not act alone; rather groups of genes act in consort during a biological process. Consequently, the expression levels of genes are dependent on each other. Experimental techniques to detect such interacting pairs of genes have been in place for quite some time. With the advent of microarray technology, newer computational techniques to detect such interaction or association between gene expressions are being proposed which lead to an association network. While most microarray analyses look for genes that are differentially expressed, it is of potentially greater significance to identify how entire association network structures change between two or more biological settings, say normal versus diseased cell types. Results We provide a recipe for conducting a differential analysis of networks constructed from microarray data under two experimental settings. At the core of our approach lies a connectivity score that represents the strength of genetic association or interaction between two genes. We use this score to propose formal statistical tests for each of following queries: (i whether the overall modular structures of the two networks are different, (ii whether the connectivity of a particular set of "interesting genes" has changed between the two networks, and (iii whether the connectivity of a given single gene has changed between the two networks. A number of examples of this score is provided. We carried out our method on two types of simulated data: Gaussian networks and networks based on differential equations. We show that, for appropriate choices of the connectivity scores and tuning parameters, our method works well on simulated data. We also analyze a real data set involving normal versus heavy mice and identify an interesting set of genes that may play key roles in obesity. Conclusions Examining changes in network structure can provide valuable information about the

  17. Using machine learning, neural networks and statistics to predict bankruptcy

    NARCIS (Netherlands)

    Pompe, P.P.M.; Feelders, A.J.; Feelders, A.J.

    1997-01-01

    Recent literature strongly suggests that machine learning approaches to classification outperform "classical" statistical methods. We make a comparison between the performance of linear discriminant analysis, classification trees, and neural networks in predicting corporate bankruptcy. Linear

  18. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  19. Optimizing Groundwater Monitoring Networks Using Integrated Statistical and Geostatistical Approaches

    Directory of Open Access Journals (Sweden)

    Jay Krishna Thakur

    2015-08-01

    Full Text Available The aim of this work is to investigate new approaches using methods based on statistics and geo-statistics for spatio-temporal optimization of groundwater monitoring networks. The formulated and integrated methods were tested with the groundwater quality data set of Bitterfeld/Wolfen, Germany. Spatially, the monitoring network was optimized using geo-statistical methods. Temporal optimization of the monitoring network was carried out using Sen’s method (1968. For geostatistical network optimization, a geostatistical spatio-temporal algorithm was used to identify redundant wells in 2- and 2.5-D Quaternary and Tertiary aquifers. Influences of interpolation block width, dimension, contaminant association, groundwater flow direction and aquifer homogeneity on statistical and geostatistical methods for monitoring network optimization were analysed. The integrated approach shows 37% and 28% redundancies in the monitoring network in Quaternary aquifer and Tertiary aquifer respectively. The geostatistical method also recommends 41 and 22 new monitoring wells in the Quaternary and Tertiary aquifers respectively. In temporal optimization, an overall optimized sampling interval was recommended in terms of lower quartile (238 days, median quartile (317 days and upper quartile (401 days in the research area of Bitterfeld/Wolfen. Demonstrated methods for improving groundwater monitoring network can be used in real monitoring network optimization with due consideration given to influencing factors.

  20. Statistical and machine learning approaches for network analysis

    CERN Document Server

    Dehmer, Matthias

    2012-01-01

    Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internation

  1. An ANOVA approach for statistical comparisons of brain networks.

    Science.gov (United States)

    Fraiman, Daniel; Fraiman, Ricardo

    2018-03-16

    The study of brain networks has developed extensively over the last couple of decades. By contrast, techniques for the statistical analysis of these networks are less developed. In this paper, we focus on the statistical comparison of brain networks in a nonparametric framework and discuss the associated detection and identification problems. We tested network differences between groups with an analysis of variance (ANOVA) test we developed specifically for networks. We also propose and analyse the behaviour of a new statistical procedure designed to identify different subnetworks. As an example, we show the application of this tool in resting-state fMRI data obtained from the Human Connectome Project. We identify, among other variables, that the amount of sleep the days before the scan is a relevant variable that must be controlled. Finally, we discuss the potential bias in neuroimaging findings that is generated by some behavioural and brain structure variables. Our method can also be applied to other kind of networks such as protein interaction networks, gene networks or social networks.

  2. Statistical properties of the personal social network in the Facebook

    Science.gov (United States)

    Guo, Q.; Shao, F.; Hu, Z. L.; Liu, J. G.

    2013-10-01

    The statistical properties of the user interaction behaviors in a city have great significance for developing the network marketing strategy, promoting personalized service and so on. In this paper, we investigate the interaction property of the users from New Orleans network in the Facebook, and find that one's out-degree and in-degree are approximately the same. In addition, when the number of a user friends is less than 65, the number of their posts would linearly grow with the slope 4.2, but when one user's friends are more than 65, their posts would grow with the slope 2.1. Further, the average link weight is relatively flat when the out-degree ranges from 28 to 65, and before or after the section it is on the rise or in decline, respectively, from which we can conclude that one could not maintain stable and meaningful relationships with more than 65 people in a single city. We present a null model to reshuffle the network to guarantee that the empirical results are not obtained by accident. The result obtained after reshuffling suggests that there exists a limit that restricts people's social activities.

  3. Statistically validated network of portfolio overlaps and systemic risk.

    Science.gov (United States)

    Gualdi, Stanislao; Cimini, Giulio; Primicerio, Kevin; Di Clemente, Riccardo; Challet, Damien

    2016-12-21

    Common asset holding by financial institutions (portfolio overlap) is nowadays regarded as an important channel for financial contagion with the potential to trigger fire sales and severe losses at the systemic level. We propose a method to assess the statistical significance of the overlap between heterogeneously diversified portfolios, which we use to build a validated network of financial institutions where links indicate potential contagion channels. The method is implemented on a historical database of institutional holdings ranging from 1999 to the end of 2013, but can be applied to any bipartite network. We find that the proportion of validated links (i.e. of significant overlaps) increased steadily before the 2007-2008 financial crisis and reached a maximum when the crisis occurred. We argue that the nature of this measure implies that systemic risk from fire sales liquidation was maximal at that time. After a sharp drop in 2008, systemic risk resumed its growth in 2009, with a notable acceleration in 2013. We finally show that market trends tend to be amplified in the portfolios identified by the algorithm, such that it is possible to have an informative signal about institutions that are about to suffer (enjoy) the most significant losses (gains).

  4. Understanding the Sampling Distribution and Its Use in Testing Statistical Significance.

    Science.gov (United States)

    Breunig, Nancy A.

    Despite the increasing criticism of statistical significance testing by researchers, particularly in the publication of the 1994 American Psychological Association's style manual, statistical significance test results are still popular in journal articles. For this reason, it remains important to understand the logic of inferential statistics. A…

  5. Estimation of Anonymous Email Network Characteristics through Statistical Disclosure Attacks

    Directory of Open Access Journals (Sweden)

    Javier Portela

    2016-11-01

    Full Text Available Social network analysis aims to obtain relational data from social systems to identify leaders, roles, and communities in order to model profiles or predict a specific behavior in users’ network. Preserving anonymity in social networks is a subject of major concern. Anonymity can be compromised by disclosing senders’ or receivers’ identity, message content, or sender-receiver relationships. Under strongly incomplete information, a statistical disclosure attack is used to estimate the network and node characteristics such as centrality and clustering measures, degree distribution, and small-world-ness. A database of email networks in 29 university faculties is used to study the method. A research on the small-world-ness and Power law characteristics of these email networks is also developed, helping to understand the behavior of small email networks.

  6. Estimation of Anonymous Email Network Characteristics through Statistical Disclosure Attacks

    Science.gov (United States)

    Portela, Javier; García Villalba, Luis Javier; Silva Trujillo, Alejandra Guadalupe; Sandoval Orozco, Ana Lucila; Kim, Tai-Hoon

    2016-01-01

    Social network analysis aims to obtain relational data from social systems to identify leaders, roles, and communities in order to model profiles or predict a specific behavior in users’ network. Preserving anonymity in social networks is a subject of major concern. Anonymity can be compromised by disclosing senders’ or receivers’ identity, message content, or sender-receiver relationships. Under strongly incomplete information, a statistical disclosure attack is used to estimate the network and node characteristics such as centrality and clustering measures, degree distribution, and small-world-ness. A database of email networks in 29 university faculties is used to study the method. A research on the small-world-ness and Power law characteristics of these email networks is also developed, helping to understand the behavior of small email networks. PMID:27809275

  7. Statistical inference to advance network models in epidemiology.

    Science.gov (United States)

    Welch, David; Bansal, Shweta; Hunter, David R

    2011-03-01

    Contact networks are playing an increasingly important role in the study of epidemiology. Most of the existing work in this area has focused on considering the effect of underlying network structure on epidemic dynamics by using tools from probability theory and computer simulation. This work has provided much insight on the role that heterogeneity in host contact patterns plays on infectious disease dynamics. Despite the important understanding afforded by the probability and simulation paradigm, this approach does not directly address important questions about the structure of contact networks such as what is the best network model for a particular mode of disease transmission, how parameter values of a given model should be estimated, or how precisely the data allow us to estimate these parameter values. We argue that these questions are best answered within a statistical framework and discuss the role of statistical inference in estimating contact networks from epidemiological data. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Motif statistics and spike correlations in neuronal networks

    International Nuclear Information System (INIS)

    Hu, Yu; Shea-Brown, Eric; Trousdale, James; Josić, Krešimir

    2013-01-01

    Motifs are patterns of subgraphs of complex networks. We studied the impact of such patterns of connectivity on the level of correlated, or synchronized, spiking activity among pairs of cells in a recurrent network of integrate and fire neurons. For a range of network architectures, we find that the pairwise correlation coefficients, averaged across the network, can be closely approximated using only three statistics of network connectivity. These are the overall network connection probability and the frequencies of two second order motifs: diverging motifs, in which one cell provides input to two others, and chain motifs, in which two cells are connected via a third intermediary cell. Specifically, the prevalence of diverging and chain motifs tends to increase correlation. Our method is based on linear response theory, which enables us to express spiking statistics using linear algebra, and a resumming technique, which extrapolates from second order motifs to predict the overall effect of coupling on network correlation. Our motif-based results seek to isolate the effect of network architecture perturbatively from a known network state. (paper)

  9. Statistical significant changes in ground thermal conditions of alpine Austria during the last decade

    Science.gov (United States)

    Kellerer-Pirklbauer, Andreas

    2016-04-01

    Longer data series (e.g. >10 a) of ground temperatures in alpine regions are helpful to improve the understanding regarding the effects of present climate change on distribution and thermal characteristics of seasonal frost- and permafrost-affected areas. Beginning in 2004 - and more intensively since 2006 - a permafrost and seasonal frost monitoring network was established in Central and Eastern Austria by the University of Graz. This network consists of c.60 ground temperature (surface and near-surface) monitoring sites which are located at 1922-3002 m a.s.l., at latitude 46°55'-47°22'N and at longitude 12°44'-14°41'E. These data allow conclusions about general ground thermal conditions, potential permafrost occurrence, trend during the observation period, and regional pattern of changes. Calculations and analyses of several different temperature-related parameters were accomplished. At an annual scale a region-wide statistical significant warming during the observation period was revealed by e.g. an increase in mean annual temperature values (mean, maximum) or the significant lowering of the surface frost number (F+). At a seasonal scale no significant trend of any temperature-related parameter was in most cases revealed for spring (MAM) and autumn (SON). Winter (DJF) shows only a weak warming. In contrast, the summer (JJA) season reveals in general a significant warming as confirmed by several different temperature-related parameters such as e.g. mean seasonal temperature, number of thawing degree days, number of freezing degree days, or days without night frost. On a monthly basis August shows the statistically most robust and strongest warming of all months, although regional differences occur. Despite the fact that the general ground temperature warming during the last decade is confirmed by the field data in the study region, complications in trend analyses arise by temperature anomalies (e.g. warm winter 2006/07) or substantial variations in the winter

  10. Inference on network statistics by restricting to the network space: applications to sexual history data.

    Science.gov (United States)

    Goyal, Ravi; De Gruttola, Victor

    2018-01-30

    Analysis of sexual history data intended to describe sexual networks presents many challenges arising from the fact that most surveys collect information on only a very small fraction of the population of interest. In addition, partners are rarely identified and responses are subject to reporting biases. Typically, each network statistic of interest, such as mean number of sexual partners for men or women, is estimated independently of other network statistics. There is, however, a complex relationship among networks statistics; and knowledge of these relationships can aid in addressing concerns mentioned earlier. We develop a novel method that constrains a posterior predictive distribution of a collection of network statistics in order to leverage the relationships among network statistics in making inference about network properties of interest. The method ensures that inference on network properties is compatible with an actual network. Through extensive simulation studies, we also demonstrate that use of this method can improve estimates in settings where there is uncertainty that arises both from sampling and from systematic reporting bias compared with currently available approaches to estimation. To illustrate the method, we apply it to estimate network statistics using data from the Chicago Health and Social Life Survey. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Statistical mechanics of attractor neural network models with synaptic depression

    International Nuclear Information System (INIS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato

    2009-01-01

    Synaptic depression is known to control gain for presynaptic inputs. Since cortical neurons receive thousands of presynaptic inputs, and their outputs are fed into thousands of other neurons, the synaptic depression should influence macroscopic properties of neural networks. We employ simple neural network models to explore the macroscopic effects of synaptic depression. Systems with the synaptic depression cannot be analyzed due to asymmetry of connections with the conventional equilibrium statistical-mechanical approach. Thus, we first propose a microscopic dynamical mean field theory. Next, we derive macroscopic steady state equations and discuss the stabilities of steady states for various types of neural network models.

  12. Statistical performance evaluation of ECG transmission using wireless networks.

    Science.gov (United States)

    Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad

    2013-07-01

    This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation.

  13. "What If" Analyses: Ways to Interpret Statistical Significance Test Results Using EXCEL or "R"

    Science.gov (United States)

    Ozturk, Elif

    2012-01-01

    The present paper aims to review two motivations to conduct "what if" analyses using Excel and "R" to understand the statistical significance tests through the sample size context. "What if" analyses can be used to teach students what statistical significance tests really do and in applied research either prospectively to estimate what sample size…

  14. Statistical mechanics of the fashion game on random networks

    International Nuclear Information System (INIS)

    Sun, YiFan

    2016-01-01

    A model of fashion on networks is studied. This model consists of two groups of agents that are located on a network and have opposite viewpoints towards being fashionable: behaving consistently with either the majority or the minority of adjacent agents. Checking whether the fashion game has a pure Nash equilibrium (pure NE) is a non-deterministic polynomial complete problem. Using replica-symmetric mean field theory, the largest proportion of satisfied agents and the region where at least one pure NE should exist are determined for several types of random networks. Furthermore, a quantitive analysis of the asynchronous best response dynamics yields the phase diagram of existence and detectability of pure NE in the fashion game on some random networks. (paper: classical statistical mechanics, equilibrium and non-equilibrium).

  15. Strategies for Testing Statistical and Practical Significance in Detecting DIF with Logistic Regression Models

    Science.gov (United States)

    Fidalgo, Angel M.; Alavi, Seyed Mohammad; Amirian, Seyed Mohammad Reza

    2014-01-01

    This study examines three controversial aspects in differential item functioning (DIF) detection by logistic regression (LR) models: first, the relative effectiveness of different analytical strategies for detecting DIF; second, the suitability of the Wald statistic for determining the statistical significance of the parameters of interest; and…

  16. Measuring individual significant change on the Beck Depression Inventory-II through IRT-based statistics.

    NARCIS (Netherlands)

    Brouwer, D.; Meijer, R.R.; Zevalkink, D.J.

    2013-01-01

    Several researchers have emphasized that item response theory (IRT)-based methods should be preferred over classical approaches in measuring change for individual patients. In the present study we discuss and evaluate the use of IRT-based statistics to measure statistical significant individual

  17. Using the Bootstrap Method for a Statistical Significance Test of Differences between Summary Histograms

    Science.gov (United States)

    Xu, Kuan-Man

    2006-01-01

    A new method is proposed to compare statistical differences between summary histograms, which are the histograms summed over a large ensemble of individual histograms. It consists of choosing a distance statistic for measuring the difference between summary histograms and using a bootstrap procedure to calculate the statistical significance level. Bootstrapping is an approach to statistical inference that makes few assumptions about the underlying probability distribution that describes the data. Three distance statistics are compared in this study. They are the Euclidean distance, the Jeffries-Matusita distance and the Kuiper distance. The data used in testing the bootstrap method are satellite measurements of cloud systems called cloud objects. Each cloud object is defined as a contiguous region/patch composed of individual footprints or fields of view. A histogram of measured values over footprints is generated for each parameter of each cloud object and then summary histograms are accumulated over all individual histograms in a given cloud-object size category. The results of statistical hypothesis tests using all three distances as test statistics are generally similar, indicating the validity of the proposed method. The Euclidean distance is determined to be most suitable after comparing the statistical tests of several parameters with distinct probability distributions among three cloud-object size categories. Impacts on the statistical significance levels resulting from differences in the total lengths of satellite footprint data between two size categories are also discussed.

  18. Spatial Analysis Along Networks Statistical and Computational Methods

    CERN Document Server

    Okabe, Atsuyuki

    2012-01-01

    In the real world, there are numerous and various events that occur on and alongside networks, including the occurrence of traffic accidents on highways, the location of stores alongside roads, the incidence of crime on streets and the contamination along rivers. In order to carry out analyses of those events, the researcher needs to be familiar with a range of specific techniques. Spatial Analysis Along Networks provides a practical guide to the necessary statistical techniques and their computational implementation. Each chapter illustrates a specific technique, from Stochastic Point Process

  19. Statistics of leaders and lead changes in growing networks

    International Nuclear Information System (INIS)

    Godrèche, C; Grandclaude, H; Luck, J M

    2010-01-01

    We investigate various aspects of the statistics of leaders in growing network models defined by stochastic attachment rules. The leader is the node with highest degree at a given time (or the node which reached that degree first if there are co-leaders). This comprehensive study includes the full distribution of the degree of the leader, its identity, the number of co-leaders, as well as several observables characterizing the whole history of lead changes: number of lead changes, number of distinct leaders, lead persistence probability. We successively consider the following network models: uniform attachment, linear attachment (the Barabási–Albert model), and generalized preferential attachment with initial attractiveness

  20. Health significance and statistical uncertainty. The value of P-value.

    Science.gov (United States)

    Consonni, Dario; Bertazzi, Pier Alberto

    2017-10-27

    The P-value is widely used as a summary statistics of scientific results. Unfortunately, there is a widespread tendency to dichotomize its value in "P0.05" ("statistically not significant"), with the former implying a "positive" result and the latter a "negative" one. To show the unsuitability of such an approach when evaluating the effects of environmental and occupational risk factors. We provide examples of distorted use of P-value and of the negative consequences for science and public health of such a black-and-white vision. The rigid interpretation of P-value as a dichotomy favors the confusion between health relevance and statistical significance, discourages thoughtful thinking, and distorts attention from what really matters, the health significance. A much better way to express and communicate scientific results involves reporting effect estimates (e.g., risks, risks ratios or risk differences) and their confidence intervals (CI), which summarize and convey both health significance and statistical uncertainty. Unfortunately, many researchers do not usually consider the whole interval of CI but only examine if it includes the null-value, therefore degrading this procedure to the same P-value dichotomy (statistical significance or not). In reporting statistical results of scientific research present effects estimates with their confidence intervals and do not qualify the P-value as "significant" or "not significant".

  1. Statistical vs. Economic Significance in Economics and Econometrics: Further comments on McCloskey & Ziliak

    DEFF Research Database (Denmark)

    Engsted, Tom

    I comment on the controversy between McCloskey & Ziliak and Hoover & Siegler on statistical versus economic significance, in the March 2008 issue of the Journal of Economic Methodology. I argue that while McCloskey & Ziliak are right in emphasizing 'real error', i.e. non-sampling error that cannot...... be eliminated through specification testing, they fail to acknowledge those areas in economics, e.g. rational expectations macroeconomics and asset pricing, where researchers clearly distinguish between statistical and economic significance and where statistical testing plays a relatively minor role in model...

  2. Fundamental statistical features and self-similar properties of tagged networks

    International Nuclear Information System (INIS)

    Palla, Gergely; Farkas, Illes J; Pollner, Peter; Vicsek, Tamas; Derenyi, Imre

    2008-01-01

    We investigate the fundamental statistical features of tagged (or annotated) networks having a rich variety of attributes associated with their nodes. Tags (attributes, annotations, properties, features, etc) provide essential information about the entity represented by a given node, thus, taking them into account represents a significant step towards a more complete description of the structure of large complex systems. Our main goal here is to uncover the relations between the statistical properties of the node tags and those of the graph topology. In order to better characterize the networks with tagged nodes, we introduce a number of new notions, including tag-assortativity (relating link probability to node similarity), and new quantities, such as node uniqueness (measuring how rarely the tags of a node occur in the network) and tag-assortativity exponent. We apply our approach to three large networks representing very different domains of complex systems. A number of the tag related quantities display analogous behaviour (e.g. the networks we studied are tag-assortative, indicating possible universal aspects of tags versus topology), while some other features, such as the distribution of the node uniqueness, show variability from network to network allowing for pin-pointing large scale specific features of real-world complex networks. We also find that for each network the topology and the tag distribution are scale invariant, and this self-similar property of the networks can be well characterized by the tag-assortativity exponent, which is specific to each system.

  3. Statistically validated mobile communication networks: the evolution of motifs in European and Chinese data

    International Nuclear Information System (INIS)

    Li, Ming-Xia; Jiang, Zhi-Qiang; Zhou, Wei-Xing; Palchykov, Vasyl; Kaski, Kimmo; Kertész, János; Miccichè, Salvatore; Tumminello, Michele; N Mantegna, Rosario

    2014-01-01

    Big data open up unprecedented opportunities for investigating complex systems, including society. In particular, communication data serve as major sources for computational social sciences, but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the network of social relationships. Here we apply a systematic method, based on multiple-hypothesis testing, to statistically validate the links and then construct the corresponding Bonferroni network, generalized to the directed case. We study two large datasets of mobile phone records, one from Europe and the other from China. For both datasets we compare the raw data networks with the corresponding Bonferroni networks and point out significant differences in the structures and in the basic network measures. We show evidence that the Bonferroni network provides a better proxy for the network of social interactions than the original one. Using the filtered networks, we investigated the statistics and temporal evolution of small directed 3-motifs and concluded that closed communication triads have a formation time scale, which is quite fast and typically intraday. We also find that open communication triads preferentially evolve into other open triads with a higher fraction of reciprocated calls. These stylized facts were observed for both datasets. (paper)

  4. Statistically validated mobile communication networks: the evolution of motifs in European and Chinese data

    Science.gov (United States)

    Li, Ming-Xia; Palchykov, Vasyl; Jiang, Zhi-Qiang; Kaski, Kimmo; Kertész, János; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.

    2014-08-01

    Big data open up unprecedented opportunities for investigating complex systems, including society. In particular, communication data serve as major sources for computational social sciences, but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the network of social relationships. Here we apply a systematic method, based on multiple-hypothesis testing, to statistically validate the links and then construct the corresponding Bonferroni network, generalized to the directed case. We study two large datasets of mobile phone records, one from Europe and the other from China. For both datasets we compare the raw data networks with the corresponding Bonferroni networks and point out significant differences in the structures and in the basic network measures. We show evidence that the Bonferroni network provides a better proxy for the network of social interactions than the original one. Using the filtered networks, we investigated the statistics and temporal evolution of small directed 3-motifs and concluded that closed communication triads have a formation time scale, which is quite fast and typically intraday. We also find that open communication triads preferentially evolve into other open triads with a higher fraction of reciprocated calls. These stylized facts were observed for both datasets.

  5. Fermi-Dirac statistics and traffic in complex networks.

    Science.gov (United States)

    de Moura, Alessandro P S

    2005-06-01

    We propose an idealized model for traffic in a network, in which many particles move randomly from node to node, following the network's links, and it is assumed that at most one particle can occupy any given node. This is intended to mimic the finite forwarding capacity of nodes in communication networks, thereby allowing the possibility of congestion and jamming phenomena. We show that the particles behave like free fermions, with appropriately defined energy-level structure and temperature. The statistical properties of this system are thus given by the corresponding Fermi-Dirac distribution. We use this to obtain analytical expressions for dynamical quantities of interest, such as the mean occupation of each node and the transport efficiency, for different network topologies and particle densities. We show that the subnetwork of free nodes always fragments into small isolated clusters for a sufficiently large number of particles, implying a communication breakdown at some density for all network topologies. These results are compared to direct simulations.

  6. Establishing a Statistical Link between Network Oscillations and Neural Synchrony.

    Directory of Open Access Journals (Sweden)

    Pengcheng Zhou

    2015-10-01

    Full Text Available Pairs of active neurons frequently fire action potentials or "spikes" nearly synchronously (i.e., within 5 ms of each other. This spike synchrony may occur by chance, based solely on the neurons' fluctuating firing patterns, or it may occur too frequently to be explicable by chance alone. When spike synchrony above chances levels is present, it may subserve computation for a specific cognitive process, or it could be an irrelevant byproduct of such computation. Either way, spike synchrony is a feature of neural data that should be explained. A point process regression framework has been developed previously for this purpose, using generalized linear models (GLMs. In this framework, the observed number of synchronous spikes is compared to the number predicted by chance under varying assumptions about the factors that affect each of the individual neuron's firing-rate functions. An important possible source of spike synchrony is network-wide oscillations, which may provide an essential mechanism of network information flow. To establish the statistical link between spike synchrony and network-wide oscillations, we have integrated oscillatory field potentials into our point process regression framework. We first extended a previously-published model of spike-field association and showed that we could recover phase relationships between oscillatory field potentials and firing rates. We then used this new framework to demonstrate the statistical relationship between oscillatory field potentials and spike synchrony in: 1 simulated neurons, 2 in vitro recordings of hippocampal CA1 pyramidal cells, and 3 in vivo recordings of neocortical V4 neurons. Our results provide a rigorous method for establishing a statistical link between network oscillations and neural synchrony.

  7. Codon Deviation Coefficient: A novel measure for estimating codon usage bias and its statistical significance

    KAUST Repository

    Zhang, Zhang

    2012-03-22

    Background: Genetic mutation, selective pressure for translational efficiency and accuracy, level of gene expression, and protein function through natural selection are all believed to lead to codon usage bias (CUB). Therefore, informative measurement of CUB is of fundamental importance to making inferences regarding gene function and genome evolution. However, extant measures of CUB have not fully accounted for the quantitative effect of background nucleotide composition and have not statistically evaluated the significance of CUB in sequence analysis.Results: Here we propose a novel measure--Codon Deviation Coefficient (CDC)--that provides an informative measurement of CUB and its statistical significance without requiring any prior knowledge. Unlike previous measures, CDC estimates CUB by accounting for background nucleotide compositions tailored to codon positions and adopts the bootstrapping to assess the statistical significance of CUB for any given sequence. We evaluate CDC by examining its effectiveness on simulated sequences and empirical data and show that CDC outperforms extant measures by achieving a more informative estimation of CUB and its statistical significance.Conclusions: As validated by both simulated and empirical data, CDC provides a highly informative quantification of CUB and its statistical significance, useful for determining comparative magnitudes and patterns of biased codon usage for genes or genomes with diverse sequence compositions. 2012 Zhang et al; licensee BioMed Central Ltd.

  8. Codon Deviation Coefficient: a novel measure for estimating codon usage bias and its statistical significance

    Directory of Open Access Journals (Sweden)

    Zhang Zhang

    2012-03-01

    Full Text Available Abstract Background Genetic mutation, selective pressure for translational efficiency and accuracy, level of gene expression, and protein function through natural selection are all believed to lead to codon usage bias (CUB. Therefore, informative measurement of CUB is of fundamental importance to making inferences regarding gene function and genome evolution. However, extant measures of CUB have not fully accounted for the quantitative effect of background nucleotide composition and have not statistically evaluated the significance of CUB in sequence analysis. Results Here we propose a novel measure--Codon Deviation Coefficient (CDC--that provides an informative measurement of CUB and its statistical significance without requiring any prior knowledge. Unlike previous measures, CDC estimates CUB by accounting for background nucleotide compositions tailored to codon positions and adopts the bootstrapping to assess the statistical significance of CUB for any given sequence. We evaluate CDC by examining its effectiveness on simulated sequences and empirical data and show that CDC outperforms extant measures by achieving a more informative estimation of CUB and its statistical significance. Conclusions As validated by both simulated and empirical data, CDC provides a highly informative quantification of CUB and its statistical significance, useful for determining comparative magnitudes and patterns of biased codon usage for genes or genomes with diverse sequence compositions.

  9. Testing statistical self-similarity in the topology of river networks

    Science.gov (United States)

    Troutman, Brent M.; Mantilla, Ricardo; Gupta, Vijay K.

    2010-01-01

    Recent work has demonstrated that the topological properties of real river networks deviate significantly from predictions of Shreve's random model. At the same time the property of mean self-similarity postulated by Tokunaga's model is well supported by data. Recently, a new class of network model called random self-similar networks (RSN) that combines self-similarity and randomness has been introduced to replicate important topological features observed in real river networks. We investigate if the hypothesis of statistical self-similarity in the RSN model is supported by data on a set of 30 basins located across the continental United States that encompass a wide range of hydroclimatic variability. We demonstrate that the generators of the RSN model obey a geometric distribution, and self-similarity holds in a statistical sense in 26 of these 30 basins. The parameters describing the distribution of interior and exterior generators are tested to be statistically different and the difference is shown to produce the well-known Hack's law. The inter-basin variability of RSN parameters is found to be statistically significant. We also test generator dependence on two climatic indices, mean annual precipitation and radiative index of dryness. Some indication of climatic influence on the generators is detected, but this influence is not statistically significant with the sample size available. Finally, two key applications of the RSN model to hydrology and geomorphology are briefly discussed.

  10. Current redistribution in resistor networks: Fat-tail statistics in regular and small-world networks.

    Science.gov (United States)

    Lehmann, Jörg; Bernasconi, Jakob

    2017-03-01

    The redistribution of electrical currents in resistor networks after single-bond failures is analyzed in terms of current-redistribution factors that are shown to depend only on the topology of the network and on the values of the bond resistances. We investigate the properties of these current-redistribution factors for regular network topologies (e.g., d-dimensional hypercubic lattices) as well as for small-world networks. In particular, we find that the statistics of the current redistribution factors exhibits a fat-tail behavior, which reflects the long-range nature of the current redistribution as determined by Kirchhoff's circuit laws.

  11. Applying Statistical and Complex Network Methods to Explore the Key Signaling Molecules of Acupuncture Regulating Neuroendocrine-Immune Network

    Directory of Open Access Journals (Sweden)

    Kuo Zhang

    2018-01-01

    Full Text Available The mechanisms of acupuncture are still unclear. In order to reveal the regulatory effect of manual acupuncture (MA on the neuroendocrine-immune (NEI network and identify the key signaling molecules during MA modulating NEI network, we used a rat complete Freund’s adjuvant (CFA model to observe the analgesic and anti-inflammatory effect of MA, and, what is more, we used statistical and complex network methods to analyze the data about the expression of 55 common signaling molecules of NEI network in ST36 (Zusanli acupoint, and serum and hind foot pad tissue. The results indicate that MA had significant analgesic, anti-inflammatory effects on CFA rats; the key signaling molecules may play a key role during MA regulating NEI network, but further research is needed.

  12. Confidence intervals permit, but don't guarantee, better inference than statistical significance testing

    Directory of Open Access Journals (Sweden)

    Melissa Coulson

    2010-07-01

    Full Text Available A statistically significant result, and a non-significant result may differ little, although significance status may tempt an interpretation of difference. Two studies are reported that compared interpretation of such results presented using null hypothesis significance testing (NHST, or confidence intervals (CIs. Authors of articles published in psychology, behavioural neuroscience, and medical journals were asked, via email, to interpret two fictitious studies that found similar results, one statistically significant, and the other non-significant. Responses from 330 authors varied greatly, but interpretation was generally poor, whether results were presented as CIs or using NHST. However, when interpreting CIs respondents who mentioned NHST were 60% likely to conclude, unjustifiably, the two results conflicted, whereas those who interpreted CIs without reference to NHST were 95% likely to conclude, justifiably, the two results were consistent. Findings were generally similar for all three disciplines. An email survey of academic psychologists confirmed that CIs elicit better interpretations if NHST is not invoked. Improved statistical inference can result from encouragement of meta-analytic thinking and use of CIs but, for full benefit, such highly desirable statistical reform requires also that researchers interpret CIs without recourse to NHST.

  13. Statistical mechanics of polymer networks of any topology

    International Nuclear Information System (INIS)

    Duplantier, B.

    1989-01-01

    The statistical mechanics is considered of any polymer network with a prescribed topology, in dimension d, which was introduced previously. The basic direct renormalization theory of the associated continuum model is established. It has a very simple multiplicative structure in terms of the partition functions of the star polymers constituting the vertices of the network. A calculation is made to O(ε 2 ), where d = 4 -ε, of the basic critical dimensions σ L associated with any L=leg vertex (L ≥ 1). From this infinite series of critical exponents, any topology-dependent critical exponent can be derived. This is applied to the configuration exponent γ G of any network G to O(ε 2 ), including L-leg star polymers. The infinite sets of contact critical exponents θ between multiple points of polymers or between the cores of several star polymers are also deduced. As a particular case, the three exponents θ 0 , θ 1 , θ 2 calculated by des Cloizeaux by field-theoretic methods are recovered. The limiting exact logarithmic laws are derived at the upper critical dimension d = 4. The results are generalized to the series of topological exponents of polymer networks near a surface and of tricritical polymers at the Θ-point. Intersection properties of networks of random walks can be studied similarly. The above factorization theory of the partition function of any polymer network over its constituting L-vertices also applies to two dimensions, where it can be related to conformal invariance. The basic critical exponents σ L and thus any topological polymer exponents are then exactly known. Principal results published elsewhere are recalled

  14. Statistical determination of significant curved I-girder bridge seismic response parameters

    Science.gov (United States)

    Seo, Junwon

    2013-06-01

    Curved steel bridges are commonly used at interchanges in transportation networks and more of these structures continue to be designed and built in the United States. Though the use of these bridges continues to increase in locations that experience high seismicity, the effects of curvature and other parameters on their seismic behaviors have been neglected in current risk assessment tools. These tools can evaluate the seismic vulnerability of a transportation network using fragility curves. One critical component of fragility curve development for curved steel bridges is the completion of sensitivity analyses that help identify influential parameters related to their seismic response. In this study, an accessible inventory of existing curved steel girder bridges located primarily in the Mid-Atlantic United States (MAUS) was used to establish statistical characteristics used as inputs for a seismic sensitivity study. Critical seismic response quantities were captured using 3D nonlinear finite element models. Influential parameters from these quantities were identified using statistical tools that incorporate experimental Plackett-Burman Design (PBD), which included Pareto optimal plots and prediction profiler techniques. The findings revealed that the potential variation in the influential parameters included number of spans, radius of curvature, maximum span length, girder spacing, and cross-frame spacing. These parameters showed varying levels of influence on the critical bridge response.

  15. Statistics Refresher for Molecular Imaging Technologists, Part 2: Accuracy of Interpretation, Significance, and Variance.

    Science.gov (United States)

    Farrell, Mary Beth

    2018-06-01

    This article is the second part of a continuing education series reviewing basic statistics that nuclear medicine and molecular imaging technologists should understand. In this article, the statistics for evaluating interpretation accuracy, significance, and variance are discussed. Throughout the article, actual statistics are pulled from the published literature. We begin by explaining 2 methods for quantifying interpretive accuracy: interreader and intrareader reliability. Agreement among readers can be expressed simply as a percentage. However, the Cohen κ-statistic is a more robust measure of agreement that accounts for chance. The higher the κ-statistic is, the higher is the agreement between readers. When 3 or more readers are being compared, the Fleiss κ-statistic is used. Significance testing determines whether the difference between 2 conditions or interventions is meaningful. Statistical significance is usually expressed using a number called a probability ( P ) value. Calculation of P value is beyond the scope of this review. However, knowing how to interpret P values is important for understanding the scientific literature. Generally, a P value of less than 0.05 is considered significant and indicates that the results of the experiment are due to more than just chance. Variance, standard deviation (SD), confidence interval, and standard error (SE) explain the dispersion of data around a mean of a sample drawn from a population. SD is commonly reported in the literature. A small SD indicates that there is not much variation in the sample data. Many biologic measurements fall into what is referred to as a normal distribution taking the shape of a bell curve. In a normal distribution, 68% of the data will fall within 1 SD, 95% will fall within 2 SDs, and 99.7% will fall within 3 SDs. Confidence interval defines the range of possible values within which the population parameter is likely to lie and gives an idea of the precision of the statistic being

  16. Statistical physics of networks, information and complex systems

    Energy Technology Data Exchange (ETDEWEB)

    Ecke, Robert E [Los Alamos National Laboratory

    2009-01-01

    In this project we explore the mathematical methods and concepts of statistical physics that are fmding abundant applications across the scientific and technological spectrum from soft condensed matter systems and bio-infonnatics to economic and social systems. Our approach exploits the considerable similarity of concepts between statistical physics and computer science, allowing for a powerful multi-disciplinary approach that draws its strength from cross-fertilization and mUltiple interactions of researchers with different backgrounds. The work on this project takes advantage of the newly appreciated connection between computer science and statistics and addresses important problems in data storage, decoding, optimization, the infonnation processing properties of the brain, the interface between quantum and classical infonnation science, the verification of large software programs, modeling of complex systems including disease epidemiology, resource distribution issues, and the nature of highly fluctuating complex systems. Common themes that the project has been emphasizing are (i) neural computation, (ii) network theory and its applications, and (iii) a statistical physics approach to infonnation theory. The project's efforts focus on the general problem of optimization and variational techniques, algorithm development and infonnation theoretic approaches to quantum systems. These efforts are responsible for fruitful collaborations and the nucleation of science efforts that span multiple divisions such as EES, CCS, 0 , T, ISR and P. This project supports the DOE mission in Energy Security and Nuclear Non-Proliferation by developing novel infonnation science tools for communication, sensing, and interacting complex networks such as the internet or energy distribution system. The work also supports programs in Threat Reduction and Homeland Security.

  17. Statistical significance of trends in monthly heavy precipitation over the US

    KAUST Repository

    Mahajan, Salil

    2011-05-11

    Trends in monthly heavy precipitation, defined by a return period of one year, are assessed for statistical significance in observations and Global Climate Model (GCM) simulations over the contiguous United States using Monte Carlo non-parametric and parametric bootstrapping techniques. The results from the two Monte Carlo approaches are found to be similar to each other, and also to the traditional non-parametric Kendall\\'s τ test, implying the robustness of the approach. Two different observational data-sets are employed to test for trends in monthly heavy precipitation and are found to exhibit consistent results. Both data-sets demonstrate upward trends, one of which is found to be statistically significant at the 95% confidence level. Upward trends similar to observations are observed in some climate model simulations of the twentieth century, but their statistical significance is marginal. For projections of the twenty-first century, a statistically significant upwards trend is observed in most of the climate models analyzed. The change in the simulated precipitation variance appears to be more important in the twenty-first century projections than changes in the mean precipitation. Stochastic fluctuations of the climate-system are found to be dominate monthly heavy precipitation as some GCM simulations show a downwards trend even in the twenty-first century projections when the greenhouse gas forcings are strong. © 2011 Springer-Verlag.

  18. Interpreting Statistical Significance Test Results: A Proposed New "What If" Method.

    Science.gov (United States)

    Kieffer, Kevin M.; Thompson, Bruce

    As the 1994 publication manual of the American Psychological Association emphasized, "p" values are affected by sample size. As a result, it can be helpful to interpret the results of statistical significant tests in a sample size context by conducting so-called "what if" analyses. However, these methods can be inaccurate…

  19. Recent Literature on Whether Statistical Significance Tests Should or Should Not Be Banned.

    Science.gov (United States)

    Deegear, James

    This paper summarizes the literature regarding statistical significant testing with an emphasis on recent literature in various discipline and literature exploring why researchers have demonstrably failed to be influenced by the American Psychological Association publication manual's encouragement to report effect sizes. Also considered are…

  20. Is statistical significance clinically important?--A guide to judge the clinical relevance of study findings

    NARCIS (Netherlands)

    Sierevelt, Inger N.; van Oldenrijk, Jakob; Poolman, Rudolf W.

    2007-01-01

    In this paper we describe several issues that influence the reporting of statistical significance in relation to clinical importance, since misinterpretation of p values is a common issue in orthopaedic literature. Orthopaedic research is tormented by the risks of false-positive (type I error) and

  1. Statistical Significance of the Contribution of Variables to the PCA Solution: An Alternative Permutation Strategy

    Science.gov (United States)

    Linting, Marielle; van Os, Bart Jan; Meulman, Jacqueline J.

    2011-01-01

    In this paper, the statistical significance of the contribution of variables to the principal components in principal components analysis (PCA) is assessed nonparametrically by the use of permutation tests. We compare a new strategy to a strategy used in previous research consisting of permuting the columns (variables) of a data matrix…

  2. Statistical significance versus clinical importance: trials on exercise therapy for chronic low back pain as example.

    NARCIS (Netherlands)

    van Tulder, M.W.; Malmivaara, A.; Hayden, J.; Koes, B.

    2007-01-01

    STUDY DESIGN. Critical appraisal of the literature. OBJECIVES. The objective of this study was to assess if results of back pain trials are statistically significant and clinically important. SUMMARY OF BACKGROUND DATA. There seems to be a discrepancy between conclusions reported by authors and

  3. P-Value, a true test of statistical significance? a cautionary note ...

    African Journals Online (AJOL)

    While it's not the intention of the founders of significance testing and hypothesis testing to have the two ideas intertwined as if they are complementary, the inconvenient marriage of the two practices into one coherent, convenient, incontrovertible and misinterpreted practice has dotted our standard statistics textbooks and ...

  4. Significance of social networks in sustainable land management in ...

    African Journals Online (AJOL)

    Social networks (SNs) are social frameworks that form good entry points for business and socio-economic developments. Social networks are important for small-scale, resource-poor farmers in Sub-Saharan Africa, who overly rely on informal sources of information. SNs provide opportunities for establishing effective ...

  5. A critical discussion of null hypothesis significance testing and statistical power analysis within psychological research

    DEFF Research Database (Denmark)

    Jones, Allan; Sommerlund, Bo

    2007-01-01

    The uses of null hypothesis significance testing (NHST) and statistical power analysis within psychological research are critically discussed. The article looks at the problems of relying solely on NHST when dealing with small and large sample sizes. The use of power-analysis in estimating...... the potential error introduced by small and large samples is advocated. Power analysis is not recommended as a replacement to NHST but as an additional source of information about the phenomena under investigation. Moreover, the importance of conceptual analysis in relation to statistical analysis of hypothesis...

  6. Evaluation of significantly modified water bodies in Vojvodina by using multivariate statistical techniques

    Directory of Open Access Journals (Sweden)

    Vujović Svetlana R.

    2013-01-01

    Full Text Available This paper illustrates the utility of multivariate statistical techniques for analysis and interpretation of water quality data sets and identification of pollution sources/factors with a view to get better information about the water quality and design of monitoring network for effective management of water resources. Multivariate statistical techniques, such as factor analysis (FA/principal component analysis (PCA and cluster analysis (CA, were applied for the evaluation of variations and for the interpretation of a water quality data set of the natural water bodies obtained during 2010 year of monitoring of 13 parameters at 33 different sites. FA/PCA attempts to explain the correlations between the observations in terms of the underlying factors, which are not directly observable. Factor analysis is applied to physico-chemical parameters of natural water bodies with the aim classification and data summation as well as segmentation of heterogeneous data sets into smaller homogeneous subsets. Factor loadings were categorized as strong and moderate corresponding to the absolute loading values of >0.75, 0.75-0.50, respectively. Four principal factors were obtained with Eigenvalues >1 summing more than 78 % of the total variance in the water data sets, which is adequate to give good prior information regarding data structure. Each factor that is significantly related to specific variables represents a different dimension of water quality. The first factor F1 accounting for 28 % of the total variance and represents the hydrochemical dimension of water quality. The second factor F2 accounting for 18% of the total variance and may be taken factor of water eutrophication. The third factor F3 accounting 17 % of the total variance and represents the influence of point sources of pollution on water quality. The fourth factor F4 accounting 13 % of the total variance and may be taken as an ecological dimension of water quality. Cluster analysis (CA is an

  7. Efficient Parallel Statistical Model Checking of Biochemical Networks

    Directory of Open Access Journals (Sweden)

    Paolo Ballarini

    2009-12-01

    Full Text Available We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture.

  8. Statistical process control using optimized neural networks: a case study.

    Science.gov (United States)

    Addeh, Jalil; Ebrahimzadeh, Ata; Azarbad, Milad; Ranaee, Vahid

    2014-09-01

    The most common statistical process control (SPC) tools employed for monitoring process changes are control charts. A control chart demonstrates that the process has altered by generating an out-of-control signal. This study investigates the design of an accurate system for the control chart patterns (CCPs) recognition in two aspects. First, an efficient system is introduced that includes two main modules: feature extraction module and classifier module. In the feature extraction module, a proper set of shape features and statistical feature are proposed as the efficient characteristics of the patterns. In the classifier module, several neural networks, such as multilayer perceptron, probabilistic neural network and radial basis function are investigated. Based on an experimental study, the best classifier is chosen in order to recognize the CCPs. Second, a hybrid heuristic recognition system is introduced based on cuckoo optimization algorithm (COA) algorithm to improve the generalization performance of the classifier. The simulation results show that the proposed algorithm has high recognition accuracy. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  9. An approach to evaluate the topological significance of motifs and other patterns in regulatory networks

    Directory of Open Access Journals (Sweden)

    Wingender Edgar

    2009-05-01

    Full Text Available Abstract Background The identification of network motifs as statistically over-represented topological patterns has become one of the most promising topics in the analysis of complex networks. The main focus is commonly made on how they operate by means of their internal organization. Yet, their contribution to a network's global architecture is poorly understood. However, this requires switching from the abstract view of a topological pattern to the level of its instances. Here, we show how a recently proposed metric, the pairwise disconnectivity index, can be adapted to survey if and which kind of topological patterns and their instances are most important for sustaining the connectivity within a network. Results The pairwise disconnectivity index of a pattern instance quantifies the dependency of the pairwise connections between vertices in a network on the presence of this pattern instance. Thereby, it particularly considers how the coherence between the unique constituents of a pattern instance relates to the rest of a network. We have applied the method exemplarily to the analysis of 3-vertex topological pattern instances in the transcription networks of a bacteria (E. coli, a unicellular eukaryote (S. cerevisiae and higher eukaryotes (human, mouse, rat. We found that in these networks only very few pattern instances break lots of the pairwise connections between vertices upon the removal of an instance. Among them network motifs do not prevail. Rather, those patterns that are shared by the three networks exhibit a conspicuously enhanced pairwise disconnectivity index. Additionally, these are often located in close vicinity to each other or are even overlapping, since only a small number of genes are repeatedly present in most of them. Moreover, evidence has gathered that the importance of these pattern instances is due to synergistic rather than merely additive effects between their constituents. Conclusion A new method has been proposed

  10. Thresholds for statistical and clinical significance in systematic reviews with meta-analytic methods

    DEFF Research Database (Denmark)

    Jakobsen, Janus Christian; Wetterslev, Jorn; Winkel, Per

    2014-01-01

    BACKGROUND: Thresholds for statistical significance when assessing meta-analysis results are being insufficiently demonstrated by traditional 95% confidence intervals and P-values. Assessment of intervention effects in systematic reviews with meta-analysis deserves greater rigour. METHODS......: Methodologies for assessing statistical and clinical significance of intervention effects in systematic reviews were considered. Balancing simplicity and comprehensiveness, an operational procedure was developed, based mainly on The Cochrane Collaboration methodology and the Grading of Recommendations...... Assessment, Development, and Evaluation (GRADE) guidelines. RESULTS: We propose an eight-step procedure for better validation of meta-analytic results in systematic reviews (1) Obtain the 95% confidence intervals and the P-values from both fixed-effect and random-effects meta-analyses and report the most...

  11. Testing statistical significance scores of sequence comparison methods with structure similarity

    Directory of Open Access Journals (Sweden)

    Leunissen Jack AM

    2006-10-01

    Full Text Available Abstract Background In the past years the Smith-Waterman sequence comparison algorithm has gained popularity due to improved implementations and rapidly increasing computing power. However, the quality and sensitivity of a database search is not only determined by the algorithm but also by the statistical significance testing for an alignment. The e-value is the most commonly used statistical validation method for sequence database searching. The CluSTr database and the Protein World database have been created using an alternative statistical significance test: a Z-score based on Monte-Carlo statistics. Several papers have described the superiority of the Z-score as compared to the e-value, using simulated data. We were interested if this could be validated when applied to existing, evolutionary related protein sequences. Results All experiments are performed on the ASTRAL SCOP database. The Smith-Waterman sequence comparison algorithm with both e-value and Z-score statistics is evaluated, using ROC, CVE and AP measures. The BLAST and FASTA algorithms are used as reference. We find that two out of three Smith-Waterman implementations with e-value are better at predicting structural similarities between proteins than the Smith-Waterman implementation with Z-score. SSEARCH especially has very high scores. Conclusion The compute intensive Z-score does not have a clear advantage over the e-value. The Smith-Waterman implementations give generally better results than their heuristic counterparts. We recommend using the SSEARCH algorithm combined with e-values for pairwise sequence comparisons.

  12. The building network energy statistics 2004[Norway]; Bygningsnettverkets energistatistikk 2004

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The energy statistics for 2004 is the 8th in a row from the building network. The report presents analysis and statistics for various building energy use and technical installations. There are 1907 building objects included in the statistics situated in 254 of the counties in the country. In all this includes 9.3 mill. square meters heated area. Out of this 2.5 % residences is mainly constituted of department buildings. The rest is non-residential buildings in total 7.6 % of the entire building mass in Norway. The total energy consumption in the selection in 2004 is approx. 2.4 TWh. The climate in Norway in 2004 was the 6th warmest since the measurements started for 138 years ago. The report includes energy gradient figures and energy use from various climatic zones. The report shows the energy consumption distributed on various building types, variations in the energy consumption depending on the type of heating system, cooling, building sizes, ages and other factors. Figures for the energy consumption related to building function are included. Approx. 60 % of the buildings is new since the last yearly report. Those that were included in the 2003 report show a reduction in the temperature corrected specific energy consumption of 4.7 % from 2003 to 2004. The oil consumption has been reduced the most. Several building types have reduced the oil consumption with 50% and the total reduction is about 11 mill. litres of oil. The reasons are partly a switch to electric heating systems and partly a general reduction of the energy consumption. The report also includes statistics regarding technical conditions in the buildings such as heating system types, energy carriers, cooling, ventilation, energy flexibility, utilization and other factors. (tk)

  13. The statistical neuroanatomy of frontal networks in the macaque.

    Directory of Open Access Journals (Sweden)

    Bruno B Averbeck

    2008-04-01

    Full Text Available We were interested in gaining insight into the functional properties of frontal networks based upon their anatomical inputs. We took a neuroinformatics approach, carrying out maximum likelihood hierarchical cluster analysis on 25 frontal cortical areas based upon their anatomical connections, with 68 input areas representing exterosensory, chemosensory, motor, limbic, and other frontal inputs. The analysis revealed a set of statistically robust clusters. We used these clusters to divide the frontal areas into 5 groups, including ventral-lateral, ventral-medial, dorsal-medial, dorsal-lateral, and caudal-orbital groups. Each of these groups was defined by a unique set of inputs. This organization provides insight into the differential roles of each group of areas and suggests a gradient by which orbital and ventral-medial areas may be responsible for decision-making processes based on emotion and primary reinforcers, and lateral frontal areas are more involved in integrating affective and rational information into a common framework.

  14. Intensive inpatient treatment for bulimia nervosa: Statistical and clinical significance of symptom changes.

    Science.gov (United States)

    Diedrich, Alice; Schlegl, Sandra; Greetfeld, Martin; Fumi, Markus; Voderholzer, Ulrich

    2018-03-01

    This study examines the statistical and clinical significance of symptom changes during an intensive inpatient treatment program with a strong psychotherapeutic focus for individuals with severe bulimia nervosa. 295 consecutively admitted bulimic patients were administered the Structured Interview for Anorexic and Bulimic Syndromes-Self-Rating (SIAB-S), the Eating Disorder Inventory-2 (EDI-2), the Brief Symptom Inventory (BSI), and the Beck Depression Inventory-II (BDI-II) at treatment intake and discharge. Results indicated statistically significant symptom reductions with large effect sizes regarding severity of binge eating and compensatory behavior (SIAB-S), overall eating disorder symptom severity (EDI-2), overall psychopathology (BSI), and depressive symptom severity (BDI-II) even when controlling for antidepressant medication. The majority of patients showed either reliable (EDI-2: 33.7%, BSI: 34.8%, BDI-II: 18.1%) or even clinically significant symptom changes (EDI-2: 43.2%, BSI: 33.9%, BDI-II: 56.9%). Patients with clinically significant improvement were less distressed at intake and less likely to suffer from a comorbid borderline personality disorder when compared with those who did not improve to a clinically significant extent. Findings indicate that intensive psychotherapeutic inpatient treatment may be effective in about 75% of severely affected bulimic patients. For the remaining non-responding patients, inpatient treatment might be improved through an even stronger focus on the reduction of comorbid borderline personality traits.

  15. Cloud-based solution to identify statistically significant MS peaks differentiating sample categories.

    Science.gov (United States)

    Ji, Jun; Ling, Jeffrey; Jiang, Helen; Wen, Qiaojun; Whitin, John C; Tian, Lu; Cohen, Harvey J; Ling, Xuefeng B

    2013-03-23

    Mass spectrometry (MS) has evolved to become the primary high throughput tool for proteomics based biomarker discovery. Until now, multiple challenges in protein MS data analysis remain: large-scale and complex data set management; MS peak identification, indexing; and high dimensional peak differential analysis with the concurrent statistical tests based false discovery rate (FDR). "Turnkey" solutions are needed for biomarker investigations to rapidly process MS data sets to identify statistically significant peaks for subsequent validation. Here we present an efficient and effective solution, which provides experimental biologists easy access to "cloud" computing capabilities to analyze MS data. The web portal can be accessed at http://transmed.stanford.edu/ssa/. Presented web application supplies large scale MS data online uploading and analysis with a simple user interface. This bioinformatic tool will facilitate the discovery of the potential protein biomarkers using MS.

  16. Power, effects, confidence, and significance: an investigation of statistical practices in nursing research.

    Science.gov (United States)

    Gaskin, Cadeyrn J; Happell, Brenda

    2014-05-01

    improvement. Most importantly, researchers should abandon the misleading practice of interpreting the results from inferential tests based solely on whether they are statistically significant (or not) and, instead, focus on reporting and interpreting effect sizes, confidence intervals, and significance levels. Nursing researchers also need to conduct and report a priori power analyses, and to address the issue of Type I experiment-wise error inflation in their studies. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. An ME-PC Enhanced HDMR Method for Efficient Statistical Analysis of Multiconductor Transmission Line Networks

    KAUST Repository

    Yucel, Abdulkadir C.

    2015-05-05

    An efficient method for statistically characterizing multiconductor transmission line (MTL) networks subject to a large number of manufacturing uncertainties is presented. The proposed method achieves its efficiency by leveraging a high-dimensional model representation (HDMR) technique that approximates observables (quantities of interest in MTL networks, such as voltages/currents on mission-critical circuits) in terms of iteratively constructed component functions of only the most significant random variables (parameters that characterize the uncertainties in MTL networks, such as conductor locations and widths, and lumped element values). The efficiency of the proposed scheme is further increased using a multielement probabilistic collocation (ME-PC) method to compute the component functions of the HDMR. The ME-PC method makes use of generalized polynomial chaos (gPC) expansions to approximate the component functions, where the expansion coefficients are expressed in terms of integrals of the observable over the random domain. These integrals are numerically evaluated and the observable values at the quadrature/collocation points are computed using a fast deterministic simulator. The proposed method is capable of producing accurate statistical information pertinent to an observable that is rapidly varying across a high-dimensional random domain at a computational cost that is significantly lower than that of gPC or Monte Carlo methods. The applicability, efficiency, and accuracy of the method are demonstrated via statistical characterization of frequency-domain voltages in parallel wire, interconnect, and antenna corporate feed networks.

  18. Statistical assessment of crosstalk enrichment between gene groups in biological networks.

    Science.gov (United States)

    McCormack, Theodore; Frings, Oliver; Alexeyenko, Andrey; Sonnhammer, Erik L L

    2013-01-01

    Analyzing groups of functionally coupled genes or proteins in the context of global interaction networks has become an important aspect of bioinformatic investigations. Assessing the statistical significance of crosstalk enrichment between or within groups of genes can be a valuable tool for functional annotation of experimental gene sets. Here we present CrossTalkZ, a statistical method and software to assess the significance of crosstalk enrichment between pairs of gene or protein groups in large biological networks. We demonstrate that the standard z-score is generally an appropriate and unbiased statistic. We further evaluate the ability of four different methods to reliably recover crosstalk within known biological pathways. We conclude that the methods preserving the second-order topological network properties perform best. Finally, we show how CrossTalkZ can be used to annotate experimental gene sets using known pathway annotations and that its performance at this task is superior to gene enrichment analysis (GEA). CrossTalkZ (available at http://sonnhammer.sbc.su.se/download/software/CrossTalkZ/) is implemented in C++, easy to use, fast, accepts various input file formats, and produces a number of statistics. These include z-score, p-value, false discovery rate, and a test of normality for the null distributions.

  19. Statistical significance estimation of a signal within the GooFit framework on GPUs

    Directory of Open Access Journals (Sweden)

    Cristella Leonardo

    2017-01-01

    Full Text Available In order to test the computing capabilities of GPUs with respect to traditional CPU cores a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the purpose to estimate the statistical significance of the structure observed by CMS close to the kinematical boundary of the J/ψϕ invariant mass in the three-body decay B+ → J/ψϕK+. GooFit is a data analysis open tool under development that interfaces ROOT/RooFit to CUDA platform on nVidia GPU. The optimized GooFit application running on GPUs hosted by servers in the Bari Tier2 provides striking speed-up performances with respect to the RooFit application parallelised on multiple CPUs by means of PROOF-Lite tool. The considerable resulting speed-up, evident when comparing concurrent GooFit processes allowed by CUDA Multi Process Service and a RooFit/PROOF-Lite process with multiple CPU workers, is presented and discussed in detail. By means of GooFit it has also been possible to explore the behaviour of a likelihood ratio test statistic in different situations in which the Wilks Theorem may or may not apply because its regularity conditions are not satisfied.

  20. Statistical significance of theoretical predictions: A new dimension in nuclear structure theories (I)

    International Nuclear Information System (INIS)

    DUDEK, J; SZPAK, B; FORNAL, B; PORQUET, M-G

    2011-01-01

    In this and the follow-up article we briefly discuss what we believe represents one of the most serious problems in contemporary nuclear structure: the question of statistical significance of parametrizations of nuclear microscopic Hamiltonians and the implied predictive power of the underlying theories. In the present Part I, we introduce the main lines of reasoning of the so-called Inverse Problem Theory, an important sub-field in the contemporary Applied Mathematics, here illustrated on the example of the Nuclear Mean-Field Approach.

  1. Network Expansion and Pathway Enrichment Analysis towards Biologically Significant Findings from Microarrays

    Directory of Open Access Journals (Sweden)

    Wu Xiaogang

    2012-06-01

    Full Text Available In many cases, crucial genes show relatively slight changes between groups of samples (e.g. normal vs. disease, and many genes selected from microarray differential analysis by measuring the expression level statistically are also poorly annotated and lack of biological significance. In this paper, we present an innovative approach - network expansion and pathway enrichment analysis (NEPEA for integrative microarray analysis. We assume that organized knowledge will help microarray data analysis in significant ways, and the organized knowledge could be represented as molecular interaction networks or biological pathways. Based on this hypothesis, we develop the NEPEA framework based on network expansion from the human annotated and predicted protein interaction (HAPPI database, and pathway enrichment from the human pathway database (HPD. We use a recently-published microarray dataset (GSE24215 related to insulin resistance and type 2 diabetes (T2D as case study, since this study provided a thorough experimental validation for both genes and pathways identified computationally from classical microarray analysis and pathway analysis. We perform our NEPEA analysis for this dataset based on the results from the classical microarray analysis to identify biologically significant genes and pathways. Our findings are not only consistent with the original findings mostly, but also obtained more supports from other literatures.

  2. Statistics of Epidemics in Networks by Passing Messages

    Science.gov (United States)

    Shrestha, Munik Kumar

    Epidemic processes are common out-of-equilibrium phenomena of broad interdisciplinary interest. In this thesis, we show how message-passing approach can be a helpful tool for simulating epidemic models in disordered medium like networks, and in particular for estimating the probability that a given node will become infectious at a particular time. The sort of dynamics we consider are stochastic, where randomness can arise from the stochastic events or from the randomness of network structures. As in belief propagation, variables or messages in message-passing approach are defined on the directed edges of a network. However, unlike belief propagation, where the posterior distributions are updated according to Bayes' rule, in message-passing approach we write differential equations for the messages over time. It takes correlations between neighboring nodes into account while preventing causal signals from backtracking to their immediate source, and thus avoids "echo chamber effects" where a pair of adjacent nodes each amplify the probability that the other is infectious. In our first results, we develop a message-passing approach to threshold models of behavior popular in sociology. These are models, first proposed by Granovetter, where individuals have to hear about a trend or behavior from some number of neighbors before adopting it themselves. In thermodynamic limit of large random networks, we provide an exact analytic scheme while calculating the time dependence of the probabilities and thus learning about the whole dynamics of bootstrap percolation, which is a simple model known in statistical physics for exhibiting discontinuous phase transition. As an application, we apply a similar model to financial networks, studying when bankruptcies spread due to the sudden devaluation of shared assets in overlapping portfolios. We predict that although diversification may be good for individual institutions, it can create dangerous systemic effects, and as a result

  3. Assessment and rationalization of water quality monitoring network: a multivariate statistical approach to the Kabbini River (India).

    Science.gov (United States)

    Mavukkandy, Musthafa Odayooth; Karmakar, Subhankar; Harikumar, P S

    2014-09-01

    The establishment of an efficient surface water quality monitoring (WQM) network is a critical component in the assessment, restoration and protection of river water quality. A periodic evaluation of monitoring network is mandatory to ensure effective data collection and possible redesigning of existing network in a river catchment. In this study, the efficacy and appropriateness of existing water quality monitoring network in the Kabbini River basin of Kerala, India is presented. Significant multivariate statistical techniques like principal component analysis (PCA) and principal factor analysis (PFA) have been employed to evaluate the efficiency of the surface water quality monitoring network with monitoring stations as the evaluated variables for the interpretation of complex data matrix of the river basin. The main objective is to identify significant monitoring stations that must essentially be included in assessing annual and seasonal variations of river water quality. Moreover, the significance of seasonal redesign of the monitoring network was also investigated to capture valuable information on water quality from the network. Results identified few monitoring stations as insignificant in explaining the annual variance of the dataset. Moreover, the seasonal redesign of the monitoring network through a multivariate statistical framework was found to capture valuable information from the system, thus making the network more efficient. Cluster analysis (CA) classified the sampling sites into different groups based on similarity in water quality characteristics. The PCA/PFA identified significant latent factors standing for different pollution sources such as organic pollution, industrial pollution, diffuse pollution and faecal contamination. Thus, the present study illustrates that various multivariate statistical techniques can be effectively employed in sustainable management of water resources. The effectiveness of existing river water quality monitoring

  4. Functional network-based statistics in depression: Theory of mind subnetwork and importance of parietal region.

    Science.gov (United States)

    Lai, Chien-Han; Wu, Yu-Te; Hou, Yuh-Ming

    2017-08-01

    The functional network analysis of whole brain is an emerging field for research in depression. We initiated this study to investigate which subnetwork is significantly altered within the functional connectome in major depressive disorder (MDD). The study enrolled 52 first-episode medication-naïve patients with MDD and 40 controls for functional network analysis. All participants received the resting-state functional imaging using a 3-Tesla magnetic resonance scanner. After preprocessing, we calculated the connectivity matrix of functional connectivity in whole brain for each subject. The network-based statistics of connectome was used to perform group comparisons between patients and controls. The correlations between functional connectivity and clinical parameters were also performed. MDD patients had significant alterations in the network involving "theory of mind" regions, such as the left precentral gyrus, left angular gyrus, bilateral rolandic operculums and left inferior frontal gyrus. The center node of significant network was the left angular gyrus. No significant correlations of functional connectivity within the subnetwork and clinical parameters were noted. Functional connectivity of "theory of mind" subnetwork may be the core issue for pathophysiology in MDD. In addition, the center role of parietal region should be emphasized in future study. Copyright © 2017. Published by Elsevier B.V.

  5. Dynamics, stability, and statistics on lattices and networks

    International Nuclear Information System (INIS)

    Livi, Roberto

    2014-01-01

    These lectures aim at surveying some dynamical models that have been widely explored in the recent scientific literature as case studies of complex dynamical evolution, emerging from the spatio-temporal organization of several coupled dynamical variables. The first message is that a suitable mathematical description of such models needs tools and concepts borrowed from the general theory of dynamical systems and from out-of-equilibrium statistical mechanics. The second message is that the overall scenario is definitely reacher than the standard problems in these fields. For instance, systems exhibiting complex unpredictable evolution do not necessarily exhibit deterministic chaotic behavior (i.e., Lyapunov chaos) as it happens for dynamical models made of a few degrees of freedom. In fact, a very large number of spatially organized dynamical variables may yield unpredictable evolution even in the absence of Lyapunov instability. Such a mechanism may emerge from the combination of spatial extension and nonlinearity. Moreover, spatial extension allows one to introduce naturally disorder, or heterogeneity of the interactions as important ingredients for complex evolution. It is worth to point out that the models discussed in these lectures share such features, despite they have been inspired by quite different physical and biological problems. Along these lectures we describe also some of the technical tools employed for the study of such models, e.g., Lyapunov stability analysis, unpredictability indicators for “stable chaos,” hydrodynamic description of transport in low spatial dimension, spectral decomposition of stochastic dynamics on directed networks, etc

  6. Structure Learning and Statistical Estimation in Distribution Networks - Part I

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-13

    Traditionally power distribution networks are either not observable or only partially observable. This complicates development and implementation of new smart grid technologies, such as those related to demand response, outage detection and management, and improved load-monitoring. In this two part paper, inspired by proliferation of the metering technology, we discuss estimation problems in structurally loopy but operationally radial distribution grids from measurements, e.g. voltage data, which are either already available or can be made available with a relatively minor investment. In Part I, the objective is to learn the operational layout of the grid. Part II of this paper presents algorithms that estimate load statistics or line parameters in addition to learning the grid structure. Further, Part II discusses the problem of structure estimation for systems with incomplete measurement sets. Our newly suggested algorithms apply to a wide range of realistic scenarios. The algorithms are also computationally efficient – polynomial in time– which is proven theoretically and illustrated computationally on a number of test cases. The technique developed can be applied to detect line failures in real time as well as to understand the scope of possible adversarial attacks on the grid.

  7. Comparison of classical statistical methods and artificial neural network in traffic noise prediction

    International Nuclear Information System (INIS)

    Nedic, Vladimir; Despotovic, Danijela; Cvetanovic, Slobodan; Despotovic, Milan; Babic, Sasa

    2014-01-01

    Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L eq . Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model

  8. Comparison of classical statistical methods and artificial neural network in traffic noise prediction

    Energy Technology Data Exchange (ETDEWEB)

    Nedic, Vladimir, E-mail: vnedic@kg.ac.rs [Faculty of Philology and Arts, University of Kragujevac, Jovana Cvijića bb, 34000 Kragujevac (Serbia); Despotovic, Danijela, E-mail: ddespotovic@kg.ac.rs [Faculty of Economics, University of Kragujevac, Djure Pucara Starog 3, 34000 Kragujevac (Serbia); Cvetanovic, Slobodan, E-mail: slobodan.cvetanovic@eknfak.ni.ac.rs [Faculty of Economics, University of Niš, Trg kralja Aleksandra Ujedinitelja, 18000 Niš (Serbia); Despotovic, Milan, E-mail: mdespotovic@kg.ac.rs [Faculty of Engineering, University of Kragujevac, Sestre Janjic 6, 34000 Kragujevac (Serbia); Babic, Sasa, E-mail: babicsf@yahoo.com [College of Applied Mechanical Engineering, Trstenik (Serbia)

    2014-11-15

    Traffic is the main source of noise in urban environments and significantly affects human mental and physical health and labor productivity. Therefore it is very important to model the noise produced by various vehicles. Techniques for traffic noise prediction are mainly based on regression analysis, which generally is not good enough to describe the trends of noise. In this paper the application of artificial neural networks (ANNs) for the prediction of traffic noise is presented. As input variables of the neural network, the proposed structure of the traffic flow and the average speed of the traffic flow are chosen. The output variable of the network is the equivalent noise level in the given time period L{sub eq}. Based on these parameters, the network is modeled, trained and tested through a comparative analysis of the calculated values and measured levels of traffic noise using the originally developed user friendly software package. It is shown that the artificial neural networks can be a useful tool for the prediction of noise with sufficient accuracy. In addition, the measured values were also used to calculate equivalent noise level by means of classical methods, and comparative analysis is given. The results clearly show that ANN approach is superior in traffic noise level prediction to any other statistical method. - Highlights: • We proposed an ANN model for prediction of traffic noise. • We developed originally designed user friendly software package. • The results are compared with classical statistical methods. • The results are much better predictive capabilities of ANN model.

  9. Multi-agent Negotiation Mechanisms for Statistical Target Classification in Wireless Multimedia Sensor Networks

    Science.gov (United States)

    Wang, Xue; Bi, Dao-wei; Ding, Liang; Wang, Sheng

    2007-01-01

    The recent availability of low cost and miniaturized hardware has allowed wireless sensor networks (WSNs) to retrieve audio and video data in real world applications, which has fostered the development of wireless multimedia sensor networks (WMSNs). Resource constraints and challenging multimedia data volume make development of efficient algorithms to perform in-network processing of multimedia contents imperative. This paper proposes solving problems in the domain of WMSNs from the perspective of multi-agent systems. The multi-agent framework enables flexible network configuration and efficient collaborative in-network processing. The focus is placed on target classification in WMSNs where audio information is retrieved by microphones. To deal with the uncertainties related to audio information retrieval, the statistical approaches of power spectral density estimates, principal component analysis and Gaussian process classification are employed. A multi-agent negotiation mechanism is specially developed to efficiently utilize limited resources and simultaneously enhance classification accuracy and reliability. The negotiation is composed of two phases, where an auction based approach is first exploited to allocate the classification task among the agents and then individual agent decisions are combined by the committee decision mechanism. Simulation experiments with real world data are conducted and the results show that the proposed statistical approaches and negotiation mechanism not only reduce memory and computation requirements in WMSNs but also significantly enhance classification accuracy and reliability. PMID:28903223

  10. Examining reproducibility in psychology : A hybrid method for combining a statistically significant original study and a replication

    NARCIS (Netherlands)

    Van Aert, R.C.M.; Van Assen, M.A.L.M.

    2018-01-01

    The unrealistically high rate of positive results within psychology has increased the attention to replication research. However, researchers who conduct a replication and want to statistically combine the results of their replication with a statistically significant original study encounter

  11. A Note on Comparing the Power of Test Statistics at Low Significance Levels.

    Science.gov (United States)

    Morris, Nathan; Elston, Robert

    2011-01-01

    It is an obvious fact that the power of a test statistic is dependent upon the significance (alpha) level at which the test is performed. It is perhaps a less obvious fact that the relative performance of two statistics in terms of power is also a function of the alpha level. Through numerous personal discussions, we have noted that even some competent statisticians have the mistaken intuition that relative power comparisons at traditional levels such as α = 0.05 will be roughly similar to relative power comparisons at very low levels, such as the level α = 5 × 10 -8 , which is commonly used in genome-wide association studies. In this brief note, we demonstrate that this notion is in fact quite wrong, especially with respect to comparing tests with differing degrees of freedom. In fact, at very low alpha levels the cost of additional degrees of freedom is often comparatively low. Thus we recommend that statisticians exercise caution when interpreting the results of power comparison studies which use alpha levels that will not be used in practice.

  12. Statistically significant faunal differences among Middle Ordovician age, Chickamauga Group bryozoan bioherms, central Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Crow, C.J.

    1985-01-01

    Middle Ordovician age Chickamauga Group carbonates crop out along the Birmingham and Murphrees Valley anticlines in central Alabama. The macrofossil contents on exposed surfaces of seven bioherms have been counted to determine their various paleontologic characteristics. Twelve groups of organisms are present in these bioherms. Dominant organisms include bryozoans, algae, brachiopods, sponges, pelmatozoans, stromatoporoids and corals. Minor accessory fauna include predators, scavengers and grazers such as gastropods, ostracods, trilobites, cephalopods and pelecypods. Vertical and horizontal niche zonation has been detected for some of the bioherm dwelling fauna. No one bioherm of those studied exhibits all 12 groups of organisms; rather, individual bioherms display various subsets of the total diversity. Statistical treatment (G-test) of the diversity data indicates a lack of statistical homogeneity of the bioherms, both within and between localities. Between-locality population heterogeneity can be ascribed to differences in biologic responses to such gross environmental factors as water depth and clarity, and energy levels. At any one locality, gross aspects of the paleoenvironments are assumed to have been more uniform. Significant differences among bioherms at any one locality may have resulted from patchy distribution of species populations, differential preservation and other factors.

  13. Significance of social networks in sustainable land management in ...

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    multi-stakeholder Innovation Platforms (IPs) necessary for catalysing wide adoption of SLM innovations. This paper analyses the significance of SNs in sustainable land management (SLM), focusing on stakeholders' characteristics and their association among agricultural rural communities in central Ethiopia and eastern ...

  14. Statistical analysis of longitudinal network data with changing composition

    NARCIS (Netherlands)

    Huisman, M; Snijders, TAB; Snijders, Tom A.B.

    2003-01-01

    Markov chains can be used for the modeling of complex longitudinal network data. One class of probability models to model the evolution of social networks are stochastic actor-oriented models for network change proposed by Snijders. These models are continuous-time Markov chain models that are

  15. Statistical analysis of the road network of India

    Indian Academy of Sciences (India)

    tify the most important road-junctions (or cities) in the highway network ... Transportation networks form the backbone of economic development in a country. In ... networks in Le Mans (France) show double-power law degree distribution [14]. .... regions, which currently we are unable to study due to the unavailability of data.

  16. Network-based statistical comparison of citation topology of bibliographic databases

    Science.gov (United States)

    Šubelj, Lovro; Fiala, Dalibor; Bajec, Marko

    2014-01-01

    Modern bibliographic databases provide the basis for scientific research and its evaluation. While their content and structure differ substantially, there exist only informal notions on their reliability. Here we compare the topological consistency of citation networks extracted from six popular bibliographic databases including Web of Science, CiteSeer and arXiv.org. The networks are assessed through a rich set of local and global graph statistics. We first reveal statistically significant inconsistencies between some of the databases with respect to individual statistics. For example, the introduced field bow-tie decomposition of DBLP Computer Science Bibliography substantially differs from the rest due to the coverage of the database, while the citation information within arXiv.org is the most exhaustive. Finally, we compare the databases over multiple graph statistics using the critical difference diagram. The citation topology of DBLP Computer Science Bibliography is the least consistent with the rest, while, not surprisingly, Web of Science is significantly more reliable from the perspective of consistency. This work can serve either as a reference for scholars in bibliometrics and scientometrics or a scientific evaluation guideline for governments and research agencies. PMID:25263231

  17. Estimates of statistical significance for comparison of individual positions in multiple sequence alignments

    Directory of Open Access Journals (Sweden)

    Sadreyev Ruslan I

    2004-08-01

    Full Text Available Abstract Background Profile-based analysis of multiple sequence alignments (MSA allows for accurate comparison of protein families. Here, we address the problems of detecting statistically confident dissimilarities between (1 MSA position and a set of predicted residue frequencies, and (2 between two MSA positions. These problems are important for (i evaluation and optimization of methods predicting residue occurrence at protein positions; (ii detection of potentially misaligned regions in automatically produced alignments and their further refinement; and (iii detection of sites that determine functional or structural specificity in two related families. Results For problems (1 and (2, we propose analytical estimates of P-value and apply them to the detection of significant positional dissimilarities in various experimental situations. (a We compare structure-based predictions of residue propensities at a protein position to the actual residue frequencies in the MSA of homologs. (b We evaluate our method by the ability to detect erroneous position matches produced by an automatic sequence aligner. (c We compare MSA positions that correspond to residues aligned by automatic structure aligners. (d We compare MSA positions that are aligned by high-quality manual superposition of structures. Detected dissimilarities reveal shortcomings of the automatic methods for residue frequency prediction and alignment construction. For the high-quality structural alignments, the dissimilarities suggest sites of potential functional or structural importance. Conclusion The proposed computational method is of significant potential value for the analysis of protein families.

  18. Determining coding CpG islands by identifying regions significant for pattern statistics on Markov chains.

    Science.gov (United States)

    Singer, Meromit; Engström, Alexander; Schönhuth, Alexander; Pachter, Lior

    2011-09-23

    Recent experimental and computational work confirms that CpGs can be unmethylated inside coding exons, thereby showing that codons may be subjected to both genomic and epigenomic constraint. It is therefore of interest to identify coding CpG islands (CCGIs) that are regions inside exons enriched for CpGs. The difficulty in identifying such islands is that coding exons exhibit sequence biases determined by codon usage and constraints that must be taken into account. We present a method for finding CCGIs that showcases a novel approach we have developed for identifying regions of interest that are significant (with respect to a Markov chain) for the counts of any pattern. Our method begins with the exact computation of tail probabilities for the number of CpGs in all regions contained in coding exons, and then applies a greedy algorithm for selecting islands from among the regions. We show that the greedy algorithm provably optimizes a biologically motivated criterion for selecting islands while controlling the false discovery rate. We applied this approach to the human genome (hg18) and annotated CpG islands in coding exons. The statistical criterion we apply to evaluating islands reduces the number of false positives in existing annotations, while our approach to defining islands reveals significant numbers of undiscovered CCGIs in coding exons. Many of these appear to be examples of functional epigenetic specialization in coding exons.

  19. Publication of statistically significant research findings in prosthodontics & implant dentistry in the context of other dental specialties.

    Science.gov (United States)

    Papageorgiou, Spyridon N; Kloukos, Dimitrios; Petridis, Haralampos; Pandis, Nikolaos

    2015-10-01

    To assess the hypothesis that there is excessive reporting of statistically significant studies published in prosthodontic and implantology journals, which could indicate selective publication. The last 30 issues of 9 journals in prosthodontics and implant dentistry were hand-searched for articles with statistical analyses. The percentages of significant and non-significant results were tabulated by parameter of interest. Univariable/multivariable logistic regression analyses were applied to identify possible predictors of reporting statistically significance findings. The results of this study were compared with similar studies in dentistry with random-effects meta-analyses. From the 2323 included studies 71% of them reported statistically significant results, with the significant results ranging from 47% to 86%. Multivariable modeling identified that geographical area and involvement of statistician were predictors of statistically significant results. Compared to interventional studies, the odds that in vitro and observational studies would report statistically significant results was increased by 1.20 times (OR: 2.20, 95% CI: 1.66-2.92) and 0.35 times (OR: 1.35, 95% CI: 1.05-1.73), respectively. The probability of statistically significant results from randomized controlled trials was significantly lower compared to various study designs (difference: 30%, 95% CI: 11-49%). Likewise the probability of statistically significant results in prosthodontics and implant dentistry was lower compared to other dental specialties, but this result did not reach statistical significant (P>0.05). The majority of studies identified in the fields of prosthodontics and implant dentistry presented statistically significant results. The same trend existed in publications of other specialties in dentistry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The building network energy statistics 2002[Norway]; Bygningsnettverkets energistatistikk 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    The report surveys a Norwegian network within the construction business and the energy utilization particularly in various buildings. There are sections on the network structure, the energy use in 2002, the building aspects and various project types. The emphasis is on energy conservation aspects. Various technologies and energy systems as well as building types, are discussed. (tk)

  1. Statistical methods for studying the evolution of networks and behavior

    NARCIS (Netherlands)

    Schweinberger, Michael

    2007-01-01

    Studying longitudinal network and behavior data is important for understanding social processes, because human beings are interrelated, and the relationships among human beings (human networks) on one hand and human behavior on the other hand are not independent. The complex nature of longitudinal

  2. Artificial neural networks to predict presence of significant pathology in patients presenting to routine colorectal clinics.

    Science.gov (United States)

    Maslekar, S; Gardiner, A B; Monson, J R T; Duthie, G S

    2010-12-01

    Artificial neural networks (ANNs) are computer programs used to identify complex relations within data. Routine predictions of presence of colorectal pathology based on population statistics have little meaning for individual patient. This results in large number of unnecessary lower gastrointestinal endoscopies (LGEs - colonoscopies and flexible sigmoidoscopies). We aimed to develop a neural network algorithm that can accurately predict presence of significant pathology in patients attending routine outpatient clinics for gastrointestinal symptoms. Ethics approval was obtained and the study was monitored according to International Committee on Harmonisation - Good Clinical Practice (ICH-GCP) standards. Three-hundred patients undergoing LGE prospectively completed a specifically developed questionnaire, which included 40 variables based on clinical symptoms, signs, past- and family history. Complete data sets of 100 patients were used to train the ANN; the remaining data was used for internal validation. The primary output used was positive finding on LGE, including polyps, cancer, diverticular disease or colitis. For external validation, the ANN was applied to data from 50 patients in primary care and also compared with the predictions of four clinicians. Clear correlation between actual data value and ANN predictions were found (r = 0.931; P = 0.0001). The predictive accuracy of ANN was 95% in training group and 90% (95% CI 84-96) in the internal validation set and this was significantly higher than the clinical accuracy (75%). ANN also showed high accuracy in the external validation group (89%). Artificial neural networks offer the possibility of personal prediction of outcome for individual patients presenting in clinics with colorectal symptoms, making it possible to make more appropriate requests for lower gastrointestinal endoscopy. © 2010 The Authors. Colorectal Disease © 2010 The Association of Coloproctology of Great Britain and Ireland.

  3. Complex network approach to characterize the statistical features of the sunspot series

    International Nuclear Information System (INIS)

    Zou, Yong; Liu, Zonghua; Small, Michael; Kurths, Jürgen

    2014-01-01

    Complex network approaches have been recently developed as an alternative framework to study the statistical features of time-series data. We perform a visibility-graph analysis on both the daily and monthly sunspot series. Based on the data, we propose two ways to construct the network: one is from the original observable measurements and the other is from a negative-inverse-transformed series. The degree distribution of the derived networks for the strong maxima has clear non-Gaussian properties, while the degree distribution for minima is bimodal. The long-term variation of the cycles is reflected by hubs in the network that span relatively large time intervals. Based on standard network structural measures, we propose to characterize the long-term correlations by waiting times between two subsequent events. The persistence range of the solar cycles has been identified over 15–1000 days by a power-law regime with scaling exponent γ = 2.04 of the occurrence time of two subsequent strong minima. In contrast, a persistent trend is not present in the maximal numbers, although maxima do have significant deviations from an exponential form. Our results suggest some new insights for evaluating existing models. (paper)

  4. Indirectional statistics and the significance of an asymmetry discovered by Birch

    International Nuclear Information System (INIS)

    Kendall, D.G.; Young, G.A.

    1984-01-01

    Birch (1982, Nature, 298, 451) reported an apparent 'statistical asymmetry of the Universe'. The authors here develop 'indirectional analysis' as a technique for investigating statistical effects of this kind and conclude that the reported effect (whatever may be its origin) is strongly supported by the observations. The estimated pole of the asymmetry is at RA 13h 30m, Dec. -37deg. The angular error in its estimation is unlikely to exceed 20-30deg. (author)

  5. Confounding and Statistical Significance of Indirect Effects: Childhood Adversity, Education, Smoking, and Anxious and Depressive Symptomatology

    Directory of Open Access Journals (Sweden)

    Mashhood Ahmed Sheikh

    2017-08-01

    mediate the association between childhood adversity and ADS in adulthood. However, when education was excluded as a mediator-response confounding variable, the indirect effect of childhood adversity on ADS in adulthood was statistically significant (p < 0.05. This study shows that a careful inclusion of potential confounding variables is important when assessing mediation.

  6. Signs over time: Statistical and visual analysis of a longitudinal signed network

    NARCIS (Netherlands)

    de Nooy, W.

    2008-01-01

    This paper presents the design and results of a statistical and visual analysis of a dynamic signed network. In addition to prevalent approaches to longitudinal networks, which analyze series of cross-sectional data, this paper focuses on network data measured in continuous time in order to explain

  7. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    Energy Technology Data Exchange (ETDEWEB)

    Fhager, V

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  8. Accelerator driven reactors, - the significance of the energy distribution of spallation neutrons on the neutron statistics

    International Nuclear Information System (INIS)

    Fhager, V.

    2000-01-01

    In order to make correct predictions of the second moment of statistical nuclear variables, such as the number of fissions and the number of thermalized neutrons, the dependence of the energy distribution of the source particles on their number should be considered. It has been pointed out recently that neglecting this number dependence in accelerator driven systems might result in bad estimates of the second moment, and this paper contains qualitative and quantitative estimates of the size of these efforts. We walk towards the requested results in two steps. First, models of the number dependent energy distributions of the neutrons that are ejected in the spallation reactions are constructed, both by simple assumptions and by extracting energy distributions of spallation neutrons from a high-energy particle transport code. Then, the second moment of nuclear variables in a sub-critical reactor, into which spallation neutrons are injected, is calculated. The results from second moment calculations using number dependent energy distributions for the source neutrons are compared to those where only the average energy distribution is used. Two physical models are employed to simulate the neutron transport in the reactor. One is analytical, treating only slowing down of neutrons by elastic scattering in the core material. For this model, equations are written down and solved for the second moment of thermalized neutrons that include the distribution of energy of the spallation neutrons. The other model utilizes Monte Carlo methods for tracking the source neutrons as they travel inside the reactor material. Fast and thermal fission reactions are considered, as well as neutron capture and elastic scattering, and the second moment of the number of fissions, the number of neutrons that leaked out of the system, etc. are calculated. Both models use a cylindrical core with a homogenous mixture of core material. Our results indicate that the number dependence of the energy

  9. Adaptive sampling rate control for networked systems based on statistical characteristics of packet disordering.

    Science.gov (United States)

    Li, Jin-Na; Er, Meng-Joo; Tan, Yen-Kheng; Yu, Hai-Bin; Zeng, Peng

    2015-09-01

    This paper investigates an adaptive sampling rate control scheme for networked control systems (NCSs) subject to packet disordering. The main objectives of the proposed scheme are (a) to avoid heavy packet disordering existing in communication networks and (b) to stabilize NCSs with packet disordering, transmission delay and packet loss. First, a novel sampling rate control algorithm based on statistical characteristics of disordering entropy is proposed; secondly, an augmented closed-loop NCS that consists of a plant, a sampler and a state-feedback controller is transformed into an uncertain and stochastic system, which facilitates the controller design. Then, a sufficient condition for stochastic stability in terms of Linear Matrix Inequalities (LMIs) is given. Moreover, an adaptive tracking controller is designed such that the sampling period tracks a desired sampling period, which represents a significant contribution. Finally, experimental results are given to illustrate the effectiveness and advantages of the proposed scheme. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Statistical control chart and neural network classification for improving human fall detection

    KAUST Repository

    Harrou, Fouzi; Zerrouki, Nabil; Sun, Ying; Houacine, Amrane

    2017-01-01

    This paper proposes a statistical approach to detect and classify human falls based on both visual data from camera and accelerometric data captured by accelerometer. Specifically, we first use a Shewhart control chart to detect the presence of potential falls by using accelerometric data. Unfortunately, this chart cannot distinguish real falls from fall-like actions, such as lying down. To bypass this difficulty, a neural network classifier is then applied only on the detected cases through visual data. To assess the performance of the proposed method, experiments are conducted on the publicly available fall detection databases: the University of Rzeszow's fall detection (URFD) dataset. Results demonstrate that the detection phase play a key role in reducing the number of sequences used as input into the neural network classifier for classification, significantly reducing computational burden and achieving better accuracy.

  11. Statistical control chart and neural network classification for improving human fall detection

    KAUST Repository

    Harrou, Fouzi

    2017-01-05

    This paper proposes a statistical approach to detect and classify human falls based on both visual data from camera and accelerometric data captured by accelerometer. Specifically, we first use a Shewhart control chart to detect the presence of potential falls by using accelerometric data. Unfortunately, this chart cannot distinguish real falls from fall-like actions, such as lying down. To bypass this difficulty, a neural network classifier is then applied only on the detected cases through visual data. To assess the performance of the proposed method, experiments are conducted on the publicly available fall detection databases: the University of Rzeszow\\'s fall detection (URFD) dataset. Results demonstrate that the detection phase play a key role in reducing the number of sequences used as input into the neural network classifier for classification, significantly reducing computational burden and achieving better accuracy.

  12. Robust statistical methods for significance evaluation and applications in cancer driver detection and biomarker discovery

    DEFF Research Database (Denmark)

    Madsen, Tobias

    2017-01-01

    In the present thesis I develop, implement and apply statistical methods for detecting genomic elements implicated in cancer development and progression. This is done in two separate bodies of work. The first uses the somatic mutation burden to distinguish cancer driver mutations from passenger m...

  13. Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters

    Directory of Open Access Journals (Sweden)

    Hongshan Zhao

    2012-05-01

    Full Text Available Short-term solar irradiance forecasting (STSIF is of great significance for the optimal operation and power predication of grid-connected photovoltaic (PV plants. However, STSIF is very complex to handle due to the random and nonlinear characteristics of solar irradiance under changeable weather conditions. Artificial Neural Network (ANN is suitable for STSIF modeling and many research works on this topic are presented, but the conciseness and robustness of the existing models still need to be improved. After discussing the relation between weather variations and irradiance, the characteristics of the statistical feature parameters of irradiance under different weather conditions are figured out. A novel ANN model using statistical feature parameters (ANN-SFP for STSIF is proposed in this paper. The input vector is reconstructed with several statistical feature parameters of irradiance and ambient temperature. Thus sufficient information can be effectively extracted from relatively few inputs and the model complexity is reduced. The model structure is determined by cross-validation (CV, and the Levenberg-Marquardt algorithm (LMA is used for the network training. Simulations are carried out to validate and compare the proposed model with the conventional ANN model using historical data series (ANN-HDS, and the results indicated that the forecast accuracy is obviously improved under variable weather conditions.

  14. Statistical analysis of the airport network of Pakistan

    Indian Academy of Sciences (India)

    Transportation infrastructure plays a vital role in the development of a country's econ- ... competitive and region-specific services and will target new domestic locations thereby, ... Since the network is weighted, we not only study the topological aspects but also ... In this case, the degree is defined as the number of cities.

  15. Statistical Traffic Anomaly Detection in Time-Varying Communication Networks

    Science.gov (United States)

    2015-02-01

    PLs can be generated using tad and (7). Otherwise, the network is periodic according to feature a, and a family of candidate PLs can be generated...using tad , t a p, and (8). In addition, in case that some prior knowledge of td and tp is available, the family of candidate PLs can include the PLs

  16. Statistical Traffic Anomaly Detection in Time Varying Communication Networks

    Science.gov (United States)

    2015-02-01

    PLs can be generated using tad and (7). Otherwise, the network is periodic according to feature a, and a family of candidate PLs can be generated...using tad , t a p, and (8). In addition, in case that some prior knowledge of td and tp is available, the family of candidate PLs can include the PLs

  17. Feature network models for proximity data : statistical inference, model selection, network representations and links with related models

    NARCIS (Netherlands)

    Frank, Laurence Emmanuelle

    2006-01-01

    Feature Network Models (FNM) are graphical structures that represent proximity data in a discrete space with the use of features. A statistical inference theory is introduced, based on the additivity properties of networks and the linear regression framework. Considering features as predictor

  18. Statistical multiplexing of identical bursty sources in an ATM network

    DEFF Research Database (Denmark)

    Dittmann, Lars; Jacobsen, Søren B

    1988-01-01

    The authors study the performance of a statistical multiplexer with a common buffer and bursty sources. A uniform arrival and service model has been used to calculate the loss probability as a function of several parameters. It is shown that the ratio of the number of cells in an average burst to...

  19. Wind speed prediction using statistical regression and neural network

    Indian Academy of Sciences (India)

    Prediction of wind speed in the atmospheric boundary layer is important for wind energy assess- ment,satellite launching and aviation,etc.There are a few techniques available for wind speed prediction,which require a minimum number of input parameters.Four different statistical techniques,viz.,curve fitting,Auto Regressive ...

  20. Statistical modelling of neural networks in γ-spectrometry applications

    International Nuclear Information System (INIS)

    Vigneron, V.; Martinez, J.M.; Morel, J.; Lepy, M.C.

    1995-01-01

    Layered Neural Networks, which are a class of models based on neural computation, are applied to the measurement of uranium enrichment, i.e. the isotope ratio 235 U/( 235 U + 236 U + 238 U). The usual method consider a limited number of Γ-ray and X-ray peaks, and require previously calibrated instrumentation for each sample. But, in practice, the source-detector ensemble geometry conditions are critically different, thus a means of improving the above convention methods is to reduce the region of interest: this is possible by focusing on the K α X region where the three elementary components are present. Real data are used to study the performance of neural networks. Training is done with a Maximum Likelihood method to measure uranium 235 U and 238 U quantities in infinitely thick samples. (authors). 18 refs., 6 figs., 3 tabs

  1. Statistical Analysis and Evaluation of the Depth of the Ruts on Lithuanian State Significance Roads

    Directory of Open Access Journals (Sweden)

    Erinijus Getautis

    2011-04-01

    Full Text Available The aim of this work is to gather information about the national flexible pavement roads ruts depth, to determine its statistical dispersijon index and to determine their validity for needed requirements. Analysis of scientific works of ruts apearance in the asphalt and their influence for driving is presented in this work. Dynamical models of ruts in asphalt are presented in the work as well. Experimental outcome data of rut depth dispersijon in the national highway of Lithuania Vilnius – Kaunas is prepared. Conclusions are formulated and presented. Article in Lithuanian

  2. Confidence Intervals: From tests of statistical significance to confidence intervals, range hypotheses and substantial effects

    Directory of Open Access Journals (Sweden)

    Dominic Beaulieu-Prévost

    2006-03-01

    Full Text Available For the last 50 years of research in quantitative social sciences, the empirical evaluation of scientific hypotheses has been based on the rejection or not of the null hypothesis. However, more than 300 articles demonstrated that this method was problematic. In summary, null hypothesis testing (NHT is unfalsifiable, its results depend directly on sample size and the null hypothesis is both improbable and not plausible. Consequently, alternatives to NHT such as confidence intervals (CI and measures of effect size are starting to be used in scientific publications. The purpose of this article is, first, to provide the conceptual tools necessary to implement an approach based on confidence intervals, and second, to briefly demonstrate why such an approach is an interesting alternative to an approach based on NHT. As demonstrated in the article, the proposed CI approach avoids most problems related to a NHT approach and can often improve the scientific and contextual relevance of the statistical interpretations by testing range hypotheses instead of a point hypothesis and by defining the minimal value of a substantial effect. The main advantage of such a CI approach is that it replaces the notion of statistical power by an easily interpretable three-value logic (probable presence of a substantial effect, probable absence of a substantial effect and probabilistic undetermination. The demonstration includes a complete example.

  3. Comparison of Artificial Neural Networks and ARIMA statistical models in simulations of target wind time series

    Science.gov (United States)

    Kolokythas, Kostantinos; Vasileios, Salamalikis; Athanassios, Argiriou; Kazantzidis, Andreas

    2015-04-01

    The wind is a result of complex interactions of numerous mechanisms taking place in small or large scales, so, the better knowledge of its behavior is essential in a variety of applications, especially in the field of power production coming from wind turbines. In the literature there is a considerable number of models, either physical or statistical ones, dealing with the problem of simulation and prediction of wind speed. Among others, Artificial Neural Networks (ANNs) are widely used for the purpose of wind forecasting and, in the great majority of cases, outperform other conventional statistical models. In this study, a number of ANNs with different architectures, which have been created and applied in a dataset of wind time series, are compared to Auto Regressive Integrated Moving Average (ARIMA) statistical models. The data consist of mean hourly wind speeds coming from a wind farm on a hilly Greek region and cover a period of one year (2013). The main goal is to evaluate the models ability to simulate successfully the wind speed at a significant point (target). Goodness-of-fit statistics are performed for the comparison of the different methods. In general, the ANN showed the best performance in the estimation of wind speed prevailing over the ARIMA models.

  4. Bandwidth Reservation Using Velocity and Handoff Statistics for Cellular Networks

    Institute of Scientific and Technical Information of China (English)

    Chuan-Lin Zhang; Kam Yiu Lam; Wei-Jia Jia

    2006-01-01

    The percentages of blocking and forced termination rates as parameters representing quality of services (QoS)requirements are presented. The relation between the connection statistics of mobile users in a cell and the handoff number and new call number in next duration in each cell is explored. Based on the relation, statistic reservation tactics are raised.The amount of bandwidth for new calls and handoffs of each cell in next period is determined by using the strategy. Using this method can guarantee the communication system suits mobile connection request dynamic. The QoS parameters:forced termination rate and blocking rate can be maintained steadily though they may change with the offered load. Some numerical experiments demonstrate this is a practical method with affordable overhead.

  5. An Efficient Forward-Reverse EM Algorithm for Statistical Inference in Stochastic Reaction Networks

    KAUST Repository

    Bayer, Christian; Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro

    2016-01-01

    In this work [1], we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem

  6. An ME-PC Enhanced HDMR Method for Efficient Statistical Analysis of Multiconductor Transmission Line Networks

    KAUST Repository

    Yucel, Abdulkadir C.; Bagci, Hakan; Michielssen, Eric

    2015-01-01

    An efficient method for statistically characterizing multiconductor transmission line (MTL) networks subject to a large number of manufacturing uncertainties is presented. The proposed method achieves its efficiency by leveraging a high

  7. 77 FR 37730 - Culturally Significant Objects Imported for Exhibition Determinations: “Nomads and Networks: The...

    Science.gov (United States)

    2012-06-22

    ... DEPARTMENT OF STATE [Public Notice 7928] Culturally Significant Objects Imported for Exhibition Determinations: ``Nomads and Networks: The Ancient Art and Culture of Kazakhstan'' SUMMARY: Notice is hereby... objects to be included in the exhibition ``Nomads and Networks: The Ancient Art and Culture of Kazakhstan...

  8. 77 FR 7229 - Culturally Significant Objects Imported for Exhibition Determinations: “Nomads and Networks: The...

    Science.gov (United States)

    2012-02-10

    ... DEPARTMENT OF STATE [Public Notice 7794] Culturally Significant Objects Imported for Exhibition Determinations: ``Nomads and Networks: The Ancient Art and Culture of Kazakhstan'' SUMMARY: Notice is hereby... objects to be included in the exhibition ``Nomads and Networks: The Ancient Art and Culture of Kazakhstan...

  9. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network.

    Science.gov (United States)

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-08

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  10. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    Directory of Open Access Journals (Sweden)

    Ke Li

    2016-01-01

    Full Text Available A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF and Diagnostic Bayesian Network (DBN is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO. To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA is proposed to evaluate the sensitiveness of symptom parameters (SPs for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method.

  11. Intelligent Condition Diagnosis Method Based on Adaptive Statistic Test Filter and Diagnostic Bayesian Network

    Science.gov (United States)

    Li, Ke; Zhang, Qiuju; Wang, Kun; Chen, Peng; Wang, Huaqing

    2016-01-01

    A new fault diagnosis method for rotating machinery based on adaptive statistic test filter (ASTF) and Diagnostic Bayesian Network (DBN) is presented in this paper. ASTF is proposed to obtain weak fault features under background noise, ASTF is based on statistic hypothesis testing in the frequency domain to evaluate similarity between reference signal (noise signal) and original signal, and remove the component of high similarity. The optimal level of significance α is obtained using particle swarm optimization (PSO). To evaluate the performance of the ASTF, evaluation factor Ipq is also defined. In addition, a simulation experiment is designed to verify the effectiveness and robustness of ASTF. A sensitive evaluation method using principal component analysis (PCA) is proposed to evaluate the sensitiveness of symptom parameters (SPs) for condition diagnosis. By this way, the good SPs that have high sensitiveness for condition diagnosis can be selected. A three-layer DBN is developed to identify condition of rotation machinery based on the Bayesian Belief Network (BBN) theory. Condition diagnosis experiment for rolling element bearings demonstrates the effectiveness of the proposed method. PMID:26761006

  12. The Significant Social Networks of Women Who Have Resided in Shelters

    Directory of Open Access Journals (Sweden)

    Scheila Krenkel

    2015-04-01

    Full Text Available The social and institutional support networks structured around women who suffer violence are strategic tools when coping with the phenomenon, which is considered a public health problem. This qualitative study was aimed at understanding the relational dynamics of significant social networks of women who have experienced family violence and have resided in a shelter. A group of 12 women participated in the study and data collection was carried out through semi-structured interviews and the social networks map. Data analysis was based on Grounded Theory and performed using the software Atlas.ti 5.0. The results revealed that the significant social networks were important sources of help and support in the process of coping with violence experienced by women. Results also showed that the persons in the social networks develop multiple functions and present an increasing level of relational commitment to women, especially after they leave the shelter.

  13. The SACE Review Panel's Final Report: Significant Flaws in the Analysis of Statistical Data

    Science.gov (United States)

    Gregory, Kelvin

    2006-01-01

    The South Australian Certificate of Education (SACE) is a credential and formal qualification within the Australian Qualifications Framework. A recent review of the SACE outlined a number of recommendations for significant changes to this certificate. These recommendations were the result of a process that began with the review panel…

  14. A comparative analysis of the statistical properties of large mobile phone calling networks.

    Science.gov (United States)

    Li, Ming-Xia; Jiang, Zhi-Qiang; Xie, Wen-Jie; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N

    2014-05-30

    Mobile phone calling is one of the most widely used communication methods in modern society. The records of calls among mobile phone users provide us a valuable proxy for the understanding of human communication patterns embedded in social networks. Mobile phone users call each other forming a directed calling network. If only reciprocal calls are considered, we obtain an undirected mutual calling network. The preferential communication behavior between two connected users can be statistically tested and it results in two Bonferroni networks with statistically validated edges. We perform a comparative analysis of the statistical properties of these four networks, which are constructed from the calling records of more than nine million individuals in Shanghai over a period of 110 days. We find that these networks share many common structural properties and also exhibit idiosyncratic features when compared with previously studied large mobile calling networks. The empirical findings provide us an intriguing picture of a representative large social network that might shed new lights on the modelling of large social networks.

  15. StOCNET : Software for the statistical analysis of social networks

    NARCIS (Netherlands)

    Huisman, M.; van Duijn, M.A.J.

    2003-01-01

    StOCNET3 is an open software system in a Windows environment for the advanced statistical analysis of social networks. It provides a platform to make a number of recently developed and therefore not (yet) standard statistical methods available to a wider audience. A flexible user interface utilizing

  16. Data Collection Manual for Academic and Research Library Network Statistics and Performance Measures.

    Science.gov (United States)

    Shim, Wonsik "Jeff"; McClure, Charles R.; Fraser, Bruce T.; Bertot, John Carlo

    This manual provides a beginning approach for research libraries to better describe the use and users of their networked services. The manual also aims to increase the visibility and importance of developing such statistics and measures. Specific objectives are: to identify selected key statistics and measures that can describe use and users of…

  17. Structure Learning and Statistical Estimation in Distribution Networks - Part II

    Energy Technology Data Exchange (ETDEWEB)

    Deka, Deepjyoti [Univ. of Texas, Austin, TX (United States); Backhaus, Scott N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chertkov, Michael [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-13

    Limited placement of real-time monitoring devices in the distribution grid, recent trends notwithstanding, has prevented the easy implementation of demand-response and other smart grid applications. Part I of this paper discusses the problem of learning the operational structure of the grid from nodal voltage measurements. In this work (Part II), the learning of the operational radial structure is coupled with the problem of estimating nodal consumption statistics and inferring the line parameters in the grid. Based on a Linear-Coupled(LC) approximation of AC power flows equations, polynomial time algorithms are designed to identify the structure and estimate nodal load characteristics and/or line parameters in the grid using the available nodal voltage measurements. Then the structure learning algorithm is extended to cases with missing data, where available observations are limited to a fraction of the grid nodes. The efficacy of the presented algorithms are demonstrated through simulations on several distribution test cases.

  18. Childhood-compared to adolescent-onset bipolar disorder has more statistically significant clinical correlates.

    Science.gov (United States)

    Holtzman, Jessica N; Miller, Shefali; Hooshmand, Farnaz; Wang, Po W; Chang, Kiki D; Hill, Shelley J; Rasgon, Natalie L; Ketter, Terence A

    2015-07-01

    The strengths and limitations of considering childhood-and adolescent-onset bipolar disorder (BD) separately versus together remain to be established. We assessed this issue. BD patients referred to the Stanford Bipolar Disorder Clinic during 2000-2011 were assessed with the Systematic Treatment Enhancement Program for BD Affective Disorders Evaluation. Patients with childhood- and adolescent-onset were compared to those with adult-onset for 7 unfavorable bipolar illness characteristics with replicated associations with early-onset patients. Among 502 BD outpatients, those with childhood- (adolescent- (13-18 years, N=218) onset had significantly higher rates for 4/7 unfavorable illness characteristics, including lifetime comorbid anxiety disorder, at least ten lifetime mood episodes, lifetime alcohol use disorder, and prior suicide attempt, than those with adult-onset (>18 years, N=174). Childhood- but not adolescent-onset BD patients also had significantly higher rates of first-degree relative with mood disorder, lifetime substance use disorder, and rapid cycling in the prior year. Patients with pooled childhood/adolescent - compared to adult-onset had significantly higher rates for 5/7 of these unfavorable illness characteristics, while patients with childhood- compared to adolescent-onset had significantly higher rates for 4/7 of these unfavorable illness characteristics. Caucasian, insured, suburban, low substance abuse, American specialty clinic-referred sample limits generalizability. Onset age is based on retrospective recall. Childhood- compared to adolescent-onset BD was more robustly related to unfavorable bipolar illness characteristics, so pooling these groups attenuated such relationships. Further study is warranted to determine the extent to which adolescent-onset BD represents an intermediate phenotype between childhood- and adult-onset BD. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Control range: a controllability-based index for node significance in directed networks

    International Nuclear Information System (INIS)

    Wang, Bingbo; Gao, Lin; Gao, Yong

    2012-01-01

    While a large number of methods for module detection have been developed for undirected networks, it is difficult to adapt them to handle directed networks due to the lack of consensus criteria for measuring the node significance in a directed network. In this paper, we propose a novel structural index, the control range, motivated by recent studies on the structural controllability of large-scale directed networks. The control range of a node quantifies the size of the subnetwork that the node can effectively control. A related index, called the control range similarity, is also introduced to measure the structural similarity between two nodes. When applying the index of control range to several real-world and synthetic directed networks, it is observed that the control range of the nodes is mainly influenced by the network's degree distribution and that nodes with a low degree may have a high control range. We use the index of control range similarity to detect and analyze functional modules in glossary networks and the enzyme-centric network of homo sapiens. Our results, as compared with other approaches to module detection such as modularity optimization algorithm, dynamic algorithm and clique percolation method, indicate that the proposed indices are effective and practical in depicting structural and modular characteristics of sparse directed networks

  20. Enhancing the Statistical Filtering Scheme to Detect False Negative Attacks in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Muhammad Akram

    2017-06-01

    Full Text Available In this paper, we present a technique that detects both false positive and false negative attacks in statistical filtering-based wireless sensor networks. In statistical filtering scheme, legitimate reports are repeatedly verified en route before they reach the base station, which causes heavy energy consumption. While the original statistical filtering scheme detects only false reports, our proposed method promises to detect both attacks.

  1. The statistical significance of error probability as determined from decoding simulations for long codes

    Science.gov (United States)

    Massey, J. L.

    1976-01-01

    The very low error probability obtained with long error-correcting codes results in a very small number of observed errors in simulation studies of practical size and renders the usual confidence interval techniques inapplicable to the observed error probability. A natural extension of the notion of a 'confidence interval' is made and applied to such determinations of error probability by simulation. An example is included to show the surprisingly great significance of as few as two decoding errors in a very large number of decoding trials.

  2. Sparse Power-Law Network Model for Reliable Statistical Predictions Based on Sampled Data

    Directory of Open Access Journals (Sweden)

    Alexander P. Kartun-Giles

    2018-04-01

    Full Text Available A projective network model is a model that enables predictions to be made based on a subsample of the network data, with the predictions remaining unchanged if a larger sample is taken into consideration. An exchangeable model is a model that does not depend on the order in which nodes are sampled. Despite a large variety of non-equilibrium (growing and equilibrium (static sparse complex network models that are widely used in network science, how to reconcile sparseness (constant average degree with the desired statistical properties of projectivity and exchangeability is currently an outstanding scientific problem. Here we propose a network process with hidden variables which is projective and can generate sparse power-law networks. Despite the model not being exchangeable, it can be closely related to exchangeable uncorrelated networks as indicated by its information theory characterization and its network entropy. The use of the proposed network process as a null model is here tested on real data, indicating that the model offers a promising avenue for statistical network modelling.

  3. A rapid reliability estimation method for directed acyclic lifeline networks with statistically dependent components

    International Nuclear Information System (INIS)

    Kang, Won-Hee; Kliese, Alyce

    2014-01-01

    Lifeline networks, such as transportation, water supply, sewers, telecommunications, and electrical and gas networks, are essential elements for the economic and societal functions of urban areas, but their components are highly susceptible to natural or man-made hazards. In this context, it is essential to provide effective pre-disaster hazard mitigation strategies and prompt post-disaster risk management efforts based on rapid system reliability assessment. This paper proposes a rapid reliability estimation method for node-pair connectivity analysis of lifeline networks especially when the network components are statistically correlated. Recursive procedures are proposed to compound all network nodes until they become a single super node representing the connectivity between the origin and destination nodes. The proposed method is applied to numerical network examples and benchmark interconnected power and water networks in Memphis, Shelby County. The connectivity analysis results show the proposed method's reasonable accuracy and remarkable efficiency as compared to the Monte Carlo simulations

  4. Statistics

    CERN Document Server

    Hayslett, H T

    1991-01-01

    Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the

  5. Statistical and optimization methods to expedite neural network training for transient identification

    International Nuclear Information System (INIS)

    Reifman, J.; Vitela, E.J.; Lee, J.C.

    1993-01-01

    Two complementary methods, statistical feature selection and nonlinear optimization through conjugate gradients, are used to expedite feedforward neural network training. Statistical feature selection techniques in the form of linear correlation coefficients and information-theoretic entropy are used to eliminate redundant and non-informative plant parameters to reduce the size of the network. The method of conjugate gradients is used to accelerate the network training convergence and to systematically calculate the Teaming and momentum constants at each iteration. The proposed techniques are compared with the backpropagation algorithm using the entire set of plant parameters in the training of neural networks to identify transients simulated with the Midland Nuclear Power Plant Unit 2 simulator. By using 25% of the plant parameters and the conjugate gradients, a 30-fold reduction in CPU time was obtained without degrading the diagnostic ability of the network

  6. Statistical Significance of the Maximum Hardness Principle Applied to Some Selected Chemical Reactions.

    Science.gov (United States)

    Saha, Ranajit; Pan, Sudip; Chattaraj, Pratim K

    2016-11-05

    The validity of the maximum hardness principle (MHP) is tested in the cases of 50 chemical reactions, most of which are organic in nature and exhibit anomeric effect. To explore the effect of the level of theory on the validity of MHP in an exothermic reaction, B3LYP/6-311++G(2df,3pd) and LC-BLYP/6-311++G(2df,3pd) (def2-QZVP for iodine and mercury) levels are employed. Different approximations like the geometric mean of hardness and combined hardness are considered in case there are multiple reactants and/or products. It is observed that, based on the geometric mean of hardness, while 82% of the studied reactions obey the MHP at the B3LYP level, 84% of the reactions follow this rule at the LC-BLYP level. Most of the reactions possess the hardest species on the product side. A 50% null hypothesis is rejected at a 1% level of significance.

  7. Wind speed prediction using statistical regression and neural network

    Indian Academy of Sciences (India)

    their valuable comments. These comments have made significant improvements in the paper. We are also thankful to the Indian Space Research. Organization for providing funds for this study. References. Asnani G C 2005 Tropical Meteorology; Pune, India, 2 5–77. Baillie R T 1996 Long Memory Processes and Fractional.

  8. Appplication of statistical mechanical methods to the modeling of social networks

    Science.gov (United States)

    Strathman, Anthony Robert

    With the recent availability of large-scale social data sets, social networks have become open to quantitative analysis via the methods of statistical physics. We examine the statistical properties of a real large-scale social network, generated from cellular phone call-trace logs. We find this network, like many other social networks to be assortative (r = 0.31) and clustered (i.e., strongly transitive, C = 0.21). We measure fluctuation scaling to identify the presence of internal structure in the network and find that structural inhomogeneity effectively disappears at the scale of a few hundred nodes, though there is no sharp cutoff. We introduce an agent-based model of social behavior, designed to model the formation and dissolution of social ties. The model is a modified Metropolis algorithm containing agents operating under the basic sociological constraints of reciprocity, communication need and transitivity. The model introduces the concept of a social temperature. We go on to show that this simple model reproduces the global statistical network features (incl. assortativity, connected fraction, mean degree, clustering, and mean shortest path length) of the real network data and undergoes two phase transitions, one being from a "gas" to a "liquid" state and the second from a liquid to a glassy state as function of this social temperature.

  9. Statistics

    Science.gov (United States)

    Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.

  10. Sigsearch: a new term for post hoc unplanned search for statistically significant relationships with the intent to create publishable findings.

    Science.gov (United States)

    Hashim, Muhammad Jawad

    2010-09-01

    Post-hoc secondary data analysis with no prespecified hypotheses has been discouraged by textbook authors and journal editors alike. Unfortunately no single term describes this phenomenon succinctly. I would like to coin the term "sigsearch" to define this practice and bring it within the teaching lexicon of statistics courses. Sigsearch would include any unplanned, post-hoc search for statistical significance using multiple comparisons of subgroups. It would also include data analysis with outcomes other than the prespecified primary outcome measure of a study as well as secondary data analyses of earlier research.

  11. Statistical modelling of networked human-automation performance using working memory capacity.

    Science.gov (United States)

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.

  12. ClusterSignificance: A bioconductor package facilitating statistical analysis of class cluster separations in dimensionality reduced data

    DEFF Research Database (Denmark)

    Serviss, Jason T.; Gådin, Jesper R.; Eriksson, Per

    2017-01-01

    , e.g. genes in a specific pathway, alone can separate samples into these established classes. Despite this, the evaluation of class separations is often subjective and performed via visualization. Here we present the ClusterSignificance package; a set of tools designed to assess the statistical...... significance of class separations downstream of dimensionality reduction algorithms. In addition, we demonstrate the design and utility of the ClusterSignificance package and utilize it to determine the importance of long non-coding RNA expression in the identity of multiple hematological malignancies....

  13. Robust identification of transcriptional regulatory networks using a Gibbs sampler on outlier sum statistic.

    Science.gov (United States)

    Gu, Jinghua; Xuan, Jianhua; Riggins, Rebecca B; Chen, Li; Wang, Yue; Clarke, Robert

    2012-08-01

    Identification of transcriptional regulatory networks (TRNs) is of significant importance in computational biology for cancer research, providing a critical building block to unravel disease pathways. However, existing methods for TRN identification suffer from the inclusion of excessive 'noise' in microarray data and false-positives in binding data, especially when applied to human tumor-derived cell line studies. More robust methods that can counteract the imperfection of data sources are therefore needed for reliable identification of TRNs in this context. In this article, we propose to establish a link between the quality of one target gene to represent its regulator and the uncertainty of its expression to represent other target genes. Specifically, an outlier sum statistic was used to measure the aggregated evidence for regulation events between target genes and their corresponding transcription factors. A Gibbs sampling method was then developed to estimate the marginal distribution of the outlier sum statistic, hence, to uncover underlying regulatory relationships. To evaluate the effectiveness of our proposed method, we compared its performance with that of an existing sampling-based method using both simulation data and yeast cell cycle data. The experimental results show that our method consistently outperforms the competing method in different settings of signal-to-noise ratio and network topology, indicating its robustness for biological applications. Finally, we applied our method to breast cancer cell line data and demonstrated its ability to extract biologically meaningful regulatory modules related to estrogen signaling and action in breast cancer. The Gibbs sampler MATLAB package is freely available at http://www.cbil.ece.vt.edu/software.htm. xuan@vt.edu Supplementary data are available at Bioinformatics online.

  14. Statistical inference, the bootstrap, and neural-network modeling with application to foreign exchange rates.

    Science.gov (United States)

    White, H; Racine, J

    2001-01-01

    We propose tests for individual and joint irrelevance of network inputs. Such tests can be used to determine whether an input or group of inputs "belong" in a particular model, thus permitting valid statistical inference based on estimated feedforward neural-network models. The approaches employ well-known statistical resampling techniques. We conduct a small Monte Carlo experiment showing that our tests have reasonable level and power behavior, and we apply our methods to examine whether there are predictable regularities in foreign exchange rates. We find that exchange rates do appear to contain information that is exploitable for enhanced point prediction, but the nature of the predictive relations evolves through time.

  15. Artificial intelligence. Application of the Statistical Neural Networks computer program in nuclear medicine

    International Nuclear Information System (INIS)

    Stefaniak, B.; Cholewinski, W.; Tarkowska, A.

    2005-01-01

    Artificial Neural Networks (ANN) may be a tool alternative and complementary to typical statistical analysis. However, in spite of many computer application of various ANN algorithms ready for use, artificial intelligence is relatively rarely applied to data processing. In this paper practical aspects of scientific application of ANN in medicine using the Statistical Neural Networks Computer program, were presented. Several steps of data analysis with the above ANN software package were discussed shortly, from material selection and its dividing into groups to the types of obtained results. The typical problems connected with assessing scintigrams by ANN were also described. (author)

  16. Statistics

    International Nuclear Information System (INIS)

    2005-01-01

    For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees

  17. Statistics

    International Nuclear Information System (INIS)

    2001-01-01

    For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  18. Statistics

    International Nuclear Information System (INIS)

    2000-01-01

    For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  19. Statistics

    International Nuclear Information System (INIS)

    1999-01-01

    For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  20. Selection of hidden layer nodes in neural networks by statistical tests

    International Nuclear Information System (INIS)

    Ciftcioglu, Ozer

    1992-05-01

    A statistical methodology for selection of the number of hidden layer nodes in feedforward neural networks is described. The method considers the network as an empirical model for the experimental data set subject to pattern classification so that the selection process becomes a model estimation through parameter identification. The solution is performed for an overdetermined estimation problem for identification using nonlinear least squares minimization technique. The number of the hidden layer nodes is determined as result of hypothesis testing. Accordingly the redundant network structure with respect to the number of parameters is avoided and the classification error being kept to a minimum. (author). 11 refs.; 4 figs.; 1 tab

  1. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data.

    Science.gov (United States)

    Kim, Sung-Min; Choi, Yosoon

    2017-06-18

    To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs) in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z -score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF) analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES) data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z -scores: high content with a high z -score (HH), high content with a low z -score (HL), low content with a high z -score (LH), and low content with a low z -score (LL). The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1-4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required.

  2. Assessing Statistically Significant Heavy-Metal Concentrations in Abandoned Mine Areas via Hot Spot Analysis of Portable XRF Data

    Directory of Open Access Journals (Sweden)

    Sung-Min Kim

    2017-06-01

    Full Text Available To develop appropriate measures to prevent soil contamination in abandoned mining areas, an understanding of the spatial variation of the potentially toxic trace elements (PTEs in the soil is necessary. For the purpose of effective soil sampling, this study uses hot spot analysis, which calculates a z-score based on the Getis-Ord Gi* statistic to identify a statistically significant hot spot sample. To constitute a statistically significant hot spot, a feature with a high value should also be surrounded by other features with high values. Using relatively cost- and time-effective portable X-ray fluorescence (PXRF analysis, sufficient input data are acquired from the Busan abandoned mine and used for hot spot analysis. To calibrate the PXRF data, which have a relatively low accuracy, the PXRF analysis data are transformed using the inductively coupled plasma atomic emission spectrometry (ICP-AES data. The transformed PXRF data of the Busan abandoned mine are classified into four groups according to their normalized content and z-scores: high content with a high z-score (HH, high content with a low z-score (HL, low content with a high z-score (LH, and low content with a low z-score (LL. The HL and LH cases may be due to measurement errors. Additional or complementary surveys are required for the areas surrounding these suspect samples or for significant hot spot areas. The soil sampling is conducted according to a four-phase procedure in which the hot spot analysis and proposed group classification method are employed to support the development of a sampling plan for the following phase. Overall, 30, 50, 80, and 100 samples are investigated and analyzed in phases 1–4, respectively. The method implemented in this case study may be utilized in the field for the assessment of statistically significant soil contamination and the identification of areas for which an additional survey is required.

  3. Chains, Shops and Networks: Official Statistics and the Creation of Public Value

    Directory of Open Access Journals (Sweden)

    Asle Rolland

    2015-06-01

    Full Text Available The paper concerns offi cial statistics, particularly as produced by the NSIs. Their contribution to the society is considered well captured by the concept of public value. Official statistics create value for the democracy as foundation for evidence-based politics. Democracies and autocracies alike need statistics to govern the public. Unique for the democracy is the need of statistics to govern the governors, for which the independence of the NSI is crucial. Three ways of creating public value are the value chain, the value shop and the value network. The chain is appropriate for the production, the shop for the interpretation and the network for the dissemination of statistics. Automation reduces the need to rely on the value chain as core business model. Thereto automation increases the statistical output, which in turn increases the need of shop and network activities. Replacing the chain with the shop as core model will elevate the NSIs from commodity producers to a processing industry.

  4. Multi-scale structure and topological anomaly detection via a new network statistic: The onion decomposition.

    Science.gov (United States)

    Hébert-Dufresne, Laurent; Grochow, Joshua A; Allard, Antoine

    2016-08-18

    We introduce a network statistic that measures structural properties at the micro-, meso-, and macroscopic scales, while still being easy to compute and interpretable at a glance. Our statistic, the onion spectrum, is based on the onion decomposition, which refines the k-core decomposition, a standard network fingerprinting method. The onion spectrum is exactly as easy to compute as the k-cores: It is based on the stages at which each vertex gets removed from a graph in the standard algorithm for computing the k-cores. Yet, the onion spectrum reveals much more information about a network, and at multiple scales; for example, it can be used to quantify node heterogeneity, degree correlations, centrality, and tree- or lattice-likeness. Furthermore, unlike the k-core decomposition, the combined degree-onion spectrum immediately gives a clear local picture of the network around each node which allows the detection of interesting subgraphs whose topological structure differs from the global network organization. This local description can also be leveraged to easily generate samples from the ensemble of networks with a given joint degree-onion distribution. We demonstrate the utility of the onion spectrum for understanding both static and dynamic properties on several standard graph models and on many real-world networks.

  5. Statistical identification of stimulus-activated network nodes in multi-neuron voltage-sensitive dye optical recordings.

    Science.gov (United States)

    Fathiazar, Elham; Anemuller, Jorn; Kretzberg, Jutta

    2016-08-01

    Voltage-Sensitive Dye (VSD) imaging is an optical imaging method that allows measuring the graded voltage changes of multiple neurons simultaneously. In neuroscience, this method is used to reveal networks of neurons involved in certain tasks. However, the recorded relative dye fluorescence changes are usually low and signals are superimposed by noise and artifacts. Therefore, establishing a reliable method to identify which cells are activated by specific stimulus conditions is the first step to identify functional networks. In this paper, we present a statistical method to identify stimulus-activated network nodes as cells, whose activities during sensory network stimulation differ significantly from the un-stimulated control condition. This method is demonstrated based on voltage-sensitive dye recordings from up to 100 neurons in a ganglion of the medicinal leech responding to tactile skin stimulation. Without relying on any prior physiological knowledge, the network nodes identified by our statistical analysis were found to match well with published cell types involved in tactile stimulus processing and to be consistent across stimulus conditions and preparations.

  6. Statistics

    International Nuclear Information System (INIS)

    2003-01-01

    For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products

  7. Statistics

    International Nuclear Information System (INIS)

    2004-01-01

    For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees

  8. Statistics

    International Nuclear Information System (INIS)

    2000-01-01

    For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  9. Using Artificial Neural Networks in Educational Research: Some Comparisons with Linear Statistical Models.

    Science.gov (United States)

    Everson, Howard T.; And Others

    This paper explores the feasibility of neural computing methods such as artificial neural networks (ANNs) and abductory induction mechanisms (AIM) for use in educational measurement. ANNs and AIMS methods are contrasted with more traditional statistical techniques, such as multiple regression and discriminant function analyses, for making…

  10. Interference statistics and capacity analysis for uplink transmission in two-tier small cell networks: A geometric probability approach

    KAUST Repository

    Tabassum, Hina; Dawy, Zaher; Hossain, Ekram; Alouini, Mohamed-Slim

    2014-01-01

    This paper presents a novel framework to derive the statistics of the interference considering dedicated and shared spectrum access for uplink transmission in two-tier small cell networks such as the macrocell-femtocell networks. The framework

  11. ANALYSIS OF STATISTICAL DATA FROM NETWORK INFRASTRUCTURE MONITORING TO DETECT ABNORMAL BEHAVIOR OF SYSTEM LOCAL SEGMENTS

    Directory of Open Access Journals (Sweden)

    N. A. Bazhayev

    2017-01-01

    Full Text Available We propose a method of information security monitoring for a wireless network segments of low-power devices, "smart house", "Internet of Things". We have carried out the analysis of characteristics of systems based on wireless technologies, resulting from passive surveillance and active polling of devices that make up the network infrastructure. We have considered a number of external signs of unauthorized access to a wireless network by the potential information security malefactor. The model for analysis of information security conditions is based on the identity, quantity, frequency, and time characteristics. Due to the main features of devices providing network infrastructure, estimation of information security state is directed to the analysis of the system normal operation, rather than the search for signatures and anomalies during performance of various kinds of information attacks. An experiment is disclosed that provides obtaining statistical information on the remote wireless devices, where the accumulation of data for decision-making is done by comparing the statistical information service messages from end nodes in passive and active modes. We present experiment results of the information influence on a typical system. The proposed approach to the analysis of network infrastructure statistical data based on naive Bayesian classifier can be used to determine the state of information security.

  12. Network Diffusion-Based Prioritization of Autism Risk Genes Identifies Significantly Connected Gene Modules

    Directory of Open Access Journals (Sweden)

    Ettore Mosca

    2017-09-01

    Full Text Available Autism spectrum disorder (ASD is marked by a strong genetic heterogeneity, which is underlined by the low overlap between ASD risk gene lists proposed in different studies. In this context, molecular networks can be used to analyze the results of several genome-wide studies in order to underline those network regions harboring genetic variations associated with ASD, the so-called “disease modules.” In this work, we used a recent network diffusion-based approach to jointly analyze multiple ASD risk gene lists. We defined genome-scale prioritizations of human genes in relation to ASD genes from multiple studies, found significantly connected gene modules associated with ASD and predicted genes functionally related to ASD risk genes. Most of them play a role in synapsis and neuronal development and function; many are related to syndromes that can be in comorbidity with ASD and the remaining are involved in epigenetics, cell cycle, cell adhesion and cancer.

  13. A novel complete-case analysis to determine statistical significance between treatments in an intention-to-treat population of randomized clinical trials involving missing data.

    Science.gov (United States)

    Liu, Wei; Ding, Jinhui

    2018-04-01

    The application of the principle of the intention-to-treat (ITT) to the analysis of clinical trials is challenged in the presence of missing outcome data. The consequences of stopping an assigned treatment in a withdrawn subject are unknown. It is difficult to make a single assumption about missing mechanisms for all clinical trials because there are complicated reactions in the human body to drugs due to the presence of complex biological networks, leading to data missing randomly or non-randomly. Currently there is no statistical method that can tell whether a difference between two treatments in the ITT population of a randomized clinical trial with missing data is significant at a pre-specified level. Making no assumptions about the missing mechanisms, we propose a generalized complete-case (GCC) analysis based on the data of completers. An evaluation of the impact of missing data on the ITT analysis reveals that a statistically significant GCC result implies a significant treatment effect in the ITT population at a pre-specified significance level unless, relative to the comparator, the test drug is poisonous to the non-completers as documented in their medical records. Applications of the GCC analysis are illustrated using literature data, and its properties and limits are discussed.

  14. Intelligent system for statistically significant expertise knowledge on the basis of the model of self-organizing nonequilibrium dissipative system

    Directory of Open Access Journals (Sweden)

    E. A. Tatokchin

    2017-01-01

    Full Text Available Development of the modern educational technologies caused by broad introduction of comput-er testing and development of distant forms of education does necessary revision of methods of an examination of pupils. In work it was shown, need transition to mathematical criteria, exami-nations of knowledge which are deprived of subjectivity. In article the review of the problems arising at realization of this task and are offered approaches for its decision. The greatest atten-tion is paid to discussion of a problem of objective transformation of rated estimates of the ex-pert on to the scale estimates of the student. In general, the discussion this question is was con-cluded that the solution to this problem lies in the creation of specialized intellectual systems. The basis for constructing intelligent system laid the mathematical model of self-organizing nonequilibrium dissipative system, which is a group of students. This article assumes that the dissipative system is provided by the constant influx of new test items of the expert and non-equilibrium – individual psychological characteristics of students in the group. As a result, the system must self-organize themselves into stable patterns. This patern will allow for, relying on large amounts of data, get a statistically significant assessment of student. To justify the pro-posed approach in the work presents the data of the statistical analysis of the results of testing a large sample of students (> 90. Conclusions from this statistical analysis allowed to develop intelligent system statistically significant examination of student performance. It is based on data clustering algorithm (k-mean for the three key parameters. It is shown that this approach allows you to create of the dynamics and objective expertise evaluation.

  15. Statistical inference approach to structural reconstruction of complex networks from binary time series

    Science.gov (United States)

    Ma, Chuang; Chen, Han-Shuang; Lai, Ying-Cheng; Zhang, Hai-Feng

    2018-02-01

    Complex networks hosting binary-state dynamics arise in a variety of contexts. In spite of previous works, to fully reconstruct the network structure from observed binary data remains challenging. We articulate a statistical inference based approach to this problem. In particular, exploiting the expectation-maximization (EM) algorithm, we develop a method to ascertain the neighbors of any node in the network based solely on binary data, thereby recovering the full topology of the network. A key ingredient of our method is the maximum-likelihood estimation of the probabilities associated with actual or nonexistent links, and we show that the EM algorithm can distinguish the two kinds of probability values without any ambiguity, insofar as the length of the available binary time series is reasonably long. Our method does not require any a priori knowledge of the detailed dynamical processes, is parameter-free, and is capable of accurate reconstruction even in the presence of noise. We demonstrate the method using combinations of distinct types of binary dynamical processes and network topologies, and provide a physical understanding of the underlying reconstruction mechanism. Our statistical inference based reconstruction method contributes an additional piece to the rapidly expanding "toolbox" of data based reverse engineering of complex networked systems.

  16. Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks

    Directory of Open Access Journals (Sweden)

    Luciano Pivoto Specht

    2007-03-01

    Full Text Available It is of a great importance to know binders' viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation.

  17. Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry.

    Science.gov (United States)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y; Drake, Steven K; Gucek, Marjan; Sacks, David B; Yu, Yi-Kuo

    2018-06-05

    Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.

  18. Network statistics of genetically-driven gene co-expression modules in mouse crosses

    Directory of Open Access Journals (Sweden)

    Marie-Pier eScott-Boyer

    2013-12-01

    Full Text Available In biology, networks are used in different contexts as ways to represent relationships between entities, such as for instance interactions between genes, proteins or metabolites. Despite progress in the analysis of such networks and their potential to better understand the collective impact of genes on complex traits, one remaining challenge is to establish the biologic validity of gene co-expression networks and to determine what governs their organization. We used WGCNA to construct and analyze seven gene expression datasets from several tissues of mouse recombinant inbred strains (RIS. For six out of the 7 networks, we found that linkage to module QTLs (mQTLs could be established for 29.3% of gene co-expression modules detected in the several mouse RIS. For about 74.6% of such genetically-linked modules, the mQTL was on the same chromosome as the one contributing most genes to the module, with genes originating from that chromosome showing higher connectivity than other genes in the modules. Such modules (that we considered as genetically-driven had network statistic properties (density, centralization and heterogeneity that set them apart from other modules in the network. Altogether, a sizeable portion of gene co-expression modules detected in mouse RIS panels had genetic determinants as their main organizing principle. In addition to providing a biologic interpretation validation for these modules, these genetic determinants imparted on them particular properties that set them apart from other modules in the network, to the point that they can be predicted to a large extent on the basis of their network statistics.

  19. Determination of daily solar ultraviolet radiation using statistical models and artificial neural networks

    Directory of Open Access Journals (Sweden)

    F. J. Barbero

    2006-09-01

    Full Text Available In this study, two different methodologies are used to develop two models for estimating daily solar UV radiation. The first is based on traditional statistical techniques whereas the second is based on artificial neural network methods. Both models use daily solar global broadband radiation as the only measured input. The statistical model is derived from a relationship between the daily UV and the global clearness indices but modulated by the relative optical air mass. The inputs to the neural network model were determined from a large number of radiometric and atmospheric parameters using the automatic relevance determination method, although only the daily solar global irradiation, daily global clearness index and relative optical air mass were shown to be the optimal input variables. Both statistical and neural network models were developed using data measured at Almería (Spain, a semiarid and coastal climate, and tested against data from Table Mountain (Golden, CO, USA, a mountainous and dry environment. Results show that the statistical model performs adequately in both sites for all weather conditions, especially when only snow-free days at Golden were considered (RMSE=4.6%, MBE= –0.1%. The neural network based model provides the best overall estimates in the site where it has been trained, but presents an inadequate performance for the Golden site when snow-covered days are included (RMSE=6.5%, MBE= –3.0%. This result confirms that the neural network model does not adequately respond on those ranges of the input parameters which were not used for its development.

  20. Statistical downscaling of precipitation using long short-term memory recurrent neural networks

    Science.gov (United States)

    Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra

    2017-11-01

    Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.

  1. Social networking strategies that aim to reduce obesity have achieved significant although modest results.

    Science.gov (United States)

    Ashrafian, Hutan; Toma, Tania; Harling, Leanne; Kerr, Karen; Athanasiou, Thanos; Darzi, Ara

    2014-09-01

    The global epidemic of obesity continues to escalate. Obesity accounts for an increasing proportion of the international socioeconomic burden of noncommunicable disease. Online social networking services provide an effective medium through which information may be exchanged between obese and overweight patients and their health care providers, potentially contributing to superior weight-loss outcomes. We performed a systematic review and meta-analysis to assess the role of these services in modifying body mass index (BMI). Our analysis of twelve studies found that interventions using social networking services produced a modest but significant 0.64 percent reduction in BMI from baseline for the 941 people who participated in the studies' interventions. We recommend that social networking services that target obesity should be the subject of further clinical trials. Additionally, we recommend that policy makers adopt reforms that promote the use of anti-obesity social networking services, facilitate multistakeholder partnerships in such services, and create a supportive environment to confront obesity and its associated noncommunicable diseases. Project HOPE—The People-to-People Health Foundation, Inc.

  2. Autonomous Modeling, Statistical Complexity and Semi-annealed Treatment of Boolean Networks

    Science.gov (United States)

    Gong, Xinwei

    This dissertation presents three studies on Boolean networks. Boolean networks are a class of mathematical systems consisting of interacting elements with binary state variables. Each element is a node with a Boolean logic gate, and the presence of interactions between any two nodes is represented by directed links. Boolean networks that implement the logic structures of real systems are studied as coarse-grained models of the real systems. Large random Boolean networks are studied with mean field approximations and used to provide a baseline of possible behaviors of large real systems. This dissertation presents one study of the former type, concerning the stable oscillation of a yeast cell-cycle oscillator, and two studies of the latter type, respectively concerning the statistical complexity of large random Boolean networks and an extension of traditional mean field techniques that accounts for the presence of short loops. In the cell-cycle oscillator study, a novel autonomous update scheme is introduced to study the stability of oscillations in small networks. A motif that corrects pulse-growing perturbations and a motif that grows pulses are identified. A combination of the two motifs is capable of sustaining stable oscillations. Examining a Boolean model of the yeast cell-cycle oscillator using an autonomous update scheme yields evidence that it is endowed with such a combination. Random Boolean networks are classified as ordered, critical or disordered based on their response to small perturbations. In the second study, random Boolean networks are taken as prototypical cases for the evaluation of two measures of complexity based on a criterion for optimal statistical prediction. One measure, defined for homogeneous systems, does not distinguish between the static spatial inhomogeneity in the ordered phase and the dynamical inhomogeneity in the disordered phase. A modification in which complexities of individual nodes are calculated yields vanishing

  3. Multiple-point statistical prediction on fracture networks at Yucca Mountain

    International Nuclear Information System (INIS)

    Liu, X.Y; Zhang, C.Y.; Liu, Q.S.; Birkholzer, J.T.

    2009-01-01

    In many underground nuclear waste repository systems, such as at Yucca Mountain, water flow rate and amount of water seepage into the waste emplacement drifts are mainly determined by hydrological properties of fracture network in the surrounding rock mass. Natural fracture network system is not easy to describe, especially with respect to its connectivity which is critically important for simulating the water flow field. In this paper, we introduced a new method for fracture network description and prediction, termed multi-point-statistics (MPS). The process of the MPS method is to record multiple-point statistics concerning the connectivity patterns of a fracture network from a known fracture map, and to reproduce multiple-scale training fracture patterns in a stochastic manner, implicitly and directly. It is applied to fracture data to study flow field behavior at the Yucca Mountain waste repository system. First, the MPS method is used to create a fracture network with an original fracture training image from Yucca Mountain dataset. After we adopt a harmonic and arithmetic average method to upscale the permeability to a coarse grid, THM simulation is carried out to study near-field water flow in the surrounding waste emplacement drifts. Our study shows that connectivity or patterns of fracture networks can be grasped and reconstructed by MPS methods. In theory, it will lead to better prediction of fracture system characteristics and flow behavior. Meanwhile, we can obtain variance from flow field, which gives us a way to quantify model uncertainty even in complicated coupled THM simulations. It indicates that MPS can potentially characterize and reconstruct natural fracture networks in a fractured rock mass with advantages of quantifying connectivity of fracture system and its simulation uncertainty simultaneously.

  4. An Efficient and Reliable Statistical Method for Estimating Functional Connectivity in Large Scale Brain Networks Using Partial Correlation.

    Science.gov (United States)

    Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying

    2016-01-01

    Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant

  5. The distribution of P-values in medical research articles suggested selective reporting associated with statistical significance.

    Science.gov (United States)

    Perneger, Thomas V; Combescure, Christophe

    2017-07-01

    Published P-values provide a window into the global enterprise of medical research. The aim of this study was to use the distribution of published P-values to estimate the relative frequencies of null and alternative hypotheses and to seek irregularities suggestive of publication bias. This cross-sectional study included P-values published in 120 medical research articles in 2016 (30 each from the BMJ, JAMA, Lancet, and New England Journal of Medicine). The observed distribution of P-values was compared with expected distributions under the null hypothesis (i.e., uniform between 0 and 1) and the alternative hypothesis (strictly decreasing from 0 to 1). P-values were categorized according to conventional levels of statistical significance and in one-percent intervals. Among 4,158 recorded P-values, 26.1% were highly significant (P values values equal to 1, and (3) about twice as many P-values less than 0.05 compared with those more than 0.05. The latter finding was seen in both randomized trials and observational studies, and in most types of analyses, excepting heterogeneity tests and interaction tests. Under plausible assumptions, we estimate that about half of the tested hypotheses were null and the other half were alternative. This analysis suggests that statistical tests published in medical journals are not a random sample of null and alternative hypotheses but that selective reporting is prevalent. In particular, significant results are about twice as likely to be reported as nonsignificant results. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Statistically significant dependence of the Xaa-Pro peptide bond conformation on secondary structure and amino acid sequence

    Directory of Open Access Journals (Sweden)

    Leitner Dietmar

    2005-04-01

    Full Text Available Abstract Background A reliable prediction of the Xaa-Pro peptide bond conformation would be a useful tool for many protein structure calculation methods. We have analyzed the Protein Data Bank and show that the combined use of sequential and structural information has a predictive value for the assessment of the cis versus trans peptide bond conformation of Xaa-Pro within proteins. For the analysis of the data sets different statistical methods such as the calculation of the Chou-Fasman parameters and occurrence matrices were used. Furthermore we analyzed the relationship between the relative solvent accessibility and the relative occurrence of prolines in the cis and in the trans conformation. Results One of the main results of the statistical investigations is the ranking of the secondary structure and sequence information with respect to the prediction of the Xaa-Pro peptide bond conformation. We observed a significant impact of secondary structure information on the occurrence of the Xaa-Pro peptide bond conformation, while the sequence information of amino acids neighboring proline is of little predictive value for the conformation of this bond. Conclusion In this work, we present an extensive analysis of the occurrence of the cis and trans proline conformation in proteins. Based on the data set, we derived patterns and rules for a possible prediction of the proline conformation. Upon adoption of the Chou-Fasman parameters, we are able to derive statistically relevant correlations between the secondary structure of amino acid fragments and the Xaa-Pro peptide bond conformation.

  7. A statistical framework for evaluating neural networks to predict recurrent events in breast cancer

    Science.gov (United States)

    Gorunescu, Florin; Gorunescu, Marina; El-Darzi, Elia; Gorunescu, Smaranda

    2010-07-01

    Breast cancer is the second leading cause of cancer deaths in women today. Sometimes, breast cancer can return after primary treatment. A medical diagnosis of recurrent cancer is often a more challenging task than the initial one. In this paper, we investigate the potential contribution of neural networks (NNs) to support health professionals in diagnosing such events. The NN algorithms are tested and applied to two different datasets. An extensive statistical analysis has been performed to verify our experiments. The results show that a simple network structure for both the multi-layer perceptron and radial basis function can produce equally good results, not all attributes are needed to train these algorithms and, finally, the classification performances of all algorithms are statistically robust. Moreover, we have shown that the best performing algorithm will strongly depend on the features of the datasets, and hence, there is not necessarily a single best classifier.

  8. Cumulative Significance of Hyporheic Exchange and Biogeochemical Processing in River Networks

    Science.gov (United States)

    Harvey, J. W.; Gomez-Velez, J. D.

    2014-12-01

    Biogeochemical reactions in rivers that decrease excessive loads of nutrients, metals, organic compounds, etc. are enhanced by hydrologic interactions with microbially and geochemically active sediments of the hyporheic zone. The significance of reactions in individual hyporheic flow paths has been shown to be controlled by the contact time between river water and sediment and the intrinsic reaction rate in the sediment. However, little is known about how the cumulative effects of hyporheic processing in large river basins. We used the river network model NEXSS (Gomez-Velez and Harvey, submitted) to simulate hyporheic exchange through synthetic river networks based on the best available models of network topology, hydraulic geometry and scaling of geomorphic features, grain size, hydraulic conductivity, and intrinsic reaction rates of nutrients and metals in river sediment. The dimensionless reaction significance factor, RSF (Harvey et al., 2013) was used to quantify the cumulative removal fraction of a reactive solute by hyporheic processing. SF scales reaction progress in a single pass through the hyporheic zone with the proportion of stream discharge passing through the hyporheic zone for a specified distance. Reaction progress is optimal where the intrinsic reaction timescale in sediment matches the residence time of hyporheic flow and is less efficient in longer residence time hyporheic flow as a result of the decreasing proportion of river flow that is processed by longer residence time hyporheic flow paths. In contrast, higher fluxes through short residence time hyporheic flow paths may be inefficient because of the repeated surface-subsurface exchanges required to complete the reaction. Using NEXSS we found that reaction efficiency may be high in both small streams and large rivers, although for different reasons. In small streams reaction progress generally is dominated by faster pathways of vertical exchange beneath submerged bedforms. Slower exchange

  9. Statistical-QoS Guaranteed Energy Efficiency Optimization for Energy Harvesting Wireless Sensor Networks.

    Science.gov (United States)

    Gao, Ya; Cheng, Wenchi; Zhang, Hailin

    2017-08-23

    Energy harvesting, which offers a never-ending energy supply, has emerged as a prominent technology to prolong the lifetime and reduce costs for the battery-powered wireless sensor networks. However, how to improve the energy efficiency while guaranteeing the quality of service (QoS) for energy harvesting based wireless sensor networks is still an open problem. In this paper, we develop statistical delay-bounded QoS-driven power control policies to maximize the effective energy efficiency (EEE), which is defined as the spectrum efficiency under given specified QoS constraints per unit harvested energy, for energy harvesting based wireless sensor networks. For the battery-infinite wireless sensor networks, our developed QoS-driven power control policy converges to the Energy harvesting Water Filling (E-WF) scheme and the Energy harvesting Channel Inversion (E-CI) scheme under the very loose and stringent QoS constraints, respectively. For the battery-finite wireless sensor networks, our developed QoS-driven power control policy becomes the Truncated energy harvesting Water Filling (T-WF) scheme and the Truncated energy harvesting Channel Inversion (T-CI) scheme under the very loose and stringent QoS constraints, respectively. Furthermore, we evaluate the outage probabilities to theoretically analyze the performance of our developed QoS-driven power control policies. The obtained numerical results validate our analysis and show that our developed optimal power control policies can optimize the EEE over energy harvesting based wireless sensor networks.

  10. Poisson statistics of PageRank probabilities of Twitter and Wikipedia networks

    Science.gov (United States)

    Frahm, Klaus M.; Shepelyansky, Dima L.

    2014-04-01

    We use the methods of quantum chaos and Random Matrix Theory for analysis of statistical fluctuations of PageRank probabilities in directed networks. In this approach the effective energy levels are given by a logarithm of PageRank probability at a given node. After the standard energy level unfolding procedure we establish that the nearest spacing distribution of PageRank probabilities is described by the Poisson law typical for integrable quantum systems. Our studies are done for the Twitter network and three networks of Wikipedia editions in English, French and German. We argue that due to absence of level repulsion the PageRank order of nearby nodes can be easily interchanged. The obtained Poisson law implies that the nearby PageRank probabilities fluctuate as random independent variables.

  11. Statistics of the uplink co-tier interference in closed access heterogeneous networks

    KAUST Repository

    Tabassum, Hina

    2013-09-01

    In this paper, we derive a statistical model of the co-tier interference in closed access two tier heterogeneous wireless cellular networks with femtocell deployments. The derived model captures the impact of bounded path loss model, wall penetration loss, user distributions, random locations, and density of the femtocells. Firstly, we derive the analytical expressions for the probability density function (PDF) and moment generating function (MGF) of the co-tier interference considering a single femtocell interferer by exploiting the random disc line picking theory from geometric probability. We then derive the MGF of the cumulative interference from all femtocell interferers considering full spectral reuse in each femtocell. Orthogonal spectrum partitioning is assumed between the macrocell and femtocell networks to avoid any cross-tier interference. Finally, the accuracy of the derived expressions is validated through Monte-Carlo simulations and the expressions are shown to be useful in quantifying important network performance metrics such as ergodic capacity. © 2013 IEEE.

  12. Long-Term Evolution of Email Networks: Statistical Regularities, Predictability and Stability of Social Behaviors.

    Science.gov (United States)

    Godoy-Lorite, Antonia; Guimerà, Roger; Sales-Pardo, Marta

    2016-01-01

    In social networks, individuals constantly drop ties and replace them by new ones in a highly unpredictable fashion. This highly dynamical nature of social ties has important implications for processes such as the spread of information or of epidemics. Several studies have demonstrated the influence of a number of factors on the intricate microscopic process of tie replacement, but the macroscopic long-term effects of such changes remain largely unexplored. Here we investigate whether, despite the inherent randomness at the microscopic level, there are macroscopic statistical regularities in the long-term evolution of social networks. In particular, we analyze the email network of a large organization with over 1,000 individuals throughout four consecutive years. We find that, although the evolution of individual ties is highly unpredictable, the macro-evolution of social communication networks follows well-defined statistical patterns, characterized by exponentially decaying log-variations of the weight of social ties and of individuals' social strength. At the same time, we find that individuals have social signatures and communication strategies that are remarkably stable over the scale of several years.

  13. Multi-agent Negotiation Mechanisms for Statistical Target Classification in Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sheng Wang

    2007-10-01

    Full Text Available The recent availability of low cost and miniaturized hardware has allowedwireless sensor networks (WSNs to retrieve audio and video data in real worldapplications, which has fostered the development of wireless multimedia sensor networks(WMSNs. Resource constraints and challenging multimedia data volume makedevelopment of efficient algorithms to perform in-network processing of multimediacontents imperative. This paper proposes solving problems in the domain of WMSNs fromthe perspective of multi-agent systems. The multi-agent framework enables flexible networkconfiguration and efficient collaborative in-network processing. The focus is placed ontarget classification in WMSNs where audio information is retrieved by microphones. Todeal with the uncertainties related to audio information retrieval, the statistical approachesof power spectral density estimates, principal component analysis and Gaussian processclassification are employed. A multi-agent negotiation mechanism is specially developed toefficiently utilize limited resources and simultaneously enhance classification accuracy andreliability. The negotiation is composed of two phases, where an auction based approach isfirst exploited to allocate the classification task among the agents and then individual agentdecisions are combined by the committee decision mechanism. Simulation experiments withreal world data are conducted and the results show that the proposed statistical approachesand negotiation mechanism not only reduce memory and computation requi

  14. A social network's changing statistical properties and the quality of human innovation

    Energy Technology Data Exchange (ETDEWEB)

    Uzzi, Brian [Kellogg School of Management, Northwestern University, Evanston, IL (United States)], E-mail: uzzi@northwestern.edu

    2008-06-06

    We examined the entire network of creative artists that made Broadway musicals, in the post-War period, a collaboration network of international acclaim and influence, with an eye to investigating how the network's structural features condition the relationship between individual artistic talent and the success of their musicals. Our findings show that some of the evolving topographical qualities of degree distributions, path lengths and assortativity are relatively stable with time even as collaboration patterns shift, which suggests their changes are only minimally associated with the ebb and flux of the success of new productions. In contrast, the clustering coefficient changed substantially over time and we found that it had a nonlinear association with the production of financially and artistically successful shows. When the clustering coefficient ratio is low or high, the financial and artistic success of the industry is low, while an intermediate level of clustering is associated with successful shows. We supported these findings with sociological theory on the relationship between social structure and collaboration and with tests of statistical inference. Our discussion focuses on connecting the statistical properties of social networks to their performance and the performance of the actors embedded within them.

  15. A social network's changing statistical properties and the quality of human innovation

    International Nuclear Information System (INIS)

    Uzzi, Brian

    2008-01-01

    We examined the entire network of creative artists that made Broadway musicals, in the post-War period, a collaboration network of international acclaim and influence, with an eye to investigating how the network's structural features condition the relationship between individual artistic talent and the success of their musicals. Our findings show that some of the evolving topographical qualities of degree distributions, path lengths and assortativity are relatively stable with time even as collaboration patterns shift, which suggests their changes are only minimally associated with the ebb and flux of the success of new productions. In contrast, the clustering coefficient changed substantially over time and we found that it had a nonlinear association with the production of financially and artistically successful shows. When the clustering coefficient ratio is low or high, the financial and artistic success of the industry is low, while an intermediate level of clustering is associated with successful shows. We supported these findings with sociological theory on the relationship between social structure and collaboration and with tests of statistical inference. Our discussion focuses on connecting the statistical properties of social networks to their performance and the performance of the actors embedded within them

  16. A social network's changing statistical properties and the quality of human innovation

    Science.gov (United States)

    Uzzi, Brian

    2008-06-01

    We examined the entire network of creative artists that made Broadway musicals, in the post-War period, a collaboration network of international acclaim and influence, with an eye to investigating how the network's structural features condition the relationship between individual artistic talent and the success of their musicals. Our findings show that some of the evolving topographical qualities of degree distributions, path lengths and assortativity are relatively stable with time even as collaboration patterns shift, which suggests their changes are only minimally associated with the ebb and flux of the success of new productions. In contrast, the clustering coefficient changed substantially over time and we found that it had a nonlinear association with the production of financially and artistically successful shows. When the clustering coefficient ratio is low or high, the financial and artistic success of the industry is low, while an intermediate level of clustering is associated with successful shows. We supported these findings with sociological theory on the relationship between social structure and collaboration and with tests of statistical inference. Our discussion focuses on connecting the statistical properties of social networks to their performance and the performance of the actors embedded within them.

  17. Assessing artificial neural networks and statistical methods for infilling missing soil moisture records

    Science.gov (United States)

    Dumedah, Gift; Walker, Jeffrey P.; Chik, Li

    2014-07-01

    Soil moisture information is critically important for water management operations including flood forecasting, drought monitoring, and groundwater recharge estimation. While an accurate and continuous record of soil moisture is required for these applications, the available soil moisture data, in practice, is typically fraught with missing values. There are a wide range of methods available to infilling hydrologic variables, but a thorough inter-comparison between statistical methods and artificial neural networks has not been made. This study examines 5 statistical methods including monthly averages, weighted Pearson correlation coefficient, a method based on temporal stability of soil moisture, and a weighted merging of the three methods, together with a method based on the concept of rough sets. Additionally, 9 artificial neural networks are examined, broadly categorized into feedforward, dynamic, and radial basis networks. These 14 infilling methods were used to estimate missing soil moisture records and subsequently validated against known values for 13 soil moisture monitoring stations for three different soil layer depths in the Yanco region in southeast Australia. The evaluation results show that the top three highest performing methods are the nonlinear autoregressive neural network, rough sets method, and monthly replacement. A high estimation accuracy (root mean square error (RMSE) of about 0.03 m/m) was found in the nonlinear autoregressive network, due to its regression based dynamic network which allows feedback connections through discrete-time estimation. An equally high accuracy (0.05 m/m RMSE) in the rough sets procedure illustrates the important role of temporal persistence of soil moisture, with the capability to account for different soil moisture conditions.

  18. Testing earthquake prediction algorithms: Statistically significant advance prediction of the largest earthquakes in the Circum-Pacific, 1992-1997

    Science.gov (United States)

    Kossobokov, V.G.; Romashkova, L.L.; Keilis-Borok, V. I.; Healy, J.H.

    1999-01-01

    Algorithms M8 and MSc (i.e., the Mendocino Scenario) were used in a real-time intermediate-term research prediction of the strongest earthquakes in the Circum-Pacific seismic belt. Predictions are made by M8 first. Then, the areas of alarm are reduced by MSc at the cost that some earthquakes are missed in the second approximation of prediction. In 1992-1997, five earthquakes of magnitude 8 and above occurred in the test area: all of them were predicted by M8 and MSc identified correctly the locations of four of them. The space-time volume of the alarms is 36% and 18%, correspondingly, when estimated with a normalized product measure of empirical distribution of epicenters and uniform time. The statistical significance of the achieved results is beyond 99% both for M8 and MSc. For magnitude 7.5 + , 10 out of 19 earthquakes were predicted by M8 in 40% and five were predicted by M8-MSc in 13% of the total volume considered. This implies a significance level of 81% for M8 and 92% for M8-MSc. The lower significance levels might result from a global change in seismic regime in 1993-1996, when the rate of the largest events has doubled and all of them become exclusively normal or reversed faults. The predictions are fully reproducible; the algorithms M8 and MSc in complete formal definitions were published before we started our experiment [Keilis-Borok, V.I., Kossobokov, V.G., 1990. Premonitory activation of seismic flow: Algorithm M8, Phys. Earth and Planet. Inter. 61, 73-83; Kossobokov, V.G., Keilis-Borok, V.I., Smith, S.W., 1990. Localization of intermediate-term earthquake prediction, J. Geophys. Res., 95, 19763-19772; Healy, J.H., Kossobokov, V.G., Dewey, J.W., 1992. A test to evaluate the earthquake prediction algorithm, M8. U.S. Geol. Surv. OFR 92-401]. M8 is available from the IASPEI Software Library [Healy, J.H., Keilis-Borok, V.I., Lee, W.H.K. (Eds.), 1997. Algorithms for Earthquake Statistics and Prediction, Vol. 6. IASPEI Software Library]. ?? 1999 Elsevier

  19. PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks.

    Directory of Open Access Journals (Sweden)

    Thong Pham

    Full Text Available Preferential attachment is a stochastic process that has been proposed to explain certain topological features characteristic of complex networks from diverse domains. The systematic investigation of preferential attachment is an important area of research in network science, not only for the theoretical matter of verifying whether this hypothesized process is operative in real-world networks, but also for the practical insights that follow from knowledge of its functional form. Here we describe a maximum likelihood based estimation method for the measurement of preferential attachment in temporal complex networks. We call the method PAFit, and implement it in an R package of the same name. PAFit constitutes an advance over previous methods primarily because we based it on a nonparametric statistical framework that enables attachment kernel estimation free of any assumptions about its functional form. We show this results in PAFit outperforming the popular methods of Jeong and Newman in Monte Carlo simulations. What is more, we found that the application of PAFit to a publically available Flickr social network dataset yielded clear evidence for a deviation of the attachment kernel from the popularly assumed log-linear form. Independent of our main work, we provide a correction to a consequential error in Newman's original method which had evidently gone unnoticed since its publication over a decade ago.

  20. Statistical Downscaling of Gusts During Extreme European Winter Storms Using Radial-Basis-Function Networks

    Science.gov (United States)

    Voigt, M.; Lorenz, P.; Kruschke, T.; Osinski, R.; Ulbrich, U.; Leckebusch, G. C.

    2012-04-01

    Winterstorms and related gusts can cause extensive socio-economic damages. Knowledge about the occurrence and the small scale structure of such events may help to make regional estimations of storm losses. For a high spatial and temporal representation, the use of dynamical downscaling methods (RCM) is a cost-intensive and time-consuming option and therefore only applicable for a limited number of events. The current study explores a methodology to provide a statistical downscaling, which offers small scale structured gust fields from an extended large scale structured eventset. Radial-basis-function (RBF) networks in combination with bidirectional Kohonen (BDK) maps are used to generate the gustfields on a spatial resolution of 7 km from the 6-hourly mean sea level pressure field from ECMWF reanalysis data. BDK maps are a kind of neural network which handles supervised classification problems. In this study they are used to provide prototypes for the RBF network and give a first order approximation for the output data. A further interpolation is done by the RBF network. For the training process the 50 most extreme storm events over the North Atlantic area from 1957 to 2011 are used, which have been selected from ECMWF reanalysis datasets ERA40 and ERA-Interim by an objective wind based tracking algorithm. These events were downscaled dynamically by application of the DWD model chain GME → COSMO-EU. Different model parameters and their influence on the quality of the generated high-resolution gustfields are studied. It is shown that the statistical RBF network approach delivers reasonable results in modeling the regional gust fields for untrained events.

  1. Macro-indicators of citation impacts of six prolific countries: InCites data and the statistical significance of trends.

    Directory of Open Access Journals (Sweden)

    Lutz Bornmann

    Full Text Available Using the InCites tool of Thomson Reuters, this study compares normalized citation impact values calculated for China, Japan, France, Germany, United States, and the UK throughout the time period from 1981 to 2010. InCites offers a unique opportunity to study the normalized citation impacts of countries using (i a long publication window (1981 to 2010, (ii a differentiation in (broad or more narrow subject areas, and (iii allowing for the use of statistical procedures in order to obtain an insightful investigation of national citation trends across the years. Using four broad categories, our results show significantly increasing trends in citation impact values for France, the UK, and especially Germany across the last thirty years in all areas. The citation impact of papers from China is still at a relatively low level (mostly below the world average, but the country follows an increasing trend line. The USA exhibits a stable pattern of high citation impact values across the years. With small impact differences between the publication years, the US trend is increasing in engineering and technology but decreasing in medical and health sciences as well as in agricultural sciences. Similar to the USA, Japan follows increasing as well as decreasing trends in different subject areas, but the variability across the years is small. In most of the years, papers from Japan perform below or approximately at the world average in each subject area.

  2. RADSS: an integration of GIS, spatial statistics, and network service for regional data mining

    Science.gov (United States)

    Hu, Haitang; Bao, Shuming; Lin, Hui; Zhu, Qing

    2005-10-01

    Regional data mining, which aims at the discovery of knowledge about spatial patterns, clusters or association between regions, has widely applications nowadays in social science, such as sociology, economics, epidemiology, crime, and so on. Many applications in the regional or other social sciences are more concerned with the spatial relationship, rather than the precise geographical location. Based on the spatial continuity rule derived from Tobler's first law of geography: observations at two sites tend to be more similar to each other if the sites are close together than if far apart, spatial statistics, as an important means for spatial data mining, allow the users to extract the interesting and useful information like spatial pattern, spatial structure, spatial association, spatial outlier and spatial interaction, from the vast amount of spatial data or non-spatial data. Therefore, by integrating with the spatial statistical methods, the geographical information systems will become more powerful in gaining further insights into the nature of spatial structure of regional system, and help the researchers to be more careful when selecting appropriate models. However, the lack of such tools holds back the application of spatial data analysis techniques and development of new methods and models (e.g., spatio-temporal models). Herein, we make an attempt to develop such an integrated software and apply it into the complex system analysis for the Poyang Lake Basin. This paper presents a framework for integrating GIS, spatial statistics and network service in regional data mining, as well as their implementation. After discussing the spatial statistics methods involved in regional complex system analysis, we introduce RADSS (Regional Analysis and Decision Support System), our new regional data mining tool, by integrating GIS, spatial statistics and network service. RADSS includes the functions of spatial data visualization, exploratory spatial data analysis, and

  3. Development of free statistical software enabling researchers to calculate confidence levels, clinical significance curves and risk-benefit contours

    International Nuclear Information System (INIS)

    Shakespeare, T.P.; Mukherjee, R.K.; Gebski, V.J.

    2003-01-01

    Confidence levels, clinical significance curves, and risk-benefit contours are tools improving analysis of clinical studies and minimizing misinterpretation of published results, however no software has been available for their calculation. The objective was to develop software to help clinicians utilize these tools. Excel 2000 spreadsheets were designed using only built-in functions, without macros. The workbook was protected and encrypted so that users can modify only input cells. The workbook has 4 spreadsheets for use in studies comparing two patient groups. Sheet 1 comprises instructions and graphic examples for use. Sheet 2 allows the user to input the main study results (e.g. survival rates) into a 2-by-2 table. Confidence intervals (95%), p-value and the confidence level for Treatment A being better than Treatment B are automatically generated. An additional input cell allows the user to determine the confidence associated with a specified level of benefit. For example if the user wishes to know the confidence that Treatment A is at least 10% better than B, 10% is entered. Sheet 2 automatically displays clinical significance curves, graphically illustrating confidence levels for all possible benefits of one treatment over the other. Sheet 3 allows input of toxicity data, and calculates the confidence that one treatment is more toxic than the other. It also determines the confidence that the relative toxicity of the most effective arm does not exceed user-defined tolerability. Sheet 4 automatically calculates risk-benefit contours, displaying the confidence associated with a specified scenario of minimum benefit and maximum risk of one treatment arm over the other. The spreadsheet is freely downloadable at www.ontumor.com/professional/statistics.htm A simple, self-explanatory, freely available spreadsheet calculator was developed using Excel 2000. The incorporated decision-making tools can be used for data analysis and improve the reporting of results of any

  4. Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux.

    Science.gov (United States)

    Lee, Jonghwan; Jiang, James Y; Wu, Weicheng; Lesage, Frederic; Boas, David A

    2014-04-01

    We present a novel optical coherence tomography (OCT)-based technique for rapid volumetric imaging of red blood cell (RBC) flux in capillary networks. Previously we reported that OCT can capture individual RBC passage within a capillary, where the OCT intensity signal at a voxel fluctuates when an RBC passes the voxel. Based on this finding, we defined a metric of statistical intensity variation (SIV) and validated that the mean SIV is proportional to the RBC flux [RBC/s] through simulations and measurements. From rapidly scanned volume data, we used Hessian matrix analysis to vectorize a segment path of each capillary and estimate its flux from the mean of the SIVs gathered along the path. Repeating this process led to a 3D flux map of the capillary network. The present technique enabled us to trace the RBC flux changes over hundreds of capillaries with a temporal resolution of ~1 s during functional activation.

  5. Characterization and detection of thermoacoustic combustion oscillations based on statistical complexity and complex-network theory

    Science.gov (United States)

    Murayama, Shogo; Kinugawa, Hikaru; Tokuda, Isao T.; Gotoda, Hiroshi

    2018-02-01

    We present an experimental study on the characterization of dynamic behavior of flow velocity field during thermoacoustic combustion oscillations in a turbulent confined combustor from the viewpoints of statistical complexity and complex-network theory, involving detection of a precursor of thermoacoustic combustion oscillations. The multiscale complexity-entropy causality plane clearly shows the possible presence of two dynamics, noisy periodic oscillations and noisy chaos, in the shear layer regions (1) between the outer recirculation region in the dump plate and a recirculation flow in the wake of the centerbody and (2) between the outer recirculation region in the dump plate and a vortex breakdown bubble away from the centerbody. The vertex strength in the turbulence network and the community structure of the vorticity field can identify the vortical interactions during thermoacoustic combustion oscillations. Sequential horizontal visibility graph motifs are useful for capturing a precursor of themoacoustic combustion oscillations.

  6. STATISTIC MODEL OF DYNAMIC DELAY AND DROPOUT ON CELLULAR DATA NETWORKED CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    MUHAMMAD A. MURTI

    2017-07-01

    Full Text Available Delay and dropout are important parameters influence overall control performance in Networked Control System (NCS. The goal of this research is to find a model of delay and dropout of data communication link in the NCS. Experiments have been done in this research to a water level control of boiler tank as part of the NCS based on internet communication network using High Speed Packet Access (HSPA cellular technology. By this experiments have been obtained closed-loop system response as well as data delay and dropout of data packets. This research contributes on modeling of the NCS which is combination of controlled plant and data communication link. Another contribution is statistical model of delay and dropout on the NCS.

  7. An Efficient Forward-Reverse EM Algorithm for Statistical Inference in Stochastic Reaction Networks

    KAUST Repository

    Bayer, Christian

    2016-01-06

    In this work [1], we present an extension of the forward-reverse algorithm by Bayer and Schoenmakers [2] to the context of stochastic reaction networks (SRNs). We then apply this bridge-generation technique to the statistical inference problem of approximating the reaction coefficients based on discretely observed data. To this end, we introduce an efficient two-phase algorithm in which the first phase is deterministic and it is intended to provide a starting point for the second phase which is the Monte Carlo EM Algorithm.

  8. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: A network based statistics analysis

    Directory of Open Access Journals (Sweden)

    G. Olivito

    2017-01-01

    In the present study, the network-based statistics (NBS approach was used to assess differences in functional connectivity between specific cerebellar and cerebral “nodes” in SCA2 patients. Altered inter-nodal connectivity was found between more posterior regions in the cerebellum and regions in the cerebral cortex clearly related to cognition and emotion. Furthermore, more anterior cerebellar lobules showed altered inter-nodal connectivity with motor and somatosensory cerebral regions. The present data suggest that in SCA2 a cerebellar dysfunction affects long-distance cerebral regions and that the clinical symptoms may be specifically related with connectivity changes between motor and non-motor cerebello-cortical nodes.

  9. The significance of the Danube ecological corridor in the proceedings of implementing ecological networks in Serbia

    Directory of Open Access Journals (Sweden)

    Filipović Dejan

    2015-01-01

    Full Text Available With the modern processes for exploiting land people have altered the original appearance of areas and created cultural environments. The remaining natural environments, whether protected or not, take up a relatively small portion of space and represent isolated islands which in itself can not be sufficient for the preservation of biodiversity or for the fulfillment of national, regional or international goals and commitments related to their preservation. In order to secure the preservation of biodiversity, the strengthening of integrity and the natural processes, such as animal migrations, succession of vegetation and evolution processes, the communication between natural habitats is imperative. Ecological corridors, as integral elements of ecological networks, ensure the preservation of vital ecological interactions by providing a connection between different habitats or areas. Depending on a range of factors, from the fulfillment of demands of different species to the connecting of regions, corridors of local, sub-regional, regional and international importance are identified. The Danube ecological corridor is one of the most significant corridors of international importance which encompasses a large number of habitats which are part of the natural watercourse of the corridor. There are numerous protected areas in the Danube coastal area on Serbia's territory which present themselves as central areas for forming the ecological network, such as: Gornje Podunavlje, Karađorđevo, Fruška Gora, Titelski Breg hill, Kovalski rit marsh, Dunavski loess bluffs, the Sava mouth, Labudovo okno, Deliblato sands, Đerdap and Mala Vrbica. The diverse and mosaic vegetation of the floodplain, as well as the consistency of the protected areas within the Danube corridor have a direct influence on the quality and functionality of this corridor. The goal of this paper is to show the significance of the Danube ecological corridor in the process of implementing

  10. New scanning technique using Adaptive Statistical lterative Reconstruction (ASIR) significantly reduced the radiation dose of cardiac CT

    International Nuclear Information System (INIS)

    Tumur, Odgerel; Soon, Kean; Brown, Fraser; Mykytowycz, Marcus

    2013-01-01

    The aims of our study were to evaluate the effect of application of Adaptive Statistical Iterative Reconstruction (ASIR) algorithm on the radiation dose of coronary computed tomography angiography (CCTA) and its effects on image quality of CCTA and to evaluate the effects of various patient and CT scanning factors on the radiation dose of CCTA. This was a retrospective study that included 347 consecutive patients who underwent CCTA at a tertiary university teaching hospital between 1 July 2009 and 20 September 2011. Analysis was performed comparing patient demographics, scan characteristics, radiation dose and image quality in two groups of patients in whom conventional Filtered Back Projection (FBP) or ASIR was used for image reconstruction. There were 238 patients in the FBP group and 109 patients in the ASIR group. There was no difference between the groups in the use of prospective gating, scan length or tube voltage. In ASIR group, significantly lower tube current was used compared with FBP group, 550mA (450–600) vs. 650mA (500–711.25) (median (interquartile range)), respectively, P<0.001. There was 27% effective radiation dose reduction in the ASIR group compared with FBP group, 4.29mSv (2.84–6.02) vs. 5.84mSv (3.88–8.39) (median (interquartile range)), respectively, P<0.001. Although ASIR was associated with increased image noise compared with FBP (39.93±10.22 vs. 37.63±18.79 (mean ±standard deviation), respectively, P<001), it did not affect the signal intensity, signal-to-noise ratio, contrast-to-noise ratio or the diagnostic quality of CCTA. Application of ASIR reduces the radiation dose of CCTA without affecting the image quality.

  11. New scanning technique using Adaptive Statistical Iterative Reconstruction (ASIR) significantly reduced the radiation dose of cardiac CT.

    Science.gov (United States)

    Tumur, Odgerel; Soon, Kean; Brown, Fraser; Mykytowycz, Marcus

    2013-06-01

    The aims of our study were to evaluate the effect of application of Adaptive Statistical Iterative Reconstruction (ASIR) algorithm on the radiation dose of coronary computed tomography angiography (CCTA) and its effects on image quality of CCTA and to evaluate the effects of various patient and CT scanning factors on the radiation dose of CCTA. This was a retrospective study that included 347 consecutive patients who underwent CCTA at a tertiary university teaching hospital between 1 July 2009 and 20 September 2011. Analysis was performed comparing patient demographics, scan characteristics, radiation dose and image quality in two groups of patients in whom conventional Filtered Back Projection (FBP) or ASIR was used for image reconstruction. There were 238 patients in the FBP group and 109 patients in the ASIR group. There was no difference between the groups in the use of prospective gating, scan length or tube voltage. In ASIR group, significantly lower tube current was used compared with FBP group, 550 mA (450-600) vs. 650 mA (500-711.25) (median (interquartile range)), respectively, P ASIR group compared with FBP group, 4.29 mSv (2.84-6.02) vs. 5.84 mSv (3.88-8.39) (median (interquartile range)), respectively, P ASIR was associated with increased image noise compared with FBP (39.93 ± 10.22 vs. 37.63 ± 18.79 (mean ± standard deviation), respectively, P ASIR reduces the radiation dose of CCTA without affecting the image quality. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  12. Extraction of business relationships in supply networks using statistical learning theory.

    Science.gov (United States)

    Zuo, Yi; Kajikawa, Yuya; Mori, Junichiro

    2016-06-01

    Supply chain management represents one of the most important scientific streams of operations research. The supply of energy, materials, products, and services involves millions of transactions conducted among national and local business enterprises. To deliver efficient and effective support for supply chain design and management, structural analyses and predictive models of customer-supplier relationships are expected to clarify current enterprise business conditions and to help enterprises identify innovative business partners for future success. This article presents the outcomes of a recent structural investigation concerning a supply network in the central area of Japan. We investigated the effectiveness of statistical learning theory to express the individual differences of a supply chain of enterprises within a certain business community using social network analysis. In the experiments, we employ support vector machine to train a customer-supplier relationship model on one of the main communities extracted from a supply network in the central area of Japan. The prediction results reveal an F-value of approximately 70% when the model is built by using network-based features, and an F-value of approximately 77% when the model is built by using attribute-based features. When we build the model based on both, F-values are improved to approximately 82%. The results of this research can help to dispel the implicit design space concerning customer-supplier relationships, which can be explored and refined from detailed topological information provided by network structures rather than from traditional and attribute-related enterprise profiles. We also investigate and discuss differences in the predictive accuracy of the model for different sizes of enterprises and types of business communities.

  13. "Geo-statistics methods and neural networks in geophysical applications: A case study"

    Science.gov (United States)

    Rodriguez Sandoval, R.; Urrutia Fucugauchi, J.; Ramirez Cruz, L. C.

    2008-12-01

    The study is focus in the Ebano-Panuco basin of northeastern Mexico, which is being explored for hydrocarbon reservoirs. These reservoirs are in limestones and there is interest in determining porosity and permeability in the carbonate sequences. The porosity maps presented in this study are estimated from application of multiattribute and neural networks techniques, which combine geophysics logs and 3-D seismic data by means of statistical relationships. The multiattribute analysis is a process to predict a volume of any underground petrophysical measurement from well-log and seismic data. The data consist of a series of target logs from wells which tie a 3-D seismic volume. The target logs are neutron porosity logs. From the 3-D seismic volume a series of sample attributes is calculated. The objective of this study is to derive a set of attributes and the target log values. The selected set is determined by a process of forward stepwise regression. The analysis can be linear or nonlinear. In the linear mode the method consists of a series of weights derived by least-square minimization. In the nonlinear mode, a neural network is trained using the select attributes as inputs. In this case we used a probabilistic neural network PNN. The method is applied to a real data set from PEMEX. For better reservoir characterization the porosity distribution was estimated using both techniques. The case shown a continues improvement in the prediction of the porosity from the multiattribute to the neural network analysis. The improvement is in the training and the validation, which are important indicators of the reliability of the results. The neural network showed an improvement in resolution over the multiattribute analysis. The final maps provide more realistic results of the porosity distribution.

  14. Extraction of business relationships in supply networks using statistical learning theory

    Directory of Open Access Journals (Sweden)

    Yi Zuo

    2016-06-01

    Full Text Available Supply chain management represents one of the most important scientific streams of operations research. The supply of energy, materials, products, and services involves millions of transactions conducted among national and local business enterprises. To deliver efficient and effective support for supply chain design and management, structural analyses and predictive models of customer–supplier relationships are expected to clarify current enterprise business conditions and to help enterprises identify innovative business partners for future success. This article presents the outcomes of a recent structural investigation concerning a supply network in the central area of Japan. We investigated the effectiveness of statistical learning theory to express the individual differences of a supply chain of enterprises within a certain business community using social network analysis. In the experiments, we employ support vector machine to train a customer–supplier relationship model on one of the main communities extracted from a supply network in the central area of Japan. The prediction results reveal an F-value of approximately 70% when the model is built by using network-based features, and an F-value of approximately 77% when the model is built by using attribute-based features. When we build the model based on both, F-values are improved to approximately 82%. The results of this research can help to dispel the implicit design space concerning customer–supplier relationships, which can be explored and refined from detailed topological information provided by network structures rather than from traditional and attribute-related enterprise profiles. We also investigate and discuss differences in the predictive accuracy of the model for different sizes of enterprises and types of business communities.

  15. Prediction of hydrate formation temperature by both statistical models and artificial neural network approaches

    International Nuclear Information System (INIS)

    Zahedi, Gholamreza; Karami, Zohre; Yaghoobi, Hamed

    2009-01-01

    In this study, various estimation methods have been reviewed for hydrate formation temperature (HFT) and two procedures have been presented. In the first method, two general correlations have been proposed for HFT. One of the correlations has 11 parameters, and the second one has 18 parameters. In order to obtain constants in proposed equations, 203 experimental data points have been collected from literatures. The Engineering Equation Solver (EES) and Statistical Package for the Social Sciences (SPSS) soft wares have been employed for statistical analysis of the data. Accuracy of the obtained correlations also has been declared by comparison with experimental data and some recent common used correlations. In the second method, HFT is estimated by artificial neural network (ANN) approach. In this case, various architectures have been checked using 70% of experimental data for training of ANN. Among the various architectures multi layer perceptron (MLP) network with trainlm training algorithm was found as the best architecture. Comparing the obtained ANN model results with 30% of unseen data confirms ANN excellent estimation performance. It was found that ANN is more accurate than traditional methods and even our two proposed correlations for HFT estimation.

  16. A statistical intercomparison between "urban" and "rural" precipitation chemistry data from greater Manchester and two nearby secondary national network sites in the United Kingdom

    Science.gov (United States)

    Lee, David S.; Longhurst, James W. S.

    Precipitation chemistry data from a dense urban monitoring network in Greater Manchester, northwest England, were compared with interpolated values from the U.K. secondary national acid deposition monitoring network for the year 1988. Differences were found to be small. However, when data from individual sites from the Greater Manchester network were compared with data from the two nearest secondary national network sites, significant differences were found using simple and complex statistical analyses. Precipitation chemistry at rural sites could be similar to that at urban sites, but the sources of some ions were thought to be different. The synoptic-scale gradients of precipitation chemistry, as shown by the secondary national network, also accounted for some of the differences.

  17. Vitamin D and ferritin correlation with chronic neck pain using standard statistics and a novel artificial neural network prediction model.

    Science.gov (United States)

    Eloqayli, Haytham; Al-Yousef, Ali; Jaradat, Raid

    2018-02-15

    Despite the high prevalence of chronic neck pain, there is limited consensus about the primary etiology, risk factors, diagnostic criteria and therapeutic outcome. Here, we aimed to determine if Ferritin and Vitamin D are modifiable risk factors with chronic neck pain using slandered statistics and artificial intelligence neural network (ANN). Fifty-four patients with chronic neck pain treated between February 2016 and August 2016 in King Abdullah University Hospital and 54 patients age matched controls undergoing outpatient or minor procedures were enrolled. Patients and control demographic parameters, height, weight and single measurement of serum vitamin D, Vitamin B12, ferritin, calcium, phosphorus, zinc were obtained. An ANN prediction model was developed. The statistical analysis reveals that patients with chronic neck pain have significantly lower serum Vitamin D and Ferritin (p-value artificial neural network can be of future benefit in classification and prediction models for chronic neck pain. We hope this initial work will encourage a future larger cohort study addressing vitamin D and iron correction as modifiable factors and the application of artificial intelligence models in clinical practice.

  18. Statistical learning problem of artificial neural network to control roofing process

    Directory of Open Access Journals (Sweden)

    Lapidus Azariy

    2017-01-01

    Full Text Available Now software developed on the basis of artificial neural networks (ANN has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy. Also designing of ANN architecture is related to learning problem known as “curse of dimensionality”. This problem is important for the study of construction process management because of the difficulty to get training data from construction sites. In previous studies the authors have designed a 4-layer feedforward ANN with a unit model of 12-5-4-1 to approximate estimation and prediction of roofing process. This paper presented the statistical learning side of created ANN with simple-error-minimization algorithm. The sample size to efficient training and the confidence interval of network outputs defined. In conclusion the authors predicted successful ANN learning in a large construction business company within a short space of time.

  19. Statistical identification of gene association by CID in application of constructing ER regulatory network

    Directory of Open Access Journals (Sweden)

    Lien Huang-Chun

    2009-03-01

    Full Text Available Abstract Background A variety of high-throughput techniques are now available for constructing comprehensive gene regulatory networks in systems biology. In this study, we report a new statistical approach for facilitating in silico inference of regulatory network structure. The new measure of association, coefficient of intrinsic dependence (CID, is model-free and can be applied to both continuous and categorical distributions. When given two variables X and Y, CID answers whether Y is dependent on X by examining the conditional distribution of Y given X. In this paper, we apply CID to analyze the regulatory relationships between transcription factors (TFs (X and their downstream genes (Y based on clinical data. More specifically, we use estrogen receptor α (ERα as the variable X, and the analyses are based on 48 clinical breast cancer gene expression arrays (48A. Results The analytical utility of CID was evaluated in comparison with four commonly used statistical methods, Galton-Pearson's correlation coefficient (GPCC, Student's t-test (STT, coefficient of determination (CoD, and mutual information (MI. When being compared to GPCC, CoD, and MI, CID reveals its preferential ability to discover the regulatory association where distribution of the mRNA expression levels on X and Y does not fit linear models. On the other hand, when CID is used to measure the association of a continuous variable (Y against a discrete variable (X, it shows similar performance as compared to STT, and appears to outperform CoD and MI. In addition, this study established a two-layer transcriptional regulatory network to exemplify the usage of CID, in combination with GPCC, in deciphering gene networks based on gene expression profiles from patient arrays. Conclusion CID is shown to provide useful information for identifying associations between genes and transcription factors of interest in patient arrays. When coupled with the relationships detected by GPCC, the

  20. Evaluation of Techniques to Detect Significant Network Performance Problems using End-to-End Active Network Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, R.Les; Logg, Connie; Chhaparia, Mahesh; /SLAC; Grigoriev, Maxim; /Fermilab; Haro, Felipe; /Chile U., Catolica; Nazir, Fawad; /NUST, Rawalpindi; Sandford, Mark

    2006-01-25

    End-to-End fault and performance problems detection in wide area production networks is becoming increasingly hard as the complexity of the paths, the diversity of the performance, and dependency on the network increase. Several monitoring infrastructures are built to monitor different network metrics and collect monitoring information from thousands of hosts around the globe. Typically there are hundreds to thousands of time-series plots of network metrics which need to be looked at to identify network performance problems or anomalous variations in the traffic. Furthermore, most commercial products rely on a comparison with user configured static thresholds and often require access to SNMP-MIB information, to which a typical end-user does not usually have access. In our paper we propose new techniques to detect network performance problems proactively in close to realtime and we do not rely on static thresholds and SNMP-MIB information. We describe and compare the use of several different algorithms that we have implemented to detect persistent network problems using anomalous variations analysis in real end-to-end Internet performance measurements. We also provide methods and/or guidance for how to set the user settable parameters. The measurements are based on active probes running on 40 production network paths with bottlenecks varying from 0.5Mbits/s to 1000Mbit/s. For well behaved data (no missed measurements and no very large outliers) with small seasonal changes most algorithms identify similar events. We compare the algorithms' robustness with respect to false positives and missed events especially when there are large seasonal effects in the data. Our proposed techniques cover a wide variety of network paths and traffic patterns. We also discuss the applicability of the algorithms in terms of their intuitiveness, their speed of execution as implemented, and areas of applicability. Our encouraging results compare and evaluate the accuracy of our

  1. Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks

    Directory of Open Access Journals (Sweden)

    Manuel Perez Malumbres

    2013-02-01

    Full Text Available In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation, we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc., an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc..

  2. Statistical comparisons of Savannah River anemometer data applied to quality control of instrument networks

    International Nuclear Information System (INIS)

    Porch, W.M.; Dickerson, M.H.

    1976-08-01

    Continuous monitoring of extensive meteorological instrument arrays is a requirement in the study of important mesoscale atmospheric phenomena. The phenomena include pollution transport prediction from continuous area sources, or one time releases of toxic materials and wind energy prospecting in areas of topographic enhancement of the wind. Quality control techniques that can be applied to these data to determine if the instruments are operating within their prescribed tolerances were investigated. Savannah River Plant data were analyzed with both independent and comparative statistical techniques. The independent techniques calculate the mean, standard deviation, moments about the mean, kurtosis, skewness, probability density distribution, cumulative probability and power spectra. The comparative techniques include covariance, cross-spectral analysis and two dimensional probability density. At present the calculating and plotting routines for these statistical techniques do not reside in a single code so it is difficult to ascribe independent memory size and computation time accurately. However, given the flexibility of a data system which includes simple and fast running statistics at the instrument end of the data network (ASF) and more sophisticated techniques at the computational end (ACF) a proper balance will be attained. These techniques are described in detail and preliminary results are presented

  3. Simulation and Statistical Inference of Stochastic Reaction Networks with Applications to Epidemic Models

    KAUST Repository

    Moraes, Alvaro

    2015-01-01

    Epidemics have shaped, sometimes more than wars and natural disasters, demo- graphic aspects of human populations around the world, their health habits and their economies. Ebola and the Middle East Respiratory Syndrome (MERS) are clear and current examples of potential hazards at planetary scale. During the spread of an epidemic disease, there are phenomena, like the sudden extinction of the epidemic, that can not be captured by deterministic models. As a consequence, stochastic models have been proposed during the last decades. A typical forward problem in the stochastic setting could be the approximation of the expected number of infected individuals found in one month from now. On the other hand, a typical inverse problem could be, given a discretely observed set of epidemiological data, infer the transmission rate of the epidemic or its basic reproduction number. Markovian epidemic models are stochastic models belonging to a wide class of pure jump processes known as Stochastic Reaction Networks (SRNs), that are intended to describe the time evolution of interacting particle systems where one particle interacts with the others through a finite set of reaction channels. SRNs have been mainly developed to model biochemical reactions but they also have applications in neural networks, virus kinetics, and dynamics of social networks, among others. 4 This PhD thesis is focused on novel fast simulation algorithms and statistical inference methods for SRNs. Our novel Multi-level Monte Carlo (MLMC) hybrid simulation algorithms provide accurate estimates of expected values of a given observable of SRNs at a prescribed final time. They are designed to control the global approximation error up to a user-selected accuracy and up to a certain confidence level, and with near optimal computational work. We also present novel dual-weighted residual expansions for fast estimation of weak and strong errors arising from the MLMC methodology. Regarding the statistical inference

  4. Statistical evaluation of the dose-distribution charts of the National Computerized Irradiation Planning Network

    International Nuclear Information System (INIS)

    Varjas, Geza; Jozsef, Gabor; Gyenes, Gyoergy; Petranyi, Julia; Bozoky, Laszlo; Pataki, Gezane

    1985-01-01

    The establishment of the National Computerized Irradiation Planning Network allowed to perform the statistical evaluation presented in this report. During the first 5 years 13389 dose-distribution charts were calculated for the treatment of 5320 patients, i.e. in average, 2,5 dose-distribution chart-variants per patient. This number practically did not change in the last 4 years. The irradiation plan of certain tumour localizations was performed on the basis of the calculation of, in average, 1.6-3.0 dose-distribution charts. Recently, radiation procedures assuring optimal dose-distribution, such as the use of moving fields, and two- or three-irradiation fields, are gaining grounds. (author)

  5. Significant performance improvement obtained in a wireless mesh network using a beamswitching antenna

    CSIR Research Space (South Africa)

    Lysko, AA

    2012-09-01

    Full Text Available mesh network operated in a fixed 11 Mbps mode. The throughput improvement in multi-hop communication obtained in the presence of an interferer is tenfold, from 0.2 Mbps to 2 Mbps. Index Terms?antenna, smart antenna, wireless mesh network, WMN... efficiency in the communications, and active research and development of new methods and technologies enabling this at the physical layer, including multiple antenna techniques, such as multiple input multiple output (MIMO) and smart antennas...

  6. Cell cycle gene expression networks discovered using systems biology: Significance in carcinogenesis

    Science.gov (United States)

    Scott, RE; Ghule, PN; Stein, JL; Stein, GS

    2015-01-01

    The early stages of carcinogenesis are linked to defects in the cell cycle. A series of cell cycle checkpoints are involved in this process. The G1/S checkpoint that serves to integrate the control of cell proliferation and differentiation is linked to carcinogenesis and the mitotic spindle checkpoint with the development of chromosomal instability. This paper presents the outcome of systems biology studies designed to evaluate if networks of covariate cell cycle gene transcripts exist in proliferative mammalian tissues including mice, rats and humans. The GeneNetwork website that contains numerous gene expression datasets from different species, sexes and tissues represents the foundational resource for these studies (www.genenetwork.org). In addition, WebGestalt, a gene ontology tool, facilitated the identification of expression networks of genes that co-vary with key cell cycle targets, especially Cdc20 and Plk1 (www.bioinfo.vanderbilt.edu/webgestalt). Cell cycle expression networks of such covariate mRNAs exist in multiple proliferative tissues including liver, lung, pituitary, adipose and lymphoid tissues among others but not in brain or retina that have low proliferative potential. Sixty-three covariate cell cycle gene transcripts (mRNAs) compose the average cell cycle network with p = e−13 to e−36. Cell cycle expression networks show species, sex and tissue variability and they are enriched in mRNA transcripts associated with mitosis many of which are associated with chromosomal instability. PMID:25808367

  7. NETWORKS OF NANOPARTICLES IN ORGANIC – INORGANIC COMPOSITES: ALGORITHMIC EXTRACTION AND STATISTICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Ralf Thiedmann

    2012-03-01

    Full Text Available The rising global demand in energy and the limited resources in fossil fuels require new technologies in renewable energies like solar cells. Silicon solar cells offer a good efficiency but suffer from high production costs. A promising alternative are polymer solar cells, due to potentially low production costs and high flexibility of the panels. In this paper, the nanostructure of organic–inorganic composites is investigated, which can be used as photoactive layers in hybrid–polymer solar cells. These materials consist of a polymeric (OC1C10-PPV phase with CdSe nanoparticles embedded therein. On the basis of 3D image data with high spatial resolution, gained by electron tomography, an algorithm is developed to automatically extract the CdSe nanoparticles from grayscale images, where we assume them as spheres. The algorithm is based on a modified version of the Hough transform, where a watershed algorithm is used to separate the image data into basins such that each basin contains exactly one nanoparticle. After their extraction, neighboring nanoparticles are connected to form a 3D network that is related to the transport of electrons in polymer solar cells. A detailed statistical analysis of the CdSe network morphology is accomplished, which allows deeper insight into the hopping percolation pathways of electrons.

  8. Prostate segmentation in MRI using a convolutional neural network architecture and training strategy based on statistical shape models.

    Science.gov (United States)

    Karimi, Davood; Samei, Golnoosh; Kesch, Claudia; Nir, Guy; Salcudean, Septimiu E

    2018-05-15

    Most of the existing convolutional neural network (CNN)-based medical image segmentation methods are based on methods that have originally been developed for segmentation of natural images. Therefore, they largely ignore the differences between the two domains, such as the smaller degree of variability in the shape and appearance of the target volume and the smaller amounts of training data in medical applications. We propose a CNN-based method for prostate segmentation in MRI that employs statistical shape models to address these issues. Our CNN predicts the location of the prostate center and the parameters of the shape model, which determine the position of prostate surface keypoints. To train such a large model for segmentation of 3D images using small data (1) we adopt a stage-wise training strategy by first training the network to predict the prostate center and subsequently adding modules for predicting the parameters of the shape model and prostate rotation, (2) we propose a data augmentation method whereby the training images and their prostate surface keypoints are deformed according to the displacements computed based on the shape model, and (3) we employ various regularization techniques. Our proposed method achieves a Dice score of 0.88, which is obtained by using both elastic-net and spectral dropout for regularization. Compared with a standard CNN-based method, our method shows significantly better segmentation performance on the prostate base and apex. Our experiments also show that data augmentation using the shape model significantly improves the segmentation results. Prior knowledge about the shape of the target organ can improve the performance of CNN-based segmentation methods, especially where image features are not sufficient for a precise segmentation. Statistical shape models can also be employed to synthesize additional training data that can ease the training of large CNNs.

  9. Moral foundations in an interacting neural networks society: A statistical mechanics analysis

    Science.gov (United States)

    Vicente, R.; Susemihl, A.; Jericó, J. P.; Caticha, N.

    2014-04-01

    The moral foundations theory supports that people, across cultures, tend to consider a small number of dimensions when classifying issues on a moral basis. The data also show that the statistics of weights attributed to each moral dimension is related to self-declared political affiliation, which in turn has been connected to cognitive learning styles by the recent literature in neuroscience and psychology. Inspired by these data, we propose a simple statistical mechanics model with interacting neural networks classifying vectors and learning from members of their social neighbourhood about their average opinion on a large set of issues. The purpose of learning is to reduce dissension among agents when disagreeing. We consider a family of learning algorithms parametrized by δ, that represents the importance given to corroborating (same sign) opinions. We define an order parameter that quantifies the diversity of opinions in a group with homogeneous learning style. Using Monte Carlo simulations and a mean field approximation we find the relation between the order parameter and the learning parameter δ at a temperature we associate with the importance of social influence in a given group. In concordance with data, groups that rely more strongly on corroborating evidence sustain less opinion diversity. We discuss predictions of the model and propose possible experimental tests.

  10. Statistical versus Musical Significance: Commentary on Leigh VanHandel's 'National Metrical Types in Nineteenth Century Art Song'

    Directory of Open Access Journals (Sweden)

    Justin London

    2010-01-01

    Full Text Available In “National Metrical Types in Nineteenth Century Art Song” Leigh Van Handel gives a sympathetic critique of William Rothstein’s claim that in western classical music of the late 18th and 19th centuries there are discernable differences in the phrasing and metrical practice of German versus French and Italian composers. This commentary (a examines just what Rothstein means in terms of his proposed metrical typology, (b questions Van Handel on how she has applied it to a purely melodic framework, (c amplifies Van Handel’s critique of Rothstein, and then (d concludes with a rumination on the reach of quantitative (i.e., statistically-driven versus qualitative claims regarding such things as “national metrical types.”

  11. Statistical and molecular analyses of evolutionary significance of red-green color vision and color blindness in vertebrates.

    Science.gov (United States)

    Yokoyama, Shozo; Takenaka, Naomi

    2005-04-01

    Red-green color vision is strongly suspected to enhance the survival of its possessors. Despite being red-green color blind, however, many species have successfully competed in nature, which brings into question the evolutionary advantage of achieving red-green color vision. Here, we propose a new method of identifying positive selection at individual amino acid sites with the premise that if positive Darwinian selection has driven the evolution of the protein under consideration, then it should be found mostly at the branches in the phylogenetic tree where its function had changed. The statistical and molecular methods have been applied to 29 visual pigments with the wavelengths of maximal absorption at approximately 510-540 nm (green- or middle wavelength-sensitive [MWS] pigments) and at approximately 560 nm (red- or long wavelength-sensitive [LWS] pigments), which are sampled from a diverse range of vertebrate species. The results show that the MWS pigments are positively selected through amino acid replacements S180A, Y277F, and T285A and that the LWS pigments have been subjected to strong evolutionary conservation. The fact that these positively selected M/LWS pigments are found not only in animals with red-green color vision but also in those with red-green color blindness strongly suggests that both red-green color vision and color blindness have undergone adaptive evolution independently in different species.

  12. All-carbon nanotube diode and solar cell statistically formed from macroscopic network

    Institute of Scientific and Technical Information of China (English)

    Albert G. Nasibulin[1,2,3; Adinath M. Funde[3,4; Ilya V. Anoshkin[3; Igor A. Levitskyt[5,6

    2015-01-01

    Schottky diodes and solar cells are statistically created in the contact area between two macroscopic films of single-walled carbon nanotubes (SWNTs) at the junction of semiconducting and quasi-metallic bundles consisting of several high quality tubes. The n-doping of one of the films allows for photovoltaic action, owing to an increase in the built-in potential at the bundle-to-bundle interface. Statistical analysis demonstrates that the Schottky barrier device contributes significantly to the I-V characteristics, compared to the p-n diode. The upper limit of photovoltaic conversion efficiency has been estimated at N20%, demonstrating that the light energy conversion is very efficient for such a unique solar cell. While there have been multiple studies on rectifying SWNT diodes in the nanoscale environment, this is the first report of a macroscopic all-carbon nanotube diode and solar cell.

  13. Statistical properties and attack tolerance of growing networks with algebraic preferential attachment

    International Nuclear Information System (INIS)

    Liu Zonghua; Lai Yingcheng; Ye Nong

    2002-01-01

    We consider growing networks with algebraic preferential attachment and address two questions: (1) what is the effect of temporal fluctuations in the number of new links acquired by the network? and (2) what is the network tolerance against random failures and intentional attacks? We find that the fluctuations generally have little effect on the network properties, although they lead to a plateau behavior for small degrees in the connectivity distribution. Formulas are derived for the evolution and distribution of the network connectivity, which are tested by numerical simulations. Numerical study of the effect of failures and attacks suggests that networks constructed under algebraic preferential attachment are more robust than scale-free networks

  14. Significant Deregulated Pathways in Diabetes Type II Complications Identified through Expression Based Network Biology

    Science.gov (United States)

    Ukil, Sanchaita; Sinha, Meenakshee; Varshney, Lavneesh; Agrawal, Shipra

    Type 2 Diabetes is a complex multifactorial disease, which alters several signaling cascades giving rise to serious complications. It is one of the major risk factors for cardiovascular diseases. The present research work describes an integrated functional network biology approach to identify pathways that get transcriptionally altered and lead to complex complications thereby amplifying the phenotypic effect of the impaired disease state. We have identified two sub-network modules, which could be activated under abnormal circumstances in diabetes. Present work describes key proteins such as P85A and SRC serving as important nodes to mediate alternate signaling routes during diseased condition. P85A has been shown to be an important link between stress responsive MAPK and CVD markers involved in fibrosis. MAPK8 has been shown to interact with P85A and further activate CTGF through VEGF signaling. We have traced a novel and unique route correlating inflammation and fibrosis by considering P85A as a key mediator of signals. The next sub-network module shows SRC as a junction for various signaling processes, which results in interaction between NF-kB and beta catenin to cause cell death. The powerful interaction between these important genes in response to transcriptionally altered lipid metabolism and impaired inflammatory response via SRC causes apoptosis of cells. The crosstalk between inflammation, lipid homeostasis and stress, and their serious effects downstream have been explained in the present analyses.

  15. Significant breakthroughs in monitoring networks of the volcanological and seismological French observatories

    Science.gov (United States)

    lemarchand, A.; Francois, B.; Bouin, M.; Brenguier, F.; Clouard, V.; Di Muro, A.; Ferrazzini, V.; Shapiro, N.; Staudacher, T.; Kowalski, P.; Agrinier, P.

    2013-12-01

    Others authors: S. Tait (1), D. Amorese (4,1), JB de Chabalier (1), A. Anglade (4,1), P. Kowalski (5,1),the teams in the IPGP Volcanological and Seismological observatories In the last few years, French West Indies observatories, in collaboration with the Seismic Research Center (University of West Indies-Trinidad), have modernized the Lesser Antilles Arc seismic and deformation monitoring network. 16 new permanent stations have been installed to strengthen and expand its detection capabilities. The global network of the IPGP-SRC consortium is now composed of 21 modernized stations, all equipped with broadband seismometers, strong motion sensors, GNSS sensors and satellite communication for real-time data transfer to the observatories of Trinidad (SRC), Guadeloupe (OVSG), Martinique (OVSM). To improve the sensitivity and reduce ambient noise, special efforts were made to enhance the design of the seismic vault and the original Stuttgart shielding (D. Kurrle R. Widmer-Schnidrig, 2005) of the broadband seismometers (240 and 120 sec). This renewed network feeds the Caribbean Tsunami Warning System supported by UNESCO and establishes a monitoring tool that produces high quality data for studying subduction and volcanism interactions in the Lesser Antilles arc. Since 2010, the UnderVolc research program has been an opportunity to reinforce the existing volcanic seismic network of Piton de la Fournaise on La Réunion Island (Indian Ocean). 20 broadband seismometers, 20 short-period sensors, and 26 GNSS receivers now cover the volcano. The program successfully developed many new data treatment tools. They have proven to be well-adapted for monitoring volcanic activity such as the tracking of seismic velocity changes inferred from seismic noise, or the injection of dike and the resulting deformations. This upgrade has now established the monitoring network of La Réunion hot spot to high quality standards which will foster the scientific attractiveness of OVPF-IPGP. During

  16. An efficient forward–reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

    KAUST Repository

    Bayer, Christian

    2016-02-20

    © 2016 Taylor & Francis Group, LLC. ABSTRACT: In this work, we present an extension of the forward–reverse representation introduced by Bayer and Schoenmakers (Annals of Applied Probability, 24(5):1994–2032, 2014) to the context of stochastic reaction networks (SRNs). We apply this stochastic representation to the computation of efficient approximations of expected values of functionals of SRN bridges, that is, SRNs conditional on their values in the extremes of given time intervals. We then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve a set of deterministic optimization problems where the SRNs are replaced by their reaction-rate ordinary differential equations approximation; then, during phase II, we apply the Monte Carlo version of the expectation-maximization algorithm to the phase I output. By selecting a set of overdispersed seeds as initial points in phase I, the output of parallel runs from our two-phase method is a cluster of approximate maximum likelihood estimates. Our results are supported by numerical examples.

  17. An efficient forward-reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

    KAUST Repository

    Vilanova, Pedro

    2016-01-07

    In this work, we present an extension of the forward-reverse representation introduced in Simulation of forward-reverse stochastic representations for conditional diffusions , a 2014 paper by Bayer and Schoenmakers to the context of stochastic reaction networks (SRNs). We apply this stochastic representation to the computation of efficient approximations of expected values of functionals of SRN bridges, i.e., SRNs conditional on their values in the extremes of given time-intervals. We then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve a set of deterministic optimization problems where the SRNs are replaced by their reaction-rate ordinary differential equations approximation; then, during phase II, we apply the Monte Carlo version of the Expectation-Maximization algorithm to the phase I output. By selecting a set of over-dispersed seeds as initial points in phase I, the output of parallel runs from our two-phase method is a cluster of approximate maximum likelihood estimates. Our results are supported by numerical examples.

  18. Computational modeling of allosteric regulation in the hsp90 chaperones: a statistical ensemble analysis of protein structure networks and allosteric communications.

    Directory of Open Access Journals (Sweden)

    Kristin Blacklock

    2014-06-01

    Full Text Available A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple

  19. The construction of digital 3D arterial vascular network of uterine leiomyomas and its clinical significance

    International Nuclear Information System (INIS)

    Chen Chunlin; Xu Yujing; Liu Ping

    2012-01-01

    Objective: To discuss the method of constructing digital 3D arterial vascular network of uterine leiomyomas based on the CTA data, by which to lay the fundamental work for the observation of the origin and distribution of hysteromyoma blood supply. Methods: A total of 64 cases of uterine leiomyomas were enrolled in this study. Dual-source CT angiography was performed in all the patients, and the CTA original images were obtained. By using Mimics 10.01 software the digital 3D arterial vascular network of uterine was reconstructed. The reconstructed models were analyzed. Results: (1) The constructing process of arterial vascular network was successfully accomplished in all 64 patients. The pelvic main arteries, the uterine arteries and tumor-feeding arteries as well as the blood distribution type were clearly demonstrated on the reconstructed images. (2) The origins of hysteromyoma blood supply included uterine artery (81.25%), uterine artery and unilateral ovarian artery (10.94%), uterine artery and bilateral ovarian artery (4.69%) and ovarian artery (3.12%). (3) Distribution pattern of blood supply of uterine leiomyomas could be divided into 4 types: (1) Type Ⅰ. The unilateral arterial blood supply dominant type (unilateral uterine artery with or without ipsilateral ovarian arterial, providing more than 1/2 blood supply of hysteromyoma), which accounted for 35.94% of all patients (23/26); (2) Type Ⅱ. The bilateral arterial blood supply balanced type (bilateral uterine artery with or without ipsilateral ovarian artery, providing about 1/2 blood supply of hysteromyoma), which accounted for 53.13% of all patients (34/64); (3) Type Ⅲ. The unilateral uterine artery was the main blood supply of uterine leiomyomas, which accounted for 7.81% of all patients (5/64); (4) Type Ⅳ. The ovarian artery was the main blood supply of uterine leiomyomas, which accounted for 3.13% of all patients (3/64). Conclusion: Based on CTA data and with the help of reconstruction

  20. Application of Statistical, Fuzzy and Perceptron Neural Networks in Drought Forecasting (Case Study: Gonbad-e Kavous Station

    Directory of Open Access Journals (Sweden)

    S.M. Hosseini-Moghari

    2016-10-01

    Full Text Available Introduction: Due to economic, social, and environmental perplexities associated with drought, it is considered as one of the most complex natural hazards. To investigate the beginning along with analyzing the direct impacts of drought; the significance of drought monitoring must be highlighted. Regarding drought management and its consequences alleviation, drought forecasting must be taken into account (11. The current research employed multi-layer perceptron (MLP, adaptive neuro-fuzzy inference system (ANFIS, radial basis function (RBF and general regression neural network (GRNN. It is interesting to note that, there has not been any record of applying GRNN in drought forecasting. Materials and Methods: Throughout this paper, Standard Precipitation Index (SPI was the basis of drought forecasting. To do so, the precipitation data of Gonbad Kavous station during the period of 1972-73 to 2006-07 were used. To provide short-term, mid-term, and long-term drought analysis; SPI for 1, 3, 6, 9, 12, and 24 months was evaluated. SPI evaluation benefited from four statistical distributions, namely, Gamma, Normal, Log-normal, and Weibull along with Kolmogrov-Smirnov (K-S test. Later, to compare the capabilities of four utilized neural networks for drought forecasting; MLP, ANFIS, RBF, and GRNN were applied. MLP as a multi-layer network, which has a sigmoid activation function in hidden layer plus linear function in output layer, can be considered as a powerful regressive tool. ANFIS besides adaptive neuro networks, employed fuzzy logic. RBF, the foundation of radial basis networks, is a three-layer network with Gaussian function in its hidden layer, and a linear function in the output layer. GRNN is another type of RBF which is used for radial basis regressive problems. The performance criteria of the research were as follows: Correlation (R2, Root Mean Square Error (RMSE, Mean Absolute Error (MAE. Results Discussion: According to statistical distribution

  1. Statistical Analysis of Manning's roughness Coefficients in Non-vegetated Canals for Irrigation and Drainage Network of Moghan

    Directory of Open Access Journals (Sweden)

    Abolfazl Nasseri

    2017-03-01

    coefficient and significant sensitivity of the capacity to this coefficient, the current study was conducted to statistically analyze and to evaluate roughness coefficients in non-vegetated canals for irrigation and drainage network of Moghan (in North-west of Iran. The results of the research may be applied in the design, evaluation and utilization of networks, especially in the irrigation and drainage network of Moghan. Materials and Methods: Experimental area was Moghan plain located at the north-west of Iran with latitude from 39º 22’ to 39º 45’ N, longitude from 47º 22’ to 47º 45’ E and sea level of 32.0 m. The annual averages air temperature, relative humidity and pan evaporation are 14.5º C, 72% and 111 mm month-1, respectively. Annual rainfall in this plain is 332 mm. In the network of Moghan, 50 sections were selected to measure water flow velocity (with a flow meter and canals cross sections (with profilimetery devices. The selected sections were in earth canals located at the farms of Agro-Industrial Company of Moghan, farmers’ farms, Pirayvatlu’s farms, Iranabad, Hajhazar, Farms of Agricultural Education Center and Agricultural Research Center. A flowmeter (type AOTT made by Iranian Water Resources Engineering Company was applied to measure flow velocity in different sections of the channel. Resistance coefficient were determined by the following equation according to the dimensions and the velocity of the water flow in the earth canals (1 Where R is the hydraulic radius (m, V is velocity (m/s and S is channel slope (m/m. In this study, the Reynolds number was applied to determine the flow regime in the channel. The partial correlation coefficient was used to determine the effective variables in the roughness coefficient in canals without vegetation. The application of the coefficient of correlation is that the dependent variable (multiple independent variables and independent stay in the form of fixed values of other independent variables. The

  2. Test the Overall Significance of p-values by Using Joint Tail Probability of Ordered p-values as Test Statistic

    NARCIS (Netherlands)

    Fang, Yongxiang; Wit, Ernst

    2008-01-01

    Fisher’s combined probability test is the most commonly used method to test the overall significance of a set independent p-values. However, it is very obviously that Fisher’s statistic is more sensitive to smaller p-values than to larger p-value and a small p-value may overrule the other p-values

  3. The Importance of Integrating Clinical Relevance and Statistical Significance in the Assessment of Quality of Care--Illustrated Using the Swedish Stroke Register.

    Directory of Open Access Journals (Sweden)

    Anita Lindmark

    Full Text Available When profiling hospital performance, quality inicators are commonly evaluated through hospital-specific adjusted means with confidence intervals. When identifying deviations from a norm, large hospitals can have statistically significant results even for clinically irrelevant deviations while important deviations in small hospitals can remain undiscovered. We have used data from the Swedish Stroke Register (Riksstroke to illustrate the properties of a benchmarking method that integrates considerations of both clinical relevance and level of statistical significance.The performance measure used was case-mix adjusted risk of death or dependency in activities of daily living within 3 months after stroke. A hospital was labeled as having outlying performance if its case-mix adjusted risk exceeded a benchmark value with a specified statistical confidence level. The benchmark was expressed relative to the population risk and should reflect the clinically relevant deviation that is to be detected. A simulation study based on Riksstroke patient data from 2008-2009 was performed to investigate the effect of the choice of the statistical confidence level and benchmark value on the diagnostic properties of the method.Simulations were based on 18,309 patients in 76 hospitals. The widely used setting, comparing 95% confidence intervals to the national average, resulted in low sensitivity (0.252 and high specificity (0.991. There were large variations in sensitivity and specificity for different requirements of statistical confidence. Lowering statistical confidence improved sensitivity with a relatively smaller loss of specificity. Variations due to different benchmark values were smaller, especially for sensitivity. This allows the choice of a clinically relevant benchmark to be driven by clinical factors without major concerns about sufficiently reliable evidence.The study emphasizes the importance of combining clinical relevance and level of statistical

  4. The Importance of Integrating Clinical Relevance and Statistical Significance in the Assessment of Quality of Care--Illustrated Using the Swedish Stroke Register.

    Science.gov (United States)

    Lindmark, Anita; van Rompaye, Bart; Goetghebeur, Els; Glader, Eva-Lotta; Eriksson, Marie

    2016-01-01

    When profiling hospital performance, quality inicators are commonly evaluated through hospital-specific adjusted means with confidence intervals. When identifying deviations from a norm, large hospitals can have statistically significant results even for clinically irrelevant deviations while important deviations in small hospitals can remain undiscovered. We have used data from the Swedish Stroke Register (Riksstroke) to illustrate the properties of a benchmarking method that integrates considerations of both clinical relevance and level of statistical significance. The performance measure used was case-mix adjusted risk of death or dependency in activities of daily living within 3 months after stroke. A hospital was labeled as having outlying performance if its case-mix adjusted risk exceeded a benchmark value with a specified statistical confidence level. The benchmark was expressed relative to the population risk and should reflect the clinically relevant deviation that is to be detected. A simulation study based on Riksstroke patient data from 2008-2009 was performed to investigate the effect of the choice of the statistical confidence level and benchmark value on the diagnostic properties of the method. Simulations were based on 18,309 patients in 76 hospitals. The widely used setting, comparing 95% confidence intervals to the national average, resulted in low sensitivity (0.252) and high specificity (0.991). There were large variations in sensitivity and specificity for different requirements of statistical confidence. Lowering statistical confidence improved sensitivity with a relatively smaller loss of specificity. Variations due to different benchmark values were smaller, especially for sensitivity. This allows the choice of a clinically relevant benchmark to be driven by clinical factors without major concerns about sufficiently reliable evidence. The study emphasizes the importance of combining clinical relevance and level of statistical confidence when

  5. Dynamics and spike trains statistics in conductance-based integrate-and-fire neural networks with chemical and electric synapses

    International Nuclear Information System (INIS)

    Cofré, Rodrigo; Cessac, Bruno

    2013-01-01

    We investigate the effect of electric synapses (gap junctions) on collective neuronal dynamics and spike statistics in a conductance-based integrate-and-fire neural network, driven by Brownian noise, where conductances depend upon spike history. We compute explicitly the time evolution operator and show that, given the spike-history of the network and the membrane potentials at a given time, the further dynamical evolution can be written in a closed form. We show that spike train statistics is described by a Gibbs distribution whose potential can be approximated with an explicit formula, when the noise is weak. This potential form encompasses existing models for spike trains statistics analysis such as maximum entropy models or generalized linear models (GLM). We also discuss the different types of correlations: those induced by a shared stimulus and those induced by neurons interactions

  6. Networking for ovarian rare tumors: a significant breakthrough improving disease management.

    Science.gov (United States)

    Chiannilkulchai, N; Pautier, P; Genestie, C; Bats, A S; Vacher-Lavenu, M C; Devouassoux-Shisheboran, M; Treilleux, I; Floquet, A; Croce, S; Ferron, G; Mery, E; Pomel, C; Penault-Llorca, F; Lefeuvre-Plesse, C; Henno, S; Leblanc, E; Lemaire, A S; Averous, G; Kurtz, J E; Ray-Coquard, I

    2017-06-01

    Rare ovarian tumors represent >20% of all ovarian cancers. Given the rarity of these tumors, natural history, prognostic factors are not clearly identified. The extreme variability of patients (age, histological subtypes, stage) induces multiple and complex therapeutic strategies. Since 2011, a national network with a dedicated system for referral, up to 22 regional and three national reference centers (RC) has been supported by the French National Cancer Institute (INCa). The network aims to prospectively monitor the management of rare ovarian tumors and provide an equal access to medical expertise and innovative treatments to all French patients through a dedicated website, www.ovaire-rare.org. Over a 5-year activity, 4612 patients have been included. Patients' inclusions increased from 553 in 2011 to 1202 in 2015. Expert pathology review and patients' files discussion in dedicated multidisciplinary tumor boards increased from 166 cases in 2011 (25%) to 538 (45%) in 2015. Pathology review consistently modified the medical strategy in 5-9% every year. The rate of patients' files discussed in RC similarly increased from 294 (53%) to 789 (66%). An increasing number (357 in 5 years) of gynecologic (non-ovarian) rare tumors were also registered by physicians seeking for pathological or medical advice from expert tumor boards. Such a nation-wide organization for rare gynecological tumors has invaluable benefits, not only for patients, but also for epidemiological, clinical and biological research. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Significance of bacteria associated with invertebrates in drinking water distribution networks.

    Science.gov (United States)

    Wolmarans, E; du Preez, H H; de Wet, C M E; Venter, S N

    2005-01-01

    The implication of invertebrates found in drinking water distribution networks to public health is of concern to water utilities. Previous studies have shown that the bacteria associated with the invertebrates could be potentially pathogenic to humans. This study investigated the level and identity of bacteria commonly associated with invertebrates collected from the drinking water treatment systems as well as from the main pipelines leaving the treatment works. On all sampling occasions bacteria were isolated from the invertebrate samples collected. The highest bacterial counts were observed for the samples taken before filtration as was expected. There were, however, indications that optimal removal of invertebrates from water did not always occur. During the investigation, 116 colonies were sampled for further identification. The isolates represent several bacterial genera and species that are pathogenic or opportunistic pathogens of humans. Diarrhoea, meningitis, septicaemia and skin infections are among the diseases associated with these organisms. The estimated number of bacteria that could be associated with a single invertebrate (as based on average invertebrate numbers) could range from 10 to 4000 bacteria per organism. It can, therefore, be concluded that bacteria associated with invertebrates might under the worst case scenario pose a potential health risk to water users. In the light of the above findings it is clear that invertebrates in drinking water should be controlled at levels as low as technically and economically feasible.

  8. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency

    Directory of Open Access Journals (Sweden)

    Yeh Cheng-Yu

    2009-12-01

    Full Text Available Abstract Background Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. Results To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2 regulated by RUNX1 and STAT3 is correlated to the pathological stage

  9. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency.

    Science.gov (United States)

    Yeh, Hsiang-Yuan; Cheng, Shih-Wu; Lin, Yu-Chun; Yeh, Cheng-Yu; Lin, Shih-Fang; Soo, Von-Wun

    2009-12-21

    Prostate cancer is a world wide leading cancer and it is characterized by its aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different stages and grades related to the aggressive metastasis disease. Although numerous studies used microarray analysis and traditional clustering method to identify the individual genes during the disease processes, the important gene regulations remain unclear. We present a computational method for inferring genetic regulatory networks from micorarray data automatically with transcription factor analysis and conditional independence testing to explore the potential significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the prostate cancer. To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN) algorithm to determine the precise expression values. We applied web services technology to wrap the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA sequences and predicted the transcription factors that regulate the gene expressions. We adopt the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results showed that the possible biomarker genes related to cancer and denoted the androgen functions and processes may be in the development of the prostate cancer and promote the cell death in cell cycle. Our predicted results showed that sub-networks of genes SREBF1, STAT6 and PBX1 are strongly related to a high extent while ETS transcription factors ELK1, JUN and EGR2 are related to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by RUNX1 and STAT3 is correlated to the pathological stage. We provide a computational framework to reconstruct

  10. North American Tropospheric Ozone Profiles from IONS (INTEX Ozonesonde Network Study, 2004, 2006): Ozone Budgets, Polution Statistics, Satellite Retrievals

    Science.gov (United States)

    Dougherty, M.; Thompson, A. M.; Witte, J. C.; Miller, S. K.; Oltmans, S. J.; Cooper, O. R.; Tarasick, D. W.; Chatfield, R. B.; Taubman, B. F.; Joseph, E.; Baumgardner, D.; Merrill, J. T.; Morris, G. A.; Rappenglueck, B.; Lefer, B.; Forbes, G.; Newchurch, M. J.; Schmidlin, F. J.; Pierce, R. B.; Leblanc, T.; Dubey, M.; Minschwaner, K.

    2007-12-01

    During INTEX-B (both Milagro and IMPEX phases in Spring 2006) and during the summer TEXAQS- 2006/GOMACCS period, the INTEX Ozonesonde Network Study (IONS-06) coordinated ozonesonde launches over North America for Aura overpasses. IONS-06 supported aircraft operations and provided profiles for ozone budgets and pollution transport, satellite validation and evaluation of models. In contrast to IONS-04, IONS-06 had a greater range (all but one 2004 IONS site plus a dozen in California, New Mexico, Mexico City, Barbados and southwestern Canada), yielding more than 700 profiles. Tropospheric pollution statistics to guide Aura satellite retrievals and contrasts in UT-LS (upper tropospheric-lower stratospheric) ozone between 2004 and 2006 are presented. With IONS-04 dominated by low-pressure conditions over northeastern North America, UT ozone originated 25% from the stratosphere [Thompson et al., 2007a,b] with significant amounts from aged or relatively fresh pollution and lightning [Cooper et al., 2006; Morris et al., 2006]. Both IONS-04 and IONS-06 summer periods displayed a persistent UT ozone maximum [Cooper et al., 2007] over the south-central US. March 2006 IONS sondes over Mexico manifested persistent UT/LS gravity wave influence and more sporadic pollution. Regional and seasonal contrasts in IONS-06 ozone distributions are described. intexb/ions06.html

  11. How to interpret the results of medical time series data analysis: Classical statistical approaches versus dynamic Bayesian network modeling.

    Science.gov (United States)

    Onisko, Agnieszka; Druzdzel, Marek J; Austin, R Marshall

    2016-01-01

    Classical statistics is a well-established approach in the analysis of medical data. While the medical community seems to be familiar with the concept of a statistical analysis and its interpretation, the Bayesian approach, argued by many of its proponents to be superior to the classical frequentist approach, is still not well-recognized in the analysis of medical data. The goal of this study is to encourage data analysts to use the Bayesian approach, such as modeling with graphical probabilistic networks, as an insightful alternative to classical statistical analysis of medical data. This paper offers a comparison of two approaches to analysis of medical time series data: (1) classical statistical approach, such as the Kaplan-Meier estimator and the Cox proportional hazards regression model, and (2) dynamic Bayesian network modeling. Our comparison is based on time series cervical cancer screening data collected at Magee-Womens Hospital, University of Pittsburgh Medical Center over 10 years. The main outcomes of our comparison are cervical cancer risk assessments produced by the three approaches. However, our analysis discusses also several aspects of the comparison, such as modeling assumptions, model building, dealing with incomplete data, individualized risk assessment, results interpretation, and model validation. Our study shows that the Bayesian approach is (1) much more flexible in terms of modeling effort, and (2) it offers an individualized risk assessment, which is more cumbersome for classical statistical approaches.

  12. On the hop count statistics for randomly deployed wireless sensor networks

    NARCIS (Netherlands)

    Dulman, S.O.; Rossi, M.; Havinga, Paul J.M.; Zorzi, M.

    2006-01-01

    In this paper we focus on exploiting the information provided by a generally accepted and largely ignored hypothesis (the random deployment of the nodes of an ad hoc or wireless sensor network) to design improved networking protocols. Specifically, we derive the relationship between the number of

  13. Towards Statistical Trust Computation for Medical Smartphone Networks Based on Behavioral Profiling

    DEFF Research Database (Denmark)

    Meng, Weizhi; Au, Man Ho

    2017-01-01

    Due to the popularity of mobile devices, medical smartphone networks (MSNs) have been evolved, which become an emerging network architecture in healthcare domain to improve the quality of service. There is no debate among security experts that the security of Internet-enabled medical devices...

  14. Google Correlations: New approaches to collecting data for statistical network analysis

    Science.gov (United States)

    Mahdavi, Paasha

    This thesis introduces a new method for data collection on political elite networks using non-obtrusive web-based techniques. One possible indicator of elite connectivity is the frequency with which individuals appear at the same political events. Using a Google search scraping algorithm (Lee 2010) to capture how often pairs of individuals appear in the same news articles reporting on these events, I construct network matrices for a given list of individuals that I identify as elites using a variety of criteria. To assess cross-validity and conceptual accuracy, I compare data from this method to previously collected data on the network connectedness of three separate populations. I then supply an application of the Google method to collect network data on the Nigerian oil elite in 2012. Conducting a network analysis, I show that appointments to the Nigerian National Petroleum Corporation board of directors are made on the basis of political connectivity and not necessarily on technical experience or merit. These findings lend support to hypotheses that leaders use patronage appointments to lucrative bureaucratic positions in order to satisfy political elites. Given that many political theories on elite behavior aim to understand individual- and group-level interactions, the potential applicability of network data using the proposed technique is very large, especially in situations where collecting network data intrusively is costly or prohibitive.

  15. Trace saver: A tool for network service improvement and personalised analysis of user centric statistics

    Science.gov (United States)

    Bilal, Muhammad; Asfand-e-Yar, Mockford, Steve; Khan, Wasiq; Awan, Irfan

    2012-11-01

    Mobile technology is among the fastest growing technologies in today's world with low cost and highly effective benefits. Most important and entertaining areas in mobile technology development and usage are location based services, user friendly networked applications and gaming applications. However, concern towards network operator service provision and improvement has been very low. The portable applications available for a range of mobile operating systems which help improve the network operator services are desirable by the mobile operators. This paper proposes a state of the art mobile application Tracesaver, which provides a great achievement over the barriers in gathering device and network related information, for network operators to improve their network service provision. Tracesaver is available for a broad range of mobile devices with different mobile operating systems and computational capabilities. The availability of Tracesaver in market has proliferated over the last year since it was published. The survey and results show that Tracesaver is being used by millions of mobile users and provides novel ways of network service improvement with its highly user friendly interface.

  16. Analysis of significance of environmental factors in landslide susceptibility modeling: Case study Jemma drainage network, Ethiopia

    Directory of Open Access Journals (Sweden)

    Vít Maca

    2017-06-01

    Full Text Available Aim of the paper is to describe methodology for calculating significance of environmental factors in landslide susceptibility modeling and present result of selected one. As a study area part of a Jemma basin in Ethiopian Highland is used. This locality is highly affected by mass movement processes. In the first part all major factors and their influence are described briefly. Majority of the work focuses on research of other methodologies used in susceptibility models and design of own methodology. This method is unlike most of the methods used completely objective, therefore it is not possible to intervene in the results. In article all inputs and outputs of the method are described as well as all stages of calculations. Results are illustrated on specific examples. In study area most important factor for landslide susceptibility is slope, on the other hand least important is land cover. At the end of article landslide susceptibility map is created. Part of the article is discussion of results and possible improvements of the methodology.

  17. Statistical indicators of collective behavior and functional clusters in gene networks of yeast

    Science.gov (United States)

    Živković, J.; Tadić, B.; Wick, N.; Thurner, S.

    2006-03-01

    We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.

  18. Multilayer network modeling creates opportunities for novel network statistics. Comment on "Network science of biological systems at different scales: A review" by Gosak et al.

    Science.gov (United States)

    Muldoon, Sarah Feldt

    2018-03-01

    As described in the review by Gosak et al., the field of network science has had enormous success in providing new insights into the structure and function of biological systems [1]. In the complex networks framework, system elements are network nodes, and connections between nodes represent some form of interaction between system elements [2]. The flexibility to define network nodes and edges to represent different aspects of biological systems has been employed to model numerous diverse systems at multiple scales.

  19. Using Artificial Neural Networks to Determine Significant Factors Affecting the Pricing of WPT Effluent for Industrial Uses in Isfahan

    Directory of Open Access Journals (Sweden)

    Masoud Mirmohamadsaseghi

    2017-03-01

    Full Text Available The evidence indicates increasing trend of use of municipal wastewater treatment effluent as an alternative source of water both in developed and developing countries. Proper pricing of this unconventional water is one of the most effective economic tools to encourage optimum use of fresh water resources. In this study, artificial neural network is employed to identify and assess the factors affecting effluent tariffs supplied to local industries in Isfahan region. Given the wide variety of factors involved in the ultimate value of wastewater traement plant effluent, an assortment of relevant factors  has been considered in this study; the factors include the population served by the treatment plant, volume of effluent produced, maintenance, repair and replacement. costs of operating plants, topography, different water uses in the region, industrial wastewater collection fees, unit cost of pipe and fittings, and the volumes of water supplied from springs and aqueducts  in the region. Neural network modeling is used as a tool to determine the significance of each factor for pricing effluent. Based on the available data and the neural network models, the effects of different model architectures with different intermediate layers and numbers of nodes in each layer on the price of wastewater were investigated to develop aand adopt a final neural network model. Results indicate that the proposed neural network model enjoys a high potential and has been well capable of determining the weights of the parameter affecting in pricing effluent. Based on the the results of this study, the factors with the greatest role in effluent pricing are unit cost of pipe and fittings, industrial use of water, and the costs of plant maintentance, repair and replacement.

  20. Simulation and Statistical Inference of Stochastic Reaction Networks with Applications to Epidemic Models

    KAUST Repository

    Moraes, Alvaro

    2015-01-01

    Networks (SRNs), that are intended to describe the time evolution of interacting particle systems where one particle interacts with the others through a finite set of reaction channels. SRNs have been mainly developed to model biochemical reactions

  1. The Network Structure of Symptoms of the Diagnostic and Statistical Manual of Mental Disorders

    NARCIS (Netherlands)

    Boschloo, Lynn; van Borkulo, Claudia D.; Rhemtulla, Mijke; Keyes, Katherine M.; Borsboom, Denny; Schoevers, Robert A.

    2015-01-01

    Although current classification systems have greatly contributed to the reliability of psychiatric diagnoses, they ignore the unique role of individual symptoms and, consequently, potentially important information is lost. The network approach, in contrast, assumes that psychopathology results from

  2. The network structure of symptoms of the diagnostic and statistical manual of mental disorders

    NARCIS (Netherlands)

    Boschloo, L.; van Borkulo, C.D.; Rhemtulla, M.; Keyes, K.M.; Borsboom, D.; Schoevers, R.A.

    2015-01-01

    Although current classification systems have greatly contributed to the reliability of psychiatric diagnoses, they ignore the unique role of individual symptoms and, consequently, potentially important information is lost. The network approach, in contrast, assumes that psychopathology results from

  3. Statistically validated mobile communication networks: Evolution of motifs in European and Chinese data

    OpenAIRE

    Li, Ming-Xia; Palchykov, Vasyl; Jiang, Zhi-Qiang; Kaski, Kimmo; Kertész, Janos; Miccichè, Salvatore; Tumminello, Michele; Zhou, Wei-Xing; Mantegna, Rosario N.

    2014-01-01

    Big data open up unprecedented opportunities to investigate complex systems including the society. In particular, communication data serve as major sources for computational social sciences but they have to be cleaned and filtered as they may contain spurious information due to recording errors as well as interactions, like commercial and marketing activities, not directly related to the social network. The network constructed from communication data can only be considered as a proxy for the ...

  4. Temporal Statistical Analysis of Degree Distributions in an Undirected Landline Phone Call Network Graph Series

    Directory of Open Access Journals (Sweden)

    Orgeta Gjermëni

    2017-10-01

    Full Text Available This article aims to provide new results about the intraday degree sequence distribution considering phone call network graph evolution in time. More specifically, it tackles the following problem. Given a large amount of landline phone call data records, what is the best way to summarize the distinct number of calling partners per client per day? In order to answer this question, a series of undirected phone call network graphs is constructed based on data from a local telecommunication source in Albania. All network graphs of the series are simplified. Further, a longitudinal temporal study is made on this network graphs series related to the degree distributions. Power law and log-normal distribution fittings on the degree sequence are compared on each of the network graphs of the series. The maximum likelihood method is used to estimate the parameters of the distributions, and a Kolmogorov–Smirnov test associated with a p-value is used to define the plausible models. A direct distribution comparison is made through a Vuong test in the case that both distributions are plausible. Another goal was to describe the parameters’ distributions’ shape. A Shapiro-Wilk test is used to test the normality of the data, and measures of shape are used to define the distributions’ shape. Study findings suggested that log-normal distribution models better the intraday degree sequence data of the network graphs. It is not possible to say that the distributions of log-normal parameters are normal.

  5. The Network Structure of Symptoms of the Diagnostic and Statistical Manual of Mental Disorders.

    Science.gov (United States)

    Boschloo, Lynn; van Borkulo, Claudia D; Rhemtulla, Mijke; Keyes, Katherine M; Borsboom, Denny; Schoevers, Robert A

    2015-01-01

    Although current classification systems have greatly contributed to the reliability of psychiatric diagnoses, they ignore the unique role of individual symptoms and, consequently, potentially important information is lost. The network approach, in contrast, assumes that psychopathology results from the causal interplay between psychiatric symptoms and focuses specifically on these symptoms and their complex associations. By using a sophisticated network analysis technique, this study constructed an empirically based network structure of 120 psychiatric symptoms of twelve major DSM-IV diagnoses using cross-sectional data of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC, second wave; N = 34,653). The resulting network demonstrated that symptoms within the same diagnosis showed differential associations and indicated that the strategy of summing symptoms, as in current classification systems, leads to loss of information. In addition, some symptoms showed strong connections with symptoms of other diagnoses, and these specific symptom pairs, which both concerned overlapping and non-overlapping symptoms, may help to explain the comorbidity across diagnoses. Taken together, our findings indicated that psychopathology is very complex and can be more adequately captured by sophisticated network models than current classification systems. The network approach is, therefore, promising in improving our understanding of psychopathology and moving our field forward.

  6. A robust and coherent network statistic for detecting gravitational waves from inspiralling compact binaries in non-Gaussian noise

    CERN Document Server

    Bose, S

    2002-01-01

    The robust statistic proposed by Creighton (Creighton J D E 1999 Phys. Rev. D 60 021101) and Allen et al (Allen et al 2001 Preprint gr-gc/010500) for the detection of stationary non-Gaussian noise is briefly reviewed. We compute the robust statistic for generic weak gravitational-wave signals in the mixture-Gaussian noise model to an accuracy higher than in those analyses, and reinterpret its role. Specifically, we obtain the coherent statistic for detecting gravitational-wave signals from inspiralling compact binaries with an arbitrary network of earth-based interferometers. Finally, we show that excess computational costs incurred owing to non-Gaussianity is negligible compared to the cost of detection in Gaussian noise.

  7. Performance studies of GooFit on GPUs vs RooFit on CPUs while estimating the statistical significance of a new physical signal

    Science.gov (United States)

    Di Florio, Adriano

    2017-10-01

    In order to test the computing capabilities of GPUs with respect to traditional CPU cores a high-statistics toy Monte Carlo technique has been implemented both in ROOT/RooFit and GooFit frameworks with the purpose to estimate the statistical significance of the structure observed by CMS close to the kinematical boundary of the J/ψϕ invariant mass in the three-body decay B + → J/ψϕK +. GooFit is a data analysis open tool under development that interfaces ROOT/RooFit to CUDA platform on nVidia GPU. The optimized GooFit application running on GPUs hosted by servers in the Bari Tier2 provides striking speed-up performances with respect to the RooFit application parallelised on multiple CPUs by means of PROOF-Lite tool. The considerable resulting speed-up, evident when comparing concurrent GooFit processes allowed by CUDA Multi Process Service and a RooFit/PROOF-Lite process with multiple CPU workers, is presented and discussed in detail. By means of GooFit it has also been possible to explore the behaviour of a likelihood ratio test statistic in different situations in which the Wilks Theorem may or may not apply because its regularity conditions are not satisfied.

  8. The significance of Good Chair as part of children’s school and home environment in the preventive treatment of body statistics distortions

    OpenAIRE

    Mirosław Mrozkowiak; Hanna Żukowska

    2015-01-01

    Mrozkowiak Mirosław, Żukowska Hanna. Znaczenie Dobrego Krzesła, jako elementu szkolnego i domowego środowiska ucznia, w profilaktyce zaburzeń statyki postawy ciała = The significance of Good Chair as part of children’s school and home environment in the preventive treatment of body statistics distortions. Journal of Education, Health and Sport. 2015;5(7):179-215. ISSN 2391-8306. DOI 10.5281/zenodo.19832 http://ojs.ukw.edu.pl/index.php/johs/article/view/2015%3B5%287%29%3A179-215 https:...

  9. Test the Overall Significance of p-values by Using Joint Tail Probability of Ordered p-values as Test Statistic

    OpenAIRE

    Fang, Yongxiang; Wit, Ernst

    2008-01-01

    Fisher’s combined probability test is the most commonly used method to test the overall significance of a set independent p-values. However, it is very obviously that Fisher’s statistic is more sensitive to smaller p-values than to larger p-value and a small p-value may overrule the other p-values and decide the test result. This is, in some cases, viewed as a flaw. In order to overcome this flaw and improve the power of the test, the joint tail probability of a set p-values is proposed as a ...

  10. Development of infill drilling recovery models for carbonates reservoirs using neural networks and multivariate statistical as a novel method

    International Nuclear Information System (INIS)

    Soto, R; Wu, Ch. H; Bubela, A M

    1999-01-01

    This work introduces a novel methodology to improve reservoir characterization models. In this methodology we integrated multivariate statistical analyses, and neural network models for forecasting the infill drilling ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations in west Texas. Development of the oil recovery forecast models help us to understand the relative importance of dominant reservoir characteristics and operational variables, reproduce recoveries for units included in the database, forecast recoveries for possible new units in similar geological setting, and make operational (infill drilling) decisions. The variety of applications demands the creation of multiple recovery forecast models. We have developed intelligent software (Soto, 1998), oilfield intelligence (01), as an engineering tool to improve the characterization of oil and gas reservoirs. 01 integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphic design, and inference engine modules. One of the challenges in this research was to identify the dominant and the optimum number of independent variables. The variables include porosity, permeability, water saturation, depth, area, net thickness, gross thickness, formation volume factor, pressure, viscosity, API gravity, number of wells in initial water flooding, number of wells for primary recovery, number of infill wells over the initial water flooding, PRUR, IWUR, and IDUR. Multivariate principal component analysis is used to identify the dominant and the optimum number of independent variables. We compared the results from neural network models with the non-parametric approach. The advantage of the non-parametric regression is that it is easy to use. The disadvantage is that it retains a large variance of forecast results for a particular data set. We also used neural network concepts to develop recovery

  11. A statistical network analysis of the HIV/AIDS epidemics in Cuba

    OpenAIRE

    Clémençon, Stéphan; De Arazoza, Hector; Rossi, Fabrice; Tran, Viet Chi

    2014-01-01

    International audience; The Cuban contact-tracing detection system set up in 1986 allowed the reconstruction and analysis of the sexual network underlying the epidemic (5,389 vertices and 4,073 edges, giant component of 2,386 nodes and 3,168 edges), shedding light onto the spread of HIV and the role of contact-tracing. Clustering based on modularity optimization provides a better visualization and understanding of the network, in combination with the study of covariates. The graph has a globa...

  12. An efficient forward-reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

    KAUST Repository

    Vilanova, Pedro

    2016-01-01

    reaction networks (SRNs). We apply this stochastic representation to the computation of efficient approximations of expected values of functionals of SRN bridges, i.e., SRNs conditional on their values in the extremes of given time-intervals. We then employ

  13. Statistical Classification for Cognitive Diagnostic Assessment: An Artificial Neural Network Approach

    Science.gov (United States)

    Cui, Ying; Gierl, Mark; Guo, Qi

    2016-01-01

    The purpose of the current investigation was to describe how the artificial neural networks (ANNs) can be used to interpret student performance on cognitive diagnostic assessments (CDAs) and evaluate the performances of ANNs using simulation results. CDAs are designed to measure student performance on problem-solving tasks and provide useful…

  14. Interference statistics and capacity analysis for uplink transmission in two-tier small cell networks: A geometric probability approach

    KAUST Repository

    Tabassum, Hina

    2014-07-01

    This paper presents a novel framework to derive the statistics of the interference considering dedicated and shared spectrum access for uplink transmission in two-tier small cell networks such as the macrocell-femtocell networks. The framework exploits the distance distributions from geometric probability theory to characterize the uplink interference while considering a traditional grid-model set-up for macrocells along with the randomly deployed femtocells. The derived expressions capture the impact of path-loss, composite shadowing and fading, uniform and non-uniform traffic loads, spatial distribution of femtocells, and partial and full spectral reuse among femtocells. Considering dedicated spectrum access, first, we derive the statistics of co-tier interference incurred at both femtocell and macrocell base stations (BSs) from a single interferer by approximating generalized- K composite fading distribution with the tractable Gamma distribution. We then derive the distribution of the number of interferers considering partial spectral reuse and moment generating function (MGF) of the cumulative interference for both partial and full spectral reuse scenarios. Next, we derive the statistics of the cross-tier interference at both femtocell and macrocell BSs considering shared spectrum access. Finally, we utilize the derived expressions to analyze the capacity in both dedicated and shared spectrum access scenarios. The derived expressions are validated by the Monte Carlo simulations. Numerical results are generated to assess the feasibility of shared and dedicated spectrum access in femtocells under varying traffic load and spectral reuse scenarios. © 2014 IEEE.

  15. Networks of reader and country status: an analysis of Mendeley reader statistics

    Directory of Open Access Journals (Sweden)

    Robin Haunschild

    2015-11-01

    Full Text Available The number of papers published in journals indexed by the Web of Science core collection is steadily increasing. In recent years, nearly two million new papers were published each year; somewhat more than one million papers when primary research papers are considered only (articles and reviews are the document types where primary research is usually reported or reviewed. However, who reads these papers? More precisely, which groups of researchers from which (self-assigned scientific disciplines and countries are reading these papers? Is it possible to visualize readership patterns for certain countries, scientific disciplines, or academic status groups? One popular method to answer these questions is a network analysis. In this study, we analyze Mendeley readership data of a set of 1,133,224 articles and 64,960 reviews with publication year 2012 to generate three different networks: (1 The network based on disciplinary affiliations of Mendeley readers contains four groups: (i biology, (ii social sciences and humanities (including relevant computer sciences, (iii bio-medical sciences, and (iv natural sciences and engineering. In all four groups, the category with the addition “miscellaneous” prevails. (2 The network of co-readers in terms of professional status shows that a common interest in papers is mainly shared among PhD students, Master’s students, and postdocs. (3 The country network focusses on global readership patterns: a group of 53 nations is identified as core to the scientific enterprise, including Russia and China as well as two thirds of the OECD (Organisation for Economic Co-operation and Development countries.

  16. Analysis of tribological behaviour of zirconia reinforced Al-SiC hybrid composites using statistical and artificial neural network technique

    Science.gov (United States)

    Arif, Sajjad; Tanwir Alam, Md; Ansari, Akhter H.; Bilal Naim Shaikh, Mohd; Arif Siddiqui, M.

    2018-05-01

    The tribological performance of aluminium hybrid composites reinforced with micro SiC (5 wt%) and nano zirconia (0, 3, 6 and 9 wt%) fabricated through powder metallurgy technique were investigated using statistical and artificial neural network (ANN) approach. The influence of zirconia reinforcement, sliding distance and applied load were analyzed with test based on full factorial design of experiments. Analysis of variance (ANOVA) was used to evaluate the percentage contribution of each process parameters on wear loss. ANOVA approach suggested that wear loss be mainly influenced by sliding distance followed by zirconia reinforcement and applied load. Further, a feed forward back propagation neural network was applied on input/output date for predicting and analyzing the wear behaviour of fabricated composite. A very close correlation between experimental and ANN output were achieved by implementing the model. Finally, ANN model was effectively used to find the influence of various control factors on wear behaviour of hybrid composites.

  17. An efficient forward–reverse expectation-maximization algorithm for statistical inference in stochastic reaction networks

    KAUST Repository

    Bayer, Christian; Moraes, Alvaro; Tempone, Raul; Vilanova, Pedro

    2016-01-01

    then employ this SRN bridge-generation technique to the statistical inference problem of approximating reaction propensities based on discretely observed data. To this end, we introduce a two-phase iterative inference method in which, during phase I, we solve

  18. Localization Improvement in Wireless Sensor Networks Using a New Statistical Channel Model

    DEFF Research Database (Denmark)

    Karimi Alavijeh, Amir; Ramezani, Hossein; Karimi Alavijeh, Ali

    2018-01-01

    of this statistical relationship, we have investigated the localization problem of a hidden node using extended Kalman filter (EKF). Compared to the conventional EKF in which the covariance matrix of measurement noise is fixed, this matrix can be updated online using the proposed model. The experimental...

  19. Statistical significance approximation in local trend analysis of high-throughput time-series data using the theory of Markov chains.

    Science.gov (United States)

    Xia, Li C; Ai, Dongmei; Cram, Jacob A; Liang, Xiaoyi; Fuhrman, Jed A; Sun, Fengzhu

    2015-09-21

    Local trend (i.e. shape) analysis of time series data reveals co-changing patterns in dynamics of biological systems. However, slow permutation procedures to evaluate the statistical significance of local trend scores have limited its applications to high-throughput time series data analysis, e.g., data from the next generation sequencing technology based studies. By extending the theories for the tail probability of the range of sum of Markovian random variables, we propose formulae for approximating the statistical significance of local trend scores. Using simulations and real data, we show that the approximate p-value is close to that obtained using a large number of permutations (starting at time points >20 with no delay and >30 with delay of at most three time steps) in that the non-zero decimals of the p-values obtained by the approximation and the permutations are mostly the same when the approximate p-value is less than 0.05. In addition, the approximate p-value is slightly larger than that based on permutations making hypothesis testing based on the approximate p-value conservative. The approximation enables efficient calculation of p-values for pairwise local trend analysis, making large scale all-versus-all comparisons possible. We also propose a hybrid approach by integrating the approximation and permutations to obtain accurate p-values for significantly associated pairs. We further demonstrate its use with the analysis of the Polymouth Marine Laboratory (PML) microbial community time series from high-throughput sequencing data and found interesting organism co-occurrence dynamic patterns. The software tool is integrated into the eLSA software package that now provides accelerated local trend and similarity analysis pipelines for time series data. The package is freely available from the eLSA website: http://bitbucket.org/charade/elsa.

  20. A compound memristive synapse model for statistical learning through STDP in spiking neural networks.

    Science.gov (United States)

    Bill, Johannes; Legenstein, Robert

    2014-01-01

    Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP) with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network's spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic architectures.

  1. Statistical mechanics of a multiconnected Hopfield neural-network model in a transverse field

    International Nuclear Information System (INIS)

    Ma, Y.; Gong, C.

    1995-01-01

    The Hopfield neural-network model with p-spin interactions in the presence of a transverse field is introduced and solved exactly in the limit p→∞. In the phase diagrams drawn as a function of the temperature, the important results such as reentrance are found, and the effects of the quantum fluctuations on the phase transitions, the retrieval phase, and the storage ratio α are examined

  2. Statistical analysis of passenger-crowding in bus transport network of Harbin

    Science.gov (United States)

    Hu, Baoyu; Feng, Shumin; Li, Jinyang; Zhao, Hu

    2018-01-01

    Passenger flow data is indispensable but rare in the study of public transport networks. In this study, we focus on the passenger-crowding characteristics of the bus transport network of Harbin (BTN-H) based on passenger flow investigation. The three frequency histograms for all the uplinks and downlinks in Harbin are presented, including passengers on the bus at each section, crowding coefficients, and position parameters of crowded sections. The differences in crowding position are analyzed on each route. The distributions of degree and crowding degree (in directed space L) follow an exponential law. The new finding indicates that there are many stations with few crowded sections and a few stations with many crowded sections. The distributions of path length and crowded length (in directed space P) are presented based on the minimum transfer times, and it is found that they can be fitted by a composite Gaussian function and a Gaussian function, respectively. The stations and paths can be divided into three crowd levels. We conclude that BTN-H is crowded from a network-based perspective.

  3. Fault detection and diagnosis using statistical control charts and artificial neural networks

    International Nuclear Information System (INIS)

    Leger, R.P.; Garland, W.J.; Poehlman, W.F.S.

    1995-01-01

    In order to operate a successful plant or process, continuous improvement must be made in the areas of safety, quality and reliability. Central to this continuous improvement is the early or proactive detection and correct diagnosis of process faults. This research examines the feasibility of using Cumulative Summation (CUSUM) Control Charts and artificial neural networks together for fault detection and diagnosis (FDD). The proposed FDD strategy was tested on a model of the heat transport system of a CANDU nuclear reactor. The results of the investigation indicate that a FDD system using CUSUM Control Charts and a Radial Basis Function (RBF) neural network is not only feasible but also of promising potential. The control charts and neural network are linked together by using a characteristic fault signature pattern for each fault which is to be detected and diagnosed. When tested, the system was able to eliminate all false alarms at steady state, promptly detect 6 fault conditions and correctly diagnose 5 out of the 6 faults. The diagnosis for the sixth fault was inconclusive. (author). 9 refs., 6 tabs., 7 figs

  4. Evaluating statistical and clinical significance of intervention effects in single-case experimental designs: an SPSS method to analyze univariate data.

    Science.gov (United States)

    Maric, Marija; de Haan, Else; Hogendoorn, Sanne M; Wolters, Lidewij H; Huizenga, Hilde M

    2015-03-01

    Single-case experimental designs are useful methods in clinical research practice to investigate individual client progress. Their proliferation might have been hampered by methodological challenges such as the difficulty applying existing statistical procedures. In this article, we describe a data-analytic method to analyze univariate (i.e., one symptom) single-case data using the common package SPSS. This method can help the clinical researcher to investigate whether an intervention works as compared with a baseline period or another intervention type, and to determine whether symptom improvement is clinically significant. First, we describe the statistical method in a conceptual way and show how it can be implemented in SPSS. Simulation studies were performed to determine the number of observation points required per intervention phase. Second, to illustrate this method and its implications, we present a case study of an adolescent with anxiety disorders treated with cognitive-behavioral therapy techniques in an outpatient psychotherapy clinic, whose symptoms were regularly assessed before each session. We provide a description of the data analyses and results of this case study. Finally, we discuss the advantages and shortcomings of the proposed method. Copyright © 2014. Published by Elsevier Ltd.

  5. An initiative to improve the management of clinically significant test results in a large health care network.

    Science.gov (United States)

    Roy, Christopher L; Rothschild, Jeffrey M; Dighe, Anand S; Schiff, Gordon D; Graydon-Baker, Erin; Lenoci-Edwards, Jennifer; Dwyer, Cheryl; Khorasani, Ramin; Gandhi, Tejal K

    2013-11-01

    The failure of providers to communicate and follow up clinically significant test results (CSTR) is an important threat to patient safety. The Massachusetts Coalition for the Prevention of Medical Errors has endorsed the creation of systems to ensure that results can be received and acknowledged. In 2008 a task force was convened that represented clinicians, laboratories, radiology, patient safety, risk management, and information systems in a large health care network with the goals of providing recommendations and a road map for improvement in the management of CSTR and of implementing this improvement plan during the sub-force sequent five years. In drafting its charter, the task broadened the scope from "critical" results to "clinically significant" ones; clinically significant was defined as any result that requires further clinical action to avoid morbidity or mortality, regardless of the urgency of that action. The task force recommended four key areas for improvement--(1) standardization of policies and definitions, (2) robust identification of the patient's care team, (3) enhanced results management/tracking systems, and (4) centralized quality reporting and metrics. The task force faced many challenges in implementing these recommendations, including disagreements on definitions of CSTR and on who should have responsibility for CSTR, changes to established work flows, limitations of resources and of existing information systems, and definition of metrics. This large-scale effort to improve the communication and follow-up of CSTR in a health care network continues with ongoing work to address implementation challenges, refine policies, prepare for a new clinical information system platform, and identify new ways to measure the extent of this important safety problem.

  6. The buildings networks' energy statistics 2003; Bygningsnettverkets energistatistikk 2003

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The report presents analyses and statistics for the energy consumption in various types of building, mostly commercial buildings. It shows how the energy consumption varies with the type of heating system, cooling, size of building, age etc. Also shown are figures for the energy consumption in relation to function, such as number of students in schools, number of people in nursing homes etc. The climate in Norway was the 6th warmest in 137 years. Energy consumption is given for different climatic zones.

  7. Prognostic significance of social network, social support and loneliness for course of major depressive disorder in adulthood and old age.

    Science.gov (United States)

    van den Brink, R H S; Schutter, N; Hanssen, D J C; Elzinga, B M; Rabeling-Keus, I M; Stek, M L; Comijs, H C; Penninx, B W J H; Oude Voshaar, R C

    2018-06-01

    Poor recovery from depressive disorder has been shown to be related to low perceived social support and loneliness, but not to social network size or frequency of social interactions. Some studies suggest that the significance of social relationships for depression course may be greater in younger than in older patients, and may differ between men and women. None of the studies examined to what extent the different aspects of social relationships have unique or overlapping predictive values for depression course. It is the aim of the present study to examine the differential predictive values of social network characteristics, social support and loneliness for the course of depressive disorder, and to test whether these predictive associations are modified by gender or age. Two naturalistic cohort studies with the same design and overlapping instruments were combined to obtain a study sample of 1474 patients with a major depressive disorder, of whom 1181 (80.1%) could be studied over a 2-year period. Social relational variables were assessed at baseline. Two aspects of depression course were studied: remission at 2-year follow-up and change in depression severity over the follow-up period. By means of logistic regression and random coefficient analysis, the individual and combined predictive values of the different social relational variables for depression course were studied, controlling for potential confounders and checking for effect modification by age (below 60 v. 60 years or older) and gender. Multiple aspects of the social network, social support and loneliness were related to depression course, independent of potential confounders - including depression severity - but when combined, their predictive values were found to overlap to a large extent. Only the social network characteristic of living in a larger household, the social support characteristic of few negative experiences with the support from a partner or close friend, and limited feelings of

  8. Spectral and cross-spectral analysis of uneven time series with the smoothed Lomb-Scargle periodogram and Monte Carlo evaluation of statistical significance

    Science.gov (United States)

    Pardo-Igúzquiza, Eulogio; Rodríguez-Tovar, Francisco J.

    2012-12-01

    Many spectral analysis techniques have been designed assuming sequences taken with a constant sampling interval. However, there are empirical time series in the geosciences (sediment cores, fossil abundance data, isotope analysis, …) that do not follow regular sampling because of missing data, gapped data, random sampling or incomplete sequences, among other reasons. In general, interpolating an uneven series in order to obtain a succession with a constant sampling interval alters the spectral content of the series. In such cases it is preferable to follow an approach that works with the uneven data directly, avoiding the need for an explicit interpolation step. The Lomb-Scargle periodogram is a popular choice in such circumstances, as there are programs available in the public domain for its computation. One new computer program for spectral analysis improves the standard Lomb-Scargle periodogram approach in two ways: (1) It explicitly adjusts the statistical significance to any bias introduced by variance reduction smoothing, and (2) it uses a permutation test to evaluate confidence levels, which is better suited than parametric methods when neighbouring frequencies are highly correlated. Another novel program for cross-spectral analysis offers the advantage of estimating the Lomb-Scargle cross-periodogram of two uneven time series defined on the same interval, and it evaluates the confidence levels of the estimated cross-spectra by a non-parametric computer intensive permutation test. Thus, the cross-spectrum, the squared coherence spectrum, the phase spectrum, and the Monte Carlo statistical significance of the cross-spectrum and the squared-coherence spectrum can be obtained. Both of the programs are written in ANSI Fortran 77, in view of its simplicity and compatibility. The program code is of public domain, provided on the website of the journal (http://www.iamg.org/index.php/publisher/articleview/frmArticleID/112/). Different examples (with simulated and

  9. A compound memristive synapse model for statistical learning through STDP in spiking neural networks

    Directory of Open Access Journals (Sweden)

    Johannes eBill

    2014-12-01

    Full Text Available Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compound memristive synapse, that circumvents this problem by the use of memristors with binary memristive states. A compound memristive synapse employs multiple bistable memristors in parallel to jointly form one synapse, thereby providing a spectrum of synaptic efficacies. We investigate the computational implications of synaptic plasticity in the compound synapse by integrating the recently observed phenomenon of stochastic filament formation into an abstract model of stochastic switching. Using this abstract model, we first show how standard pulsing schemes give rise to spike-timing dependent plasticity (STDP with a stabilizing weight dependence in compound synapses. In a next step, we study unsupervised learning with compound synapses in networks of spiking neurons organized in a winner-take-all architecture. Our theoretical analysis reveals that compound-synapse STDP implements generalized Expectation-Maximization in the spiking network. Specifically, the emergent synapse configuration represents the most salient features of the input distribution in a Mixture-of-Gaussians generative model. Furthermore, the network’s spike response to spiking input streams approximates a well-defined Bayesian posterior distribution. We show in computer simulations how such networks learn to represent high-dimensional distributions over images of handwritten digits with high fidelity even in presence of substantial device variations and under severe noise conditions. Therefore, the compound memristive synapse may provide a synaptic design principle for future neuromorphic

  10. Assortative and dissortative priorities for game interaction and strategy adaptation significantly bolster network reciprocity in the prisoner’s dilemma

    International Nuclear Information System (INIS)

    Tanimoto, Jun

    2014-01-01

    In 2 × 2 prisoner’s dilemma games, network reciprocity is one mechanism for adding social viscosity, which leads to cooperative equilibrium. Here we show that combining the process for selecting a gaming partner with the process for selecting an adaptation partner significantly enhances cooperation, even though such selection processes require additional costs to collect further information concerning which neighbor should be chosen. Based on elaborate investigations of the dynamics generated by our model, we find that high levels of cooperation result from two kinds of behavior: cooperators tend to interact with cooperators to prevent being exploited by defectors and defectors tend to choose cooperators to exploit despite the possibility that some defectors convert to cooperators. (paper)

  11. Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network.

    Science.gov (United States)

    Yu, Ying; Wang, Yirui; Gao, Shangce; Tang, Zheng

    2017-01-01

    With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model) is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model) to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient.

  12. Statistical Modeling and Prediction for Tourism Economy Using Dendritic Neural Network

    Directory of Open Access Journals (Sweden)

    Ying Yu

    2017-01-01

    Full Text Available With the impact of global internationalization, tourism economy has also been a rapid development. The increasing interest aroused by more advanced forecasting methods leads us to innovate forecasting methods. In this paper, the seasonal trend autoregressive integrated moving averages with dendritic neural network model (SA-D model is proposed to perform the tourism demand forecasting. First, we use the seasonal trend autoregressive integrated moving averages model (SARIMA model to exclude the long-term linear trend and then train the residual data by the dendritic neural network model and make a short-term prediction. As the result showed in this paper, the SA-D model can achieve considerably better predictive performances. In order to demonstrate the effectiveness of the SA-D model, we also use the data that other authors used in the other models and compare the results. It also proved that the SA-D model achieved good predictive performances in terms of the normalized mean square error, absolute percentage of error, and correlation coefficient.

  13. Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing

    Energy Technology Data Exchange (ETDEWEB)

    Esen, Hikmet; Esen, Mehmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey); Inalli, Mustafa [Department of Mechanical Engineering, Faculty of Engineering, Firat University, 23279 Elazig (Turkey); Sengur, Abdulkadir [Department of Electronic and Computer Science, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2008-04-15

    The objective of this work is to improve the performance of an artificial neural network (ANN) with a statistical weighted pre-processing (SWP) method to learn to predict ground source heat pump (GCHP) systems with the minimum data set. Experimental studies were completed to obtain training and test data. Air temperatures entering/leaving condenser unit, water-antifreeze solution entering/leaving the horizontal ground heat exchangers and ground temperatures (1 and 2 m) were used as input layer, while the output is coefficient of performance (COP) of system. Some statistical methods, such as the root-mean squared (RMS), the coefficient of multiple determinations (R{sup 2}) and the coefficient of variation (cov) is used to compare predicted and actual values for model validation. It is found that RMS value is 0.074, R{sup 2} value is 0.9999 and cov value is 2.22 for SCG6 algorithm of only ANN structure. It is also found that RMS value is 0.002, R{sup 2} value is 0.9999 and cov value is 0.076 for SCG6 algorithm of SWP-ANN structure. The simulation results show that the SWP based networks can be used an alternative way in these systems. Therefore, instead of limited experimental data found in literature, faster and simpler solutions are obtained using hybridized structures such as SWP-ANN. (author)

  14. An Overview of a Class of Clock Synchronization Algorithms for Wireless Sensor Networks: A Statistical Signal Processing Perspective

    Directory of Open Access Journals (Sweden)

    Xu Wang

    2015-08-01

    Full Text Available Recently, wireless sensor networks (WSNs have drawn great interest due to their outstanding monitoring and management potential in medical, environmental and industrial applications. Most of the applications that employ WSNs demand all of the sensor nodes to run on a common time scale, a requirement that highlights the importance of clock synchronization. The clock synchronization problem in WSNs is inherently related to parameter estimation. The accuracy of clock synchronization algorithms depends essentially on the statistical properties of the parameter estimation algorithms. Recently, studies dedicated to the estimation of synchronization parameters, such as clock offset and skew, have begun to emerge in the literature. The aim of this article is to provide an overview of the state-of-the-art clock synchronization algorithms for WSNs from a statistical signal processing point of view. This article focuses on describing the key features of the class of clock synchronization algorithms that exploit the traditional two-way message (signal exchange mechanism. Upon introducing the two-way message exchange mechanism, the main clock offset estimation algorithms for pairwise synchronization of sensor nodes are first reviewed, and their performance is compared. The class of fully-distributed clock offset estimation algorithms for network-wide synchronization is then surveyed. The paper concludes with a list of open research problems pertaining to clock synchronization of WSNs.

  15. A statistical intercomparison between 'urban' and 'rural' precipitation chemistry data from Greater Manchester and the two nearby secondary national network sites in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S.; Longhurst, J.W.S. (Manchester Polytechnic, Manchester (United Kingdom). Acid Rain Information Centre, Dept. of Environmental and Graphical Studies)

    1992-11-01

    Precipitation chemistry data from a dense urban monitoring network in Greater Manchester, northwest England, were compared with interpolated values from the U.K. secondary national acid deposition monitoring network for the year 1988. Differences were found to be small. However, when data from individual sites from the Greater Manchester network were compared with data from the two nearest secondary national network sites, significant differences were found using simple and complex statistical analyses. Precipitation chemistry at rural sites could be similar to that at urban sites, but the sources of some ions were thought to be different. The synoptic-scale gradients of precipitation chemistry, as shown by the secondary national network, also accounted for some of the differences. 34 refs., 7 figs., 8 tabs.

  16. Search for transient ultralight dark matter signatures with networks of precision measurement devices using a Bayesian statistics method

    Science.gov (United States)

    Roberts, B. M.; Blewitt, G.; Dailey, C.; Derevianko, A.

    2018-04-01

    We analyze the prospects of employing a distributed global network of precision measurement devices as a dark matter and exotic physics observatory. In particular, we consider the atomic clocks of the global positioning system (GPS), consisting of a constellation of 32 medium-Earth orbit satellites equipped with either Cs or Rb microwave clocks and a number of Earth-based receiver stations, some of which employ highly-stable H-maser atomic clocks. High-accuracy timing data is available for almost two decades. By analyzing the satellite and terrestrial atomic clock data, it is possible to search for transient signatures of exotic physics, such as "clumpy" dark matter and dark energy, effectively transforming the GPS constellation into a 50 000 km aperture sensor array. Here we characterize the noise of the GPS satellite atomic clocks, describe the search method based on Bayesian statistics, and test the method using simulated clock data. We present the projected discovery reach using our method, and demonstrate that it can surpass the existing constrains by several order of magnitude for certain models. Our method is not limited in scope to GPS or atomic clock networks, and can also be applied to other networks of precision measurement devices.

  17. Statistical parity-time-symmetric lasing in an optical fibre network.

    Science.gov (United States)

    Jahromi, Ali K; Hassan, Absar U; Christodoulides, Demetrios N; Abouraddy, Ayman F

    2017-11-07

    Parity-time (PT)-symmetry in optics is a condition whereby the real and imaginary parts of the refractive index across a photonic structure are deliberately balanced. This balance can lead to interesting optical phenomena, such as unidirectional invisibility, loss-induced lasing, single-mode lasing from multimode resonators, and non-reciprocal effects in conjunction with nonlinearities. Because PT-symmetry has been thought of as fragile, experimental realisations to date have been usually restricted to on-chip micro-devices. Here, we demonstrate that certain features of PT-symmetry are sufficiently robust to survive the statistical fluctuations associated with a macroscopic optical cavity. We examine the lasing dynamics in optical fibre-based coupled cavities more than a kilometre in length with balanced gain and loss. Although fluctuations can detune the cavity by more than the free spectral range, the behaviour of the lasing threshold and the laser power is that expected from a PT-stable system. Furthermore, we observe a statistical symmetry breaking upon varying the cavity loss.

  18. Detection by voxel-wise statistical analysis of significant changes in regional cerebral glucose uptake in an APP/PS1 transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Dubois, Albertine; Hérard, Anne-Sophie; Delatour, Benoît; Hantraye, Philippe; Bonvento, Gilles; Dhenain, Marc; Delzescaux, Thierry

    2010-06-01

    Biomarkers and technologies similar to those used in humans are essential for the follow-up of Alzheimer's disease (AD) animal models, particularly for the clarification of mechanisms and the screening and validation of new candidate treatments. In humans, changes in brain metabolism can be detected by 1-deoxy-2-[(18)F] fluoro-D-glucose PET (FDG-PET) and assessed in a user-independent manner with dedicated software, such as Statistical Parametric Mapping (SPM). FDG-PET can be carried out in small animals, but its resolution is low as compared to the size of rodent brain structures. In mouse models of AD, changes in cerebral glucose utilization are usually detected by [(14)C]-2-deoxyglucose (2DG) autoradiography, but this requires prior manual outlining of regions of interest (ROI) on selected sections. Here, we evaluate the feasibility of applying the SPM method to 3D autoradiographic data sets mapping brain metabolic activity in a transgenic mouse model of AD. We report the preliminary results obtained with 4 APP/PS1 (64+/-1 weeks) and 3 PS1 (65+/-2 weeks) mice. We also describe new procedures for the acquisition and use of "blockface" photographs and provide the first demonstration of their value for the 3D reconstruction and spatial normalization of post mortem mouse brain volumes. Despite this limited sample size, our results appear to be meaningful, consistent, and more comprehensive than findings from previously published studies based on conventional ROI-based methods. The establishment of statistical significance at the voxel level, rather than with a user-defined ROI, makes it possible to detect more reliably subtle differences in geometrically complex regions, such as the hippocampus. Our approach is generic and could be easily applied to other biomarkers and extended to other species and applications. Copyright 2010 Elsevier Inc. All rights reserved.

  19. A Tsallis’ statistics based neural network model for novel word learning

    Science.gov (United States)

    Hadzibeganovic, Tarik; Cannas, Sergio A.

    2009-03-01

    We invoke the Tsallis entropy formalism, a nonextensive entropy measure, to include some degree of non-locality in a neural network that is used for simulation of novel word learning in adults. A generalization of the gradient descent dynamics, realized via nonextensive cost functions, is used as a learning rule in a simple perceptron. The model is first investigated for general properties, and then tested against the empirical data, gathered from simple memorization experiments involving two populations of linguistically different subjects. Numerical solutions of the model equations corresponded to the measured performance states of human learners. In particular, we found that the memorization tasks were executed with rather small but population-specific amounts of nonextensivity, quantified by the entropic index q. Our findings raise the possibility of using entropic nonextensivity as a means of characterizing the degree of complexity of learning in both natural and artificial systems.

  20. Statistical investigation of avalanches of three-dimensional small-world networks and their boundary and bulk cross-sections

    Science.gov (United States)

    Najafi, M. N.; Dashti-Naserabadi, H.

    2018-03-01

    In many situations we are interested in the propagation of energy in some portions of a three-dimensional system with dilute long-range links. In this paper, a sandpile model is defined on the three-dimensional small-world network with real dissipative boundaries and the energy propagation is studied in three dimensions as well as the two-dimensional cross-sections. Two types of cross-sections are defined in the system, one in the bulk and another in the system boundary. The motivation of this is to make clear how the statistics of the avalanches in the bulk cross-section tend to the statistics of the dissipative avalanches, defined in the boundaries as the concentration of long-range links (α ) increases. This trend is numerically shown to be a power law in a manner described in the paper. Two regimes of α are considered in this work. For sufficiently small α s the dominant behavior of the system is just like that of the regular BTW, whereas for the intermediate values the behavior is nontrivial with some exponents that are reported in the paper. It is shown that the spatial extent up to which the statistics is similar to the regular BTW model scales with α just like the dissipative BTW model with the dissipation factor (mass in the corresponding ghost model) m2˜α for the three-dimensional system as well as its two-dimensional cross-sections.

  1. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    International Nuclear Information System (INIS)

    Fox, Aaron; La Pointe, Paul; Simeonov, Assen; Hermanson, Jan; Oehman, Johan

    2007-11-01

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  2. Statistical geological discrete fracture network model. Forsmark modelling stage 2.2

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Aaron; La Pointe, Paul [Golder Associates Inc (United States); Simeonov, Assen [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Hermanson, Jan; Oehman, Johan [Golder Associates AB, Stockholm (Sweden)

    2007-11-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site characterization at two different locations, Forsmark and Laxemar, in order to locate a site for a final geologic repository for spent nuclear fuel. The program is built upon the development of Site Descriptive Models (SDMs) at specific timed data freezes. Each SDM is formed from discipline-specific reports from across the scientific spectrum. This report describes the methods, analyses, and conclusions of the geological modeling team with respect to a geological and statistical model of fractures and minor deformation zones (henceforth referred to as the geological DFN), version 2.2, at the Forsmark site. The geological DFN builds upon the work of other geological modelers, including the deformation zone (DZ), rock domain (RD), and fracture domain (FD) models. The geological DFN is a statistical model for stochastically simulating rock fractures and minor deformation zones as a scale of less than 1,000 m (the lower cut-off of the DZ models). The geological DFN is valid within four specific fracture domains inside the local model region, and encompassing the candidate volume at Forsmark: FFM01, FFM02, FFM03, and FFM06. The models are build using data from detailed surface outcrop maps and the cored borehole record at Forsmark. The conceptual model for the Forsmark 2.2 geological revolves around the concept of orientation sets; for each fracture domain, other model parameters such as size and intensity are tied to the orientation sets. Two classes of orientation sets were described; Global sets, which are encountered everywhere in the model region, and Local sets, which represent highly localized stress environments. Orientation sets were described in terms of their general cardinal direction (NE, NW, etc). Two alternatives are presented for fracture size modeling: - the tectonic continuum approach (TCM, TCMF) described by coupled size-intensity scaling following power law distributions

  3. A method for risk-informed safety significance categorization using the analytic hierarchy process and bayesian belief networks

    International Nuclear Information System (INIS)

    Ha, Jun Su; Seong, Poong Hyun

    2004-01-01

    A risk-informed safety significance categorization (RISSC) is to categorize structures, systems, or components (SSCs) of a nuclear power plant (NPP) into two or more groups, according to their safety significance using both probabilistic and deterministic insights. In the conventional methods for the RISSC, the SSCs are quantitatively categorized according to their importance measures for the initial categorization. The final decisions (categorizations) of SSCs, however, are qualitatively made by an expert panel through discussions and adjustments of opinions by using the probabilistic insights compiled in the initial categorization process and combining the probabilistic insights with the deterministic insights. Therefore, owing to the qualitative and linear decision-making process, the conventional methods have the demerits as follows: (1) they are very costly in terms of time and labor, (2) it is not easy to reach the final decision, when the opinions of the experts are in conflict and (3) they have an overlapping process due to the linear paradigm (the categorization is performed twice - first, by the engineers who propose the method, and second, by the expert panel). In this work, a method for RISSC using the analytic hierarchy process (AHP) and bayesian belief networks (BBN) is proposed to overcome the demerits of the conventional methods and to effectively arrive at a final decision (or categorization). By using the AHP and BBN, the expert panel takes part in the early stage of the categorization (that is, the quantification process) and the safety significance based on both probabilistic and deterministic insights is quantified. According to that safety significance, SSCs are quantitatively categorized into three categories such as high safety significant category (Hi), potentially safety significant category (Po), or low safety significant category (Lo). The proposed method was applied to the components such as CC-V073, CV-V530, and SI-V644 in Ulchin Unit

  4. Unsupervised Scalable Statistical Method for Identifying Influential Users in Online Social Networks.

    Science.gov (United States)

    Azcorra, A; Chiroque, L F; Cuevas, R; Fernández Anta, A; Laniado, H; Lillo, R E; Romo, J; Sguera, C

    2018-05-03

    Billions of users interact intensively every day via Online Social Networks (OSNs) such as Facebook, Twitter, or Google+. This makes OSNs an invaluable source of information, and channel of actuation, for sectors like advertising, marketing, or politics. To get the most of OSNs, analysts need to identify influential users that can be leveraged for promoting products, distributing messages, or improving the image of companies. In this report we propose a new unsupervised method, Massive Unsupervised Outlier Detection (MUOD), based on outliers detection, for providing support in the identification of influential users. MUOD is scalable, and can hence be used in large OSNs. Moreover, it labels the outliers as of shape, magnitude, or amplitude, depending of their features. This allows classifying the outlier users in multiple different classes, which are likely to include different types of influential users. Applying MUOD to a subset of roughly 400 million Google+ users, it has allowed identifying and discriminating automatically sets of outlier users, which present features associated to different definitions of influential users, like capacity to attract engagement, capacity to attract a large number of followers, or high infection capacity.

  5. An assessment of machine and statistical learning approaches to inferring networks of protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Browne Fiona

    2006-12-01

    Full Text Available Protein-protein interactions (PPI play a key role in many biological systems. Over the past few years, an explosion in availability of functional biological data obtained from high-throughput technologies to infer PPI has been observed. However, results obtained from such experiments show high rates of false positives and false negatives predictions as well as systematic predictive bias. Recent research has revealed that several machine and statistical learning methods applied to integrate relatively weak, diverse sources of large-scale functional data may provide improved predictive accuracy and coverage of PPI. In this paper we describe the effects of applying different computational, integrative methods to predict PPI in Saccharomyces cerevisiae. We investigated the predictive ability of combining different sets of relatively strong and weak predictive datasets. We analysed several genomic datasets ranging from mRNA co-expression to marginal essentiality. Moreover, we expanded an existing multi-source dataset from S. cerevisiae by constructing a new set of putative interactions extracted from Gene Ontology (GO- driven annotations in the Saccharomyces Genome Database. Different classification techniques: Simple Naive Bayesian (SNB, Multilayer Perceptron (MLP and K-Nearest Neighbors (KNN were evaluated. Relatively simple classification methods (i.e. less computing intensive and mathematically complex, such as SNB, have been proven to be proficient at predicting PPI. SNB produced the “highest” predictive quality obtaining an area under Receiver Operating Characteristic (ROC curve (AUC value of 0.99. The lowest AUC value of 0.90 was obtained by the KNN classifier. This assessment also demonstrates the strong predictive power of GO-driven models, which offered predictive performance above 0.90 using the different machine learning and statistical techniques. As the predictive power of single-source datasets became weaker MLP and SNB performed

  6. Consumer Loyalty and Loyalty Programs: a topographic examination of the scientific literature using bibliometrics, spatial statistics and network analyses

    Directory of Open Access Journals (Sweden)

    Viviane Moura Rocha

    2015-04-01

    Full Text Available This paper presents a topographic analysis of the fields of consumer loyalty and loyalty programs, vastly studied in the last decades and still relevant in the marketing literature. After the identification of 250 scientific papers that were published in the last ten years in indexed journals, a subset of 76 were chosen and their 3223 references were extracted. The journals in which these papers were published, their key words, abstracts, authors, institutions of origin and citation patterns were identified and analyzed using bibliometrics, spatial statistics techniques and network analyses. The results allow the identification of the central components of the field, as well as its main authors, journals, institutions and countries that intermediate the diffusion of knowledge, which contributes to the understanding of the constitution of the field by researchers and students.

  7. Ultimate compression after impact load prediction in graphite/epoxy coupons using neural network and multivariate statistical analyses

    Science.gov (United States)

    Gregoire, Alexandre David

    2011-07-01

    The goal of this research was to accurately predict the ultimate compressive load of impact damaged graphite/epoxy coupons using a Kohonen self-organizing map (SOM) neural network and multivariate statistical regression analysis (MSRA). An optimized use of these data treatment tools allowed the generation of a simple, physically understandable equation that predicts the ultimate failure load of an impacted damaged coupon based uniquely on the acoustic emissions it emits at low proof loads. Acoustic emission (AE) data were collected using two 150 kHz resonant transducers which detected and recorded the AE activity given off during compression to failure of thirty-four impacted 24-ply bidirectional woven cloth laminate graphite/epoxy coupons. The AE quantification parameters duration, energy and amplitude for each AE hit were input to the Kohonen self-organizing map (SOM) neural network to accurately classify the material failure mechanisms present in the low proof load data. The number of failure mechanisms from the first 30% of the loading for twenty-four coupons were used to generate a linear prediction equation which yielded a worst case ultimate load prediction error of 16.17%, just outside of the +/-15% B-basis allowables, which was the goal for this research. Particular emphasis was placed upon the noise removal process which was largely responsible for the accuracy of the results.

  8. Statistical Delay QoS Provisioning for Energy-Efficient Spectrum-Sharing Based Wireless Ad Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2016-01-01

    Full Text Available In this paper, we develop the statistical delay quality-of-service (QoS provisioning framework for the energy-efficient spectrum-sharing based wireless ad hoc sensor network (WAHSN, which is characterized by the delay-bound violation probability. Based on the established delay QoS provisioning framework, we formulate the nonconvex optimization problem which aims at maximizing the average energy efficiency of the sensor node in the WAHSN while meeting PU’s statistical delay QoS requirement as well as satisfying sensor node’s average transmission rate, average transmitting power, and peak transmitting power constraints. By employing the theories of fractional programming, convex hull, and probabilistic transmission, we convert the original fractional-structured nonconvex problem to the additively structured parametric convex problem and obtain the optimal power allocation strategy under the given parameter via Lagrangian method. Finally, we derive the optimal average energy efficiency and corresponding optimal power allocation scheme by employing the Dinkelbach method. Simulation results show that our derived optimal power allocation strategy can be dynamically adjusted based on PU’s delay QoS requirement as well as the channel conditions. The impact of PU’s delay QoS requirement on sensor node’s energy efficiency is also illustrated.

  9. Performance Analysis of Millimeter-Wave Multi-hop Machine-to-Machine Networks Based on Hop Distance Statistics

    Directory of Open Access Journals (Sweden)

    Haejoon Jung

    2018-01-01

    Full Text Available As an intrinsic part of the Internet of Things (IoT ecosystem, machine-to-machine (M2M communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.

  10. Performance Analysis of Millimeter-Wave Multi-hop Machine-to-Machine Networks Based on Hop Distance Statistics.

    Science.gov (United States)

    Jung, Haejoon; Lee, In-Ho

    2018-01-12

    As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.

  11. Evaluating statistical and clinical significance of intervention effects in single-case experimental designs: An SPSS method to analyze univariate data

    NARCIS (Netherlands)

    Maric, M.; de Haan, M.; Hogendoorn, S.M.; Wolters, L.H.; Huizenga, H.M.

    2015-01-01

    Single-case experimental designs are useful methods in clinical research practice to investigate individual client progress. Their proliferation might have been hampered by methodological challenges such as the difficulty applying existing statistical procedures. In this article, we describe a

  12. Evaluating statistical and clinical significance of intervention effects in single-case experimental designs: an SPSS method to analyze univariate data

    NARCIS (Netherlands)

    Maric, Marija; de Haan, Else; Hogendoorn, Sanne M.; Wolters, Lidewij H.; Huizenga, Hilde M.

    2015-01-01

    Single-case experimental designs are useful methods in clinical research practice to investigate individual client progress. Their proliferation might have been hampered by methodological challenges such as the difficulty applying existing statistical procedures. In this article, we describe a

  13. Arboreal biomass estimation: a comparison between neural networks and statistical methods; Estimativa de biomassa arborea: uma comparacao entre metodos estatisticos e redes neurais

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Arthur C.; Barros, Paulo L.C.; Monteiro, Jose H.A.; Rocha, Brigida R.P. [Universidade Federal do Para (DEEC/UFPA), Belem, PA (Brazil). Dept. de Engenharia Eletrica e Computacao. Grupo de Pesquisa ENERBIO], e-mails: arthur@ufpa.br, jhumberto01@yahoo.com.br, brigida@ufpa.br, paulo.contente@ufra.edu.br

    2006-07-01

    The current methodologies for calculating the volume of biomass and the consequent potential energy widely used in forest inventories, based primarily in statistical methodology to obtain their results. However, more recent techniques, based on the ability of nonlinear mappings, offered by artificial neural networks, have been used successfully in several areas of technology, with superior performance. This work shows a comparison between the statistical model to estimate the volume of trees and a model based on neural networks, which can be used with advantage for this activity related with biomass energy planning.

  14. Demonstration of statistical approaches to identify component's ageing by operational data analysis-A case study for the ageing PSA network

    International Nuclear Information System (INIS)

    Rodionov, Andrei; Atwood, Corwin L.; Kirchsteiger, Christian; Patrik, Milan

    2008-01-01

    The paper presents some results of a case study on 'Demonstration of statistical approaches to identify the component's ageing by operational data analysis', which was done in the frame of the EC JRC Ageing PSA Network. Several techniques: visual evaluation, nonparametric and parametric hypothesis tests, were proposed and applied in order to demonstrate the capacity, advantages and limitations of statistical approaches to identify the component's ageing by operational data analysis. Engineering considerations are out of the scope of the present study

  15. [Internet addiction disorder and social networks: statistical analysis of correlation and study of the association with social interaction anxiousness].

    Science.gov (United States)

    Rusconi, Anna Carlotta; Valeriani, Giuseppe; Carlone, Cristiano; Raimondo, Pasquale; Quartini, Adele; Coccanari de' Fornari, Maria Antonietta; Biondi, Massimo

    2012-01-01

    Internet Addiction Disorder (IAD) is an emerging psychiatric disorder, assimilable to impulse control problems and related to maladaptive use of new networks and social and virtual technologies. Our study aims to analyze the presence of IAD among adolescents and to study the correlation with social interaction anxiousness. We investigated also the possibility that the Social Network (SN) represent a source of risk for the development of IAD. The test group was composed of 250 subjects, aged between 14 and 18 years. They were administered: Young's IAT; IAS (Interaction Anxiousness Scale), AAS (Audience Anxiousness Scale) and SISST (Social Interaction Self-Statement Test) to analyze the dimension of social interaction anxiousness. We found a rate of 2% of the IAD. The SN are the most common use of the Net in our sample, but not the most clicked sites by subjects with IAD. It should be noted, finally, a correlation between social interaction anxiety and IAD, but not a significant difference in scores of social anxiousness scales based on the SN use/non-use. The use of SN intended as single variable doesn't correlate with increased risk for IAD, or for increased social interaction anxiousness. However, if associated with prolonged use of the net for 5-6 hours or more, or concomitant use of chat rooms and/or net gambling, we find a more significant risk of psychopathology. The data presented require further investigations, in order to guide new pathogenetic models and appropriate intervention strategies.

  16. A PERFORMANCE COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORKS AND MULTIVARIATE STATISTICAL METHODS IN FORECASTING FINANCIAL STRENGTH RATING IN TURKISH BANKING SECTOR

    Directory of Open Access Journals (Sweden)

    MELEK ACAR BOYACIOĞLU

    2013-06-01

    Full Text Available Financial strength rating indicates the fundamental financial strength of a bank. The aim of financial strength rating is to measure a bank’s fundamental financial strength excluding the external factors. External factors can stem from the working environment or can be linked with the outside protective support mechanisms. With the evaluation, the rating of a bank free from outside supportive factors is being sought. Also the financial fundamental, franchise value, the variety of assets and working environment of a bank are being evaluated in this context. In this study, a model has been developed in order to predict the financial strength rating of Turkish banks. The methodology of this study is as follows: Selecting variables to be used in the model, creating a data set, choosing the techniques to be used and the evaluation of classification success of the techniques. It is concluded that the artificial neural network system shows a better performance in terms of classification of financial strength rating in comparison to multivariate statistical methods in the raining set. On the other hand, there is no meaningful difference could be found in the validation set in which the prediction performances of the employed techniques are tested.

  17. The obtaining of statistical characteristics of informative features of signals in the Autonomous information systems using neural networks

    Directory of Open Access Journals (Sweden)

    V. K. Hohlov

    2014-01-01

    Full Text Available The article studies a neural network approach to obtain the statistical characteristics of the input vector implementations of signal and noise at ill-conditioned matrices of correlation moments to solve the problems to select and reduce the vector dimensions of informative features at detection and recognition of signals and noise based on regression methods.A scientific novelty is determined by applying neural network algorithms for the efficient solution of problems to select the informative features and determine the parameters of regression algorithms in terms of the degeneracy or ill-conditioned data with unknown expectation and covariance matrices.The article proposes to use a single-layer neural network with no zero weights and activation functions to calculate the initial regression characteristics and the mean-square value error of multiple initial regression representations, which are necessary to justify the selection of informative features, reduce a dimension of sign vectors and implement the regression algorithms. It is shown that when excluding direct links between the inputs and their corresponding neurons, in the training network the weight coefficients of neuron inputs are the coefficients of initial multiple regression, the error meansquare value of multiple initial regression representations is calculated at the outputs of neurons. The article considers conditionality of the problem to calculate the matrix that is inverse one for matrix of correlation moments. It defines a condition number, which characterizes the relative error of stated task.The problem concerning the matrix condition of the correlation moment of informative signal features and noise arises when solving the problem to find the multiple coefficients of initial regression (MCIR and the residual mean-square values of the multiple regression representations. For obtaining the MCIR and finding the residual mean-square values the matrix of correlation moments of

  18. Significance of application of the nine parametric coordinate transformation where local state network is not enough reliable

    Directory of Open Access Journals (Sweden)

    Ristić Kornelija T.

    2016-01-01

    Full Text Available The most commonly used method for establishing the mathematical basis of surveying and spatial data collection is the method of Global Navigation Satellite Positioning System (GNSS. However, these data relate to the World Geodetic Date WGS84 which is different from the State geodetic network,. As a part of realization the project of determining spatial local reference network Mrkonjić Grad the GNSS observations on 15 trigonometric points whose position is known to the State system of coordinates (x, y, h were made. For the purpose of coordinate transformation between the two system two different transformation models were anlyzed. Beside the most commonly used Helmert seven parameter transformation, afina nine parametric transformation was tested. Comparing the two transformations models, conclusion was made that showes some benefits of using affina nine parameter transformation models in Republic of Serpska.

  19. Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 2: Precipitation mean state and seasonal cycle in South America

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, Jean-Philippe [LODYC, UMR CNRS/IRD/UPMC, Tour 45-55/Etage 4/Case 100, UPMC, Paris Cedex 05 (France); University of Buenos Aires, Departamento de Ciencias de la Atmosfera y los Oceanos, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Martinez, Fernando; Segura, Enrique C. [University of Buenos Aires, Departamento de Computacion, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2007-02-15

    Evaluating the response of climate to greenhouse gas forcing is a major objective of the climate community, and the use of large ensemble of simulations is considered as a significant step toward that goal. The present paper thus discusses a new methodology based on neural network to mix ensemble of climate model simulations. Our analysis consists of one simulation of seven Atmosphere-Ocean Global Climate Models, which participated in the IPCC Project and provided at least one simulation for the twentieth century (20c3m) and one simulation for each of three SRES scenarios: A2, A1B and B1. Our statistical method based on neural networks and Bayesian statistics computes a transfer function between models and observations. Such a transfer function was then used to project future conditions and to derive what we would call the optimal ensemble combination for twenty-first century climate change projections. Our approach is therefore based on one statement and one hypothesis. The statement is that an optimal ensemble projection should be built by giving larger weights to models, which have more skill in representing present climate conditions. The hypothesis is that our method based on neural network is actually weighting the models that way. While the statement is actually an open question, which answer may vary according to the region or climate signal under study, our results demonstrate that the neural network approach indeed allows to weighting models according to their skills. As such, our method is an improvement of existing Bayesian methods developed to mix ensembles of simulations. However, the general low skill of climate models in simulating precipitation mean climatology implies that the final projection maps (whatever the method used to compute them) may significantly change in the future as models improve. Therefore, the projection results for late twenty-first century conditions are presented as possible projections based on the &apos

  20. Statistical behavior and geological significance of the geochemical distribution of trace elements in the Cretaceous volcanics Cordoba and San Luis, Argentina

    International Nuclear Information System (INIS)

    Daziano, C.

    2010-01-01

    Statistical analysis of trace elements in volcanics research s, allowed to distinguish two independent populations with the same geochemical environment. For each component they have variable index of homogeneity resulting in dissimilar average values that reveal geochemical intra telluric phenomena. On the other hand the inhomogeneities observed in these rocks - as reflected in its petrochemical characters - could be exacerbated especially at so remote and dispersed location of their pitches, their relations with the enclosing rocks for the ranges of compositional variation, due differences relative ages

  1. Network based statistical analysis detects changes induced by continuous theta burst stimulation on brain activity at rest.

    Directory of Open Access Journals (Sweden)

    Chiara eMastropasqua

    2014-08-01

    Full Text Available We combined continuous theta burst stimulation (cTBS and resting state (RS -fMRI approaches to investigate changes in functional connectivity (FC induced by right dorso-lateral prefrontal cortex (DLPFC cTBS at rest in a group of healthy subjects. Seed based fMRI analysis revealed a specific pattern of correlation between the right prefrontal cortex and several brain regions: based on these results, we defined a 29-node network to assess changes in each network connection before and after, respectively, DLPFC-cTBS and sham sessions. A decrease of correlation between the right prefrontal cortex and right parietal cortex (Brodmann areas 46 and 40 respectively was detected after cTBS, while no significant result was found when analyzing sham-session data. To our knowledge, this is the first study that demonstrates within-subject changes in FC induced by cTBS applied on prefrontal area. The possibility to induce selective changes in a specific region without interfering with functionally correlated area could have several implications for the study of functional properties of the brain, and for the emerging therapeutic strategies based on transcranial stimulation.

  2. Statistical analysis and definition of blockages-prediction formulae for the wastewater network of Oslo by evolutionary computing.

    Science.gov (United States)

    Ugarelli, Rita; Kristensen, Stig Morten; Røstum, Jon; Saegrov, Sveinung; Di Federico, Vittorio

    2009-01-01

    Oslo Vann og Avløpsetaten (Oslo VAV)-the water/wastewater utility in the Norwegian capital city of Oslo-is assessing future strategies for selection of most reliable materials for wastewater networks, taking into account not only material technical performance but also material performance, regarding operational condition of the system.The research project undertaken by SINTEF Group, the largest research organisation in Scandinavia, NTNU (Norges Teknisk-Naturvitenskapelige Universitet) and Oslo VAV adopts several approaches to understand reasons for failures that may impact flow capacity, by analysing historical data for blockages in Oslo.The aim of the study was to understand whether there is a relationship between the performance of the pipeline and a number of specific attributes such as age, material, diameter, to name a few. This paper presents the characteristics of the data set available and discusses the results obtained by performing two different approaches: a traditional statistical analysis by segregating the pipes into classes, each of which with the same explanatory variables, and a Evolutionary Polynomial Regression model (EPR), developed by Technical University of Bari and University of Exeter, to identify possible influence of pipe's attributes on the total amount of predicted blockages in a period of time.Starting from a detailed analysis of the available data for the blockage events, the most important variables are identified and a classification scheme is adopted.From the statistical analysis, it can be stated that age, size and function do seem to have a marked influence on the proneness of a pipeline to blockages, but, for the reduced sample available, it is difficult to say which variable it is more influencing. If we look at total number of blockages the oldest class seems to be the most prone to blockages, but looking at blockage rates (number of blockages per km per year), then it is the youngest class showing the highest blockage rate

  3. Assessment of the environmental significance of nutrients and heavy metal pollution in the river network of Serbia.

    Science.gov (United States)

    Dević, Gordana; Sakan, Sanja; Đorđević, Dragana

    2016-01-01

    In this paper, the data for ten water quality variables collected during 2009 at 75 monitoring sites along the river network of Serbia are considered. The results are alarming because 48% of the studied sites were contaminated by Ni, Mn, Pb, As, and nutrients, which are key factors impairing the water quality of the rivers in Serbia. Special attention should be paid to Zn and Cu, listed in the priority toxic pollutants of US EPA for aquatic life protection. The employed Q-model cluster analysis grouped the data into three major pollution zones (low, moderate, and high). Most sites classified as "low pollution zones" (LP) were in the main rivers, whereas those classified as "moderate and high pollution zones" (MP and HP, respectively) were in the large and small tributaries/hydro-system. Principal component analysis/factor analysis (PCA/FA) showed that the dissolved metals and nutrients in the Serbian rivers varied depending on the river, the heterogeneity of the anthropogenic activities in the basins (influenced primarily by industrial wastewater, agricultural activities, and urban runoff pollution), and natural environmental variability, such as geological characteristics. In LP dominated non-point source pollution, such as agricultural and urban runoff, whereas mixed source pollution dominated in the MP and HP zones. These results provide information to be used for developing better pollution control strategies for the river network of Serbia.

  4. Statistical comparison of leaching behavior of incineration bottom ash using seawater and deionized water: Significant findings based on several leaching methods.

    Science.gov (United States)

    Yin, Ke; Dou, Xiaomin; Ren, Fei; Chan, Wei-Ping; Chang, Victor Wei-Chung

    2018-02-15

    Bottom ashes generated from municipal solid waste incineration have gained increasing popularity as alternative construction materials, however, they contains elevated heavy metals posing a challenge for its free usage. Different leaching methods are developed to quantify leaching potential of incineration bottom ashes meanwhile guide its environmentally friendly application. Yet, there are diverse IBA applications while the in situ environment is always complicated, challenging its legislation. In this study, leaching tests were conveyed using batch and column leaching methods with seawater as opposed to deionized water, to unveil the metal leaching potential of IBA subjected to salty environment, which is commonly encountered when using IBA in land reclamation yet not well understood. Statistical analysis for different leaching methods suggested disparate performance between seawater and deionized water primarily ascribed to ionic strength. Impacts of leachant are metal-specific dependent on leaching methods and have a function of intrinsic characteristics of incineration bottom ashes. Leaching performances were further compared on additional perspectives, e.g. leaching approach and liquid to solid ratio, indicating sophisticated leaching potentials dominated by combined geochemistry. It is necessary to develop application-oriented leaching methods with corresponding leaching criteria to preclude discriminations between different applications, e.g., terrestrial applications vs. land reclamation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. An evaluation of the statistical significance of the association between northward turnings of the interplanetary magnetic field and substorm expansion onsets

    Science.gov (United States)

    Hsu, Tung-Shin; McPherron, R. L.

    2002-11-01

    An outstanding problem in magnetospheric physics is deciding whether substorms are always triggered by external changes in the interplanetary magnetic field (IMF) or solar wind plasma, or whether they sometimes occur spontaneously. Over the past decade, arguments have been made on both sides of this issue. In fact, there is considerable evidence that some substorms are triggered. However, equally persuasive examples of substorms with no obvious trigger have been found. Because of conflicting views on this subject, further work is required to determine whether there is a physical relation between IMF triggers and substorm onset. In the work reported here a list of substorm onsets was created using two independent substorm signatures: sudden changes in the slope of the AL index and the start of a Pi 2 pulsation burst. Possible IMF triggers were determined from ISEE-2 observations. With the ISEE spacecraft near local noon immediately upstream of the bow shock, there can be little question about propagation delay to the magnetopause or whether a particular IMF feature hits the subsolar magnetopause. Thus it eliminates the objections that the calculated arrival time is subject to a large error or that the solar wind monitor missed a potential trigger incident at the subsolar point. Using a less familiar technique, statistics of point process, we find that the time delay between substorm onsets and the propagated arrival time of IMF triggers are clustered around zero. We estimate for independent processes that the probability of this clustering by chance alone is about 10-11. If we take into account the requirement that the IMF must have been southward prior to the onset, then the probability of clustering is higher, ˜10-5, but still extremely unlikely. Thus it is not possible to ascribe the apparent relation between IMF northward turnings and substorm onset to coincidence.

  6. Large-scale structure of a network of co-occurring MeSH terms: statistical analysis of macroscopic properties.

    Directory of Open Access Journals (Sweden)

    Andrej Kastrin

    Full Text Available Concept associations can be represented by a network that consists of a set of nodes representing concepts and a set of edges representing their relationships. Complex networks exhibit some common topological features including small diameter, high degree of clustering, power-law degree distribution, and modularity. We investigated the topological properties of a network constructed from co-occurrences between MeSH descriptors in the MEDLINE database. We conducted the analysis on two networks, one constructed from all MeSH descriptors and another using only major descriptors. Network reduction was performed using the Pearson's chi-square test for independence. To characterize topological properties of the network we adopted some specific measures, including diameter, average path length, clustering coefficient, and degree distribution. For the full MeSH network the average path length was 1.95 with a diameter of three edges and clustering coefficient of 0.26. The Kolmogorov-Smirnov test rejects the power law as a plausible model for degree distribution. For the major MeSH network the average path length was 2.63 edges with a diameter of seven edges and clustering coefficient of 0.15. The Kolmogorov-Smirnov test failed to reject the power law as a plausible model. The power-law exponent was 5.07. In both networks it was evident that nodes with a lower degree exhibit higher clustering than those with a higher degree. After simulated attack, where we removed 10% of nodes with the highest degrees, the giant component of each of the two networks contains about 90% of all nodes. Because of small average path length and high degree of clustering the MeSH network is small-world. A power-law distribution is not a plausible model for the degree distribution. The network is highly modular, highly resistant to targeted and random attack and with minimal dissortativity.

  7. Research Pearls: The Significance of Statistics and Perils of Pooling. Part 3: Pearls and Pitfalls of Meta-analyses and Systematic Reviews.

    Science.gov (United States)

    Harris, Joshua D; Brand, Jefferson C; Cote, Mark P; Dhawan, Aman

    2017-08-01

    Within the health care environment, there has been a recent and appropriate trend towards emphasizing the value of care provision. Reduced cost and higher quality improve the value of care. Quality is a challenging, heterogeneous, variably defined concept. At the core of quality is the patient's outcome, quantified by a vast assortment of subjective and objective outcome measures. There has been a recent evolution towards evidence-based medicine in health care, clearly elucidating the role of high-quality evidence across groups of patients and studies. Synthetic studies, such as systematic reviews and meta-analyses, are at the top of the evidence-based medicine hierarchy. Thus, these investigations may be the best potential source of guiding diagnostic, therapeutic, prognostic, and economic medical decision making. Systematic reviews critically appraise and synthesize the best available evidence to provide a conclusion statement (a "take-home point") in response to a specific answerable clinical question. A meta-analysis uses statistical methods to quantitatively combine data from single studies. Meta-analyses should be performed with high methodological quality homogenous studies (Level I or II) or evidence randomized studies, to minimize confounding variable bias. When it is known that the literature is inadequate or a recent systematic review has already been performed with a demonstration of insufficient data, then a new systematic review does not add anything meaningful to the literature. PROSPERO registration and PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines assist authors in the design and conduct of systematic reviews and should always be used. Complete transparency of the conduct of the review permits reproducibility and improves fidelity of the conclusions. Pooling of data from overly dissimilar investigations should be avoided. This particularly applies to Level IV evidence, that is, noncomparative investigations

  8. Tower of London test: a comparison between conventional statistic approach and modelling based on artificial neural network in differentiating fronto-temporal dementia from Alzheimer's disease.

    Science.gov (United States)

    Franceschi, Massimo; Caffarra, Paolo; Savarè, Rita; Cerutti, Renata; Grossi, Enzo

    2011-01-01

    The early differentiation of Alzheimer's disease (AD) from frontotemporal dementia (FTD) may be difficult. The Tower of London (ToL), thought to assess executive functions such as planning and visuo-spatial working memory, could help in this purpose. Twentytwo Dementia Centers consecutively recruited patients with early FTD or AD. ToL performances of these groups were analyzed using both the conventional statistical approaches and the Artificial Neural Networks (ANNs) modelling. Ninety-four non aphasic FTD and 160 AD patients were recruited. ToL Accuracy Score (AS) significantly (p advanced ANNs developed by Semeion Institute. The best ANNs were selected and submitted to ROC curves. The non-linear model was able to discriminate FTD from AD with an average AUC for 7 independent trials of 0.82. The use of hidden information contained in the different items of ToL and the non linear processing of the data through ANNs allows a high discrimination between FTD and AD in individual patients.

  9. The Significance and Impact of Innovation Networks of Academia and Business with a Special Emphasis on Work-Based Learning

    Directory of Open Access Journals (Sweden)

    Hogeforster Max A.

    2014-10-01

    Full Text Available The Europe 2020 Strategy puts the quality and relevance of education and training systems at the heart of EU’s efforts to improve innovation and competitiveness and to achieve intelligent, sustainable and inclusive growth. The development of partnerships between vocational schools or higher-education institutions and the business sector must be considered as a critical factor in identifying learning requirements, improving the relevance of education and facilitating access to education and learning. The growing lack of skills is one of the major challenges for companies that rely on more highly qualified personnel. To increase the cooperation between academia and the business world means to integrate small and medium-sized enterprises (SMEs, since 99.2 per cent of European businesses are SMEs. They are the blood cells of the European economy and are essential for growth, yet a very heterogeneous group that can only be integrated in cooperation networks by intermediate organisations which tackle the needs of this diverse group of businesses. Such a partnership of 17 universities and polytechnics, including the University of Latvia, was founded in 2010 and is shortly introduced as a best practice example.To stay competitive in the globalised world, companies need to be innovative and that requires cooperation with knowledge institutions. A survey conducted in 2013 revealed that one of the major obstacles for SMEs to improve their innovation capabilities is their inability to find qualified personnel. This corresponds to the huge challenges the labour markets face in Europe. Almost all countries report a growing lack of skilled workforce while at the same time youth unemployment is increasing. This gap between the current qualifications and the qualifications demanded by businesses sector can be overcome by a closer cooperation between enterprises and education facilities, on a national but also international level between Western and Eastern

  10. Clinical progress of human papillomavirus genotypes and their persistent infection in subjects with atypical squamous cells of undetermined significance cytology: Statistical and latent Dirichlet allocation analysis

    Science.gov (United States)

    Kim, Yee Suk; Lee, Sungin; Zong, Nansu; Kahng, Jimin

    2017-01-01

    The present study aimed to investigate differences in prognosis based on human papillomavirus (HPV) infection, persistent infection and genotype variations for patients exhibiting atypical squamous cells of undetermined significance (ASCUS) in their initial Papanicolaou (PAP) test results. A latent Dirichlet allocation (LDA)-based tool was developed that may offer a facilitated means of communication to be employed during patient-doctor consultations. The present study assessed 491 patients (139 HPV-positive and 352 HPV-negative cases) with a PAP test result of ASCUS with a follow-up period ≥2 years. Patients underwent PAP and HPV DNA chip tests between January 2006 and January 2009. The HPV-positive subjects were followed up with at least 2 instances of PAP and HPV DNA chip tests. The most common genotypes observed were HPV-16 (25.9%, 36/139), HPV-52 (14.4%, 20/139), HPV-58 (13.7%, 19/139), HPV-56 (11.5%, 16/139), HPV-51 (9.4%, 13/139) and HPV-18 (8.6%, 12/139). A total of 33.3% (12/36) patients positive for HPV-16 had cervical intraepithelial neoplasia (CIN)2 or a worse result, which was significantly higher than the prevalence of CIN2 of 1.8% (8/455) in patients negative for HPV-16 (Paged ≥51 years (38.7%) than in those aged ≤50 years (20.4%; P=0.036). Progression from persistent infection to CIN2 or worse (19/34, 55.9%) was higher than clearance (0/105, 0.0%; Page and long infection period with a clinical progression of CIN2 or worse. Therefore, LDA results may be presented as explanatory evidence during time-constrained patient-doctor consultations in order to deliver information regarding the patient's status. PMID:28587376

  11. Statistical mechanics of stochastic neural networks: Relationship between the self-consistent signal-to-noise analysis, Thouless-Anderson-Palmer equation, and replica symmetric calculation approaches

    International Nuclear Information System (INIS)

    Shiino, Masatoshi; Yamana, Michiko

    2004-01-01

    We study the statistical mechanical aspects of stochastic analog neural network models for associative memory with correlation type learning. We take three approaches to derive the set of the order parameter equations for investigating statistical properties of retrieval states: the self-consistent signal-to-noise analysis (SCSNA), the Thouless-Anderson-Palmer (TAP) equation, and the replica symmetric calculation. On the basis of the cavity method the SCSNA can be generalized to deal with stochastic networks. We establish the close connection between the TAP equation and the SCSNA to elucidate the relationship between the Onsager reaction term of the TAP equation and the output proportional term of the SCSNA that appear in the expressions for the local fields

  12. Insights into significant pathways and gene interaction networks in peripheral blood mononuclear cells for early diagnosis of hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Jian Xin Jiang

    2016-01-01

    Conclusions: Using identified DEGs, significantly changed biological processes such as nucleic acid metabolic process and KEGG pathways such as cytokine-cytokine receptor interaction in PBMCs of HCC patients were identified. In addition, several important hub genes, for example, CUL4A, and interleukin (IL 8 were also uncovered.

  13. Empirical research on complex networks modeling of combat SoS based on data from real war-game, Part I: Statistical characteristics

    Science.gov (United States)

    Chen, Lei; Kou, Yingxin; Li, Zhanwu; Xu, An; Wu, Cheng

    2018-01-01

    We build a complex networks model of combat System-of-Systems (SoS) based on empirical data from a real war-game, this model is a combination of command & control (C2) subnetwork, sensors subnetwork, influencers subnetwork and logistical support subnetwork, each subnetwork has idiographic components and statistical characteristics. The C2 subnetwork is the core of whole combat SoS, it has a hierarchical structure with no modularity, of which robustness is strong enough to maintain normal operation after any two nodes is destroyed; the sensors subnetwork and influencers subnetwork are like sense organ and limbs of whole combat SoS, they are both flat modular networks of which degree distribution obey GEV distribution and power-law distribution respectively. The communication network is the combination of all subnetworks, it is an assortative Small-World network with core-periphery structure, the Intelligence & Communication Stations/Command Center integrated with C2 nodes in the first three level act as the hub nodes in communication network, and all the fourth-level C2 nodes, sensors, influencers and logistical support nodes have communication capability, they act as the periphery nodes in communication network, its degree distribution obeys exponential distribution in the beginning, Gaussian distribution in the middle, and power-law distribution in the end, and its path length obeys GEV distribution. The betweenness centrality distribution, closeness centrality distribution and eigenvector centrality are also been analyzed to measure the vulnerability of nodes.

  14. An Estimation of the Likelihood of Significant Eruptions During 2000-2009 Using Poisson Statistics on Two-Point Moving Averages of the Volcanic Time Series

    Science.gov (United States)

    Wilson, Robert M.

    2001-01-01

    Since 1750, the number of cataclysmic volcanic eruptions (volcanic explosivity index (VEI)>=4) per decade spans 2-11, with 96 percent located in the tropics and extra-tropical Northern Hemisphere. A two-point moving average of the volcanic time series has higher values since the 1860's than before, being 8.00 in the 1910's (the highest value) and 6.50 in the 1980's, the highest since the 1910's peak. Because of the usual behavior of the first difference of the two-point moving averages, one infers that its value for the 1990's will measure approximately 6.50 +/- 1, implying that approximately 7 +/- 4 cataclysmic volcanic eruptions should be expected during the present decade (2000-2009). Because cataclysmic volcanic eruptions (especially those having VEI>=5) nearly always have been associated with short-term episodes of global cooling, the occurrence of even one might confuse our ability to assess the effects of global warming. Poisson probability distributions reveal that the probability of one or more events with a VEI>=4 within the next ten years is >99 percent. It is approximately 49 percent for an event with a VEI>=5, and 18 percent for an event with a VEI>=6. Hence, the likelihood that a climatically significant volcanic eruption will occur within the next ten years appears reasonably high.

  15. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.

    Science.gov (United States)

    Holland, David O; Johnson, Margaret E

    2018-03-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module

  16. Modeling interacting dynamic networks: II. Systematic study of the statistical properties of cross-links between two networks with preferred degrees

    International Nuclear Information System (INIS)

    Liu, Wenjia; Schmittmann, B; Zia, R K P

    2014-01-01

    In a recent work (Liu et al, 2013 J. Stat. Mech. P08001), we introduced dynamic networks with preferred degrees and presented simulation and analytic studies of a single, homogeneous system as well as two interacting networks. Here, we extend these studies to a wider range of parameter space, in a more systematic fashion. Though the interaction we introduced seems simple and intuitive, it produced dramatically different behavior in the single- and two-network systems. Specifically, partitioning the single network into two identical sectors, we find the cross-link distribution to be a sharply peaked Gaussian. In stark contrast, we find a very broad and flat plateau in the case of two interacting identical networks. A sound understanding of this phenomenon remains elusive. Exploring more asymmetric interacting networks, we discover a kind of ‘universal behavior’ for systems in which the ‘introverts’ (nodes with smaller preferred degree) are far outnumbered. Remarkably, an approximation scheme for their degree distribution can be formulated, leading to very successful predictions. (paper)

  17. Automated Detection of Clinically Significant Prostate Cancer in mp-MRI Images Based on an End-to-End Deep Neural Network.

    Science.gov (United States)

    Wang, Zhiwei; Liu, Chaoyue; Cheng, Danpeng; Wang, Liang; Yang, Xin; Cheng, Kwang-Ting

    2018-05-01

    Automated methods for detecting clinically significant (CS) prostate cancer (PCa) in multi-parameter magnetic resonance images (mp-MRI) are of high demand. Existing methods typically employ several separate steps, each of which is optimized individually without considering the error tolerance of other steps. As a result, they could either involve unnecessary computational cost or suffer from errors accumulated over steps. In this paper, we present an automated CS PCa detection system, where all steps are optimized jointly in an end-to-end trainable deep neural network. The proposed neural network consists of concatenated subnets: 1) a novel tissue deformation network (TDN) for automated prostate detection and multimodal registration and 2) a dual-path convolutional neural network (CNN) for CS PCa detection. Three types of loss functions, i.e., classification loss, inconsistency loss, and overlap loss, are employed for optimizing all parameters of the proposed TDN and CNN. In the training phase, the two nets mutually affect each other and effectively guide registration and extraction of representative CS PCa-relevant features to achieve results with sufficient accuracy. The entire network is trained in a weakly supervised manner by providing only image-level annotations (i.e., presence/absence of PCa) without exact priors of lesions' locations. Compared with most existing systems which require supervised labels, e.g., manual delineation of PCa lesions, it is much more convenient for clinical usage. Comprehensive evaluation based on fivefold cross validation using 360 patient data demonstrates that our system achieves a high accuracy for CS PCa detection, i.e., a sensitivity of 0.6374 and 0.8978 at 0.1 and 1 false positives per normal/benign patient.

  18. Network based on statistical multiplexing for event selection and event builder systems in high energy physics experiments

    International Nuclear Information System (INIS)

    Calvet, D.

    2000-03-01

    Systems for on-line event selection in future high energy physics experiments will use advanced distributed computing techniques and will need high speed networks. After a brief description of projects at the Large Hadron Collider, the architectures initially proposed for the Trigger and Data AcQuisition (TD/DAQ) systems of ATLAS and CMS experiments are presented and analyzed. A new architecture for the ATLAS T/DAQ is introduced. Candidate network technologies for this system are described. This thesis focuses on ATM. A variety of network structures and topologies suited to partial and full event building are investigated. The need for efficient networking is shown. Optimization techniques for high speed messaging and their implementation on ATM components are described. Small scale demonstrator systems consisting of up to 48 computers (∼1:20 of the final level 2 trigger) connected via ATM are described. Performance results are presented. Extrapolation of measurements and evaluation of needs lead to a proposal of implementation for the main network of the ATLAS T/DAQ system. (author)

  19. Understanding Statistics - Cancer Statistics

    Science.gov (United States)

    Annual reports of U.S. cancer statistics including new cases, deaths, trends, survival, prevalence, lifetime risk, and progress toward Healthy People targets, plus statistical summaries for a number of common cancer types.

  20. Statistical analysis in the design of nuclear fuel cells and training of a neural network to predict safety parameters for reactors BWR

    International Nuclear Information System (INIS)

    Jauregui Ch, V.

    2013-01-01

    In this work the obtained results for a statistical analysis are shown, with the purpose of studying the performance of the fuel lattice, taking into account the frequency of the pins that were used. For this objective, different statistical distributions were used; one approximately to normal, another type X 2 but in an inverse form and a random distribution. Also, the prediction of some parameters of the nuclear reactor in a fuel reload was made through a neuronal network, which was trained. The statistical analysis was made using the parameters of the fuel lattice, which was generated through three heuristic techniques: Ant Colony Optimization System, Neuronal Networks and a hybrid among Scatter Search and Path Re linking. The behavior of the local power peak factor was revised in the fuel lattice with the use of different frequencies of enrichment uranium pines, using the three techniques mentioned before, in the same way the infinite multiplication factor of neutrons was analyzed (k..), to determine within what range this factor in the reactor is. Taking into account all the information, which was obtained through the statistical analysis, a neuronal network was trained; that will help to predict the behavior of some parameters of the nuclear reactor, considering a fixed fuel reload with their respective control rods pattern. In the same way, the quality of the training was evaluated using different fuel lattices. The neuronal network learned to predict the next parameters: Shutdown Margin (SDM), the pin burn peaks for two different fuel batches, Thermal Limits and the Effective Neutron Multiplication Factor (k eff ). The results show that the fuel lattices in which the frequency, which the inverted form of the X 2 distribution, was used revealed the best values of local power peak factor. Additionally it is shown that the performance of a fuel lattice could be enhanced controlling the frequency of the uranium enrichment rods and the variety of the gadolinium

  1. Statistical analysis of modal properties of a cable-stayed bridge through long-term structural health monitoring with wireless smart sensor networks

    Science.gov (United States)

    Asadollahi, Parisa; Li, Jian

    2016-04-01

    Understanding the dynamic behavior of complex structures such as long-span bridges requires dense deployment of sensors. Traditional wired sensor systems are generally expensive and time-consuming to install due to cabling. With wireless communication and on-board computation capabilities, wireless smart sensor networks have the advantages of being low cost, easy to deploy and maintain and therefore facilitate dense instrumentation for structural health monitoring. A long-term monitoring project was recently carried out for a cable-stayed bridge in South Korea with a dense array of 113 smart sensors, which feature the world's largest wireless smart sensor network for civil structural monitoring. This paper presents a comprehensive statistical analysis of the modal properties including natural frequencies, damping ratios and mode shapes of the monitored cable-stayed bridge. Data analyzed in this paper is composed of structural vibration signals monitored during a 12-month period under ambient excitations. The correlation between environmental temperature and the modal frequencies is also investigated. The results showed the long-term statistical structural behavior of the bridge, which serves as the basis for Bayesian statistical updating for the numerical model.

  2. Technical Topic 3.2.2.d Bayesian and Non-Parametric Statistics: Integration of Neural Networks with Bayesian Networks for Data Fusion and Predictive Modeling

    Science.gov (United States)

    2016-05-31

    Distribution Unlimited UU UU UU UU 31-05-2016 15-Apr-2014 14-Jan-2015 Final Report: Technical Topic 3.2.2.d Bayesian and Non- parametric Statistics...of Papers published in non peer-reviewed journals: Final Report: Technical Topic 3.2.2.d Bayesian and Non- parametric Statistics: Integration of Neural...Transfer N/A Number of graduating undergraduates who achieved a 3.5 GPA to 4.0 (4.0 max scale ): Number of graduating undergraduates funded by a DoD funded

  3. Self-consistent signal-to-noise analysis of the statistical behavior of analog neural networks and enhancement of the storage capacity

    Science.gov (United States)

    Shiino, Masatoshi; Fukai, Tomoki

    1993-08-01

    Based on the self-consistent signal-to-noise analysis (SCSNA) capable of dealing with analog neural networks with a wide class of transfer functions, enhancement of the storage capacity of associative memory and the related statistical properties of neural networks are studied for random memory patterns. Two types of transfer functions with the threshold parameter θ are considered, which are derived from the sigmoidal one to represent the output of three-state neurons. Neural networks having a monotonically increasing transfer function FM, FM(u)=sgnu (||u||>θ), FM(u)=0 (||u||memory patterns), implying the reduction of the number of spurious states. The behavior of the storage capacity with changing θ is qualitatively the same as that of the Ising spin neural networks with varying temperature. On the other hand, the nonmonotonic transfer function FNM, FNM(u)=sgnu (||u||=θ) gives rise to remarkable features in several respects. First, it yields a large enhancement of the storage capacity compared with the Amit-Gutfreund-Sompolinsky (AGS) value: with decreasing θ from θ=∞, the storage capacity αc of such a network is increased from the AGS value (~=0.14) to attain its maximum value of ~=0.42 at θ~=0.7 and afterwards is decreased to vanish at θ=0. Whereas for θ>~1 the storage capacity αc coincides with the value αc~ determined by the SCSNA as the upper bound of α ensuring the existence of retrieval solutions, for θr≠0 (i.e., finite width of the local field distribution), which is implied by the order-parameter equations of the SCSNA, disappears at a certain critical loading rate α0, and for αr=0+). As a consequence, memory retrieval without errors becomes possible even in the saturation limit α≠0. Results of the computer simulations on the statistical properties of the novel phase with αstorage capacity is also analyzed for the two types of networks. It is conspicuous for the networks with FNM, where the self-couplings increase the stability of

  4. STARS: An ArcGIS Toolset Used to Calculate the Spatial Information Needed to Fit Spatial Statistical Models to Stream Network Data

    Directory of Open Access Journals (Sweden)

    Erin Peterson

    2014-01-01

    Full Text Available This paper describes the STARS ArcGIS geoprocessing toolset, which is used to calcu- late the spatial information needed to fit spatial statistical models to stream network data using the SSN package. The STARS toolset is designed for use with a landscape network (LSN, which is a topological data model produced by the FLoWS ArcGIS geoprocessing toolset. An overview of the FLoWS LSN structure and a few particularly useful tools is also provided so that users will have a clear understanding of the underlying data struc- ture that the STARS toolset depends on. This document may be used as an introduction to new users. The methods used to calculate the spatial information and format the final .ssn object are also explicitly described so that users may create their own .ssn object using other data models and software.

  5. A program package connected with a communication network for accident statistics of NPP, TPP, HPP and the power lines

    International Nuclear Information System (INIS)

    Madjarova, A.

    1993-01-01

    The package is designed for registration and analysis of accidents according to users' needs. A possibility is also provided for easy data transfer and access to data on implemented decisions. Special programmes are developed for NPP, TPP, HPP, electricity supply branch, regional distribution management and the National Electric Company. The system is open for local network connection and file exchange between the workstations. The dialogue features are user-friendly. The emergency situations are classified according to the requirements of the enacted in Bulgaria 'Regulations for Investigation, Classification and Recording of Accidents in Electric and Thermal Stations and Networks, 1993'. The unified data input provides a possibility for insertion of additional texts (remarks), correcting and updating. Data security tools are also envisaged. (author)

  6. A network-based drug repositioning infrastructure for precision cancer medicine through targeting significantly mutated genes in the human cancer genomes.

    Science.gov (United States)

    Cheng, Feixiong; Zhao, Junfei; Fooksa, Michaela; Zhao, Zhongming

    2016-07-01

    Development of computational approaches and tools to effectively integrate multidomain data is urgently needed for the development of newly targeted cancer therapeutics. We proposed an integrative network-based infrastructure to identify new druggable targets and anticancer indications for existing drugs through targeting significantly mutated genes (SMGs) discovered in the human cancer genomes. The underlying assumption is that a drug would have a high potential for anticancer indication if its up-/down-regulated genes from the Connectivity Map tended to be SMGs or their neighbors in the human protein interaction network. We assembled and curated 693 SMGs in 29 cancer types and found 121 proteins currently targeted by known anticancer or noncancer (repurposed) drugs. We found that the approved or experimental cancer drugs could potentially target these SMGs in 33.3% of the mutated cancer samples, and this number increased to 68.0% by drug repositioning through surveying exome-sequencing data in approximately 5000 normal-tumor pairs from The Cancer Genome Atlas. Furthermore, we identified 284 potential new indications connecting 28 cancer types and 48 existing drugs (adjusted P < .05), with a 66.7% success rate validated by literature data. Several existing drugs (e.g., niclosamide, valproic acid, captopril, and resveratrol) were predicted to have potential indications for multiple cancer types. Finally, we used integrative analysis to showcase a potential mechanism-of-action for resveratrol in breast and lung cancer treatment whereby it targets several SMGs (ARNTL, ASPM, CTTN, EIF4G1, FOXP1, and STIP1). In summary, we demonstrated that our integrative network-based infrastructure is a promising strategy to identify potential druggable targets and uncover new indications for existing drugs to speed up molecularly targeted cancer therapeutics. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All

  7. Evolutionarily significant units of the critically endangered leaf frog Pithecopus ayeaye (Anura, Phyllomedusidae) are not effectively preserved by the Brazilian protected areas network.

    Science.gov (United States)

    de Magalhães, Rafael Félix; Lemes, Priscila; Camargo, Arley; Oliveira, Ubirajara; Brandão, Reuber Albuquerque; Thomassen, Hans; Garcia, Paulo Christiano de Anchietta; Leite, Felipe Sá Fortes; Santos, Fabrício Rodrigues

    2017-11-01

    Protected areas (PAs) are essential for biodiversity conservation, but their coverage is considered inefficient for the preservation of all species. Many species are subdivided into evolutionarily significant units (ESUs) and the effectiveness of PAs in protecting them needs to be investigated. We evaluated the usefulness of the Brazilian PAs network in protecting ESUs of the critically endangered Pithecopus ayeaye through ongoing climate change. This species occurs in a threatened mountaintop ecosystem known as campos rupestres . We used multilocus DNA sequences to delimit geographic clusters, which were further validated as ESUs with a coalescent approach. Ecological niche modeling was used to estimate spatial changes in ESUs' potential distributions, and a gap analysis was carried out to evaluate the effectiveness of the Brazilian PAs network to protect P. ayeaye in the face of climate changes. We tested the niche overlap between ESUs to gain insights for potential management alternatives for the species. Pithecopus ayeaye contains at least three ESUs isolated in distinct mountain regions, and one of them is not protected by any PA. There are no climatic niche differences between the units, and only 4% of the suitable potential area of the species is protected in present and future projections. The current PAs are not effective in preserving the intraspecific diversity of P. ayeaye in its present and future range distributions. The genetic structure of P. ayeaye could represent a typical pattern in campos rupestres endemics, which should be considered for evaluating its conservation status.

  8. Changes in T-cell subpopulations and cytokine network during early period of ibrutinib therapy in chronic lymphocytic leukemia patients: the significant decrease in T regulatory cells number.

    Science.gov (United States)

    Podhorecka, Monika; Goracy, Aneta; Szymczyk, Agnieszka; Kowal, Malgorzata; Ibanez, Blanca; Jankowska-Lecka, Olga; Macheta, Arkadiusz; Nowaczynska, Aleksandra; Drab-Urbanek, Elzbieta; Chocholska, Sylwia; Jawniak, Dariusz; Hus, Marek

    2017-05-23

    B cell receptor (BCR) stimulation signal plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL), and kinase inhibitors directed toward the BCR pathway are now the promising anti-leukemic drugs. Ibrutinib, a Bruton tyrosine kinase inhibitor, demonstrates promising clinical activity in CLL. It is reported that ibrutinib, additionally to directly targeting leukemic cells, also inhibits the interactions of these cells with T cells, macrophages and accessory cells. Assessment of these mechanisms is important because of their non -direct anti-leukemic effects and to identify possible side effects connected with long-term drug administration.The aim of this study was to assess the in vivo effects of ibrutinib on T-cell subpopulations and cytokine network in CLL. The analysis was performed on a group of 19 patients during first month of ibrutinib therapy. The standard multicolor flow cytometry and cytometric bead array methods were used for assessment of T-cell subsets and cytokines/chemokines, respectively.The data obtained indicates that Ibrutinib treatment results in changes in T-cell subpopulations and cytokine network in CLL patients. Particularly, a significant reduction of T regulatory cells in peripheral blood was observed. By targeting these populations of T cells Ibrutinib can stimulate rejection of tumor cells by the immune system.

  9. Insights into significant pathways and gene interaction networks underlying breast cancer cell line MCF-7 treated with 17β-estradiol (E2).

    Science.gov (United States)

    Huan, Jinliang; Wang, Lishan; Xing, Li; Qin, Xianju; Feng, Lingbin; Pan, Xiaofeng; Zhu, Ling

    2014-01-01

    Estrogens are known to regulate the proliferation of breast cancer cells and to alter their cytoarchitectural and phenotypic properties, but the gene networks and pathways by which estrogenic hormones regulate these events are only partially understood. We used global gene expression profiling by Affymetrix GeneChip microarray analysis, with KEGG pathway enrichment, PPI network construction, module analysis and text mining methods to identify patterns and time courses of genes that are either stimulated or inhibited by estradiol (E2) in estrogen receptor (ER)-positive MCF-7 human breast cancer cells. Of the genes queried on the Affymetrix Human Genome U133 plus 2.0 microarray, we identified 628 (12h), 852 (24h) and 880 (48 h) differentially expressed genes (DEGs) that showed a robust pattern of regulation by E2. From pathway enrichment analysis, we found out the changes of metabolic pathways of E2 treated samples at each time point. At 12h time point, the changes of metabolic pathways were mainly focused on pathways in cancer, focal adhesion, and chemokine signaling pathway. At 24h time point, the changes were mainly enriched in neuroactive ligand-receptor interaction, cytokine-cytokine receptor interaction and calcium signaling pathway. At 48 h time point, the significant pathways were pathways in cancer, regulation of actin cytoskeleton, cell adhesion molecules (CAMs), axon guidance and ErbB signaling pathway. Of interest, our PPI network analysis and module analysis found that E2 treatment induced enhancement of PRSS23 at the three time points and PRSS23 was in the central position of each module. Text mining results showed that the important genes of DEGs have relationship with signal pathways, such as ERbB pathway (AREG), Wnt pathway (NDP), MAPK pathway (NTRK3, TH), IP3 pathway (TRA@) and some transcript factors (TCF4, MAF). Our studies highlight the diverse gene networks and metabolic and cell regulatory pathways through which E2 operates to achieve its

  10. Understanding dynamics of information transmission in Drosophila melanogaster using a statistical modeling framework for longitudinal network data (the RSiena package

    Directory of Open Access Journals (Sweden)

    Cristian ePasquaretta

    2016-04-01

    Full Text Available Social learning – the transmission of behaviors through observation or interaction with conspecifics – can be viewed as a decision-making process driven by interactions among individuals. Animal group structures change over time and interactions among individuals occur in particular orders that may be repeated following specific patterns, change in their nature, or disappear completely. Here we used a stochastic actor-oriented model built using the RSiena package in R to estimate individual behaviors and their changes through time, by analyzing the dynamic of the interaction network of the fruit fly Drosophila melanogaster during social learning experiments. In particular, we re-analyzed an experimental dataset where uninformed flies, left free to interact with informed ones, acquired and later used information about oviposition site choice obtained by social interactions. We estimated the degree to which the uninformed flies had successfully acquired the information carried by informed individuals using the proportion of eggs laid by uninformed flies on the medium their conspecifics had been trained to favor. Regardless of the degree of information acquisition measured in uninformed individuals, they always received and started interactions more frequently than informed ones did. However, information was efficiently transmitted (i.e. uninformed flies predominantly laid eggs on the same medium informed ones had learn to prefer only when the difference in contacts sent between the two fly types was small. Interestingly, we found that the degree of reciprocation, the tendency of individuals to form mutual connections between each other, strongly affected oviposition site choice in uninformed flies. This work highlights the great potential of RSiena and its utility in the studies of interaction networks among non-human animals.

  11. Significant Need for a French Network of Expert Centers Enabling a Better Characterization and Management of Treatment-Resistant Depression (Fondation FondaMental

    Directory of Open Access Journals (Sweden)

    Antoine Yrondi

    2017-11-01

    Full Text Available BackgroundMajor depression is characterized by (i a high lifetime prevalence of 16–17% in the general population; (ii a high frequency of treatment resistance in around 20–30% of cases; (iii a recurrent or chronic course; (iv a negative impact on the general functioning and quality of life; and (v a high level of comorbidity with various psychiatric and non-psychiatric disorders, high occurrence of completed suicide, significant burden along with the personal, societal, and economic costs. In this context, there is an important need for the development of a network of expert centers for treatment-resistant depression (TRD, as performed under the leadership of the Fondation FondaMental.MethodsThe principal mission of this national network is to establish a genuine prevention, screening, and diagnosis policy for TRD to offer a systematic, comprehensive, longitudinal, and multidimensional evaluation of cases. A shared electronic medical file is used referring to a common exhaustive and standardized set of assessment tools exploring psychiatric, non-psychiatric, metabolic, biological, and cognitive dimensions of TRD. This is paralleled by a medico-economic evaluation to examine the global economic burden of the disease and related health-care resource utilization. In addition, an integrated biobank has been built by the collection of serum and DNA samples for the measurement of several biomarkers that could further be associated with the treatment resistance in the recruited depressed patients. A French observational long-term follow-up cohort study is currently in progress enabling the extensive assessment of resistant depressed patients. In those unresponsive cases, each expert center proposes relevant therapeutic options that are classically aligned to the international guidelines referring to recognized scientific societies.DiscussionThis approach is expected to improve the overall clinical assessments and to provide evidence

  12. Establishing structure-property correlations and classification of base oils using statistical techniques and artificial neural networks

    International Nuclear Information System (INIS)

    Kapur, G.S.; Sastry, M.I.S.; Jaiswal, A.K.; Sarpal, A.S.

    2004-01-01

    The present paper describes various classification techniques like cluster analysis, principal component (PC)/factor analysis to classify different types of base stocks. The API classification of base oils (Group I-III) has been compared to a more detailed NMR derived chemical compositional and molecular structural parameters based classification in order to point out the similarities of the base oils in the same group and the differences between the oils placed in different groups. The detailed compositional parameters have been generated using 1 H and 13 C nuclear magnetic resonance (NMR) spectroscopic methods. Further, oxidation stability, measured in terms of rotating bomb oxidation test (RBOT) life, of non-conventional base stocks and their blends with conventional base stocks, has been quantitatively correlated with their 1 H NMR and elemental (sulphur and nitrogen) data with the help of multiple linear regression (MLR) and artificial neural networks (ANN) techniques. The MLR based model developed using NMR and elemental data showed a high correlation between the 'measured' and 'estimated' RBOT values for both training (R=0.859) and validation (R=0.880) data sets. The ANN based model, developed using fewer number of input variables (only 1 H NMR data) also showed high correlation between the 'measured' and 'estimated' RBOT values for training (R=0.881), validation (R=0.860) and test (R=0.955) data sets

  13. Comparing identified and statistically significant lipids and polar metabolites in 15-year old serum and dried blood spot samples for longitudinal studies: Comparing lipids and metabolites in serum and DBS samples

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, Jennifer E. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Casey, Cameron P. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Stratton, Kelly G. [National Security Directorate, Pacific Northwest National Laboratory, Richland WA USA; Zink, Erika M. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Kim, Young-Mo [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Zheng, Xueyun [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Monroe, Matthew E. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Weitz, Karl K. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Bloodsworth, Kent J. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Orton, Daniel J. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Ibrahim, Yehia M. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Moore, Ronald J. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Lee, Christine G. [Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland OR USA; Research Service, Portland Veterans Affairs Medical Center, Portland OR USA; Pedersen, Catherine [Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland OR USA; Orwoll, Eric [Department of Medicine, Bone and Mineral Unit, Oregon Health and Science University, Portland OR USA; Smith, Richard D. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Burnum-Johnson, Kristin E. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA; Baker, Erin S. [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland WA USA

    2017-02-05

    The use of dried blood spots (DBS) has many advantages over traditional plasma and serum samples such as smaller blood volume required, storage at room temperature, and ability for sampling in remote locations. However, understanding the robustness of different analytes in DBS samples is essential, especially in older samples collected for longitudinal studies. Here we analyzed DBS samples collected in 2000-2001 and stored at room temperature and compared them to matched serum samples stored at -80°C to determine if they could be effectively used as specific time points in a longitudinal study following metabolic disease. Four hundred small molecules were identified in both the serum and DBS samples using gas chromatograph-mass spectrometry (GC-MS), liquid chromatography-MS (LC-MS) and LC-ion mobility spectrometry-MS (LC-IMS-MS). The identified polar metabolites overlapped well between the sample types, though only one statistically significant polar metabolite in a case-control study was conserved, indicating degradation occurs in the DBS samples affecting quantitation. Differences in the lipid identifications indicated that some oxidation occurs in the DBS samples. However, thirty-six statistically significant lipids correlated in both sample types indicating that lipid quantitation was more stable across the sample types.

  14. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images. A Japanese multicenter study

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Kenichi; Matsuo, Shinro [Kanazawa University Hospital, Kanazawa (Japan); Kudo, Takashi [Nagasaki University Hospital, Nagasaki (Japan); Nakata, Tomoaki [Hakodate Goryoukaku Hospital, Hakodate (Japan); Kiso, Keisuke [National Cerebral and Cardiovascular Center, Suita (Japan); Kasai, Tokuo [Tokyo Medical University Hachioji Medical Center, Hachioji (Japan); Taniguchi, Yasuyo [Hyogo Brain and Heart Center, Himeji (Japan); Momose, Mitsuru [Tokyo Women' s Medical University, Tokyo (Japan); Nakagawa, Masayasu [Akita City Hospital, Akita (Japan); Sarai, Masayoshi [Fujita Health University Hospital, Toyoake (Japan); Hida, Satoshi [Tokyo Medical University Hospital, Tokyo (Japan); Tanaka, Hirokazu [Tokyo Medical University Ibaraki Medical Center, Ibaraki (Japan); Yokoyama, Kunihiko [Public Central Hospital of Matto Ishikawa, Hakusan (Japan); Okuda, Koichi [Kanazawa Medical University, Kahoku (Japan); Edenbrandt, Lars [University of Gothenburg, Gothenburg (Sweden)

    2017-12-15

    Artificial neural networks (ANN) might help to diagnose coronary artery disease. This study aimed to determine whether the diagnostic accuracy of an ANN-based diagnostic system and conventional quantitation are comparable. The ANN was trained to classify potentially abnormal areas as true or false based on the nuclear cardiology expert interpretation of 1001 gated stress/rest {sup 99m}Tc-MIBI images at 12 hospitals. The diagnostic accuracy of the ANN was compared with 364 expert interpretations that served as the gold standard of abnormality for the validation study. Conventional summed stress/rest/difference scores (SSS/SRS/SDS) were calculated and compared with receiver operating characteristics (ROC) analysis. The ANN generated a better area under the ROC curves (AUC) than SSS (0.92 vs. 0.82, p < 0.0001), indicating better identification of stress defects. The ANN also generated a better AUC than SDS (0.90 vs. 0.75, p < 0.0001) for stress-induced ischemia. The AUC for patients with old myocardial infarction based on rest defects was 0.97 (0.91 for SRS, p = 0.0061), and that for patients with and without a history of revascularization based on stress defects was 0.94 and 0.90 (p = 0.0055 and p < 0.0001 vs. SSS, respectively). The SSS/SRS/SDS steeply increased when ANN values (probability of abnormality) were >0.80. The ANN was diagnostically accurate in various clinical settings, including that of patients with previous myocardial infarction and coronary revascularization. The ANN could help to diagnose coronary artery disease. (orig.)

  15. Diagnostic accuracy of an artificial neural network compared with statistical quantitation of myocardial perfusion images. A Japanese multicenter study

    International Nuclear Information System (INIS)

    Nakajima, Kenichi; Matsuo, Shinro; Kudo, Takashi; Nakata, Tomoaki; Kiso, Keisuke; Kasai, Tokuo; Taniguchi, Yasuyo; Momose, Mitsuru; Nakagawa, Masayasu; Sarai, Masayoshi; Hida, Satoshi; Tanaka, Hirokazu; Yokoyama, Kunihiko; Okuda, Koichi; Edenbrandt, Lars

    2017-01-01

    Artificial neural networks (ANN) might help to diagnose coronary artery disease. This study aimed to determine whether the diagnostic accuracy of an ANN-based diagnostic system and conventional quantitation are comparable. The ANN was trained to classify potentially abnormal areas as true or false based on the nuclear cardiology expert interpretation of 1001 gated stress/rest 99m Tc-MIBI images at 12 hospitals. The diagnostic accuracy of the ANN was compared with 364 expert interpretations that served as the gold standard of abnormality for the validation study. Conventional summed stress/rest/difference scores (SSS/SRS/SDS) were calculated and compared with receiver operating characteristics (ROC) analysis. The ANN generated a better area under the ROC curves (AUC) than SSS (0.92 vs. 0.82, p < 0.0001), indicating better identification of stress defects. The ANN also generated a better AUC than SDS (0.90 vs. 0.75, p < 0.0001) for stress-induced ischemia. The AUC for patients with old myocardial infarction based on rest defects was 0.97 (0.91 for SRS, p = 0.0061), and that for patients with and without a history of revascularization based on stress defects was 0.94 and 0.90 (p = 0.0055 and p < 0.0001 vs. SSS, respectively). The SSS/SRS/SDS steeply increased when ANN values (probability of abnormality) were >0.80. The ANN was diagnostically accurate in various clinical settings, including that of patients with previous myocardial infarction and coronary revascularization. The ANN could help to diagnose coronary artery disease. (orig.)

  16. Statistical Modelling and Characterization of Experimental mm-Wave Indoor Channels for Future 5G Wireless Communication Networks.

    Science.gov (United States)

    Al-Samman, A M; Rahman, T A; Azmi, M H; Hindia, M N; Khan, I; Hanafi, E

    This paper presents an experimental characterization of millimeter-wave (mm-wave) channels in the 6.5 GHz, 10.5 GHz, 15 GHz, 19 GHz, 28 GHz and 38 GHz frequency bands in an indoor corridor environment. More than 4,000 power delay profiles were measured across the bands using an omnidirectional transmitter antenna and a highly directional horn receiver antenna for both co- and cross-polarized antenna configurations. This paper develops a new path-loss model to account for the frequency attenuation with distance, which we term the frequency attenuation (FA) path-loss model and introduce a frequency-dependent attenuation factor. The large-scale path loss was characterized based on both new and well-known path-loss models. A general and less complex method is also proposed to estimate the cross-polarization discrimination (XPD) factor of close-in reference distance with the XPD (CIX) and ABG with the XPD (ABGX) path-loss models to avoid the computational complexity of minimum mean square error (MMSE) approach. Moreover, small-scale parameters such as root mean square (RMS) delay spread, mean excess (MN-EX) delay, dispersion factors and maximum excess (MAX-EX) delay parameters were used to characterize the multipath channel dispersion. Multiple statistical distributions for RMS delay spread were also investigated. The results show that our proposed models are simpler and more physically-based than other well-known models. The path-loss exponents for all studied models are smaller than that of the free-space model by values in the range of 0.1 to 1.4 for all measured frequencies. The RMS delay spread values varied between 0.2 ns and 13.8 ns, and the dispersion factor values were less than 1 for all measured frequencies. The exponential and Weibull probability distribution models best fit the RMS delay spread empirical distribution for all of the measured frequencies in all scenarios.

  17. Genome-Scale Co-Expression Network Comparison across Escherichia coli and Salmonella enterica Serovar Typhimurium Reveals Significant Conservation at the Regulon Level of Local Regulators Despite Their Dissimilar Lifestyles

    Science.gov (United States)

    Zarrineh, Peyman; Sánchez-Rodríguez, Aminael; Hosseinkhan, Nazanin; Narimani, Zahra; Marchal, Kathleen; Masoudi-Nejad, Ali

    2014-01-01

    Availability of genome-wide gene expression datasets provides the opportunity to study gene expression across different organisms under a plethora of experimental conditions. In our previous work, we developed an algorithm called COMODO (COnserved MODules across Organisms) that identifies conserved expression modules between two species. In the present study, we expanded COMODO to detect the co-expression conservation across three organisms by adapting the statistics behind it. We applied COMODO to study expression conservation/divergence between Escherichia coli, Salmonella enterica, and Bacillus subtilis. We observed that some parts of the regulatory interaction networks were conserved between E. coli and S. enterica especially in the regulon of local regulators. However, such conservation was not observed between the regulatory interaction networks of B. subtilis and the two other species. We found co-expression conservation on a number of genes involved in quorum sensing, but almost no conservation for genes involved in pathogenicity across E. coli and S. enterica which could partially explain their different lifestyles. We concluded that despite their different lifestyles, no significant rewiring have occurred at the level of local regulons involved for instance, and notable conservation can be detected in signaling pathways and stress sensing in the phylogenetically close species S. enterica and E. coli. Moreover, conservation of local regulons seems to depend on the evolutionary time of divergence across species disappearing at larger distances as shown by the comparison with B. subtilis. Global regulons follow a different trend and show major rewiring even at the limited evolutionary distance that separates E. coli and S. enterica. PMID:25101984

  18. Las pruebas de significación estadística en tres revistas biomédicas: una revisión crítica Tests of statistical significance in three biomedical journals: a critical review

    Directory of Open Access Journals (Sweden)

    Madelaine Sarria Castro

    2004-05-01

    Full Text Available OBJETIVOS: Caracterizar el empleo de las pruebas convencionales de significación estadística y las tendencias actuales que muestra su uso en tres revistas biomédicas del ámbito hispanohablante. MÉTODOS: Se examinaron todos los artículos originales descriptivos o explicativos que fueron publicados en el quinquenio de 1996­2000 en tres publicaciones: Revista Cubana de Medicina General Integral, Revista Panamericana de Salud Pública/Pan American Journal of Public Health y Medicina Clínica. RESULTADOS: En las tres revistas examinadas se detectaron diversos rasgos criticables en el empleo de las pruebas de hipótesis basadas en los "valores P" y la escasa presencia de las nuevas tendencias que se proponen en su lugar: intervalos de confianza (IC e inferencia bayesiana. Los hallazgos fundamentales fueron los siguientes: mínima presencia de los IC, ya fuese como complemento de las pruebas de significación o como recurso estadístico único; mención del tamaño muestral como posible explicación de los resultados; predominio del empleo de valores rígidos de alfa; falta de uniformidad en la presentación de los resultados, y alusión indebida en las conclusiones de la investigación a los resultados de las pruebas de hipótesis. CONCLUSIONES: Los resultados reflejan la falta de acatamiento de autores y editores en relación con las normas aceptadas en torno al uso de las pruebas de significación estadística y apuntan a que el empleo adocenado de estas pruebas sigue ocupando un espacio importante en la literatura biomédica del ámbito hispanohablante.OBJECTIVE: To describe the use of conventional tests of statistical significance and the current trends shown by their use in three biomedical journals read in Spanish-speaking countries. METHODS: All descriptive or explanatory original articles published in the five-year period of 1996 through 2000 were reviewed in three journals: Revista Cubana de Medicina General Integral [Cuban Journal of

  19. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  20. Networking

    OpenAIRE

    Rauno Lindholm, Daniel; Boisen Devantier, Lykke; Nyborg, Karoline Lykke; Høgsbro, Andreas; Fries, de; Skovlund, Louise

    2016-01-01

    The purpose of this project was to examine what influencing factor that has had an impact on the presumed increasement of the use of networking among academics on the labour market and how it is expressed. On the basis of the influence from globalization on the labour market it can be concluded that the globalization has transformed the labour market into a market based on the organization of networks. In this new organization there is a greater emphasis on employees having social qualificati...

  1. Evaluation of the streamgage network for estimating streamflow statistics at ungaged sites in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York

    Science.gov (United States)

    Sloto, Ronald A.; Stuckey, Marla H.; Hoffman, Scott A.

    2017-05-10

    The current (2015) streamgage network in Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York was evaluated in order to design a network that would meet the hydrologic needs of many partners and serve a variety of purposes and interests, including estimation of streamflow statistics at ungaged sites. This study was done by the U.S. Geological Survey, in cooperation with the Pennsylvania Department of Environmental Protection and the Susquehanna River Basin Commission. The study area includes the Commonwealth of Pennsylvania and the Susquehanna River Basin in Pennsylvania and New York. For this study, 229 streamgages were identified as reference streamgages that could be used to represent ungaged watersheds. Criteria for a reference streamgage are a minimum of 10 years of continuous record, minimally altered streamflow, and a drainage area less than 1,500 square miles. Some of the reference streamgages have been discontinued but provide historical hydrologic information valuable in the determination of streamflow characteristics of ungaged watersheds. Watersheds in the study area not adequately represented by a reference streamgage were identified by examining a range of basin characteristics, the extent of geographic coverage, and the strength of estimated streamflow correlations between gaged and ungaged sites.Basin characteristics were determined for the reference streamgage watersheds and the 1,662 12-digit hydrologic unit code (HUC12) subwatersheds in Pennsylvania and the Susquehanna River Basin using a geographic information system (GIS) spatial analysis and nationally available GIS datasets. Basin characteristics selected for this study include drainage area, mean basin elevation, mean basin slope, percentage of urbanized area, percentage of forested area, percentage of carbonate bedrock, mean annual precipitation, and soil thickness. A GIS spatial analysis was used to identify HUC12 subwatersheds outside the range of basin

  2. Reports on internet traffic statistics

    OpenAIRE

    Hoogesteger, Martijn; de Oliveira Schmidt, R.; Sperotto, Anna; Pras, Aiko

    2013-01-01

    Internet traffic statistics can provide valuable information to network analysts and researchers about the way nowadays networks are used. In the past, such information was provided by Internet2 in a public website called Internet2 NetFlow: Weekly Reports. The website reported traffic statistics from the Abilene network on a weekly basis. At that time, the network connected 230 research institutes with a 10Gb/s link. Although these reports were limited to the behavior of the Albeline's users,...

  3. Statistical relationship between surface PM10 concentration and aerosol optical depth over the Sahel as a function of weather type, using neural network methodology

    Science.gov (United States)

    Yahi, H.; Marticorena, B.; Thiria, S.; Chatenet, B.; Schmechtig, C.; Rajot, J. L.; Crepon, M.

    2013-12-01

    work aims at assessing the capability of passive remote-sensed measurements such as aerosol optical depth (AOD) to monitor the surface dust concentration during the dry season in the Sahel region (West Africa). We processed continuous measurements of AODs and surface concentrations for the period (2006-2010) in Banizoumbou (Niger) and Cinzana (Mali). In order to account for the influence of meteorological condition on the relationship between PM10 surface concentration and AOD, we decomposed the mesoscale meteorological fields surrounding the stations into five weather types having similar 3-dimensional atmospheric characteristics. This classification was obtained by a clustering method based on nonlinear artificial neural networks, the so-called self-organizing map. The weather types were identified by processing tridimensional fields of meridional and zonal winds and air temperature obtained from European Centre for Medium-Range Weather Forecasts (ECMWF) model output centered on each measurement station. Five similar weather types have been identified at the two stations. Three of them are associated with the Harmattan flux; the other two correspond to northward inflow of the monsoon flow at the beginning or the end of the dry season. An improved relationship has been found between the surface PM10 concentrations and the AOD by using a dedicated statistical relationship for each weather type. The performances of the statistical inversion computed on the test data sets show satisfactory skills for most of the classes, much better than a linear regression. This should permit the inversion of the mineral dust concentration from AODs derived from satellite observations over the Sahel.

  4. Brain functional network connectivity based on a visual task: visual information processing-related brain regions are significantly activated in the task state

    Directory of Open Access Journals (Sweden)

    Yan-li Yang

    2015-01-01

    Full Text Available It is not clear whether the method used in functional brain-network related research can be applied to explore the feature binding mechanism of visual perception. In this study, we investigated feature binding of color and shape in visual perception. Functional magnetic resonance imaging data were collected from 38 healthy volunteers at rest and while performing a visual perception task to construct brain networks active during resting and task states. Results showed that brain regions involved in visual information processing were obviously activated during the task. The components were partitioned using a greedy algorithm, indicating the visual network existed during the resting state. Z-values in the vision-related brain regions were calculated, confirming the dynamic balance of the brain network. Connectivity between brain regions was determined, and the result showed that occipital and lingual gyri were stable brain regions in the visual system network, the parietal lobe played a very important role in the binding process of color features and shape features, and the fusiform and inferior temporal gyri were crucial for processing color and shape information. Experimental findings indicate that understanding visual feature binding and cognitive processes will help establish computational models of vision, improve image recognition technology, and provide a new theoretical mechanism for feature binding in visual perception.

  5. The Significance of Kinship for Medical Education: Reflections on the Use of a Bespoke Social Network to Support Learners' Professional Identities.

    Science.gov (United States)

    Hatzipanagos, Stylianos; John, Bernadette; Chiu, Yuan-Li Tiffany

    2016-03-03

    Social media can support and sustain communities much better than previous generations of learning technologies, where institutional barriers undermined any initiatives for embedding formal and informal learning. Some of the many types of social media have already had an impact on student learning, based on empirical evidence. One of these, social networking, has the potential to support communication in formal and informal spaces. In this paper we report on the evaluation of an institutional social network-King's Social Harmonisation Project (KINSHIP)-established to foster an improved sense of community, enhance communication, and serve as a space to model digital professionalism for students at King's College London, United Kingdom. Our evaluation focused on a study that examined students' needs and perceptions with regard to the provision of a cross-university platform. Data were collected from students, including those in the field of health and social care, in order to recommend a practical way forward to address current needs in this area. The findings indicate that the majority of the respondents were positive about using a social networking platform to develop their professional voice and profiles. Results suggest that timely promotion of the platform, emphasis on interface and learning design, and a clear identity are required in order to gain acceptance as the institutional social networking site. Empirical findings in this study project an advantage of an institutional social network such a KINSHIP over other social networks (eg, Facebook) because access is limited to staff and students and the site is mainly being used for academic purposes.

  6. Modeling and Analysis of Mechanical Properties of Aluminium Alloy (A413 Processed through Squeeze Casting Route Using Artificial Neural Network Model and Statistical Technique

    Directory of Open Access Journals (Sweden)

    R. Soundararajan

    2015-01-01

    Full Text Available Artificial Neural Network (ANN approach was used for predicting and analyzing the mechanical properties of A413 aluminum alloy produced by squeeze casting route. The experiments are carried out with different controlled input variables such as squeeze pressure, die preheating temperature, and melt temperature as per Full Factorial Design (FFD. The accounted absolute process variables produce a casting with pore-free and ideal fine grain dendritic structure resulting in good mechanical properties such as hardness, ultimate tensile strength, and yield strength. As a primary objective, a feed forward back propagation ANN model has been developed with different architectures for ensuring the definiteness of the values. The developed model along with its predicted data was in good agreement with the experimental data, inferring the valuable performance of the optimal model. From the work it was ascertained that, for castings produced by squeeze casting route, the ANN is an alternative method for predicting the mechanical properties and appropriate results can be estimated rather than measured, thereby reducing the testing time and cost. As a secondary objective, quantitative and statistical analysis was performed in order to evaluate the effect of process parameters on the mechanical properties of the castings.

  7. A comparison of artificial neural networks with other statistical approaches for the prediction of true metabolizable energy of meat and bone meal.

    Science.gov (United States)

    Perai, A H; Nassiri Moghaddam, H; Asadpour, S; Bahrampour, J; Mansoori, Gh

    2010-07-01

    There has been a considerable and continuous interest to develop equations for rapid and accurate prediction of the ME of meat and bone meal. In this study, an artificial neural network (ANN), a partial least squares (PLS), and a multiple linear regression (MLR) statistical method were used to predict the TME(n) of meat and bone meal based on its CP, ether extract, and ash content. The accuracy of the models was calculated by R(2) value, MS error, mean absolute percentage error, mean absolute deviation, bias, and Theil's U. The predictive ability of an ANN was compared with a PLS and a MLR model using the same training data sets. The squared regression coefficients of prediction for the MLR, PLS, and ANN models were 0.38, 0.36, and 0.94, respectively. The results revealed that ANN produced more accurate predictions of TME(n) as compared with PLS and MLR methods. Based on the results of this study, ANN could be used as a promising approach for rapid prediction of nutritive value of meat and bone meal.

  8. Cancer Statistics

    Science.gov (United States)

    ... What Is Cancer? Cancer Statistics Cancer Disparities Cancer Statistics Cancer has a major impact on society in ... success of efforts to control and manage cancer. Statistics at a Glance: The Burden of Cancer in ...

  9. Change Detection in Social Networks

    National Research Council Canada - National Science Library

    McCulloh, Ian; Webb, Matthew; Graham, John; Carley, Kathleen; Horn, Daniel B

    2008-01-01

    .... This project proposes a new method for detecting change in social networks over time, by applying a cumulative sum statistical process control statistic to normally distributed network measures...

  10. Reports on internet traffic statistics

    NARCIS (Netherlands)

    Hoogesteger, Martijn; de Oliveira Schmidt, R.; Sperotto, Anna; Pras, Aiko

    2013-01-01

    Internet traffic statistics can provide valuable information to network analysts and researchers about the way nowadays networks are used. In the past, such information was provided by Internet2 in a public website called Internet2 NetFlow: Weekly Reports. The website reported traffic statistics

  11. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification.

    Science.gov (United States)

    Wible, Ryan S; Sutter, Thomas R

    2017-03-20

    The unique biophysical and electronic properties of cysteine make this molecule one of the most biologically critical amino acids in the proteome. The defining sulfur atom in cysteine is much larger than the oxygen and nitrogen atoms more commonly found in the other amino acids. As a result of its size, the valence electrons of sulfur are highly polarizable. Unique protein microenvironments favor the polarization of sulfur, thus increasing the overt reactivity of cysteine. Here, we provide a brief overview of the endogenous generation of reactive oxygen and electrophilic species and specific examples of enzymes and transcription factors in which the oxidation or covalent modification of cysteine in those proteins modulates their function. The perspective concludes with a discussion of cysteine chemistry and biophysics, the hard and soft acids and bases model, and the proposal of the Soft Cysteine Signaling Network: a hypothesis proposing the existence of a complex signaling network governed by layered chemical reactivity and cross-talk in which the chemical modification of reactive cysteine in biological networks triggers the reorganization of intracellular biochemistry to mitigate spikes in endogenous or exogenous oxidative or electrophilic stress.

  12. Statistical optimization and artificial neural network modeling for acridine orange dye degradation using in-situ synthesized polymer capped ZnO nanoparticles.

    Science.gov (United States)

    Dhiman, Nitesh; Markandeya; Singh, Amrita; Verma, Neeraj K; Ajaria, Nidhi; Patnaik, Satyakam

    2017-05-01

    ZnO NPs were synthesized by a prudent green chemistry approach in presence of polyacrylamide grafted guar gum polymer (pAAm-g-GG) to ensure uniform morphology, and functionality and appraised for their ability to degrade photocatalytically Acridine Orange (AO) dye. These ZnO@pAAm-g-GG NPs were thoroughly characterized by various spectroscopic, XRD and electron microscopic techniques. The relative quantity of ZnO NPs in polymeric matrix has been estimated by spectro-analytical procedure; AAS and TGA analysis. The impact of process parameters viz. NP's dose, contact time and AO dye concentration on percentage photocatalytic degradation of AO dyes were evaluated using multivariate optimizing tools, Response Surface Methodology (RSM) involving Box-Behnken Design (BBD) and Artificial Neural Network (ANN). Congruity of the BBD statistical model was implied by R 2 value 0.9786 and F-value 35.48. At RSM predicted optimal condition viz. ZnO@pAAm-g-GG NP's dose of 0.2g/L, contact time of 210min and AO dye concentration 10mg/L, a maximum of 98% dye degradation was obtained. ANOVA indicated appropriateness of the model for dye degradation owing to "Prob.>F" less than 0.05 for variable parameters. We further, employed three layers feed forward ANN model for validating the BBD process parameters and suitability of our chosen model. The evaluation of Levenberg-Marquardt algorithm (ANN1) and Gradient Descent with adaptive learning rate (ANN2) model employed to scrutinize the best method and found experimental values of AO dye degradation were in close to those with predicated value of ANN 2 modeling with minimum error. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Incidence, treatment and recurrence of endometriosis in a UK-based population analysis using data from The Health Improvement Network and the Hospital Episode Statistics database.

    Science.gov (United States)

    Cea Soriano, Lucia; López-Garcia, Esther; Schulze-Rath, Renate; Garcia Rodríguez, Luis A

    2017-10-01

    This retrospective study used medical records from The Health Improvement Network (THIN) and Hospital Episode Statistics (HES) database to evaluate endometriosis (incidence, treatment and need for recurrent invasive procedures) in the general UK population. Women aged 12-54 years between January 2000 and December 2010, with a Read code for endometriosis, were identified in THIN. Cases were validated by manual review of free-text comments in medical records and responses to physician questionnaires. False-negative cases were identified among women with Read codes for hysterectomy or dysmenorrhea. Prescriptions of medical therapies for endometriosis were identified in THIN. Cases of single and recurrent invasive procedures were identified in women with medical records in both THIN and HES. Overall, 5087 women had a Read code for endometriosis, corresponding to an incidence of 1.02 (95% confidence interval [CI]: 0.99-1.05) per 1000 person-years. After case validation, the estimate was 1.46 (95% CI: 1.43-1.50) per 1000 person-years. Medical therapy was prescribed to 55.5% of women with endometriosis in the first year after diagnosis. In total, 48.3% of women received invasive treatment during the study period; approximately one-fifth of these women required further invasive treatment, mainly in the 3 years after the index procedure. Using Read codes as the only method to identify women with endometriosis underestimates incidence. Over half of women with recorded endometriosis are prescribed medical therapy in the first year after diagnosis. Women with diagnosed endometriosis are at risk of requiring recurrent invasive procedures.

  14. A statistical mechanical theory of proton transport kinetics in hydrogen-bonded networks based on population correlation functions with applications to acids and bases.

    Science.gov (United States)

    Tuckerman, Mark E; Chandra, Amalendu; Marx, Dominik

    2010-09-28

    Extraction of relaxation times, lifetimes, and rates associated with the transport of topological charge defects in hydrogen-bonded networks from molecular dynamics simulations is a challenge because proton transfer reactions continually change the identity of the defect core. In this paper, we present a statistical mechanical theory that allows these quantities to be computed in an unbiased manner. The theory employs a set of suitably defined indicator or population functions for locating a defect structure and their associated correlation functions. These functions are then used to develop a chemical master equation framework from which the rates and lifetimes can be determined. Furthermore, we develop an integral equation formalism for connecting various types of population correlation functions and derive an iterative solution to the equation, which is given a graphical interpretation. The chemical master equation framework is applied to the problems of both hydronium and hydroxide transport in bulk water. For each case it is shown that the theory establishes direct links between the defect's dominant solvation structures, the kinetics of charge transfer, and the mechanism of structural diffusion. A detailed analysis is presented for aqueous hydroxide, examining both reorientational time scales and relaxation of the rotational anisotropy, which is correlated with recent experimental results for these quantities. Finally, for OH(-)(aq) it is demonstrated that the "dynamical hypercoordination mechanism" is consistent with available experimental data while other mechanistic proposals are shown to fail. As a means of going beyond the linear rate theory valid from short up to intermediate time scales, a fractional kinetic model is introduced in the Appendix in order to describe the nonexponential long-time behavior of time-correlation functions. Within the mathematical framework of fractional calculus the power law decay ∼t(-σ), where σ is a parameter of the

  15. Usage Statistics

    Science.gov (United States)

    ... this page: https://medlineplus.gov/usestatistics.html MedlinePlus Statistics To use the sharing features on this page, ... By Quarter View image full size Quarterly User Statistics Quarter Page Views Unique Visitors Oct-Dec-98 ...

  16. Statistical Analysis of Big Data on Pharmacogenomics

    Science.gov (United States)

    Fan, Jianqing; Liu, Han

    2013-01-01

    This paper discusses statistical methods for estimating complex correlation structure from large pharmacogenomic datasets. We selectively review several prominent statistical methods for estimating large covariance matrix for understanding correlation structure, inverse covariance matrix for network modeling, large-scale simultaneous tests for selecting significantly differently expressed genes and proteins and genetic markers for complex diseases, and high dimensional variable selection for identifying important molecules for understanding molecule mechanisms in pharmacogenomics. Their applications to gene network estimation and biomarker selection are used to illustrate the methodological power. Several new challenges of Big data analysis, including complex data distribution, missing data, measurement error, spurious correlation, endogeneity, and the need for robust statistical methods, are also discussed. PMID:23602905

  17. Mathematical statistics

    CERN Document Server

    Pestman, Wiebe R

    2009-01-01

    This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.

  18. Frog Statistics

    Science.gov (United States)

    Whole Frog Project and Virtual Frog Dissection Statistics wwwstats output for January 1 through duplicate or extraneous accesses. For example, in these statistics, while a POST requesting an image is as well. Note that this under-represents the bytes requested. Starting date for following statistics

  19. The Global Terrestrial Network for Permafrost Database: metadata statistics and prospective analysis on future permafrost temperature and active layer depth monitoring site distribution

    Science.gov (United States)

    Biskaborn, B. K.; Lanckman, J.-P.; Lantuit, H.; Elger, K.; Streletskiy, D. A.; Cable, W. L.; Romanovsky, V. E.

    2015-03-01

    The Global Terrestrial Network for Permafrost (GTN-P) provides the first dynamic database associated with the Thermal State of Permafrost (TSP) and the Circumpolar Active Layer Monitoring (CALM) programs, which extensively collect permafrost temperature and active layer thickness data from Arctic, Antarctic and Mountain permafrost regions. The purpose of the database is to establish an "early warning system" for the consequences of climate change in permafrost regions and to provide standardized thermal permafrost data to global models. In this paper we perform statistical analysis of the GTN-P metadata aiming to identify the spatial gaps in the GTN-P site distribution in relation to climate-effective environmental parameters. We describe the concept and structure of the Data Management System in regard to user operability, data transfer and data policy. We outline data sources and data processing including quality control strategies. Assessment of the metadata and data quality reveals 63% metadata completeness at active layer sites and 50% metadata completeness for boreholes. Voronoi Tessellation Analysis on the spatial sample distribution of boreholes and active layer measurement sites quantifies the distribution inhomogeneity and provides potential locations of additional permafrost research sites to improve the representativeness of thermal monitoring across areas underlain by permafrost. The depth distribution of the boreholes reveals that 73% are shallower than 25 m and 27% are deeper, reaching a maximum of 1 km depth. Comparison of the GTN-P site distribution with permafrost zones, soil organic carbon contents and vegetation types exhibits different local to regional monitoring situations on maps. Preferential slope orientation at the sites most likely causes a bias in the temperature monitoring and should be taken into account when using the data for global models. The distribution of GTN-P sites within zones of projected temperature change show a high

  20. Entropy of network ensembles

    Science.gov (United States)

    Bianconi, Ginestra

    2009-03-01

    In this paper we generalize the concept of random networks to describe network ensembles with nontrivial features by a statistical mechanics approach. This framework is able to describe undirected and directed network ensembles as well as weighted network ensembles. These networks might have nontrivial community structure or, in the case of networks embedded in a given space, they might have a link probability with a nontrivial dependence on the distance between the nodes. These ensembles are characterized by their entropy, which evaluates the cardinality of networks in the ensemble. In particular, in this paper we define and evaluate the structural entropy, i.e., the entropy of the ensembles of undirected uncorrelated simple networks with given degree sequence. We stress the apparent paradox that scale-free degree distributions are characterized by having small structural entropy while they are so widely encountered in natural, social, and technological complex systems. We propose a solution to the paradox by proving that scale-free degree distributions are the most likely degree distribution with the corresponding value of the structural entropy. Finally, the general framework we present in this paper is able to describe microcanonical ensembles of networks as well as canonical or hidden-variable network ensembles with significant implications for the formulation of network-constructing algorithms.

  1. Statistical optimization of the phytoremediation of arsenic by Ludwigia octovalvis- in a pilot reed bed using response surface methodology (RSM) versus an artificial neural network (ANN).

    Science.gov (United States)

    Titah, Harmin Sulistiyaning; Halmi, Mohd Izuan Effendi Bin; Abdullah, Siti Rozaimah Sheikh; Hasan, Hassimi Abu; Idris, Mushrifah; Anuar, Nurina

    2018-06-07

    In this study, the removal of arsenic (As) by plant, Ludwigia octovalvis, in a pilot reed bed was optimized. A Box-Behnken design was employed including a comparative analysis of both Response Surface Methodology (RSM) and an Artificial Neural Network (ANN) for the prediction of maximum arsenic removal. The predicted optimum condition using the desirability function of both models was 39 mg kg -1 for the arsenic concentration in soil, an elapsed time of 42 days (the sampling day) and an aeration rate of 0.22 L/min, with the predicted values of arsenic removal by RSM and ANN being 72.6% and 71.4%, respectively. The validation of the predicted optimum point showed an actual arsenic removal of 70.6%. This was achieved with the deviation between the validation value and the predicted values being within 3.49% (RSM) and 1.87% (ANN). The performance evaluation of the RSM and ANN models showed that ANN performs better than RSM with a higher R 2 (0.97) close to 1.0 and very small Average Absolute Deviation (AAD) (0.02) and Root Mean Square Error (RMSE) (0.004) values close to zero. Both models were appropriate for the optimization of arsenic removal with ANN demonstrating significantly higher predictive and fitting ability than RSM.

  2. Statistical physics

    CERN Document Server

    Sadovskii, Michael V

    2012-01-01

    This volume provides a compact presentation of modern statistical physics at an advanced level. Beginning with questions on the foundations of statistical mechanics all important aspects of statistical physics are included, such as applications to ideal gases, the theory of quantum liquids and superconductivity and the modern theory of critical phenomena. Beyond that attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems.

  3. Dominating biological networks.

    Directory of Open Access Journals (Sweden)

    Tijana Milenković

    Full Text Available Proteins are essential macromolecules of life that carry out most cellular processes. Since proteins aggregate to perform function, and since protein-protein interaction (PPI networks model these aggregations, one would expect to uncover new biology from PPI network topology. Hence, using PPI networks to predict protein function and role of protein pathways in disease has received attention. A debate remains open about whether network properties of "biologically central (BC" genes (i.e., their protein products, such as those involved in aging, cancer, infectious diseases, or signaling and drug-targeted pathways, exhibit some topological centrality compared to the rest of the proteins in the human PPI network.To help resolve this debate, we design new network-based approaches and apply them to get new insight into biological function and disease. We hypothesize that BC genes have a topologically central (TC role in the human PPI network. We propose two different concepts of topological centrality. We design a new centrality measure to capture complex wirings of proteins in the network that identifies as TC those proteins that reside in dense extended network neighborhoods. Also, we use the notion of domination and find dominating sets (DSs in the PPI network, i.e., sets of proteins such that every protein is either in the DS or is a neighbor of the DS. Clearly, a DS has a TC role, as it enables efficient communication between different network parts. We find statistically significant enrichment in BC genes of TC nodes and outperform the existing methods indicating that genes involved in key biological processes occupy topologically complex and dense regions of the network and correspond to its "spine" that connects all other network parts and can thus pass cellular signals efficiently throughout the network. To our knowledge, this is the first study that explores domination in the context of PPI networks.

  4. Statistical optics

    CERN Document Server

    Goodman, Joseph W

    2015-01-01

    This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications.  The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced i

  5. Harmonic statistics

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo, E-mail: eliazar@post.tau.ac.il

    2017-05-15

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.

  6. Harmonic statistics

    International Nuclear Information System (INIS)

    Eliazar, Iddo

    2017-01-01

    The exponential, the normal, and the Poisson statistical laws are of major importance due to their universality. Harmonic statistics are as universal as the three aforementioned laws, but yet they fall short in their ‘public relations’ for the following reason: the full scope of harmonic statistics cannot be described in terms of a statistical law. In this paper we describe harmonic statistics, in their full scope, via an object termed harmonic Poisson process: a Poisson process, over the positive half-line, with a harmonic intensity. The paper reviews the harmonic Poisson process, investigates its properties, and presents the connections of this object to an assortment of topics: uniform statistics, scale invariance, random multiplicative perturbations, Pareto and inverse-Pareto statistics, exponential growth and exponential decay, power-law renormalization, convergence and domains of attraction, the Langevin equation, diffusions, Benford’s law, and 1/f noise. - Highlights: • Harmonic statistics are described and reviewed in detail. • Connections to various statistical laws are established. • Connections to perturbation, renormalization and dynamics are established.

  7. Statistical methods

    CERN Document Server

    Szulc, Stefan

    1965-01-01

    Statistical Methods provides a discussion of the principles of the organization and technique of research, with emphasis on its application to the problems in social statistics. This book discusses branch statistics, which aims to develop practical ways of collecting and processing numerical data and to adapt general statistical methods to the objectives in a given field.Organized into five parts encompassing 22 chapters, this book begins with an overview of how to organize the collection of such information on individual units, primarily as accomplished by government agencies. This text then

  8. Histoplasmosis Statistics

    Science.gov (United States)

    ... Testing Treatment & Outcomes Health Professionals Statistics More Resources Candidiasis Candida infections of the mouth, throat, and esophagus Vaginal candidiasis Invasive candidiasis Definition Symptoms Risk & Prevention Sources Diagnosis ...

  9. Statistical Diversions

    Science.gov (United States)

    Petocz, Peter; Sowey, Eric

    2012-01-01

    The term "data snooping" refers to the practice of choosing which statistical analyses to apply to a set of data after having first looked at those data. Data snooping contradicts a fundamental precept of applied statistics, that the scheme of analysis is to be planned in advance. In this column, the authors shall elucidate the…

  10. Statistical Diversions

    Science.gov (United States)

    Petocz, Peter; Sowey, Eric

    2008-01-01

    In this article, the authors focus on hypothesis testing--that peculiarly statistical way of deciding things. Statistical methods for testing hypotheses were developed in the 1920s and 1930s by some of the most famous statisticians, in particular Ronald Fisher, Jerzy Neyman and Egon Pearson, who laid the foundations of almost all modern methods of…

  11. Scan Statistics

    CERN Document Server

    Glaz, Joseph

    2009-01-01

    Suitable for graduate students and researchers in applied probability and statistics, as well as for scientists in biology, computer science, pharmaceutical science and medicine, this title brings together a collection of chapters illustrating the depth and diversity of theory, methods and applications in the area of scan statistics.

  12. Practical Statistics

    CERN Document Server

    Lyons, L.

    2016-01-01

    Accelerators and detectors are expensive, both in terms of money and human effort. It is thus important to invest effort in performing a good statistical anal- ysis of the data, in order to extract the best information from it. This series of five lectures deals with practical aspects of statistical issues that arise in typical High Energy Physics analyses.

  13. Descriptive statistics.

    Science.gov (United States)

    Nick, Todd G

    2007-01-01

    Statistics is defined by the Medical Subject Headings (MeSH) thesaurus as the science and art of collecting, summarizing, and analyzing data that are subject to random variation. The two broad categories of summarizing and analyzing data are referred to as descriptive and inferential statistics. This chapter considers the science and art of summarizing data where descriptive statistics and graphics are used to display data. In this chapter, we discuss the fundamentals of descriptive statistics, including describing qualitative and quantitative variables. For describing quantitative variables, measures of location and spread, for example the standard deviation, are presented along with graphical presentations. We also discuss distributions of statistics, for example the variance, as well as the use of transformations. The concepts in this chapter are useful for uncovering patterns within the data and for effectively presenting the results of a project.

  14. ETMB-RBF: discrimination of metal-binding sites in electron transporters based on RBF networks with PSSM profiles and significant amino acid pairs.

    Science.gov (United States)

    Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng

    2013-01-01

    Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation-reduction reactions. In these oxidation-reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins.

  15. Semiconductor statistics

    CERN Document Server

    Blakemore, J S

    1962-01-01

    Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co

  16. Statistical Physics

    CERN Document Server

    Wannier, Gregory Hugh

    1966-01-01

    Until recently, the field of statistical physics was traditionally taught as three separate subjects: thermodynamics, statistical mechanics, and kinetic theory. This text, a forerunner in its field and now a classic, was the first to recognize the outdated reasons for their separation and to combine the essentials of the three subjects into one unified presentation of thermal physics. It has been widely adopted in graduate and advanced undergraduate courses, and is recommended throughout the field as an indispensable aid to the independent study and research of statistical physics.Designed for

  17. Statistics Clinic

    Science.gov (United States)

    Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James

    2014-01-01

    Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.

  18. Ontologies and tag-statistics

    Science.gov (United States)

    Tibély, Gergely; Pollner, Péter; Vicsek, Tamás; Palla, Gergely

    2012-05-01

    Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary area with great potential and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely ‘flat’, while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organization of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other types of tagged networks available for research, where the tags are already organized into a directed acyclic graph (DAG), encapsulating the ‘is a sub-category of’ type of hierarchy between each other. In this paper, we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various real networks. The motivation for this research was the fact that understanding the tagging based on a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative tagging systems. We analyse the relation between the tag-frequency and the position of the tag in the DAG in two large sub-networks of the English Wikipedia and a protein-protein interaction network. We also study the tag co-occurrence statistics by introducing a two-dimensional (2D) tag-distance distribution preserving both the difference in the levels and the absolute distance in the DAG for the co-occurring pairs of tags. Our most interesting finding is that the local relevance of tags in the DAG (i.e. their rank or significance as characterized by, e.g., the length of the branches starting from them) is much more important than their global distance from the root. Furthermore, we also introduce a simple tagging model based on random walks on the DAG, capable of

  19. Ontologies and tag-statistics

    International Nuclear Information System (INIS)

    Tibély, Gergely; Vicsek, Tamás; Pollner, Péter; Palla, Gergely

    2012-01-01

    Due to the increasing popularity of collaborative tagging systems, the research on tagged networks, hypergraphs, ontologies, folksonomies and other related concepts is becoming an important interdisciplinary area with great potential and relevance for practical applications. In most collaborative tagging systems the tagging by the users is completely ‘flat’, while in some cases they are allowed to define a shallow hierarchy for their own tags. However, usually no overall hierarchical organization of the tags is given, and one of the interesting challenges of this area is to provide an algorithm generating the ontology of the tags from the available data. In contrast, there are also other types of tagged networks available for research, where the tags are already organized into a directed acyclic graph (DAG), encapsulating the ‘is a sub-category of’ type of hierarchy between each other. In this paper, we study how this DAG affects the statistical distribution of tags on the nodes marked by the tags in various real networks. The motivation for this research was the fact that understanding the tagging based on a known hierarchy can help in revealing the hidden hierarchy of tags in collaborative tagging systems. We analyse the relation between the tag-frequency and the position of the tag in the DAG in two large sub-networks of the English Wikipedia and a protein-protein interaction network. We also study the tag co-occurrence statistics by introducing a two-dimensional (2D) tag-distance distribution preserving both the difference in the levels and the absolute distance in the DAG for the co-occurring pairs of tags. Our most interesting finding is that the local relevance of tags in the DAG (i.e. their rank or significance as characterized by, e.g., the length of the branches starting from them) is much more important than their global distance from the root. Furthermore, we also introduce a simple tagging model based on random walks on the DAG, capable of

  20. Evaluation and design of a rain gauge network using a statistical optimization method in a severe hydro-geological hazard prone area

    Science.gov (United States)

    Fattoruso, Grazia; Longobardi, Antonia; Pizzuti, Alfredo; Molinara, Mario; Marocco, Claudio; De Vito, Saverio; Tortorella, Francesco; Di Francia, Girolamo

    2017-06-01

    Rainfall data collection gathered in continuous by a distributed rain gauge network is instrumental to more effective hydro-geological risk forecasting and management services though the input estimated rainfall fields suffer from prediction uncertainty. Optimal rain gauge networks can generate accurate estimated rainfall fields. In this research work, a methodology has been investigated for evaluating an optimal rain gauges network aimed at robust hydrogeological hazard investigations. The rain gauges of the Sarno River basin (Southern Italy) has been evaluated by optimizing a two-objective function that maximizes the estimated accuracy and minimizes the total metering cost through the variance reduction algorithm along with the climatological variogram (time-invariant). This problem has been solved by using an enumerative search algorithm, evaluating the exact Pareto-front by an efficient computational time.

  1. Surface-water data and statistics from U.S. Geological Survey data-collection networks in New Jersey on the World Wide Web

    Science.gov (United States)

    Reiser, Robert G.; Watson, Kara M.; Chang, Ming; Nieswand, Steven P.

    2002-01-01

    The U.S. Geological Survey (USGS), in cooperation with other Federal, State, and local agencies, operates and maintains a variety of surface-water data-collection networks throughout the State of New Jersey. The networks include streamflow-gaging stations, low-flow sites, crest-stage gages, tide gages, tidal creststage gages, and water-quality sampling sites. Both real-time and historical surface-water data for many of the sites in these networks are available at the USGS, New Jersey District, web site (http://nj.usgs.gov/), and water-quality data are available at the USGS National Water Information System (NWIS) web site (http://waterdata.usgs.gov/nwis/). These data are an important source of information for water managers, engineers, environmentalists, and private citizens.

  2. Stupid statistics!

    Science.gov (United States)

    Tellinghuisen, Joel

    2008-01-01

    The method of least squares is probably the most powerful data analysis tool available to scientists. Toward a fuller appreciation of that power, this work begins with an elementary review of statistics fundamentals, and then progressively increases in sophistication as the coverage is extended to the theory and practice of linear and nonlinear least squares. The results are illustrated in application to data analysis problems important in the life sciences. The review of fundamentals includes the role of sampling and its connection to probability distributions, the Central Limit Theorem, and the importance of finite variance. Linear least squares are presented using matrix notation, and the significance of the key probability distributions-Gaussian, chi-square, and t-is illustrated with Monte Carlo calculations. The meaning of correlation is discussed, including its role in the propagation of error. When the data themselves are correlated, special methods are needed for the fitting, as they are also when fitting with constraints. Nonlinear fitting gives rise to nonnormal parameter distributions, but the 10% Rule of Thumb suggests that such problems will be insignificant when the parameter is sufficiently well determined. Illustrations include calibration with linear and nonlinear response functions, the dangers inherent in fitting inverted data (e.g., Lineweaver-Burk equation), an analysis of the reliability of the van't Hoff analysis, the problem of correlated data in the Guggenheim method, and the optimization of isothermal titration calorimetry procedures using the variance-covariance matrix for experiment design. The work concludes with illustrations on assessing and presenting results.

  3. Image Statistics

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, Laura Jean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-08-08

    In large datasets, it is time consuming or even impossible to pick out interesting images. Our proposed solution is to find statistics to quantify the information in each image and use those to identify and pick out images of interest.

  4. Accident Statistics

    Data.gov (United States)

    Department of Homeland Security — Accident statistics available on the Coast Guard’s website by state, year, and one variable to obtain tables and/or graphs. Data from reports has been loaded for...

  5. CMS Statistics

    Data.gov (United States)

    U.S. Department of Health & Human Services — The CMS Center for Strategic Planning produces an annual CMS Statistics reference booklet that provides a quick reference for summary information about health...

  6. WPRDC Statistics

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Data about the usage of the WPRDC site and its various datasets, obtained by combining Google Analytics statistics with information from the WPRDC's data portal.

  7. Multiparametric statistics

    CERN Document Server

    Serdobolskii, Vadim Ivanovich

    2007-01-01

    This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. ...

  8. Gonorrhea Statistics

    Science.gov (United States)

    ... Search Form Controls Cancel Submit Search the CDC Gonorrhea Note: Javascript is disabled or is not supported ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Gonorrhea Statistics Recommend on Facebook Tweet Share Compartir Gonorrhea ...

  9. Reversible Statistics

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2004-01-01

    The study aims is to describe how the inclusion and exclusion of materials and calculative devices construct the boundaries and distinctions between statistical facts and artifacts in economics. My methodological approach is inspired by John Graunt's (1667) Political arithmetic and more recent work...... within constructivism and the field of Science and Technology Studies (STS). The result of this approach is here termed reversible statistics, reconstructing the findings of a statistical study within economics in three different ways. It is argued that all three accounts are quite normal, albeit...... in different ways. The presence and absence of diverse materials, both natural and political, is what distinguishes them from each other. Arguments are presented for a more symmetric relation between the scientific statistical text and the reader. I will argue that a more symmetric relation can be achieved...

  10. Vital statistics

    CERN Document Server

    MacKenzie, Dana

    2004-01-01

    The drawbacks of using 19th-century mathematics in physics and astronomy are illustrated. To continue with the expansion of the knowledge about the cosmos, the scientists will have to come in terms with modern statistics. Some researchers have deliberately started importing techniques that are used in medical research. However, the physicists need to identify the brand of statistics that will be suitable for them, and make a choice between the Bayesian and the frequentists approach. (Edited abstract).

  11. Prediction of FAD binding sites in electron transport proteins according to efficient radial basis function networks and significant amino acid pairs.

    Science.gov (United States)

    Le, Nguyen-Quoc-Khanh; Ou, Yu-Yen

    2016-07-30

    Cellular respiration is a catabolic pathway for producing adenosine triphosphate (ATP) and is the most efficient process through which cells harvest energy from consumed food. When cells undergo cellular respiration, they require a pathway to keep and transfer electrons (i.e., the electron transport chain). Due to oxidation-reduction reactions, the electron transport chain produces a transmembrane proton electrochemical gradient. In case protons flow back through this membrane, this mechanical energy is converted into chemical energy by ATP synthase. The convert process is involved in producing ATP which provides energy in a lot of cellular processes. In the electron transport chain process, flavin adenine dinucleotide (FAD) is one of the most vital molecules for carrying and transferring electrons. Therefore, predicting FAD binding sites in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. We used an independent data set to evaluate the performance of the proposed method, which had an accuracy of 69.84 %. We compared the performance of the proposed method in analyzing two newly discovered electron transport protein sequences with that of the general FAD binding predictor presented by Mishra and Raghava and determined that the accuracy of the proposed method improved by 9-45 % and its Matthew's correlation coefficient was 0.14-0.5. Furthermore, the proposed method enabled reducing the number of false positives significantly and can provide useful information for biologists. We developed a method that is based on PSSM profiles and SAAPs for identifying FAD binding sites in newly discovered electron transport protein sequences. This approach achieved a significant improvement after we added SAAPs to PSSM features to analyze FAD binding proteins in the electron transport chain. The proposed method can serve as an effective tool for predicting FAD binding sites in electron

  12. Funding source and primary outcome changes in clinical trials registered on ClinicalTrials.gov are associated with the reporting of a statistically significant primary outcome: a cross-sectional study [v2; ref status: indexed, http://f1000r.es/5bj

    Directory of Open Access Journals (Sweden)

    Sreeram V Ramagopalan

    2015-04-01

    Full Text Available Background: We and others have shown a significant proportion of interventional trials registered on ClinicalTrials.gov have their primary outcomes altered after the listed study start and completion dates. The objectives of this study were to investigate whether changes made to primary outcomes are associated with the likelihood of reporting a statistically significant primary outcome on ClinicalTrials.gov. Methods: A cross-sectional analysis of all interventional clinical trials registered on ClinicalTrials.gov as of 20 November 2014 was performed. The main outcome was any change made to the initially listed primary outcome and the time of the change in relation to the trial start and end date. Findings: 13,238 completed interventional trials were registered with ClinicalTrials.gov that also had study results posted on the website. 2555 (19.3% had one or more statistically significant primary outcomes. Statistical analysis showed that registration year, funding source and primary outcome change after trial completion were associated with reporting a statistically significant primary outcome. Conclusions: Funding source and primary outcome change after trial completion are associated with a statistically significant primary outcome report on clinicaltrials.gov.

  13. Uplift rates from a new high-density GPS network in Palmer Land indicate significant late Holocene ice loss in the southwestern Weddell Sea

    Science.gov (United States)

    Wolstencroft, Martin; King, Matt A.; Whitehouse, Pippa L.; Bentley, Michael J.; Nield, Grace A.; King, Edward C.; McMillan, Malcolm; Shepherd, Andrew; Barletta, Valentina; Bordoni, Andrea; Riva, Riccardo E. M.; Didova, Olga; Gunter, Brian C.

    2015-10-01

    The measurement of ongoing ice-mass loss and associated melt water contribution to sea-level change from regions such as West Antarctica is dependent on a combination of remote sensing methods. A key method, the measurement of changes in Earth's gravity via the GRACE satellite mission, requires a potentially large correction to account for the isostatic response of the solid Earth to ice-load changes since the Last Glacial Maximum. In this study, we combine glacial isostatic adjustment modelling with a new GPS dataset of solid Earth deformation for the southern Antarctic Peninsula to test the current understanding of ice history in this region. A sufficiently complete history of past ice-load change is required for glacial isostatic adjustment models to accurately predict the spatial variation of ongoing solid Earth deformation, once the independently-constrained effects of present-day ice mass loss have been accounted for. Comparisons between the GPS data and glacial isostatic adjustment model predictions reveal a substantial misfit. The misfit is localized on the southwestern Weddell Sea, where current ice models under-predict uplift rates by approximately 2 mm yr-1. This under-prediction suggests that either the retreat of the ice sheet grounding line in this region occurred significantly later in the Holocene than currently assumed, or that the region previously hosted more ice than currently assumed. This finding demonstrates the need for further fieldwork to obtain direct constraints on the timing of Holocene grounding line retreat in the southwestern Weddell Sea and that GRACE estimates of ice sheet mass balance will be unreliable in this region until this is resolved.

  14. Genome Wide Expression Profiling of Cancer Cell Lines Cultured in Microgravity Reveals Significant Dysregulation of Cell Cycle and MicroRNA Gene Networks.

    Directory of Open Access Journals (Sweden)

    Prasanna Vidyasekar

    Full Text Available Zero gravity causes several changes in metabolic and functional aspects of the human body and experiments in space flight have demonstrated alterations in cancer growth and progression. This study reports the genome wide expression profiling of a colorectal cancer cell line-DLD-1, and a lymphoblast leukemic cell line-MOLT-4, under simulated microgravity in an effort to understand central processes and cellular functions that are dysregulated among both cell lines. Altered cell morphology, reduced cell viability and an aberrant cell cycle profile in comparison to their static controls were observed in both cell lines under microgravity. The process of cell cycle in DLD-1 cells was markedly affected with reduced viability, reduced colony forming ability, an apoptotic population and dysregulation of cell cycle genes, oncogenes, and cancer progression and prognostic markers. DNA microarray analysis revealed 1801 (upregulated and 2542 (downregulated genes (>2 fold in DLD-1 cultures under microgravity while MOLT-4 cultures differentially expressed 349 (upregulated and 444 (downregulated genes (>2 fold under microgravity. The loss in cell proliferative capacity was corroborated with the downregulation of the cell cycle process as demonstrated by functional clustering of DNA microarray data using gene ontology terms. The genome wide expression profile also showed significant dysregulation of post transcriptional gene silencing machinery and multiple microRNA host genes that are potential tumor suppressors and proto-oncogenes including MIR22HG, MIR17HG and MIR21HG. The MIR22HG, a tumor-suppressor gene was one of the highest upregulated genes in the microarray data showing a 4.4 log fold upregulation under microgravity. Real time PCR validated the dysregulation in the host gene by demonstrating a 4.18 log fold upregulation of the miR-22 microRNA. Microarray data also showed dysregulation of direct targets of miR-22, SP1, CDK6 and CCNA2.

  15. Statistical optics

    Science.gov (United States)

    Goodman, J. W.

    This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.

  16. Statistical mechanics

    CERN Document Server

    Schwabl, Franz

    2006-01-01

    The completely revised new edition of the classical book on Statistical Mechanics covers the basic concepts of equilibrium and non-equilibrium statistical physics. In addition to a deductive approach to equilibrium statistics and thermodynamics based on a single hypothesis - the form of the microcanonical density matrix - this book treats the most important elements of non-equilibrium phenomena. Intermediate calculations are presented in complete detail. Problems at the end of each chapter help students to consolidate their understanding of the material. Beyond the fundamentals, this text demonstrates the breadth of the field and its great variety of applications. Modern areas such as renormalization group theory, percolation, stochastic equations of motion and their applications to critical dynamics, kinetic theories, as well as fundamental considerations of irreversibility, are discussed. The text will be useful for advanced students of physics and other natural sciences; a basic knowledge of quantum mechan...

  17. Statistical mechanics

    CERN Document Server

    Jana, Madhusudan

    2015-01-01

    Statistical mechanics is self sufficient, written in a lucid manner, keeping in mind the exam system of the universities. Need of study this subject and its relation to Thermodynamics is discussed in detail. Starting from Liouville theorem gradually, the Statistical Mechanics is developed thoroughly. All three types of Statistical distribution functions are derived separately with their periphery of applications and limitations. Non-interacting ideal Bose gas and Fermi gas are discussed thoroughly. Properties of Liquid He-II and the corresponding models have been depicted. White dwarfs and condensed matter physics, transport phenomenon - thermal and electrical conductivity, Hall effect, Magneto resistance, viscosity, diffusion, etc. are discussed. Basic understanding of Ising model is given to explain the phase transition. The book ends with a detailed coverage to the method of ensembles (namely Microcanonical, canonical and grand canonical) and their applications. Various numerical and conceptual problems ar...

  18. Statistical physics

    CERN Document Server

    Guénault, Tony

    2007-01-01

    In this revised and enlarged second edition of an established text Tony Guénault provides a clear and refreshingly readable introduction to statistical physics, an essential component of any first degree in physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. A straightforward quantum approach to statistical averaging is adopted from the outset (easier, the author believes, than the classical approach). The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. Thus, several important topics, for example an ideal spin-½ solid, can be discussed at an early stage. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Towards the end of the book the student is introduced to a wider viewpoint and new chapters are included on chemical thermodynamics, interactions in, for exam...

  19. Statistical Physics

    CERN Document Server

    Mandl, Franz

    1988-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition E. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient

  20. Statistical inference

    CERN Document Server

    Rohatgi, Vijay K

    2003-01-01

    Unified treatment of probability and statistics examines and analyzes the relationship between the two fields, exploring inferential issues. Numerous problems, examples, and diagrams--some with solutions--plus clear-cut, highlighted summaries of results. Advanced undergraduate to graduate level. Contents: 1. Introduction. 2. Probability Model. 3. Probability Distributions. 4. Introduction to Statistical Inference. 5. More on Mathematical Expectation. 6. Some Discrete Models. 7. Some Continuous Models. 8. Functions of Random Variables and Random Vectors. 9. Large-Sample Theory. 10. General Meth

  1. AP statistics

    CERN Document Server

    Levine-Wissing, Robin

    2012-01-01

    All Access for the AP® Statistics Exam Book + Web + Mobile Everything you need to prepare for the Advanced Placement® exam, in a study system built around you! There are many different ways to prepare for an Advanced Placement® exam. What's best for you depends on how much time you have to study and how comfortable you are with the subject matter. To score your highest, you need a system that can be customized to fit you: your schedule, your learning style, and your current level of knowledge. This book, and the online tools that come with it, will help you personalize your AP® Statistics prep

  2. Statistical mechanics

    CERN Document Server

    Davidson, Norman

    2003-01-01

    Clear and readable, this fine text assists students in achieving a grasp of the techniques and limitations of statistical mechanics. The treatment follows a logical progression from elementary to advanced theories, with careful attention to detail and mathematical development, and is sufficiently rigorous for introductory or intermediate graduate courses.Beginning with a study of the statistical mechanics of ideal gases and other systems of non-interacting particles, the text develops the theory in detail and applies it to the study of chemical equilibrium and the calculation of the thermody

  3. Water, Energy, and Carbon with Artificial Neural Networks (WECANN): a statistically based estimate of global surface turbulent fluxes and gross primary productivity using solar-induced fluorescence

    Science.gov (United States)

    Hamed Alemohammad, Seyed; Fang, Bin; Konings, Alexandra G.; Aires, Filipe; Green, Julia K.; Kolassa, Jana; Miralles, Diego; Prigent, Catherine; Gentine, Pierre

    2017-09-01

    A new global estimate of surface turbulent fluxes, latent heat flux (LE) and sensible heat flux (H), and gross primary production (GPP) is developed using a machine learning approach informed by novel remotely sensed solar-induced fluorescence (SIF) and other radiative and meteorological variables. This is the first study to jointly retrieve LE, H, and GPP using SIF observations. The approach uses an artificial neural network (ANN) with a target dataset generated from three independent data sources, weighted based on a triple collocation (TC) algorithm. The new retrieval, named Water, Energy, and Carbon with Artificial Neural Networks (WECANN), provides estimates of LE, H, and GPP from 2007 to 2015 at 1° × 1° spatial resolution and at monthly time resolution. The quality of ANN training is assessed using the target data, and the WECANN retrievals are evaluated using eddy covariance tower estimates from the FLUXNET network across various climates and conditions. When compared to eddy covariance estimates, WECANN typically outperforms other products, particularly for sensible and latent heat fluxes. Analyzing WECANN retrievals across three extreme drought and heat wave events demonstrates the capability of the retrievals to capture the extent of these events. Uncertainty estimates of the retrievals are analyzed and the interannual variability in average global and regional fluxes shows the impact of distinct climatic events - such as the 2015 El Niño - on surface turbulent fluxes and GPP.

  4. ``Models'' CAVEAT EMPTOR!!!: ``Toy Models Too-Often Yield Toy-Results''!!!: Statistics, Polls, Politics, Economics, Elections!!!: GRAPH/Network-Physics: ``Equal-Distribution for All'' TRUMP-ED BEC ``Winner-Take-All'' ``Doctor Livingston I Presume?''

    Science.gov (United States)

    Preibus-Norquist, R. N. C.-Grover; Bush-Romney, G. W.-Willard-Mitt; Dimon, J. P.; Adelson-Koch, Sheldon-Charles-David-Sheldon; Krugman-Axelrod, Paul-David; Siegel, Edward Carl-Ludwig; D. N. C./O. F. P./''47''%/50% Collaboration; R. N. C./G. O. P./''53''%/49% Collaboration; Nyt/Wp/Cnn/Msnbc/Pbs/Npr/Ft Collaboration; Ftn/Fnc/Fox/Wsj/Fbn Collaboration; Lb/Jpmc/Bs/Boa/Ml/Wamu/S&P/Fitch/Moodys/Nmis Collaboration

    2013-03-01

    ``Models''? CAVEAT EMPTOR!!!: ``Toy Models Too-Often Yield Toy-Results''!!!: Goldenfeld[``The Role of Models in Physics'', in Lects.on Phase-Transitions & R.-G.(92)-p.32-33!!!]: statistics(Silver{[NYTimes; Bensinger, ``Math-Geerks Clearly-Defeated Pundits'', LATimes, (11/9/12)])}, polls, politics, economics, elections!!!: GRAPH/network/net/...-PHYSICS Barabasi-Albert[RMP (02)] (r,t)-space VERSUS(???) [Where's the Inverse/ Dual/Integral-Transform???] (Benjamin)Franklin(1795)-Fourier(1795; 1897;1822)-Laplace(1850)-Mellin (1902) Brillouin(1922)-...(k,)-space, {Hubbard [The World According to Wavelets,Peters (96)-p.14!!!/p.246: refs.-F2!!!]},and then (2) Albert-Barabasi[]Bose-Einstein quantum-statistics(BEQS) Bose-Einstein CONDENSATION (BEC) versus Bianconi[pvt.-comm.; arXiv:cond-mat/0204506; ...] -Barabasi [???] Fermi-Dirac

  5. Statistical Computing

    Indian Academy of Sciences (India)

    inference and finite population sampling. Sudhakar Kunte. Elements of statistical computing are discussed in this series. ... which captain gets an option to decide whether to field first or bat first ... may of course not be fair, in the sense that the team which wins ... describe two methods of drawing a random number between 0.

  6. Statistical thermodynamics

    CERN Document Server

    Schrödinger, Erwin

    1952-01-01

    Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.

  7. Statistics: a Bayesian perspective

    National Research Council Canada - National Science Library

    Berry, Donald A

    1996-01-01

    ...: it is the only introductory textbook based on Bayesian ideas, it combines concepts and methods, it presents statistics as a means of integrating data into the significant process, it develops ideas...

  8. The statistical evaluation and comparison of ADMS-Urban model for the prediction of nitrogen dioxide with air quality monitoring network.

    Science.gov (United States)

    Dėdelė, Audrius; Miškinytė, Auksė

    2015-09-01

    In many countries, road traffic is one of the main sources of air pollution associated with adverse effects on human health and environment. Nitrogen dioxide (NO2) is considered to be a measure of traffic-related air pollution, with concentrations tending to be higher near highways, along busy roads, and in the city centers, and the exceedances are mainly observed at measurement stations located close to traffic. In order to assess the air quality in the city and the air pollution impact on public health, air quality models are used. However, firstly, before the model can be used for these purposes, it is important to evaluate the accuracy of the dispersion modelling as one of the most widely used method. The monitoring and dispersion modelling are two components of air quality monitoring system (AQMS), in which statistical comparison was made in this research. The evaluation of the Atmospheric Dispersion Modelling System (ADMS-Urban) was made by comparing monthly modelled NO2 concentrations with the data of continuous air quality monitoring stations in Kaunas city. The statistical measures of model performance were calculated for annual and monthly concentrations of NO2 for each monitoring station site. The spatial analysis was made using geographic information systems (GIS). The calculation of statistical parameters indicated a good ADMS-Urban model performance for the prediction of NO2. The results of this study showed that the agreement of modelled values and observations was better for traffic monitoring stations compared to the background and residential stations.

  9. Latin-American Biological Dosimetry Network (LBDNET) Intercomparison Exercise. Evaluation through triage and conventional scoring criteria. Development of a new approach for statistical data analysis

    International Nuclear Information System (INIS)

    Di Giorgio, M.; Vallerga, M.B.; Radl, A.

    2011-01-01

    Biological Dosimetry is a necessary support for National Radiation Protection Programs and Emergency Response Schemes. A Latin-American Biological Dosimetry Network (LBDNET) has been constituted by the biological dosimetry laboratories from: Argentina, Brazil, Chile, Cuba, Mexico, Peru, and Uruguay (IAEA Regional Project RLA9/054, 2007). The biological dosimetry laboratory of Argentina organized an international biological dosimetry intercomparison for the analysis of some relevant parameters involved in dose assessment, to reinforce the response capability in accidental situations requiring the activation of mutual assistance mechanisms and thus, constituting the bases of the LBDNET organization. (authors)

  10. Energy Statistics

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    For the years 1992 and 1993, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period. The tables and figures shown in this publication are: Changes in the volume of GNP and energy consumption; Coal consumption; Natural gas consumption; Peat consumption; Domestic oil deliveries; Import prices of oil; Price development of principal oil products; Fuel prices for power production; Total energy consumption by source; Electricity supply; Energy imports by country of origin in 1993; Energy exports by recipient country in 1993; Consumer prices of liquid fuels; Consumer prices of hard coal and natural gas, prices of indigenous fuels; Average electricity price by type of consumer; Price of district heating by type of consumer and Excise taxes and turnover taxes included in consumer prices of some energy sources

  11. Statistical Optics

    Science.gov (United States)

    Goodman, Joseph W.

    2000-07-01

    The Wiley Classics Library consists of selected books that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: T. W. Anderson The Statistical Analysis of Time Series T. S. Arthanari & Yadolah Dodge Mathematical Programming in Statistics Emil Artin Geometric Algebra Norman T. J. Bailey The Elements of Stochastic Processes with Applications to the Natural Sciences Robert G. Bartle The Elements of Integration and Lebesgue Measure George E. P. Box & Norman R. Draper Evolutionary Operation: A Statistical Method for Process Improvement George E. P. Box & George C. Tiao Bayesian Inference in Statistical Analysis R. W. Carter Finite Groups of Lie Type: Conjugacy Classes and Complex Characters R. W. Carter Simple Groups of Lie Type William G. Cochran & Gertrude M. Cox Experimental Designs, Second Edition Richard Courant Differential and Integral Calculus, Volume I RIchard Courant Differential and Integral Calculus, Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume II D. R. Cox Planning of Experiments Harold S. M. Coxeter Introduction to Geometry, Second Edition Charles W. Curtis & Irving Reiner Representation Theory of Finite Groups and Associative Algebras Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume I Charles W. Curtis & Irving Reiner Methods of Representation Theory with Applications to Finite Groups and Orders, Volume II Cuthbert Daniel Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition Bruno de Finetti Theory of Probability, Volume I Bruno de Finetti Theory of Probability, Volume 2 W. Edwards Deming Sample Design in Business Research

  12. Statistical utilitarianism

    OpenAIRE

    Pivato, Marcus

    2013-01-01

    We show that, in a sufficiently large population satisfying certain statistical regularities, it is often possible to accurately estimate the utilitarian social welfare function, even if we only have very noisy data about individual utility functions and interpersonal utility comparisons. In particular, we show that it is often possible to identify an optimal or close-to-optimal utilitarian social choice using voting rules such as the Borda rule, approval voting, relative utilitarianism, or a...

  13. Experimental statistics

    CERN Document Server

    Natrella, Mary Gibbons

    1963-01-01

    Formulated to assist scientists and engineers engaged in army ordnance research and development programs, this well-known and highly regarded handbook is a ready reference for advanced undergraduate and graduate students as well as for professionals seeking engineering information and quantitative data for designing, developing, constructing, and testing equipment. Topics include characterizing and comparing the measured performance of a material, product, or process; general considerations in planning experiments; statistical techniques for analyzing extreme-value data; use of transformations

  14. The significance of small streams

    Science.gov (United States)

    Wohl, Ellen

    2017-09-01

    Headwaters, defined here as first- and secondorder streams, make up 70%‒80% of the total channel length of river networks. These small streams exert a critical influence on downstream portions of the river network by: retaining or transmitting sediment and nutrients; providing habitat and refuge for diverse aquatic and riparian organisms; creating migration corridors; and governing connectivity at the watershed-scale. The upstream-most extent of the channel network and the longitudinal continuity and lateral extent of headwaters can be difficult to delineate, however, and people are less likely to recognize the importance of headwaters relative to other portions of a river network. Consequently, headwaters commonly lack the legal protections accorded to other portions of a river network and are more likely to be significantly altered or completely obliterated by land use.

  15. Changing world extreme temperature statistics

    Science.gov (United States)

    Finkel, J. M.; Katz, J. I.

    2018-04-01

    We use the Global Historical Climatology Network--daily database to calculate a nonparametric statistic that describes the rate at which all-time daily high and low temperature records have been set in nine geographic regions (continents or major portions of continents) during periods mostly from the mid-20th Century to the present. This statistic was defined in our earlier work on temperature records in the 48 contiguous United States. In contrast to this earlier work, we find that in every region except North America all-time high records were set at a rate significantly (at least $3\\sigma$) higher than in the null hypothesis of a stationary climate. Except in Antarctica, all-time low records were set at a rate significantly lower than in the null hypothesis. In Europe, North Africa and North Asia the rate of setting new all-time highs increased suddenly in the 1990's, suggesting a change in regional climate regime; in most other regions there was a steadier increase.

  16. irGPU.proton.Net: Irregular strong charge interaction networks of protonatable groups in protein molecules--a GPU solver using the fast multipole method and statistical thermodynamics.

    Science.gov (United States)

    Kantardjiev, Alexander A

    2015-04-05

    A cluster of strongly interacting ionization groups in protein molecules with irregular ionization behavior is suggestive for specific structure-function relationship. However, their computational treatment is unconventional (e.g., lack of convergence in naive self-consistent iterative algorithm). The stringent evaluation requires evaluation of Boltzmann averaged statistical mechanics sums and electrostatic energy estimation for each microstate. irGPU: Irregular strong interactions in proteins--a GPU solver is novel solution to a versatile problem in protein biophysics--atypical protonation behavior of coupled groups. The computational severity of the problem is alleviated by parallelization (via GPU kernels) which is applied for the electrostatic interaction evaluation (including explicit electrostatics via the fast multipole method) as well as statistical mechanics sums (partition function) estimation. Special attention is given to the ease of the service and encapsulation of theoretical details without sacrificing rigor of computational procedures. irGPU is not just a solution-in-principle but a promising practical application with potential to entice community into deeper understanding of principles governing biomolecule mechanisms. © 2015 Wiley Periodicals, Inc.

  17. Intervention for Maltreating Fathers: Statistically and Clinically Significant Change

    Science.gov (United States)

    Scott, Katreena L.; Lishak, Vicky

    2012-01-01

    Objective: Fathers are seldom the focus of efforts to address child maltreatment and little is currently known about the effectiveness of intervention for this population. To address this gap, we examined the efficacy of a community-based group treatment program for fathers who had abused or neglected their children or exposed their children to…

  18. The questioned p value: clinical, practical and statistical significance

    Directory of Open Access Journals (Sweden)

    Rosa Jiménez-Paneque

    2016-09-01

    Full Text Available Resumen El uso del valor de p y la significación estadística han estado en entredicho desde principios de la década de los 80 en el siglo pasado hasta nuestros días. Mucho se ha discutido al respecto en el ámbito de la estadística y sus aplicaciones, en particular a la Epidemiología y la Salud Pública. El valor de p y su equivalente, la significación estadística, son por demás conceptos difíciles de asimilar para los muchos profesionales de la salud involucrados de alguna manera en la investigación aplicada a sus áreas de trabajo. Sin embargo, su significado debería ser claro en términos intuitivos a pesar de que se basa en conceptos teóricos del terreno de la Estadística-Matemática. Este artículo intenta presentar al valor de p como un concepto que se aplica a la vida diaria y por tanto intuitivamente sencillo pero cuyo uso adecuado no se puede separar de elementos teóricos y metodológicos con complejidad intrínseca. Se explican también de manera intuitiva las razones detrás de las críticas que ha recibido el valor de p y su uso aislado, principalmente la necesidad de deslindar significación estadística de significación clínica y se mencionan algunos de los remedios propuestos para estos problemas. Se termina aludiendo a la actual tendencia a reivindicar su uso apelando a la conveniencia de utilizarlo en ciertas situaciones y la reciente declaración de la Asociación Americana de Estadística al respecto.

  19. Sibling Competition & Growth Tradeoffs. Biological vs. Statistical Significance

    OpenAIRE

    Kramer, Karen L.; Veile, Amanda; Ot?rola-Castillo, Erik

    2016-01-01

    Early childhood growth has many downstream effects on future health and reproduction and is an important measure of offspring quality. While a tradeoff between family size and child growth outcomes is theoretically predicted in high-fertility societies, empirical evidence is mixed. This is often attributed to phenotypic variation in parental condition. However, inconsistent study results may also arise because family size confounds the potentially differential effects that older and younger s...

  20. Energy statistics

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    World data from the United Nation's latest Energy Statistics Yearbook, first published in our last issue, are completed here. The 1984-86 data were revised and 1987 data added for world commercial energy production and consumption, world natural gas plant liquids production, world LP-gas production, imports, exports, and consumption, world residual fuel oil production, imports, exports, and consumption, world lignite production, imports, exports, and consumption, world peat production and consumption, world electricity production, imports, exports, and consumption (Table 80), and world nuclear electric power production

  1. Statistics 101 for Radiologists.

    Science.gov (United States)

    Anvari, Arash; Halpern, Elkan F; Samir, Anthony E

    2015-10-01

    Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced. © RSNA, 2015.

  2. Statistical adjustment of culture-independent diagnostic tests for trend analysis in the Foodborne Diseases Active Surveillance Network (FoodNet), USA.

    Science.gov (United States)

    Gu, Weidong; Dutta, Vikrant; Patrick, Mary; Bruce, Beau B; Geissler, Aimee; Huang, Jennifer; Fitzgerald, Collette; Henao, Olga

    2018-03-19

    Culture-independent diagnostic tests (CIDTs) are increasingly used to diagnose Campylobacter infection in the Foodborne Diseases Active Surveillance Network (FoodNet). Because CIDTs have different performance characteristics compared with culture, which has been used historically and is still used to diagnose campylobacteriosis, adjustment of cases diagnosed by CIDT is needed to compare with culture-confirmed cases for monitoring incidence trends. We identified the necessary parameters for CIDT adjustment using culture as the gold standard, and derived formulas to calculate positive predictive values (PPVs). We conducted a literature review and meta-analysis to examine the variability in CIDT performance and Campylobacter prevalence applicable to FoodNet sites. We then developed a Monte Carlo method to estimate test-type and site-specific PPVs with their associated uncertainties. The uncertainty in our estimated PPVs was largely derived from uncertainty about the specificity of CIDTs and low prevalence of Campylobacter in tested samples. Stable CIDT-adjusted incidences of Campylobacter cases from 2012 to 2015 were observed compared with a decline in culture-confirmed incidence. We highlight the lack of data on the total numbers of tested samples as one of main limitations for CIDT adjustment. Our results demonstrate the importance of adjusting CIDTs for understanding trends in Campylobacter incidence in FoodNet.

  3. A Comparative Analysis and Prediction of Traffic Accident Causalities in the Sultanate of Oman using Artificial Neural Networks and Statistical methods

    Directory of Open Access Journals (Sweden)

    Galal A. Ali

    1998-12-01

    Full Text Available Traffic accidents are among the major causes of death in the Sultanate of Oman This is particularly the case in the age group of I6 to 25. Studies indicate that, in spite of Oman's high population-per-vehicle ratio, its fatality rate per l0,000 vehicles is one of the highest in the world. This alarming Situation underlines the importance of analyzing traffic accident data and predicting accident casualties. Such steps will lead to understanding the underlying causes of traffic accidents, and thereby to devise appropriate measures to reduce the number of car accidents and enhance safety standards. In this paper, a comparative study of car accident casualties in Oman was undertaken. Artificial Neural Networks (ANNs were used to analyze the data and make predictions of the number of accident casualties. The results were compared with those obtained from the analysis and predictions by regression techniques. Both approaches attempted to model accident casualties using historical  data on related factors, such as population, number of cars on the road and so on, covering the period from I976 to 1994. Forecasts for the years 1995 to 2000 were made using ANNs and regression equations. The results from ANNs provided the best fit for the data. However, it was found that ANNs gave lower forecasts relative to those obtained by the regression methods used, indicating that ANNs are suitable for interpolation but their use for extrapolation may be limited. Nevertheless, the study showed that ANNs provide a potentially powerful tool in analyzing and forecasting traffic accidents and casualties.

  4. A quantitative structure–activity relationship study on HIV-1 integrase inhibitors using genetic algorithm, artificial neural networks and different statistical methods

    Directory of Open Access Journals (Sweden)

    Ghasem Ghasemi

    2016-09-01

    Full Text Available In this work, quantitative structure–activity relationship (QSAR study has been done on tricyclic phthalimide analogues acting as HIV-1 integrase inhibitors. Forty compounds were used in this study. Genetic algorithm (GA, artificial neural network (ANN and multiple linear regressions (MLR were utilized to construct the non-linear and linear QSAR models. It revealed that the GA–ANN model was much better than other models. For this purpose, ab initio geometry optimization performed at B3LYP level with a known basis set 6–31G (d. Hyperchem, ChemOffice and Gaussian 98W softwares were used for geometry optimization of the molecules and calculation of the quantum chemical descriptors. To include some of the correlation energy, the calculation was done with the density functional theory (DFT with the same basis set and Becke’s three parameter hybrid functional using the LYP correlation functional (B3LYP/6–31G (d. For the calculations in solution phase, the polarized continuum model (PCM was used and also included optimizations at gas-phase B3LYP/6–31G (d level for comparison. In the aqueous phase, the root–mean–square errors of the training set and the test set for GA–ANN model using jack–knife method, were 0.1409, 0.1804, respectively. In the gas phase, the root–mean–square errors of the training set and the test set for GA–ANN model were 0.1408, 0.3103, respectively. Also, the R2 values in the aqueous and the gas phase were obtained as 0.91, 0.82, respectively.

  5. Analysis of a Statistical Relationship Between Dose and Error Tallies in Semiconductor Digital Integrated Circuits for Application to Radiation Monitoring Over a Wireless Sensor Network

    Science.gov (United States)

    Colins, Karen; Li, Liqian; Liu, Yu

    2017-05-01

    Mass production of widely used semiconductor digital integrated circuits (ICs) has lowered unit costs to the level of ordinary daily consumables of a few dollars. It is therefore reasonable to contemplate the idea of an engineered system that consumes unshielded low-cost ICs for the purpose of measuring gamma radiation dose. Underlying the idea is the premise of a measurable correlation between an observable property of ICs and radiation dose. Accumulation of radiation-damage-induced state changes or error events is such a property. If correct, the premise could make possible low-cost wide-area radiation dose measurement systems, instantiated as wireless sensor networks (WSNs) with unshielded consumable ICs as nodes, communicating error events to a remote base station. The premise has been investigated quantitatively for the first time in laboratory experiments and related analyses performed at the Canadian Nuclear Laboratories. State changes or error events were recorded in real time during irradiation of samples of ICs of different types in a 60Co gamma cell. From the error-event sequences, empirical distribution functions of dose were generated. The distribution functions were inverted and probabilities scaled by total error events, to yield plots of the relationship between dose and error tallies. Positive correlation was observed, and discrete functional dependence of dose quantiles on error tallies was measured, demonstrating the correctness of the premise. The idea of an engineered system that consumes unshielded low-cost ICs in a WSN, for the purpose of measuring gamma radiation dose over wide areas, is therefore tenable.

  6. Characterizing and predicting the robustness of power-law networks

    International Nuclear Information System (INIS)

    LaRocca, Sarah; Guikema, Seth D.

    2015-01-01

    Power-law networks such as the Internet, terrorist cells, species relationships, and cellular metabolic interactions are susceptible to node failures, yet maintaining network connectivity is essential for network functionality. Disconnection of the network leads to fragmentation and, in some cases, collapse of the underlying system. However, the influences of the topology of networks on their ability to withstand node failures are poorly understood. Based on a study of the response of 2000 randomly-generated power-law networks to node failures, we find that networks with higher nodal degree and clustering coefficient, lower betweenness centrality, and lower variability in path length and clustering coefficient maintain their cohesion better during such events. We also find that network robustness, i.e., the ability to withstand node failures, can be accurately predicted a priori for power-law networks across many fields. These results provide a basis for designing new, more robust networks, improving the robustness of existing networks such as the Internet and cellular metabolic pathways, and efficiently degrading networks such as terrorist cells. - Highlights: • Examine relationship between network topology and robustness to failures. • Relationship is statistically significant for scale-free networks. • Use statistical models to estimate robustness to failures for real-world networks

  7. National Statistical Commission and Indian Official Statistics*

    Indian Academy of Sciences (India)

    IAS Admin

    a good collection of official statistics of that time. With more .... statistical agencies and institutions to provide details of statistical activities .... ing several training programmes. .... ful completion of Indian Statistical Service examinations, the.

  8. Detection of significant protein coevolution.

    Science.gov (United States)

    Ochoa, David; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2015-07-01

    The evolution of proteins cannot be fully understood without taking into account the coevolutionary linkages entangling them. From a practical point of view, coevolution between protein families has been used as a way of detecting protein interactions and functional relationships from genomic information. The most common approach to inferring protein coevolution involves the quantification of phylogenetic tree similarity using a family of methodologies termed mirrortree. In spite of their success, a fundamental problem of these approaches is the lack of an adequate statistical framework to assess the significance of a given coevolutionary score (tree similarity). As a consequence, a number of ad hoc filters and arbitrary thresholds are required in an attempt to obtain a final set of confident coevolutionary signals. In this work, we developed a method for associating confidence estimators (P values) to the tree-similarity scores, using a null model specifically designed for the tree comparison problem. We show how this approach largely improves the quality and coverage (number of pairs that can be evaluated) of the detected coevolution in all the stages of the mirrortree workflow, independently of the starting genomic information. This not only leads to a better understanding of protein coevolution and its biological implications, but also to obtain a highly reliable and comprehensive network of predicted interactions, as well as information on the substructure of macromolecular complexes using only genomic information. The software and datasets used in this work are freely available at: http://csbg.cnb.csic.es/pMT/. pazos@cnb.csic.es Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  9. Basics of statistical physics

    CERN Document Server

    Müller-Kirsten, Harald J W

    2013-01-01

    Statistics links microscopic and macroscopic phenomena, and requires for this reason a large number of microscopic elements like atoms. The results are values of maximum probability or of averaging. This introduction to statistical physics concentrates on the basic principles, and attempts to explain these in simple terms supplemented by numerous examples. These basic principles include the difference between classical and quantum statistics, a priori probabilities as related to degeneracies, the vital aspect of indistinguishability as compared with distinguishability in classical physics, the differences between conserved and non-conserved elements, the different ways of counting arrangements in the three statistics (Maxwell-Boltzmann, Fermi-Dirac, Bose-Einstein), the difference between maximization of the number of arrangements of elements, and averaging in the Darwin-Fowler method. Significant applications to solids, radiation and electrons in metals are treated in separate chapters, as well as Bose-Eins...

  10. Testing Significance Testing

    Directory of Open Access Journals (Sweden)

    Joachim I. Krueger

    2018-04-01

    Full Text Available The practice of Significance Testing (ST remains widespread in psychological science despite continual criticism of its flaws and abuses. Using simulation experiments, we address four concerns about ST and for two of these we compare ST’s performance with prominent alternatives. We find the following: First, the 'p' values delivered by ST predict the posterior probability of the tested hypothesis well under many research conditions. Second, low 'p' values support inductive inferences because they are most likely to occur when the tested hypothesis is false. Third, 'p' values track likelihood ratios without raising the uncertainties of relative inference. Fourth, 'p' values predict the replicability of research findings better than confidence intervals do. Given these results, we conclude that 'p' values may be used judiciously as a heuristic tool for inductive inference. Yet, 'p' values cannot bear the full burden of inference. We encourage researchers to be flexible in their selection and use of statistical methods.

  11. The Euclid Statistical Matrix Tool

    Directory of Open Access Journals (Sweden)

    Curtis Tilves

    2017-06-01

    Full Text Available Stataphobia, a term used to describe the fear of statistics and research methods, can result from a lack of improper training in statistical methods. Poor statistical methods training can have an effect on health policy decision making and may play a role in the low research productivity seen in developing countries. One way to reduce Stataphobia is to intervene in the teaching of statistics in the classroom; however, such an intervention must tackle several obstacles, including student interest in the material, multiple ways of learning materials, and language barriers. We present here the Euclid Statistical Matrix, a tool for combatting Stataphobia on a global scale. This free tool is comprised of popular statistical YouTube channels and web sources that teach and demonstrate statistical concepts in a variety of presentation methods. Working with international teams in Iran, Japan, Egypt, Russia, and the United States, we have also developed the Statistical Matrix in multiple languages to address language barriers to learning statistics. By utilizing already-established large networks, we are able to disseminate our tool to thousands of Farsi-speaking university faculty and students in Iran and the United States. Future dissemination of the Euclid Statistical Matrix throughout the Central Asia and support from local universities may help to combat low research productivity in this region.

  12. Can a significance test be genuinely Bayesian?

    OpenAIRE

    Pereira, Carlos A. de B.; Stern, Julio Michael; Wechsler, Sergio

    2008-01-01

    The Full Bayesian Significance Test, FBST, is extensively reviewed. Its test statistic, a genuine Bayesian measure of evidence, is discussed in detail. Its behavior in some problems of statistical inference like testing for independence in contingency tables is discussed.

  13. Whither Statistics Education Research?

    Science.gov (United States)

    Watson, Jane

    2016-01-01

    This year marks the 25th anniversary of the publication of a "National Statement on Mathematics for Australian Schools", which was the first curriculum statement this country had including "Chance and Data" as a significant component. It is hence an opportune time to survey the history of the related statistics education…

  14. Linear network theory

    CERN Document Server

    Sander, K F

    1964-01-01

    Linear Network Theory covers the significant algebraic aspect of network theory, with minimal reference to practical circuits. The book begins the presentation of network analysis with the exposition of networks containing resistances only, and follows it up with a discussion of networks involving inductance and capacity by way of the differential equations. Classification and description of certain networks, equivalent networks, filter circuits, and network functions are also covered. Electrical engineers, technicians, electronics engineers, electricians, and students learning the intricacies

  15. Network effects on scientific collaborations.

    Directory of Open Access Journals (Sweden)

    Shahadat Uddin

    Full Text Available BACKGROUND: The analysis of co-authorship network aims at exploring the impact of network structure on the outcome of scientific collaborations and research publications. However, little is known about what network properties are associated with authors who have increased number of joint publications and are being cited highly. METHODOLOGY/PRINCIPAL FINDINGS: Measures of social network analysis, for example network centrality and tie strength, have been utilized extensively in current co-authorship literature to explore different behavioural patterns of co-authorship networks. Using three SNA measures (i.e., degree centrality, closeness centrality and betweenness centrality, we explore scientific collaboration networks to understand factors influencing performance (i.e., citation count and formation (tie strength between authors of such networks. A citation count is the number of times an article is cited by other articles. We use co-authorship dataset of the research field of 'steel structure' for the year 2005 to 2009. To measure the strength of scientific collaboration between two authors, we consider the number of articles co-authored by them. In this study, we examine how citation count of a scientific publication is influenced by different centrality measures of its co-author(s in a co-authorship network. We further analyze the impact of the network positions of authors on the strength of their scientific collaborations. We use both correlation and regression methods for data analysis leading to statistical validation. We identify that citation count of a research article is positively correlated with the degree centrality and betweenness centrality values of its co-author(s. Also, we reveal that degree centrality and betweenness centrality values of authors in a co-authorship network are positively correlated with the strength of their scientific collaborations. CONCLUSIONS/SIGNIFICANCE: Authors' network positions in co

  16. Statistical physics, neural networks, brain studies

    International Nuclear Information System (INIS)

    Toulouse, G.

    1999-01-01

    An overview of some aspects of a vast domain, located at the crossroads of physics, biology and computer science is presented: (1) During the last fifteen years, physicists advancing along various pathways have come into contact with biology (computational neurosciences) and engineering (formal neural nets). (2) This move may actually be viewed as one component in a larger picture. A prominent trend of recent years, observable over many countries, has been the establishment of interdisciplinary centers devoted to the study of: cognitive sciences; natural and artificial intelligence; brain, mind and behaviour; perception and action; learning and memory; robotics; man-machine communication, etc. What are the promising lines of development? What opportunities for physicists? An attempt will be made to address such questions and related issues

  17. Mapping and discrimination of networks in the complexity-entropy plane

    Science.gov (United States)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2017-10-01

    Complex networks are usually characterized in terms of their topological, spatial, or information-theoretic properties and combinations of the associated metrics are used to discriminate networks into different classes or categories. However, even with the present variety of characteristics at hand it still remains a subject of current research to appropriately quantify a network's complexity and correspondingly discriminate between different types of complex networks, like infrastructure or social networks, on such a basis. Here we explore the possibility to classify complex networks by means of a statistical complexity measure that has formerly been successfully applied to distinguish different types of chaotic and stochastic time series. It is composed of a network's averaged per-node entropic measure characterizing the network's information content and the associated Jenson-Shannon divergence as a measure of disequilibrium. We study 29 real-world networks and show that networks of the same category tend to cluster in distinct areas of the resulting complexity-entropy plane. We demonstrate that within our framework, connectome networks exhibit among the highest complexity while, e.g., transportation and infrastructure networks display significantly lower values. Furthermore, we demonstrate the utility of our framework by applying it to families of random scale-free and Watts-Strogatz model networks. We then show in a second application that the proposed framework is useful to objectively construct threshold-based networks, such as functional climate networks or recurrence networks, by choosing the threshold such that the statistical network complexity is maximized.

  18. Worry, Intolerance of Uncertainty, and Statistics Anxiety

    Science.gov (United States)

    Williams, Amanda S.

    2013-01-01

    Statistics anxiety is a problem for most graduate students. This study investigates the relationship between intolerance of uncertainty, worry, and statistics anxiety. Intolerance of uncertainty was significantly related to worry, and worry was significantly related to three types of statistics anxiety. Six types of statistics anxiety were…

  19. Network structure and travel time perception.

    Science.gov (United States)

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time.

  20. Childhood Cancer Statistics

    Science.gov (United States)

    ... Watchdog Ratings Feedback Contact Select Page Childhood Cancer Statistics Home > Cancer Resources > Childhood Cancer Statistics Childhood Cancer Statistics – Graphs and Infographics Number of Diagnoses Incidence Rates ...