Applying contemporary statistical techniques
Wilcox, Rand R
2003-01-01
Applying Contemporary Statistical Techniques explains why traditional statistical methods are often inadequate or outdated when applied to modern problems. Wilcox demonstrates how new and more powerful techniques address these problems far more effectively, making these modern robust methods understandable, practical, and easily accessible.* Assumes no previous training in statistics * Explains how and why modern statistical methods provide more accurate results than conventional methods* Covers the latest developments on multiple comparisons * Includes recent advanc
Statistical Techniques for Project Control
Badiru, Adedeji B
2012-01-01
A project can be simple or complex. In each case, proven project management processes must be followed. In all cases of project management implementation, control must be exercised in order to assure that project objectives are achieved. Statistical Techniques for Project Control seamlessly integrates qualitative and quantitative tools and techniques for project control. It fills the void that exists in the application of statistical techniques to project control. The book begins by defining the fundamentals of project management then explores how to temper quantitative analysis with qualitati
Statistical and Computational Techniques in Manufacturing
2012-01-01
In recent years, interest in developing statistical and computational techniques for applied manufacturing engineering has been increased. Today, due to the great complexity of manufacturing engineering and the high number of parameters used, conventional approaches are no longer sufficient. Therefore, in manufacturing, statistical and computational techniques have achieved several applications, namely, modelling and simulation manufacturing processes, optimization manufacturing parameters, monitoring and control, computer-aided process planning, etc. The present book aims to provide recent information on statistical and computational techniques applied in manufacturing engineering. The content is suitable for final undergraduate engineering courses or as a subject on manufacturing at the postgraduate level. This book serves as a useful reference for academics, statistical and computational science researchers, mechanical, manufacturing and industrial engineers, and professionals in industries related to manu...
The statistical chopper in the time-of-flight technique
International Nuclear Information System (INIS)
Albuquerque Vieira, J. de.
1975-12-01
A detailed study of the 'statistical' chopper and of the method of analysis of the data obtained by this technique is made. The study includes the basic ideas behind correlation methods applied in time-of-flight techniques; comparisons with the conventional chopper made by an analysis of statistical errors; the development of a FORTRAN computer programme to analyse experimental results; the presentation of the related fields of work to demonstrate the potential of this method and suggestions for future study together with the criteria for a time-of-flight experiment using the method being studied [pt
"Statistical Techniques for Particle Physics" (2/4)
CERN. Geneva
2009-01-01
This series will consist of four 1-hour lectures on statistics for particle physics. The goal will be to build up to techniques meant for dealing with problems of realistic complexity while maintaining a formal approach. I will also try to incorporate usage of common tools like ROOT, RooFit, and the newly developed RooStats framework into the lectures. The first lecture will begin with a review the basic principles of probability, some terminology, and the three main approaches towards statistical inference (Frequentist, Bayesian, and Likelihood-based). I will then outline the statistical basis for multivariate analysis techniques (the Neyman-Pearson lemma) and the motivation for machine learning algorithms. Later, I will extend simple hypothesis testing to the case in which the statistical model has one or many parameters (the Neyman Construction and the Feldman-Cousins technique). From there I will outline techniques to incorporate background uncertainties. If time allows, I will touch on the statist...
"Statistical Techniques for Particle Physics" (1/4)
CERN. Geneva
2009-01-01
This series will consist of four 1-hour lectures on statistics for particle physics. The goal will be to build up to techniques meant for dealing with problems of realistic complexity while maintaining a formal approach. I will also try to incorporate usage of common tools like ROOT, RooFit, and the newly developed RooStats framework into the lectures. The first lecture will begin with a review the basic principles of probability, some terminology, and the three main approaches towards statistical inference (Frequentist, Bayesian, and Likelihood-based). I will then outline the statistical basis for multivariate analysis techniques (the Neyman-Pearson lemma) and the motivation for machine learning algorithms. Later, I will extend simple hypothesis testing to the case in which the statistical model has one or many parameters (the Neyman Construction and the Feldman-Cousins technique). From there I will outline techniques to incorporate background uncertainties. If time allows, I will touch on the statist...
"Statistical Techniques for Particle Physics" (4/4)
CERN. Geneva
2009-01-01
This series will consist of four 1-hour lectures on statistics for particle physics. The goal will be to build up to techniques meant for dealing with problems of realistic complexity while maintaining a formal approach. I will also try to incorporate usage of common tools like ROOT, RooFit, and the newly developed RooStats framework into the lectures. The first lecture will begin with a review the basic principles of probability, some terminology, and the three main approaches towards statistical inference (Frequentist, Bayesian, and Likelihood-based). I will then outline the statistical basis for multivariate analysis techniques (the Neyman-Pearson lemma) and the motivation for machine learning algorithms. Later, I will extend simple hypothesis testing to the case in which the statistical model has one or many parameters (the Neyman Construction and the Feldman-Cousins technique). From there I will outline techniques to incorporate background uncertainties. If time allows, I will touch on the statist...
"Statistical Techniques for Particle Physics" (3/4)
CERN. Geneva
2009-01-01
This series will consist of four 1-hour lectures on statistics for particle physics. The goal will be to build up to techniques meant for dealing with problems of realistic complexity while maintaining a formal approach. I will also try to incorporate usage of common tools like ROOT, RooFit, and the newly developed RooStats framework into the lectures. The first lecture will begin with a review the basic principles of probability, some terminology, and the three main approaches towards statistical inference (Frequentist, Bayesian, and Likelihood-based). I will then outline the statistical basis for multivariate analysis techniques (the Neyman-Pearson lemma) and the motivation for machine learning algorithms. Later, I will extend simple hypothesis testing to the case in which the statistical model has one or many parameters (the Neyman Construction and the Feldman-Cousins technique). From there I will outline techniques to incorporate background uncertainties. If time allows, I will touch on the statist...
Applicability of statistical process control techniques
Schippers, W.A.J.
1998-01-01
This paper concerns the application of Process Control Techniques (PCTs) for the improvement of the technical performance of discrete production processes. Successful applications of these techniques, such as Statistical Process Control Techniques (SPC), can be found in the literature. However, some
Review of the Statistical Techniques in Medical Sciences | Okeh ...
African Journals Online (AJOL)
... medical researcher in selecting the appropriate statistical techniques. Of course, all statistical techniques have certain underlying assumptions, which must be checked before the technique is applied. Keywords: Variable, Prospective Studies, Retrospective Studies, Statistical significance. Bio-Research Vol. 6 (1) 2008: pp.
Application of multivariate statistical techniques in microbial ecology.
Paliy, O; Shankar, V
2016-03-01
Recent advances in high-throughput methods of molecular analyses have led to an explosion of studies generating large-scale ecological data sets. In particular, noticeable effect has been attained in the field of microbial ecology, where new experimental approaches provided in-depth assessments of the composition, functions and dynamic changes of complex microbial communities. Because even a single high-throughput experiment produces large amount of data, powerful statistical techniques of multivariate analysis are well suited to analyse and interpret these data sets. Many different multivariate techniques are available, and often it is not clear which method should be applied to a particular data set. In this review, we describe and compare the most widely used multivariate statistical techniques including exploratory, interpretive and discriminatory procedures. We consider several important limitations and assumptions of these methods, and we present examples of how these approaches have been utilized in recent studies to provide insight into the ecology of the microbial world. Finally, we offer suggestions for the selection of appropriate methods based on the research question and data set structure. © 2016 John Wiley & Sons Ltd.
Projection operator techniques in nonequilibrium statistical mechanics
International Nuclear Information System (INIS)
Grabert, H.
1982-01-01
This book is an introduction to the application of the projection operator technique to the statistical mechanics of irreversible processes. After a general introduction to the projection operator technique and statistical thermodynamics the Fokker-Planck and the master equation approach are described together with the response theory. Then, as applications the damped harmonic oscillator, simple fluids, and the spin relaxation are considered. (HSI)
Combining heuristic and statistical techniques in landslide hazard assessments
Cepeda, Jose; Schwendtner, Barbara; Quan, Byron; Nadim, Farrokh; Diaz, Manuel; Molina, Giovanni
2014-05-01
As a contribution to the Global Assessment Report 2013 - GAR2013, coordinated by the United Nations International Strategy for Disaster Reduction - UNISDR, a drill-down exercise for landslide hazard assessment was carried out by entering the results of both heuristic and statistical techniques into a new but simple combination rule. The data available for this evaluation included landslide inventories, both historical and event-based. In addition to the application of a heuristic method used in the previous editions of GAR, the availability of inventories motivated the use of statistical methods. The heuristic technique is largely based on the Mora & Vahrson method, which estimates hazard as the product of susceptibility and triggering factors, where classes are weighted based on expert judgment and experience. Two statistical methods were also applied: the landslide index method, which estimates weights of the classes for the susceptibility and triggering factors based on the evidence provided by the density of landslides in each class of the factors; and the weights of evidence method, which extends the previous technique to include both positive and negative evidence of landslide occurrence in the estimation of weights for the classes. One key aspect during the hazard evaluation was the decision on the methodology to be chosen for the final assessment. Instead of opting for a single methodology, it was decided to combine the results of the three implemented techniques using a combination rule based on a normalization of the results of each method. The hazard evaluation was performed for both earthquake- and rainfall-induced landslides. The country chosen for the drill-down exercise was El Salvador. The results indicate that highest hazard levels are concentrated along the central volcanic chain and at the centre of the northern mountains.
Statistical evaluation of vibration analysis techniques
Milner, G. Martin; Miller, Patrice S.
1987-01-01
An evaluation methodology is presented for a selection of candidate vibration analysis techniques applicable to machinery representative of the environmental control and life support system of advanced spacecraft; illustrative results are given. Attention is given to the statistical analysis of small sample experiments, the quantification of detection performance for diverse techniques through the computation of probability of detection versus probability of false alarm, and the quantification of diagnostic performance.
Statistical Theory of the Vector Random Decrement Technique
DEFF Research Database (Denmark)
Asmussen, J. C.; Brincker, Rune; Ibrahim, S. R.
1999-01-01
decays. Due to the speed and/or accuracy of the Vector Random Decrement technique, it was introduced as an attractive alternative to the Random Decrement technique. In this paper, the theory of the Vector Random Decrement technique is extended by applying a statistical description of the stochastic...
TECHNIQUE OF THE STATISTICAL ANALYSIS OF INVESTMENT APPEAL OF THE REGION
Directory of Open Access Journals (Sweden)
А. А. Vershinina
2014-01-01
Full Text Available The technique of the statistical analysis of investment appeal of the region is given in scientific article for direct foreign investments. Definition of a technique of the statistical analysis is given, analysis stages reveal, the mathematico-statistical tools are considered.
Statistical methods of evaluating and comparing imaging techniques
International Nuclear Information System (INIS)
Freedman, L.S.
1987-01-01
Over the past 20 years several new methods of generating images of internal organs and the anatomy of the body have been developed and used to enhance the accuracy of diagnosis and treatment. These include ultrasonic scanning, radioisotope scanning, computerised X-ray tomography (CT) and magnetic resonance imaging (MRI). The new techniques have made a considerable impact on radiological practice in hospital departments, not least on the investigational process for patients suspected or known to have malignant disease. As a consequence of the increased range of imaging techniques now available, there has developed a need to evaluate and compare their usefulness. Over the past 10 years formal studies of the application of imaging technology have been conducted and many reports have appeared in the literature. These studies cover a range of clinical situations. Likewise, the methodologies employed for evaluating and comparing the techniques in question have differed widely. While not attempting an exhaustive review of the clinical studies which have been reported, this paper aims to examine the statistical designs and analyses which have been used. First a brief review of the different types of study is given. Examples of each type are then chosen to illustrate statistical issues related to their design and analysis. In the final sections it is argued that a form of classification for these different types of study might be helpful in clarifying relationships between them and bringing a perspective to the field. A classification based upon a limited analogy with clinical trials is suggested
Directory of Open Access Journals (Sweden)
D.P. van der Nest
2015-03-01
Full Text Available This article explores the use by internal audit functions of audit sampling techniques in order to test the effectiveness of controls in the banking sector. The article focuses specifically on the use of statistical and/or non-statistical sampling techniques by internal auditors. The focus of the research for this article was internal audit functions in the banking sector of South Africa. The results discussed in the article indicate that audit sampling is still used frequently as an audit evidence-gathering technique. Non-statistical sampling techniques are used more frequently than statistical sampling techniques for the evaluation of the sample. In addition, both techniques are regarded as important for the determination of the sample size and the selection of the sample items
Statistic techniques of process control for MTR type
International Nuclear Information System (INIS)
Oliveira, F.S.; Ferrufino, F.B.J.; Santos, G.R.T.; Lima, R.M.
2002-01-01
This work aims at introducing some improvements on the fabrication of MTR type fuel plates, applying statistic techniques of process control. The work was divided into four single steps and their data were analyzed for: fabrication of U 3 O 8 fuel plates; fabrication of U 3 Si 2 fuel plates; rolling of small lots of fuel plates; applying statistic tools and standard specifications to perform a comparative study of these processes. (author)
The Statistical Analysis Techniques to Support the NGNP Fuel Performance Experiments
International Nuclear Information System (INIS)
Pham, Bihn T.; Einerson, Jeffrey J.
2010-01-01
This paper describes the development and application of statistical analysis techniques to support the AGR experimental program on NGNP fuel performance. The experiments conducted in the Idaho National Laboratory's Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel/graphite temperature) is regulated by the He-Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the SAS-based NGNP Data Management and Analysis System (NDMAS) for automated processing and qualification of the AGR measured data. The NDMAS also stores daily neutronic (power) and thermal (heat transfer) code simulation results along with the measurement data, allowing for their combined use and comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the target quantity (fuel temperature) within a given range.
The statistical analysis techniques to support the NGNP fuel performance experiments
Energy Technology Data Exchange (ETDEWEB)
Pham, Binh T., E-mail: Binh.Pham@inl.gov; Einerson, Jeffrey J.
2013-10-15
This paper describes the development and application of statistical analysis techniques to support the Advanced Gas Reactor (AGR) experimental program on Next Generation Nuclear Plant (NGNP) fuel performance. The experiments conducted in the Idaho National Laboratory’s Advanced Test Reactor employ fuel compacts placed in a graphite cylinder shrouded by a steel capsule. The tests are instrumented with thermocouples embedded in graphite blocks and the target quantity (fuel temperature) is regulated by the He–Ne gas mixture that fills the gap volume. Three techniques for statistical analysis, namely control charting, correlation analysis, and regression analysis, are implemented in the NGNP Data Management and Analysis System for automated processing and qualification of the AGR measured data. The neutronic and thermal code simulation results are used for comparative scrutiny. The ultimate objective of this work includes (a) a multi-faceted system for data monitoring and data accuracy testing, (b) identification of possible modes of diagnostics deterioration and changes in experimental conditions, (c) qualification of data for use in code validation, and (d) identification and use of data trends to support effective control of test conditions with respect to the test target. Analysis results and examples given in the paper show the three statistical analysis techniques providing a complementary capability to warn of thermocouple failures. It also suggests that the regression analysis models relating calculated fuel temperatures and thermocouple readings can enable online regulation of experimental parameters (i.e. gas mixture content), to effectively maintain the fuel temperature within a given range.
Lightweight and Statistical Techniques for Petascale PetaScale Debugging
Energy Technology Data Exchange (ETDEWEB)
Miller, Barton
2014-06-30
This project investigated novel techniques for debugging scientific applications on petascale architectures. In particular, we developed lightweight tools that narrow the problem space when bugs are encountered. We also developed techniques that either limit the number of tasks and the code regions to which a developer must apply a traditional debugger or that apply statistical techniques to provide direct suggestions of the location and type of error. We extend previous work on the Stack Trace Analysis Tool (STAT), that has already demonstrated scalability to over one hundred thousand MPI tasks. We also extended statistical techniques developed to isolate programming errors in widely used sequential or threaded applications in the Cooperative Bug Isolation (CBI) project to large scale parallel applications. Overall, our research substantially improved productivity on petascale platforms through a tool set for debugging that complements existing commercial tools. Previously, Office Of Science application developers relied either on primitive manual debugging techniques based on printf or they use tools, such as TotalView, that do not scale beyond a few thousand processors. However, bugs often arise at scale and substantial effort and computation cycles are wasted in either reproducing the problem in a smaller run that can be analyzed with the traditional tools or in repeated runs at scale that use the primitive techniques. New techniques that work at scale and automate the process of identifying the root cause of errors were needed. These techniques significantly reduced the time spent debugging petascale applications, thus leading to a greater overall amount of time for application scientists to pursue the scientific objectives for which the systems are purchased. We developed a new paradigm for debugging at scale: techniques that reduced the debugging scenario to a scale suitable for traditional debuggers, e.g., by narrowing the search for the root-cause analysis
An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques
2018-01-09
100 kHz, 1 MHz 100 MHz–1 GHz 1 100 kHz 3. Statistical Processing 3.1 Statistical Analysis Statistical analysis is the mathematical science...quantitative terms. In commercial prognostics and diagnostic vibrational monitoring applications , statistical techniques that are mainly used for alarm...Balakrishnan N, editors. Handbook of statistics . Amsterdam (Netherlands): Elsevier Science; 1998. p 555–602; (Order statistics and their applications
International Nuclear Information System (INIS)
Pirkle, F.L.
1981-04-01
STAARS is a new series which is being published to disseminate information concerning statistical procedures for interpreting aerial radiometric data. The application of a particular data interpretation technique to geologic understanding for delineating regions favorable to uranium deposition is the primary concern of STAARS. Statements concerning the utility of a technique on aerial reconnaissance data as well as detailed aerial survey data will be included
Proposal to Include Electrical Energy in the Industrial Return Statistics
2003-01-01
At its 108th session on the 20 June 1997, the Council approved the Report of the Finance Committee Working Group on the Review of CERN Purchasing Policy and Procedures. Among other topics, the report recommended the inclusion of utility supplies in the calculation of the return statistics as soon as the relevant markets were deregulated, without reaching a consensus on the exact method of calculation. At its 296th meeting on the 18 June 2003, the Finance Committee approved a proposal to award a contract for the supply of electrical energy (CERN/FC/4693). The purpose of the proposal in this document is to clarify the way electrical energy will be included in future calculations of the return statistics. The Finance Committee is invited: 1. to agree that the full cost to CERN of electrical energy (excluding the cost of transport) be included in the Industrial Service return statistics; 2. to recommend that the Council approves the corresponding amendment to the Financial Rules set out in section 2 of this docum...
Probability, statistics, and associated computing techniques
International Nuclear Information System (INIS)
James, F.
1983-01-01
This chapter attempts to explore the extent to which it is possible for the experimental physicist to find optimal statistical techniques to provide a unique and unambiguous quantitative measure of the significance of raw data. Discusses statistics as the inverse of probability; normal theory of parameter estimation; normal theory (Gaussian measurements); the universality of the Gaussian distribution; real-life resolution functions; combination and propagation of uncertainties; the sum or difference of 2 variables; local theory, or the propagation of small errors; error on the ratio of 2 discrete variables; the propagation of large errors; confidence intervals; classical theory; Bayesian theory; use of the likelihood function; the second derivative of the log-likelihood function; multiparameter confidence intervals; the method of MINOS; least squares; the Gauss-Markov theorem; maximum likelihood for uniform error distribution; the Chebyshev fit; the parameter uncertainties; the efficiency of the Chebyshev estimator; error symmetrization; robustness vs. efficiency; testing of hypotheses (e.g., the Neyman-Pearson test); goodness-of-fit; distribution-free tests; comparing two one-dimensional distributions; comparing multidimensional distributions; and permutation tests for comparing two point sets
Ratner, Bruce
2011-01-01
The second edition of a bestseller, Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and Analysis of Big Data is still the only book, to date, to distinguish between statistical data mining and machine-learning data mining. The first edition, titled Statistical Modeling and Analysis for Database Marketing: Effective Techniques for Mining Big Data, contained 17 chapters of innovative and practical statistical data mining techniques. In this second edition, renamed to reflect the increased coverage of machine-learning data mining techniques, the author has
The application of statistical techniques to nuclear materials accountancy
International Nuclear Information System (INIS)
Annibal, P.S.; Roberts, P.D.
1990-02-01
Over the past decade much theoretical research has been carried out on the development of statistical methods for nuclear materials accountancy. In practice plant operation may differ substantially from the idealized models often cited. This paper demonstrates the importance of taking account of plant operation in applying the statistical techniques, to improve the accuracy of the estimates and the knowledge of the errors. The benefits are quantified either by theoretical calculation or by simulation. Two different aspects are considered; firstly, the use of redundant measurements to reduce the error on the estimate of the mass of heavy metal in an accountancy tank is investigated. Secondly, a means of improving the knowledge of the 'Material Unaccounted For' (the difference between the inventory calculated from input/output data, and the measured inventory), using information about the plant measurement system, is developed and compared with existing general techniques. (author)
Including the Tukey Mean-Difference (Bland-Altman) Plot in a Statistics Course
Kozak, Marcin; Wnuk, Agnieszka
2014-01-01
The Tukey mean-difference plot, also called the Bland-Altman plot, is a recognized graphical tool in the exploration of biometrical data. We show that this technique deserves a place on an introductory statistics course by encouraging students to think about the kind of graph they wish to create, rather than just creating the default graph for the…
Air Quality Forecasting through Different Statistical and Artificial Intelligence Techniques
Mishra, D.; Goyal, P.
2014-12-01
Urban air pollution forecasting has emerged as an acute problem in recent years because there are sever environmental degradation due to increase in harmful air pollutants in the ambient atmosphere. In this study, there are different types of statistical as well as artificial intelligence techniques are used for forecasting and analysis of air pollution over Delhi urban area. These techniques are principle component analysis (PCA), multiple linear regression (MLR) and artificial neural network (ANN) and the forecasting are observed in good agreement with the observed concentrations through Central Pollution Control Board (CPCB) at different locations in Delhi. But such methods suffers from disadvantages like they provide limited accuracy as they are unable to predict the extreme points i.e. the pollution maximum and minimum cut-offs cannot be determined using such approach. Also, such methods are inefficient approach for better output forecasting. But with the advancement in technology and research, an alternative to the above traditional methods has been proposed i.e. the coupling of statistical techniques with artificial Intelligence (AI) can be used for forecasting purposes. The coupling of PCA, ANN and fuzzy logic is used for forecasting of air pollutant over Delhi urban area. The statistical measures e.g., correlation coefficient (R), normalized mean square error (NMSE), fractional bias (FB) and index of agreement (IOA) of the proposed model are observed in better agreement with the all other models. Hence, the coupling of statistical and artificial intelligence can be use for the forecasting of air pollutant over urban area.
A comparison of linear and nonlinear statistical techniques in performance attribution.
Chan, N H; Genovese, C R
2001-01-01
Performance attribution is usually conducted under the linear framework of multifactor models. Although commonly used by practitioners in finance, linear multifactor models are known to be less than satisfactory in many situations. After a brief survey of nonlinear methods, nonlinear statistical techniques are applied to performance attribution of a portfolio constructed from a fixed universe of stocks using factors derived from some commonly used cross sectional linear multifactor models. By rebalancing this portfolio monthly, the cumulative returns for procedures based on standard linear multifactor model and three nonlinear techniques-model selection, additive models, and neural networks-are calculated and compared. It is found that the first two nonlinear techniques, especially in combination, outperform the standard linear model. The results in the neural-network case are inconclusive because of the great variety of possible models. Although these methods are more complicated and may require some tuning, toolboxes are developed and suggestions on calibration are proposed. This paper demonstrates the usefulness of modern nonlinear statistical techniques in performance attribution.
Statistical optimisation techniques in fatigue signal editing problem
International Nuclear Information System (INIS)
Nopiah, Z. M.; Osman, M. H.; Baharin, N.; Abdullah, S.
2015-01-01
Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection
Statistical optimisation techniques in fatigue signal editing problem
Energy Technology Data Exchange (ETDEWEB)
Nopiah, Z. M.; Osman, M. H. [Fundamental Engineering Studies Unit Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM (Malaysia); Baharin, N.; Abdullah, S. [Department of Mechanical and Materials Engineering Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM (Malaysia)
2015-02-03
Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.
Line identification studies using traditional techniques and wavelength coincidence statistics
International Nuclear Information System (INIS)
Cowley, C.R.; Adelman, S.J.
1990-01-01
Traditional line identification techniques result in the assignment of individual lines to an atomic or ionic species. These methods may be supplemented by wavelength coincidence statistics (WCS). The strength and weakness of these methods are discussed using spectra of a number of normal and peculiar B and A stars that have been studied independently by both methods. The present results support the overall findings of some earlier studies. WCS would be most useful in a first survey, before traditional methods have been applied. WCS can quickly make a global search for all species and in this way may enable identifications of an unexpected spectrum that could easily be omitted entirely from a traditional study. This is illustrated by O I. WCS is a subject to well known weakness of any statistical technique, for example, a predictable number of spurious results are to be expected. The danger of small number statistics are illustrated. WCS is at its best relative to traditional methods in finding a line-rich atomic species that is only weakly present in a complicated stellar spectrum
Statistical and Economic Techniques for Site-specific Nematode Management.
Liu, Zheng; Griffin, Terry; Kirkpatrick, Terrence L
2014-03-01
Recent advances in precision agriculture technologies and spatial statistics allow realistic, site-specific estimation of nematode damage to field crops and provide a platform for the site-specific delivery of nematicides within individual fields. This paper reviews the spatial statistical techniques that model correlations among neighboring observations and develop a spatial economic analysis to determine the potential of site-specific nematicide application. The spatial econometric methodology applied in the context of site-specific crop yield response contributes to closing the gap between data analysis and realistic site-specific nematicide recommendations and helps to provide a practical method of site-specifically controlling nematodes.
Categorical and nonparametric data analysis choosing the best statistical technique
Nussbaum, E Michael
2014-01-01
Featuring in-depth coverage of categorical and nonparametric statistics, this book provides a conceptual framework for choosing the most appropriate type of test in various research scenarios. Class tested at the University of Nevada, the book's clear explanations of the underlying assumptions, computer simulations, and Exploring the Concept boxes help reduce reader anxiety. Problems inspired by actual studies provide meaningful illustrations of the techniques. The underlying assumptions of each test and the factors that impact validity and statistical power are reviewed so readers can explain
Application of Multivariable Statistical Techniques in Plant-wide WWTP Control Strategies Analysis
DEFF Research Database (Denmark)
Flores Alsina, Xavier; Comas, J.; Rodríguez-Roda, I.
2007-01-01
The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant...... analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii......) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation...
Pestman, Wiebe R
2009-01-01
This textbook provides a broad and solid introduction to mathematical statistics, including the classical subjects hypothesis testing, normal regression analysis, and normal analysis of variance. In addition, non-parametric statistics and vectorial statistics are considered, as well as applications of stochastic analysis in modern statistics, e.g., Kolmogorov-Smirnov testing, smoothing techniques, robustness and density estimation. For students with some elementary mathematical background. With many exercises. Prerequisites from measure theory and linear algebra are presented.
A Statistical Primer: Understanding Descriptive and Inferential Statistics
Gillian Byrne
2007-01-01
As libraries and librarians move more towards evidence‐based decision making, the data being generated in libraries is growing. Understanding the basics of statistical analysis is crucial for evidence‐based practice (EBP), in order to correctly design and analyze researchas well as to evaluate the research of others. This article covers the fundamentals of descriptive and inferential statistics, from hypothesis construction to sampling to common statistical techniques including chi‐square, co...
Directory of Open Access Journals (Sweden)
Christianto V.
2007-04-01
Full Text Available In the light of some recent hypotheses suggesting plausible unification of thermostatistics where Fermi-Dirac, Bose-Einstein and Tsallis statistics become its special subsets, we consider further plausible extension to include non-integer Hausdorff dimension, which becomes realization of fractal entropy concept. In the subsequent section, we also discuss plausible extension of this unified statistics to include anisotropic effect by using quaternion oscillator, which may be observed in the context of Cosmic Microwave Background Radiation. Further observation is of course recommended in order to refute or verify this proposition.
Statistical techniques to extract information during SMAP soil moisture assimilation
Kolassa, J.; Reichle, R. H.; Liu, Q.; Alemohammad, S. H.; Gentine, P.
2017-12-01
Statistical techniques permit the retrieval of soil moisture estimates in a model climatology while retaining the spatial and temporal signatures of the satellite observations. As a consequence, the need for bias correction prior to an assimilation of these estimates is reduced, which could result in a more effective use of the independent information provided by the satellite observations. In this study, a statistical neural network (NN) retrieval algorithm is calibrated using SMAP brightness temperature observations and modeled soil moisture estimates (similar to those used to calibrate the SMAP Level 4 DA system). Daily values of surface soil moisture are estimated using the NN and then assimilated into the NASA Catchment model. The skill of the assimilation estimates is assessed based on a comprehensive comparison to in situ measurements from the SMAP core and sparse network sites as well as the International Soil Moisture Network. The NN retrieval assimilation is found to significantly improve the model skill, particularly in areas where the model does not represent processes related to agricultural practices. Additionally, the NN method is compared to assimilation experiments using traditional bias correction techniques. The NN retrieval assimilation is found to more effectively use the independent information provided by SMAP resulting in larger model skill improvements than assimilation experiments using traditional bias correction techniques.
Statistical physics including applications to condensed matter
Hermann, Claudine
2005-01-01
Statistical Physics bridges the properties of a macroscopic system and the microscopic behavior of its constituting particles, otherwise impossible due to the giant magnitude of Avogadro's number. Numerous systems of today's key technologies -- as e.g. semiconductors or lasers -- are macroscopic quantum objects; only statistical physics allows for understanding their fundamentals. Therefore, this graduate text also focuses on particular applications such as the properties of electrons in solids with applications, and radiation thermodynamics and the greenhouse effect.
Statistical methods for including two-body forces in large system calculations
International Nuclear Information System (INIS)
Grimes, S.M.
1980-07-01
Large systems of interacting particles are often treated by assuming that the effect on any one particle of the remaining N-1 may be approximated by an average potential. This approach reduces the problem to that of finding the bound-state solutions for a particle in a potential; statistical mechanics is then used to obtain the properties of the many-body system. In some physical systems this approach may not be acceptable, because the two-body force component cannot be treated in this one-body limit. A technique for incorporating two-body forces in such calculations in a more realistic fashion is described. 1 figure
Curve fitting and modeling with splines using statistical variable selection techniques
Smith, P. L.
1982-01-01
The successful application of statistical variable selection techniques to fit splines is demonstrated. Major emphasis is given to knot selection, but order determination is also discussed. Two FORTRAN backward elimination programs, using the B-spline basis, were developed. The program for knot elimination is compared in detail with two other spline-fitting methods and several statistical software packages. An example is also given for the two-variable case using a tensor product basis, with a theoretical discussion of the difficulties of their use.
Statistical precision of delayed-neutron nondestructive assay techniques
International Nuclear Information System (INIS)
Bayne, C.K.; McNeany, S.R.
1979-02-01
A theoretical analysis of the statistical precision of delayed-neutron nondestructive assay instruments is presented. Such instruments measure the fissile content of nuclear fuel samples by neutron irradiation and delayed-neutron detection. The precision of these techniques is limited by the statistical nature of the nuclear decay process, but the precision can be optimized by proper selection of system operating parameters. Our method is a three-part analysis. We first present differential--difference equations describing the fundamental physics of the measurements. We then derive and present complete analytical solutions to these equations. Final equations governing the expected number and variance of delayed-neutron counts were computer programmed to calculate the relative statistical precision of specific system operating parameters. Our results show that Poisson statistics do not govern the number of counts accumulated in multiple irradiation-count cycles and that, in general, maximum count precision does not correspond with maximum count as first expected. Covariance between the counts of individual cycles must be considered in determining the optimum number of irradiation-count cycles and the optimum irradiation-to-count time ratio. For the assay system in use at ORNL, covariance effects are small, but for systems with short irradiation-to-count transition times, covariance effects force the optimum number of irradiation-count cycles to be half those giving maximum count. We conclude that the equations governing the expected value and variance of delayed-neutron counts have been derived in closed form. These have been computerized and can be used to select optimum operating parameters for delayed-neutron assay devices
International Nuclear Information System (INIS)
Carvajal Escobar Yesid; Munoz, Flor Matilde
2007-01-01
The project this centred in the revision of the state of the art of the ocean-atmospheric phenomena that you affect the Colombian hydrology especially The Phenomenon Enos that causes a socioeconomic impact of first order in our country, it has not been sufficiently studied; therefore it is important to approach the thematic one, including the variable macroclimates associated to the Enos in the analyses of water planning. The analyses include revision of statistical techniques of analysis of consistency of hydrological data with the objective of conforming a database of monthly flow of the river reliable and homogeneous Cauca. Statistical methods are used (Analysis of data multivariante) specifically The analysis of principal components to involve them in the development of models of prediction of flows monthly means in the river Cauca involving the Lineal focus as they are the model autoregressive AR, ARX and Armax and the focus non lineal Net Artificial Network.
Statistical evaluation of recorded knowledge in nuclear and other instrumental analytical techniques
International Nuclear Information System (INIS)
Braun, T.
1987-01-01
The main points addressed in this study are the following: Statistical distribution patterns of published literature on instrumental analytical techniques 1981-1984; structure of scientific literature and heuristics for identifying active specialities and emerging hot spot research areas in instrumental analytical techniques; growth and growth rates of the literature in some of the identified hot research areas; quality and quantity in instrumental analytical research output. (orig.)
Techniques for depth-resolved imaging through turbid media including coherence-gated imaging
International Nuclear Information System (INIS)
Dunsby, C; French, P M W
2003-01-01
This article aims to review the panoply of techniques for realising optical imaging through turbid media such as biological tissue. It begins by briefly discussing optical scattering and outlines the various approaches that have been developed to image through scattering media including spatial filtering, time-gated imaging and coherence-based techniques. The discussion includes scanning and wide-field techniques and concentrates on techniques to discriminate in favour of unscattered ballistic light although imaging with scattered light is briefly reviewed. Wide-field coherence-gated imaging techniques are discussed in some detail with particular emphasis placed on techniques to achieve real-time high-resolution three-dimensional imaging including through turbid media, providing rapid whole-field acquisition and high depth and transverse spatial resolution images. (topical review)
International Nuclear Information System (INIS)
Ren, Qingguo; Dewan, Sheilesh Kumar; Li, Ming; Li, Jianying; Mao, Dingbiao; Wang, Zhenglei; Hua, Yanqing
2012-01-01
Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI vol ) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique
Energy Technology Data Exchange (ETDEWEB)
Ren, Qingguo, E-mail: renqg83@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Dewan, Sheilesh Kumar, E-mail: sheilesh_d1@hotmail.com [Department of Geriatrics, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Ming, E-mail: minli77@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Li, Jianying, E-mail: Jianying.Li@med.ge.com [CT Imaging Research Center, GE Healthcare China, Beijing (China); Mao, Dingbiao, E-mail: maodingbiao74@163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China); Wang, Zhenglei, E-mail: Williswang_doc@yahoo.com.cn [Department of Radiology, Shanghai Electricity Hospital, Shanghai 200050 (China); Hua, Yanqing, E-mail: cjr.huayanqing@vip.163.com [Department of Radiology, Hua Dong Hospital of Fudan University, Shanghai 200040 (China)
2012-10-15
Purpose: To compare image quality and visualization of normal structures and lesions in brain computed tomography (CT) with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP) reconstruction techniques in different X-ray tube current–time products. Materials and methods: In this IRB-approved prospective study, forty patients (nineteen men, twenty-one women; mean age 69.5 ± 11.2 years) received brain scan at different tube current–time products (300 and 200 mAs) in 64-section multi-detector CT (GE, Discovery CT750 HD). Images were reconstructed with FBP and four levels of ASIR-FBP blending. Two radiologists (please note that our hospital is renowned for its geriatric medicine department, and these two radiologists are more experienced in chronic cerebral vascular disease than in neoplastic disease, so this research did not contain cerebral tumors but as a discussion) assessed all the reconstructed images for visibility of normal structures, lesion conspicuity, image contrast and diagnostic confidence in a blinded and randomized manner. Volume CT dose index (CTDI{sub vol}) and dose-length product (DLP) were recorded. All the data were analyzed by using SPSS 13.0 statistical analysis software. Results: There was no statistically significant difference between the image qualities at 200 mAs with 50% ASIR blending technique and 300 mAs with FBP technique (p > .05). While between the image qualities at 200 mAs with FBP and 300 mAs with FBP technique a statistically significant difference (p < .05) was found. Conclusion: ASIR provided same image quality and diagnostic ability in brain imaging with greater than 30% dose reduction compared with FBP reconstruction technique.
Experimental Mathematics and Computational Statistics
Energy Technology Data Exchange (ETDEWEB)
Bailey, David H.; Borwein, Jonathan M.
2009-04-30
The field of statistics has long been noted for techniques to detect patterns and regularities in numerical data. In this article we explore connections between statistics and the emerging field of 'experimental mathematics'. These includes both applications of experimental mathematics in statistics, as well as statistical methods applied to computational mathematics.
McCray, Wilmon Wil L., Jr.
The research was prompted by a need to conduct a study that assesses process improvement, quality management and analytical techniques taught to students in U.S. colleges and universities undergraduate and graduate systems engineering and the computing science discipline (e.g., software engineering, computer science, and information technology) degree programs during their academic training that can be applied to quantitatively manage processes for performance. Everyone involved in executing repeatable processes in the software and systems development lifecycle processes needs to become familiar with the concepts of quantitative management, statistical thinking, process improvement methods and how they relate to process-performance. Organizations are starting to embrace the de facto Software Engineering Institute (SEI) Capability Maturity Model Integration (CMMI RTM) Models as process improvement frameworks to improve business processes performance. High maturity process areas in the CMMI model imply the use of analytical, statistical, quantitative management techniques, and process performance modeling to identify and eliminate sources of variation, continually improve process-performance; reduce cost and predict future outcomes. The research study identifies and provides a detail discussion of the gap analysis findings of process improvement and quantitative analysis techniques taught in U.S. universities systems engineering and computing science degree programs, gaps that exist in the literature, and a comparison analysis which identifies the gaps that exist between the SEI's "healthy ingredients " of a process performance model and courses taught in U.S. universities degree program. The research also heightens awareness that academicians have conducted little research on applicable statistics and quantitative techniques that can be used to demonstrate high maturity as implied in the CMMI models. The research also includes a Monte Carlo simulation optimization
International Nuclear Information System (INIS)
Aminu Ibrahim; Hafizan Juahir; Mohd Ekhwan Toriman; Mustapha, A.; Azman Azid; Isiyaka, H.A.
2015-01-01
Multivariate Statistical techniques including cluster analysis, discriminant analysis, and principal component analysis/factor analysis were applied to investigate the spatial variation and pollution sources in the Terengganu river basin during 5 years of monitoring 13 water quality parameters at thirteen different stations. Cluster analysis (CA) classified 13 stations into 2 clusters low polluted (LP) and moderate polluted (MP) based on similar water quality characteristics. Discriminant analysis (DA) rendered significant data reduction with 4 parameters (pH, NH 3 -NL, PO 4 and EC) and correct assignation of 95.80 %. The PCA/ FA applied to the data sets, yielded in five latent factors accounting 72.42 % of the total variance in the water quality data. The obtained varifactors indicate that parameters in charge for water quality variations are mainly related to domestic waste, industrial, runoff and agricultural (anthropogenic activities). Therefore, multivariate techniques are important in environmental management. (author)
Finkelstein, Michael O
2015-01-01
This classic text, first published in 1990, is designed to introduce law students, law teachers, practitioners, and judges to the basic ideas of mathematical probability and statistics as they have been applied in the law. The third edition includes over twenty new sections, including the addition of timely topics, like New York City police stops, exonerations in death-sentence cases, projecting airline costs, and new material on various statistical techniques such as the randomized response survey technique, rare-events meta-analysis, competing risks, and negative binomial regression. The book consists of sections of exposition followed by real-world cases and case studies in which statistical data have played a role. The reader is asked to apply the theory to the facts, to calculate results (a hand calculator is sufficient), and to explore legal issues raised by quantitative findings. The authors' calculations and comments are given in the back of the book. As with previous editions, the cases and case stu...
Energy Technology Data Exchange (ETDEWEB)
Solaimani, Mohiuddin [Univ. of Texas-Dallas, Richardson, TX (United States); Iftekhar, Mohammed [Univ. of Texas-Dallas, Richardson, TX (United States); Khan, Latifur [Univ. of Texas-Dallas, Richardson, TX (United States); Thuraisingham, Bhavani [Univ. of Texas-Dallas, Richardson, TX (United States); Ingram, Joey Burton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-09-01
Anomaly detection refers to the identi cation of an irregular or unusual pat- tern which deviates from what is standard, normal, or expected. Such deviated patterns typically correspond to samples of interest and are assigned different labels in different domains, such as outliers, anomalies, exceptions, or malware. Detecting anomalies in fast, voluminous streams of data is a formidable chal- lenge. This paper presents a novel, generic, real-time distributed anomaly detection framework for heterogeneous streaming data where anomalies appear as a group. We have developed a distributed statistical approach to build a model and later use it to detect anomaly. As a case study, we investigate group anomaly de- tection for a VMware-based cloud data center, which maintains a large number of virtual machines (VMs). We have built our framework using Apache Spark to get higher throughput and lower data processing time on streaming data. We have developed a window-based statistical anomaly detection technique to detect anomalies that appear sporadically. We then relaxed this constraint with higher accuracy by implementing a cluster-based technique to detect sporadic and continuous anomalies. We conclude that our cluster-based technique out- performs other statistical techniques with higher accuracy and lower processing time.
Ranger, A; Dunlop, A; Hutchinson, K; Convery, H; Maclennan, M K; Chantler, H; Twyman, N; Rose, C; McQuaid, D; Amos, R A; Griffin, C; deSouza, N M; Donovan, E; Harris, E; Coles, C E; Kirby, A
2018-06-01
Radiotherapy target volumes in early breast cancer treatment increasingly include the internal mammary chain (IMC). In order to maximise survival benefits of IMC radiotherapy, doses to the heart and lung should be minimised. This dosimetry study compared the ability of three-dimensional conformal radiotherapy, arc therapy and proton beam therapy (PBT) techniques with and without breath-hold to achieve target volume constraints while minimising dose to organs at risk (OARs). In 14 patients' datasets, seven IMC radiotherapy techniques were compared: wide tangent (WT) three-dimensional conformal radiotherapy, volumetric-modulated arc therapy (VMAT) and PBT, each in voluntary deep inspiratory breath-hold (vDIBH) and free breathing (FB), and tomotherapy in FB only. Target volume coverage and OAR doses were measured for each technique. These were compared using a one-way ANOVA with all pairwise comparisons tested using Bonferroni's multiple comparisons test, with adjusted P-values ≤ 0.05 indicating statistical significance. One hundred per cent of WT(vDIBH), 43% of WT(FB), 100% of VMAT(vDIBH), 86% of VMAT(FB), 100% of tomotherapy FB and 100% of PBT plans in vDIBH and FB passed all mandatory constraints. However, coverage of the IMC with 90% of the prescribed dose was significantly better than all other techniques using VMAT(vDIBH), PBT(vDIBH) and PBT(FB) (mean IMC coverage ± 1 standard deviation = 96.0% ± 4.3, 99.8% ± 0.3 and 99.0% ± 0.2, respectively). The mean heart dose was significantly reduced in vDIBH compared with FB for both the WT (P FB). Simple WT radiotherapy delivered in vDIBH achieves satisfactory coverage of the IMC while meeting heart and lung dose constraints. However, where higher isodose coverage is required, VMAT(vDIBH) is the optimal photon technique. The lowest OAR doses are achieved by PBT, in which the use of vDIBH does not improve dose statistics. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Park, Jinyong; Balasingham, P.; McKenna, Sean Andrew; Kulatilake, Pinnaduwa H. S. W.
2004-01-01
Sandia National Laboratories, under contract to Nuclear Waste Management Organization of Japan (NUMO), is performing research on regional classification of given sites in Japan with respect to potential volcanic disruption using multivariate statistics and geo-statistical interpolation techniques. This report provides results obtained for hierarchical probabilistic regionalization of volcanism for the Sengan region in Japan by applying multivariate statistical techniques and geostatistical interpolation techniques on the geologic data provided by NUMO. A workshop report produced in September 2003 by Sandia National Laboratories (Arnold et al., 2003) on volcanism lists a set of most important geologic variables as well as some secondary information related to volcanism. Geologic data extracted for the Sengan region in Japan from the data provided by NUMO revealed that data are not available at the same locations for all the important geologic variables. In other words, the geologic variable vectors were found to be incomplete spatially. However, it is necessary to have complete geologic variable vectors to perform multivariate statistical analyses. As a first step towards constructing complete geologic variable vectors, the Universal Transverse Mercator (UTM) zone 54 projected coordinate system and a 1 km square regular grid system were selected. The data available for each geologic variable on a geographic coordinate system were transferred to the aforementioned grid system. Also the recorded data on volcanic activity for Sengan region were produced on the same grid system. Each geologic variable map was compared with the recorded volcanic activity map to determine the geologic variables that are most important for volcanism. In the regionalized classification procedure, this step is known as the variable selection step. The following variables were determined as most important for volcanism: geothermal gradient, groundwater temperature, heat discharge, groundwater
Statistical Methods for Environmental Pollution Monitoring
Energy Technology Data Exchange (ETDEWEB)
Gilbert, Richard O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
1987-01-01
The application of statistics to environmental pollution monitoring studies requires a knowledge of statistical analysis methods particularly well suited to pollution data. This book fills that need by providing sampling plans, statistical tests, parameter estimation procedure techniques, and references to pertinent publications. Most of the statistical techniques are relatively simple, and examples, exercises, and case studies are provided to illustrate procedures. The book is logically divided into three parts. Chapters 1, 2, and 3 are introductory chapters. Chapters 4 through 10 discuss field sampling designs and Chapters 11 through 18 deal with a broad range of statistical analysis procedures. Some statistical techniques given here are not commonly seen in statistics book. For example, see methods for handling correlated data (Sections 4.5 and 11.12), for detecting hot spots (Chapter 10), and for estimating a confidence interval for the mean of a lognormal distribution (Section 13.2). Also, Appendix B lists a computer code that estimates and tests for trends over time at one or more monitoring stations using nonparametric methods (Chapters 16 and 17). Unfortunately, some important topics could not be included because of their complexity and the need to limit the length of the book. For example, only brief mention could be made of time series analysis using Box-Jenkins methods and of kriging techniques for estimating spatial and spatial-time patterns of pollution, although multiple references on these topics are provided. Also, no discussion of methods for assessing risks from environmental pollution could be included.
Wang, Hao; Wang, Qunwei; He, Ming
2018-05-01
In order to investigate and improve the level of detection technology of water content in liquid chemical reagents of domestic laboratories, proficiency testing provider PT0031 (CNAS) has organized proficiency testing program of water content in toluene, 48 laboratories from 18 provinces/cities/municipals took part in the PT. This paper introduces the implementation process of proficiency testing for determination of water content in toluene, including sample preparation, homogeneity and stability test, the results of statistics of iteration robust statistic technique and analysis, summarized and analyzed those of the different test standards which are widely used in the laboratories, put forward the technological suggestions for the improvement of the test quality of water content. Satisfactory results were obtained by 43 laboratories, amounting to 89.6% of the total participating laboratories.
Playing at Statistical Mechanics
Clark, Paul M.; And Others
1974-01-01
Discussed are the applications of counting techniques of a sorting game to distributions and concepts in statistical mechanics. Included are the following distributions: Fermi-Dirac, Bose-Einstein, and most probable. (RH)
Statistical sampling techniques as applied to OSE inspections
International Nuclear Information System (INIS)
Davis, J.J.; Cote, R.W.
1987-01-01
The need has been recognized for statistically valid methods for gathering information during OSE inspections; and for interpretation of results, both from performance testing and from records reviews, interviews, etc. Battelle Columbus Division, under contract to DOE OSE has performed and is continuing to perform work in the area of statistical methodology for OSE inspections. This paper represents some of the sampling methodology currently being developed for use during OSE inspections. Topics include population definition, sample size requirements, level of confidence and practical logistical constraints associated with the conduct of an inspection based on random sampling. Sequential sampling schemes and sampling from finite populations are also discussed. The methods described are applicable to various data gathering activities, ranging from the sampling and examination of classified documents to the sampling of Protective Force security inspectors for skill testing
Intuitive introductory statistics
Wolfe, Douglas A
2017-01-01
This textbook is designed to give an engaging introduction to statistics and the art of data analysis. The unique scope includes, but also goes beyond, classical methodology associated with the normal distribution. What if the normal model is not valid for a particular data set? This cutting-edge approach provides the alternatives. It is an introduction to the world and possibilities of statistics that uses exercises, computer analyses, and simulations throughout the core lessons. These elementary statistical methods are intuitive. Counting and ranking features prominently in the text. Nonparametric methods, for instance, are often based on counts and ranks and are very easy to integrate into an introductory course. The ease of computation with advanced calculators and statistical software, both of which factor into this text, allows important techniques to be introduced earlier in the study of statistics. This book's novel scope also includes measuring symmetry with Walsh averages, finding a nonp...
Statistics 101 for Radiologists.
Anvari, Arash; Halpern, Elkan F; Samir, Anthony E
2015-10-01
Diagnostic tests have wide clinical applications, including screening, diagnosis, measuring treatment effect, and determining prognosis. Interpreting diagnostic test results requires an understanding of key statistical concepts used to evaluate test efficacy. This review explains descriptive statistics and discusses probability, including mutually exclusive and independent events and conditional probability. In the inferential statistics section, a statistical perspective on study design is provided, together with an explanation of how to select appropriate statistical tests. Key concepts in recruiting study samples are discussed, including representativeness and random sampling. Variable types are defined, including predictor, outcome, and covariate variables, and the relationship of these variables to one another. In the hypothesis testing section, we explain how to determine if observed differences between groups are likely to be due to chance. We explain type I and II errors, statistical significance, and study power, followed by an explanation of effect sizes and how confidence intervals can be used to generalize observed effect sizes to the larger population. Statistical tests are explained in four categories: t tests and analysis of variance, proportion analysis tests, nonparametric tests, and regression techniques. We discuss sensitivity, specificity, accuracy, receiver operating characteristic analysis, and likelihood ratios. Measures of reliability and agreement, including κ statistics, intraclass correlation coefficients, and Bland-Altman graphs and analysis, are introduced. © RSNA, 2015.
Díaz, Zuleyka; Segovia, María Jesús; Fernández, José
2005-01-01
Prediction of insurance companies insolvency has arisen as an important problem in the field of financial research. Most methods applied in the past to tackle this issue are traditional statistical techniques which use financial ratios as explicative variables. However, these variables often do not satisfy statistical assumptions, which complicates the application of the mentioned methods. In this paper, a comparative study of the performance of two non-parametric machine learning techniques ...
Walz, Michael; Leckebusch, Gregor C.
2016-04-01
Extratropical wind storms pose one of the most dangerous and loss intensive natural hazards for Europe. However, due to only 50 years of high quality observational data, it is difficult to assess the statistical uncertainty of these sparse events just based on observations. Over the last decade seasonal ensemble forecasts have become indispensable in quantifying the uncertainty of weather prediction on seasonal timescales. In this study seasonal forecasts are used in a climatological context: By making use of the up to 51 ensemble members, a broad and physically consistent statistical base can be created. This base can then be used to assess the statistical uncertainty of extreme wind storm occurrence more accurately. In order to determine the statistical uncertainty of storms with different paths of progression, a probabilistic clustering approach using regression mixture models is used to objectively assign storm tracks (either based on core pressure or on extreme wind speeds) to different clusters. The advantage of this technique is that the entire lifetime of a storm is considered for the clustering algorithm. Quadratic curves are found to describe the storm tracks most accurately. Three main clusters (diagonal, horizontal or vertical progression of the storm track) can be identified, each of which have their own particulate features. Basic storm features like average velocity and duration are calculated and compared for each cluster. The main benefit of this clustering technique, however, is to evaluate if the clusters show different degrees of uncertainty, e.g. more (less) spread for tracks approaching Europe horizontally (diagonally). This statistical uncertainty is compared for different seasonal forecast products.
Experimental design techniques in statistical practice a practical software-based approach
Gardiner, W P
1998-01-01
Provides an introduction to the diverse subject area of experimental design, with many practical and applicable exercises to help the reader understand, present and analyse the data. The pragmatic approach offers technical training for use of designs and teaches statistical and non-statistical skills in design and analysis of project studies throughout science and industry. Provides an introduction to the diverse subject area of experimental design and includes practical and applicable exercises to help understand, present and analyse the data Offers technical training for use of designs and teaches statistical and non-statistical skills in design and analysis of project studies throughout science and industry Discusses one-factor designs and blocking designs, factorial experimental designs, Taguchi methods and response surface methods, among other topics.
A survey of statistical downscaling techniques
Energy Technology Data Exchange (ETDEWEB)
Zorita, E.; Storch, H. von [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik
1997-12-31
The derivation of regional information from integrations of coarse-resolution General Circulation Models (GCM) is generally referred to as downscaling. The most relevant statistical downscaling techniques are described here and some particular examples are worked out in detail. They are classified into three main groups: linear methods, classification methods and deterministic non-linear methods. Their performance in a particular example, winter rainfall in the Iberian peninsula, is compared to a simple downscaling analog method. It is found that the analog method performs equally well than the more complicated methods. Downscaling analysis can be also used as a tool to validate regional performance of global climate models by analyzing the covariability of the simulated large-scale climate and the regional climates. (orig.) [Deutsch] Die Ableitung regionaler Information aus Integrationen grob aufgeloester Klimamodelle wird als `Regionalisierung` bezeichnet. Dieser Beitrag beschreibt die wichtigsten statistischen Regionalisierungsverfahren und gibt darueberhinaus einige detaillierte Beispiele. Regionalisierungsverfahren lassen sich in drei Hauptgruppen klassifizieren: lineare Verfahren, Klassifikationsverfahren und nicht-lineare deterministische Verfahren. Diese Methoden werden auf den Niederschlag auf der iberischen Halbinsel angewandt und mit den Ergebnissen eines einfachen Analog-Modells verglichen. Es wird festgestellt, dass die Ergebnisse der komplizierteren Verfahren im wesentlichen auch mit der Analog-Methode erzielt werden koennen. Eine weitere Anwendung der Regionalisierungsmethoden besteht in der Validierung globaler Klimamodelle, indem die simulierte und die beobachtete Kovariabilitaet zwischen dem grosskaligen und dem regionalen Klima miteinander verglichen wird. (orig.)
A survey of statistical downscaling techniques
Energy Technology Data Exchange (ETDEWEB)
Zorita, E; Storch, H von [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik
1998-12-31
The derivation of regional information from integrations of coarse-resolution General Circulation Models (GCM) is generally referred to as downscaling. The most relevant statistical downscaling techniques are described here and some particular examples are worked out in detail. They are classified into three main groups: linear methods, classification methods and deterministic non-linear methods. Their performance in a particular example, winter rainfall in the Iberian peninsula, is compared to a simple downscaling analog method. It is found that the analog method performs equally well than the more complicated methods. Downscaling analysis can be also used as a tool to validate regional performance of global climate models by analyzing the covariability of the simulated large-scale climate and the regional climates. (orig.) [Deutsch] Die Ableitung regionaler Information aus Integrationen grob aufgeloester Klimamodelle wird als `Regionalisierung` bezeichnet. Dieser Beitrag beschreibt die wichtigsten statistischen Regionalisierungsverfahren und gibt darueberhinaus einige detaillierte Beispiele. Regionalisierungsverfahren lassen sich in drei Hauptgruppen klassifizieren: lineare Verfahren, Klassifikationsverfahren und nicht-lineare deterministische Verfahren. Diese Methoden werden auf den Niederschlag auf der iberischen Halbinsel angewandt und mit den Ergebnissen eines einfachen Analog-Modells verglichen. Es wird festgestellt, dass die Ergebnisse der komplizierteren Verfahren im wesentlichen auch mit der Analog-Methode erzielt werden koennen. Eine weitere Anwendung der Regionalisierungsmethoden besteht in der Validierung globaler Klimamodelle, indem die simulierte und die beobachtete Kovariabilitaet zwischen dem grosskaligen und dem regionalen Klima miteinander verglichen wird. (orig.)
International Nuclear Information System (INIS)
Bunshah, R.F.
1976-01-01
A number of different techniques which range over several different aspects of materials research are covered in this volume. They are concerned with property evaluation of 4 0 K and below, surface characterization, coating techniques, techniques for the fabrication of composite materials, computer methods, data evaluation and analysis, statistical design of experiments and non-destructive test techniques. Topics covered in this part include internal friction measurements; nondestructive testing techniques; statistical design of experiments and regression analysis in metallurgical research; and measurement of surfaces of engineering materials
International Nuclear Information System (INIS)
Fukuda, Toshio; Mitsuoka, Toyokazu.
1985-01-01
The detection of leak in piping system is an important diagnostic technique for facilities to prevent accidents and to take maintenance measures, since the occurrence of leak lowers productivity and causes environmental destruction. As the first step, it is necessary to detect the occurrence of leak without delay, and as the second step, if the place of leak occurrence in piping system can be presumed, accident countermeasures become easy. The detection of leak by pressure is usually used for detecting large leak. But the method depending on pressure is simple and advantageous, therefore the extension of the detecting technique by pressure gradient method to the detection of smaller scale leak using statistical analysis techniques was examined for a pipeline in steady operation in this study. Since the flow in a pipe irregularly varies during pumping, statistical means is required for the detection of small leak by pressure. The index for detecting leak proposed in this paper is the difference of the pressure gradient at the both ends of a pipeline. The experimental results on water and air in nylon tubes are reported. (Kako, I.)
International Nuclear Information System (INIS)
Gilbert, R.O.; Bernhardt, D.E.; Hahn, P.B.
1983-01-01
A summary of a field soil sampling study conducted around the Rocky Flats Colorado plant in May 1977 is preseted. Several different soil sampling techniques that had been used in the area were applied at four different sites. One objective was to comparethe average 239 - 240 Pu concentration values obtained by the various soil sampling techniques used. There was also interest in determining whether there are differences in the reproducibility of the various techniques and how the techniques compared with the proposed EPA technique of sampling to 1 cm depth. Statistically significant differences in average concentrations between the techniques were found. The differences could be largely related to the differences in sampling depth-the primary physical variable between the techniques. The reproducibility of the techniques was evaluated by comparing coefficients of variation. Differences between coefficients of variation were not statistically significant. Average (median) coefficients ranged from 21 to 42 percent for the five sampling techniques. A laboratory study indicated that various sample treatment and particle sizing techniques could increase the concentration of plutonium in the less than 10 micrometer size fraction by up to a factor of about 4 compared to the 2 mm size fraction
An introduction to statistical computing a simulation-based approach
Voss, Jochen
2014-01-01
A comprehensive introduction to sampling-based methods in statistical computing The use of computers in mathematics and statistics has opened up a wide range of techniques for studying otherwise intractable problems. Sampling-based simulation techniques are now an invaluable tool for exploring statistical models. This book gives a comprehensive introduction to the exciting area of sampling-based methods. An Introduction to Statistical Computing introduces the classical topics of random number generation and Monte Carlo methods. It also includes some advanced met
MacLean, Adam L.; Harrington, Heather A.; Stumpf, Michael P. H.; Byrne, Helen M.
2015-01-01
mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since
Shaikh, Muhammad Mujtaba; Memon, Abdul Jabbar; Hussain, Manzoor
2016-09-01
In this article, we describe details of the data used in the research paper "Confidence bounds for energy conservation in electric motors: An economical solution using statistical techniques" [1]. The data presented in this paper is intended to show benefits of high efficiency electric motors over the standard efficiency motors of similar rating in the industrial sector of Pakistan. We explain how the data was collected and then processed by means of formulas to show cost effectiveness of energy efficient motors in terms of three important parameters: annual energy saving, cost saving and payback periods. This data can be further used to construct confidence bounds for the parameters using statistical techniques as described in [1].
Optimage central organised image quality control including statistics and reporting
International Nuclear Information System (INIS)
Jahnen, A.; Schilz, C.; Shannoun, F.; Schreiner, A.; Hermen, J.; Moll, C.
2008-01-01
Quality control of medical imaging systems is performed using dedicated phantoms. As the imaging systems are more and more digital, adequate image processing methods might help to save evaluation time and to receive objective results. The developed software package OPTIMAGE is focusing on this with a central approach: On one hand, OPTIMAGE provides a framework, which includes functions like database integration, DICOM data sources, multilingual user interface and image processing functionality. On the other hand, the test methods are implemented using modules which are able to process the images automatically for the common imaging systems. The integration of statistics and reporting into this environment is paramount: This is the only way to provide these functions in an interactive, user-friendly way. These features enable the users to discover degradation in performance quickly and document performed measurements easily. (authors)
Applied Statistics: From Bivariate through Multivariate Techniques [with CD-ROM
Warner, Rebecca M.
2007-01-01
This book provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked…
International Conference on Robust Statistics 2015
Basu, Ayanendranath; Filzmoser, Peter; Mukherjee, Diganta
2016-01-01
This book offers a collection of recent contributions and emerging ideas in the areas of robust statistics presented at the International Conference on Robust Statistics 2015 (ICORS 2015) held in Kolkata during 12–16 January, 2015. The book explores the applicability of robust methods in other non-traditional areas which includes the use of new techniques such as skew and mixture of skew distributions, scaled Bregman divergences, and multilevel functional data methods; application areas being circular data models and prediction of mortality and life expectancy. The contributions are of both theoretical as well as applied in nature. Robust statistics is a relatively young branch of statistical sciences that is rapidly emerging as the bedrock of statistical analysis in the 21st century due to its flexible nature and wide scope. Robust statistics supports the application of parametric and other inference techniques over a broader domain than the strictly interpreted model scenarios employed in classical statis...
International Nuclear Information System (INIS)
Wilson, D.W.; Gaskell, S.J.; Fahmy, D.R.; Joyce, B.G.; Groom, G.V.; Griffiths, K.; Kemp, K.W.; Nix, A.B.J.; Rowlands, R.J.
1979-01-01
Adopting the rationale that the improvement of intra-laboratory performance of immunometric assays will enable the assessment of national QC schemes to become more meaningful, the group of participating laboratories has developed statistical and analytical techniques for the improvement of accuracy, precision and monitoring of error for the determination of steroid hormones. These developments are now described and their relevance to NQC schemes discussed. Attention has been focussed on some of the factors necessary for improving standards of quality in immunometric assays and their relevance to laboratories participating in NQC schemes as described. These have included the 'accuracy', precision and robustness of assay procedures as well as improved methods for internal quality control. (Auth.)
Studies on coal flotation in flotation column using statistical technique
Energy Technology Data Exchange (ETDEWEB)
M.S. Jena; S.K. Biswal; K.K. Rao; P.S.R. Reddy [Institute of Minerals & Materials Technology (IMMT), Orissa (India)
2009-07-01
Flotation of Indian high ash coking coal fines to obtain clean coal has been reported earlier by many authors. Here an attempt has been made to systematically analyse factors influencing the flotation process using statistical design of experiments technique. Studies carried out in a 100 mm diameter column using factorial design to establish weightage of factors such as feed rate, air rate and collector dosage indicated that all three parameters have equal influence on the flotation process. Subsequently RSM-CCD design was used to obtain best result and it is observed that 94% combustibles can be recovered with 82.5% weight recovery at 21.4% ash from a feed containing 31.3% ash content.
Statistics for nuclear engineers and scientists. Part 1. Basic statistical inference
Energy Technology Data Exchange (ETDEWEB)
Beggs, W.J.
1981-02-01
This report is intended for the use of engineers and scientists working in the nuclear industry, especially at the Bettis Atomic Power Laboratory. It serves as the basis for several Bettis in-house statistics courses. The objectives of the report are to introduce the reader to the language and concepts of statistics and to provide a basic set of techniques to apply to problems of the collection and analysis of data. Part 1 covers subjects of basic inference. The subjects include: descriptive statistics; probability; simple inference for normally distributed populations, and for non-normal populations as well; comparison of two populations; the analysis of variance; quality control procedures; and linear regression analysis.
Karadag, Engin
2010-01-01
To assess research methods and analysis of statistical techniques employed by educational researchers, this study surveyed unpublished doctoral dissertation from 2003 to 2007. Frequently used research methods consisted of experimental research; a survey; a correlational study; and a case study. Descriptive statistics, t-test, ANOVA, factor…
Statistical methods for astronomical data analysis
Chattopadhyay, Asis Kumar
2014-01-01
This book introduces “Astrostatistics” as a subject in its own right with rewarding examples, including work by the authors with galaxy and Gamma Ray Burst data to engage the reader. This includes a comprehensive blending of Astrophysics and Statistics. The first chapter’s coverage of preliminary concepts and terminologies for astronomical phenomenon will appeal to both Statistics and Astrophysics readers as helpful context. Statistics concepts covered in the book provide a methodological framework. A unique feature is the inclusion of different possible sources of astronomical data, as well as software packages for converting the raw data into appropriate forms for data analysis. Readers can then use the appropriate statistical packages for their particular data analysis needs. The ideas of statistical inference discussed in the book help readers determine how to apply statistical tests. The authors cover different applications of statistical techniques already developed or specifically introduced for ...
A Review of Statistical Techniques for 2x2 and RxC Categorical Data Tables In SPSS
Directory of Open Access Journals (Sweden)
Cengiz BAL
2009-11-01
Full Text Available In this study, a review of statistical techniques for RxC categorical data tables is explained in detail. The emphasis is given to the association of techniques and their corresponding data considerations. Some suggestions to how to handle specific categorical data tables in SPSS and common mistakes in the interpretation of the SPSS outputs are shown.
DEFF Research Database (Denmark)
Lindström, Erik; Madsen, Henrik; Nielsen, Jan Nygaard
Statistics for Finance develops students’ professional skills in statistics with applications in finance. Developed from the authors’ courses at the Technical University of Denmark and Lund University, the text bridges the gap between classical, rigorous treatments of financial mathematics...... that rarely connect concepts to data and books on econometrics and time series analysis that do not cover specific problems related to option valuation. The book discusses applications of financial derivatives pertaining to risk assessment and elimination. The authors cover various statistical...... and mathematical techniques, including linear and nonlinear time series analysis, stochastic calculus models, stochastic differential equations, Itō’s formula, the Black–Scholes model, the generalized method-of-moments, and the Kalman filter. They explain how these tools are used to price financial derivatives...
Statistical Pattern Recognition
Webb, Andrew R
2011-01-01
Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions. It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields,
Statistical shape analysis with applications in R
Dryden, Ian L
2016-01-01
A thoroughly revised and updated edition of this introduction to modern statistical methods for shape analysis Shape analysis is an important tool in the many disciplines where objects are compared using geometrical features. Examples include comparing brain shape in schizophrenia; investigating protein molecules in bioinformatics; and describing growth of organisms in biology. This book is a significant update of the highly-regarded `Statistical Shape Analysis’ by the same authors. The new edition lays the foundations of landmark shape analysis, including geometrical concepts and statistical techniques, and extends to include analysis of curves, surfaces, images and other types of object data. Key definitions and concepts are discussed throughout, and the relative merits of different approaches are presented. The authors have included substantial new material on recent statistical developments and offer numerous examples throughout the text. Concepts are introduced in an accessible manner, while reta...
Teleni, Vicki; Baldauf, Richard B., Jr.
A study investigated the statistical techniques used by applied linguists and reported in three journals, "Language Learning,""Applied Linguistics," and "TESOL Quarterly," between 1980 and 1986. It was found that 47% of the published articles used statistical procedures. In these articles, 63% of the techniques used could be called basic, 28%…
GIS-based bivariate statistical techniques for groundwater potential analysis (an example of Iran)
Haghizadeh, Ali; Moghaddam, Davoud Davoudi; Pourghasemi, Hamid Reza
2017-12-01
Groundwater potential analysis prepares better comprehension of hydrological settings of different regions. This study shows the potency of two GIS-based data driven bivariate techniques namely statistical index (SI) and Dempster-Shafer theory (DST) to analyze groundwater potential in Broujerd region of Iran. The research was done using 11 groundwater conditioning factors and 496 spring positions. Based on the ground water potential maps (GPMs) of SI and DST methods, 24.22% and 23.74% of the study area is covered by poor zone of groundwater potential, and 43.93% and 36.3% of Broujerd region is covered by good and very good potential zones, respectively. The validation of outcomes displayed that area under the curve (AUC) of SI and DST techniques are 81.23% and 79.41%, respectively, which shows SI method has slightly a better performance than the DST technique. Therefore, SI and DST methods are advantageous to analyze groundwater capacity and scrutinize the complicated relation between groundwater occurrence and groundwater conditioning factors, which permits investigation of both systemic and stochastic uncertainty. Finally, it can be realized that these techniques are very beneficial for groundwater potential analyzing and can be practical for water-resource management experts.
Natrella, Mary Gibbons
1963-01-01
Formulated to assist scientists and engineers engaged in army ordnance research and development programs, this well-known and highly regarded handbook is a ready reference for advanced undergraduate and graduate students as well as for professionals seeking engineering information and quantitative data for designing, developing, constructing, and testing equipment. Topics include characterizing and comparing the measured performance of a material, product, or process; general considerations in planning experiments; statistical techniques for analyzing extreme-value data; use of transformations
International Nuclear Information System (INIS)
Budgor, A.B.; West, B.J.
1978-01-01
We employ the equivalence between Zwanzig's projection-operator formalism and perturbation theory to demonstrate that the approximate-solution technique of statistical linearization for nonlinear stochastic differential equations corresponds to the lowest-order β truncation in both the consolidated perturbation expansions and in the ''mass operator'' of a renormalized Green's function equation. Other consolidated equations can be obtained by selectively modifying this mass operator. We particularize the results of this paper to the Duffing anharmonic oscillator equation
Workshop on Analytical Methods in Statistics
Jurečková, Jana; Maciak, Matúš; Pešta, Michal
2017-01-01
This volume collects authoritative contributions on analytical methods and mathematical statistics. The methods presented include resampling techniques; the minimization of divergence; estimation theory and regression, eventually under shape or other constraints or long memory; and iterative approximations when the optimal solution is difficult to achieve. It also investigates probability distributions with respect to their stability, heavy-tailness, Fisher information and other aspects, both asymptotically and non-asymptotically. The book not only presents the latest mathematical and statistical methods and their extensions, but also offers solutions to real-world problems including option pricing. The selected, peer-reviewed contributions were originally presented at the workshop on Analytical Methods in Statistics, AMISTAT 2015, held in Prague, Czech Republic, November 10-13, 2015.
The new statistics: why and how.
Cumming, Geoff
2014-01-01
We need to make substantial changes to how we conduct research. First, in response to heightened concern that our published research literature is incomplete and untrustworthy, we need new requirements to ensure research integrity. These include prespecification of studies whenever possible, avoidance of selection and other inappropriate data-analytic practices, complete reporting, and encouragement of replication. Second, in response to renewed recognition of the severe flaws of null-hypothesis significance testing (NHST), we need to shift from reliance on NHST to estimation and other preferred techniques. The new statistics refers to recommended practices, including estimation based on effect sizes, confidence intervals, and meta-analysis. The techniques are not new, but adopting them widely would be new for many researchers, as well as highly beneficial. This article explains why the new statistics are important and offers guidance for their use. It describes an eight-step new-statistics strategy for research with integrity, which starts with formulation of research questions in estimation terms, has no place for NHST, and is aimed at building a cumulative quantitative discipline.
An Overview of Short-term Statistical Forecasting Methods
DEFF Research Database (Denmark)
Elias, Russell J.; Montgomery, Douglas C.; Kulahci, Murat
2006-01-01
An overview of statistical forecasting methodology is given, focusing on techniques appropriate to short- and medium-term forecasts. Topics include basic definitions and terminology, smoothing methods, ARIMA models, regression methods, dynamic regression models, and transfer functions. Techniques...... for evaluating and monitoring forecast performance are also summarized....
Industrial statistics with Minitab
Cintas, Pere Grima; Llabres, Xavier Tort-Martorell
2012-01-01
Industrial Statistics with MINITAB demonstrates the use of MINITAB as a tool for performing statistical analysis in an industrial context. This book covers introductory industrial statistics, exploring the most commonly used techniques alongside those that serve to give an overview of more complex issues. A plethora of examples in MINITAB are featured along with case studies for each of the statistical techniques presented. Industrial Statistics with MINITAB: Provides comprehensive coverage of user-friendly practical guidance to the essential statistical methods applied in industry.Explores
Statistical assessment of the learning curves of health technologies.
Ramsay, C R; Grant, A M; Wallace, S A; Garthwaite, P H; Monk, A F; Russell, I T
2001-01-01
(1) To describe systematically studies that directly assessed the learning curve effect of health technologies. (2) Systematically to identify 'novel' statistical techniques applied to learning curve data in other fields, such as psychology and manufacturing. (3) To test these statistical techniques in data sets from studies of varying designs to assess health technologies in which learning curve effects are known to exist. METHODS - STUDY SELECTION (HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW): For a study to be included, it had to include a formal analysis of the learning curve of a health technology using a graphical, tabular or statistical technique. METHODS - STUDY SELECTION (NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH): For a study to be included, it had to include a formal assessment of a learning curve using a statistical technique that had not been identified in the previous search. METHODS - DATA SOURCES: Six clinical and 16 non-clinical biomedical databases were searched. A limited amount of handsearching and scanning of reference lists was also undertaken. METHODS - DATA EXTRACTION (HEALTH TECHNOLOGY ASSESSMENT LITERATURE REVIEW): A number of study characteristics were abstracted from the papers such as study design, study size, number of operators and the statistical method used. METHODS - DATA EXTRACTION (NON-HEALTH TECHNOLOGY ASSESSMENT LITERATURE SEARCH): The new statistical techniques identified were categorised into four subgroups of increasing complexity: exploratory data analysis; simple series data analysis; complex data structure analysis, generic techniques. METHODS - TESTING OF STATISTICAL METHODS: Some of the statistical methods identified in the systematic searches for single (simple) operator series data and for multiple (complex) operator series data were illustrated and explored using three data sets. The first was a case series of 190 consecutive laparoscopic fundoplication procedures performed by a single surgeon; the second
Directory of Open Access Journals (Sweden)
VIMALA C.
2015-05-01
Full Text Available In recent years, speech technology has become a vital part of our daily lives. Various techniques have been proposed for developing Automatic Speech Recognition (ASR system and have achieved great success in many applications. Among them, Template Matching techniques like Dynamic Time Warping (DTW, Statistical Pattern Matching techniques such as Hidden Markov Model (HMM and Gaussian Mixture Models (GMM, Machine Learning techniques such as Neural Networks (NN, Support Vector Machine (SVM, and Decision Trees (DT are most popular. The main objective of this paper is to design and develop a speaker-independent isolated speech recognition system for Tamil language using the above speech recognition techniques. The background of ASR system, the steps involved in ASR, merits and demerits of the conventional and machine learning algorithms and the observations made based on the experiments are presented in this paper. For the above developed system, highest word recognition accuracy is achieved with HMM technique. It offered 100% accuracy during training process and 97.92% for testing process.
MacLean, Adam L.
2015-12-16
The last decade has seen an explosion in models that describe phenomena in systems medicine. Such models are especially useful for studying signaling pathways, such as the Wnt pathway. In this chapter we use the Wnt pathway to showcase current mathematical and statistical techniques that enable modelers to gain insight into (models of) gene regulation and generate testable predictions. We introduce a range of modeling frameworks, but focus on ordinary differential equation (ODE) models since they remain the most widely used approach in systems biology and medicine and continue to offer great potential. We present methods for the analysis of a single model, comprising applications of standard dynamical systems approaches such as nondimensionalization, steady state, asymptotic and sensitivity analysis, and more recent statistical and algebraic approaches to compare models with data. We present parameter estimation and model comparison techniques, focusing on Bayesian analysis and coplanarity via algebraic geometry. Our intention is that this (non-exhaustive) review may serve as a useful starting point for the analysis of models in systems medicine.
Statistical mechanics of superconductivity
Kita, Takafumi
2015-01-01
This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...
Statistical and particle physics: Common problems and techniques
International Nuclear Information System (INIS)
Bowler, K.C.; Mc Kane, A.J.
1984-01-01
These proceedings contain statistical mechanical studies in condensed matter physics; interfacial problems in statistical physics; string theory; general monte carlo methods and their application to Lattice gauge theories; topological excitations in field theory; phase transformation kinetics; and studies of chaotic systems
Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat
2009-01-01
Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
Energy Technology Data Exchange (ETDEWEB)
Campa, M F; Romero, M R
1969-01-01
A statistical zonation technique developed by J.D. Testerman is presented referring to its application to the San Andres reservoir in the Poza Rica area in Veracruz, Mex. The method is based on a statistical technique which permits grouping of similar values of certain parameter, i.e., porosity, for individual wells within a field. The resulting groups or zones are used in a correlation analysis to deduce whether there is continuity of porosity in any direction. In the San Andres reservoir, there is a continuity of the porous media on NE-SW direction. This is an important fact for the waterflooding project being carried on.
Statistics and error considerations at the application of SSND T-technique in radon measurement
International Nuclear Information System (INIS)
Jonsson, G.
1993-01-01
Plastic films are used for the detection of alpha particles from disintegrating radon and radon daughter nuclei. After etching there are tracks (cones) or holes in the film as a result of the exposure. The step from a counted number of tracks/holes per surface unit of the film to a reliable value of the radon and radon daughter level is surrounded by statistical considerations of different nature. Some of them are the number of counted tracks, the length of the time of exposure, the season of the time of exposure, the etching technique and the method of counting the tracks or holes. The number of background tracks of an unexposed film increases the error of the measured radon level. Some of the mentioned effects of statistical nature will be discussed in the report. (Author)
Nikolopoulos, E. I.; Destro, E.; Bhuiyan, M. A. E.; Borga, M., Sr.; Anagnostou, E. N.
2017-12-01
Fire disasters affect modern societies at global scale inducing significant economic losses and human casualties. In addition to their direct impacts they have various adverse effects on hydrologic and geomorphologic processes of a region due to the tremendous alteration of the landscape characteristics (vegetation, soil properties etc). As a consequence, wildfires often initiate a cascade of hazards such as flash floods and debris flows that usually follow the occurrence of a wildfire thus magnifying the overall impact in a region. Post-fire debris flows (PFDF) is one such type of hazards frequently occurring in Western United States where wildfires are a common natural disaster. Prediction of PDFD is therefore of high importance in this region and over the last years a number of efforts from United States Geological Survey (USGS) and National Weather Service (NWS) have been focused on the development of early warning systems that will help mitigate PFDF risk. This work proposes a prediction framework that is based on a nonparametric statistical technique (random forests) that allows predicting the occurrence of PFDF at regional scale with a higher degree of accuracy than the commonly used approaches that are based on power-law thresholds and logistic regression procedures. The work presented is based on a recently released database from USGS that reports a total of 1500 storms that triggered and did not trigger PFDF in a number of fire affected catchments in Western United States. The database includes information on storm characteristics (duration, accumulation, max intensity etc) and other auxiliary information of land surface properties (soil erodibility index, local slope etc). Results show that the proposed model is able to achieve a satisfactory prediction accuracy (threat score > 0.6) superior of previously published prediction frameworks highlighting the potential of nonparametric statistical techniques for development of PFDF prediction systems.
Energy Technology Data Exchange (ETDEWEB)
Halim, Zakiah Abd [Universiti Teknikal Malaysia Melaka (Malaysia); Jamaludin, Nordin; Junaidi, Syarif [Faculty of Engineering and Built, Universiti Kebangsaan Malaysia, Bangi (Malaysia); Yahya, Syed Yusainee Syed [Universiti Teknologi MARA, Shah Alam (Malaysia)
2015-04-15
Current steel tubes inspection techniques are invasive, and the interpretation and evaluation of inspection results are manually done by skilled personnel. This paper presents a statistical analysis of high frequency stress wave signals captured from a newly developed noninvasive, non-destructive tube inspection technique known as the vibration impact acoustic emission (VIAE) technique. Acoustic emission (AE) signals have been introduced into the ASTM A179 seamless steel tubes using an impact hammer, and the AE wave propagation was captured using an AE sensor. Specifically, a healthy steel tube as the reference tube and four steel tubes with through-hole artificial defect at different locations were used in this study. The AE features extracted from the captured signals are rise time, peak amplitude, duration and count. The VIAE technique also analysed the AE signals using statistical features such as root mean square (r.m.s.), energy, and crest factor. It was evident that duration, count, r.m.s., energy and crest factor could be used to automatically identify the presence of defect in carbon steel tubes using AE signals captured using the non-invasive VIAE technique.
International Nuclear Information System (INIS)
Porch, W.M.; Dickerson, M.H.
1976-08-01
Continuous monitoring of extensive meteorological instrument arrays is a requirement in the study of important mesoscale atmospheric phenomena. The phenomena include pollution transport prediction from continuous area sources, or one time releases of toxic materials and wind energy prospecting in areas of topographic enhancement of the wind. Quality control techniques that can be applied to these data to determine if the instruments are operating within their prescribed tolerances were investigated. Savannah River Plant data were analyzed with both independent and comparative statistical techniques. The independent techniques calculate the mean, standard deviation, moments about the mean, kurtosis, skewness, probability density distribution, cumulative probability and power spectra. The comparative techniques include covariance, cross-spectral analysis and two dimensional probability density. At present the calculating and plotting routines for these statistical techniques do not reside in a single code so it is difficult to ascribe independent memory size and computation time accurately. However, given the flexibility of a data system which includes simple and fast running statistics at the instrument end of the data network (ASF) and more sophisticated techniques at the computational end (ACF) a proper balance will be attained. These techniques are described in detail and preliminary results are presented
Introduction to high-dimensional statistics
Giraud, Christophe
2015-01-01
Ever-greater computing technologies have given rise to an exponentially growing volume of data. Today massive data sets (with potentially thousands of variables) play an important role in almost every branch of modern human activity, including networks, finance, and genetics. However, analyzing such data has presented a challenge for statisticians and data analysts and has required the development of new statistical methods capable of separating the signal from the noise.Introduction to High-Dimensional Statistics is a concise guide to state-of-the-art models, techniques, and approaches for ha
Statistics and analysis of scientific data
Bonamente, Massimiliano
2017-01-01
The revised second edition of this textbook provides the reader with a solid foundation in probability theory and statistics as applied to the physical sciences, engineering and related fields. It covers a broad range of numerical and analytical methods that are essential for the correct analysis of scientific data, including probability theory, distribution functions of statistics, fits to two-dimensional data and parameter estimation, Monte Carlo methods and Markov chains. Features new to this edition include: • a discussion of statistical techniques employed in business science, such as multiple regression analysis of multivariate datasets. • a new chapter on the various measures of the mean including logarithmic averages. • new chapters on systematic errors and intrinsic scatter, and on the fitting of data with bivariate errors. • a new case study and additional worked examples. • mathematical derivations and theoretical background material have been appropriately marked,to improve the readabili...
Fuzzy statistical decision-making theory and applications
Kabak, Özgür
2016-01-01
This book offers a comprehensive reference guide to fuzzy statistics and fuzzy decision-making techniques. It provides readers with all the necessary tools for making statistical inference in the case of incomplete information or insufficient data, where classical statistics cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including: fuzzy probability distributions, fuzzy frequency distributions, fuzzy Bayesian inference, fuzzy mean, mode and median, fuzzy dispersion, fuzzy p-value, and many others. To foster a better understanding, all the chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on fuzzy statistics. Moreover, by extending all the main aspects of classical statistical decision-making to its fuzzy counterpart, the book presents a dynamic snapshot of the field that is expected to stimu...
Tawfik, Hazem
1991-01-01
A relatively simple, inexpensive, and generic technique that could be used in both laboratories and some operation site environments is introduced at the Robotics Applications and Development Laboratory (RADL) at Kennedy Space Center (KSC). In addition, this report gives a detailed explanation of the set up procedure, data collection, and analysis using this new technique that was developed at the State University of New York at Farmingdale. The technique was used to evaluate the repeatability, accuracy, and overshoot of the Unimate Industrial Robot, PUMA 500. The data were statistically analyzed to provide an insight into the performance of the systems and components of the robot. Also, the same technique was used to check the forward kinematics against the inverse kinematics of RADL's PUMA robot. Recommendations were made for RADL to use this technique for laboratory calibration of the currently existing robots such as the ASEA, high speed controller, Automated Radiator Inspection Device (ARID) etc. Also, recommendations were made to develop and establish other calibration techniques that will be more suitable for site calibration environment and robot certification.
Directory of Open Access Journals (Sweden)
Land Walker H
2011-01-01
Full Text Available Abstract Background When investigating covariate interactions and group associations with standard regression analyses, the relationship between the response variable and exposure may be difficult to characterize. When the relationship is nonlinear, linear modeling techniques do not capture the nonlinear information content. Statistical learning (SL techniques with kernels are capable of addressing nonlinear problems without making parametric assumptions. However, these techniques do not produce findings relevant for epidemiologic interpretations. A simulated case-control study was used to contrast the information embedding characteristics and separation boundaries produced by a specific SL technique with logistic regression (LR modeling representing a parametric approach. The SL technique was comprised of a kernel mapping in combination with a perceptron neural network. Because the LR model has an important epidemiologic interpretation, the SL method was modified to produce the analogous interpretation and generate odds ratios for comparison. Results The SL approach is capable of generating odds ratios for main effects and risk factor interactions that better capture nonlinear relationships between exposure variables and outcome in comparison with LR. Conclusions The integration of SL methods in epidemiology may improve both the understanding and interpretation of complex exposure/disease relationships.
International Nuclear Information System (INIS)
Lee, Ho Jin; Lee, B. S.; Kim, K. B.
2003-09-01
The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si 3 N 4 . Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation
Testing of statistical techniques used in SYVAC
International Nuclear Information System (INIS)
Dalrymple, G.; Edwards, H.; Prust, J.
1984-01-01
Analysis of the SYVAC (SYstems Variability Analysis Code) output adopted four techniques to provide a cross comparison of their performance. The techniques used were: examination of scatter plots; correlation/regression; Kruskal-Wallis one-way analysis of variance by ranks; comparison of cumulative distribution functions and risk estimates between sub-ranges of parameter values. The analysis was conducted for the case of a single nuclide chain and was based mainly on simulated dose after 500,000 years. The results from this single SYVAC case showed that site parameters had the greatest influence on dose to man. The techniques of correlation/regression and Kruskal-Wallis were both successful and consistent in their identification of important parameters. Both techniques ranked the eight most important parameters in the same order when analysed for maximum dose. The results from a comparison of cdfs and risks in sub-ranges of the parameter values were not entirely consistent with other techniques. Further sampling of the high dose region is recommended in order to improve the accuracy of this method. (author)
International Nuclear Information System (INIS)
Garcia, Francisco; Palacio, Carlos; Garcia, Uriel
2012-01-01
Multivariate statistical techniques were used to investigate the temporal and spatial variations of water quality at the Santa Marta coastal area where a submarine out fall that discharges 1 m3/s of domestic wastewater is located. Two-way analysis of variance (ANOVA), cluster and principal component analysis and Krigging interpolation were considered for this report. Temporal variation showed two heterogeneous periods. From December to April, and July, where the concentration of the water quality parameters is higher; the rest of the year (May, June, August-November) were significantly lower. The spatial variation reported two areas where the water quality is different, this difference is related to the proximity to the submarine out fall discharge.
Khan, Firdos; Pilz, Jürgen
2016-04-01
South Asia is under the severe impacts of changing climate and global warming. The last two decades showed that climate change or global warming is happening and the first decade of 21st century is considered as the warmest decade over Pakistan ever in history where temperature reached 53 0C in 2010. Consequently, the spatio-temporal distribution and intensity of precipitation is badly effected and causes floods, cyclones and hurricanes in the region which further have impacts on agriculture, water, health etc. To cope with the situation, it is important to conduct impact assessment studies and take adaptation and mitigation remedies. For impact assessment studies, we need climate variables at higher resolution. Downscaling techniques are used to produce climate variables at higher resolution; these techniques are broadly divided into two types, statistical downscaling and dynamical downscaling. The target location of this study is the monsoon dominated region of Pakistan. One reason for choosing this area is because the contribution of monsoon rains in this area is more than 80 % of the total rainfall. This study evaluates a statistical downscaling technique which can be then used for downscaling climatic variables. Two statistical techniques i.e. quantile regression and copula modeling are combined in order to produce realistic results for climate variables in the area under-study. To reduce the dimension of input data and deal with multicollinearity problems, empirical orthogonal functions will be used. Advantages of this new method are: (1) it is more robust to outliers as compared to ordinary least squares estimates and other estimation methods based on central tendency and dispersion measures; (2) it preserves the dependence among variables and among sites and (3) it can be used to combine different types of distributions. This is important in our case because we are dealing with climatic variables having different distributions over different meteorological
Navard, Sharon E.
1989-01-01
In recent years there has been a push within NASA to use statistical techniques to improve the quality of production. Two areas where statistics are used are in establishing product and process quality control of flight hardware and in evaluating the uncertainty of calibration of instruments. The Flight Systems Quality Engineering branch is responsible for developing and assuring the quality of all flight hardware; the statistical process control methods employed are reviewed and evaluated. The Measurement Standards and Calibration Laboratory performs the calibration of all instruments used on-site at JSC as well as those used by all off-site contractors. These calibrations must be performed in such a way as to be traceable to national standards maintained by the National Institute of Standards and Technology, and they must meet a four-to-one ratio of the instrument specifications to calibrating standard uncertainty. In some instances this ratio is not met, and in these cases it is desirable to compute the exact uncertainty of the calibration and determine ways of reducing it. A particular example where this problem is encountered is with a machine which does automatic calibrations of force. The process of force calibration using the United Force Machine is described in detail. The sources of error are identified and quantified when possible. Suggestions for improvement are made.
New Statistical Methodology for Determining Cancer Clusters
The development of an innovative statistical technique that shows that women living in a broad stretch of the metropolitan northeastern United States, which includes Long Island, are slightly more likely to die from breast cancer than women in other parts of the Northeast.
Energy Technology Data Exchange (ETDEWEB)
Lee, Ho Jin; Lee, B. S.; Kim, K. B
2003-09-01
The materials for PFC's (Plasma Facing Components) in a fusion reactor are severely irradiated with fusion products in facing the high temperature plasma during the operation. The refractory materials can be maintained their excellent properties in severe operating condition by lowering surface temperature by bonding them to the high thermal conducting materials of heat sink. Hence, the joining and bonding techniques between dissimilar materials is considered to be important in case of the fusion reactor or nuclear reactor which is operated at high temperature. The first wall in the fusion reactor is heated to approximately 1000 .deg. C and irradiated severely by the plasma. In ITER, beryllium is expected as the primary armour candidate for the PFC's; other candidates including W, Mo, SiC, B4C, C/C and Si{sub 3}N{sub 4}. Since the heat affected zones in the PFC's processed by conventional welding are reported to have embrittlement and degradation in the sever operation condition, both brazing and diffusion bonding are being considered as prime candidates for the joining technique. In this report, both the materials including ceramics and the fabrication techniques including joining technique between dissimilar materials for PFC's are described. The described joining technique between the refractory materials and the dissimilar materials may be applicable for the fusion reactor and Generation-4 future nuclear reactor which are operated at high temperature and high irradiation.
Initiating statistical maintenance optimization
International Nuclear Information System (INIS)
Doyle, E. Kevin; Tuomi, Vesa; Rowley, Ian
2007-01-01
Since the 1980 s maintenance optimization has been centered around various formulations of Reliability Centered Maintenance (RCM). Several such optimization techniques have been implemented at the Bruce Nuclear Station. Further cost refinement of the Station preventive maintenance strategy includes evaluation of statistical optimization techniques. A review of successful pilot efforts in this direction is provided as well as initial work with graphical analysis. The present situation reguarding data sourcing, the principle impediment to use of stochastic methods in previous years, is discussed. The use of Crowe/AMSAA (Army Materials Systems Analysis Activity) plots is demonstrated from the point of view of justifying expenditures in optimization efforts. (author)
International Nuclear Information System (INIS)
Moscati, A.F. Jr.; Hediger, E.M.; Rupp, M.J.
1986-01-01
High concentrations of lead in soils along an abandoned railroad line prompted a remedial investigation to characterize the extent of contamination across a 7-acre site. Contamination was thought to be spotty across the site reflecting its past use in battery recycling operations at discrete locations. A screening technique was employed to delineate the more highly contaminated areas by testing a statistically determined minimum number of random samples from each of seven discrete site areas. The approach not only quickly identified those site areas which would require more extensive grid sampling, but also provided a statistically defensible basis for excluding other site areas from further consideration, thus saving the cost of additional sample collection and analysis. The reduction in the number of samples collected in ''clean'' areas of the site ranged from 45 to 60%
Statistics of extremes theory and applications
Beirlant, Jan; Segers, Johan; Teugels, Jozef; De Waal, Daniel; Ferro, Chris
2006-01-01
Research in the statistical analysis of extreme values has flourished over the past decade: new probability models, inference and data analysis techniques have been introduced; and new application areas have been explored. Statistics of Extremes comprehensively covers a wide range of models and application areas, including risk and insurance: a major area of interest and relevance to extreme value theory. Case studies are introduced providing a good balance of theory and application of each model discussed, incorporating many illustrated examples and plots of data. The last part of the book covers some interesting advanced topics, including time series, regression, multivariate and Bayesian modelling of extremes, the use of which has huge potential.
Directory of Open Access Journals (Sweden)
Jianning Wu
2015-01-01
Full Text Available The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.
Wu, Jianning; Wu, Bin
2015-01-01
The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis.
TRAN-STAT: statistics for environmental studies
International Nuclear Information System (INIS)
Gilbert, R.O.
1984-09-01
This issue of TRAN-STAT discusses statistical methods for assessing the uncertainty in predictions of pollutant transport models, particularly for radionuclides. Emphasis is placed on radionuclide transport models but the statistical assessment techniques also apply in general to other types of pollutants. The report begins with an outline of why an assessment of prediction uncertainties is important. This is followed by an introduction to several methods currently used in these assessments. This in turn is followed by more detailed discussion of the methods, including examples. 43 references, 2 figures
Szulc, Stefan
1965-01-01
Statistical Methods provides a discussion of the principles of the organization and technique of research, with emphasis on its application to the problems in social statistics. This book discusses branch statistics, which aims to develop practical ways of collecting and processing numerical data and to adapt general statistical methods to the objectives in a given field.Organized into five parts encompassing 22 chapters, this book begins with an overview of how to organize the collection of such information on individual units, primarily as accomplished by government agencies. This text then
Konijn, Elly A.; van de Schoot, Rens; Winter, Sonja D.; Ferguson, Christopher J.
2015-01-01
The present paper argues that an important cause of publication bias resides in traditional frequentist statistics forcing binary decisions. An alternative approach through Bayesian statistics provides various degrees of support for any hypothesis allowing balanced decisions and proper null
Understanding Statistics - Cancer Statistics
Annual reports of U.S. cancer statistics including new cases, deaths, trends, survival, prevalence, lifetime risk, and progress toward Healthy People targets, plus statistical summaries for a number of common cancer types.
Energy Technology Data Exchange (ETDEWEB)
Wallace, Jack, E-mail: jack.wallace@ce.queensu.ca [Department of Civil Engineering, Queen’s University, Ellis Hall, 58 University Avenue, Kingston, Ontario K7L 3N6 (Canada); Champagne, Pascale, E-mail: champagne@civil.queensu.ca [Department of Civil Engineering, Queen’s University, Ellis Hall, 58 University Avenue, Kingston, Ontario K7L 3N6 (Canada); Monnier, Anne-Charlotte, E-mail: anne-charlotte.monnier@insa-lyon.fr [National Institute for Applied Sciences – Lyon, 20 Avenue Albert Einstein, 69621 Villeurbanne Cedex (France)
2015-01-15
Highlights: • Performance of a hybrid passive landfill leachate treatment system was evaluated. • 33 Water chemistry parameters were sampled for 21 months and statistically analyzed. • Parameters were strongly linked and explained most (>40%) of the variation in data. • Alkalinity, ammonia, COD, heavy metals, and iron were criteria for performance. • Eight other parameters were key in modeling system dynamics and criteria. - Abstract: A pilot-scale hybrid-passive treatment system operated at the Merrick Landfill in North Bay, Ontario, Canada, treats municipal landfill leachate and provides for subsequent natural attenuation. Collected leachate is directed to a hybrid-passive treatment system, followed by controlled release to a natural attenuation zone before entering the nearby Little Sturgeon River. The study presents a comprehensive evaluation of the performance of the system using multivariate statistical techniques to determine the interactions between parameters, major pollutants in the leachate, and the biological and chemical processes occurring in the system. Five parameters (ammonia, alkalinity, chemical oxygen demand (COD), “heavy” metals of interest, with atomic weights above calcium, and iron) were set as criteria for the evaluation of system performance based on their toxicity to aquatic ecosystems and importance in treatment with respect to discharge regulations. System data for a full range of water quality parameters over a 21-month period were analyzed using principal components analysis (PCA), as well as principal components (PC) and partial least squares (PLS) regressions. PCA indicated a high degree of association for most parameters with the first PC, which explained a high percentage (>40%) of the variation in the data, suggesting strong statistical relationships among most of the parameters in the system. Regression analyses identified 8 parameters (set as independent variables) that were most frequently retained for modeling
The mixed linear model (MLM) is currently among the most advanced and flexible statistical modeling techniques and its use in tackling problems in plant pathology has begun surfacing in the literature. The longitudinal MLM is a multivariate extension that handles repeatedly measured data, such as r...
Rumsey, Deborah
2011-01-01
The fun and easy way to get down to business with statistics Stymied by statistics? No fear ? this friendly guide offers clear, practical explanations of statistical ideas, techniques, formulas, and calculations, with lots of examples that show you how these concepts apply to your everyday life. Statistics For Dummies shows you how to interpret and critique graphs and charts, determine the odds with probability, guesstimate with confidence using confidence intervals, set up and carry out a hypothesis test, compute statistical formulas, and more.Tracks to a typical first semester statistics cou
Gaitán Fernández, E.; García Moreno, R.; Pino Otín, M. R.; Ribalaygua Batalla, J.
2012-04-01
Climate and soil are two of the most important limiting factors for agricultural production. Nowadays climate change has been documented in many geographical locations affecting different cropping systems. The General Circulation Models (GCM) has become important tools to simulate the more relevant aspects of the climate expected for the XXI century in the frame of climatic change. These models are able to reproduce the general features of the atmospheric dynamic but their low resolution (about 200 Km) avoids a proper simulation of lower scale meteorological effects. Downscaling techniques allow overcoming this problem by adapting the model outcomes to local scale. In this context, FIC (Fundación para la Investigación del Clima) has developed a statistical downscaling technique based on a two step analogue methods. This methodology has been broadly tested on national and international environments leading to excellent results on future climate models. In a collaboration project, this statistical downscaling technique was applied to predict future scenarios for the grape growing systems in Spain. The application of such model is very important to predict expected climate for the different growing crops, mainly for grape, where the success of different varieties are highly related to climate and soil. The model allowed the implementation of agricultural conservation practices in the crop production, detecting highly sensible areas to negative impacts produced by any modification of climate in the different regions, mainly those protected with protected designation of origin, and the definition of new production areas with optimal edaphoclimatic conditions for the different varieties.
Statistical evaluation of diagnostic performance topics in ROC analysis
Zou, Kelly H; Bandos, Andriy I; Ohno-Machado, Lucila; Rockette, Howard E
2016-01-01
Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are relevant to a wide variety of applications, including medical imaging, cancer research, epidemiology, and bioinformatics. Statistical Evaluation of Diagnostic Performance: Topics in ROC Analysis covers areas including monotone-transformation techniques in parametric ROC analysis, ROC methods for combined and pooled biomarkers, Bayesian hierarchical transformation models, sequential designs and inferences in the ROC setting, predictive modeling, multireader ROC analysis, and free-response ROC (FROC) methodology. The book is suitable for graduate-level students and researchers in statistics, biostatistics, epidemiology, public health, biomedical engineering, radiology, medi...
Official Statistics and Statistics Education: Bridging the Gap
Directory of Open Access Journals (Sweden)
Gal Iddo
2017-03-01
Full Text Available This article aims to challenge official statistics providers and statistics educators to ponder on how to help non-specialist adult users of statistics develop those aspects of statistical literacy that pertain to official statistics. We first document the gap in the literature in terms of the conceptual basis and educational materials needed for such an undertaking. We then review skills and competencies that may help adults to make sense of statistical information in areas of importance to society. Based on this review, we identify six elements related to official statistics about which non-specialist adult users should possess knowledge in order to be considered literate in official statistics: (1 the system of official statistics and its work principles; (2 the nature of statistics about society; (3 indicators; (4 statistical techniques and big ideas; (5 research methods and data sources; and (6 awareness and skills for citizens’ access to statistical reports. Based on this ad hoc typology, we discuss directions that official statistics providers, in cooperation with statistics educators, could take in order to (1 advance the conceptualization of skills needed to understand official statistics, and (2 expand educational activities and services, specifically by developing a collaborative digital textbook and a modular online course, to improve public capacity for understanding of official statistics.
Radar Derived Spatial Statistics of Summer Rain. Volume 2; Data Reduction and Analysis
Konrad, T. G.; Kropfli, R. A.
1975-01-01
Data reduction and analysis procedures are discussed along with the physical and statistical descriptors used. The statistical modeling techniques are outlined and examples of the derived statistical characterization of rain cells in terms of the several physical descriptors are presented. Recommendations concerning analyses which can be pursued using the data base collected during the experiment are included.
Spatial Analysis Along Networks Statistical and Computational Methods
Okabe, Atsuyuki
2012-01-01
In the real world, there are numerous and various events that occur on and alongside networks, including the occurrence of traffic accidents on highways, the location of stores alongside roads, the incidence of crime on streets and the contamination along rivers. In order to carry out analyses of those events, the researcher needs to be familiar with a range of specific techniques. Spatial Analysis Along Networks provides a practical guide to the necessary statistical techniques and their computational implementation. Each chapter illustrates a specific technique, from Stochastic Point Process
Statistical methods with applications to demography and life insurance
Khmaladze, Estáte V
2013-01-01
Suitable for statisticians, mathematicians, actuaries, and students interested in the problems of insurance and analysis of lifetimes, Statistical Methods with Applications to Demography and Life Insurance presents contemporary statistical techniques for analyzing life distributions and life insurance problems. It not only contains traditional material but also incorporates new problems and techniques not discussed in existing actuarial literature. The book mainly focuses on the analysis of an individual life and describes statistical methods based on empirical and related processes. Coverage ranges from analyzing the tails of distributions of lifetimes to modeling population dynamics with migrations. To help readers understand the technical points, the text covers topics such as the Stieltjes, Wiener, and Itô integrals. It also introduces other themes of interest in demography, including mixtures of distributions, analysis of longevity and extreme value theory, and the age structure of a population. In addi...
A clinical perspective of accelerated statistical reconstruction
International Nuclear Information System (INIS)
Hutton, B.F.; Hudson, H.M.; Beekman, F.J.
1997-01-01
Although the potential benefits of maximum likelihood reconstruction have been recognised for many years, the technique has only recently found widespread popularity in clinical practice. Factors which have contributed to the wider acceptance include improved models for the emission process, better understanding of the properties of the algorithm and, not least, the practicality of application with the development of acceleration schemes and the improved speed of computers. The objective in this article is to present a framework for applying maximum likelihood reconstruction for a wide range of clinically based problems. The article draws particularly on the experience of the three authors in applying an acceleration scheme involving use of ordered subsets to a range of applications. The potential advantages of statistical reconstruction techniques include: (a) the ability to better model the emission and detection process, in order to make the reconstruction converge to a quantitative image, (b) the inclusion of a statistical noise model which results in better noise characteristics, and (c) the possibility to incorporate prior knowledge about the distribution being imaged. The great flexibility in adapting the reconstruction for a specific model results in these techniques having wide applicability to problems in clinical nuclear medicine. (orig.). With 8 figs., 1 tab
Mali, Matilda; Dell'Anna, Maria Michela; Mastrorilli, Piero; Damiani, Leonardo; Ungaro, Nicola; Belviso, Claudia; Fiore, Saverio
2015-11-01
Sediment contamination by metals poses significant risks to coastal ecosystems and is considered to be problematic for dredging operations. The determination of the background values of metal and metalloid distribution based on site-specific variability is fundamental in assessing pollution levels in harbour sediments. The novelty of the present work consists of addressing the scope and limitation of analysing port sediments through the use of conventional statistical techniques (such as: linear regression analysis, construction of cumulative frequency curves and the iterative 2σ technique), that are commonly employed for assessing Regional Geochemical Background (RGB) values in coastal sediments. This study ascertained that although the tout court use of such techniques in determining the RGB values in harbour sediments seems appropriate (the chemical-physical parameters of port sediments fit well with statistical equations), it should nevertheless be avoided because it may be misleading and can mask key aspects of the study area that can only be revealed by further investigations, such as mineralogical and multivariate statistical analyses. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
de Supinski, B R; Miller, B P; Liblit, B
2011-09-13
Petascale platforms with O(10{sup 5}) and O(10{sup 6}) processing cores are driving advancements in a wide range of scientific disciplines. These large systems create unprecedented application development challenges. Scalable correctness tools are critical to shorten the time-to-solution on these systems. Currently, many DOE application developers use primitive manual debugging based on printf or traditional debuggers such as TotalView or DDT. This paradigm breaks down beyond a few thousand cores, yet bugs often arise above that scale. Programmers must reproduce problems in smaller runs to analyze them with traditional tools, or else perform repeated runs at scale using only primitive techniques. Even when traditional tools run at scale, the approach wastes substantial effort and computation cycles. Continued scientific progress demands new paradigms for debugging large-scale applications. The Correctness on Petascale Systems (CoPS) project is developing a revolutionary debugging scheme that will reduce the debugging problem to a scale that human developers can comprehend. The scheme can provide precise diagnoses of the root causes of failure, including suggestions of the location and the type of errors down to the level of code regions or even a single execution point. Our fundamentally new strategy combines and expands three relatively new complementary debugging approaches. The Stack Trace Analysis Tool (STAT), a 2011 R&D 100 Award Winner, identifies behavior equivalence classes in MPI jobs and highlights behavior when elements of the class demonstrate divergent behavior, often the first indicator of an error. The Cooperative Bug Isolation (CBI) project has developed statistical techniques for isolating programming errors in widely deployed code that we will adapt to large-scale parallel applications. Finally, we are developing a new approach to parallelizing expensive correctness analyses, such as analysis of memory usage in the Memgrind tool. In the first two
Takahashi, Masahiro; Kimura, Fumiko; Umezawa, Tatsuya; Watanabe, Yusuke; Ogawa, Harumi
2016-01-01
Adaptive statistical iterative reconstruction (ASIR) has been used to reduce radiation dose in cardiac computed tomography. However, change of image parameters by ASIR as compared to filtered back projection (FBP) may influence quantification of coronary calcium. To investigate the influence of ASIR on calcium quantification in comparison to FBP. In 352 patients, CT images were reconstructed using FBP alone, FBP combined with ASIR 30%, 50%, 70%, and ASIR 100% based on the same raw data. Image noise, plaque density, Agatston scores and calcium volumes were compared among the techniques. Image noise, Agatston score, and calcium volume decreased significantly with ASIR compared to FBP (each P ASIR reduced Agatston score by 10.5% to 31.0%. In calcified plaques both of patients and a phantom, ASIR decreased maximum CT values and calcified plaque size. In comparison to FBP, adaptive statistical iterative reconstruction (ASIR) may significantly decrease Agatston scores and calcium volumes. Copyright © 2016 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.
International Nuclear Information System (INIS)
Zhang Qifeng; Peng Yun; Duan Xiaomin; Sun Jihang; Yu Tong; Han Zhonglong
2013-01-01
Objective: To investigate the feasibility to reduce radiation doses on pediatric multidetector abdominal CT using the adaptive statistical iterative reconstruction technique (ASIR) associated with automated tube current modulation technique (ATCM). Methods: Thirty patients underwent abdominal CT with ATCM and the follow-up scan with ATCM cooperated with 40% ASIR. ATCM was used with age dependent noise index (NI) settings: NI = 9 for 0-5 year old and NI = 11 for > 5 years old for simple ATCM group, NI = 11 for 0-5 year old and NI = 15 for > 5 years old for ATCM cooperated with 40% ASIR group (AISR group). Two radiologists independently evaluated images for diagnostic quality and image noise with subjectively image quality score and image noise score using a 5-point scale. Interobserver agreement was assessed by Kappa test. The volume CT dose indexes (CTDIvol) for the two groups were recorded. Statistical significance for the CTDIvol value was analyzed by pair-sample t test. Results: The average CTDIvol for the ASIR group was (1.38 ± 0.64) mGy, about 60% lower than (3.56 ± 1.23) mGy for the simple ATCM group, and the CTDIvol of two groups had statistically significant differences. (t = 33.483, P < 0.05). The subjective image quality scores for the simple ATCM group were 4.43 ± 0.57 and 4.37 ±0.61, Kappa = 0.878, P < 0.01 (ASIR group: 4.70 ± 0.47 and 4.60 ± 0.50, Kappa = 0.783, P < 0.01), by two observers. The image noise score for the simple ATCM group were 4.03 ±0.56 and 3.83 ±0.53, Kappa = 0.572, P < 0.01 (ASIR group: 4.20 ± 0.48 and 4.10 ± 0.48, Kappa = 0.748, P < 0.01), by two observers. All images had acceptable diagnostic image quality. Conclusion: Lower radiation dose can be achieved by elevating NI with ASIR in pediatric CT abdominal studies, while maintaining diagnostically acceptable images. (authors)
Statistical methods in nuclear material accountancy: Past, present and future
International Nuclear Information System (INIS)
Pike, D.J.; Woods, A.J.
1983-01-01
The analysis of nuclear material inventory data is motivated by the desire to detect any loss or diversion of nuclear material, insofar as such detection may be feasible by statistical analysis of repeated inventory and throughput measurements. The early regulations, which laid down the specifications for the analysis of inventory data, were framed without acknowledging the essentially sequential nature of the data. It is the broad aim of this paper to discuss the historical nature of statistical analysis of inventory data including an evaluation of why statistical methods should be required at all. If it is accepted that statistical techniques are required, then two main areas require extensive discussion. First, it is important to assess the extent to which stated safeguards aims can be met in practice. Second, there is a vital need for reassessment of the statistical techniques which have been proposed for use in nuclear material accountancy. Part of this reassessment must involve a reconciliation of the apparent differences in philosophy shown by statisticians; but, in addition, the techniques themselves need comparative study to see to what extent they are capable of meeting realistic safeguards aims. This paper contains a brief review of techniques with an attempt to compare and contrast the approaches. It will be suggested that much current research is following closely similar lines, and that national and international bodies should encourage collaborative research and practical in-plant implementations. The techniques proposed require credibility and power; but at this point in time statisticians require credibility and a greater level of unanimity in their approach. A way ahead is proposed based on a clear specification of realistic safeguards aims, and a development of a unified statistical approach with encouragement for the performance of joint research. (author)
International Nuclear Information System (INIS)
Scheffel, Hans; Stolzmann, Paul; Schlett, Christopher L.; Engel, Leif-Christopher; Major, Gyöngi Petra; Károlyi, Mihály; Do, Synho; Maurovich-Horvat, Pál; Hoffmann, Udo
2012-01-01
Objectives: To compare image quality of coronary artery plaque visualization at CT angiography with images reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction (ASIR), and model based iterative reconstruction (MBIR) techniques. Methods: The coronary arteries of three ex vivo human hearts were imaged by CT and reconstructed with FBP, ASIR and MBIR. Coronary cross-sectional images were co-registered between the different reconstruction techniques and assessed for qualitative and quantitative image quality parameters. Readers were blinded to the reconstruction algorithm. Results: A total of 375 triplets of coronary cross-sectional images were co-registered. Using MBIR, 26% of the images were rated as having excellent overall image quality, which was significantly better as compared to ASIR and FBP (4% and 13%, respectively, all p < 0.001). Qualitative assessment of image noise demonstrated a noise reduction by using ASIR as compared to FBP (p < 0.01) and further noise reduction by using MBIR (p < 0.001). The contrast-to-noise-ratio (CNR) using MBIR was better as compared to ASIR and FBP (44 ± 19, 29 ± 15, 26 ± 9, respectively; all p < 0.001). Conclusions: Using MBIR improved image quality, reduced image noise and increased CNR as compared to the other available reconstruction techniques. This may further improve the visualization of coronary artery plaque and allow radiation reduction.
Lies, damn lies and statistics
International Nuclear Information System (INIS)
Jones, M.D.
2001-01-01
Statistics are widely employed within archaeological research. This is becoming increasingly so as user friendly statistical packages make increasingly sophisticated analyses available to non statisticians. However, all statistical techniques are based on underlying assumptions of which the end user may be unaware. If statistical analyses are applied in ignorance of the underlying assumptions there is the potential for highly erroneous inferences to be drawn. This does happen within archaeology and here this is illustrated with the example of 'date pooling', a technique that has been widely misused in archaeological research. This misuse may have given rise to an inevitable and predictable misinterpretation of New Zealand's archaeological record. (author). 10 refs., 6 figs., 1 tab
Advanced structural equation modeling issues and techniques
Marcoulides, George A
2013-01-01
By focusing primarily on the application of structural equation modeling (SEM) techniques in example cases and situations, this book provides an understanding and working knowledge of advanced SEM techniques with a minimum of mathematical derivations. The book was written for a broad audience crossing many disciplines, assumes an understanding of graduate level multivariate statistics, including an introduction to SEM.
Business statistics for dummies
Anderson, Alan
2013-01-01
Score higher in your business statistics course? Easy. Business statistics is a common course for business majors and MBA candidates. It examines common data sets and the proper way to use such information when conducting research and producing informational reports such as profit and loss statements, customer satisfaction surveys, and peer comparisons. Business Statistics For Dummies tracks to a typical business statistics course offered at the undergraduate and graduate levels and provides clear, practical explanations of business statistical ideas, techniques, formulas, and calculations, w
Beginning statistics with data analysis
Mosteller, Frederick; Rourke, Robert EK
2013-01-01
This introduction to the world of statistics covers exploratory data analysis, methods for collecting data, formal statistical inference, and techniques of regression and analysis of variance. 1983 edition.
Doing statistical mediation and moderation
Jose, Paul E
2013-01-01
Written in a friendly, conversational style, this book offers a hands-on approach to statistical mediation and moderation for both beginning researchers and those familiar with modeling. Starting with a gentle review of regression-based analysis, Paul Jose covers basic mediation and moderation techniques before moving on to advanced topics in multilevel modeling, structural equation modeling, and hybrid combinations, such as moderated mediation. User-friendly features include numerous graphs and carefully worked-through examples; ""Helpful Suggestions"" about procedures and pitfalls; ""Knowled
Growth Curve Models and Applications : Indian Statistical Institute
2017-01-01
Growth curve models in longitudinal studies are widely used to model population size, body height, biomass, fungal growth, and other variables in the biological sciences, but these statistical methods for modeling growth curves and analyzing longitudinal data also extend to general statistics, economics, public health, demographics, epidemiology, SQC, sociology, nano-biotechnology, fluid mechanics, and other applied areas. There is no one-size-fits-all approach to growth measurement. The selected papers in this volume build on presentations from the GCM workshop held at the Indian Statistical Institute, Giridih, on March 28-29, 2016. They represent recent trends in GCM research on different subject areas, both theoretical and applied. This book includes tools and possibilities for further work through new techniques and modification of existing ones. The volume includes original studies, theoretical findings and case studies from a wide range of app lied work, and these contributions have been externally r...
Statistical modelling for social researchers principles and practice
Tarling, Roger
2008-01-01
This book explains the principles and theory of statistical modelling in an intelligible way for the non-mathematical social scientist looking to apply statistical modelling techniques in research. The book also serves as an introduction for those wishing to develop more detailed knowledge and skills in statistical modelling. Rather than present a limited number of statistical models in great depth, the aim is to provide a comprehensive overview of the statistical models currently adopted in social research, in order that the researcher can make appropriate choices and select the most suitable model for the research question to be addressed. To facilitate application, the book also offers practical guidance and instruction in fitting models using SPSS and Stata, the most popular statistical computer software which is available to most social researchers. Instruction in using MLwiN is also given. Models covered in the book include; multiple regression, binary, multinomial and ordered logistic regression, log-l...
Boslaugh, Sarah
2013-01-01
Need to learn statistics for your job? Want help passing a statistics course? Statistics in a Nutshell is a clear and concise introduction and reference for anyone new to the subject. Thoroughly revised and expanded, this edition helps you gain a solid understanding of statistics without the numbing complexity of many college texts. Each chapter presents easy-to-follow descriptions, along with graphics, formulas, solved examples, and hands-on exercises. If you want to perform common statistical analyses and learn a wide range of techniques without getting in over your head, this is your book.
Statistical Symbolic Execution with Informed Sampling
Filieri, Antonio; Pasareanu, Corina S.; Visser, Willem; Geldenhuys, Jaco
2014-01-01
Symbolic execution techniques have been proposed recently for the probabilistic analysis of programs. These techniques seek to quantify the likelihood of reaching program events of interest, e.g., assert violations. They have many promising applications but have scalability issues due to high computational demand. To address this challenge, we propose a statistical symbolic execution technique that performs Monte Carlo sampling of the symbolic program paths and uses the obtained information for Bayesian estimation and hypothesis testing with respect to the probability of reaching the target events. To speed up the convergence of the statistical analysis, we propose Informed Sampling, an iterative symbolic execution that first explores the paths that have high statistical significance, prunes them from the state space and guides the execution towards less likely paths. The technique combines Bayesian estimation with a partial exact analysis for the pruned paths leading to provably improved convergence of the statistical analysis. We have implemented statistical symbolic execution with in- formed sampling in the Symbolic PathFinder tool. We show experimentally that the informed sampling obtains more precise results and converges faster than a purely statistical analysis and may also be more efficient than an exact symbolic analysis. When the latter does not terminate symbolic execution with informed sampling can give meaningful results under the same time and memory limits.
Uranium exploration techniques in Bolivia
International Nuclear Information System (INIS)
Virreira, V.
1981-01-01
The exploration techniques used by the Bolivian Nuclear Energy Commission/Comision Boliviana de Energia Nuclear (COBOEN) in certain areas of Bolivia that are considered promising from the standpoint of uranium deposits are presented in summary form. The methods and results obtained are described, including the techniques used by the Italian company AGIP-URANIUM during four years of exploration under contract with COBOEN. Statistical data are also given explaining the present level of uranium exploration in Bolivia. (author)
Basheti, Iman A; Armour, Carol L; Bosnic-Anticevich, Sinthia Z; Reddel, Helen K
2008-07-01
To evaluate the feasibility, acceptability and effectiveness of a brief intervention about inhaler technique, delivered by community pharmacists to asthma patients. Thirty-one pharmacists received brief workshop education (Active: n=16, CONTROL: n=15). Active Group pharmacists were trained to assess and teach dry powder inhaler technique, using patient-centered educational tools including novel Inhaler Technique Labels. Interventions were delivered to patients at four visits over 6 months. At baseline, patients (Active: 53, CONTROL: 44) demonstrated poor inhaler technique (mean+/-S.D. score out of 9, 5.7+/-1.6). At 6 months, improvement in inhaler technique score was significantly greater in Active cf. CONTROL patients (2.8+/-1.6 cf. 0.9+/-1.4, p<0.001), and asthma severity was significantly improved (p=0.015). Qualitative responses from patients and pharmacists indicated a high level of satisfaction with the intervention and educational tools, both for their effectiveness and for their impact on the patient-pharmacist relationship. A simple feasible intervention in community pharmacies, incorporating daily reminders via Inhaler Technique Labels on inhalers, can lead to improvement in inhaler technique and asthma outcomes. Brief training modules and simple educational tools, such as Inhaler Technique Labels, can provide a low-cost and sustainable way of changing patient behavior in asthma, using community pharmacists as educators.
MacKenzie, Dana
2004-01-01
The drawbacks of using 19th-century mathematics in physics and astronomy are illustrated. To continue with the expansion of the knowledge about the cosmos, the scientists will have to come in terms with modern statistics. Some researchers have deliberately started importing techniques that are used in medical research. However, the physicists need to identify the brand of statistics that will be suitable for them, and make a choice between the Bayesian and the frequentists approach. (Edited abstract).
Statistical techniques for modeling extreme price dynamics in the energy market
International Nuclear Information System (INIS)
Mbugua, L N; Mwita, P N
2013-01-01
Extreme events have large impact throughout the span of engineering, science and economics. This is because extreme events often lead to failure and losses due to the nature unobservable of extra ordinary occurrences. In this context this paper focuses on appropriate statistical methods relating to a combination of quantile regression approach and extreme value theory to model the excesses. This plays a vital role in risk management. Locally, nonparametric quantile regression is used, a method that is flexible and best suited when one knows little about the functional forms of the object being estimated. The conditions are derived in order to estimate the extreme value distribution function. The threshold model of extreme values is used to circumvent the lack of adequate observation problem at the tail of the distribution function. The application of a selection of these techniques is demonstrated on the volatile fuel market. The results indicate that the method used can extract maximum possible reliable information from the data. The key attraction of this method is that it offers a set of ready made approaches to the most difficult problem of risk modeling.
Bayesian statistics an introduction
Lee, Peter M
2012-01-01
Bayesian Statistics is the school of thought that combines prior beliefs with the likelihood of a hypothesis to arrive at posterior beliefs. The first edition of Peter Lee’s book appeared in 1989, but the subject has moved ever onwards, with increasing emphasis on Monte Carlo based techniques. This new fourth edition looks at recent techniques such as variational methods, Bayesian importance sampling, approximate Bayesian computation and Reversible Jump Markov Chain Monte Carlo (RJMCMC), providing a concise account of the way in which the Bayesian approach to statistics develops as wel
Estimation of global network statistics from incomplete data.
Directory of Open Access Journals (Sweden)
Catherine A Bliss
Full Text Available Complex networks underlie an enormous variety of social, biological, physical, and virtual systems. A profound complication for the science of complex networks is that in most cases, observing all nodes and all network interactions is impossible. Previous work addressing the impacts of partial network data is surprisingly limited, focuses primarily on missing nodes, and suggests that network statistics derived from subsampled data are not suitable estimators for the same network statistics describing the overall network topology. We generate scaling methods to predict true network statistics, including the degree distribution, from only partial knowledge of nodes, links, or weights. Our methods are transparent and do not assume a known generating process for the network, thus enabling prediction of network statistics for a wide variety of applications. We validate analytical results on four simulated network classes and empirical data sets of various sizes. We perform subsampling experiments by varying proportions of sampled data and demonstrate that our scaling methods can provide very good estimates of true network statistics while acknowledging limits. Lastly, we apply our techniques to a set of rich and evolving large-scale social networks, Twitter reply networks. Based on 100 million tweets, we use our scaling techniques to propose a statistical characterization of the Twitter Interactome from September 2008 to November 2008. Our treatment allows us to find support for Dunbar's hypothesis in detecting an upper threshold for the number of active social contacts that individuals maintain over the course of one week.
Evolutionary Statistical Procedures
Baragona, Roberto; Poli, Irene
2011-01-01
This proposed text appears to be a good introduction to evolutionary computation for use in applied statistics research. The authors draw from a vast base of knowledge about the current literature in both the design of evolutionary algorithms and statistical techniques. Modern statistical research is on the threshold of solving increasingly complex problems in high dimensions, and the generalization of its methodology to parameters whose estimators do not follow mathematically simple distributions is underway. Many of these challenges involve optimizing functions for which analytic solutions a
Fundamentals of modern statistical methods substantially improving power and accuracy
Wilcox, Rand R
2001-01-01
Conventional statistical methods have a very serious flaw They routinely miss differences among groups or associations among variables that are detected by more modern techniques - even under very small departures from normality Hundreds of journal articles have described the reasons standard techniques can be unsatisfactory, but simple, intuitive explanations are generally unavailable Improved methods have been derived, but they are far from obvious or intuitive based on the training most researchers receive Situations arise where even highly nonsignificant results become significant when analyzed with more modern methods Without assuming any prior training in statistics, Part I of this book describes basic statistical principles from a point of view that makes their shortcomings intuitive and easy to understand The emphasis is on verbal and graphical descriptions of concepts Part II describes modern methods that address the problems covered in Part I Using data from actual studies, many examples are include...
Zack, J. W.
2015-12-01
Predictions from Numerical Weather Prediction (NWP) models are the foundation for wind power forecasts for day-ahead and longer forecast horizons. The NWP models directly produce three-dimensional wind forecasts on their respective computational grids. These can be interpolated to the location and time of interest. However, these direct predictions typically contain significant systematic errors ("biases"). This is due to a variety of factors including the limited space-time resolution of the NWP models and shortcomings in the model's representation of physical processes. It has become common practice to attempt to improve the raw NWP forecasts by statistically adjusting them through a procedure that is widely known as Model Output Statistics (MOS). The challenge is to identify complex patterns of systematic errors and then use this knowledge to adjust the NWP predictions. The MOS-based improvements are the basis for much of the value added by commercial wind power forecast providers. There are an enormous number of statistical approaches that can be used to generate the MOS adjustments to the raw NWP forecasts. In order to obtain insight into the potential value of some of the newer and more sophisticated statistical techniques often referred to as "machine learning methods" a MOS-method comparison experiment has been performed for wind power generation facilities in 6 wind resource areas of California. The underlying NWP models that provided the raw forecasts were the two primary operational models of the US National Weather Service: the GFS and NAM models. The focus was on 1- and 2-day ahead forecasts of the hourly wind-based generation. The statistical methods evaluated included: (1) screening multiple linear regression, which served as a baseline method, (2) artificial neural networks, (3) a decision-tree approach called random forests, (4) gradient boosted regression based upon an decision-tree algorithm, (5) support vector regression and (6) analog ensemble
Fenta Mekonnen, Dagnenet; Disse, Markus
2018-04-01
Climate change is becoming one of the most threatening issues for the world today in terms of its global context and its response to environmental and socioeconomic drivers. However, large uncertainties between different general circulation models (GCMs) and coarse spatial resolutions make it difficult to use the outputs of GCMs directly, especially for sustainable water management at regional scale, which introduces the need for downscaling techniques using a multimodel approach. This study aims (i) to evaluate the comparative performance of two widely used statistical downscaling techniques, namely the Long Ashton Research Station Weather Generator (LARS-WG) and the Statistical Downscaling Model (SDSM), and (ii) to downscale future climate scenarios of precipitation, maximum temperature (Tmax) and minimum temperature (Tmin) of the Upper Blue Nile River basin at finer spatial and temporal scales to suit further hydrological impact studies. The calibration and validation result illustrates that both downscaling techniques (LARS-WG and SDSM) have shown comparable and good ability to simulate the current local climate variables. Further quantitative and qualitative comparative performance evaluation was done by equally weighted and varying weights of statistical indexes for precipitation only. The evaluation result showed that SDSM using the canESM2 CMIP5 GCM was able to reproduce more accurate long-term mean monthly precipitation but LARS-WG performed best in capturing the extreme events and distribution of daily precipitation in the whole data range. Six selected multimodel CMIP3 GCMs, namely HadCM3, GFDL-CM2.1, ECHAM5-OM, CCSM3, MRI-CGCM2.3.2 and CSIRO-MK3 GCMs, were used for downscaling climate scenarios by the LARS-WG model. The result from the ensemble mean of the six GCM showed an increasing trend for precipitation, Tmax and Tmin. The relative change in precipitation ranged from 1.0 to 14.4 % while the change for mean annual Tmax may increase from 0.4 to 4.3
HOW TO SELECT APPROPRIATE STATISTICAL TEST IN SCIENTIFIC ARTICLES
Directory of Open Access Journals (Sweden)
Vladimir TRAJKOVSKI
2016-09-01
Full Text Available Statistics is mathematical science dealing with the collection, analysis, interpretation, and presentation of masses of numerical data in order to draw relevant conclusions. Statistics is a form of mathematical analysis that uses quantified models, representations and synopses for a given set of experimental data or real-life studies. The students and young researchers in biomedical sciences and in special education and rehabilitation often declare that they have chosen to enroll that study program because they have lack of knowledge or interest in mathematics. This is a sad statement, but there is much truth in it. The aim of this editorial is to help young researchers to select statistics or statistical techniques and statistical software appropriate for the purposes and conditions of a particular analysis. The most important statistical tests are reviewed in the article. Knowing how to choose right statistical test is an important asset and decision in the research data processing and in the writing of scientific papers. Young researchers and authors should know how to choose and how to use statistical methods. The competent researcher will need knowledge in statistical procedures. That might include an introductory statistics course, and it most certainly includes using a good statistics textbook. For this purpose, there is need to return of Statistics mandatory subject in the curriculum of the Institute of Special Education and Rehabilitation at Faculty of Philosophy in Skopje. Young researchers have a need of additional courses in statistics. They need to train themselves to use statistical software on appropriate way.
Improvement of Statistical Decisions under Parametric Uncertainty
Nechval, Nicholas A.; Nechval, Konstantin N.; Purgailis, Maris; Berzins, Gundars; Rozevskis, Uldis
2011-10-01
A large number of problems in production planning and scheduling, location, transportation, finance, and engineering design require that decisions be made in the presence of uncertainty. Decision-making under uncertainty is a central problem in statistical inference, and has been formally studied in virtually all approaches to inference. The aim of the present paper is to show how the invariant embedding technique, the idea of which belongs to the authors, may be employed in the particular case of finding the improved statistical decisions under parametric uncertainty. This technique represents a simple and computationally attractive statistical method based on the constructive use of the invariance principle in mathematical statistics. Unlike the Bayesian approach, an invariant embedding technique is independent of the choice of priors. It allows one to eliminate unknown parameters from the problem and to find the best invariant decision rule, which has smaller risk than any of the well-known decision rules. To illustrate the proposed technique, application examples are given.
Time-series-analysis techniques applied to nuclear-material accounting
International Nuclear Information System (INIS)
Pike, D.H.; Morrison, G.W.; Downing, D.J.
1982-05-01
This document is designed to introduce the reader to the applications of Time Series Analysis techniques to Nuclear Material Accountability data. Time series analysis techniques are designed to extract information from a collection of random variables ordered by time by seeking to identify any trends, patterns, or other structure in the series. Since nuclear material accountability data is a time series, one can extract more information using time series analysis techniques than by using other statistical techniques. Specifically, the objective of this document is to examine the applicability of time series analysis techniques to enhance loss detection of special nuclear materials. An introductory section examines the current industry approach which utilizes inventory differences. The error structure of inventory differences is presented. Time series analysis techniques discussed include the Shewhart Control Chart, the Cumulative Summation of Inventory Differences Statistics (CUSUM) and the Kalman Filter and Linear Smoother
Counting statistics in radioactivity measurements
International Nuclear Information System (INIS)
Martin, J.
1975-01-01
The application of statistical methods to radioactivity measurement problems is analyzed in several chapters devoted successively to: the statistical nature of radioactivity counts; the application to radioactive counting of two theoretical probability distributions, Poisson's distribution law and the Laplace-Gauss law; true counting laws; corrections related to the nature of the apparatus; statistical techniques in gamma spectrometry [fr
Directory of Open Access Journals (Sweden)
Vujović Svetlana R.
2013-01-01
Full Text Available This paper illustrates the utility of multivariate statistical techniques for analysis and interpretation of water quality data sets and identification of pollution sources/factors with a view to get better information about the water quality and design of monitoring network for effective management of water resources. Multivariate statistical techniques, such as factor analysis (FA/principal component analysis (PCA and cluster analysis (CA, were applied for the evaluation of variations and for the interpretation of a water quality data set of the natural water bodies obtained during 2010 year of monitoring of 13 parameters at 33 different sites. FA/PCA attempts to explain the correlations between the observations in terms of the underlying factors, which are not directly observable. Factor analysis is applied to physico-chemical parameters of natural water bodies with the aim classification and data summation as well as segmentation of heterogeneous data sets into smaller homogeneous subsets. Factor loadings were categorized as strong and moderate corresponding to the absolute loading values of >0.75, 0.75-0.50, respectively. Four principal factors were obtained with Eigenvalues >1 summing more than 78 % of the total variance in the water data sets, which is adequate to give good prior information regarding data structure. Each factor that is significantly related to specific variables represents a different dimension of water quality. The first factor F1 accounting for 28 % of the total variance and represents the hydrochemical dimension of water quality. The second factor F2 accounting for 18% of the total variance and may be taken factor of water eutrophication. The third factor F3 accounting 17 % of the total variance and represents the influence of point sources of pollution on water quality. The fourth factor F4 accounting 13 % of the total variance and may be taken as an ecological dimension of water quality. Cluster analysis (CA is an
Time series prediction: statistical and neural techniques
Zahirniak, Daniel R.; DeSimio, Martin P.
1996-03-01
In this paper we compare the performance of nonlinear neural network techniques to those of linear filtering techniques in the prediction of time series. Specifically, we compare the results of using the nonlinear systems, known as multilayer perceptron and radial basis function neural networks, with the results obtained using the conventional linear Wiener filter, Kalman filter and Widrow-Hoff adaptive filter in predicting future values of stationary and non- stationary time series. Our results indicate the performance of each type of system is heavily dependent upon the form of the time series being predicted and the size of the system used. In particular, the linear filters perform adequately for linear or near linear processes while the nonlinear systems perform better for nonlinear processes. Since the linear systems take much less time to be developed, they should be tried prior to using the nonlinear systems when the linearity properties of the time series process are unknown.
Statistical techniques for sampling and monitoring natural resources
Hans T. Schreuder; Richard Ernst; Hugo Ramirez-Maldonado
2004-01-01
We present the statistical theory of inventory and monitoring from a probabilistic point of view. We start with the basics and show the interrelationships between designs and estimators illustrating the methods with a small artificial population as well as with a mapped realistic population. For such applications, useful open source software is given in Appendix 4....
Mansouri, Majdi; Nounou, Mohamed N; Nounou, Hazem N
2017-09-01
In our previous work, we have demonstrated the effectiveness of the linear multiscale principal component analysis (PCA)-based moving window (MW)-generalized likelihood ratio test (GLRT) technique over the classical PCA and multiscale principal component analysis (MSPCA)-based GLRT methods. The developed fault detection algorithm provided optimal properties by maximizing the detection probability for a particular false alarm rate (FAR) with different values of windows, and however, most real systems are nonlinear, which make the linear PCA method not able to tackle the issue of non-linearity to a great extent. Thus, in this paper, first, we apply a nonlinear PCA to obtain an accurate principal component of a set of data and handle a wide range of nonlinearities using the kernel principal component analysis (KPCA) model. The KPCA is among the most popular nonlinear statistical methods. Second, we extend the MW-GLRT technique to one that utilizes exponential weights to residuals in the moving window (instead of equal weightage) as it might be able to further improve fault detection performance by reducing the FAR using exponentially weighed moving average (EWMA). The developed detection method, which is called EWMA-GLRT, provides improved properties, such as smaller missed detection and FARs and smaller average run length. The idea behind the developed EWMA-GLRT is to compute a new GLRT statistic that integrates current and previous data information in a decreasing exponential fashion giving more weight to the more recent data. This provides a more accurate estimation of the GLRT statistic and provides a stronger memory that will enable better decision making with respect to fault detection. Therefore, in this paper, a KPCA-based EWMA-GLRT method is developed and utilized in practice to improve fault detection in biological phenomena modeled by S-systems and to enhance monitoring process mean. The idea behind a KPCA-based EWMA-GLRT fault detection algorithm is to
National Research Council Canada - National Science Library
Katz, Mitchell H
2010-01-01
... and observational studies. In addition to reviewing standard statistical analysis, the book has easy-to-follow explanations of cutting edge techniques for evaluating interventions, including propensity score analysis...
Exact distributions of two-sample rank statistics and block rank statistics using computer algebra
Wiel, van de M.A.
1998-01-01
We derive generating functions for various rank statistics and we use computer algebra to compute the exact null distribution of these statistics. We present various techniques for reducing time and memory space used by the computations. We use the results to write Mathematica notebooks for
Statistics Anxiety and Business Statistics: The International Student
Bell, James A.
2008-01-01
Does the international student suffer from statistics anxiety? To investigate this, the Statistics Anxiety Rating Scale (STARS) was administered to sixty-six beginning statistics students, including twelve international students and fifty-four domestic students. Due to the small number of international students, nonparametric methods were used to…
CORSSA: Community Online Resource for Statistical Seismicity Analysis
Zechar, J. D.; Hardebeck, J. L.; Michael, A. J.; Naylor, M.; Steacy, S.; Wiemer, S.; Zhuang, J.
2011-12-01
Statistical seismology is critical to the understanding of seismicity, the evaluation of proposed earthquake prediction and forecasting methods, and the assessment of seismic hazard. Unfortunately, despite its importance to seismology-especially to those aspects with great impact on public policy-statistical seismology is mostly ignored in the education of seismologists, and there is no central repository for the existing open-source software tools. To remedy these deficiencies, and with the broader goal to enhance the quality of statistical seismology research, we have begun building the Community Online Resource for Statistical Seismicity Analysis (CORSSA, www.corssa.org). We anticipate that the users of CORSSA will range from beginning graduate students to experienced researchers. More than 20 scientists from around the world met for a week in Zurich in May 2010 to kick-start the creation of CORSSA: the format and initial table of contents were defined; a governing structure was organized; and workshop participants began drafting articles. CORSSA materials are organized with respect to six themes, each will contain between four and eight articles. CORSSA now includes seven articles with an additional six in draft form along with forums for discussion, a glossary, and news about upcoming meetings, special issues, and recent papers. Each article is peer-reviewed and presents a balanced discussion, including illustrative examples and code snippets. Topics in the initial set of articles include: introductions to both CORSSA and statistical seismology, basic statistical tests and their role in seismology; understanding seismicity catalogs and their problems; basic techniques for modeling seismicity; and methods for testing earthquake predictability hypotheses. We have also begun curating a collection of statistical seismology software packages.
Davidson, Norman
2003-01-01
Clear and readable, this fine text assists students in achieving a grasp of the techniques and limitations of statistical mechanics. The treatment follows a logical progression from elementary to advanced theories, with careful attention to detail and mathematical development, and is sufficiently rigorous for introductory or intermediate graduate courses.Beginning with a study of the statistical mechanics of ideal gases and other systems of non-interacting particles, the text develops the theory in detail and applies it to the study of chemical equilibrium and the calculation of the thermody
International Nuclear Information System (INIS)
Sorelli, Luca; Constantinides, Georgios; Ulm, Franz-Josef; Toutlemonde, Francois
2008-01-01
Advances in engineering the microstructure of cementitious composites have led to the development of fiber reinforced Ultra High Performance Concretes (UHPC). The scope of this paper is twofold, first to characterize the nano-mechanical properties of the phases governing the UHPC microstructure by means of a novel statistical nanoindentation technique; then to upscale those nanoscale properties, by means of continuum micromechanics, to the macroscopic scale of engineering applications. In particular, a combined investigation of nanoindentation, scanning electron microscope (SEM) and X-ray Diffraction (XRD) indicates that the fiber-matrix transition zone is relatively defect free. On this basis, a four-level multiscale model with defect free interfaces allows to accurately determine the composite stiffness from the measured nano-mechanical properties. Besides evidencing the dominant role of high density calcium silicate hydrates and the stiffening effect of residual clinker, the suggested model may become a useful tool for further optimizing cement-based engineered composites
Dinov, Ivo D; Sanchez, Juana; Christou, Nicolas
2008-01-01
Technology-based instruction represents a new recent pedagogical paradigm that is rooted in the realization that new generations are much more comfortable with, and excited about, new technologies. The rapid technological advancement over the past decade has fueled an enormous demand for the integration of modern networking, informational and computational tools with classical pedagogical instruments. Consequently, teaching with technology typically involves utilizing a variety of IT and multimedia resources for online learning, course management, electronic course materials, and novel tools of communication, engagement, experimental, critical thinking and assessment.The NSF-funded Statistics Online Computational Resource (SOCR) provides a number of interactive tools for enhancing instruction in various undergraduate and graduate courses in probability and statistics. These resources include online instructional materials, statistical calculators, interactive graphical user interfaces, computational and simulation applets, tools for data analysis and visualization. The tools provided as part of SOCR include conceptual simulations and statistical computing interfaces, which are designed to bridge between the introductory and the more advanced computational and applied probability and statistics courses. In this manuscript, we describe our designs for utilizing SOCR technology in instruction in a recent study. In addition, present the results of the effectiveness of using SOCR tools at two different course intensity levels on three outcome measures: exam scores, student satisfaction and choice of technology to complete assignments. Learning styles assessment was completed at baseline. We have used three very different designs for three different undergraduate classes. Each course included a treatment group, using the SOCR resources, and a control group, using classical instruction techniques. Our findings include marginal effects of the SOCR treatment per individual
Applied statistics for social and management sciences
Miah, Abdul Quader
2016-01-01
This book addresses the application of statistical techniques and methods across a wide range of disciplines. While its main focus is on the application of statistical methods, theoretical aspects are also provided as fundamental background information. It offers a systematic interpretation of results often discovered in general descriptions of methods and techniques such as linear and non-linear regression. SPSS is also used in all the application aspects. The presentation of data in the form of tables and graphs throughout the book not only guides users, but also explains the statistical application and assists readers in interpreting important features. The analysis of statistical data is presented consistently throughout the text. Academic researchers, practitioners and other users who work with statistical data will benefit from reading Applied Statistics for Social and Management Sciences. .
Directory of Open Access Journals (Sweden)
D. Fenta Mekonnen
2018-04-01
Full Text Available Climate change is becoming one of the most threatening issues for the world today in terms of its global context and its response to environmental and socioeconomic drivers. However, large uncertainties between different general circulation models (GCMs and coarse spatial resolutions make it difficult to use the outputs of GCMs directly, especially for sustainable water management at regional scale, which introduces the need for downscaling techniques using a multimodel approach. This study aims (i to evaluate the comparative performance of two widely used statistical downscaling techniques, namely the Long Ashton Research Station Weather Generator (LARS-WG and the Statistical Downscaling Model (SDSM, and (ii to downscale future climate scenarios of precipitation, maximum temperature (Tmax and minimum temperature (Tmin of the Upper Blue Nile River basin at finer spatial and temporal scales to suit further hydrological impact studies. The calibration and validation result illustrates that both downscaling techniques (LARS-WG and SDSM have shown comparable and good ability to simulate the current local climate variables. Further quantitative and qualitative comparative performance evaluation was done by equally weighted and varying weights of statistical indexes for precipitation only. The evaluation result showed that SDSM using the canESM2 CMIP5 GCM was able to reproduce more accurate long-term mean monthly precipitation but LARS-WG performed best in capturing the extreme events and distribution of daily precipitation in the whole data range. Six selected multimodel CMIP3 GCMs, namely HadCM3, GFDL-CM2.1, ECHAM5-OM, CCSM3, MRI-CGCM2.3.2 and CSIRO-MK3 GCMs, were used for downscaling climate scenarios by the LARS-WG model. The result from the ensemble mean of the six GCM showed an increasing trend for precipitation, Tmax and Tmin. The relative change in precipitation ranged from 1.0 to 14.4 % while the change for mean annual Tmax may increase
High order statistical signatures from source-driven measurements of subcritical fissile systems
International Nuclear Information System (INIS)
Mattingly, J.K.
1998-01-01
This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements
An improved technique for breast cancer irradiation including the locoregional lymph nodes
Hurkmans, C. W.; Saarnak, A. E.; Pieters, B. R.; Borger, J. H.; Bruinvis, I. A.
2000-01-01
PURPOSE: To find an irradiation technique for locoregional irradiation of breast cancer patients which, compared with a standard technique, improves the dose distribution to the internal mammary-medial supraclavicular (IM-MS) lymph nodes. The improved technique is intended to minimize the lung dose
Semiclassical analysis, Witten Laplacians, and statistical mechanis
Helffer, Bernard
2002-01-01
This important book explains how the technique of Witten Laplacians may be useful in statistical mechanics. It considers the problem of analyzing the decay of correlations, after presenting its origin in statistical mechanics. In addition, it compares the Witten Laplacian approach with other techniques, such as the transfer matrix approach and its semiclassical analysis. The author concludes by providing a complete proof of the uniform Log-Sobolev inequality. Contents: Witten Laplacians Approach; Problems in Statistical Mechanics with Discrete Spins; Laplace Integrals and Transfer Operators; S
A primer of multivariate statistics
Harris, Richard J
2014-01-01
Drawing upon more than 30 years of experience in working with statistics, Dr. Richard J. Harris has updated A Primer of Multivariate Statistics to provide a model of balance between how-to and why. This classic text covers multivariate techniques with a taste of latent variable approaches. Throughout the book there is a focus on the importance of describing and testing one's interpretations of the emergent variables that are produced by multivariate analysis. This edition retains its conversational writing style while focusing on classical techniques. The book gives the reader a feel for why
Statistical analysis of next generation sequencing data
Nettleton, Dan
2014-01-01
Next Generation Sequencing (NGS) is the latest high throughput technology to revolutionize genomic research. NGS generates massive genomic datasets that play a key role in the big data phenomenon that surrounds us today. To extract signals from high-dimensional NGS data and make valid statistical inferences and predictions, novel data analytic and statistical techniques are needed. This book contains 20 chapters written by prominent statisticians working with NGS data. The topics range from basic preprocessing and analysis with NGS data to more complex genomic applications such as copy number variation and isoform expression detection. Research statisticians who want to learn about this growing and exciting area will find this book useful. In addition, many chapters from this book could be included in graduate-level classes in statistical bioinformatics for training future biostatisticians who will be expected to deal with genomic data in basic biomedical research, genomic clinical trials and personalized med...
International Nuclear Information System (INIS)
Hernandez M, B.
1997-01-01
The objectives of this work are: to identify the heavy metals present in the air, and its concentrations. To know the behavior from the polluting chemical elements to the long of an annual cycle corresponding to 1990, based on the concentrations of the same ones, obtained through the PIXE technique. To identify the suitable statistical methods to use to the data of metals concentration in form of total suspended particle (PST), found in this investigation. To relate the concentrations and the meteorological parameters considered to be able to suggest the possible pollution sources. In function of the obtained results, to serve as base to the decisions making and measures control that are planned by diverse institutions focused to the problem of the atmospheric pollution in the Metropolitan area of Mexico City (ZMCM). (Author)
Lectures on algebraic statistics
Drton, Mathias; Sullivant, Seth
2009-01-01
How does an algebraic geometer studying secant varieties further the understanding of hypothesis tests in statistics? Why would a statistician working on factor analysis raise open problems about determinantal varieties? Connections of this type are at the heart of the new field of "algebraic statistics". In this field, mathematicians and statisticians come together to solve statistical inference problems using concepts from algebraic geometry as well as related computational and combinatorial techniques. The goal of these lectures is to introduce newcomers from the different camps to algebraic statistics. The introduction will be centered around the following three observations: many important statistical models correspond to algebraic or semi-algebraic sets of parameters; the geometry of these parameter spaces determines the behaviour of widely used statistical inference procedures; computational algebraic geometry can be used to study parameter spaces and other features of statistical models.
A Comparison of Selected Statistical Techniques to Model Soil Cation Exchange Capacity
Khaledian, Yones; Brevik, Eric C.; Pereira, Paulo; Cerdà, Artemi; Fattah, Mohammed A.; Tazikeh, Hossein
2017-04-01
Cation exchange capacity (CEC) measures the soil's ability to hold positively charged ions and is an important indicator of soil quality (Khaledian et al., 2016). However, other soil properties are more commonly determined and reported, such as texture, pH, organic matter and biology. We attempted to predict CEC using different advanced statistical methods including monotone analysis of variance (MONANOVA), artificial neural networks (ANNs), principal components regressions (PCR), and particle swarm optimization (PSO) in order to compare the utility of these approaches and identify the best predictor. We analyzed 170 soil samples from four different nations (USA, Spain, Iran and Iraq) under three land uses (agriculture, pasture, and forest). Seventy percent of the samples (120 samples) were selected as the calibration set and the remaining 50 samples (30%) were used as the prediction set. The results indicated that the MONANOVA (R2= 0.82 and Root Mean Squared Error (RMSE) =6.32) and ANNs (R2= 0.82 and RMSE=5.53) were the best models to estimate CEC, PSO (R2= 0.80 and RMSE=5.54) and PCR (R2= 0.70 and RMSE=6.48) also worked well and the overall results were very similar to each other. Clay (positively correlated) and sand (negatively correlated) were the most influential variables for predicting CEC for the entire data set, while the most influential variables for the various countries and land uses were different and CEC was affected by different variables in different situations. Although the MANOVA and ANNs provided good predictions of the entire dataset, PSO gives a formula to estimate soil CEC using commonly tested soil properties. Therefore, PSO shows promise as a technique to estimate soil CEC. Establishing effective pedotransfer functions to predict CEC would be productive where there are limitations of time and money, and other commonly analyzed soil properties are available. References Khaledian, Y., Kiani, F., Ebrahimi, S., Brevik, E.C., Aitkenhead
International Nuclear Information System (INIS)
Lacombe, J.P.
1985-12-01
Statistic study of Poisson non-homogeneous and spatial processes is the first part of this thesis. A Neyman-Pearson type test is defined concerning the intensity measurement of these processes. Conditions are given for which consistency of the test is assured, and others giving the asymptotic normality of the test statistics. Then some techniques of statistic processing of Poisson fields and their applications to a particle multidetector study are given. Quality tests of the device are proposed togetherwith signal extraction methods [fr
Serdobolskii, Vadim Ivanovich
2007-01-01
This monograph presents mathematical theory of statistical models described by the essentially large number of unknown parameters, comparable with sample size but can also be much larger. In this meaning, the proposed theory can be called "essentially multiparametric". It is developed on the basis of the Kolmogorov asymptotic approach in which sample size increases along with the number of unknown parameters.This theory opens a way for solution of central problems of multivariate statistics, which up until now have not been solved. Traditional statistical methods based on the idea of an infinite sampling often break down in the solution of real problems, and, dependent on data, can be inefficient, unstable and even not applicable. In this situation, practical statisticians are forced to use various heuristic methods in the hope the will find a satisfactory solution.Mathematical theory developed in this book presents a regular technique for implementing new, more efficient versions of statistical procedures. ...
Statistical approach for selection of biologically informative genes.
Das, Samarendra; Rai, Anil; Mishra, D C; Rai, Shesh N
2018-05-20
Selection of informative genes from high dimensional gene expression data has emerged as an important research area in genomics. Many gene selection techniques have been proposed so far are either based on relevancy or redundancy measure. Further, the performance of these techniques has been adjudged through post selection classification accuracy computed through a classifier using the selected genes. This performance metric may be statistically sound but may not be biologically relevant. A statistical approach, i.e. Boot-MRMR, was proposed based on a composite measure of maximum relevance and minimum redundancy, which is both statistically sound and biologically relevant for informative gene selection. For comparative evaluation of the proposed approach, we developed two biological sufficient criteria, i.e. Gene Set Enrichment with QTL (GSEQ) and biological similarity score based on Gene Ontology (GO). Further, a systematic and rigorous evaluation of the proposed technique with 12 existing gene selection techniques was carried out using five gene expression datasets. This evaluation was based on a broad spectrum of statistically sound (e.g. subject classification) and biological relevant (based on QTL and GO) criteria under a multiple criteria decision-making framework. The performance analysis showed that the proposed technique selects informative genes which are more biologically relevant. The proposed technique is also found to be quite competitive with the existing techniques with respect to subject classification and computational time. Our results also showed that under the multiple criteria decision-making setup, the proposed technique is best for informative gene selection over the available alternatives. Based on the proposed approach, an R Package, i.e. BootMRMR has been developed and available at https://cran.r-project.org/web/packages/BootMRMR. This study will provide a practical guide to select statistical techniques for selecting informative genes
DEFF Research Database (Denmark)
Nielsen, J. Rasmus; Kristensen, Kasper; Lewy, Peter
2014-01-01
Trawl survey data with high spatial and seasonal coverage were analysed using a variant of the Log Gaussian Cox Process (LGCP) statistical model to estimate unbiased relative fish densities. The model estimates correlations between observations according to time, space, and fish size and includes...
Jsub(Ic)-testing of A-533 B - statistical evaluation of some different testing techniques
International Nuclear Information System (INIS)
Nilsson, F.
1978-01-01
The purpose of the present study was to compare statistically some different methods for the evaluation of fracture toughness of the nuclear reactor material A-533 B. Since linear elastic fracture mechanics is not applicable to this material at the interesting temperature (275 0 C), the so-called Jsub(Ic) testing method was employed. Two main difficulties are inherent in this type of testing. The first one is to determine the quantity J as a function of the deflection of the three-point bend specimens used. Three different techniques were used, the first two based on the experimentally observed input of energy to the specimen and the third employing finite element calculations. The second main problem is to determine the point when crack growth begins. For this, two methods were used, a direct electrical method and the indirect R-curve method. A total of forty specimens were tested at two laboratories. No statistically significant different results were obtained from the respective laboratories. The three methods of calculating J yielded somewhat different results, although the discrepancy was small. Also the two methods of determination of the growth initiation point yielded consistent results. The R-curve method, however, exhibited a larger uncertainty as measured by the standard deviation. The resulting Jsub(Ic) value also agreed well with earlier presented results. The relative standard deviation was of the order of 25%, which is quite small for this type of experiment. (author)
Engaging with the Art & Science of Statistics
Peters, Susan A.
2010-01-01
How can statistics clearly be mathematical and yet distinct from mathematics? The answer lies in the reality that statistics is both an art and a science, and both aspects are important for teaching and learning statistics. Statistics is a mathematical science in that it applies mathematical theories and techniques. Mathematics provides the…
All of statistics a concise course in statistical inference
Wasserman, Larry
2004-01-01
This book is for people who want to learn probability and statistics quickly It brings together many of the main ideas in modern statistics in one place The book is suitable for students and researchers in statistics, computer science, data mining and machine learning This book covers a much wider range of topics than a typical introductory text on mathematical statistics It includes modern topics like nonparametric curve estimation, bootstrapping and classification, topics that are usually relegated to follow-up courses The reader is assumed to know calculus and a little linear algebra No previous knowledge of probability and statistics is required The text can be used at the advanced undergraduate and graduate level Larry Wasserman is Professor of Statistics at Carnegie Mellon University He is also a member of the Center for Automated Learning and Discovery in the School of Computer Science His research areas include nonparametric inference, asymptotic theory, causality, and applications to astrophysics, bi...
Introductory statistical mechanics for electron storage rings
International Nuclear Information System (INIS)
Jowett, J.M.
1986-07-01
These lectures introduce the beam dynamics of electron-positron storage rings with particular emphasis on the effects due to synchrotron radiation. They differ from most other introductions in their systematic use of the physical principles and mathematical techniques of the non-equilibrium statistical mechanics of fluctuating dynamical systems. A self-contained exposition of the necessary topics from this field is included. Throughout the development, a Hamiltonian description of the effects of the externally applied fields is maintained in order to preserve the links with other lectures on beam dynamics and to show clearly the extent to which electron dynamics in non-Hamiltonian. The statistical mechanical framework is extended to a discussion of the conceptual foundations of the treatment of collective effects through the Vlasov equation
Directory of Open Access Journals (Sweden)
Voza Danijela
2015-12-01
Full Text Available The aim of this article is to evaluate the quality of the Danube River in its course through Serbia as well as to demonstrate the possibilities for using three statistical methods: Principal Component Analysis (PCA, Factor Analysis (FA and Cluster Analysis (CA in the surface water quality management. Given that the Danube is an important trans-boundary river, thorough water quality monitoring by sampling at different distances during shorter and longer periods of time is not only ecological, but also a political issue. Monitoring was carried out at monthly intervals from January to December 2011, at 17 sampling sites. The obtained data set was treated by multivariate techniques in order, firstly, to identify the similarities and differences between sampling periods and locations, secondly, to recognize variables that affect the temporal and spatial water quality changes and thirdly, to present the anthropogenic impact on water quality parameters.
Introductory statistical inference
Mukhopadhyay, Nitis
2014-01-01
This gracefully organized text reveals the rigorous theory of probability and statistical inference in the style of a tutorial, using worked examples, exercises, figures, tables, and computer simulations to develop and illustrate concepts. Drills and boxed summaries emphasize and reinforce important ideas and special techniques.Beginning with a review of the basic concepts and methods in probability theory, moments, and moment generating functions, the author moves to more intricate topics. Introductory Statistical Inference studies multivariate random variables, exponential families of dist
A Manual for Basic Techniques of Data Analysis and Distribution
Alvi, Mohsin
2014-01-01
A manual is designed to support and help the basic concepts of statistics and its implications in econometric, beside this, interpretation of further statistical techniques have been shown as well by illustrations and graphical methods. It is comprised on several instances of test, obtained from statistical software like SPSS, E-views, Stata and R-language with the understanding of their research models and essentials for the running the test. A basic of manual is included on two elements, fi...
International Nuclear Information System (INIS)
Beale, E.M.L.
1983-05-01
The Department of the Environment has embarked on a programme to develop computer models to help with assessment of sites suitable for the disposal of nuclear wastes. The first priority is to produce a system, based on the System Variability Analysis Code (SYVAC) obtained from Atomic Energy of Canada Ltd., suitable for assessing radioactive waste disposal in land repositories containing non heat producing wastes from typical UK sources. The requirements of the SYVAC system development were so diverse that each portion of the development was contracted to a different company. Scicon are responsible for software coordination, system integration and user interface. Their present report contains comments on 'Statistical techniques for the development and application of SYVAC'. (U.K.)
A statistical manual for chemists
Bauer, Edward
1971-01-01
A Statistical Manual for Chemists, Second Edition presents simple and fast statistical tools for data analysis of working chemists. This edition is organized into nine chapters and begins with an overview of the fundamental principles of the statistical techniques used in experimental data analysis. The subsequent chapters deal with the concept of statistical average, experimental design, and analysis of variance. The discussion then shifts to control charts, with particular emphasis on variable charts that are more useful to chemists and chemical engineers. A chapter focuses on the effect
Modeling with data tools and techniques for scientific computing
Klemens, Ben
2009-01-01
Modeling with Data fully explains how to execute computationally intensive analyses on very large data sets, showing readers how to determine the best methods for solving a variety of different problems, how to create and debug statistical models, and how to run an analysis and evaluate the results. Ben Klemens introduces a set of open and unlimited tools, and uses them to demonstrate data management, analysis, and simulation techniques essential for dealing with large data sets and computationally intensive procedures. He then demonstrates how to easily apply these tools to the many threads of statistical technique, including classical, Bayesian, maximum likelihood, and Monte Carlo methods
Monte Carlo techniques for analyzing deep-penetration problems
International Nuclear Information System (INIS)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1986-01-01
Current methods and difficulties in Monte Carlo deep-penetration calculations are reviewed, including statistical uncertainty and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multigroup Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications
Quantitative and statistical approaches to geography a practical manual
Matthews, John A
2013-01-01
Quantitative and Statistical Approaches to Geography: A Practical Manual is a practical introduction to some quantitative and statistical techniques of use to geographers and related scientists. This book is composed of 15 chapters, each begins with an outline of the purpose and necessary mechanics of a technique or group of techniques and is concluded with exercises and the particular approach adopted. These exercises aim to enhance student's ability to use the techniques as part of the process by which sound judgments are made according to scientific standards while tackling complex problems. After a brief introduction to the principles of quantitative and statistical geography, this book goes on dealing with the topics of measures of central tendency; probability statements and maps; the problem of time-dependence, time-series analysis, non-normality, and data transformations; and the elements of sampling methodology. Other chapters cover the confidence intervals and estimation from samples, statistical hy...
Method for statistical data analysis of multivariate observations
Gnanadesikan, R
1997-01-01
A practical guide for multivariate statistical techniques-- now updated and revised In recent years, innovations in computer technology and statistical methodologies have dramatically altered the landscape of multivariate data analysis. This new edition of Methods for Statistical Data Analysis of Multivariate Observations explores current multivariate concepts and techniques while retaining the same practical focus of its predecessor. It integrates methods and data-based interpretations relevant to multivariate analysis in a way that addresses real-world problems arising in many areas of inte
International Nuclear Information System (INIS)
Singh, Kunwar P.; Malik, Amrita; Sinha, Sarita
2005-01-01
Multivariate statistical techniques, such as cluster analysis (CA), factor analysis (FA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the data set on water quality of the Gomti river (India), generated during three years (1999-2001) monitoring at eight different sites for 34 parameters (9792 observations). This study presents usefulness of multivariate statistical techniques for evaluation and interpretation of large complex water quality data sets and apportionment of pollution sources/factors with a view to get better information about the water quality and design of monitoring network for effective management of water resources. Three significant groups, upper catchments (UC), middle catchments (MC) and lower catchments (LC) of sampling sites were obtained through CA on the basis of similarity between them. FA/PCA applied to the data sets pertaining to three catchments regions of the river resulted in seven, seven and six latent factors, respectively responsible for the data structure, explaining 74.3, 73.6 and 81.4% of the total variance of the respective data sets. These included the trace metals group (leaching from soil and industrial waste disposal sites), organic pollution group (municipal and industrial effluents), nutrients group (agricultural runoff), alkalinity, hardness, EC and solids (soil leaching and runoff process). DA showed the best results for data reduction and pattern recognition during both temporal and spatial analysis. It rendered five parameters (temperature, total alkalinity, Cl, Na and K) affording more than 94% right assignations in temporal analysis, while 10 parameters (river discharge, pH, BOD, Cl, F, PO 4 , NH 4 -N, NO 3 -N, TKN and Zn) to afford 97% right assignations in spatial analysis of three different regions in the basin. Thus, DA allowed reduction in dimensionality of the large data set, delineating a few indicator parameters responsible for large variations in water quality. Further
Al-Kindi, Khalifa M; Kwan, Paul; R Andrew, Nigel; Welch, Mitchell
2017-01-01
In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae) as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus . An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.
Directory of Open Access Journals (Sweden)
Khalifa M. Al-Kindi
2017-08-01
Full Text Available In order to understand the distribution and prevalence of Ommatissus lybicus (Hemiptera: Tropiduchidae as well as analyse their current biographical patterns and predict their future spread, comprehensive and detailed information on the environmental, climatic, and agricultural practices are essential. The spatial analytical techniques such as Remote Sensing and Spatial Statistics Tools, can help detect and model spatial links and correlations between the presence, absence and density of O. lybicus in response to climatic, environmental, and human factors. The main objective of this paper is to review remote sensing and relevant analytical techniques that can be applied in mapping and modelling the habitat and population density of O. lybicus. An exhaustive search of related literature revealed that there are very limited studies linking location-based infestation levels of pests like the O. lybicus with climatic, environmental, and human practice related variables. This review also highlights the accumulated knowledge and addresses the gaps in this area of research. Furthermore, it makes recommendations for future studies, and gives suggestions on monitoring and surveillance methods in designing both local and regional level integrated pest management strategies of palm tree and other affected cultivated crops.
Statistical reconstruction for cosmic ray muon tomography.
Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J
2007-08-01
Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.
Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis
International Nuclear Information System (INIS)
Xu, Shiyu; Chen, Ying; Lu, Jianping; Zhou, Otto
2015-01-01
Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. Methods: These techniques include the following: a physics model with a local voxel-pair based prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. Conclusions: Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications
Statistical iterative reconstruction to improve image quality for digital breast tomosynthesis
Energy Technology Data Exchange (ETDEWEB)
Xu, Shiyu, E-mail: shiyu.xu@gmail.com; Chen, Ying, E-mail: adachen@siu.edu [Department of Electrical and Computer Engineering, Southern Illinois University Carbondale, Carbondale, Illinois 62901 (United States); Lu, Jianping; Zhou, Otto [Department of Physics and Astronomy and Curriculum in Applied Sciences and Engineering, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599 (United States)
2015-09-15
Purpose: Digital breast tomosynthesis (DBT) is a novel modality with the potential to improve early detection of breast cancer by providing three-dimensional (3D) imaging with a low radiation dose. 3D image reconstruction presents some challenges: cone-beam and flat-panel geometry, and highly incomplete sampling. A promising means to overcome these challenges is statistical iterative reconstruction (IR), since it provides the flexibility of accurate physics modeling and a general description of system geometry. The authors’ goal was to develop techniques for applying statistical IR to tomosynthesis imaging data. Methods: These techniques include the following: a physics model with a local voxel-pair based prior with flexible parameters to fine-tune image quality; a precomputed parameter λ in the prior, to remove data dependence and to achieve a uniform resolution property; an effective ray-driven technique to compute the forward and backprojection; and an oversampled, ray-driven method to perform high resolution reconstruction with a practical region-of-interest technique. To assess the performance of these techniques, the authors acquired phantom data on the stationary DBT prototype system. To solve the estimation problem, the authors proposed an optimization-transfer based algorithm framework that potentially allows fewer iterations to achieve an acceptably converged reconstruction. Results: IR improved the detectability of low-contrast and small microcalcifications, reduced cross-plane artifacts, improved spatial resolution, and lowered noise in reconstructed images. Conclusions: Although the computational load remains a significant challenge for practical development, the superior image quality provided by statistical IR, combined with advancing computational techniques, may bring benefits to screening, diagnostics, and intraoperative imaging in clinical applications.
Patro, Satya N; Chakraborty, Santanu; Sheikh, Adnan
2016-01-01
The aim of this study was to evaluate the impact of adaptive statistical iterative reconstruction (ASiR) technique on the image quality and radiation dose reduction. The comparison was made with the traditional filtered back projection (FBP) technique. We retrospectively reviewed 78 patients, who underwent cervical spine CT for blunt cervical trauma between 1 June 2010 and 30 November 2010. 48 patients were imaged using traditional FBP technique and the remaining 30 patients were imaged using the ASiR technique. The patient demographics, radiation dose, objective image signal and noise were recorded; while subjective noise, sharpness, diagnostic acceptability and artefacts were graded by two radiologists blinded to the techniques. We found that the ASiR technique was able to reduce the volume CT dose index, dose-length product and effective dose by 36%, 36.5% and 36.5%, respectively, compared with the FBP technique. There was no significant difference in the image noise (p = 0.39), signal (p = 0.82) and signal-to-noise ratio (p = 0.56) between the groups. The subjective image quality was minimally better in the ASiR group but not statistically significant. There was excellent interobserver agreement on the subjective image quality and diagnostic acceptability for both groups. The use of ASiR technique allowed approximately 36% radiation dose reduction in the evaluation of cervical spine without degrading the image quality. The present study highlights that the ASiR technique is extremely helpful in reducing the patient radiation exposure while maintaining the image quality. It is highly recommended to utilize this novel technique in CT imaging of different body regions.
Baldewijns, Greet; Luca, Stijn; Nagels, William; Vanrumste, Bart; Croonenborghs, Tom
2015-01-01
It has been shown that gait speed and transfer times are good measures of functional ability in elderly. However, data currently acquired by systems that measure either gait speed or transfer times in the homes of elderly people require manual reviewing by healthcare workers. This reviewing process is time-consuming. To alleviate this burden, this paper proposes the use of statistical process control methods to automatically detect both positive and negative changes in transfer times. Three SPC techniques: tabular CUSUM, standardized CUSUM and EWMA, known for their ability to detect small shifts in the data, are evaluated on simulated transfer times. This analysis shows that EWMA is the best-suited method with a detection accuracy of 82% and an average detection time of 9.64 days.
Statistical inference a short course
Panik, Michael J
2012-01-01
A concise, easily accessible introduction to descriptive and inferential techniques Statistical Inference: A Short Course offers a concise presentation of the essentials of basic statistics for readers seeking to acquire a working knowledge of statistical concepts, measures, and procedures. The author conducts tests on the assumption of randomness and normality, provides nonparametric methods when parametric approaches might not work. The book also explores how to determine a confidence interval for a population median while also providing coverage of ratio estimation, randomness, and causal
Shiavi, Richard
2007-01-01
Introduction to Applied Statistical Signal Analysis is designed for the experienced individual with a basic background in mathematics, science, and computer. With this predisposed knowledge, the reader will coast through the practical introduction and move on to signal analysis techniques, commonly used in a broad range of engineering areas such as biomedical engineering, communications, geophysics, and speech.Introduction to Applied Statistical Signal Analysis intertwines theory and implementation with practical examples and exercises. Topics presented in detail include: mathematical
A Multidisciplinary Approach for Teaching Statistics and Probability
Rao, C. Radhakrishna
1971-01-01
The author presents a syllabus for an introductory (first year after high school) course in statistics and probability and some methods of teaching statistical techniques. The description comes basically from the procedures used at the Indian Statistical Institute, Calcutta. (JG)
Energy Technology Data Exchange (ETDEWEB)
Nicholson, W L; Harris, J L [eds.
1976-03-01
The First ERDA Statistical Symposium was organized to provide a means for communication among ERDA statisticians, and the sixteen papers presented at the meeting are given. Topics include techniques of numerical analysis used for accelerators, nuclear reactors, skewness and kurtosis statistics, radiochemical spectral analysis, quality control, and other statistics problems. Nine of the papers were previously announced in Nuclear Science Abstracts (NSA), while the remaining seven were abstracted for ERDA Energy Research Abstracts (ERA) and INIS Atomindex. (PMA)
Groundwater quality assessment of urban Bengaluru using multivariate statistical techniques
Gulgundi, Mohammad Shahid; Shetty, Amba
2018-03-01
Groundwater quality deterioration due to anthropogenic activities has become a subject of prime concern. The objective of the study was to assess the spatial and temporal variations in groundwater quality and to identify the sources in the western half of the Bengaluru city using multivariate statistical techniques. Water quality index rating was calculated for pre and post monsoon seasons to quantify overall water quality for human consumption. The post-monsoon samples show signs of poor quality in drinking purpose compared to pre-monsoon. Cluster analysis (CA), principal component analysis (PCA) and discriminant analysis (DA) were applied to the groundwater quality data measured on 14 parameters from 67 sites distributed across the city. Hierarchical cluster analysis (CA) grouped the 67 sampling stations into two groups, cluster 1 having high pollution and cluster 2 having lesser pollution. Discriminant analysis (DA) was applied to delineate the most meaningful parameters accounting for temporal and spatial variations in groundwater quality of the study area. Temporal DA identified pH as the most important parameter, which discriminates between water quality in the pre-monsoon and post-monsoon seasons and accounts for 72% seasonal assignation of cases. Spatial DA identified Mg, Cl and NO3 as the three most important parameters discriminating between two clusters and accounting for 89% spatial assignation of cases. Principal component analysis was applied to the dataset obtained from the two clusters, which evolved three factors in each cluster, explaining 85.4 and 84% of the total variance, respectively. Varifactors obtained from principal component analysis showed that groundwater quality variation is mainly explained by dissolution of minerals from rock water interactions in the aquifer, effect of anthropogenic activities and ion exchange processes in water.
GIS-Based bivariate statistical techniques for groundwater potential ...
Indian Academy of Sciences (India)
24
This study shows the potency of two GIS-based data driven bivariate techniques namely ... In the view of these weaknesses , there is a strong requirement for reassessment of .... Font color: Text 1, Not Expanded by / Condensed by , ...... West Bengal (India) using remote sensing, geographical information system and multi-.
International Nuclear Information System (INIS)
2005-01-01
For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees
International Nuclear Information System (INIS)
Peebles, D.E.; Ohlhausen, J.A.; Kotula, P.G.; Hutton, S.; Blomfield, C.
2004-01-01
The acquisition of spectral images for x-ray photoelectron spectroscopy (XPS) is a relatively new approach, although it has been used with other analytical spectroscopy tools for some time. This technique provides full spectral information at every pixel of an image, in order to provide a complete chemical mapping of the imaged surface area. Multivariate statistical analysis techniques applied to the spectral image data allow the determination of chemical component species, and their distribution and concentrations, with minimal data acquisition and processing times. Some of these statistical techniques have proven to be very robust and efficient methods for deriving physically realistic chemical components without input by the user other than the spectral matrix itself. The benefits of multivariate analysis of the spectral image data include significantly improved signal to noise, improved image contrast and intensity uniformity, and improved spatial resolution - which are achieved due to the effective statistical aggregation of the large number of often noisy data points in the image. This work demonstrates the improvements in chemical component determination and contrast, signal-to-noise level, and spatial resolution that can be obtained by the application of multivariate statistical analysis to XPS spectral images
Data Collection and Analysis Techniques for Evaluating the Perceptual Qualities of Auditory Stimuli
Energy Technology Data Exchange (ETDEWEB)
Bonebright, T.L.; Caudell, T.P.; Goldsmith, T.E.; Miner, N.E.
1998-11-17
This paper describes a general methodological framework for evaluating the perceptual properties of auditory stimuli. The framework provides analysis techniques that can ensure the effective use of sound for a variety of applications including virtual reality and data sonification systems. Specifically, we discuss data collection techniques for the perceptual qualities of single auditory stimuli including identification tasks, context-based ratings, and attribute ratings. In addition, we present methods for comparing auditory stimuli, such as discrimination tasks, similarity ratings, and sorting tasks. Finally, we discuss statistical techniques that focus on the perceptual relations among stimuli, such as Multidimensional Scaling (MDS) and Pathfinder Analysis. These methods are presented as a starting point for an organized and systematic approach for non-experts in perceptual experimental methods, rather than as a complete manual for performing the statistical techniques and data collection methods. It is our hope that this paper will help foster further interdisciplinary collaboration among perceptual researchers, designers, engineers, and others in the development of effective auditory displays.
Goodman, Joseph W
2015-01-01
This book discusses statistical methods that are useful for treating problems in modern optics, and the application of these methods to solving a variety of such problems This book covers a variety of statistical problems in optics, including both theory and applications. The text covers the necessary background in statistics, statistical properties of light waves of various types, the theory of partial coherence and its applications, imaging with partially coherent light, atmospheric degradations of images, and noise limitations in the detection of light. New topics have been introduced i
Sadovskii, Michael V
2012-01-01
This volume provides a compact presentation of modern statistical physics at an advanced level. Beginning with questions on the foundations of statistical mechanics all important aspects of statistical physics are included, such as applications to ideal gases, the theory of quantum liquids and superconductivity and the modern theory of critical phenomena. Beyond that attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems.
Statistical modeling for degradation data
Lio, Yuhlong; Ng, Hon; Tsai, Tzong-Ru
2017-01-01
This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.
Computational statistics handbook with Matlab
Martinez, Wendy L
2007-01-01
Prefaces Introduction What Is Computational Statistics? An Overview of the Book Probability Concepts Introduction Probability Conditional Probability and Independence Expectation Common Distributions Sampling Concepts Introduction Sampling Terminology and Concepts Sampling Distributions Parameter Estimation Empirical Distribution Function Generating Random Variables Introduction General Techniques for Generating Random Variables Generating Continuous Random Variables Generating Discrete Random Variables Exploratory Data Analysis Introduction Exploring Univariate Data Exploring Bivariate and Trivariate Data Exploring Multidimensional Data Finding Structure Introduction Projecting Data Principal Component Analysis Projection Pursuit EDA Independent Component Analysis Grand Tour Nonlinear Dimensionality Reduction Monte Carlo Methods for Inferential Statistics Introduction Classical Inferential Statistics Monte Carlo Methods for Inferential Statist...
Modern statistics for the social and behavioral sciences a practical introduction
Wilcox, Rand
2011-01-01
Relative advantages/disadvantages of various techniques are presented so that the reader can be helped to understand the choices they make on using the techniques. … A considerable number of illustrations are included and the book focuses on using R for its computer software application. … A useful text for … postgraduate students in the social science disciplines.-Susan Starkings, International Statistical Review, 2012This is an interesting and valuable book … By gathering a mass of results on that topic into a single volume with references, alternative procedures, and supporting software, th
Johnson, Norman
This is author-approved bcc: This is the third volume of a collection of seminal papers in the statistical sciences written during the past 110 years. These papers have each had an outstanding influence on the development of statistical theory and practice over the last century. Each paper is preceded by an introduction written by an authority in the field providing background information and assessing its influence. Volume III concerntrates on articles from the 1980's while including some earlier articles not included in Volume I and II. Samuel Kotz is Professor of Statistics in the College of Business and Management at the University of Maryland. Norman L. Johnson is Professor Emeritus of Statistics at the University of North Carolina. Also available: Breakthroughs in Statistics Volume I: Foundations and Basic Theory Samuel Kotz and Norman L. Johnson, Editors 1993. 631 pp. Softcover. ISBN 0-387-94037-5 Breakthroughs in Statistics Volume II: Methodology and Distribution Samuel Kotz and Norman L. Johnson, Edi...
Mullan, Donal; Chen, Jie; Zhang, Xunchang John
2016-02-01
Statistical downscaling (SD) methods have become a popular, low-cost and accessible means of bridging the gap between the coarse spatial resolution at which climate models output climate scenarios and the finer spatial scale at which impact modellers require these scenarios, with various different SD techniques used for a wide range of applications across the world. This paper compares the Generator for Point Climate Change (GPCC) model and the Statistical DownScaling Model (SDSM)—two contrasting SD methods—in terms of their ability to generate precipitation series under non-stationary conditions across ten contrasting global climates. The mean, maximum and a selection of distribution statistics as well as the cumulative frequencies of dry and wet spells for four different temporal resolutions were compared between the models and the observed series for a validation period. Results indicate that both methods can generate daily precipitation series that generally closely mirror observed series for a wide range of non-stationary climates. However, GPCC tends to overestimate higher precipitation amounts, whilst SDSM tends to underestimate these. This infers that GPCC is more likely to overestimate the effects of precipitation on a given impact sector, whilst SDSM is likely to underestimate the effects. GPCC performs better than SDSM in reproducing wet and dry day frequency, which is a key advantage for many impact sectors. Overall, the mixed performance of the two methods illustrates the importance of users performing a thorough validation in order to determine the influence of simulated precipitation on their chosen impact sector.
Molecular dynamics and Monte Carlo calculations in statistical mechanics
International Nuclear Information System (INIS)
Wood, W.W.; Erpenbeck, J.J.
1976-01-01
Monte Carlo and molecular dynamics calculations on statistical mechanical systems is reviewed giving some of the more significant recent developments. It is noted that the term molecular dynamics refers to the time-averaging technique for hard-core and square-well interactions and for continuous force-law interactions. Ergodic questions, methodology, quantum mechanical, Lorentz, and one-dimensional, hard-core, and square and triangular-well systems, short-range soft potentials, and other systems are included. 268 references
International Nuclear Information System (INIS)
Kleijnen, J.P.C.; Helton, J.C.
1999-01-01
The robustness of procedures for identifying patterns in scatterplots generated in Monte Carlo sensitivity analyses is investigated. These procedures are based on attempts to detect increasingly complex patterns in the scatterplots under consideration and involve the identification of (i) linear relationships with correlation coefficients, (ii) monotonic relationships with rank correlation coefficients, (iii) trends in central tendency as defined by means, medians and the Kruskal-Wallis statistic, (iv) trends in variability as defined by variances and interquartile ranges, and (v) deviations from randomness as defined by the chi-square statistic. The following two topics related to the robustness of these procedures are considered for a sequence of example analyses with a large model for two-phase fluid flow: the presence of Type I and Type II errors, and the stability of results obtained with independent Latin hypercube samples. Observations from analysis include: (i) Type I errors are unavoidable, (ii) Type II errors can occur when inappropriate analysis procedures are used, (iii) physical explanations should always be sought for why statistical procedures identify variables as being important, and (iv) the identification of important variables tends to be stable for independent Latin hypercube samples
On statistical inference in time series analysis of the evolution of road safety.
Commandeur, Jacques J F; Bijleveld, Frits D; Bergel-Hayat, Ruth; Antoniou, Constantinos; Yannis, George; Papadimitriou, Eleonora
2013-11-01
Data collected for building a road safety observatory usually include observations made sequentially through time. Examples of such data, called time series data, include annual (or monthly) number of road traffic accidents, traffic fatalities or vehicle kilometers driven in a country, as well as the corresponding values of safety performance indicators (e.g., data on speeding, seat belt use, alcohol use, etc.). Some commonly used statistical techniques imply assumptions that are often violated by the special properties of time series data, namely serial dependency among disturbances associated with the observations. The first objective of this paper is to demonstrate the impact of such violations to the applicability of standard methods of statistical inference, which leads to an under or overestimation of the standard error and consequently may produce erroneous inferences. Moreover, having established the adverse consequences of ignoring serial dependency issues, the paper aims to describe rigorous statistical techniques used to overcome them. In particular, appropriate time series analysis techniques of varying complexity are employed to describe the development over time, relating the accident-occurrences to explanatory factors such as exposure measures or safety performance indicators, and forecasting the development into the near future. Traditional regression models (whether they are linear, generalized linear or nonlinear) are shown not to naturally capture the inherent dependencies in time series data. Dedicated time series analysis techniques, such as the ARMA-type and DRAG approaches are discussed next, followed by structural time series models, which are a subclass of state space methods. The paper concludes with general recommendations and practice guidelines for the use of time series models in road safety research. Copyright © 2012 Elsevier Ltd. All rights reserved.
Statistical distribution for generalized ideal gas of fractional-statistics particles
International Nuclear Information System (INIS)
Wu, Y.
1994-01-01
We derive the occupation-number distribution in a generalized ideal gas of particles obeying fractional statistics, including mutual statistics, by adopting a state-counting definition. When there is no mutual statistics, the statistical distribution interpolates between bosons and fermions, and respects a fractional exclusion principle (except for bosons). Anyons in a strong magnetic field at low temperatures constitute such a physical system. Applications to the thermodynamic properties of quasiparticle excitations in the Laughlin quantum Hall fluid are discussed
Whitnah, A. M.; Howes, D. B.
1971-01-01
Statistical information for the Apollo command module water landings is presented. This information includes the probability of occurrence of various impact conditions, a successful impact, and body X-axis loads of various magnitudes.
On quantum statistical inference
Barndorff-Nielsen, O.E.; Gill, R.D.; Jupp, P.E.
2003-01-01
Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, developments in the theory of quantum measurements have
Spriestersbach, Albert; Röhrig, Bernd; du Prel, Jean-Baptist; Gerhold-Ay, Aslihan; Blettner, Maria
2009-09-01
Descriptive statistics are an essential part of biometric analysis and a prerequisite for the understanding of further statistical evaluations, including the drawing of inferences. When data are well presented, it is usually obvious whether the author has collected and evaluated them correctly and in keeping with accepted practice in the field. Statistical variables in medicine may be of either the metric (continuous, quantitative) or categorical (nominal, ordinal) type. Easily understandable examples are given. Basic techniques for the statistical description of collected data are presented and illustrated with examples. The goal of a scientific study must always be clearly defined. The definition of the target value or clinical endpoint determines the level of measurement of the variables in question. Nearly all variables, whatever their level of measurement, can be usefully presented graphically and numerically. The level of measurement determines what types of diagrams and statistical values are appropriate. There are also different ways of presenting combinations of two independent variables graphically and numerically. The description of collected data is indispensable. If the data are of good quality, valid and important conclusions can already be drawn when they are properly described. Furthermore, data description provides a basis for inferential statistics.
Statistical analysis of management data
Gatignon, Hubert
2013-01-01
This book offers a comprehensive approach to multivariate statistical analyses. It provides theoretical knowledge of the concepts underlying the most important multivariate techniques and an overview of actual applications.
PHYSICS OF NON-GAUSSIAN FIELDS AND THE COSMOLOGICAL GENUS STATISTIC
International Nuclear Information System (INIS)
James, J. Berian
2012-01-01
We report a technique to calculate the impact of distinct physical processes inducing non-Gaussianity on the cosmological density field. A natural decomposition of the cosmic genus statistic into an orthogonal polynomial sequence allows complete expression of the scale-dependent evolution of the topology of large-scale structure, in which effects including galaxy bias, nonlinear gravitational evolution, and primordial non-Gaussianity may be delineated. The relationship of this decomposition to previous methods for analyzing the genus statistic is briefly considered and the following applications are made: (1) the expression of certain systematics affecting topological measurements, (2) the quantification of broad deformations from Gaussianity that appear in the genus statistic as measured in the Horizon Run simulation, and (3) the study of the evolution of the genus curve for simulations with primordial non-Gaussianity. These advances improve the treatment of flux-limited galaxy catalogs for use with this measurement and further the use of the genus statistic as a tool for exploring non-Gaussianity.
Statistical methods for ranking data
Alvo, Mayer
2014-01-01
This book introduces advanced undergraduate, graduate students and practitioners to statistical methods for ranking data. An important aspect of nonparametric statistics is oriented towards the use of ranking data. Rank correlation is defined through the notion of distance functions and the notion of compatibility is introduced to deal with incomplete data. Ranking data are also modeled using a variety of modern tools such as CART, MCMC, EM algorithm and factor analysis. This book deals with statistical methods used for analyzing such data and provides a novel and unifying approach for hypotheses testing. The techniques described in the book are illustrated with examples and the statistical software is provided on the authors’ website.
Methods and applications of statistics in engineering, quality control, and the physical sciences
Balakrishnan, N
2011-01-01
Inspired by the Encyclopedia of Statistical Sciences, Second Edition (ESS2e), this volume presents a concise, well-rounded focus on the statistical concepts and applications that are essential for understanding gathered data in the fields of engineering, quality control, and the physical sciences. The book successfully upholds the goals of ESS2e by combining both previously-published and newly developed contributions written by over 100 leading academics, researchers, and practitioner in a comprehensive, approachable format. The result is a succinct reference that unveils modern, cutting-edge approaches to acquiring and analyzing data across diverse subject areas within these three disciplines, including operations research, chemistry, physics, the earth sciences, electrical engineering, and quality assurance. In addition, techniques related to survey methodology, computational statistics, and operations research are discussed, where applicable. Topics of coverage include: optimal and stochastic control, arti...
U.S. Department of Health & Human Services — The CMS Office of Enterprise Data and Analytics has developed CMS Program Statistics, which includes detailed summary statistics on national health care, Medicare...
Topology for statistical modeling of petascale data.
Energy Technology Data Exchange (ETDEWEB)
Pascucci, Valerio (University of Utah, Salt Lake City, UT); Mascarenhas, Ajith Arthur; Rusek, Korben (Texas A& M University, College Station, TX); Bennett, Janine Camille; Levine, Joshua (University of Utah, Salt Lake City, UT); Pebay, Philippe Pierre; Gyulassy, Attila (University of Utah, Salt Lake City, UT); Thompson, David C.; Rojas, Joseph Maurice (Texas A& M University, College Station, TX)
2011-07-01
This document presents current technical progress and dissemination of results for the Mathematics for Analysis of Petascale Data (MAPD) project titled 'Topology for Statistical Modeling of Petascale Data', funded by the Office of Science Advanced Scientific Computing Research (ASCR) Applied Math program. Many commonly used algorithms for mathematical analysis do not scale well enough to accommodate the size or complexity of petascale data produced by computational simulations. The primary goal of this project is thus to develop new mathematical tools that address both the petascale size and uncertain nature of current data. At a high level, our approach is based on the complementary techniques of combinatorial topology and statistical modeling. In particular, we use combinatorial topology to filter out spurious data that would otherwise skew statistical modeling techniques, and we employ advanced algorithms from algebraic statistics to efficiently find globally optimal fits to statistical models. This document summarizes the technical advances we have made to date that were made possible in whole or in part by MAPD funding. These technical contributions can be divided loosely into three categories: (1) advances in the field of combinatorial topology, (2) advances in statistical modeling, and (3) new integrated topological and statistical methods.
Acceleration techniques for dependability simulation. M.S. Thesis
Barnette, James David
1995-01-01
As computer systems increase in complexity, the need to project system performance from the earliest design and development stages increases. We have to employ simulation for detailed dependability studies of large systems. However, as the complexity of the simulation model increases, the time required to obtain statistically significant results also increases. This paper discusses an approach that is application independent and can be readily applied to any process-based simulation model. Topics include background on classical discrete event simulation and techniques for random variate generation and statistics gathering to support simulation.
Diffusion MRI of the neonate brain: acquisition, processing and analysis techniques
Energy Technology Data Exchange (ETDEWEB)
Pannek, Kerstin [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, School of Medicine, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); Guzzetta, Andrea [IRCCS Stella Maris, Department of Developmental Neuroscience, Calambrone Pisa (Italy); Colditz, Paul B. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Perinatal Research Centre, Brisbane (Australia); Rose, Stephen E. [University of Queensland, Centre for Clinical Research, Brisbane (Australia); University of Queensland, Centre for Advanced Imaging, Brisbane (Australia); University of Queensland Centre for Clinical Research, Royal Brisbane and Women' s Hospital, Brisbane (Australia)
2012-10-15
Diffusion MRI (dMRI) is a popular noninvasive imaging modality for the investigation of the neonate brain. It enables the assessment of white matter integrity, and is particularly suited for studying white matter maturation in the preterm and term neonate brain. Diffusion tractography allows the delineation of white matter pathways and assessment of connectivity in vivo. In this review, we address the challenges of performing and analysing neonate dMRI. Of particular importance in dMRI analysis is adequate data preprocessing to reduce image distortions inherent to the acquisition technique, as well as artefacts caused by head movement. We present a summary of techniques that should be used in the preprocessing of neonate dMRI data, and demonstrate the effect of these important correction steps. Furthermore, we give an overview of available analysis techniques, ranging from voxel-based analysis of anisotropy metrics including tract-based spatial statistics (TBSS) to recently developed methods of statistical analysis addressing issues of resolving complex white matter architecture. We highlight the importance of resolving crossing fibres for tractography and outline several tractography-based techniques, including connectivity-based segmentation, the connectome and tractography mapping. These techniques provide powerful tools for the investigation of brain development and maturation. (orig.)
Introductory statistics for engineering experimentation
Nelson, Peter R; Coffin, Marie
2003-01-01
The Accreditation Board for Engineering and Technology (ABET) introduced a criterion starting with their 1992-1993 site visits that "Students must demonstrate a knowledge of the application of statistics to engineering problems." Since most engineering curricula are filled with requirements in their own discipline, they generally do not have time for a traditional two semesters of probability and statistics. Attempts to condense that material into a single semester often results in so much time being spent on probability that the statistics useful for designing and analyzing engineering/scientific experiments is never covered. In developing a one-semester course whose purpose was to introduce engineering/scientific students to the most useful statistical methods, this book was created to satisfy those needs. - Provides the statistical design and analysis of engineering experiments & problems - Presents a student-friendly approach through providing statistical models for advanced learning techniques - Cove...
Sensitivity analysis and related analysis : A survey of statistical techniques
Kleijnen, J.P.C.
1995-01-01
This paper reviews the state of the art in five related types of analysis, namely (i) sensitivity or what-if analysis, (ii) uncertainty or risk analysis, (iii) screening, (iv) validation, and (v) optimization. The main question is: when should which type of analysis be applied; which statistical
Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.
Barman, S.; Bhattacharjya, R. K.
2017-12-01
The River Subansiri is the major north bank tributary of river Brahmaputra. It originates from the range of Himalayas beyond the Great Himalayan range at an altitude of approximately 5340m. Subansiri basin extends from tropical to temperate zones and hence exhibits a great diversity in rainfall characteristics. In the Northern and Central Himalayan tracts, precipitation is scarce on account of high altitudes. On the other hand, Southeast part of the Subansiri basin comprising the sub-Himalayan and the plain tract in Arunachal Pradesh and Assam, lies in the tropics. Due to Northeast as well as Southwest monsoon, precipitation occurs in this region in abundant quantities. Particularly, Southwest monsoon causes very heavy precipitation in the entire Subansiri basin during May to October. In this study, the rainfall over Subansiri basin has been studied at 24 different locations by multiple linear and non-linear regression based statistical downscaling techniques and by Artificial Neural Network based model. APHRODITE's gridded rainfall data of 0.25˚ x 0.25˚ resolutions and climatic parameters of HadCM3 GCM of resolution 2.5˚ x 3.75˚ (latitude by longitude) have been used in this study. It has been found that multiple non-linear regression based statistical downscaling technique outperformed the other techniques. Using this method, the future rainfall pattern over the Subansiri basin has been analyzed up to the year 2099 for four different time periods, viz., 2020-39, 2040-59, 2060-79, and 2080-99 at all the 24 locations. On the basis of historical rainfall, the months have been categorized as wet months, months with moderate rainfall and dry months. The spatial changes in rainfall patterns for all these three types of months have also been analyzed over the basin. Potential decrease of rainfall in the wet months and months with moderate rainfall and increase of rainfall in the dry months are observed for the future rainfall pattern of the Subansiri basin.
Statistical Issues in Searches for New Physics
CERN. Geneva
2015-01-01
Given the cost, both financial and even more importantly in terms of human effort, in building High Energy Physics accelerators and detectors and running them, it is important to use good statistical techniques in analysing data. This talk covers some of the statistical issues that arise in searches for New Physics. They include topics such as: Should we insist on the 5 sigma criterion for discovery claims? What are the relative merits of a Raster Scan or a "2-D" approach? P(A|B) is not the same as P(B|A) The meaning of p-values Example of a problematic likelihood What is Wilks Theorem and when does it not apply? How should we deal with the "Look Elsewhere Effect"? Dealing with systematics such as background parametrisation Coverage: What is it and does my method have the correct coverage? The use of p0 vs. p1 plots
Applied statistics for civil and environmental engineers
Kottegoda, N T
2009-01-01
Civil and environmental engineers need an understanding of mathematical statistics and probability theory to deal with the variability that affects engineers'' structures, soil pressures, river flows and the like. Students, too, need to get to grips with these rather difficult concepts.This book, written by engineers for engineers, tackles the subject in a clear, up-to-date manner using a process-orientated approach. It introduces the subjects of mathematical statistics and probability theory, and then addresses model estimation and testing, regression and multivariate methods, analysis of extreme events, simulation techniques, risk and reliability, and economic decision making.325 examples and case studies from European and American practice are included and each chapter features realistic problems to be solved.For the second edition new sections have been added on Monte Carlo Markov chain modeling with details of practical Gibbs sampling, sensitivity analysis and aleatory and epistemic uncertainties, and co...
Statistical techniques for the identification of reactor component structural vibrations
International Nuclear Information System (INIS)
Kemeny, L.G.
1975-01-01
The identification, on-line and in near real-time, of the vibration frequencies, modes and amplitudes of selected key reactor structural components and the visual monitoring of these phenomena by nuclear power plant operating staff will serve to further the safety and control philosophy of nuclear systems and lead to design optimisation. The School of Nuclear Engineering has developed a data acquisition system for vibration detection and identification. The system is interfaced with the HIFAR research reactor of the Australian Atomic Energy Commission. The reactor serves to simulate noise and vibrational phenomena which might be pertinent in power reactor situations. The data acquisition system consists of a small computer interfaced with a digital correlator and a Fourier transform unit. An incremental tape recorder is utilised as a backing store and as a means of communication with other computers. A small analogue computer and an analogue statistical analyzer can be used in the pre and post computational analysis of signals which are received from neutron and gamma detectors, thermocouples, accelerometers, hydrophones and strain gauges. Investigations carried out to date include a study of the role of local and global pressure fields due to turbulence in coolant flow and pump impeller induced perturbations on (a) control absorbers, (B) fuel element and (c) coolant external circuit and core tank structure component vibrations. (Auth.)
On the Statistical Dependency of Identity Theft on Demographics
di Crescenzo, Giovanni
An improved understanding of the identity theft problem is widely agreed to be necessary to succeed in counter-theft efforts in legislative, financial and research institutions. In this paper we report on a statistical study about the existence of relationships between identity theft and area demographics in the US. The identity theft data chosen was the number of citizen complaints to the Federal Trade Commission in a large number of US municipalities. The list of demographics used for any such municipality included: estimated population, median resident age, estimated median household income, percentage of citizens with a high school or higher degree, percentage of unemployed residents, percentage of married residents, percentage of foreign born residents, percentage of residents living in poverty, density of law enforcement employees, crime index, and political orientation according to the 2004 presidential election. Our study findings, based on linear regression techniques, include statistically significant relationships between the number of identity theft complaints and a non-trivial subset of these demographics.
EXCHANGE-RATES FORECASTING: EXPONENTIAL SMOOTHING TECHNIQUES AND ARIMA MODELS
Directory of Open Access Journals (Sweden)
Dezsi Eva
2011-07-01
Full Text Available Exchange rates forecasting is, and has been a challenging task in finance. Statistical and econometrical models are widely used in analysis and forecasting of foreign exchange rates. This paper investigates the behavior of daily exchange rates of the Romanian Leu against the Euro, United States Dollar, British Pound, Japanese Yen, Chinese Renminbi and the Russian Ruble. Smoothing techniques are generated and compared with each other. These models include the Simple Exponential Smoothing technique, as the Double Exponential Smoothing technique, the Simple Holt-Winters, the Additive Holt-Winters, namely the Autoregressive Integrated Moving Average model.
Muhammad, Said; Tahir Shah, M; Khan, Sardar
2010-10-01
The present study was conducted in Kohistan region, where mafic and ultramafic rocks (Kohistan island arc and Indus suture zone) and metasedimentary rocks (Indian plate) are exposed. Water samples were collected from the springs, streams and Indus river and analyzed for physical parameters, anions, cations and arsenic (As(3+), As(5+) and arsenic total). The water quality in Kohistan region was evaluated by comparing the physio-chemical parameters with permissible limits set by Pakistan environmental protection agency and world health organization. Most of the studied parameters were found within their respective permissible limits. However in some samples, the iron and arsenic concentrations exceeded their permissible limits. For health risk assessment of arsenic, the average daily dose, hazards quotient (HQ) and cancer risk were calculated by using statistical formulas. The values of HQ were found >1 in the samples collected from Jabba, Dubair, while HQ values were pollution load was also calculated by using multivariate statistical techniques like one-way ANOVA, correlation analysis, regression analysis, cluster analysis and principle component analysis. Copyright © 2010 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Carew, John F.; Finch, Stephen J.; Lois, Lambros
2003-01-01
The calculated >1-MeV pressure vessel fluence is used to determine the fracture toughness and integrity of the reactor pressure vessel. It is therefore of the utmost importance to ensure that the fluence prediction is accurate and unbiased. In practice, this assurance is provided by comparing the predictions of the calculational methodology with an extensive set of accurate benchmarks. A benchmarking database is used to provide an estimate of the overall average measurement-to-calculation (M/C) bias in the calculations ( ). This average is used as an ad-hoc multiplicative adjustment to the calculations to correct for the observed calculational bias. However, this average only provides a well-defined and valid adjustment of the fluence if the M/C data are homogeneous; i.e., the data are statistically independent and there is no correlation between subsets of M/C data.Typically, the identification of correlations between the errors in the database M/C values is difficult because the correlation is of the same magnitude as the random errors in the M/C data and varies substantially over the database. In this paper, an evaluation of a reactor dosimetry benchmark database is performed to determine the statistical validity of the adjustment to the calculated pressure vessel fluence. Physical mechanisms that could potentially introduce a correlation between the subsets of M/C ratios are identified and included in a multiple regression analysis of the M/C data. Rigorous statistical criteria are used to evaluate the homogeneity of the M/C data and determine the validity of the adjustment.For the database evaluated, the M/C data are found to be strongly correlated with dosimeter response threshold energy and dosimeter location (e.g., cavity versus in-vessel). It is shown that because of the inhomogeneity in the M/C data, for this database, the benchmark data do not provide a valid basis for adjusting the pressure vessel fluence.The statistical criteria and methods employed in
Monte Carlo techniques for analyzing deep penetration problems
International Nuclear Information System (INIS)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1985-01-01
A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications
Monte Carlo techniques for analyzing deep penetration problems
International Nuclear Information System (INIS)
Cramer, S.N.; Gonnord, J.; Hendricks, J.S.
1985-01-01
A review of current methods and difficulties in Monte Carlo deep-penetration calculations is presented. Statistical uncertainty is discussed, and recent adjoint optimization of splitting, Russian roulette, and exponential transformation biasing is reviewed. Other aspects of the random walk and estimation processes are covered, including the relatively new DXANG angular biasing technique. Specific items summarized are albedo scattering, Monte Carlo coupling techniques with discrete ordinates and other methods, adjoint solutions, and multi-group Monte Carlo. The topic of code-generated biasing parameters is presented, including the creation of adjoint importance functions from forward calculations. Finally, current and future work in the area of computer learning and artificial intelligence is discussed in connection with Monte Carlo applications. 29 refs
Statistics and risk philosophy in human activities
International Nuclear Information System (INIS)
Failla, L.
1983-01-01
Two leading interpretations of the use of statistics exist, the first one considering statistics as a physical law regulating the phenomena studied, and the other considering statistics as a method allowing to achieve exhaustive knowledge of the phenomena. The Author chooses the second theory, applies this concept of statistics to the risk involved in human activities and discusses the different kinds of risk in this field. The Author distinguishes between the risk that can be eliminated or at least reduced, and the risk inherent in the activity itself, that can never be completely eliminated -unless the activity is suppressed-; yet, also this kind of risk can be kept under control. Furthermore, she distinguishes between risks that can or cannot be foreseen. The Author supports the theory according to which the risk foreseen must be prevented through up-to-date techniques: this should be done coherently with the aim of the activity but independently of the economic cost. The theory considering risk probability as a physical law is mainly based on events happened in the past: it uses the occurrence probability as a law. This theory accepts the statistical risk and estimates its costs, including the ''human cost''. The Author examines the different statistical possibilities to study this specific phenomenon: so, the possibility to avoid the risks may arise along with -last but not least- the opportunity to eliminate or reduce the damage connected. On the contrary, statistics used as a physical law implies the acceptable of a given amount of risk compared with the cost of improving the technical conditions required to eliminate damages. In the end, a practical example of this theory is described
Fractal statistics of brittle fragmentation
Directory of Open Access Journals (Sweden)
M. Davydova
2013-04-01
Full Text Available The study of fragmentation statistics of brittle materials that includes four types of experiments is presented. Data processing of the fragmentation of glass plates under quasi-static loading and the fragmentation of quartz cylindrical rods under dynamic loading shows that the size distribution of fragments (spatial quantity is fractal and can be described by a power law. The original experimental technique allows us to measure, apart from the spatial quantity, the temporal quantity - the size of time interval between the impulses of the light reflected from the newly created surfaces. The analysis of distributions of spatial (fragment size and temporal (time interval quantities provides evidence of obeying scaling laws, which suggests the possibility of self-organized criticality in fragmentation.
International Nuclear Information System (INIS)
Ng, Loo-Teck; Swami, Salesh; Gordon-Thomson, Clare
2006-01-01
Hydrogels were synthesised using the photoinitiator-free photopolymerisation technique involving interactions between donor/acceptor pairs for delivering drugs of different molecular weights including a porphyrin used as a tumour-tracing agent. N-(5-hydroxy) pentylmaleimide, an acceptor, formed hydrogels with N-vinyl-2-pyrrolidinone, 2-hydroxyethyl methacrylate and N-vinylcaprolactum. Glucosamine, an effective H-donor in enhancing polymerisation as shown by Differential Photocalorimetric results, was found unsuitable for hydrogel preparation. Drugs of different molecular weights releasing at the same rate was discussed. The hydrogels were found to have no toxic effects and were biocompatible with a human keratinocyte cell line
Nick, Todd G
2007-01-01
Statistics is defined by the Medical Subject Headings (MeSH) thesaurus as the science and art of collecting, summarizing, and analyzing data that are subject to random variation. The two broad categories of summarizing and analyzing data are referred to as descriptive and inferential statistics. This chapter considers the science and art of summarizing data where descriptive statistics and graphics are used to display data. In this chapter, we discuss the fundamentals of descriptive statistics, including describing qualitative and quantitative variables. For describing quantitative variables, measures of location and spread, for example the standard deviation, are presented along with graphical presentations. We also discuss distributions of statistics, for example the variance, as well as the use of transformations. The concepts in this chapter are useful for uncovering patterns within the data and for effectively presenting the results of a project.
Indian Academy of Sciences (India)
IAS Admin
Pauli exclusion principle, Fermi–. Dirac statistics, identical and in- distinguishable particles, Fermi gas. Fermi–Dirac Statistics. Derivation and Consequences. S Chaturvedi and Shyamal Biswas. (left) Subhash Chaturvedi is at University of. Hyderabad. His current research interests include phase space descriptions.
International Nuclear Information System (INIS)
Darcel, C.; Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O.
2009-11-01
starting point we built Statistical Fracture Domains whose significance rely exclusively on fracturing statistics, not including explicitly the current Fracture Domains or closeness between one borehole section or the other. Theoretical developments are proposed in order to incorporate the orientation uncertainty and the fracturing variability into a resulting parent distribution density uncertainty. When applied to both sites, it comes that variability prevails in front of uncertainty, thus validating the good level of data accuracy. Moreover, this allows to define a possible range of variation around the mean values of densities. Finally a sorting algorithm is developed for providing, from the initial elementary bricks mentioned above, a division of a site into Statistical Fracture Domains whose internal variability is reduced. The systematic comparison is based on the division of the datasets according to several densities referring to a division of the orientations into 13 subsets (pole zones). The first application of the methodology shows that some main trends can be defined for the orientation/density distributions throughout the site, which are combined with a high level of overlapping. Moreover the final Statistical Fracture Domain definition differ from the Fracture Domains existing at the site. The SFD are an objective comparison of statistical fracturing properties. Several perspectives are proposed in order to bridge the gap between constraints brought by a relevant statistical modeling and modeling specificities of the SKB sites and more generally conditions inherent to geological models
Woods, Christopher; Fernee, Christianne; Browne, Martin; Zakrzewski, Sonia; Dickinson, Alexander
2017-01-01
This paper introduces statistical shape modelling (SSM) for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM) tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA). Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique's application was demonstrated for inter-sample comparison through analysis of the principal component (PC) weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA) and reconstruction from partial datasets.
statistical tests for frequency distribution of mean gravity anomalies
African Journals Online (AJOL)
ES Obe
1980-03-01
Mar 1, 1980 ... STATISTICAL TESTS FOR FREQUENCY DISTRIBUTION OF MEAN. GRAVITY ANOMALIES. By ... approach. Kaula [1,2] discussed the method of applying statistical techniques in the ..... mathematical foundation of physical ...
Linford, R. M. F.; Allen, T. H.; Dillow, C. F.
1975-01-01
A program is described to design, fabricate and install an experimental work chamber assembly (WCA) to provide a wide range of experimental capability. The WCA incorporates several techniques for studying the kinetics of contaminant films and their effect on optical surfaces. It incorporates the capability for depositing both optical and contaminant films on temperature-controlled samples, and for in-situ measurements of the vacuum ultraviolet reflectance. Ellipsometer optics are mounted on the chamber for film thickness determinations, and other features include access ports for radiation sources and instrumentation. Several supporting studies were conducted to define specific chamber requirements, to determine the sensitivity of the measurement techniques to be incorporated in the chamber, and to establish procedures for handling samples prior to their installation in the chamber. A bibliography and literature survey of contamination-related articles is included.
Do we need statistics when we have linguistics?
Directory of Open Access Journals (Sweden)
Cantos Gómez Pascual
2002-01-01
Full Text Available Statistics is known to be a quantitative approach to research. However, most of the research done in the fields of language and linguistics is of a different kind, namely qualitative. Succinctly, qualitative analysis differs from quantitative analysis is that in the former no attempt is made to assign frequencies, percentages and the like, to the linguistic features found or identified in the data. In quantitative research, linguistic features are classified and counted, and even more complex statistical models are constructed in order to explain these observed facts. In qualitative research, however, we use the data only for identifying and describing features of language usage and for providing real occurrences/examples of particular phenomena. In this paper, we shall try to show how quantitative methods and statistical techniques can supplement qualitative analyses of language. We shall attempt to present some mathematical and statistical properties of natural languages, and introduce some of the quantitative methods which are of the most value in working empirically with texts and corpora, illustrating the various issues with numerous examples and moving from the most basic descriptive techniques (frequency counts and percentages to decision-taking techniques (chi-square and z-score and to more sophisticated statistical language models (Type-Token/Lemma-Token/Lemma-Type formulae, cluster analysis and discriminant function analysis.
Validating an Air Traffic Management Concept of Operation Using Statistical Modeling
He, Yuning; Davies, Misty Dawn
2013-01-01
Validating a concept of operation for a complex, safety-critical system (like the National Airspace System) is challenging because of the high dimensionality of the controllable parameters and the infinite number of states of the system. In this paper, we use statistical modeling techniques to explore the behavior of a conflict detection and resolution algorithm designed for the terminal airspace. These techniques predict the robustness of the system simulation to both nominal and off-nominal behaviors within the overall airspace. They also can be used to evaluate the output of the simulation against recorded airspace data. Additionally, the techniques carry with them a mathematical value of the worth of each prediction-a statistical uncertainty for any robustness estimate. Uncertainty Quantification (UQ) is the process of quantitative characterization and ultimately a reduction of uncertainties in complex systems. UQ is important for understanding the influence of uncertainties on the behavior of a system and therefore is valuable for design, analysis, and verification and validation. In this paper, we apply advanced statistical modeling methodologies and techniques on an advanced air traffic management system, namely the Terminal Tactical Separation Assured Flight Environment (T-TSAFE). We show initial results for a parameter analysis and safety boundary (envelope) detection in the high-dimensional parameter space. For our boundary analysis, we developed a new sequential approach based upon the design of computer experiments, allowing us to incorporate knowledge from domain experts into our modeling and to determine the most likely boundary shapes and its parameters. We carried out the analysis on system parameters and describe an initial approach that will allow us to include time-series inputs, such as the radar track data, into the analysis
Mathematical and statistical methods for actuarial sciences and finance
Sibillo, Marilena
2014-01-01
The interaction between mathematicians and statisticians working in the actuarial and financial fields is producing numerous meaningful scientific results. This volume, comprising a series of four-page papers, gathers new ideas relating to mathematical and statistical methods in the actuarial sciences and finance. The book covers a variety of topics of interest from both theoretical and applied perspectives, including: actuarial models; alternative testing approaches; behavioral finance; clustering techniques; coherent and non-coherent risk measures; credit-scoring approaches; data envelopment analysis; dynamic stochastic programming; financial contagion models; financial ratios; intelligent financial trading systems; mixture normality approaches; Monte Carlo-based methodologies; multicriteria methods; nonlinear parameter estimation techniques; nonlinear threshold models; particle swarm optimization; performance measures; portfolio optimization; pricing methods for structured and non-structured derivatives; r...
International Nuclear Information System (INIS)
1999-01-01
For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
2001-01-01
For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
Wolny, Tomasz; Saulicz, Edward; Linek, Paweł; Shacklock, Michael; Myśliwiec, Andrzej
2017-05-01
The purpose of this randomized trial was to compare the efficacy of manual therapy, including the use of neurodynamic techniques, with electrophysical modalities on patients with mild and moderate carpal tunnel syndrome (CTS). The study included 140 CTS patients who were randomly assigned to the manual therapy (MT) group, which included the use of neurodynamic techniques, functional massage, and carpal bone mobilizations techniques, or to the electrophysical modalities (EM) group, which included laser and ultrasound therapy. Nerve conduction, pain severity, symptom severity, and functional status measured by the Boston Carpal Tunnel Questionnaire were assessed before and after treatment. Therapy was conducted twice weekly and both groups received 20 therapy sessions. A baseline assessment revealed group differences in sensory conduction of the median nerve (P < .01) but not in motor conduction (P = .82). Four weeks after the last treatment procedure, nerve conduction was examined again. In the MT group, median nerve sensory conduction velocity increased by 34% and motor conduction velocity by 6% (in both cases, P < .01). There was no change in median nerve sensory and motor conduction velocities in the EM. Distal motor latency was decreased (P < .01) in both groups. A baseline assessment revealed no group differences in pain severity, symptom severity, or functional status. Immediately after therapy, analysis of variance revealed group differences in pain severity (P < .01), with a reduction in pain in both groups (MT: 290%, P < .01; EM: 47%, P < .01). There were group differences in symptom severity (P < .01) and function (P < .01) on the Boston Carpal Tunnel Questionnaire. Both groups had an improvement in functional status (MT: 47%, P < .01; EM: 9%, P < .01) and a reduction in subjective CTS symptoms (MT: 67%, P < .01; EM: 15%, P < .01). Both therapies had a positive effect on nerve conduction, pain reduction, functional status, and subjective symptoms in
Pointwise probability reinforcements for robust statistical inference.
Frénay, Benoît; Verleysen, Michel
2014-02-01
Statistical inference using machine learning techniques may be difficult with small datasets because of abnormally frequent data (AFDs). AFDs are observations that are much more frequent in the training sample that they should be, with respect to their theoretical probability, and include e.g. outliers. Estimates of parameters tend to be biased towards models which support such data. This paper proposes to introduce pointwise probability reinforcements (PPRs): the probability of each observation is reinforced by a PPR and a regularisation allows controlling the amount of reinforcement which compensates for AFDs. The proposed solution is very generic, since it can be used to robustify any statistical inference method which can be formulated as a likelihood maximisation. Experiments show that PPRs can be easily used to tackle regression, classification and projection: models are freed from the influence of outliers. Moreover, outliers can be filtered manually since an abnormality degree is obtained for each observation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Growth Curve and Structural Equation Modeling : Topics from the Indian Statistical Institute
2015-01-01
This book describes some recent trends in GCM research on different subject areas, both theoretical and applied. This includes tools and possibilities for further work through new techniques and modification of existing ones. A growth curve is an empirical model of the evolution of a quantity over time. Growth curves in longitudinal studies are used in disciplines including biology, statistics, population studies, economics, biological sciences, sociology, nano-biotechnology, and fluid mechanics. The volume includes original studies, theoretical findings and case studies from a wide range of applied work. This volume builds on presentations from a GCM workshop held at the Indian Statistical Institute, Giridih, January 18-19, 2014. This book follows the volume Advances in Growth Curve Models, published by Springer in 2013. The results have meaningful application in health care, prediction of crop yield, child nutrition, poverty measurements, estimation of growth rate, and other research areas.
Cutting-edge statistical methods for a life-course approach.
Bub, Kristen L; Ferretti, Larissa K
2014-01-01
Advances in research methods, data collection and record keeping, and statistical software have substantially increased our ability to conduct rigorous research across the lifespan. In this article, we review a set of cutting-edge statistical methods that life-course researchers can use to rigorously address their research questions. For each technique, we describe the method, highlight the benefits and unique attributes of the strategy, offer a step-by-step guide on how to conduct the analysis, and illustrate the technique using data from the National Institute of Child Health and Human Development Study of Early Child Care and Youth Development. In addition, we recommend a set of technical and empirical readings for each technique. Our goal was not to address a substantive question of interest but instead to provide life-course researchers with a useful reference guide to cutting-edge statistical methods.
Directory of Open Access Journals (Sweden)
M.A. Delavar
2016-02-01
Full Text Available Introduction: The accumulation of heavy metals (HMs in the soil is of increasing concern due to food safety issues, potential health risks, and the detrimental effects on soil ecosystems. HMs may be considered as the most important soil pollutants, because they are not biodegradable and their physical movement through the soil profile is relatively limited. Therefore, root uptake process may provide a big chance for these pollutants to transfer from the surface soil to natural and cultivated plants, which may eventually steer them to human bodies. The general behavior of HMs in the environment, especially their bioavailability in the soil, is influenced by their origin. Hence, source apportionment of HMs may provide some essential information for better management of polluted soils to restrict the HMs entrance to the human food chain. This paper explores the applicability of multivariate statistical techniques in the identification of probable sources that can control the concentration and distribution of selected HMs in the soils surrounding the Zanjan Zinc Specialized Industrial Town (briefly Zinc Town. Materials and Methods: The area under investigation has a size of approximately 4000 ha.It is located around the Zinc Town, Zanjan province. A regular grid sampling pattern with an interval of 500 meters was applied to identify the sample location, and 184 topsoil samples (0-10 cm were collected. The soil samples were air-dried and sieved through a 2 mm polyethylene sieve and then, were digested using HNO3. The total concentrations of zinc (Zn, lead (Pb, cadmium (Cd, Nickel (Ni and copper (Cu in the soil solutions were determined via Atomic Absorption Spectroscopy (AAS. Data were statistically analyzed using the SPSS software version 17.0 for Windows. Correlation Matrix (CM, Principal Component Analyses (PCA and Factor Analyses (FA techniques were performed in order to identify the probable sources of HMs in the studied soils. Results and
McLoughlin, M. Padraig M. M.
2008-01-01
The author of this paper submits the thesis that learning requires doing; only through inquiry is learning achieved, and hence this paper proposes a programme of use of a modified Moore method in a Probability and Mathematical Statistics (PAMS) course sequence to teach students PAMS. Furthermore, the author of this paper opines that set theory…
Statistical methods for quality assurance basics, measurement, control, capability, and improvement
Vardeman, Stephen B
2016-01-01
This undergraduate statistical quality assurance textbook clearly shows with real projects, cases and data sets how statistical quality control tools are used in practice. Among the topics covered is a practical evaluation of measurement effectiveness for both continuous and discrete data. Gauge Reproducibility and Repeatability methodology (including confidence intervals for Repeatability, Reproducibility and the Gauge Capability Ratio) is thoroughly developed. Process capability indices and corresponding confidence intervals are also explained. In addition to process monitoring techniques, experimental design and analysis for process improvement are carefully presented. Factorial and Fractional Factorial arrangements of treatments and Response Surface methods are covered. Integrated throughout the book are rich sets of examples and problems that help readers gain a better understanding of where and how to apply statistical quality control tools. These large and realistic problem sets in combination with the...
Peng, Chengtao; Qiu, Bensheng; Zhang, Cheng; Ma, Changyu; Yuan, Gang; Li, Ming
2017-07-01
Over the years, the X-ray computed tomography (CT) has been successfully used in clinical diagnosis. However, when the body of the patient to be examined contains metal objects, the image reconstructed would be polluted by severe metal artifacts, which affect the doctor's diagnosis of disease. In this work, we proposed a dynamic re-weighted total variation (DRWTV) technique combined with the statistic iterative reconstruction (SIR) method to reduce the artifacts. The DRWTV method is based on the total variation (TV) and re-weighted total variation (RWTV) techniques, but it provides a sparser representation than TV and protects the tissue details better than RWTV. Besides, the DRWTV can suppress the artifacts and noise, and the SIR convergence speed is also accelerated. The performance of the algorithm is tested on both simulated phantom dataset and clinical dataset, which are the teeth phantom with two metal implants and the skull with three metal implants, respectively. The proposed algorithm (SIR-DRWTV) is compared with two traditional iterative algorithms, which are SIR and SIR constrained by RWTV regulation (SIR-RWTV). The results show that the proposed algorithm has the best performance in reducing metal artifacts and protecting tissue details.
Adaptive RAC codes employing statistical channel evaluation ...
African Journals Online (AJOL)
An adaptive encoding technique using row and column array (RAC) codes employing a different number of parity columns that depends on the channel state is proposed in this paper. The trellises of the proposed adaptive codes and a statistical channel evaluation technique employing these trellises are designed and ...
Improving cerebellar segmentation with statistical fusion
Plassard, Andrew J.; Yang, Zhen; Prince, Jerry L.; Claassen, Daniel O.; Landman, Bennett A.
2016-03-01
The cerebellum is a somatotopically organized central component of the central nervous system well known to be involved with motor coordination and increasingly recognized roles in cognition and planning. Recent work in multiatlas labeling has created methods that offer the potential for fully automated 3-D parcellation of the cerebellar lobules and vermis (which are organizationally equivalent to cortical gray matter areas). This work explores the trade offs of using different statistical fusion techniques and post hoc optimizations in two datasets with distinct imaging protocols. We offer a novel fusion technique by extending the ideas of the Selective and Iterative Method for Performance Level Estimation (SIMPLE) to a patch-based performance model. We demonstrate the effectiveness of our algorithm, Non- Local SIMPLE, for segmentation of a mixed population of healthy subjects and patients with severe cerebellar anatomy. Under the first imaging protocol, we show that Non-Local SIMPLE outperforms previous gold-standard segmentation techniques. In the second imaging protocol, we show that Non-Local SIMPLE outperforms previous gold standard techniques but is outperformed by a non-locally weighted vote with the deeper population of atlases available. This work advances the state of the art in open source cerebellar segmentation algorithms and offers the opportunity for routinely including cerebellar segmentation in magnetic resonance imaging studies that acquire whole brain T1-weighted volumes with approximately 1 mm isotropic resolution.
Analytical system availability techniques
Brouwers, J.J.H.; Verbeek, P.H.J.; Thomson, W.R.
1987-01-01
Analytical techniques are presented to assess the probability distributions and related statistical parameters of loss of production from equipment networks subject to random failures and repairs. The techniques are based on a theoretical model for system availability, which was further developed
Flore, Jacinthe
2016-09-01
This article examines the problematization of sexual appetite and its imbalances in the development of the Diagnostic and Statistical Manual of Mental Disorders (DSM) in the twentieth and twenty-first centuries. The dominant strands of historiographies of sexuality have focused on historicizing sexual object choice and understanding the emergence of sexual identities. This article emphasizes the need to contextualize these histories within a broader frame of historical interest in the problematization of sexual appetite. The first part highlights how sexual object choice, as a paradigm of sexual dysfunctions, progressively receded from medical interest in the twentieth century as the clinical gaze turned to the problem of sexual appetite and its imbalances. The second part uses the example of the newly introduced Female Sexual Interest/Arousal Disorder in the DSM-5 to explore how the Manual functions as a technique for taking care of the self. I argue that the design of the Manual and associated inventories and questionnaires paved the way for their interpretation and application as techniques for self-examination. © The Author(s) 2016.
Powerful Statistical Inference for Nested Data Using Sufficient Summary Statistics
Dowding, Irene; Haufe, Stefan
2018-01-01
Hierarchically-organized data arise naturally in many psychology and neuroscience studies. As the standard assumption of independent and identically distributed samples does not hold for such data, two important problems are to accurately estimate group-level effect sizes, and to obtain powerful statistical tests against group-level null hypotheses. A common approach is to summarize subject-level data by a single quantity per subject, which is often the mean or the difference between class means, and treat these as samples in a group-level t-test. This “naive” approach is, however, suboptimal in terms of statistical power, as it ignores information about the intra-subject variance. To address this issue, we review several approaches to deal with nested data, with a focus on methods that are easy to implement. With what we call the sufficient-summary-statistic approach, we highlight a computationally efficient technique that can improve statistical power by taking into account within-subject variances, and we provide step-by-step instructions on how to apply this approach to a number of frequently-used measures of effect size. The properties of the reviewed approaches and the potential benefits over a group-level t-test are quantitatively assessed on simulated data and demonstrated on EEG data from a simulated-driving experiment. PMID:29615885
Statistical models and methods for reliability and survival analysis
Couallier, Vincent; Huber-Carol, Catherine; Mesbah, Mounir; Huber -Carol, Catherine; Limnios, Nikolaos; Gerville-Reache, Leo
2013-01-01
Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical
RELIABILITY OF CERTAIN TESTS FOR EVALUATION OF JUDO TECHNIQUES
Directory of Open Access Journals (Sweden)
Slavko Obadov
2007-05-01
Full Text Available The sample included 106 judokas. Assessment of the level of mastership of judo techniques was carried out by evaluation of fi ve competent studies. Each subject performed a technique three times and each performance was evaluated by the judges. In order to evaluate measurement of each technique, Cronbach’s coeffi cient of reliability was calculated. During the procedure the subjects's results were also transformed to factor scores i.e. the results of each performer at the main component of evaluation in the fi ve studies. These factor scores could be used in the subsequent procedure of multivariant statistical analysis.
Analysis of Variance in Statistical Image Processing
Kurz, Ludwik; Hafed Benteftifa, M.
1997-04-01
A key problem in practical image processing is the detection of specific features in a noisy image. Analysis of variance (ANOVA) techniques can be very effective in such situations, and this book gives a detailed account of the use of ANOVA in statistical image processing. The book begins by describing the statistical representation of images in the various ANOVA models. The authors present a number of computationally efficient algorithms and techniques to deal with such problems as line, edge, and object detection, as well as image restoration and enhancement. By describing the basic principles of these techniques, and showing their use in specific situations, the book will facilitate the design of new algorithms for particular applications. It will be of great interest to graduate students and engineers in the field of image processing and pattern recognition.
Marrakesh International Conference on Probability and Statistics
Ouassou, Idir; Rachdi, Mustapha
2015-01-01
This volume, which highlights recent advances in statistical methodology and applications, is divided into two main parts. The first part presents theoretical results on estimation techniques in functional statistics, while the second examines three key areas of application: estimation problems in queuing theory, an application in signal processing, and the copula approach to epidemiologic modelling. The book’s peer-reviewed contributions are based on papers originally presented at the Marrakesh International Conference on Probability and Statistics held in December 2013.
Statistical and thermal physics with computer applications
Gould, Harvey
2010-01-01
This textbook carefully develops the main ideas and techniques of statistical and thermal physics and is intended for upper-level undergraduate courses. The authors each have more than thirty years' experience in teaching, curriculum development, and research in statistical and computational physics. Statistical and Thermal Physics begins with a qualitative discussion of the relation between the macroscopic and microscopic worlds and incorporates computer simulations throughout the book to provide concrete examples of important conceptual ideas. Unlike many contemporary texts on the
Directory of Open Access Journals (Sweden)
Christopher Woods
Full Text Available This paper introduces statistical shape modelling (SSM for use in osteoarchaeology research. SSM is a full field, multi-material analytical technique, and is presented as a supplementary geometric morphometric (GM tool. Lower mandibular canines from two archaeological populations and one modern population were sampled, digitised using micro-CT, aligned, registered to a baseline and statistically modelled using principal component analysis (PCA. Sample material properties were incorporated as a binary enamel/dentin parameter. Results were assessed qualitatively and quantitatively using anatomical landmarks. Finally, the technique's application was demonstrated for inter-sample comparison through analysis of the principal component (PC weights. It was found that SSM could provide high detail qualitative and quantitative insight with respect to archaeological inter- and intra-sample variability. This technique has value for archaeological, biomechanical and forensic applications including identification, finite element analysis (FEA and reconstruction from partial datasets.
Statistics for Physical Sciences An Introduction
Martin, Brian
2012-01-01
Statistical Methods for the Physical Sciences is an informal, relatively short, but systematic, guide to the more commonly used ideas and techniques in statistical analysis, as used in physical sciences, together with explanations of their origins. It steers a path between the extremes of a recipe of methods with a collection of useful formulas, and a full mathematical account of statistics, while at the same time developing the subject in a logical way. The book can be read in its entirety by anyone with a basic exposure to mathematics at the level of a first-year undergraduate student
IBM SPSS statistics 19 made simple
Gray, Colin D
2012-01-01
This new edition of one of the most widely read textbooks in its field introduces the reader to data analysis with the most powerful and versatile statistical package on the market: IBM SPSS Statistics 19. Each new release of SPSS Statistics features new options and other improvements. There remains a core of fundamental operating principles and techniques which have continued to apply to all releases issued in recent years and have been proved to be worth communicating in a small volume. This practical and informal book combines simplicity and clarity of presentation with a comprehensive trea
Neyton, Lionel; Barth, Johannes; Nourissat, Geoffroy; Métais, Pierre; Boileau, Pascal; Walch, Gilles; Lafosse, Laurent
2018-05-19
To analyze graft and fixation (screw and EndoButton) positioning after the arthroscopic Latarjet technique with 2-dimensional computed tomography (CT) and to compare it with the open technique. We performed a retrospective multicenter study (March 2013 to June 2014). The inclusion criteria included patients with recurrent anterior instability treated with the Latarjet procedure. The exclusion criterion was the absence of a postoperative CT scan. The positions of the hardware, the positions of the grafts in the axial and sagittal planes, and the dispersion of values (variability) were compared. The study included 208 patients (79 treated with open technique, 87 treated with arthroscopic Latarjet technique with screw fixation [arthro-screw], and 42 treated with arthroscopic Latarjet technique with EndoButton fixation [arthro-EndoButton]). The angulation of the screws was different in the open group versus the arthro-screw group (superior, 10.3° ± 0.7° vs 16.9° ± 1.0° [P open inferior screws (P = .003). In the axial plane (level of equator), the arthroscopic techniques resulted in lateral positions (arthro-screw, 1.5 ± 0.3 mm lateral [P open technique (0.9 ± 0.2 mm medial). At the level of 25% of the glenoid height, the arthroscopic techniques resulted in lateral positions (arthro-screw, 0.3 ± 0.3 mm lateral [P open technique (1.0 ± 0.2 mm medial). Higher variability was observed in the arthro-screw group. In the sagittal plane, the arthro-screw technique resulted in higher positions (55% ± 3% of graft below equator) and the arthro-EndoButton technique resulted in lower positions (82% ± 3%, P open technique (71% ± 2%). Variability was not different. This study shows that the position of the fixation devices and position of the bone graft with the arthroscopic techniques are statistically significantly different from those with the open technique with 2-dimensional CT assessment. In the sagittal plane, the arthro-screw technique provides the highest
Equilibrium statistical mechanics
Jackson, E Atlee
2000-01-01
Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t
Feiveson, Alan H.; Foy, Millennia; Ploutz-Snyder, Robert; Fiedler, James
2014-01-01
Do you have elevated p-values? Is the data analysis process getting you down? Do you experience anxiety when you need to respond to criticism of statistical methods in your manuscript? You may be suffering from Insufficient Statistical Support Syndrome (ISSS). For symptomatic relief of ISSS, come for a free consultation with JSC biostatisticians at our help desk during the poster sessions at the HRP Investigators Workshop. Get answers to common questions about sample size, missing data, multiple testing, when to trust the results of your analyses and more. Side effects may include sudden loss of statistics anxiety, improved interpretation of your data, and increased confidence in your results.
National transportation statistics 2011
2011-04-01
Compiled and published by the U.S. Department of Transportation's Bureau of Transportation Statistics : (BTS), National Transportation Statistics presents information on the U.S. transportation system, including : its physical components, safety reco...
National Transportation Statistics 2008
2009-01-08
Compiled and published by the U.S. Department of Transportations Bureau of Transportation Statistics (BTS), National Transportation Statistics presents information on the U.S. transportation system, including its physical components, safety record...
National Transportation Statistics 2009
2010-01-21
Compiled and published by the U.S. Department of Transportation's Bureau of Transportation Statistics (BTS), National Transportation Statistics presents information on the U.S. transportation system, including its physical components, safety record, ...
The R software fundamentals of programming and statistical analysis
Lafaye de Micheaux, Pierre; Liquet, Benoit
2013-01-01
The contents of The R Software are presented so as to be both comprehensive and easy for the reader to use. Besides its application as a self-learning text, this book can support lectures on R at any level from beginner to advanced. This book can serve as a textbook on R for beginners as well as more advanced users, working on Windows, MacOs or Linux OSes. The first part of the book deals with the heart of the R language and its fundamental concepts, including data organization, import and export, various manipulations, documentation, plots, programming and maintenance. The last chapter in this part deals with oriented object programming as well as interfacing R with C/C++ or Fortran, and contains a section on debugging techniques. This is followed by the second part of the book, which provides detailed explanations on how to perform many standard statistical analyses, mainly in the Biostatistics field. Topics from mathematical and statistical settings that are included are matrix operations, integration, o...
Building the Community Online Resource for Statistical Seismicity Analysis (CORSSA)
Michael, A. J.; Wiemer, S.; Zechar, J. D.; Hardebeck, J. L.; Naylor, M.; Zhuang, J.; Steacy, S.; Corssa Executive Committee
2010-12-01
Statistical seismology is critical to the understanding of seismicity, the testing of proposed earthquake prediction and forecasting methods, and the assessment of seismic hazard. Unfortunately, despite its importance to seismology - especially to those aspects with great impact on public policy - statistical seismology is mostly ignored in the education of seismologists, and there is no central repository for the existing open-source software tools. To remedy these deficiencies, and with the broader goal to enhance the quality of statistical seismology research, we have begun building the Community Online Resource for Statistical Seismicity Analysis (CORSSA). CORSSA is a web-based educational platform that is authoritative, up-to-date, prominent, and user-friendly. We anticipate that the users of CORSSA will range from beginning graduate students to experienced researchers. More than 20 scientists from around the world met for a week in Zurich in May 2010 to kick-start the creation of CORSSA: the format and initial table of contents were defined; a governing structure was organized; and workshop participants began drafting articles. CORSSA materials are organized with respect to six themes, each containing between four and eight articles. The CORSSA web page, www.corssa.org, officially unveiled on September 6, 2010, debuts with an initial set of approximately 10 to 15 articles available online for viewing and commenting with additional articles to be added over the coming months. Each article will be peer-reviewed and will present a balanced discussion, including illustrative examples and code snippets. Topics in the initial set of articles will include: introductions to both CORSSA and statistical seismology, basic statistical tests and their role in seismology; understanding seismicity catalogs and their problems; basic techniques for modeling seismicity; and methods for testing earthquake predictability hypotheses. A special article will compare and review
Howard Stauffer; Nadav Nur
2005-01-01
The papers included in the Advances in Statistics section of the Partners in Flight (PIF) 2002 Proceedings represent a small sample of statistical topics of current importance to Partners In Flight research scientists: hierarchical modeling, estimation of detection probabilities, and Bayesian applications. Sauer et al. (this volume) examines a hierarchical model...
REANALYSIS OF F-STATISTIC GRAVITATIONAL-WAVE SEARCHES WITH THE HIGHER CRITICISM STATISTIC
International Nuclear Information System (INIS)
Bennett, M. F.; Melatos, A.; Delaigle, A.; Hall, P.
2013-01-01
We propose a new method of gravitational-wave detection using a modified form of higher criticism, a statistical technique introduced by Donoho and Jin. Higher criticism is designed to detect a group of sparse, weak sources, none of which are strong enough to be reliably estimated or detected individually. We apply higher criticism as a second-pass method to synthetic F-statistic and C-statistic data for a monochromatic periodic source in a binary system and quantify the improvement relative to the first-pass methods. We find that higher criticism on C-statistic data is more sensitive by ∼6% than the C-statistic alone under optimal conditions (i.e., binary orbit known exactly) and the relative advantage increases as the error in the orbital parameters increases. Higher criticism is robust even when the source is not monochromatic (e.g., phase-wandering in an accreting system). Applying higher criticism to a phase-wandering source over multiple time intervals gives a ∼> 30% increase in detectability with few assumptions about the frequency evolution. By contrast, in all-sky searches for unknown periodic sources, which are dominated by the brightest source, second-pass higher criticism does not provide any benefits over a first-pass search.
The Monte Carlo method the method of statistical trials
Shreider, YuA
1966-01-01
The Monte Carlo Method: The Method of Statistical Trials is a systematic account of the fundamental concepts and techniques of the Monte Carlo method, together with its range of applications. Some of these applications include the computation of definite integrals, neutron physics, and in the investigation of servicing processes. This volume is comprised of seven chapters and begins with an overview of the basic features of the Monte Carlo method and typical examples of its application to simple problems in computational mathematics. The next chapter examines the computation of multi-dimensio
National transportation statistics 2010
2010-01-01
National Transportation Statistics presents statistics on the U.S. transportation system, including its physical components, safety record, economic performance, the human and natural environment, and national security. This is a large online documen...
International Nuclear Information System (INIS)
Carneiro, Alvaro Luiz Guimaraes; Santos, Francisco Carlos Barbosa dos
2007-01-01
Energy is an essential input for social development and economic growth. The production and use of energy cause environmental degradation at all levels, being local, regional and global such as, combustion of fossil fuels causing air pollution; hydropower often causes environmental damage due to the submergence of large areas of land; and global climate change associated with the increasing concentration of greenhouse gases in the atmosphere. As mentioned in chapter 9 of Agenda 21, the Energy is essential to economic and social development and improved quality of life. Much of the world's energy, however, is currently produced and consumed in ways that could not be sustained if technologies were remain constant and if overall quantities were to increase substantially. All energy sources will need to be used in ways that respect the atmosphere, human health, and the environment as a whole. The energy in the context of sustainable development needs a set of quantifiable parameters, called indicators, to measure and monitor important changes and significant progress towards the achievement of the objectives of sustainable development policies. The indicators are divided into four dimensions: social, economic, environmental and institutional. This paper shows a methodology of analysis using Multivariate Statistical Technique that provide the ability to analyse complex sets of data. The main goal of this study is to explore the correlation analysis among the indicators. The data used on this research work, is an excerpt of IBGE (Instituto Brasileiro de Geografia e Estatistica) data census. The core indicators used in this study follows The IAEA (International Atomic Energy Agency) framework: Energy Indicators for Sustainable Development. (author)
Naghshpour, Shahdad
2012-01-01
Statistics is the branch of mathematics that deals with real-life problems. As such, it is an essential tool for economists. Unfortunately, the way you and many other economists learn the concept of statistics is not compatible with the way economists think and learn. The problem is worsened by the use of mathematical jargon and complex derivations. Here's a book that proves none of this is necessary. All the examples and exercises in this book are constructed within the field of economics, thus eliminating the difficulty of learning statistics with examples from fields that have no relation to business, politics, or policy. Statistics is, in fact, not more difficult than economics. Anyone who can comprehend economics can understand and use statistics successfully within this field, including you! This book utilizes Microsoft Excel to obtain statistical results, as well as to perform additional necessary computations. Microsoft Excel is not the software of choice for performing sophisticated statistical analy...
Karian, Zaven A
2000-01-01
Throughout the physical and social sciences, researchers face the challenge of fitting statistical distributions to their data. Although the study of statistical modelling has made great strides in recent years, the number and variety of distributions to choose from-all with their own formulas, tables, diagrams, and general properties-continue to create problems. For a specific application, which of the dozens of distributions should one use? What if none of them fit well?Fitting Statistical Distributions helps answer those questions. Focusing on techniques used successfully across many fields, the authors present all of the relevant results related to the Generalized Lambda Distribution (GLD), the Generalized Bootstrap (GB), and Monte Carlo simulation (MC). They provide the tables, algorithms, and computer programs needed for fitting continuous probability distributions to data in a wide variety of circumstances-covering bivariate as well as univariate distributions, and including situations where moments do...
SOCR Analyses - an Instructional Java Web-based Statistical Analysis Toolkit.
Chu, Annie; Cui, Jenny; Dinov, Ivo D
2009-03-01
The Statistical Online Computational Resource (SOCR) designs web-based tools for educational use in a variety of undergraduate courses (Dinov 2006). Several studies have demonstrated that these resources significantly improve students' motivation and learning experiences (Dinov et al. 2008). SOCR Analyses is a new component that concentrates on data modeling and analysis using parametric and non-parametric techniques supported with graphical model diagnostics. Currently implemented analyses include commonly used models in undergraduate statistics courses like linear models (Simple Linear Regression, Multiple Linear Regression, One-Way and Two-Way ANOVA). In addition, we implemented tests for sample comparisons, such as t-test in the parametric category; and Wilcoxon rank sum test, Kruskal-Wallis test, Friedman's test, in the non-parametric category. SOCR Analyses also include several hypothesis test models, such as Contingency tables, Friedman's test and Fisher's exact test.The code itself is open source (http://socr.googlecode.com/), hoping to contribute to the efforts of the statistical computing community. The code includes functionality for each specific analysis model and it has general utilities that can be applied in various statistical computing tasks. For example, concrete methods with API (Application Programming Interface) have been implemented in statistical summary, least square solutions of general linear models, rank calculations, etc. HTML interfaces, tutorials, source code, activities, and data are freely available via the web (www.SOCR.ucla.edu). Code examples for developers and demos for educators are provided on the SOCR Wiki website.In this article, the pedagogical utilization of the SOCR Analyses is discussed, as well as the underlying design framework. As the SOCR project is on-going and more functions and tools are being added to it, these resources are constantly improved. The reader is strongly encouraged to check the SOCR site for most
Understanding statistical concepts using S-PLUS
Schumacker, Randall E
2001-01-01
Written as a supplemental text for an introductory or intermediate statistics course, this book is organized along the lines of many popular statistics texts. The chapters provide a good conceptual understanding of basic statistics and include exercises that use S-PLUS simulation programs. Each chapter lists a set of objectives and a summary.The book offers a rich insight into how probability has shaped statistical procedures in the behavioral sciences, as well as a brief history behind the creation of various statistics. Computational skills are kept to a minimum by including S-PLUS programs
Gao, Yongnian; Gao, Junfeng; Yin, Hongbin; Liu, Chuansheng; Xia, Ting; Wang, Jing; Huang, Qi
2015-03-15
Remote sensing has been widely used for ater quality monitoring, but most of these monitoring studies have only focused on a few water quality variables, such as chlorophyll-a, turbidity, and total suspended solids, which have typically been considered optically active variables. Remote sensing presents a challenge in estimating the phosphorus concentration in water. The total phosphorus (TP) in lakes has been estimated from remotely sensed observations, primarily using the simple individual band ratio or their natural logarithm and the statistical regression method based on the field TP data and the spectral reflectance. In this study, we investigated the possibility of establishing a spatial modeling scheme to estimate the TP concentration of a large lake from multi-spectral satellite imagery using band combinations and regional multivariate statistical modeling techniques, and we tested the applicability of the spatial modeling scheme. The results showed that HJ-1A CCD multi-spectral satellite imagery can be used to estimate the TP concentration in a lake. The correlation and regression analysis showed a highly significant positive relationship between the TP concentration and certain remotely sensed combination variables. The proposed modeling scheme had a higher accuracy for the TP concentration estimation in the large lake compared with the traditional individual band ratio method and the whole-lake scale regression-modeling scheme. The TP concentration values showed a clear spatial variability and were high in western Lake Chaohu and relatively low in eastern Lake Chaohu. The northernmost portion, the northeastern coastal zone and the southeastern portion of western Lake Chaohu had the highest TP concentrations, and the other regions had the lowest TP concentration values, except for the coastal zone of eastern Lake Chaohu. These results strongly suggested that the proposed modeling scheme, i.e., the band combinations and the regional multivariate
Statistical data analysis using SAS intermediate statistical methods
Marasinghe, Mervyn G
2018-01-01
The aim of this textbook (previously titled SAS for Data Analytics) is to teach the use of SAS for statistical analysis of data for advanced undergraduate and graduate students in statistics, data science, and disciplines involving analyzing data. The book begins with an introduction beyond the basics of SAS, illustrated with non-trivial, real-world, worked examples. It proceeds to SAS programming and applications, SAS graphics, statistical analysis of regression models, analysis of variance models, analysis of variance with random and mixed effects models, and then takes the discussion beyond regression and analysis of variance to conclude. Pedagogically, the authors introduce theory and methodological basis topic by topic, present a problem as an application, followed by a SAS analysis of the data provided and a discussion of results. The text focuses on applied statistical problems and methods. Key features include: end of chapter exercises, downloadable SAS code and data sets, and advanced material suitab...
Statistics and probability with applications for engineers and scientists
Gupta, Bhisham C
2013-01-01
Introducing the tools of statistics and probability from the ground up An understanding of statistical tools is essential for engineers and scientists who often need to deal with data analysis over the course of their work. Statistics and Probability with Applications for Engineers and Scientists walks readers through a wide range of popular statistical techniques, explaining step-by-step how to generate, analyze, and interpret data for diverse applications in engineering and the natural sciences. Unique among books of this kind, Statistics and Prob
Mallineni, S K; Anthonappa, R P; King, N M
2016-12-01
To assess the reliability of the vertical tube shift technique (VTST) and horizontal tube shift technique (HTST) for the localisation of unerupted supernumerary teeth (ST) in the anterior region of the maxilla. A convenience sample of 83 patients who attended a major teaching hospital because of unerupted ST was selected. Only non-syndromic patients with ST and who had complete clinical and radiographic and surgical records were included in the study. Ten examiners independently rated the paired set of radiographs for each technique. Chi-square test, paired t test and kappa statistics were employed to assess the intra- and inter-examiner reliability. Paired sets of 1660 radiographs (830 pairs for each technique) were available for the analysis. The overall sensitivity for VTST and HTST was 80.6 and 72.1% respectively, with slight inter-examiner and good intra-examiner reliability. Statistically significant differences were evident between the two localisation techniques (p HTST in the anterior region of the maxilla.
International Nuclear Information System (INIS)
Oelkers, E.; Heller, A.S.; Farnsworth, D.A.; Kearfott, K.J.
1978-01-01
The report describes the statistical analysis of DNBR thermal-hydraulic margin of a 3800 MWt, 205-FA core under design overpower conditions. The analysis used LYNX-generated data at predetermined values of the input variables whose uncertainties were to be statistically combined. LYNX data were used to construct an efficient response surface model in the region of interest; the statistical analysis was accomplished through the evaluation of core reliability; utilizing propagation of the uncertainty distributions of the inputs. The response surface model was implemented in both the analytical error propagation and Monte Carlo Techniques. The basic structural units relating to the acceptance criteria are fuel pins. Therefore, the statistical population of pins with minimum DNBR values smaller than specified values is determined. The specified values are designated relative to the most probable and maximum design DNBR values on the power limiting pin used in present design analysis, so that gains over the present design criteria could be assessed for specified probabilistic acceptance criteria. The results are equivalent to gains ranging from 1.2 to 4.8 percent of rated power dependent on the acceptance criterion. The corresponding acceptance criteria range from 95 percent confidence that no pin will be in DNB to 99.9 percent of the pins, which are expected to avoid DNB
2017 Annual Disability Statistics Supplement
Lauer, E. A; Houtenville, A. J.
2018-01-01
The "Annual Disability Statistics Supplement" is a companion report to the "Annual Disability Statistics Compendium." The "Supplement" presents statistics on the same topics as the "Compendium," with additional categorizations by demographic characteristics including age, gender and race/ethnicity. In…
Australian black coal statistics 1991
Energy Technology Data Exchange (ETDEWEB)
1992-01-01
This third edition of Australian black coal statistics covers anthracite, bituminous and subbituminous coals. It includes maps and figures on resources and coal fields and statistics (mainly based on the calendar year 1991) on coal demand and supply, production, employment and productivity in Australian coal mines, exports, prices and ports, and domestic consumption. A listing of coal producers by state is included. A final section presents key statistics on international world trade in 1991. 54 tabs.
Hu, Yijia; Zhong, Zhong; Zhu, Yimin; Ha, Yao
2018-04-01
In this paper, a statistical forecast model using the time-scale decomposition method is established to do the seasonal prediction of the rainfall during flood period (FPR) over the middle and lower reaches of the Yangtze River Valley (MLYRV). This method decomposites the rainfall over the MLYRV into three time-scale components, namely, the interannual component with the period less than 8 years, the interdecadal component with the period from 8 to 30 years, and the interdecadal component with the period larger than 30 years. Then, the predictors are selected for the three time-scale components of FPR through the correlation analysis. At last, a statistical forecast model is established using the multiple linear regression technique to predict the three time-scale components of the FPR, respectively. The results show that this forecast model can capture the interannual and interdecadal variation of FPR. The hindcast of FPR during 14 years from 2001 to 2014 shows that the FPR can be predicted successfully in 11 out of the 14 years. This forecast model performs better than the model using traditional scheme without time-scale decomposition. Therefore, the statistical forecast model using the time-scale decomposition technique has good skills and application value in the operational prediction of FPR over the MLYRV.
Statistical Model Checking of Rich Models and Properties
DEFF Research Database (Denmark)
Poulsen, Danny Bøgsted
in undecidability issues for the traditional model checking approaches. Statistical model checking has proven itself a valuable supplement to model checking and this thesis is concerned with extending this software validation technique to stochastic hybrid systems. The thesis consists of two parts: the first part...... motivates why existing model checking technology should be supplemented by new techniques. It also contains a brief introduction to probability theory and concepts covered by the six papers making up the second part. The first two papers are concerned with developing online monitoring techniques...... systems. The fifth paper shows how stochastic hybrid automata are useful for modelling biological systems and the final paper is concerned with showing how statistical model checking is efficiently distributed. In parallel with developing the theory contained in the papers, a substantial part of this work...
A DIY guide to statistical strategy
International Nuclear Information System (INIS)
Pregibon, D.
1986-01-01
This chapter is a do it yourself (DIY) guide to developing statistical strategy for a particular data analysis task. The primary audience of the chapter is research statisticians. The material should also be of interest to nonstatisticians, especially knowledge engineers, who are interested in using statistical data analysis as an application domain for Artificial Intelligence techniques. The do's and don'ts of strategy development are outlined. The ''linear regression'' task is used to illustrate many of the ideas
Probability and statistics for computer science
Johnson, James L
2011-01-01
Comprehensive and thorough development of both probability and statistics for serious computer scientists; goal-oriented: ""to present the mathematical analysis underlying probability results"" Special emphases on simulation and discrete decision theory Mathematically-rich, but self-contained text, at a gentle pace Review of calculus and linear algebra in an appendix Mathematical interludes (in each chapter) which examine mathematical techniques in the context of probabilistic or statistical importance Numerous section exercises, summaries, historical notes, and Further Readings for reinforcem
Telling the truth with statistics
CERN. Geneva; CERN. Geneva. Audiovisual Unit
2002-01-01
This course of lectures will cover probability, distributions, fitting, errors and confidence levels, for practising High Energy Physicists who need to use Statistical techniques to express their results. Concentrating on these appropriate specialist techniques means that they can be covered in appropriate depth, while assuming only the knowledge and experience of a typical Particle Physicist. The different definitions of probability will be explained, and it will be appear why this basic subject is so controversial; there are several viewpoints and it is important to understand them all, rather than abusing the adherents of different beliefs. Distributions will be covered: the situations they arise in, their useful properties, and the amazing result of the Central Limit Theorem. Fitting a parametrisation to a set of data is one of the most widespread uses of statistics: these are lots of ways of doing this and these will be presented, with discussion of which is appropriate in different circumstances. This t...
Exploring the temporal stability of global road safety statistics.
Dimitriou, Loukas; Nikolaou, Paraskevas; Antoniou, Constantinos
2018-02-08
Given the importance of rigorous quantitative reasoning in supporting national, regional or global road safety policies, data quality, reliability, and stability are of the upmost importance. This study focuses on macroscopic properties of road safety statistics and the temporal stability of these statistics at a global level. A thorough investigation of two years of measurements was conducted to identify any unexpected gaps that could highlight the existence of inconsistent measurements. The database used in this research includes 121 member countries of the United Nation (UN-121) with a population of at least one million (smaller country data shows higher instability) and includes road safety and socioeconomic variables collected from a number of international databases (e.g. WHO and World Bank) for the years 2010 and 2013. For the fulfillment of the earlier stated goal, a number of data visualization and exploratory analyses (Hierarchical Clustering and Principal Component Analysis) were conducted. Furthermore, in order to provide a richer analysis of the data, we developed and compared the specification of a number of Structural Equation Models for the years 2010 and 2013. Different scenarios have been developed, with different endogenous variables (indicators of mortality rate and fatality risk) and structural forms. The findings of the current research indicate inconsistency phenomena in global statistics of different instances/years. Finally, the results of this research provide evidence on the importance of careful and systematic data collection for developing advanced statistical and econometric techniques and furthermore for developing road safety policies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Using Pre-Statistical Analysis to Streamline Monitoring Assessments
International Nuclear Information System (INIS)
Reed, J.K.
1999-01-01
A variety of statistical methods exist to aid evaluation of groundwater quality and subsequent decision making in regulatory programs. These methods are applied because of large temporal and spatial extrapolations commonly applied to these data. In short, statistical conclusions often serve as a surrogate for knowledge. However, facilities with mature monitoring programs that have generated abundant data have inherently less uncertainty because of the sheer quantity of analytical results. In these cases, statistical tests can be less important, and ''expert'' data analysis should assume an important screening role.The WSRC Environmental Protection Department, working with the General Separations Area BSRI Environmental Restoration project team has developed a method for an Integrated Hydrogeological Analysis (IHA) of historical water quality data from the F and H Seepage Basins groundwater remediation project. The IHA combines common sense analytical techniques and a GIS presentation that force direct interactive evaluation of the data. The IHA can perform multiple data analysis tasks required by the RCRA permit. These include: (1) Development of a groundwater quality baseline prior to remediation startup, (2) Targeting of constituents for removal from RCRA GWPS, (3) Targeting of constituents for removal from UIC, permit, (4) Targeting of constituents for reduced, (5)Targeting of monitoring wells not producing representative samples, (6) Reduction in statistical evaluation, and (7) Identification of contamination from other facilities
International Nuclear Information System (INIS)
2000-01-01
For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products
Statistics of Monte Carlo methods used in radiation transport calculation
International Nuclear Information System (INIS)
Datta, D.
2009-01-01
Radiation transport calculation can be carried out by using either deterministic or statistical methods. Radiation transport calculation based on statistical methods is basic theme of the Monte Carlo methods. The aim of this lecture is to describe the fundamental statistics required to build the foundations of Monte Carlo technique for radiation transport calculation. Lecture note is organized in the following way. Section (1) will describe the introduction of Basic Monte Carlo and its classification towards the respective field. Section (2) will describe the random sampling methods, a key component of Monte Carlo radiation transport calculation, Section (3) will provide the statistical uncertainty of Monte Carlo estimates, Section (4) will describe in brief the importance of variance reduction techniques while sampling particles such as photon, or neutron in the process of radiation transport
International Nuclear Information System (INIS)
DeVol, T.A.; Gohres, A.A.; Williams, C.L.
2009-01-01
False positive and false negative incidence rates of radiological monitoring data from classical and Bayesian statistical process control chart techniques are compared. The on-line monitoring for illicit radioactive material with no false positives or false negatives is the goal of homeland security monitoring, but is unrealistic. However, statistical fluctuations in the detector signal, short detection times, large source to detector distances, and shielding effects make distinguishing between a radiation source and natural background particularly difficult. Experimental time series data were collected using a 1' x 1' LaCl 3 (Ce) based scintillation detector (Scionix, Orlando, FL) under various simulated conditions. Experimental parameters include radionuclide (gamma-ray) energy, activity, density thickness (source to detector distance and shielding), time, and temperature. All statistical algorithms were developed using MATLAB TM . The Shewhart (3-σ) control chart and the cumulative sum (CUSUM) control chart are the classical procedures adopted, while the Bayesian technique is the Shiryayev-Roberts (S-R) control chart. The Shiryayev-Roberts method was the best method for controlling the number of false positive detects, followed by the CUSUM method. However, The Shiryayev-Roberts method, used without modification, resulted in one of the highest false negative incidence rates independent of the signal strength. Modification of The Shiryayev-Roberts statistical analysis method reduced the number of false negatives, but resulted in an increase in the false positive incidence rate. (author)
Enseignement technique : Séminaire de l'enseigement technique
2004-01-01
Mardi 4 mai 2004 SEMINAIRE DE L'ENSEIGNEMENT TECHNIQUE de 14:00 à 17:00 - Training Centre Auditorium - bât. 593 Le SPC - Statistical Process Control - dans une démarche de qualité totale Hakim Bourahla, Maurice Arrius, Charbel Tannous - ABW Concept - F-74950 SCIONZIER, France Ce nouveau séminaire de l'Enseignement Technique sera consacré à la présentation du SPC, le Statistical Process Control. Le SPC apporte une grande efficacité dans l'amélioration de la qualité des produits. Cette méthode, permettant d'assurer une qualité optimum à l'aide d'un outil statistique, est fondée sur deux concepts de base : le suivi et le pilotage des procédés industriels par cartes de contrôle, et l'étude des capabilités des systèmes de production. - Origine et objectifs du SPC - Concepts du ...
Enseignement technique : Séminaire de l'enseignement technique
2004-01-01
Mardi 4 mai 2004 SEMINAIRE DE L'ENSEIGNEMENT TECHNIQUE de 14:00 à 17:00 - Training Centre Auditorium - bât. 593 Le SPC - Statistical Process Control - dans une démarche de qualité totale Hakim Bourahla, Maurice Arrius, Charbel Tannous - ABW Concept - F-74950 SCIONZIER, France Ce nouveau séminaire de l'Enseignement Technique sera consacré à la présentation du SPC, le Statistical Process Control. Le SPC apporte une grande efficacité dans l'amélioration de la qualité des produits. Cette méthode, permettant d'assurer une qualité optimum à l'aide d'un outil statistique, est fondée sur deux concepts de base : le suivi et le pilotage des procédés industriels par cartes de contrôle, et l'étude des capabilités des systèmes de production. - Origine et objectifs du SPC - Concepts du ...
Oliveira Mendes, Thiago de; Pinto, Liliane Pereira; Santos, Laurita dos; Tippavajhala, Vamshi Krishna; Téllez Soto, Claudio Alberto; Martin, Airton Abrahão
2016-07-01
The analysis of biological systems by spectroscopic techniques involves the evaluation of hundreds to thousands of variables. Hence, different statistical approaches are used to elucidate regions that discriminate classes of samples and to propose new vibrational markers for explaining various phenomena like disease monitoring, mechanisms of action of drugs, food, and so on. However, the technical statistics are not always widely discussed in applied sciences. In this context, this work presents a detailed discussion including the various steps necessary for proper statistical analysis. It includes univariate parametric and nonparametric tests, as well as multivariate unsupervised and supervised approaches. The main objective of this study is to promote proper understanding of the application of various statistical tools in these spectroscopic methods used for the analysis of biological samples. The discussion of these methods is performed on a set of in vivo confocal Raman spectra of human skin analysis that aims to identify skin aging markers. In the Appendix, a complete routine of data analysis is executed in a free software that can be used by the scientific community involved in these studies.
Mathematical-statistical models and qualitative theories for economic and social sciences
Maturo, Fabrizio; Kacprzyk, Janusz
2017-01-01
This book presents a broad spectrum of problems related to statistics, mathematics, teaching, social science, and economics as well as a range of tools and techniques that can be used to solve these problems. It is the result of a scientific collaboration between experts in the field of economic and social systems from the University of Defence in Brno (Czech Republic), G. d’Annunzio University of Chieti-Pescara (Italy), Pablo de Olavid eUniversity of Sevilla (Spain), and Ovidius University in Constanţa, (Romania). The studies included were selected using a peer-review process and reflect heterogeneity and complexity of economic and social phenomena. They and present interesting empirical research from around the globe and from several research fields, such as statistics, decision making, mathematics, complexity, psychology, sociology and economics. The volume is divided into two parts. The first part, “Recent trends in mathematical and statistical models for economic and social sciences”, collects pap...
Understanding search trees via statistical physics
Indian Academy of Sciences (India)
ary search tree model (where stands for the number of branches of the search tree), an important problem for data storage in computer science, using a variety of statistical physics techniques that allow us to obtain exact asymptotic results.
Handbook of Spatial Statistics
Gelfand, Alan E
2010-01-01
Offers an introduction detailing the evolution of the field of spatial statistics. This title focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and, spatial point patterns.
Multivariate Statistical Process Control Charts: An Overview
Bersimis, Sotiris; Psarakis, Stelios; Panaretos, John
2006-01-01
In this paper we discuss the basic procedures for the implementation of multivariate statistical process control via control charting. Furthermore, we review multivariate extensions for all kinds of univariate control charts, such as multivariate Shewhart-type control charts, multivariate CUSUM control charts and multivariate EWMA control charts. In addition, we review unique procedures for the construction of multivariate control charts, based on multivariate statistical techniques such as p...
Application of multivariate techniques to analytical data on Aegean ceramics
International Nuclear Information System (INIS)
Bieber, A.M.; Brooks, D.W.; Harbottle, G.; Sayre, E.V.
1976-01-01
The general problems of data collection and handling for multivariate elemental analyses of ancient pottery are considered including such specific questions as the level of analytical precision required, the number and type of elements to be determined and the need for comprehensive multivariate statistical analysis of the collected data in contrast to element by element statistical analysis. The multivariate statistical procedures of clustering in a multidimensional space and determination of the numerical probabilities of specimens belonging to a group through calculation of the Mahalanobis distances for these specimens in multicomponent space are described together with supporting univariate statistical procedures used at Brookhaven. The application of these techniques to the data on Late Bronze Age Aegean pottery (largely previously analysed at Oxford and Brookhaven with some new specimens considered) have resulted in meaningful subdivisions of previously established groups. (author)
Statistical Model Checking for Biological Systems
DEFF Research Database (Denmark)
David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel
2014-01-01
Statistical Model Checking (SMC) is a highly scalable simulation-based verification approach for testing and estimating the probability that a stochastic system satisfies a given linear temporal property. The technique has been applied to (discrete and continuous time) Markov chains, stochastic...
Are medical articles highlighting detailed statistics more cited?
Directory of Open Access Journals (Sweden)
Mike Thelwall
2015-06-01
Full Text Available When conducting a literature review, it is natural to search for articles and read their abstracts in order to select papers to read fully. Hence, informative abstracts are important to ensure that research is read. The description of a paper's methods may help to give confidence that a study is of high quality. This article assesses whether medical articles that mention three statistical methods, each of which is arguably indicative of a more detailed statistical analysis than average, are more highly cited. The results show that medical articles mentioning Bonferroni corrections, bootstrapping and effect size tend to be 7%, 8% and 15% more highly ranked for citations than average, respectively. Although this is consistent with the hypothesis that mentioning more detailed statistical techniques generate more highly cited research, these techniques may also tend to be used in more highly cited areas of Medicine.
Evaluation of radiographic imaging techniques in lung nodule detection
International Nuclear Information System (INIS)
Ho, J.T.; Kruger, R.A.
1989-01-01
Dual-energy radiography appears to be the most effective technique to address bone superposition that compromises conventional chest radiography. A dual-energy, single-exposure, film-based technique was compared with a dual-energy, dual-exposure technique and conventional chest radiography in a simulated lung nodule detection study. Observers detected more nodules on images produced by dual-energy techniques than on images produced by conventional chest radiography. The difference between dual-energy and conventional chest radiography is statistically significant and the difference between dual-energy, dual-exposure and single-exposure techniques is statistically insignificant. The single-exposure technique has the potential to replace the dual-exposure technique in future clinical application
Rubino, Corrado; Mazzarello, Vittorio; Faenza, Mario; Montella, Andrea; Santanelli, Fabio; Farace, Francesco
2015-06-01
The aim of this study was to evaluate the effects on adipocyte morphology of 2 techniques of fat harvesting and of fat purification in lipofilling, considering that the number of viable healthy adipocytes is important in fat survival in recipient areas of lipofilling. Fat harvesting was performed in 10 female patients from flanks, on one side with a 2-mm Coleman cannula and on the other side with a 3-mm Mercedes cannula. Thirty milliliter of fat tissue from each side was collected and divided into three 10 mL syringes: A, B, and C. The fat inside syringe A was left untreated, the fat in syringe B underwent simple sedimentation, and the fat inside syringe C underwent centrifugation at 3000 rpm for 3 minutes. Each fat graft specimen was processed for examination under low-vacuum scanning electron microscope. Diameter (μ) and number of adipocytes per square millimeter and number of altered adipocytes per square millimeter were evaluated. Untreated specimens harvested with the 2 different techniques were first compared, then sedimented versus centrifuged specimens harvested with the same technique were compared. Statistical analysis was performed using Wilcoxon signed rank test. The number of adipocytes per square millimeter was statistically higher in specimens harvested with the 3-mm Mercedes cannula (P = 0.0310). The number of altered cells was statistically higher in centrifuged specimens than in sedimented ones using both methods of fat harvesting (P = 0.0080) with a 2-mm Coleman cannula and (P = 0.0050) with a 3-mm Mercedes cannula. Alterations in adipocyte morphology consisted in wrinkling of the membrane, opening of pore with leakage of oily material, reduction of cellular diameter, and total collapse of the cellular membrane. Fat harvesting by a 3-mm cannula results in a higher number of adipocytes and centrifugation of the harvested fat results in a higher number of morphologic altered cells than sedimentation.
UPPAAL-SMC: Statistical Model Checking for Priced Timed Automata
DEFF Research Database (Denmark)
Bulychev, Petr; David, Alexandre; Larsen, Kim Guldstrand
2012-01-01
on a series of extensions of the statistical model checking approach generalized to handle real-time systems and estimate undecidable problems. U PPAAL - SMC comes together with a friendly user interface that allows a user to specify complex problems in an efficient manner as well as to get feedback...... in the form of probability distributions and compare probabilities to analyze performance aspects of systems. The focus of the survey is on the evolution of the tool – including modeling and specification formalisms as well as techniques applied – together with applications of the tool to case studies....
Probabilistic assessment of fatigue life including statistical uncertainties in the S-N curve
International Nuclear Information System (INIS)
Sudret, B.; Hornet, P.; Stephan, J.-M.; Guede, Z.; Lemaire, M.
2003-01-01
A probabilistic framework is set up to assess the fatigue life of components of nuclear power plants. It intends to incorporate all kinds of uncertainties such as those appearing in the specimen fatigue life, design sub-factor, mechanical model and applied loading. This paper details the first step, which corresponds to the statistical treatment of the fatigue specimen test data. The specimen fatigue life at stress amplitude S is represented by a lognormal random variable whose mean and standard deviation depend on S. This characterization is then used to compute the random fatigue life of a component submitted to a single kind of cycles. Precisely the mean and coefficient of variation of this quantity are studied, as well as the reliability associated with the (deterministic) design value. (author)
Predicting radiotherapy outcomes using statistical learning techniques
International Nuclear Information System (INIS)
El Naqa, Issam; Bradley, Jeffrey D; Deasy, Joseph O; Lindsay, Patricia E; Hope, Andrew J
2009-01-01
Radiotherapy outcomes are determined by complex interactions between treatment, anatomical and patient-related variables. A common obstacle to building maximally predictive outcome models for clinical practice is the failure to capture potential complexity of heterogeneous variable interactions and applicability beyond institutional data. We describe a statistical learning methodology that can automatically screen for nonlinear relations among prognostic variables and generalize to unseen data before. In this work, several types of linear and nonlinear kernels to generate interaction terms and approximate the treatment-response function are evaluated. Examples of institutional datasets of esophagitis, pneumonitis and xerostomia endpoints were used. Furthermore, an independent RTOG dataset was used for 'generalizabilty' validation. We formulated the discrimination between risk groups as a supervised learning problem. The distribution of patient groups was initially analyzed using principle components analysis (PCA) to uncover potential nonlinear behavior. The performance of the different methods was evaluated using bivariate correlations and actuarial analysis. Over-fitting was controlled via cross-validation resampling. Our results suggest that a modified support vector machine (SVM) kernel method provided superior performance on leave-one-out testing compared to logistic regression and neural networks in cases where the data exhibited nonlinear behavior on PCA. For instance, in prediction of esophagitis and pneumonitis endpoints, which exhibited nonlinear behavior on PCA, the method provided 21% and 60% improvements, respectively. Furthermore, evaluation on the independent pneumonitis RTOG dataset demonstrated good generalizabilty beyond institutional data in contrast with other models. This indicates that the prediction of treatment response can be improved by utilizing nonlinear kernel methods for discovering important nonlinear interactions among model
Method of statistical estimation of temperature minimums in binary systems
International Nuclear Information System (INIS)
Mireev, V.A.; Safonov, V.V.
1985-01-01
On the basis of statistical processing of literature data the technique for evaluation of temperature minima on liquidus curves in binary systems with common ion chloride systems being taken as an example, is developed. The systems are formed by 48 chlorides of 45 chemical elements including alkali, alkaline earth, rare earth and transition metals as well as Cd, In, Th. It is shown that calculation error in determining minimum melting points depends on topology of the phase diagram. The comparison of calculated and experimental data for several previously nonstudied systems is given
BATMAN: Bayesian Technique for Multi-image Analysis
Casado, J.; Ascasibar, Y.; García-Benito, R.; Guidi, G.; Choudhury, O. S.; Bellocchi, E.; Sánchez, S. F.; Díaz, A. I.
2017-04-01
This paper describes the Bayesian Technique for Multi-image Analysis (BATMAN), a novel image-segmentation technique based on Bayesian statistics that characterizes any astronomical data set containing spatial information and performs a tessellation based on the measurements and errors provided as input. The algorithm iteratively merges spatial elements as long as they are statistically consistent with carrying the same information (I.e. identical signal within the errors). We illustrate its operation and performance with a set of test cases including both synthetic and real integral-field spectroscopic data. The output segmentations adapt to the underlying spatial structure, regardless of its morphology and/or the statistical properties of the noise. The quality of the recovered signal represents an improvement with respect to the input, especially in regions with low signal-to-noise ratio. However, the algorithm may be sensitive to small-scale random fluctuations, and its performance in presence of spatial gradients is limited. Due to these effects, errors may be underestimated by as much as a factor of 2. Our analysis reveals that the algorithm prioritizes conservation of all the statistically significant information over noise reduction, and that the precise choice of the input data has a crucial impact on the results. Hence, the philosophy of BaTMAn is not to be used as a 'black box' to improve the signal-to-noise ratio, but as a new approach to characterize spatially resolved data prior to its analysis. The source code is publicly available at http://astro.ft.uam.es/SELGIFS/BaTMAn.
DEFF Research Database (Denmark)
Lauritzen, Steffen Lilholt
This book studies the brilliant Danish 19th Century astronomer, T.N. Thiele who made important contributions to statistics, actuarial science, astronomy and mathematics. The most important of these contributions in statistics are translated into English for the first time, and the text includes...
Isotopic safeguards statistics
International Nuclear Information System (INIS)
Timmerman, C.L.; Stewart, K.B.
1978-06-01
The methods and results of our statistical analysis of isotopic data using isotopic safeguards techniques are illustrated using example data from the Yankee Rowe reactor. The statistical methods used in this analysis are the paired comparison and the regression analyses. A paired comparison results when a sample from a batch is analyzed by two different laboratories. Paired comparison techniques can be used with regression analysis to detect and identify outlier batches. The second analysis tool, linear regression, involves comparing various regression approaches. These approaches use two basic types of models: the intercept model (y = α + βx) and the initial point model [y - y 0 = β(x - x 0 )]. The intercept model fits strictly the exposure or burnup values of isotopic functions, while the initial point model utilizes the exposure values plus the initial or fabricator's data values in the regression analysis. Two fitting methods are applied to each of these models. These methods are: (1) the usual least squares fitting approach where x is measured without error, and (2) Deming's approach which uses the variance estimates obtained from the paired comparison results and considers x and y are both measured with error. The Yankee Rowe data were first measured by Nuclear Fuel Services (NFS) and remeasured by Nuclear Audit and Testing Company (NATCO). The ratio of Pu/U versus 235 D (in which 235 D is the amount of depleted 235 U expressed in weight percent) using actual numbers is the isotopic function illustrated. Statistical results using the Yankee Rowe data indicates the attractiveness of Deming's regression model over the usual approach by simple comparison of the given regression variances with the random variance from the paired comparison results
Hayat, Matthew J; Powell, Amanda; Johnson, Tessa; Cadwell, Betsy L
2017-01-01
Statistical literacy and knowledge is needed to read and understand the public health literature. The purpose of this study was to quantify basic and advanced statistical methods used in public health research. We randomly sampled 216 published articles from seven top tier general public health journals. Studies were reviewed by two readers and a standardized data collection form completed for each article. Data were analyzed with descriptive statistics and frequency distributions. Results were summarized for statistical methods used in the literature, including descriptive and inferential statistics, modeling, advanced statistical techniques, and statistical software used. Approximately 81.9% of articles reported an observational study design and 93.1% of articles were substantively focused. Descriptive statistics in table or graphical form were reported in more than 95% of the articles, and statistical inference reported in more than 76% of the studies reviewed. These results reveal the types of statistical methods currently used in the public health literature. Although this study did not obtain information on what should be taught, information on statistical methods being used is useful for curriculum development in graduate health sciences education, as well as making informed decisions about continuing education for public health professionals.
Intermediate statistics a modern approach
Stevens, James P
2007-01-01
Written for those who use statistical techniques, this text focuses on a conceptual understanding of the material. It uses definitional formulas on small data sets to provide conceptual insight into what is being measured. It emphasizes the assumptions underlying each analysis, and shows how to test the critical assumptions using SPSS or SAS.
International Nuclear Information System (INIS)
2004-01-01
For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees
International Nuclear Information System (INIS)
2003-01-01
For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products
International Nuclear Information System (INIS)
Valcov, N.; Celarel, A.; Purghel, L.
1999-01-01
By using the statistical discrimination technique, the components of on ionization current, due to a mixed radiation field, may be simultaneously measured. A functional model, including a serially manufactured gamma-ray ratemeter was developed, as an intermediate step in the design of specialised nuclear instrumentation, in order to check the concept of statistical discrimination method. The obtained results are in good agreement with the estimations of the statistical discrimination method. The main characteristics of the functional model are the following: - dynamic range of measurement: >300: l; - simultaneous measurement of natural radiation background and gamma-ray fields; - accuracy (for equal exposure rates from gamma's and natural radiation background): 17%, for both radiation fields; - minimum detectable exposure rate: 2μR/h. (authors)
Statistical methods in radiation physics
Turner, James E; Bogard, James S
2012-01-01
This statistics textbook, with particular emphasis on radiation protection and dosimetry, deals with statistical solutions to problems inherent in health physics measurements and decision making. The authors begin with a description of our current understanding of the statistical nature of physical processes at the atomic level, including radioactive decay and interactions of radiation with matter. Examples are taken from problems encountered in health physics, and the material is presented such that health physicists and most other nuclear professionals will more readily understand the application of statistical principles in the familiar context of the examples. Problems are presented at the end of each chapter, with solutions to selected problems provided online. In addition, numerous worked examples are included throughout the text.
Van de Casteele, Elke; Parizel, Paul; Sijbers, Jan
2012-03-01
Adaptive statistical iterative reconstruction (ASiR) is a new reconstruction algorithm used in the field of medical X-ray imaging. This new reconstruction method combines the idealized system representation, as we know it from the standard Filtered Back Projection (FBP) algorithm, and the strength of iterative reconstruction by including a noise model in the reconstruction scheme. It studies how noise propagates through the reconstruction steps, feeds this model back into the loop and iteratively reduces noise in the reconstructed image without affecting spatial resolution. In this paper the effect of ASiR on the contrast to noise ratio is studied using the low contrast module of the Catphan phantom. The experiments were done on a GE LightSpeed VCT system at different voltages and currents. The results show reduced noise and increased contrast for the ASiR reconstructions compared to the standard FBP method. For the same contrast to noise ratio the images from ASiR can be obtained using 60% less current, leading to a reduction in dose of the same amount.
An Applied Statistics Course for Systematics and Ecology PhD Students
Ojeda, Mario Miguel; Sosa, Victoria
2002-01-01
Statistics education is under review at all educational levels. Statistical concepts, as well as the use of statistical methods and techniques, can be taught in at least two contrasting ways. Specifically, (1) teaching can be theoretically and mathematically oriented, or (2) it can be less mathematically oriented being focused, instead, on…
Testing statistical hypotheses
Lehmann, E L
2005-01-01
The third edition of Testing Statistical Hypotheses updates and expands upon the classic graduate text, emphasizing optimality theory for hypothesis testing and confidence sets. The principal additions include a rigorous treatment of large sample optimality, together with the requisite tools. In addition, an introduction to the theory of resampling methods such as the bootstrap is developed. The sections on multiple testing and goodness of fit testing are expanded. The text is suitable for Ph.D. students in statistics and includes over 300 new problems out of a total of more than 760. E.L. Lehmann is Professor of Statistics Emeritus at the University of California, Berkeley. He is a member of the National Academy of Sciences and the American Academy of Arts and Sciences, and the recipient of honorary degrees from the University of Leiden, The Netherlands and the University of Chicago. He is the author of Elements of Large-Sample Theory and (with George Casella) he is also the author of Theory of Point Estimat...
Hanasoge, Shravan; Agarwal, Umang; Tandon, Kunj; Koelman, J. M. Vianney A.
2017-09-01
Determining the pressure differential required to achieve a desired flow rate in a porous medium requires solving Darcy's law, a Laplace-like equation, with a spatially varying tensor permeability. In various scenarios, the permeability coefficient is sampled at high spatial resolution, which makes solving Darcy's equation numerically prohibitively expensive. As a consequence, much effort has gone into creating upscaled or low-resolution effective models of the coefficient while ensuring that the estimated flow rate is well reproduced, bringing to the fore the classic tradeoff between computational cost and numerical accuracy. Here we perform a statistical study to characterize the relative success of upscaling methods on a large sample of permeability coefficients that are above the percolation threshold. We introduce a technique based on mode-elimination renormalization group theory (MG) to build coarse-scale permeability coefficients. Comparing the results with coefficients upscaled using other methods, we find that MG is consistently more accurate, particularly due to its ability to address the tensorial nature of the coefficients. MG places a low computational demand, in the manner in which we have implemented it, and accurate flow-rate estimates are obtained when using MG-upscaled permeabilities that approach or are beyond the percolation threshold.
Topology for Statistical Modeling of Petascale Data
Energy Technology Data Exchange (ETDEWEB)
Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Levine, Joshua [Univ. of Utah, Salt Lake City, UT (United States); Gyulassy, Attila [Univ. of Utah, Salt Lake City, UT (United States); Bremer, P. -T. [Univ. of Utah, Salt Lake City, UT (United States)
2013-10-31
Many commonly used algorithms for mathematical analysis do not scale well enough to accommodate the size or complexity of petascale data produced by computational simulations. The primary goal of this project is to develop new mathematical tools that address both the petascale size and uncertain nature of current data. At a high level, the approach of the entire team involving all three institutions is based on the complementary techniques of combinatorial topology and statistical modelling. In particular, we use combinatorial topology to filter out spurious data that would otherwise skew statistical modelling techniques, and we employ advanced algorithms from algebraic statistics to efficiently find globally optimal fits to statistical models. The overall technical contributions can be divided loosely into three categories: (1) advances in the field of combinatorial topology, (2) advances in statistical modelling, and (3) new integrated topological and statistical methods. Roughly speaking, the division of labor between our 3 groups (Sandia Labs in Livermore, Texas A&M in College Station, and U Utah in Salt Lake City) is as follows: the Sandia group focuses on statistical methods and their formulation in algebraic terms, and finds the application problems (and data sets) most relevant to this project, the Texas A&M Group develops new algebraic geometry algorithms, in particular with fewnomial theory, and the Utah group develops new algorithms in computational topology via Discrete Morse Theory. However, we hasten to point out that our three groups stay in tight contact via videconference every 2 weeks, so there is much synergy of ideas between the groups. The following of this document is focused on the contributions that had grater direct involvement from the team at the University of Utah in Salt Lake City.
Multivariate methods and forecasting with IBM SPSS statistics
Aljandali, Abdulkader
2017-01-01
This is the second of a two-part guide to quantitative analysis using the IBM SPSS Statistics software package; this volume focuses on multivariate statistical methods and advanced forecasting techniques. More often than not, regression models involve more than one independent variable. For example, forecasting methods are commonly applied to aggregates such as inflation rates, unemployment, exchange rates, etc., that have complex relationships with determining variables. This book introduces multivariate regression models and provides examples to help understand theory underpinning the model. The book presents the fundamentals of multivariate regression and then moves on to examine several related techniques that have application in business-orientated fields such as logistic and multinomial regression. Forecasting tools such as the Box-Jenkins approach to time series modeling are introduced, as well as exponential smoothing and naïve techniques. This part also covers hot topics such as Factor Analysis, Dis...
Workshop statistics discovery with data and Minitab
Rossman, Allan J
1998-01-01
Shorn of all subtlety and led naked out of the protec tive fold of educational research literature, there comes a sheepish little fact: lectures don't work nearly as well as many of us would like to think. -George Cobb (1992) This book contains activities that guide students to discover statistical concepts, explore statistical principles, and apply statistical techniques. Students work toward these goals through the analysis of genuine data and through inter action with one another, with their instructor, and with technology. Providing a one-semester introduction to fundamental ideas of statistics for college and advanced high school students, Warkshop Statistics is designed for courses that employ an interactive learning environment by replacing lectures with hands on activities. The text contains enough expository material to stand alone, but it can also be used to supplement a more traditional textbook. Some distinguishing features of Workshop Statistics are its emphases on active learning, conceptu...
Mahan, Susan T; Spencer, Samantha A; Kasser, James R
2014-09-01
Treatment of idiopathic clubfoot has shifted towards Ponseti technique, but previously surgical management was standard. Outcomes of surgery have varied, with many authors reporting discouraging results. Our purpose was to evaluate a single surgeon's series of children with idiopathic clubfoot treated with a la carte posteromedial and lateral releases using the Pediatric Outcomes Data Collection Instrument (PODCI) with a minimum of 2-year follow-up. A total of 148 patients with idiopathic clubfoot treated surgically by a single surgeon over 15 years were identified, and mailed PODCI questionnaires. Fifty percent of the patients were located and responded, resulting in 74 complete questionnaires. Median age at surgery was 10 months (range, 5.3 to 84.7 mo), male sex 53/74 (71.6%), bilateral surgery 31/74 (41.9%), and average follow-up of 9.7 years. PODCI responses were compared with previously published normal healthy controls using t test for each separate category. Included in the methods is the individual surgeon's operative technique. In PODCIs where a parent reports for their child or adolescent, there was no difference between our data and the healthy controls in any of the 5 categories. In PODCI where an adolescent self-reports, there was no difference in 4 of 5 categories; significant difference was only found between our data (mean = 95.2; SD = 7.427) and normal controls (mean = 86.3; SD = 12.5) in Happiness Scale (P = 0.0031). In this group of idiopathic clubfoot patients, treated with judicious posteromedial release by a single surgeon, primarily when surgery was treatment of choice for clubfoot, patient-based outcomes are not different from their normal healthy peers through childhood and adolescence. While Ponseti treatment has since become the treatment of choice for clubfoot, surgical treatment, in some hands, has led to satisfactory results. Level III.
Mineral industry statistics 1975
Energy Technology Data Exchange (ETDEWEB)
1978-01-01
Production, consumption and marketing statistics are given for solid fuels (coal, peat), liquid fuels and gases (oil, natural gas), iron ore, bauxite and other minerals quarried in France, in 1975. Also accident statistics are included. Production statistics are presented of the Overseas Departments and territories (French Guiana, New Caledonia, New Hebrides). An account of modifications in the mining field in 1975 is given. Concessions, exploitation permits, and permits solely for prospecting for mineral products are discussed. (In French)
Statistics and Corporate Environmental Management: Relations and Problems
DEFF Research Database (Denmark)
Madsen, Henning; Ulhøi, John Parm
1997-01-01
Statistical methods have long been used to analyse the macroeconomic consequences of environmentally damaging activities, political actions to control, prevent, or reduce these damages, and environmental problems in the natural environment. Up to now, however, they have had a limited and not very...... in the external environment. The nature and extent of the practical use of quantitative techniques in corporate environmental management systems is discussed on the basis of a number of company surveys in four European countries.......Statistical methods have long been used to analyse the macroeconomic consequences of environmentally damaging activities, political actions to control, prevent, or reduce these damages, and environmental problems in the natural environment. Up to now, however, they have had a limited and not very...... specific use in corporate environmental management systems. This paper will address some of the special problems related to the use of statistical techniques in corporate environmental management systems. One important aspect of this is the interaction of internal decisions and activities with conditions...
Directory of Open Access Journals (Sweden)
Priya Ranganathan
2015-01-01
Full Text Available In the second part of a series on pitfalls in statistical analysis, we look at various ways in which a statistically significant study result can be expressed. We debunk some of the myths regarding the ′P′ value, explain the importance of ′confidence intervals′ and clarify the importance of including both values in a paper
DATA ON YOUTH, 1967, A STATISTICAL DOCUMENT.
SCHEIDER, GEORGE
THE DATA IN THIS REPORT ARE STATISTICS ON YOUTH THROUGHOUT THE UNITED STATES AND IN NEW YORK STATE. INCLUDED ARE DATA ON POPULATION, SCHOOL STATISTICS, EMPLOYMENT, FAMILY INCOME, JUVENILE DELINQUENCY AND YOUTH CRIME (INCLUDING NEW YORK CITY FIGURES), AND TRAFFIC ACCIDENTS. THE STATISTICS ARE PRESENTED IN THE TEXT AND IN TABLES AND CHARTS. (NH)
Jang, Daeheung; Lai, Tze; Lee, Youngjo; Lu, Ying; Ni, Jun; Qian, Peter; Qiu, Peihua; Tiao, George
2018-01-01
This book presents the proceedings of the 2nd Pacific Rim Statistical Conference for Production Engineering: Production Engineering, Big Data and Statistics, which took place at Seoul National University in Seoul, Korea in December, 2016. The papers included discuss a wide range of statistical challenges, methods and applications for big data in production engineering, and introduce recent advances in relevant statistical methods.
Applying Statistical Process Quality Control Methodology to Educational Settings.
Blumberg, Carol Joyce
A subset of Statistical Process Control (SPC) methodology known as Control Charting is introduced. SPC methodology is a collection of graphical and inferential statistics techniques used to study the progress of phenomena over time. The types of control charts covered are the null X (mean), R (Range), X (individual observations), MR (moving…
Use of statistical procedures in Brazilian and international dental journals.
Ambrosano, Gláucia Maria Bovi; Reis, André Figueiredo; Giannini, Marcelo; Pereira, Antônio Carlos
2004-01-01
A descriptive survey was performed in order to assess the statistical content and quality of Brazilian and international dental journals, and compare their evolution throughout the last decades. The authors identified the reporting and accuracy of statistical techniques in 1000 papers published from 1970 to 2000 in seven dental journals: three Brazilian (Brazilian Dental Journal, Revista de Odontologia da Universidade de Sao Paulo and Revista de Odontologia da UNESP) and four international journals (Journal of the American Dental Association, Journal of Dental Research, Caries Research and Journal of Periodontology). Papers were divided into two time periods: from 1970 to 1989, and from 1990 to 2000. A slight increase in the number of articles that presented some form of statistical technique was noticed for Brazilian journals (from 61.0 to 66.7%), whereas for international journals, a significant increase was observed (65.8 to 92.6%). In addition, a decrease in the number of statistical errors was verified. The most commonly used statistical tests as well as the most frequent errors found in dental journals were assessed. Hopefully, this investigation will encourage dental educators to better plan the teaching of biostatistics, and to improve the statistical quality of submitted manuscripts.
Statistical inference of level densities from resolved resonance parameters
International Nuclear Information System (INIS)
Froehner, F.H.
1983-08-01
Level densities are most directly obtained by counting the resonances observed in the resolved resonance range. Even in the measurements, however, weak levels are invariably missed so that one has to estimate their number and add it to the raw count. The main categories of missinglevel estimators are discussed in the present review, viz. (I) ladder methods including those based on the theory of Hamiltonian matrix ensembles (Dyson-Mehta statistics), (II) methods based on comparison with artificial cross section curves (Monte Carlo simulation, Garrison's autocorrelation method), (III) methods exploiting the observed neutron width distribution by means of Bayesian or more approximate procedures such as maximum-likelihood, least-squares or moment methods, with various recipes for the treatment of detection thresholds and resolution effects. The language of mathematical statistics is employed to clarify the basis of, and the relationship between, the various techniques. Recent progress in the treatment of resolution effects, detection thresholds and p-wave admixture is described. (orig.) [de
Statistic method of research reactors maximum permissible power calculation
International Nuclear Information System (INIS)
Grosheva, N.A.; Kirsanov, G.A.; Konoplev, K.A.; Chmshkyan, D.V.
1998-01-01
The technique for calculating maximum permissible power of a research reactor at which the probability of the thermal-process accident does not exceed the specified value, is presented. The statistical method is used for the calculations. It is regarded that the determining function related to the reactor safety is the known function of the reactor power and many statistically independent values which list includes the reactor process parameters, geometrical characteristics of the reactor core and fuel elements, as well as random factors connected with the reactor specific features. Heat flux density or temperature is taken as a limiting factor. The program realization of the method discussed is briefly described. The results of calculating the PIK reactor margin coefficients for different probabilities of the thermal-process accident are considered as an example. It is shown that the probability of an accident with fuel element melting in hot zone is lower than 10 -8 1 per year for the reactor rated power [ru
Data Analysis Techniques for Physical Scientists
Pruneau, Claude A.
2017-10-01
Preface; How to read this book; 1. The scientific method; Part I. Foundation in Probability and Statistics: 2. Probability; 3. Probability models; 4. Classical inference I: estimators; 5. Classical inference II: optimization; 6. Classical inference III: confidence intervals and statistical tests; 7. Bayesian inference; Part II. Measurement Techniques: 8. Basic measurements; 9. Event reconstruction; 10. Correlation functions; 11. The multiple facets of correlation functions; 12. Data correction methods; Part III. Simulation Techniques: 13. Monte Carlo methods; 14. Collision and detector modeling; List of references; Index.
Statistical ultrasonics: the influence of Robert F. Wagner
Insana, Michael F.
2009-02-01
An important ongoing question for higher education is how to successfully mentor the next generation of scientists and engineers. It has been my privilege to have been mentored by one of the best, Dr Robert F. Wagner and his colleagues at the CDRH/FDA during the mid 1980s. Bob introduced many of us in medical ultrasonics to statistical imaging techniques. These ideas continue to broadly influence studies on adaptive aperture management (beamforming, speckle suppression, compounding), tissue characterization (texture features, Rayleigh/Rician statistics, scatterer size and number density estimators), and fundamental questions about how limitations of the human eye-brain system for extracting information from textured images can motivate image processing. He adapted the classical techniques of signal detection theory to coherent imaging systems that, for the first time in ultrasonics, related common engineering metrics for image quality to task-based clinical performance. This talk summarizes my wonderfully-exciting three years with Bob as I watched him explore topics in statistical image analysis that formed a rational basis for many of the signal processing techniques used in commercial systems today. It is a story of an exciting time in medical ultrasonics, and of how a sparkling personality guided and motivated the development of junior scientists who flocked around him in admiration and amazement.
Statistical and Visualization Data Mining Tools for Foundry Production
Directory of Open Access Journals (Sweden)
M. Perzyk
2007-07-01
Full Text Available In recent years a rapid development of a new, interdisciplinary knowledge area, called data mining, is observed. Its main task is extracting useful information from previously collected large amount of data. The main possibilities and potential applications of data mining in manufacturing industry are characterized. The main types of data mining techniques are briefly discussed, including statistical, artificial intelligence, data base and visualization tools. The statistical methods and visualization methods are presented in more detail, showing their general possibilities, advantages as well as characteristic examples of applications in foundry production. Results of the author’s research are presented, aimed at validation of selected statistical tools which can be easily and effectively used in manufacturing industry. A performance analysis of ANOVA and contingency tables based methods, dedicated for determination of the most significant process parameters as well as for detection of possible interactions among them, has been made. Several numerical tests have been performed using simulated data sets, with assumed hidden relationships as well some real data, related to the strength of ductile cast iron, collected in a foundry. It is concluded that the statistical methods offer relatively easy and fairly reliable tools for extraction of that type of knowledge about foundry manufacturing processes. However, further research is needed, aimed at explanation of some imperfections of the investigated tools as well assessment of their validity for more complex tasks.
Statistics for non-statisticians
Madsen, Birger Stjernholm
2016-01-01
This book was written for those who need to know how to collect, analyze and present data. It is meant to be a first course for practitioners, a book for private study or brush-up on statistics, and supplementary reading for general statistics classes. The book is untraditional, both with respect to the choice of topics and the presentation: Topics were determined by what is most useful for practical statistical work, and the presentation is as non-mathematical as possible. The book contains many examples using statistical functions in spreadsheets. In this second edition, new topics have been included e.g. within the area of statistical quality control, in order to make the book even more useful for practitioners working in industry. .
The Concise Encyclopedia of Statistics
Dodge, Yadolah
2008-01-01
The Concise Encyclopedia of Statistics presents the essential information about statistical tests, concepts, and analytical methods in language that is accessible to practitioners and students of the vast community using statistics in medicine, engineering, physical science, life science, social science, and business/economics. The reference is alphabetically arranged to provide quick access to the fundamental tools of statistical methodology and biographies of famous statisticians. The more than 500 entries include definitions, history, mathematical details, limitations, examples, references,
7th International Workshop on Statistical Simulation
Mignani, Stefania; Monari, Paola; Salmaso, Luigi
2014-01-01
The Department of Statistical Sciences of the University of Bologna in collaboration with the Department of Management and Engineering of the University of Padova, the Department of Statistical Modelling of Saint Petersburg State University, and INFORMS Simulation Society sponsored the Seventh Workshop on Simulation. This international conference was devoted to statistical techniques in stochastic simulation, data collection, analysis of scientific experiments, and studies representing broad areas of interest. The previous workshops took place in St. Petersburg, Russia in 1994, 1996, 1998, 2001, 2005, and 2009. The Seventh Workshop took place in the Rimini Campus of the University of Bologna, which is in Rimini’s historical center.
Wu, Jianning; Wu, Bin
2015-01-01
The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of...
Applied statistics for economists
Lewis, Margaret
2012-01-01
This book is an undergraduate text that introduces students to commonly-used statistical methods in economics. Using examples based on contemporary economic issues and readily-available data, it not only explains the mechanics of the various methods, it also guides students to connect statistical results to detailed economic interpretations. Because the goal is for students to be able to apply the statistical methods presented, online sources for economic data and directions for performing each task in Excel are also included.
Aspects of statistical consulting not taught by acedemia
DEFF Research Database (Denmark)
Kenett, R.; Thyregod, Poul
2006-01-01
Education in statistics is preparing for statistical analysis but not necessarily for statistical consulting. The objective of this paper is to explore the phases that precede and follow statistical analysis. Specifically these include: problem elicitation, data collection and, following statisti......Education in statistics is preparing for statistical analysis but not necessarily for statistical consulting. The objective of this paper is to explore the phases that precede and follow statistical analysis. Specifically these include: problem elicitation, data collection and, following...... statistical data analysis, formulation of findings, and presentation of findings, and recommendations. Some insights derived from a literature review and real-life case studies are provided. Areas for joint research by statisticians and cognitive scientists are outlined....
Energy Technology Data Exchange (ETDEWEB)
Darcel, C. (Itasca Consultants SAS (France)); Davy, P.; Le Goc, R.; Dreuzy, J.R. de; Bour, O. (Geosciences Rennes, UMR 6118 CNRS, Univ. def Rennes, Rennes (France))
2009-11-15
and fracturing properties main characteristics. From that starting point we built Statistical Fracture Domains whose significance rely exclusively on fracturing statistics, not including explicitly the current Fracture Domains or closeness between one borehole section or the other. Theoretical developments are proposed in order to incorporate the orientation uncertainty and the fracturing variability into a resulting parent distribution density uncertainty. When applied to both sites, it comes that variability prevails in front of uncertainty, thus validating the good level of data accuracy. Moreover, this allows to define a possible range of variation around the mean values of densities. Finally a sorting algorithm is developed for providing, from the initial elementary bricks mentioned above, a division of a site into Statistical Fracture Domains whose internal variability is reduced.
Practical statistics in pain research.
Kim, Tae Kyun
2017-10-01
Pain is subjective, while statistics related to pain research are objective. This review was written to help researchers involved in pain research make statistical decisions. The main issues are related with the level of scales that are often used in pain research, the choice of statistical methods between parametric or nonparametric statistics, and problems which arise from repeated measurements. In the field of pain research, parametric statistics used to be applied in an erroneous way. This is closely related with the scales of data and repeated measurements. The level of scales includes nominal, ordinal, interval, and ratio scales. The level of scales affects the choice of statistics between parametric or non-parametric methods. In the field of pain research, the most frequently used pain assessment scale is the ordinal scale, which would include the visual analogue scale (VAS). There used to be another view, however, which considered the VAS to be an interval or ratio scale, so that the usage of parametric statistics would be accepted practically in some cases. Repeated measurements of the same subjects always complicates statistics. It means that measurements inevitably have correlations between each other, and would preclude the application of one-way ANOVA in which independence between the measurements is necessary. Repeated measures of ANOVA (RMANOVA), however, would permit the comparison between the correlated measurements as long as the condition of sphericity assumption is satisfied. Conclusively, parametric statistical methods should be used only when the assumptions of parametric statistics, such as normality and sphericity, are established.
Using Statistical Process Control to Make Data-Based Clinical Decisions.
Pfadt, Al; Wheeler, Donald J.
1995-01-01
Statistical process control (SPC), which employs simple statistical tools and problem-solving techniques such as histograms, control charts, flow charts, and Pareto charts to implement continual product improvement procedures, can be incorporated into human service organizations. Examples illustrate use of SPC procedures to analyze behavioral data…
Wind speed prediction using statistical regression and neural network
Indian Academy of Sciences (India)
Prediction of wind speed in the atmospheric boundary layer is important for wind energy assess- ment,satellite launching and aviation,etc.There are a few techniques available for wind speed prediction,which require a minimum number of input parameters.Four different statistical techniques,viz.,curve ﬁtting,Auto Regressive ...
Kleijnen, J.P.C.
1995-01-01
This tutorial discusses what-if analysis and optimization of System Dynamics models. These problems are solved, using the statistical techniques of regression analysis and design of experiments (DOE). These issues are illustrated by applying the statistical techniques to a System Dynamics model for
Topics in theoretical and applied statistics
Giommi, Andrea
2016-01-01
This book highlights the latest research findings from the 46th International Meeting of the Italian Statistical Society (SIS) in Rome, during which both methodological and applied statistical research was discussed. This selection of fully peer-reviewed papers, originally presented at the meeting, addresses a broad range of topics, including the theory of statistical inference; data mining and multivariate statistical analysis; survey methodologies; analysis of social, demographic and health data; and economic statistics and econometrics.
Kowalski, Jeanne
2008-01-01
A timely and applied approach to the newly discovered methods and applications of U-statisticsBuilt on years of collaborative research and academic experience, Modern Applied U-Statistics successfully presents a thorough introduction to the theory of U-statistics using in-depth examples and applications that address contemporary areas of study including biomedical and psychosocial research. Utilizing a "learn by example" approach, this book provides an accessible, yet in-depth, treatment of U-statistics, as well as addresses key concepts in asymptotic theory by integrating translational and cross-disciplinary research.The authors begin with an introduction of the essential and theoretical foundations of U-statistics such as the notion of convergence in probability and distribution, basic convergence results, stochastic Os, inference theory, generalized estimating equations, as well as the definition and asymptotic properties of U-statistics. With an emphasis on nonparametric applications when and where applic...
Territories typification technique with use of statistical models
Galkin, V. I.; Rastegaev, A. V.; Seredin, V. V.; Andrianov, A. V.
2018-05-01
Territories typification is required for solution of many problems. The results of geological zoning received by means of various methods do not always agree. That is why the main goal of the research given is to develop a technique of obtaining a multidimensional standard classified indicator for geological zoning. In the course of the research, the probabilistic approach was used. In order to increase the reliability of geological information classification, the authors suggest using complex multidimensional probabilistic indicator P K as a criterion of the classification. The second criterion chosen is multidimensional standard classified indicator Z. These can serve as characteristics of classification in geological-engineering zoning. Above mentioned indicators P K and Z are in good correlation. Correlation coefficient values for the entire territory regardless of structural solidity equal r = 0.95 so each indicator can be used in geological-engineering zoning. The method suggested has been tested and the schematic map of zoning has been drawn.
Statistical performance evaluation of ECG transmission using wireless networks.
Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad
2013-07-01
This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation.
Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em
2017-09-01
Exascale-level simulations require fault-resilient algorithms that are robust against repeated and expected software and/or hardware failures during computations, which may render the simulation results unsatisfactory. If each processor can share some global information about the simulation from a coarse, limited accuracy but relatively costless auxiliary simulator we can effectively fill-in the missing spatial data at the required times by a statistical learning technique - multi-level Gaussian process regression, on the fly; this has been demonstrated in previous work [1]. Based on the previous work, we also employ another (nonlinear) statistical learning technique, Diffusion Maps, that detects computational redundancy in time and hence accelerate the simulation by projective time integration, giving the overall computation a "patch dynamics" flavor. Furthermore, we are now able to perform information fusion with multi-fidelity and heterogeneous data (including stochastic data). Finally, we set the foundations of a new framework in CFD, called patch simulation, that combines information fusion techniques from, in principle, multiple fidelity and resolution simulations (and even experiments) with a new adaptive timestep refinement technique. We present two benchmark problems (the heat equation and the Navier-Stokes equations) to demonstrate the new capability that statistical learning tools can bring to traditional scientific computing algorithms. For each problem, we rely on heterogeneous and multi-fidelity data, either from a coarse simulation of the same equation or from a stochastic, particle-based, more "microscopic" simulation. We consider, as such "auxiliary" models, a Monte Carlo random walk for the heat equation and a dissipative particle dynamics (DPD) model for the Navier-Stokes equations. More broadly, in this paper we demonstrate the symbiotic and synergistic combination of statistical learning, domain decomposition, and scientific computing in
Mineral statistics yearbook 1994
International Nuclear Information System (INIS)
1994-01-01
A summary of mineral production in Saskatchewan was compiled and presented as a reference manual. Statistical information on fuel minerals such as crude oil, natural gas, liquefied petroleum gas and coal, and of industrial and metallic minerals, such as potash, sodium sulphate, salt and uranium, was provided in all conceivable variety of tables. Production statistics, disposition and value of sales of industrial and metallic minerals were also made available. Statistical data on drilling of oil and gas reservoirs and crown land disposition were also included. figs., tabs
Statistical Tutorial | Center for Cancer Research
Recent advances in cancer biology have resulted in the need for increased statistical analysis of research data. ST is designed as a follow up to Statistical Analysis of Research Data (SARD) held in April 2018. The tutorial will apply the general principles of statistical analysis of research data including descriptive statistics, z- and t-tests of means and mean
Energy Technology Data Exchange (ETDEWEB)
Curley, G. Michael [North American Electric Reliability Corporation (United States); Mandula, Jiri [International Atomic Energy Agency (IAEA)
2008-05-15
The WEC Committee on the Performance of Generating Plant (PGP) has been collecting and analysing power plant performance statistics worldwide for more than 30 years and has produced regular reports, which include examples of advanced techniques and methods for improving power plant performance through benchmarking. A series of reports from the various working groups was issued in 2008. This reference presents the results of Working Group 2 (WG2). WG2's main task is to facilitate the collection and input on an annual basis of power plant performance data (unit-by-unit and aggregated data) into the WEC PGP database. The statistics will be collected for steam, nuclear, gas turbine and combined cycle, hydro and pump storage plant. WG2 will also oversee the ongoing development of the availability statistics database, including the contents, the required software, security issues and other important information. The report is divided into two sections: Thermal generating, combined cycle/co-generation, combustion turbine, hydro and pumped storage unavailability factors and availability statistics; and nuclear power generating units.
Statistically based reevaluation of PISC-II round robin test data
International Nuclear Information System (INIS)
Heasler, P.G.; Taylor, T.T.; Doctor, S.R.
1993-05-01
This report presents a re-analysis of an international PISC-II (Programme for Inspection of Steel Components, Phase 2) round-robin inspection results using formal statistical techniques to account for experimental error. The analysis examines US team performance vs. other participants performance,flaw sizing performance and errors associated with flaw sizing, factors influencing flaw detection probability, performance of all participants with respect to recently adopted ASME Section 11 flaw detection performance demonstration requirements, and develops conclusions concerning ultrasonic inspection capability. Inspection data were gathered on four heavy section steel components which included two plates and two nozzle configurations
Ayam, Rufus Tekoh
2011-01-01
PURPOSE: The two approaches to audit sampling; statistical and nonstatistical have been examined in this study. The overall purpose of the study is to explore the current extent at which statistical and nonstatistical sampling approaches are utilized by independent auditors during auditing practices. Moreover, the study also seeks to achieve two additional purposes; the first is to find out whether auditors utilize different sampling techniques when auditing SME´s (Small and Medium-Sized Ente...
Advances in statistical multisource-multitarget information fusion
Mahler, Ronald PS
2014-01-01
This is the sequel to the 2007 Artech House bestselling title, Statistical Multisource-Multitarget Information Fusion. That earlier book was a comprehensive resource for an in-depth understanding of finite-set statistics (FISST), a unified, systematic, and Bayesian approach to information fusion. The cardinalized probability hypothesis density (CPHD) filter, which was first systematically described in the earlier book, has since become a standard multitarget detection and tracking technique, especially in research and development.Since 2007, FISST has inspired a considerable amount of research
Statistical analysis of RHIC beam position monitors performance
Calaga, R.; Tomás, R.
2004-04-01
A detailed statistical analysis of beam position monitors (BPM) performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.
Statistical analysis of RHIC beam position monitors performance
Directory of Open Access Journals (Sweden)
R. Calaga
2004-04-01
Full Text Available A detailed statistical analysis of beam position monitors (BPM performance at RHIC is a critical factor in improving regular operations and future runs. Robust identification of malfunctioning BPMs plays an important role in any orbit or turn-by-turn analysis. Singular value decomposition and Fourier transform methods, which have evolved as powerful numerical techniques in signal processing, will aid in such identification from BPM data. This is the first attempt at RHIC to use a large set of data to statistically enhance the capability of these two techniques and determine BPM performance. A comparison from run 2003 data shows striking agreement between the two methods and hence can be used to improve BPM functioning at RHIC and possibly other accelerators.
9th Symposium on Computational Statistics
Mildner, Vesna
1990-01-01
Although no-one is, probably, too enthused about the idea, it is a fact that the development of most empirical sciences to a great extent depends on the development of data analysis methods and techniques, which, due to the necessity of application of computers for that purpose, actually means that it practically depends on the advancement and orientation of computer statistics. Every other year the International Association for Statistical Computing sponsors the organizition of meetings of individual s professiona77y involved in computational statistics. Since these meetings attract professionals from allover the world, they are a good sample for the estimation of trends in this area which some believe is a statistics proper while others claim it is computer science. It seems, though, that an increasing number of colleagues treat it as an independent scientific or at least technical discipline. This volume contains six invited papers, 41 contributed papers and, finally, two papers which are, formally, softwa...
Hagen, Brad; Awosoga, Olu; Kellett, Peter; Dei, Samuel Ofori
2013-09-01
Undergraduate nursing students must often take a course in statistics, yet there is scant research to inform teaching pedagogy. The objectives of this study were to assess nursing students' overall attitudes towards statistics courses - including (among other things) overall fear and anxiety, preferred learning and teaching styles, and the perceived utility and benefit of taking a statistics course - before and after taking a mandatory course in applied statistics. The authors used a pre-experimental research design (a one-group pre-test/post-test research design), by administering a survey to nursing students at the beginning and end of the course. The study was conducted at a University in Western Canada that offers an undergraduate Bachelor of Nursing degree. Participants included 104 nursing students, in the third year of a four-year nursing program, taking a course in statistics. Although students only reported moderate anxiety towards statistics, student anxiety about statistics had dropped by approximately 40% by the end of the course. Students also reported a considerable and positive change in their attitudes towards learning in groups by the end of the course, a potential reflection of the team-based learning that was used. Students identified preferred learning and teaching approaches, including the use of real-life examples, visual teaching aids, clear explanations, timely feedback, and a well-paced course. Students also identified preferred instructor characteristics, such as patience, approachability, in-depth knowledge of statistics, and a sense of humor. Unfortunately, students only indicated moderate agreement with the idea that statistics would be useful and relevant to their careers, even by the end of the course. Our findings validate anecdotal reports on statistics teaching pedagogy, although more research is clearly needed, particularly on how to increase students' perceptions of the benefit and utility of statistics courses for their nursing
Directory of Open Access Journals (Sweden)
Cláudio Roberto Rosário
2012-07-01
Full Text Available The purpose of this research is to improve the practice on customer satisfaction analysis The article presents an analysis model to analyze the answers of a customer satisfaction evaluation in a systematic way with the aid of multivariate statistical techniques, specifically, exploratory analysis with PCA – Partial Components Analysis with HCA - Hierarchical Cluster Analysis. It was tried to evaluate the applicability of the model to be used by the issue company as a tool to assist itself on identifying the value chain perceived by the customer when applied the questionnaire of customer satisfaction. It was found with the assistance of multivariate statistical analysis that it was observed similar behavior among customers. It also allowed the company to conduct reviews on questions of the questionnaires, using analysis of the degree of correlation between the questions that was not a company’s practice before this research.
The Role of the Sampling Distribution in Understanding Statistical Inference
Lipson, Kay
2003-01-01
Many statistics educators believe that few students develop the level of conceptual understanding essential for them to apply correctly the statistical techniques at their disposal and to interpret their outcomes appropriately. It is also commonly believed that the sampling distribution plays an important role in developing this understanding.…
Comparative Analysis Between Computed and Conventional Inferior Alveolar Nerve Block Techniques.
Araújo, Gabriela Madeira; Barbalho, Jimmy Charles Melo; Dias, Tasiana Guedes de Souza; Santos, Thiago de Santana; Vasconcellos, Ricardo José de Holanda; de Morais, Hécio Henrique Araújo
2015-11-01
The aim of this randomized, double-blind, controlled trial was to compare the computed and conventional inferior alveolar nerve block techniques in symmetrically positioned inferior third molars. Both computed and conventional anesthetic techniques were performed in 29 healthy patients (58 surgeries) aged between 18 and 40 years. The anesthetic of choice was 2% lidocaine with 1: 200,000 epinephrine. The Visual Analogue Scale assessed the pain variable after anesthetic infiltration. Patient satisfaction was evaluated using the Likert Scale. Heart and respiratory rates, mean time to perform technique, and the need for additional anesthesia were also evaluated. Pain variable means were higher for the conventional technique as compared with computed, 3.45 ± 2.73 and 2.86 ± 1.96, respectively, but no statistically significant differences were found (P > 0.05). Patient satisfaction showed no statistically significant differences. The average computed technique runtime and the conventional were 3.85 and 1.61 minutes, respectively, showing statistically significant differences (P <0.001). The computed anesthetic technique showed lower mean pain perception, but did not show statistically significant differences when contrasted to the conventional technique.
Statistics in the Workplace: A Survey of Use by Recent Graduates with Higher Degrees
Harraway, John A.; Barker, Richard J.
2005-01-01
A postal survey was conducted regarding statistical techniques, research methods and software used in the workplace by 913 graduates with PhD and Masters degrees in the biological sciences, psychology, business, economics, and statistics. The study identified gaps between topics and techniques learned at university and those used in the workplace,…
Quantum-statistical kinetic equations
International Nuclear Information System (INIS)
Loss, D.; Schoeller, H.
1989-01-01
Considering a homogeneous normal quantum fluid consisting of identical interacting fermions or bosons, the authors derive an exact quantum-statistical generalized kinetic equation with a collision operator given as explicit cluster series where exchange effects are included through renormalized Liouville operators. This new result is obtained by applying a recently developed superoperator formalism (Liouville operators, cluster expansions, symmetrized projectors, P q -rule, etc.) to nonequilibrium systems described by a density operator ρ(t) which obeys the von Neumann equation. By means of this formalism a factorization theorem is proven (being essential for obtaining closed equations), and partial resummations (leading to renormalized quantities) are performed. As an illustrative application, the quantum-statistical versions (including exchange effects due to Fermi-Dirac or Bose-Einstein statistics) of the homogeneous Boltzmann (binary collisions) and Choh-Uhlenbeck (triple collisions) equations are derived
Goodman, J. W.
This book is based on the thesis that some training in the area of statistical optics should be included as a standard part of any advanced optics curriculum. Random variables are discussed, taking into account definitions of probability and random variables, distribution functions and density functions, an extension to two or more random variables, statistical averages, transformations of random variables, sums of real random variables, Gaussian random variables, complex-valued random variables, and random phasor sums. Other subjects examined are related to random processes, some first-order properties of light waves, the coherence of optical waves, some problems involving high-order coherence, effects of partial coherence on imaging systems, imaging in the presence of randomly inhomogeneous media, and fundamental limits in photoelectric detection of light. Attention is given to deterministic versus statistical phenomena and models, the Fourier transform, and the fourth-order moment of the spectrum of a detected speckle image.
Evaluating and Reporting Statistical Power in Counseling Research
Balkin, Richard S.; Sheperis, Carl J.
2011-01-01
Despite recommendations from the "Publication Manual of the American Psychological Association" (6th ed.) to include information on statistical power when publishing quantitative results, authors seldom include analysis or discussion of statistical power. The rationale for discussing statistical power is addressed, approaches to using "G*Power" to…
Incorporating Nonparametric Statistics into Delphi Studies in Library and Information Science
Ju, Boryung; Jin, Tao
2013-01-01
Introduction: The Delphi technique is widely used in library and information science research. However, many researchers in the field fail to employ standard statistical tests when using this technique. This makes the technique vulnerable to criticisms of its reliability and validity. The general goal of this article is to explore how…
Statistical error estimation of the Feynman-α method using the bootstrap method
International Nuclear Information System (INIS)
Endo, Tomohiro; Yamamoto, Akio; Yagi, Takahiro; Pyeon, Cheol Ho
2016-01-01
Applicability of the bootstrap method is investigated to estimate the statistical error of the Feynman-α method, which is one of the subcritical measurement techniques on the basis of reactor noise analysis. In the Feynman-α method, the statistical error can be simply estimated from multiple measurements of reactor noise, however it requires additional measurement time to repeat the multiple times of measurements. Using a resampling technique called 'bootstrap method' standard deviation and confidence interval of measurement results obtained by the Feynman-α method can be estimated as the statistical error, using only a single measurement of reactor noise. In order to validate our proposed technique, we carried out a passive measurement of reactor noise without any external source, i.e. with only inherent neutron source by spontaneous fission and (α,n) reactions in nuclear fuels at the Kyoto University Criticality Assembly. Through the actual measurement, it is confirmed that the bootstrap method is applicable to approximately estimate the statistical error of measurement results obtained by the Feynman-α method. (author)
Using statistics to understand the environment
Cook, Penny A
2000-01-01
Using Statistics to Understand the Environment covers all the basic tests required for environmental practicals and projects and points the way to the more advanced techniques that may be needed in more complex research designs. Following an introduction to project design, the book covers methods to describe data, to examine differences between samples, and to identify relationships and associations between variables.Featuring: worked examples covering a wide range of environmental topics, drawings and icons, chapter summaries, a glossary of statistical terms and a further reading section, this book focuses on the needs of the researcher rather than on the mathematics behind the tests.
Statistics in action a Canadian outlook
Lawless, Jerald F
2014-01-01
Commissioned by the Statistical Society of Canada (SSC), Statistics in Action: A Canadian Outlook helps both general readers and users of statistics better appreciate the scope and importance of statistics. It presents the ways in which statistics is used while highlighting key contributions that Canadian statisticians are making to science, technology, business, government, and other areas. The book emphasizes the role and impact of computing in statistical modeling and analysis, including the issues involved with the huge amounts of data being generated by automated processes.The first two c
Wallis, W Allen
2014-01-01
Focusing on everyday applications as well as those of scientific research, this classic of modern statistical methods requires little to no mathematical background. Readers develop basic skills for evaluating and using statistical data. Lively, relevant examples include applications to business, government, social and physical sciences, genetics, medicine, and public health. ""W. Allen Wallis and Harry V. Roberts have made statistics fascinating."" - The New York Times ""The authors have set out with considerable success, to write a text which would be of interest and value to the student who,
Statistical-mechanical formulation of Lyapunov exponents
International Nuclear Information System (INIS)
Tanase-Nicola, Sorin; Kurchan, Jorge
2003-01-01
We show how the Lyapunov exponents of a dynamic system can, in general, be expressed in terms of the free energy of a (non-Hermitian) quantum many-body problem. This puts their study as a problem of statistical mechanics, whose intuitive concepts and techniques of approximation can hence be borrowed
Statistical application of groundwater monitoring data at the Hanford Site
International Nuclear Information System (INIS)
Chou, C.J.; Johnson, V.G.; Hodges, F.N.
1993-09-01
Effective use of groundwater monitoring data requires both statistical and geohydrologic interpretations. At the Hanford Site in south-central Washington state such interpretations are used for (1) detection monitoring, assessment monitoring, and/or corrective action at Resource Conservation and Recovery Act sites; (2) compliance testing for operational groundwater surveillance; (3) impact assessments at active liquid-waste disposal sites; and (4) cleanup decisions at Comprehensive Environmental Response Compensation and Liability Act sites. Statistical tests such as the Kolmogorov-Smirnov two-sample test are used to test the hypothesis that chemical concentrations from spatially distinct subsets or populations are identical within the uppermost unconfined aquifer. Experience at the Hanford Site in applying groundwater background data indicates that background must be considered as a statistical distribution of concentrations, rather than a single value or threshold. The use of a single numerical value as a background-based standard ignores important information and may result in excessive or unnecessary remediation. Appropriate statistical evaluation techniques include Wilcoxon rank sum test, Quantile test, ''hot spot'' comparisons, and Kolmogorov-Smirnov types of tests. Application of such tests is illustrated with several case studies derived from Hanford groundwater monitoring programs. To avoid possible misuse of such data, an understanding of the limitations is needed. In addition to statistical test procedures, geochemical, and hydrologic considerations are integral parts of the decision process. For this purpose a phased approach is recommended that proceeds from simple to the more complex, and from an overview to detailed analysis
Ranganathan, Priya; Pramesh, C. S.; Buyse, Marc
2015-01-01
In the second part of a series on pitfalls in statistical analysis, we look at various ways in which a statistically significant study result can be expressed. We debunk some of the myths regarding the ‘P’ value, explain the importance of ‘confidence intervals’ and clarify the importance of including both values in a paper PMID:25878958
Statistical symmetries in physics
International Nuclear Information System (INIS)
Green, H.S.; Adelaide Univ., SA
1994-01-01
Every law of physics is invariant under some group of transformations and is therefore the expression of some type of symmetry. Symmetries are classified as geometrical, dynamical or statistical. At the most fundamental level, statistical symmetries are expressed in the field theories of the elementary particles. This paper traces some of the developments from the discovery of Bose statistics, one of the two fundamental symmetries of physics. A series of generalizations of Bose statistics is described. A supersymmetric generalization accommodates fermions as well as bosons, and further generalizations, including parastatistics, modular statistics and graded statistics, accommodate particles with properties such as 'colour'. A factorization of elements of ggl(n b ,n f ) can be used to define truncated boson operators. A general construction is given for q-deformed boson operators, and explicit constructions of the same type are given for various 'deformed' algebras. A summary is given of some of the applications and potential applications. 39 refs., 2 figs
Schrödinger, Erwin
1952-01-01
Nobel Laureate's brilliant attempt to develop a simple, unified standard method of dealing with all cases of statistical thermodynamics - classical, quantum, Bose-Einstein, Fermi-Dirac, and more.The work also includes discussions of Nernst theorem, Planck's oscillator, fluctuations, the n-particle problem, problem of radiation, much more.
Right-sizing statistical models for longitudinal data.
Wood, Phillip K; Steinley, Douglas; Jackson, Kristina M
2015-12-01
Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to "right-size" the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting, overly parsimonious models to more complex, better-fitting alternatives and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically underidentified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A 3-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation-covariation patterns. The orthogonal free curve slope intercept (FCSI) growth model is considered a general model that includes, as special cases, many models, including the factor mean (FM) model (McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, hierarchical linear models (HLMs), repeated-measures multivariate analysis of variance (MANOVA), and the linear slope intercept (linearSI) growth model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparing several candidate parametric growth and chronometric models in a Monte Carlo study. (c) 2015 APA, all rights reserved).
Football fever: goal distributions and non-Gaussian statistics
Bittner, E.; Nußbaumer, A.; Janke, W.; Weigel, M.
2009-02-01
Analyzing football score data with statistical techniques, we investigate how the not purely random, but highly co-operative nature of the game is reflected in averaged properties such as the probability distributions of scored goals for the home and away teams. As it turns out, especially the tails of the distributions are not well described by the Poissonian or binomial model resulting from the assumption of uncorrelated random events. Instead, a good effective description of the data is provided by less basic distributions such as the negative binomial one or the probability densities of extreme value statistics. To understand this behavior from a microscopical point of view, however, no waiting time problem or extremal process need be invoked. Instead, modifying the Bernoulli random process underlying the Poissonian model to include a simple component of self-affirmation seems to describe the data surprisingly well and allows to understand the observed deviation from Gaussian statistics. The phenomenological distributions used before can be understood as special cases within this framework. We analyzed historical football score data from many leagues in Europe as well as from international tournaments, including data from all past tournaments of the “FIFA World Cup” series, and found the proposed models to be applicable rather universally. In particular, here we analyze the results of the German women’s premier football league and consider the two separate German men’s premier leagues in the East and West during the cold war times as well as the unified league after 1990 to see how scoring in football and the component of self-affirmation depend on cultural and political circumstances.
Reports on Cancer - Cancer Statistics
Interactive tools for access to statistics for a cancer site by gender, race, ethnicity, calendar year, age, state, county, stage, and histology. Statistics include incidence, mortality, prevalence, cost, risk factors, behaviors, tobacco use, and policies and are presented as graphs, tables, or maps.
International Nuclear Information System (INIS)
Anon.
1994-01-01
For the years 1992 and 1993, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period. The tables and figures shown in this publication are: Changes in the volume of GNP and energy consumption; Coal consumption; Natural gas consumption; Peat consumption; Domestic oil deliveries; Import prices of oil; Price development of principal oil products; Fuel prices for power production; Total energy consumption by source; Electricity supply; Energy imports by country of origin in 1993; Energy exports by recipient country in 1993; Consumer prices of liquid fuels; Consumer prices of hard coal and natural gas, prices of indigenous fuels; Average electricity price by type of consumer; Price of district heating by type of consumer and Excise taxes and turnover taxes included in consumer prices of some energy sources
Spatial analysis statistics, visualization, and computational methods
Oyana, Tonny J
2015-01-01
An introductory text for the next generation of geospatial analysts and data scientists, Spatial Analysis: Statistics, Visualization, and Computational Methods focuses on the fundamentals of spatial analysis using traditional, contemporary, and computational methods. Outlining both non-spatial and spatial statistical concepts, the authors present practical applications of geospatial data tools, techniques, and strategies in geographic studies. They offer a problem-based learning (PBL) approach to spatial analysis-containing hands-on problem-sets that can be worked out in MS Excel or ArcGIS-as well as detailed illustrations and numerous case studies. The book enables readers to: Identify types and characterize non-spatial and spatial data Demonstrate their competence to explore, visualize, summarize, analyze, optimize, and clearly present statistical data and results Construct testable hypotheses that require inferential statistical analysis Process spatial data, extract explanatory variables, conduct statisti...
Sampling methods to the statistical control of the production of blood components.
Pereira, Paulo; Seghatchian, Jerard; Caldeira, Beatriz; Santos, Paula; Castro, Rosa; Fernandes, Teresa; Xavier, Sandra; de Sousa, Gracinda; de Almeida E Sousa, João Paulo
2017-12-01
The control of blood components specifications is a requirement generalized in Europe by the European Commission Directives and in the US by the AABB standards. The use of a statistical process control methodology is recommended in the related literature, including the EDQM guideline. The control reliability is dependent of the sampling. However, a correct sampling methodology seems not to be systematically applied. Commonly, the sampling is intended to comply uniquely with the 1% specification to the produced blood components. Nevertheless, on a purely statistical viewpoint, this model could be argued not to be related to a consistent sampling technique. This could be a severe limitation to detect abnormal patterns and to assure that the production has a non-significant probability of producing nonconforming components. This article discusses what is happening in blood establishments. Three statistical methodologies are proposed: simple random sampling, sampling based on the proportion of a finite population, and sampling based on the inspection level. The empirical results demonstrate that these models are practicable in blood establishments contributing to the robustness of sampling and related statistical process control decisions for the purpose they are suggested for. Copyright © 2017 Elsevier Ltd. All rights reserved.
On-the-fly confluence detection for statistical model checking (extended version)
Hartmanns, Arnd; Timmer, Mark
Statistical model checking is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can only provide sound results if the
Statistical mechanical analysis of LMFBR fuel cladding tubes
International Nuclear Information System (INIS)
Poncelet, J.-P.; Pay, A.
1977-01-01
The most important design requirement on fuel pin cladding for LMFBR's is its mechanical integrity. Disruptive factors include internal pressure from mixed oxide fuel fission gas release, thermal stresses and high temperature creep, neutron-induced differential void-swelling as a source of stress in the cladding and irradiation creep of stainless steel material, corrosion by fission products. Under irradiation these load-restraining mechanisms are accentuated by stainless steel embrittlement and strength alterations. To account for the numerous uncertainties involved in the analysis by theoretical models and computer codes statistical tools are unavoidably requested, i.e. Monte Carlo simulation methods. Thanks to these techniques, uncertainties in nominal characteristics, material properties and environmental conditions can be linked up in a correct way and used for a more accurate conceptual design. First, a thermal creep damage index is set up through a sufficiently sophisticated clad physical analysis including arbitrary time dependence of power and neutron flux as well as effects of sodium temperature, burnup and steel mechanical behavior. Although this strain limit approach implies a more general but time consuming model., on the counterpart the net output is improved and e.g. clad temperature, stress and strain maxima may be easily assessed. A full spectrum of variables are statistically treated to account for their probability distributions. Creep damage probability may be obtained and can contribute to a quantitative fuel probability estimation
SoS contract verification using statistical model checking
Directory of Open Access Journals (Sweden)
Alessandro Mignogna
2013-11-01
Full Text Available Exhaustive formal verification for systems of systems (SoS is impractical and cannot be applied on a large scale. In this paper we propose to use statistical model checking for efficient verification of SoS. We address three relevant aspects for systems of systems: 1 the model of the SoS, which includes stochastic aspects; 2 the formalization of the SoS requirements in the form of contracts; 3 the tool-chain to support statistical model checking for SoS. We adapt the SMC technique for application to heterogeneous SoS. We extend the UPDM/SysML specification language to express the SoS requirements that the implemented strategies over the SoS must satisfy. The requirements are specified with a new contract language specifically designed for SoS, targeting a high-level English- pattern language, but relying on an accurate semantics given by the standard temporal logics. The contracts are verified against the UPDM/SysML specification using the Statistical Model Checker (SMC PLASMA combined with the simulation engine DESYRE, which integrates heterogeneous behavioral models through the functional mock-up interface (FMI standard. The tool-chain allows computing an estimation of the satisfiability of the contracts by the SoS. The results help the system architect to trade-off different solutions to guide the evolution of the SoS.
Statistical physics of networks, information and complex systems
Energy Technology Data Exchange (ETDEWEB)
Ecke, Robert E [Los Alamos National Laboratory
2009-01-01
In this project we explore the mathematical methods and concepts of statistical physics that are fmding abundant applications across the scientific and technological spectrum from soft condensed matter systems and bio-infonnatics to economic and social systems. Our approach exploits the considerable similarity of concepts between statistical physics and computer science, allowing for a powerful multi-disciplinary approach that draws its strength from cross-fertilization and mUltiple interactions of researchers with different backgrounds. The work on this project takes advantage of the newly appreciated connection between computer science and statistics and addresses important problems in data storage, decoding, optimization, the infonnation processing properties of the brain, the interface between quantum and classical infonnation science, the verification of large software programs, modeling of complex systems including disease epidemiology, resource distribution issues, and the nature of highly fluctuating complex systems. Common themes that the project has been emphasizing are (i) neural computation, (ii) network theory and its applications, and (iii) a statistical physics approach to infonnation theory. The project's efforts focus on the general problem of optimization and variational techniques, algorithm development and infonnation theoretic approaches to quantum systems. These efforts are responsible for fruitful collaborations and the nucleation of science efforts that span multiple divisions such as EES, CCS, 0 , T, ISR and P. This project supports the DOE mission in Energy Security and Nuclear Non-Proliferation by developing novel infonnation science tools for communication, sensing, and interacting complex networks such as the internet or energy distribution system. The work also supports programs in Threat Reduction and Homeland Security.
Directory of Open Access Journals (Sweden)
S. Ars
2017-12-01
Full Text Available This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping
Ars, Sébastien; Broquet, Grégoire; Yver Kwok, Camille; Roustan, Yelva; Wu, Lin; Arzoumanian, Emmanuel; Bousquet, Philippe
2017-12-01
This study presents a new concept for estimating the pollutant emission rates of a site and its main facilities using a series of atmospheric measurements across the pollutant plumes. This concept combines the tracer release method, local-scale atmospheric transport modelling and a statistical atmospheric inversion approach. The conversion between the controlled emission and the measured atmospheric concentrations of the released tracer across the plume places valuable constraints on the atmospheric transport. This is used to optimise the configuration of the transport model parameters and the model uncertainty statistics in the inversion system. The emission rates of all sources are then inverted to optimise the match between the concentrations simulated with the transport model and the pollutants' measured atmospheric concentrations, accounting for the transport model uncertainty. In principle, by using atmospheric transport modelling, this concept does not strongly rely on the good colocation between the tracer and pollutant sources and can be used to monitor multiple sources within a single site, unlike the classical tracer release technique. The statistical inversion framework and the use of the tracer data for the configuration of the transport and inversion modelling systems should ensure that the transport modelling errors are correctly handled in the source estimation. The potential of this new concept is evaluated with a relatively simple practical implementation based on a Gaussian plume model and a series of inversions of controlled methane point sources using acetylene as a tracer gas. The experimental conditions are chosen so that they are suitable for the use of a Gaussian plume model to simulate the atmospheric transport. In these experiments, different configurations of methane and acetylene point source locations are tested to assess the efficiency of the method in comparison to the classic tracer release technique in coping with the distances
Explorations in statistics: the log transformation.
Curran-Everett, Douglas
2018-06-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This thirteenth installment of Explorations in Statistics explores the log transformation, an established technique that rescales the actual observations from an experiment so that the assumptions of some statistical analysis are better met. A general assumption in statistics is that the variability of some response Y is homogeneous across groups or across some predictor variable X. If the variability-the standard deviation-varies in rough proportion to the mean value of Y, a log transformation can equalize the standard deviations. Moreover, if the actual observations from an experiment conform to a skewed distribution, then a log transformation can make the theoretical distribution of the sample mean more consistent with a normal distribution. This is important: the results of a one-sample t test are meaningful only if the theoretical distribution of the sample mean is roughly normal. If we log-transform our observations, then we want to confirm the transformation was useful. We can do this if we use the Box-Cox method, if we bootstrap the sample mean and the statistic t itself, and if we assess the residual plots from the statistical model of the actual and transformed sample observations.
Statistical mechanics of sensing and communications: Insights and techniques
International Nuclear Information System (INIS)
Murayama, T; Davis, P
2008-01-01
In this article we review a basic model for analysis of large sensor networks from the point of view of collective estimation under bandwidth constraints. We compare different sensing aggregation levels as alternative 'strategies' for collective estimation: moderate aggregation from a moderate number of sensors for which communication bandwidth is enough that data encoding can be reversible, and large scale aggregation from very many sensors - in which case communication bandwidth constraints require the use of nonreversible encoding. We show the non-trivial trade-off between sensing quality, which can be increased by increasing the number of sensors, and communication quality under bandwidth constraints, which decreases if the number of sensors is too large. From a practical standpoint, we verify that such a trade-off exists in constructively defined communications schemes. We introduce a probabilistic encoding scheme and define rate distortion models that are suitable for analysis of the large network limit. Our description shows that the methods and ideas from statistical physics can play an important role in formulating effective models for such schemes
Statistical classification techniques in high energy physics (SDDT algorithm)
International Nuclear Information System (INIS)
Bouř, Petr; Kůs, Václav; Franc, Jiří
2016-01-01
We present our proposal of the supervised binary divergence decision tree with nested separation method based on the generalized linear models. A key insight we provide is the clustering driven only by a few selected physical variables. The proper selection consists of the variables achieving the maximal divergence measure between two different classes. Further, we apply our method to Monte Carlo simulations of physics processes corresponding to a data sample of top quark-antiquark pair candidate events in the lepton+jets decay channel. The data sample is produced in pp̅ collisions at √S = 1.96 TeV. It corresponds to an integrated luminosity of 9.7 fb"-"1 recorded with the D0 detector during Run II of the Fermilab Tevatron Collider. The efficiency of our algorithm achieves 90% AUC in separating signal from background. We also briefly deal with the modification of statistical tests applicable to weighted data sets in order to test homogeneity of the Monte Carlo simulations and measured data. The justification of these modified tests is proposed through the divergence tests. (paper)
Cook, Samuel A.; Fukawa-Connelly, Timothy
2016-01-01
Studies have shown that at the end of an introductory statistics course, students struggle with building block concepts, such as mean and standard deviation, and rely on procedural understandings of the concepts. This study aims to investigate the understandings entering freshman of a department of mathematics and statistics (including mathematics…
ROOT — A C++ framework for petabyte data storage, statistical analysis and visualization
Antcheva, I; Bellenot, B; Biskup,1, M; Brun, R; Buncic, N; Canal, Ph; Casadei, D; Couet, O; Fine, V; Franco,1, L; Ganis, G; Gheata, A; Gonzalez Maline, D; Goto, M; Iwaszkiewicz, J; Kreshuk, A; Marcos Segura, D; Maunder, R; Moneta, L; Naumann, A; Offermann, E; Onuchin, V; Panacek, S; Rademakers, F; Russo, P; Tadel, M
2009-01-01
ROOT is an object-oriented C++ framework conceived in the high-energy physics (HEP) community, designed for storing and analyzing petabytes of data in an efficient way. Any instance of a C++ class can be stored into a ROOT file in a machine-independent compressed binary format. In ROOT the TTree object container is optimized for statistical data analysis over very large data sets by using vertical data storage techniques. These containers can span a large number of files on local disks, the web, or a number of different shared file systems. In order to analyze this data, the user can chose out of a wide set of mathematical and statistical functions, including linear algebra classes, numerical algorithms such as integration and minimization, and various methods for performing regression analysis (fitting). In particular, the RooFit package allows the user to perform complex data modeling and fitting while the RooStats library provides abstractions and implementations for advanced statistical tools. Multivariat...
Multivariate Analysis Techniques for Optimal Vision System Design
DEFF Research Database (Denmark)
Sharifzadeh, Sara
The present thesis considers optimization of the spectral vision systems used for quality inspection of food items. The relationship between food quality, vision based techniques and spectral signature are described. The vision instruments for food analysis as well as datasets of the food items...... used in this thesis are described. The methodological strategies are outlined including sparse regression and pre-processing based on feature selection and extraction methods, supervised versus unsupervised analysis and linear versus non-linear approaches. One supervised feature selection algorithm...... (SSPCA) and DCT based characterization of the spectral diffused reflectance images for wavelength selection and discrimination. These methods together with some other state-of-the-art statistical and mathematical analysis techniques are applied on datasets of different food items; meat, diaries, fruits...
Statistics and Informatics in Space Astrophysics
Feigelson, E.
2017-12-01
The interest in statistical and computational methodology has seen rapid growth in space-based astrophysics, parallel to the growth seen in Earth remote sensing. There is widespread agreement that scientific interpretation of the cosmic microwave background, discovery of exoplanets, and classifying multiwavelength surveys is too complex to be accomplished with traditional techniques. NASA operates several well-functioning Science Archive Research Centers providing 0.5 PBy datasets to the research community. These databases are integrated with full-text journal articles in the NASA Astrophysics Data System (200K pageviews/day). Data products use interoperable formats and protocols established by the International Virtual Observatory Alliance. NASA supercomputers also support complex astrophysical models of systems such as accretion disks and planet formation. Academic researcher interest in methodology has significantly grown in areas such as Bayesian inference and machine learning, and statistical research is underway to treat problems such as irregularly spaced time series and astrophysical model uncertainties. Several scholarly societies have created interest groups in astrostatistics and astroinformatics. Improvements are needed on several fronts. Community education in advanced methodology is not sufficiently rapid to meet the research needs. Statistical procedures within NASA science analysis software are sometimes not optimal, and pipeline development may not use modern software engineering techniques. NASA offers few grant opportunities supporting research in astroinformatics and astrostatistics.
Guénault, Tony
2007-01-01
In this revised and enlarged second edition of an established text Tony Guénault provides a clear and refreshingly readable introduction to statistical physics, an essential component of any first degree in physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. A straightforward quantum approach to statistical averaging is adopted from the outset (easier, the author believes, than the classical approach). The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. Thus, several important topics, for example an ideal spin-½ solid, can be discussed at an early stage. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Towards the end of the book the student is introduced to a wider viewpoint and new chapters are included on chemical thermodynamics, interactions in, for exam...
International Nuclear Information System (INIS)
2000-05-01
The objective of this CRP was to promote the exchange of information on the practical experience gained by the Member States in characterization of radioactively contaminated sites. Special emphasis was placed on the development of methods and techniques for the optimization of radiological characterization. In particular, the scope included: definition of a strategy for site characterization; sampling and measurement techniques; data management, including statistical analysis and deterministic radionuclide migration modelling; and post-cleanup radiological surveys and assurance of compliance with release criteria
Energy Technology Data Exchange (ETDEWEB)
NONE
2000-05-01
The objective of this CRP was to promote the exchange of information on the practical experience gained by the Member States in characterization of radioactively contaminated sites. Special emphasis was placed on the development of methods and techniques for the optimization of radiological characterization. In particular, the scope included: definition of a strategy for site characterization; sampling and measurement techniques; data management, including statistical analysis and deterministic radionuclide migration modelling; and post-cleanup radiological surveys and assurance of compliance with release criteria.
Gatti, Marco; Marchisio, Filippo; Fronda, Marco; Rampado, Osvaldo; Faletti, Riccardo; Bergamasco, Laura; Ropolo, Roberto; Fonio, Paolo
The aim of this study was to evaluate the impact on dose reduction and image quality of the new iterative reconstruction technique: adaptive statistical iterative reconstruction (ASIR-V). Fifty consecutive oncologic patients acted as case controls undergoing during their follow-up a computed tomography scan both with ASIR and ASIR-V. Each study was analyzed in a double-blinded fashion by 2 radiologists. Both quantitative and qualitative analyses of image quality were conducted. Computed tomography scanner radiation output was 38% (29%-45%) lower (P ASIR-V examinations than for the ASIR ones. The quantitative image noise was significantly lower (P ASIR-V. Adaptive statistical iterative reconstruction-V had a higher performance for the subjective image noise (P = 0.01 for 5 mm and P = 0.009 for 1.25 mm), the other parameters (image sharpness, diagnostic acceptability, and overall image quality) being similar (P > 0.05). Adaptive statistical iterative reconstruction-V is a new iterative reconstruction technique that has the potential to provide image quality equal to or greater than ASIR, with a dose reduction around 40%.
Explorations in statistics: the analysis of ratios and normalized data.
Curran-Everett, Douglas
2013-09-01
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This ninth installment of Explorations in Statistics explores the analysis of ratios and normalized-or standardized-data. As researchers, we compute a ratio-a numerator divided by a denominator-to compute a proportion for some biological response or to derive some standardized variable. In each situation, we want to control for differences in the denominator when the thing we really care about is the numerator. But there is peril lurking in a ratio: only if the relationship between numerator and denominator is a straight line through the origin will the ratio be meaningful. If not, the ratio will misrepresent the true relationship between numerator and denominator. In contrast, regression techniques-these include analysis of covariance-are versatile: they can accommodate an analysis of the relationship between numerator and denominator when a ratio is useless.
Directory of Open Access Journals (Sweden)
Brion Philippe
2015-12-01
Full Text Available Using as much administrative data as possible is a general trend among most national statistical institutes. Different kinds of administrative sources, from tax authorities or other administrative bodies, are very helpful material in the production of business statistics. However, these sources often have to be completed by information collected through statistical surveys. This article describes the way Insee has implemented such a strategy in order to produce French structural business statistics. The originality of the French procedure is that administrative and survey variables are used jointly for the same enterprises, unlike the majority of multisource systems, in which the two kinds of sources generally complement each other for different categories of units. The idea is to use, as much as possible, the richness of the administrative sources combined with the timeliness of a survey, even if the latter is conducted only on a sample of enterprises. One main issue is the classification of enterprises within the NACE nomenclature, which is a cornerstone variable in producing the breakdown of the results by industry. At a given date, two values of the corresponding code may coexist: the value of the register, not necessarily up to date, and the value resulting from the data collected via the survey, but only from a sample of enterprises. Using all this information together requires the implementation of specific statistical estimators combining some properties of the difference estimators with calibration techniques. This article presents these estimators, as well as their statistical properties, and compares them with those of other methods.
Morrissey, L. A.; Weinstock, K. J.; Mouat, D. A.; Card, D. H.
1984-01-01
An evaluation of Thematic Mapper Simulator (TMS) data for the geobotanical discrimination of rock types based on vegetative cover characteristics is addressed in this research. A methodology for accomplishing this evaluation utilizing univariate and multivariate techniques is presented. TMS data acquired with a Daedalus DEI-1260 multispectral scanner were integrated with vegetation and geologic information for subsequent statistical analyses, which included a chi-square test, an analysis of variance, stepwise discriminant analysis, and Duncan's multiple range test. Results indicate that ultramafic rock types are spectrally separable from nonultramafics based on vegetative cover through the use of statistical analyses.
On Quantum Statistical Inference, II
Barndorff-Nielsen, O. E.; Gill, R. D.; Jupp, P. E.
2003-01-01
Interest in problems of statistical inference connected to measurements of quantum systems has recently increased substantially, in step with dramatic new developments in experimental techniques for studying small quantum systems. Furthermore, theoretical developments in the theory of quantum measurements have brought the basic mathematical framework for the probability calculations much closer to that of classical probability theory. The present paper reviews this field and proposes and inte...
Descriptive and inferential statistical methods used in burns research.
Al-Benna, Sammy; Al-Ajam, Yazan; Way, Benjamin; Steinstraesser, Lars
2010-05-01
Burns research articles utilise a variety of descriptive and inferential methods to present and analyse data. The aim of this study was to determine the descriptive methods (e.g. mean, median, SD, range, etc.) and survey the use of inferential methods (statistical tests) used in articles in the journal Burns. This study defined its population as all original articles published in the journal Burns in 2007. Letters to the editor, brief reports, reviews, and case reports were excluded. Study characteristics, use of descriptive statistics and the number and types of statistical methods employed were evaluated. Of the 51 articles analysed, 11(22%) were randomised controlled trials, 18(35%) were cohort studies, 11(22%) were case control studies and 11(22%) were case series. The study design and objectives were defined in all articles. All articles made use of continuous and descriptive data. Inferential statistics were used in 49(96%) articles. Data dispersion was calculated by standard deviation in 30(59%). Standard error of the mean was quoted in 19(37%). The statistical software product was named in 33(65%). Of the 49 articles that used inferential statistics, the tests were named in 47(96%). The 6 most common tests used (Student's t-test (53%), analysis of variance/co-variance (33%), chi(2) test (27%), Wilcoxon & Mann-Whitney tests (22%), Fisher's exact test (12%)) accounted for the majority (72%) of statistical methods employed. A specified significance level was named in 43(88%) and the exact significance levels were reported in 28(57%). Descriptive analysis and basic statistical techniques account for most of the statistical tests reported. This information should prove useful in deciding which tests should be emphasised in educating burn care professionals. These results highlight the need for burn care professionals to have a sound understanding of basic statistics, which is crucial in interpreting and reporting data. Advice should be sought from professionals
Use of communication techniques by Maryland dentists.
Maybury, Catherine; Horowitz, Alice M; Wang, Min Qi; Kleinman, Dushanka V
2013-12-01
Health care providers' use of recommended communication techniques can increase patients' adherence to prevention and treatment regimens and improve patient health outcomes. The authors conducted a survey of Maryland dentists to determine the number and type of communication techniques they use on a routine basis. The authors mailed a 30-item questionnaire to a random sample of 1,393 general practice dentists and all 169 members of the Maryland chapter of the American Academy of Pediatric Dentistry. The overall response rate was 38.4 percent. Analysis included descriptive statistics, analysis of variance and ordinary least squares regression analysis to examine the association of dentists' characteristics with the number of communication techniques used. They set the significance level at P communication techniques and 3.6 of the seven basic techniques, whereas pediatric dentists reported using a mean of 8.4 and 3.8 of those techniques, respectively. General dentists who had taken a communication course outside of dental school were more likely than those who had not to use the 18 techniques (P communication course outside of dental school were more likely than those who had not to use the 18 techniques (P communication techniques that dentists used routinely varied across the 18 techniques and was low for most techniques. Practical Implications. Professional education is needed both in dental school curricula and continuing education courses to increase use of recommended communication techniques. Specifically, dentists and their team members should consider taking communication skills courses and conducting an overall evaluation of their practices for user friendliness.
Kruger, Uwe
2012-01-01
The development and application of multivariate statistical techniques in process monitoring has gained substantial interest over the past two decades in academia and industry alike. Initially developed for monitoring and fault diagnosis in complex systems, such techniques have been refined and applied in various engineering areas, for example mechanical and manufacturing, chemical, electrical and electronic, and power engineering. The recipe for the tremendous interest in multivariate statistical techniques lies in its simplicity and adaptability for developing monitoring applica
Chemometric and Statistical Analyses of ToF-SIMS Spectra of Increasingly Complex Biological Samples
Energy Technology Data Exchange (ETDEWEB)
Berman, E S; Wu, L; Fortson, S L; Nelson, D O; Kulp, K S; Wu, K J
2007-10-24
Characterizing and classifying molecular variation within biological samples is critical for determining fundamental mechanisms of biological processes that will lead to new insights including improved disease understanding. Towards these ends, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to examine increasingly complex samples of biological relevance, including monosaccharide isomers, pure proteins, complex protein mixtures, and mouse embryo tissues. The complex mass spectral data sets produced were analyzed using five common statistical and chemometric multivariate analysis techniques: principal component analysis (PCA), linear discriminant analysis (LDA), partial least squares discriminant analysis (PLSDA), soft independent modeling of class analogy (SIMCA), and decision tree analysis by recursive partitioning. PCA was found to be a valuable first step in multivariate analysis, providing insight both into the relative groupings of samples and into the molecular basis for those groupings. For the monosaccharides, pure proteins and protein mixture samples, all of LDA, PLSDA, and SIMCA were found to produce excellent classification given a sufficient number of compound variables calculated. For the mouse embryo tissues, however, SIMCA did not produce as accurate a classification. The decision tree analysis was found to be the least successful for all the data sets, providing neither as accurate a classification nor chemical insight for any of the tested samples. Based on these results we conclude that as the complexity of the sample increases, so must the sophistication of the multivariate technique used to classify the samples. PCA is a preferred first step for understanding ToF-SIMS data that can be followed by either LDA or PLSDA for effective classification analysis. This study demonstrates the strength of ToF-SIMS combined with multivariate statistical and chemometric techniques to classify increasingly complex biological samples
Statistical Challenges in Military Research
2016-07-30
SGVU SUBJECT: Professional Presentation Approval 8 APR2016 1. Your paper, entitled Statistical Challenges in Military Research presented at Joint...Statistical Meetings, Chicago, IL 30 July - 4 Aug 2016 and Proceedings of the Joint Statistical Meetings with MDWI 41-108, and has been assigned ...charges (to include costs for tables and black and white photos). We cannot pay for reprints. If you are 59 MDW staff member, we can forward your request
Frontiers in statistical quality control
Wilrich, Peter-Theodor
2004-01-01
This volume treats the four main categories of Statistical Quality Control: General SQC Methodology, On-line Control including Sampling Inspection and Statistical Process Control, Off-line Control with Data Analysis and Experimental Design, and, fields related to Reliability. Experts with international reputation present their newest contributions.
Methods of contemporary mathematical statistical physics
2009-01-01
This volume presents a collection of courses introducing the reader to the recent progress with attention being paid to laying solid grounds and developing various basic tools. An introductory chapter on lattice spin models is useful as a background for other lectures of the collection. The topics include new results on phase transitions for gradient lattice models (with introduction to the techniques of the reflection positivity), stochastic geometry reformulation of classical and quantum Ising models, the localization/delocalization transition for directed polymers. A general rigorous framework for theory of metastability is presented and particular applications in the context of Glauber and Kawasaki dynamics of lattice models are discussed. A pedagogical account of several recently discussed topics in nonequilibrium statistical mechanics with an emphasis on general principles is followed by a discussion of kinetically constrained spin models that are reflecting important peculiar features of glassy dynamic...
Statistical techniques for automating the detection of anomalous performance in rotating machinery
International Nuclear Information System (INIS)
Piety, K.R.; Magette, T.E.
1978-01-01
Surveillance techniques which extend the sophistication existing in automated systems monitoring in industrial rotating equipment are described. The monitoring system automatically established limiting criteria during an initial learning period of a few days; and subsequently, while monitoring the test rotor during an extended period of normal operation, experienced a false alarm rate of 0.5%. At the same time, the monitoring system successfully detected all fault types that introduced into the test setup. Tests on real equipment are needed to provide final verification of the monitoring techniques. There are areas that would profit from additional investigation in the laboratory environment. A comparison of the relative value of alternate descriptors under given fault conditions would be worthwhile. This should be pursued in conjunction with extending the set of fault types available, e.g., lecaring problems. Other tests should examine the effects of using fewer (more coarse) intervals to define the lumped operational states. finally, techniques to diagnose the most probable fault should be developed by drawing upon the extensive data automatically logged by the monitoring system
Statistical Approaches Used to Assess the Equity of Access to Food Outlets: A Systematic Review.
Lamb, Karen E; Thornton, Lukar E; Cerin, Ester; Ball, Kylie
2015-01-01
Inequalities in eating behaviours are often linked to the types of food retailers accessible in neighbourhood environments. Numerous studies have aimed to identify if access to healthy and unhealthy food retailers is socioeconomically patterned across neighbourhoods, and thus a potential risk factor for dietary inequalities. Existing reviews have examined differences between methodologies, particularly focussing on neighbourhood and food outlet access measure definitions. However, no review has informatively discussed the suitability of the statistical methodologies employed; a key issue determining the validity of study findings. Our aim was to examine the suitability of statistical approaches adopted in these analyses. Searches were conducted for articles published from 2000-2014. Eligible studies included objective measures of the neighbourhood food environment and neighbourhood-level socio-economic status, with a statistical analysis of the association between food outlet access and socio-economic status. Fifty-four papers were included. Outlet accessibility was typically defined as the distance to the nearest outlet from the neighbourhood centroid, or as the number of food outlets within a neighbourhood (or buffer). To assess if these measures were linked to neighbourhood disadvantage, common statistical methods included ANOVA, correlation, and Poisson or negative binomial regression. Although all studies involved spatial data, few considered spatial analysis techniques or spatial autocorrelation. With advances in GIS software, sophisticated measures of neighbourhood outlet accessibility can be considered. However, approaches to statistical analysis often appear less sophisticated. Care should be taken to consider assumptions underlying the analysis and the possibility of spatially correlated residuals which could affect the results.
Statistical Approaches Used to Assess the Equity of Access to Food Outlets: A Systematic Review
Directory of Open Access Journals (Sweden)
Karen E. Lamb
2015-07-01
Full Text Available BackgroundInequalities in eating behaviours are often linked to the types of food retailers accessible in neighbourhood environments. Numerous studies have aimed to identify if access to healthy and unhealthy food retailers is socioeconomically patterned across neighbourhoods, and thus a potential risk factor for dietary inequalities. Existing reviews have examined differences between methodologies, particularly focussing on neighbourhood and food outlet access measure definitions. However, no review has informatively discussed the suitability of the statistical methodologies employed; a key issue determining the validity of study findings. Our aim was to examine the suitability of statistical approaches adopted in these analyses.MethodsSearches were conducted for articles published from 2000-2014. Eligible studies included objective measures of the neighbourhood food environment and neighbourhood-level socio-economic status, with a statistical analysis of the association between food outlet access and socio-economic status.ResultsFifty-four papers were included. Outlet accessibility was typically defined as the distance to the nearest outlet from the neighbourhood centroid, or as the number of food outlets within a neighbourhood (or buffer. To assess if these measures were linked to neighbourhood disadvantage, common statistical methods included ANOVA, correlation, and Poisson or negative binomial regression. Although all studies involved spatial data, few considered spatial analysis techniques or spatial autocorrelation.ConclusionsWith advances in GIS software, sophisticated measures of neighbourhood outlet accessibility can be considered. However, approaches to statistical analysis often appear less sophisticated. Care should be taken to consider assumptions underlying the analysis and the possibility of spatially correlated residuals which could affect the results.
Spectral deformation techniques applied to the study of quantum statistical irreversible processes
International Nuclear Information System (INIS)
Courbage, M.
1978-01-01
A procedure of analytic continuation of the resolvent of Liouville operators for quantum statistical systems is discussed. When applied to the theory of irreversible processes of the Brussels School, this method supports the idea that the restriction to a class of initial conditions is necessary to obtain an irreversible behaviour. The general results are tested on the Friedrichs model. (Auth.)
Statistical process control for serially correlated data
Wieringa, Jakob Edo
1999-01-01
Statistical Process Control (SPC) aims at quality improvement through reduction of variation. The best known tool of SPC is the control chart. Over the years, the control chart has proved to be a successful practical technique for monitoring process measurements. However, its usefulness in practice
Analysis of thrips distribution: application of spatial statistics and Kriging
John Aleong; Bruce L. Parker; Margaret Skinner; Diantha Howard
1991-01-01
Kriging is a statistical technique that provides predictions for spatially and temporally correlated data. Observations of thrips distribution and density in Vermont soils are made in both space and time. Traditional statistical analysis of such data assumes that the counts taken over space and time are independent, which is not necessarily true. Therefore, to analyze...
Two sampling techniques for game meat
van der Merwe, Maretha; Jooste, Piet J.; Hoffman, Louw C.; Calitz, Frikkie J.
2013-01-01
A study was conducted to compare the excision sampling technique used by the export market and the sampling technique preferred by European countries, namely the biotrace cattle and swine test. The measuring unit for the excision sampling was grams (g) and square centimetres (cm2) for the swabbing technique. The two techniques were compared after a pilot test was conducted on spiked approved beef carcasses (n = 12) that statistically proved the two measuring units correlated. The two sampling...
Wang, H X; Lü, P J; Yue, S W; Chang, L Y; Li, Y; Zhao, H P; Li, W R; Gao, J B
2017-12-05
Objective: To investigate the image quality and radiation dose with wide-detector(80 mm) and adaptive statistical iterative reconstruction-V (ASIR-V) technique at abdominal contrast enhanced CT scan. Methods: In the first phantom experiment part, the percentage of ASIR-V for half dose of combined wide detector with ASIR-V technique as compared with standard-detector (40 mm) technique was determined. The human experiment was performed based on the phantom study, 160 patients underwent contrast-enhanced abdominal CT scan were prospectively collected and divided into the control group ( n =40) with image reconstruction using 40% ASIR (group A) and the study group ( n =120) with random number table. According to pre-ASIR-V percentage, the study group was assigned into three groups[40 cases in each group, group B: 0 pre-ASIR-V scan with image reconstruction of 0-100% post-ASIR-V (interval 10%, subgroups B0-B10); group C: 20% pre-ASIR-V with 20%, 40% and 60% post-ASIR-V (subgroups C1-C3); group D: 40%pre-ASIR-V with 40% and 60% post-ASIR-V (subgroups D1-D2)]. Image noise, CT attenuation values and CNR of the liver, pancreas, aorta and portal vein were compared by using two sample t test and One-way ANOVA. Qualitative visual parameters (overall image quality as graded on a 5-point scale) was compared by Mann-Whitney U test and Kruskal-Wallis H test. Results: The phantom experiment showed that the percentage of pre-ASIR-V for half dose was 40%. With the 40% pre-ASIR-V, radiation dose in the study group was reduced by 35.5% as compared with the control group. Image noise in the subgroups of B2-B10, C2-C3 and D1-D2 were lower ( t =-14.681--3.046, all P 0.05). The subjective image quality scores increased gradually in the range of 0-60% post-ASIR-V and decreased with post-ASIR-V larger than 70%. The overall image quality of subgroup B3-B8, C2-C3 and D1-D2 were higher than that in group A ( Z =-2.229--6.533, all P ASIR technique, wide-detector combined with 40% pre
Phan, Kevin; Malham, Greg; Seex, Kevin; Rao, Prashanth J.
2015-01-01
Degenerative disc and facet joint disease of the lumbar spine is common in the ageing population, and is one of the most frequent causes of disability. Lumbar spondylosis may result in mechanical back pain, radicular and claudicant symptoms, reduced mobility and poor quality of life. Surgical interbody fusion of degenerative levels is an effective treatment option to stabilize the painful motion segment, and may provide indirect decompression of the neural elements, restore lordosis and correct deformity. The surgical options for interbody fusion of the lumbar spine include: posterior lumbar interbody fusion (PLIF), transforaminal lumbar interbody fusion (TLIF), minimally invasive transforaminal lumbar interbody fusion (MI-TLIF), oblique lumbar interbody fusion/anterior to psoas (OLIF/ATP), lateral lumbar interbody fusion (LLIF) and anterior lumbar interbody fusion (ALIF). The indications may include: discogenic/facetogenic low back pain, neurogenic claudication, radiculopathy due to foraminal stenosis, lumbar degenerative spinal deformity including symptomatic spondylolisthesis and degenerative scoliosis. In general, traditional posterior approaches are frequently used with acceptable fusion rates and low complication rates, however they are limited by thecal sac and nerve root retraction, along with iatrogenic injury to the paraspinal musculature and disruption of the posterior tension band. Minimally invasive (MIS) posterior approaches have evolved in an attempt to reduce approach related complications. Anterior approaches avoid the spinal canal, cauda equina and nerve roots, however have issues with approach related abdominal and vascular complications. In addition, lateral and OLIF techniques have potential risks to the lumbar plexus and psoas muscle. The present study aims firstly to comprehensively review the available literature and evidence for different lumbar interbody fusion (LIF) techniques. Secondly, we propose a set of recommendations and guidelines
Marwala, Tshilidzi
2010-01-01
Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: • multi-layer perceptron neural networks for real-time FEM updating; • particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; • simulated annealing to put the methodologies into a sound statistical basis; and • response surface methods and expectation m...
Statistical and theoretical research
International Nuclear Information System (INIS)
Anon.
1983-01-01
Significant accomplishments include the creation of field designs to detect population impacts, new census procedures for small mammals, and methods for designing studies to determine where and how much of a contaminant is extent over certain landscapes. A book describing these statistical methods is currently being written and will apply to a variety of environmental contaminants, including radionuclides. PNL scientists also have devised an analytical method for predicting the success of field eexperiments on wild populations. Two highlights of current research are the discoveries that population of free-roaming horse herds can double in four years and that grizzly bear populations may be substantially smaller than once thought. As stray horses become a public nuisance at DOE and other large Federal sites, it is important to determine their number. Similar statistical theory can be readily applied to other situations where wild animals are a problem of concern to other government agencies. Another book, on statistical aspects of radionuclide studies, is written specifically for researchers in radioecology
On two methods of statistical image analysis
Missimer, J; Knorr, U; Maguire, RP; Herzog, H; Seitz, RJ; Tellman, L; Leenders, K.L.
1999-01-01
The computerized brain atlas (CBA) and statistical parametric mapping (SPM) are two procedures for voxel-based statistical evaluation of PET activation studies. Each includes spatial standardization of image volumes, computation of a statistic, and evaluation of its significance. In addition,
Introduction to Statistics - eNotes
DEFF Research Database (Denmark)
Brockhoff, Per B.; Møller, Jan Kloppenborg; Andersen, Elisabeth Wreford
2015-01-01
Online textbook used in the introductory statistics courses at DTU. It provides a basic introduction to applied statistics for engineers. The necessary elements from probability theory are introduced (stochastic variable, density and distribution function, mean and variance, etc.) and thereafter...... the most basic statistical analysis methods are presented: Confidence band, hypothesis testing, simulation, simple and muliple regression, ANOVA and analysis of contingency tables. Examples with the software R are included for all presented theory and methods....
Challenges and Approaches to Statistical Design and Inference in High Dimensional Investigations
Garrett, Karen A.; Allison, David B.
2015-01-01
Summary Advances in modern technologies have facilitated high-dimensional experiments (HDEs) that generate tremendous amounts of genomic, proteomic, and other “omic” data. HDEs involving whole-genome sequences and polymorphisms, expression levels of genes, protein abundance measurements, and combinations thereof have become a vanguard for new analytic approaches to the analysis of HDE data. Such situations demand creative approaches to the processes of statistical inference, estimation, prediction, classification, and study design. The novel and challenging biological questions asked from HDE data have resulted in many specialized analytic techniques being developed. This chapter discusses some of the unique statistical challenges facing investigators studying high-dimensional biology, and describes some approaches being developed by statistical scientists. We have included some focus on the increasing interest in questions involving testing multiple propositions simultaneously, appropriate inferential indicators for the types of questions biologists are interested in, and the need for replication of results across independent studies, investigators, and settings. A key consideration inherent throughout is the challenge in providing methods that a statistician judges to be sound and a biologist finds informative. PMID:19588106
Challenges and approaches to statistical design and inference in high-dimensional investigations.
Gadbury, Gary L; Garrett, Karen A; Allison, David B
2009-01-01
Advances in modern technologies have facilitated high-dimensional experiments (HDEs) that generate tremendous amounts of genomic, proteomic, and other "omic" data. HDEs involving whole-genome sequences and polymorphisms, expression levels of genes, protein abundance measurements, and combinations thereof have become a vanguard for new analytic approaches to the analysis of HDE data. Such situations demand creative approaches to the processes of statistical inference, estimation, prediction, classification, and study design. The novel and challenging biological questions asked from HDE data have resulted in many specialized analytic techniques being developed. This chapter discusses some of the unique statistical challenges facing investigators studying high-dimensional biology and describes some approaches being developed by statistical scientists. We have included some focus on the increasing interest in questions involving testing multiple propositions simultaneously, appropriate inferential indicators for the types of questions biologists are interested in, and the need for replication of results across independent studies, investigators, and settings. A key consideration inherent throughout is the challenge in providing methods that a statistician judges to be sound and a biologist finds informative.
Truth, possibility and probability new logical foundations of probability and statistical inference
Chuaqui, R
1991-01-01
Anyone involved in the philosophy of science is naturally drawn into the study of the foundations of probability. Different interpretations of probability, based on competing philosophical ideas, lead to different statistical techniques, and frequently to mutually contradictory consequences. This unique book presents a new interpretation of probability, rooted in the traditional interpretation that was current in the 17th and 18th centuries. Mathematical models are constructed based on this interpretation, and statistical inference and decision theory are applied, including some examples in artificial intelligence, solving the main foundational problems. Nonstandard analysis is extensively developed for the construction of the models and in some of the proofs. Many nonstandard theorems are proved, some of them new, in particular, a representation theorem that asserts that any stochastic process can be approximated by a process defined over a space with equiprobable outcomes.
Reasoning with data an introduction to traditional and Bayesian statistics using R
Stanton, Jeffrey M
2017-01-01
Engaging and accessible, this book teaches readers how to use inferential statistical thinking to check their assumptions, assess evidence about their beliefs, and avoid overinterpreting results that may look more promising than they really are. It provides step-by-step guidance for using both classical (frequentist) and Bayesian approaches to inference. Statistical techniques covered side by side from both frequentist and Bayesian approaches include hypothesis testing, replication, analysis of variance, calculation of effect sizes, regression, time series analysis, and more. Students also get a complete introduction to the open-source R programming language and its key packages. Throughout the text, simple commands in R demonstrate essential data analysis skills using real-data examples. The companion website provides annotated R code for the book's examples, in-class exercises, supplemental reading lists, and links to online videos, interactive materials, and other resources.
Maté-González, Miguel Ángel; Aramendi, Julia; Yravedra, José; Blasco, Ruth; Rosell, Jordi; González-Aguilera, Diego; Domínguez-Rodrigo, Manuel
2017-09-01
In the last few years, the study of cut marks on bone surfaces has become fundamental for the interpretation of prehistoric butchery practices. Due to the difficulties in the correct identification of cut marks, many criteria for their description and classification have been suggested. Different techniques, such as three-dimensional digital microscope (3D DM), laser scanning confocal microscopy (LSCM) and micro-photogrammetry (M-PG) have been recently applied to the study of cut marks. Although the 3D DM and LSCM microscopic techniques are the most commonly used for the 3D identification of cut marks, M-PG has also proved to be very efficient and a low-cost method. M-PG is a noninvasive technique that allows the study of the cortical surface without any previous preparation of the samples, and that generates high-resolution models. Despite the current application of microscopic and micro-photogrammetric techniques to taphonomy, their reliability has never been tested. In this paper, we compare 3D DM, LSCM and M-PG in order to assess their resolution and results. In this study, we analyse 26 experimental cut marks generated with a metal knife. The quantitative and qualitative information registered is analysed by means of standard multivariate statistics and geometric morphometrics to assess the similarities and differences obtained with the different methodologies. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Waller, Derek L
2008-01-01
Statistical analysis is essential to business decision-making and management, but the underlying theory of data collection, organization and analysis is one of the most challenging topics for business students and practitioners. This user-friendly text and CD-ROM package will help you to develop strong skills in presenting and interpreting statistical information in a business or management environment. Based entirely on using Microsoft Excel rather than more complicated applications, it includes a clear guide to using Excel with the key functions employed in the book, a glossary of terms and
Quantifying scenarios to check statistical procedures
International Nuclear Information System (INIS)
Beetle, T.M.
1976-01-01
Ways of diverting nuclear material are presented in a form that reflects the effects of the diversions on a select set of statistical accounting procedures. Twelve statistics are examined for changes in mean values under sixty diversion scenarios. Several questions about the statistics are answered using a table of quantification results. Findings include a smallest, proper subset of the set of statistics which has one or more changed mean values under each of the diversion scenarios
Jerez, José M; Molina, Ignacio; García-Laencina, Pedro J; Alba, Emilio; Ribelles, Nuria; Martín, Miguel; Franco, Leonardo
2010-10-01
Missing data imputation is an important task in cases where it is crucial to use all available data and not discard records with missing values. This work evaluates the performance of several statistical and machine learning imputation methods that were used to predict recurrence in patients in an extensive real breast cancer data set. Imputation methods based on statistical techniques, e.g., mean, hot-deck and multiple imputation, and machine learning techniques, e.g., multi-layer perceptron (MLP), self-organisation maps (SOM) and k-nearest neighbour (KNN), were applied to data collected through the "El Álamo-I" project, and the results were then compared to those obtained from the listwise deletion (LD) imputation method. The database includes demographic, therapeutic and recurrence-survival information from 3679 women with operable invasive breast cancer diagnosed in 32 different hospitals belonging to the Spanish Breast Cancer Research Group (GEICAM). The accuracies of predictions on early cancer relapse were measured using artificial neural networks (ANNs), in which different ANNs were estimated using the data sets with imputed missing values. The imputation methods based on machine learning algorithms outperformed imputation statistical methods in the prediction of patient outcome. Friedman's test revealed a significant difference (p=0.0091) in the observed area under the ROC curve (AUC) values, and the pairwise comparison test showed that the AUCs for MLP, KNN and SOM were significantly higher (p=0.0053, p=0.0048 and p=0.0071, respectively) than the AUC from the LD-based prognosis model. The methods based on machine learning techniques were the most suited for the imputation of missing values and led to a significant enhancement of prognosis accuracy compared to imputation methods based on statistical procedures. Copyright © 2010 Elsevier B.V. All rights reserved.
Advanced statistics for tokamak transport colinearity and tokamak to tokamak variation
International Nuclear Information System (INIS)
Riedel, K.S.
1989-01-01
This paper is an expository introduction to advanced statistics and scaling laws and their application to tokamak devices. Topics of discussion are as follows: implicit assumptions in the standard analysis; advanced regression techniques; specialized tools in statistics and their applications in fusion physics; and improved datasets for transport studies
Evaluating statistical tests on OLAP cubes to compare degree of disease.
Ordonez, Carlos; Chen, Zhibo
2009-09-01
Statistical tests represent an important technique used to formulate and validate hypotheses on a dataset. They are particularly useful in the medical domain, where hypotheses link disease with medical measurements, risk factors, and treatment. In this paper, we propose to compute parametric statistical tests treating patient records as elements in a multidimensional cube. We introduce a technique that combines dimension lattice traversal and statistical tests to discover significant differences in the degree of disease within pairs of patient groups. In order to understand a cause-effect relationship, we focus on patient group pairs differing in one dimension. We introduce several optimizations to prune the search space, to discover significant group pairs, and to summarize results. We present experiments showing important medical findings and evaluating scalability with medical datasets.
Zeng, Irene Sui Lan; Lumley, Thomas
2018-01-01
Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.
Using statistical correlation to compare geomagnetic data sets
Stanton, T.
2009-04-01
The major features of data curves are often matched, to a first order, by bump and wiggle matching to arrive at an offset between data sets. This poster describes a simple statistical correlation program that has proved useful during this stage by determining the optimal correlation between geomagnetic curves using a variety of fixed and floating windows. Its utility is suggested by the fact that it is simple to run, yet generates meaningful data comparisons, often when data noise precludes the obvious matching of curve features. Data sets can be scaled, smoothed, normalised and standardised, before all possible correlations are carried out between selected overlapping portions of each curve. Best-fit offset curves can then be displayed graphically. The program was used to cross-correlate directional and palaeointensity data from Holocene lake sediments (Stanton et al., submitted) and Holocene lava flows. Some example curve matches are shown, including some that illustrate the potential of this technique when examining particularly sparse data sets. Stanton, T., Snowball, I., Zillén, L. and Wastegård, S., submitted. Detecting potential errors in varve chronology and 14C ages using palaeosecular variation curves, lead pollution history and statistical correlation. Quaternary Geochronology.
Ahmed, Fahad; Fakhruddin, A. N. M.; Imam, MD. Toufick; Khan, Nasima; Abdullah, Abu Tareq Mohammad; Khan, Tanzir Ahmed; Rahman, Md. Mahfuzur; Uddin, Mohammad Nashir
2017-11-01
In this study, multivariate statistical techniques in collaboration with GIS are used to assess the roadside surface water quality of Savar region. Nineteen water samples were collected in dry season and 15 water quality parameters including TSS, TDS, pH, DO, BOD, Cl-, F-, NO3 2-, NO2 -, SO4 2-, Ca, Mg, K, Zn and Pb were measured. The univariate overview of water quality parameters are TSS 25.154 ± 8.674 mg/l, TDS 840.400 ± 311.081 mg/l, pH 7.574 ± 0.256 pH unit, DO 4.544 ± 0.933 mg/l, BOD 0.758 ± 0.179 mg/l, Cl- 51.494 ± 28.095 mg/l, F- 0.771 ± 0.153 mg/l, NO3 2- 2.211 ± 0.878 mg/l, NO2 - 4.692 ± 5.971 mg/l, SO4 2- 69.545 ± 53.873 mg/l, Ca 48.458 ± 22.690 mg/l, Mg 19.676 ± 7.361 mg/l, K 12.874 ± 11.382 mg/l, Zn 0.027 ± 0.029 mg/l, Pb 0.096 ± 0.154 mg/l. The water quality data were subjected to R-mode PCA which resulted in five major components. PC1 explains 28% of total variance and indicates the roadside and brick field dust settle down (TDS, TSS) in the nearby water body. PC2 explains 22.123% of total variance and indicates the agricultural influence (K, Ca, and NO2 -). PC3 describes the contribution of nonpoint pollution from agricultural and soil erosion processes (SO4 2-, Cl-, and K). PC4 depicts heavy positively loaded by vehicle emission and diffusion from battery stores (Zn, Pb). PC5 depicts strong positive loading of BOD and strong negative loading of pH. Cluster analysis represents three major clusters for both water parameters and sampling sites. The site based on cluster showed similar grouping pattern of R-mode factor score map. The present work reveals a new scope to monitor the roadside water quality for future research in Bangladesh.
Application of Statistical Potential Techniques to Runaway Transport Studies
International Nuclear Information System (INIS)
Eguilior, S.; Castejon, F.; Parrondo, J. M.
2001-01-01
A method is presented for computing runaway production rate based on techniques of noise-activated escape in a potential is presented in this work. A generalised potential in 2D momentum space is obtained from the deterministic or drift terms of Langevin equations. The diffusive or stochastic terms that arise directly from the stochastic nature of collisions, play the role of the noise that activates barrier crossings. The runaway electron source is given by the escape rate in such a potential which is obtained from an Arrenius-like relation. Runaway electrons are those skip the potential barrier due to the effect of stochastic collisions. In terms of computation time, this method allows one to quickly obtain the source term for a runway electron transport code.(Author) 11 refs
Arif, Sajjad; Tanwir Alam, Md; Ansari, Akhter H.; Bilal Naim Shaikh, Mohd; Arif Siddiqui, M.
2018-05-01
The tribological performance of aluminium hybrid composites reinforced with micro SiC (5 wt%) and nano zirconia (0, 3, 6 and 9 wt%) fabricated through powder metallurgy technique were investigated using statistical and artificial neural network (ANN) approach. The influence of zirconia reinforcement, sliding distance and applied load were analyzed with test based on full factorial design of experiments. Analysis of variance (ANOVA) was used to evaluate the percentage contribution of each process parameters on wear loss. ANOVA approach suggested that wear loss be mainly influenced by sliding distance followed by zirconia reinforcement and applied load. Further, a feed forward back propagation neural network was applied on input/output date for predicting and analyzing the wear behaviour of fabricated composite. A very close correlation between experimental and ANN output were achieved by implementing the model. Finally, ANN model was effectively used to find the influence of various control factors on wear behaviour of hybrid composites.
Renyi statistics in equilibrium statistical mechanics
International Nuclear Information System (INIS)
Parvan, A.S.; Biro, T.S.
2010-01-01
The Renyi statistics in the canonical and microcanonical ensembles is examined both in general and in particular for the ideal gas. In the microcanonical ensemble the Renyi statistics is equivalent to the Boltzmann-Gibbs statistics. By the exact analytical results for the ideal gas, it is shown that in the canonical ensemble, taking the thermodynamic limit, the Renyi statistics is also equivalent to the Boltzmann-Gibbs statistics. Furthermore it satisfies the requirements of the equilibrium thermodynamics, i.e. the thermodynamical potential of the statistical ensemble is a homogeneous function of first degree of its extensive variables of state. We conclude that the Renyi statistics arrives at the same thermodynamical relations, as those stemming from the Boltzmann-Gibbs statistics in this limit.
Energy statistics: Fourth quarter, 1989
International Nuclear Information System (INIS)
Anon.
1989-01-01
This volume contains 100 tables compiling data into the following broad categories: energy, drilling, natural gas, gas liquids, oil, coal, peat, electricity, uranium, and business indicators. The types of data that are given include production and consumption statistics, reserves, imports and exports, prices, fossil fuel and nuclear power generation statistics, and price indices
Tattar, Prabhanjan N; Manjunath, B G
2016-01-01
Integrates the theory and applications of statistics using R A Course in Statistics with R has been written to bridge the gap between theory and applications and explain how mathematical expressions are converted into R programs. The book has been primarily designed as a useful companion for a Masters student during each semester of the course, but will also help applied statisticians in revisiting the underpinnings of the subject. With this dual goal in mind, the book begins with R basics and quickly covers visualization and exploratory analysis. Probability and statistical inference, inclusive of classical, nonparametric, and Bayesian schools, is developed with definitions, motivations, mathematical expression and R programs in a way which will help the reader to understand the mathematical development as well as R implementation. Linear regression models, experimental designs, multivariate analysis, and categorical data analysis are treated in a way which makes effective use of visualization techniques and...
Semi-Poisson statistics in quantum chaos.
García-García, Antonio M; Wang, Jiao
2006-03-01
We investigate the quantum properties of a nonrandom Hamiltonian with a steplike singularity. It is shown that the eigenfunctions are multifractals and, in a certain range of parameters, the level statistics is described exactly by semi-Poisson statistics (SP) typical of pseudointegrable systems. It is also shown that our results are universal, namely, they depend exclusively on the presence of the steplike singularity and are not modified by smooth perturbations of the potential or the addition of a magnetic flux. Although the quantum properties of our system are similar to those of a disordered conductor at the Anderson transition, we report important quantitative differences in both the level statistics and the multifractal dimensions controlling the transition. Finally, the study of quantum transport properties suggests that the classical singularity induces quantum anomalous diffusion. We discuss how these findings may be experimentally corroborated by using ultracold atoms techniques.
Science Academies' Refresher Course in Statistical Physics
Indian Academy of Sciences (India)
The Course is aimed at college teachers of statistical physics at BSc/MSc level. It will cover basic principles and techniques, in a pedagogical manner, through lectures and tutorials, with illustrative problems. Some advanced topics, and common difficulties faced by students will also be discussed. College/University ...
Sound statistical model checking for MDP using partial order and confluence reduction
Hartmanns, Arnd; Timmer, Mark
Statistical model checking (SMC) is an analysis method that circumvents the state space explosion problem in model-based verification by combining probabilistic simulation with statistical methods that provide clear error bounds. As a simulation-based technique, it can in general only provide sound
Annual Statistical Supplement, 2002
Social Security Administration — The Annual Statistical Supplement, 2002 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2010
Social Security Administration — The Annual Statistical Supplement, 2010 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2007
Social Security Administration — The Annual Statistical Supplement, 2007 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2001
Social Security Administration — The Annual Statistical Supplement, 2001 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2016
Social Security Administration — The Annual Statistical Supplement, 2016 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2011
Social Security Administration — The Annual Statistical Supplement, 2011 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2005
Social Security Administration — The Annual Statistical Supplement, 2005 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2015
Social Security Administration — The Annual Statistical Supplement, 2015 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2003
Social Security Administration — The Annual Statistical Supplement, 2003 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2017
Social Security Administration — The Annual Statistical Supplement, 2017 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2008
Social Security Administration — The Annual Statistical Supplement, 2008 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2014
Social Security Administration — The Annual Statistical Supplement, 2014 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2004
Social Security Administration — The Annual Statistical Supplement, 2004 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2000
Social Security Administration — The Annual Statistical Supplement, 2000 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2009
Social Security Administration — The Annual Statistical Supplement, 2009 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Annual Statistical Supplement, 2006
Social Security Administration — The Annual Statistical Supplement, 2006 includes the most comprehensive data available on the Social Security and Supplemental Security Income programs. More than...
Energy statistics yearbook 2002
International Nuclear Information System (INIS)
2005-01-01
The Energy Statistics Yearbook 2002 is a comprehensive collection of international energy statistics prepared by the United Nations Statistics Division. It is the forty-sixth in a series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. It updates the statistical series shown in the previous issue. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The principal objective of the Yearbook is to provide a global framework of comparable data on long-term trends in the supply of mainly commercial primary and secondary forms of energy. Data for each type of fuel and aggregate data for the total mix of commercial fuels are shown for individual countries and areas and are summarized into regional and world totals. The data are compiled primarily from the annual energy questionnaire distributed by the United Nations Statistics Division and supplemented by official national statistical publications. Where official data are not available or are inconsistent, estimates are made by the Statistics Division based on governmental, professional or commercial materials. Estimates include, but are not limited to, extrapolated data based on partial year information, use of annual trends, trade data based on partner country reports, breakdowns of aggregated data as well as analysis of current energy events and activities
Energy statistics yearbook 2001
International Nuclear Information System (INIS)
2004-01-01
The Energy Statistics Yearbook 2001 is a comprehensive collection of international energy statistics prepared by the United Nations Statistics Division. It is the forty-fifth in a series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. It updates the statistical series shown in the previous issue. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The principal objective of the Yearbook is to provide a global framework of comparable data on long-term trends in the supply of mainly commercial primary and secondary forms of energy. Data for each type of fuel and aggregate data for the total mix of commercial fuels are shown for individual countries and areas and are summarized into regional and world totals. The data are compiled primarily from the annual energy questionnaire distributed by the United Nations Statistics Division and supplemented by official national statistical publications. Where official data are not available or are inconsistent, estimates are made by the Statistics Division based on governmental, professional or commercial materials. Estimates include, but are not limited to, extrapolated data based on partial year information, use of annual trends, trade data based on partner country reports, breakdowns of aggregated data as well as analysis of current energy events and activities
Energy statistics yearbook 2000
International Nuclear Information System (INIS)
2002-01-01
The Energy Statistics Yearbook 2000 is a comprehensive collection of international energy statistics prepared by the United Nations Statistics Division. It is the forty-third in a series of annual compilations which commenced under the title World Energy Supplies in Selected Years, 1929-1950. It updates the statistical series shown in the previous issue. Supplementary series of monthly and quarterly data on production of energy may be found in the Monthly Bulletin of Statistics. The principal objective of the Yearbook is to provide a global framework of comparable data on long-term trends in the supply of mainly commercial primary and secondary forms of energy. Data for each type of fuel and aggregate data for the total mix of commercial fuels are shown for individual countries and areas and are summarized into regional and world totals. The data are compiled primarily from the annual energy questionnaire distributed by the United Nations Statistics Division and supplemented by official national statistical publications. Where official data are not available or are inconsistent, estimates are made by the Statistics Division based on governmental, professional or commercial materials. Estimates include, but are not limited to, extrapolated data based on partial year information, use of annual trends, trade data based on partner country reports, breakdowns of aggregated data as well as analysis of current energy events and activities