WorldWideScience

Sample records for statistical model code

  1. The GNASH preequilibrium-statistical nuclear model code

    International Nuclear Information System (INIS)

    Arthur, E. D.

    1988-01-01

    The following report is based on materials presented in a series of lectures at the International Center for Theoretical Physics, Trieste, which were designed to describe the GNASH preequilibrium statistical model code and its use. An overview is provided of the code with emphasis upon code's calculational capabilities and the theoretical models that have been implemented in it. Two sample problems are discussed, the first dealing with neutron reactions on 58 Ni. the second illustrates the fission model capabilities implemented in the code and involves n + 235 U reactions. Finally a description is provided of current theoretical model and code development underway. Examples of calculated results using these new capabilities are also given. 19 refs., 17 figs., 3 tabs

  2. Dataset of coded handwriting features for use in statistical modelling

    Directory of Open Access Journals (Sweden)

    Anna Agius

    2018-02-01

    Full Text Available The data presented here is related to the article titled, “Using handwriting to infer a writer's country of origin for forensic intelligence purposes” (Agius et al., 2017 [1]. This article reports original writer, spatial and construction characteristic data for thirty-seven English Australian11 In this study, English writers were Australians whom had learnt to write in New South Wales (NSW. writers and thirty-seven Vietnamese writers. All of these characteristics were coded and recorded in Microsoft Excel 2013 (version 15.31. The construction characteristics coded were only extracted from seven characters, which were: ‘g’, ‘h’, ‘th’, ‘M’, ‘0’, ‘7’ and ‘9’. The coded format of the writer, spatial and construction characteristics is made available in this Data in Brief in order to allow others to perform statistical analyses and modelling to investigate whether there is a relationship between the handwriting features and the nationality of the writer, and whether the two nationalities can be differentiated. Furthermore, to employ mathematical techniques that are capable of characterising the extracted features from each participant.

  3. EMPIRE-II statistical model code for nuclear reaction calculations

    Energy Technology Data Exchange (ETDEWEB)

    Herman, M [International Atomic Energy Agency, Vienna (Austria)

    2001-12-15

    EMPIRE II is a nuclear reaction code, comprising various nuclear models, and designed for calculations in the broad range of energies and incident particles. A projectile can be any nucleon or Heavy Ion. The energy range starts just above the resonance region, in the case of neutron projectile, and extends up to few hundreds of MeV for Heavy Ion induced reactions. The code accounts for the major nuclear reaction mechanisms, such as optical model (SCATB), Multistep Direct (ORION + TRISTAN), NVWY Multistep Compound, and the full featured Hauser-Feshbach model. Heavy Ion fusion cross section can be calculated within the simplified coupled channels approach (CCFUS). A comprehensive library of input parameters covers nuclear masses, optical model parameters, ground state deformations, discrete levels and decay schemes, level densities, fission barriers (BARFIT), moments of inertia (MOMFIT), and {gamma}-ray strength functions. Effects of the dynamic deformation of a fast rotating nucleus can be taken into account in the calculations. The results can be converted into the ENDF-VI format using the accompanying code EMPEND. The package contains the full EXFOR library of experimental data. Relevant EXFOR entries are automatically retrieved during the calculations. Plots comparing experimental results with the calculated ones can be produced using X4TOC4 and PLOTC4 codes linked to the rest of the system through bash-shell (UNIX) scripts. The graphic user interface written in Tcl/Tk is provided. (author)

  4. Recent improvements of the TNG statistical model code

    International Nuclear Information System (INIS)

    Shibata, K.; Fu, C.Y.

    1986-08-01

    The applicability of the nuclear model code TNG to cross-section evaluations has been extended. The new TNG is capable of using variable bins for outgoing particle energies. Moreover, three additional quantities can now be calculated: capture gamma-ray spectrum, the precompound mode of the (n,γ) reaction, and fission cross section. In this report, the new features of the code are described together with some sample calculations and a brief explanation of the input data. 15 refs., 6 figs., 2 tabs

  5. ABAREX -- A neutron spherical optical-statistical-model code -- A user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B. [ed.; Lawson, R.D.

    1998-06-01

    The contemporary version of the neutron spherical optical-statistical-model code ABAREX is summarized with the objective of providing detailed operational guidance for the user. The physical concepts involved are very briefly outlined. The code is described in some detail and a number of explicit examples are given. With this document one should very quickly become fluent with the use of ABAREX. While the code has operated on a number of computing systems, this version is specifically tailored for the VAX/VMS work station and/or the IBM-compatible personal computer.

  6. Aquelarre. A computer code for fast neutron cross sections from the statistical model

    International Nuclear Information System (INIS)

    Guasp, J.

    1974-01-01

    A Fortran V computer code for Univac 1108/6 using the partial statistical (or compound nucleus) model is described. The code calculates fast neutron cross sections for the (n, n'), (n, p), (n, d) and (n, α reactions and the angular distributions and Legendre moments.for the (n, n) and (n, n') processes in heavy and intermediate spherical nuclei. A local Optical Model with spin-orbit interaction for each level is employed, allowing for the width fluctuation and Moldauer corrections, as well as the inclusion of discrete and continuous levels. (Author) 67 refs

  7. A statistical methodology for quantification of uncertainty in best estimate code physical models

    International Nuclear Information System (INIS)

    Vinai, Paolo; Macian-Juan, Rafael; Chawla, Rakesh

    2007-01-01

    A novel uncertainty assessment methodology, based on a statistical non-parametric approach, is presented in this paper. It achieves quantification of code physical model uncertainty by making use of model performance information obtained from studies of appropriate separate-effect tests. Uncertainties are quantified in the form of estimated probability density functions (pdf's), calculated with a newly developed non-parametric estimator. The new estimator objectively predicts the probability distribution of the model's 'error' (its uncertainty) from databases reflecting the model's accuracy on the basis of available experiments. The methodology is completed by applying a novel multi-dimensional clustering technique based on the comparison of model error samples with the Kruskall-Wallis test. This takes into account the fact that a model's uncertainty depends on system conditions, since a best estimate code can give predictions for which the accuracy is affected by the regions of the physical space in which the experiments occur. The final result is an objective, rigorous and accurate manner of assigning uncertainty to coded models, i.e. the input information needed by code uncertainty propagation methodologies used for assessing the accuracy of best estimate codes in nuclear systems analysis. The new methodology has been applied to the quantification of the uncertainty in the RETRAN-3D void model and then used in the analysis of an independent separate-effect experiment. This has clearly demonstrated the basic feasibility of the approach, as well as its advantages in yielding narrower uncertainty bands in quantifying the code's accuracy for void fraction predictions

  8. The Physical Models and Statistical Procedures Used in the RACER Monte Carlo Code

    International Nuclear Information System (INIS)

    Sutton, T.M.; Brown, F.B.; Bischoff, F.G.; MacMillan, D.B.; Ellis, C.L.; Ward, J.T.; Ballinger, C.T.; Kelly, D.J.; Schindler, L.

    1999-01-01

    capability of performing iterated-source (criticality), multiplied-fixed-source, and fixed-source calculations. MCV uses a highly detailed continuous-energy (as opposed to multigroup) representation of neutron histories and cross section data. The spatial modeling is fully three-dimensional (3-D), and any geometrical region that can be described by quadric surfaces may be represented. The primary results are region-wise reaction rates, neutron production rates, slowing-down-densities, fluxes, leakages, and when appropriate the eigenvalue or multiplication factor. Region-wise nuclidic reaction rates are also computed, which may then be used by other modules in the system to determine time-dependent nuclide inventories so that RACER can perform depletion calculations. Furthermore, derived quantities such as ratios and sums of primary quantities and/or other derived quantities may also be calculated. MCV performs statistical analyses on output quantities, computing estimates of the 95% confidence intervals as well as indicators as to the reliability of these estimates. The remainder of this chapter provides an overview of the MCV algorithm. The following three chapters describe the MCV mathematical, physical, and statistical treatments in more detail. Specifically, Chapter 2 discusses topics related to tracking the histories including: geometry modeling, how histories are moved through the geometry, and variance reduction techniques related to the tracking process. Chapter 3 describes the nuclear data and physical models employed by MCV. Chapter 4 discusses the tallies, statistical analyses, and edits. Chapter 5 provides some guidance as to how to run the code, and Chapter 6 is a list of the code input options

  9. Overlaid Alice: a statistical model computer code including fission and preequilibrium models

    International Nuclear Information System (INIS)

    Blann, M.

    1976-01-01

    The most recent edition of an evaporation code originally written previously with frequent updating and improvement. This version replaces the version Alice described previously. A brief summary is given of the types of calculations which can be done. A listing of the code and the results of several sample calculations are presented

  10. GNASH: a preequilibrium, statistical nuclear-model code for calculation of cross sections and emission spectra

    International Nuclear Information System (INIS)

    Young, P.G.; Arthur, E.D.

    1977-11-01

    A new multistep Hauser--Feshbach code that includes corrections for preequilibrium effects is described. The code can calculate up to 60 decay reactions (cross sections and energy spectra) in one computation, and thereby provide considerable flexibility for handling processes with complicated reaction chains. Input parameter setup, problem output, and subroutine descriptions are given along with a sample problem calculation. A brief theoretical description is also included. 8 figures, 3 tables

  11. Statistical theory applications and associated computer codes

    International Nuclear Information System (INIS)

    Prince, A.

    1980-01-01

    The general format is along the same lines as that used in the O.M. Session, i.e. an introduction to the nature of the physical problems and methods of solution based on the statistical model of the nucleus. Both binary and higher multiple reactions are considered. The computer codes used in this session are a combination of optical model and statistical theory. As with the O.M. sessions, the preparation of input and analysis of output are thoroughly examined. Again, comparison with experimental data serves to demonstrate the validity of the results and possible areas for improvement. (author)

  12. Circular codes revisited: a statistical approach.

    Science.gov (United States)

    Gonzalez, D L; Giannerini, S; Rosa, R

    2011-04-21

    In 1996 Arquès and Michel [1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58] discovered the existence of a common circular code in eukaryote and prokaryote genomes. Since then, circular code theory has provoked great interest and underwent a rapid development. In this paper we discuss some theoretical issues related to the synchronization properties of coding sequences and circular codes with particular emphasis on the problem of retrieval and maintenance of the reading frame. Motivated by the theoretical discussion, we adopt a rigorous statistical approach in order to try to answer different questions. First, we investigate the covering capability of the whole class of 216 self-complementary, C(3) maximal codes with respect to a large set of coding sequences. The results indicate that, on average, the code proposed by Arquès and Michel has the best covering capability but, still, there exists a great variability among sequences. Second, we focus on such code and explore the role played by the proportion of the bases by means of a hierarchy of permutation tests. The results show the existence of a sort of optimization mechanism such that coding sequences are tailored as to maximize or minimize the coverage of circular codes on specific reading frames. Such optimization clearly relates the function of circular codes with reading frame synchronization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Adaptive RAC codes employing statistical channel evaluation ...

    African Journals Online (AJOL)

    An adaptive encoding technique using row and column array (RAC) codes employing a different number of parity columns that depends on the channel state is proposed in this paper. The trellises of the proposed adaptive codes and a statistical channel evaluation technique employing these trellises are designed and ...

  14. Recent extensions and use of the statistical model code EMPIRE-II - version: 2.17 Millesimo

    International Nuclear Information System (INIS)

    Herman, M.

    2003-01-01

    This lecture notes describe new features of the modular code EMPIRE-2.17 designed to perform comprehensive calculations of nuclear reactions using variety of nuclear reaction models. Compared to the version 2.13, the current release has been extended by including Coupled-Channel mechanism, exciton model, Monte Carlo approach to preequilibrium emission, use of microscopic level densities, widths fluctuation correction, detailed calculation of the recoil spectra, and powerful plotting capabilities provided by the ZVView package. The second part of this lecture concentrates on the use of the code in practical calculations, with emphasis on the aspects relevant to nuclear data evaluation. In particular, adjusting model parameters is discussed in details. (author)

  15. STAPRE and SCAT2. Statistical pre-equilibrium and optical nuclear model code for Personal Computer IBM/AT

    International Nuclear Information System (INIS)

    Goulo, V.G.

    1988-01-01

    This document describes the content of the diskettes with nuclear data production codes SCAT2 and STAPRE and the example data set for implementing and testing of these codes for personal computers IBM/AT. They are available on two diskettes, free fo charge, upon request from the NEA Data Bank, Saclay, France. (author). 4 refs, 1 fig

  16. Statistical coding and decoding of heartbeat intervals.

    Science.gov (United States)

    Lucena, Fausto; Barros, Allan Kardec; Príncipe, José C; Ohnishi, Noboru

    2011-01-01

    The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems.

  17. Statistical coding and decoding of heartbeat intervals.

    Directory of Open Access Journals (Sweden)

    Fausto Lucena

    Full Text Available The heart integrates neuroregulatory messages into specific bands of frequency, such that the overall amplitude spectrum of the cardiac output reflects the variations of the autonomic nervous system. This modulatory mechanism seems to be well adjusted to the unpredictability of the cardiac demand, maintaining a proper cardiac regulation. A longstanding theory holds that biological organisms facing an ever-changing environment are likely to evolve adaptive mechanisms to extract essential features in order to adjust their behavior. The key question, however, has been to understand how the neural circuitry self-organizes these feature detectors to select behaviorally relevant information. Previous studies in computational perception suggest that a neural population enhances information that is important for survival by minimizing the statistical redundancy of the stimuli. Herein we investigate whether the cardiac system makes use of a redundancy reduction strategy to regulate the cardiac rhythm. Based on a network of neural filters optimized to code heartbeat intervals, we learn a population code that maximizes the information across the neural ensemble. The emerging population code displays filter tuning proprieties whose characteristics explain diverse aspects of the autonomic cardiac regulation, such as the compromise between fast and slow cardiac responses. We show that the filters yield responses that are quantitatively similar to observed heart rate responses during direct sympathetic or parasympathetic nerve stimulation. Our findings suggest that the heart decodes autonomic stimuli according to information theory principles analogous to how perceptual cues are encoded by sensory systems.

  18. Incorporating Code-Based Software in an Introductory Statistics Course

    Science.gov (United States)

    Doehler, Kirsten; Taylor, Laura

    2015-01-01

    This article is based on the experiences of two statistics professors who have taught students to write and effectively utilize code-based software in a college-level introductory statistics course. Advantages of using software and code-based software in this context are discussed. Suggestions are made on how to ease students into using code with…

  19. Classifying Coding DNA with Nucleotide Statistics

    Directory of Open Access Journals (Sweden)

    Nicolas Carels

    2009-10-01

    Full Text Available In this report, we compared the success rate of classification of coding sequences (CDS vs. introns by Codon Structure Factor (CSF and by a method that we called Universal Feature Method (UFM. UFM is based on the scoring of purine bias (Rrr and stop codon frequency. We show that the success rate of CDS/intron classification by UFM is higher than by CSF. UFM classifies ORFs as coding or non-coding through a score based on (i the stop codon distribution, (ii the product of purine probabilities in the three positions of nucleotide triplets, (iii the product of Cytosine (C, Guanine (G, and Adenine (A probabilities in the 1st, 2nd, and 3rd positions of triplets, respectively, (iv the probabilities of G in 1st and 2nd position of triplets and (v the distance of their GC3 vs. GC2 levels to the regression line of the universal correlation. More than 80% of CDSs (true positives of Homo sapiens (>250 bp, Drosophila melanogaster (>250 bp and Arabidopsis thaliana (>200 bp are successfully classified with a false positive rate lower or equal to 5%. The method releases coding sequences in their coding strand and coding frame, which allows their automatic translation into protein sequences with 95% confidence. The method is a natural consequence of the compositional bias of nucleotides in coding sequences.

  20. Statistical mechanics of error-correcting codes

    Science.gov (United States)

    Kabashima, Y.; Saad, D.

    1999-01-01

    We investigate the performance of error-correcting codes, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability is obtained for finite K and C. We examine the finite-temperature case to assess the use of simulated annealing for decoding and extend the analysis to accommodate other types of noisy channels.

  1. Sampling, Probability Models and Statistical Reasoning Statistical

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 1; Issue 5. Sampling, Probability Models and Statistical Reasoning Statistical Inference. Mohan Delampady V R Padmawar. General Article Volume 1 Issue 5 May 1996 pp 49-58 ...

  2. Statistical methods for accurately determining criticality code bias

    International Nuclear Information System (INIS)

    Trumble, E.F.; Kimball, K.D.

    1997-01-01

    A system of statistically treating validation calculations for the purpose of determining computer code bias is provided in this paper. The following statistical treatments are described: weighted regression analysis, lower tolerance limit, lower tolerance band, and lower confidence band. These methods meet the criticality code validation requirements of ANS 8.1. 8 refs., 5 figs., 4 tabs

  3. PORPST: A statistical postprocessor for the PORMC computer code

    International Nuclear Information System (INIS)

    Eslinger, P.W.; Didier, B.T.

    1991-06-01

    This report describes the theory underlying the PORPST code and gives details for using the code. The PORPST code is designed to do statistical postprocessing on files written by the PORMC computer code. The data written by PORMC are summarized in terms of means, variances, standard deviations, or statistical distributions. In addition, the PORPST code provides for plotting of the results, either internal to the code or through use of the CONTOUR3 postprocessor. Section 2.0 discusses the mathematical basis of the code, and Section 3.0 discusses the code structure. Section 4.0 describes the free-format point command language. Section 5.0 describes in detail the commands to run the program. Section 6.0 provides an example program run, and Section 7.0 provides the references. 11 refs., 1 fig., 17 tabs

  4. Statistical mechanics of low-density parity-check codes

    Energy Technology Data Exchange (ETDEWEB)

    Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 2268502 (Japan); Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)

    2004-02-13

    We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)

  5. Statistical mechanics of low-density parity-check codes

    International Nuclear Information System (INIS)

    Kabashima, Yoshiyuki; Saad, David

    2004-01-01

    We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multi-spin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems. (topical review)

  6. Analysis of Random-Loading HTR-PROTEUS Cores with Continuous Energy Monte Carlo Code Based on A Statistical Geometry Model

    International Nuclear Information System (INIS)

    Murata, Isao; Miyamaru, Hiroyuki

    2008-01-01

    Spherical elements have remarkable features in various applications in the nuclear engineering field. In 1990's, by the project of HTR-PROTEUS at PSI various pebble bed reactor experiments were conducted including cores with a lot of spherical fuel elements loaded randomly. In this study, criticality experiments of the random-loading HTR-PROTEUS cores were analyzed by MCNP-BALL, which could deal with a random arrangement of spherical fuel elements exactly with a statistical geometry model. As a result of analysis, the calculated effective multiplication factors were in fairly good agreement with the measurements within about 0.5%Δk/k. In comparison with other numerical analysis, our effective multiplication factors were between the experimental values and the VSOP calculations. To investigate the discrepancy of the effective multiplication factors between the experiments and calculations, sensitivity analyses were performed. As the result, the sensitivity of impurity boron concentration was fairly large. The reason of the present slight overestimation was not made clear at present. However, the presently existing difference was thought to be related to the impurity boron concentration, not to the modelling of the reactor and the used nuclear data. From the present study, it was confirmed that MCNP-BALL would have an advantage to conventional transport codes by comparing with their numerical results and the experimental values. As for the criticality experiment of PROTEUS, we would conclude that the two cores of Core 4.2 and 4.3 could be regarded as an equivalent experiment of a reference critical core, which was packed in the packing fraction of RLP. (authors)

  7. Analysis of Random-Loading HTR-PROTEUS Cores with Continuous Energy Monte Carlo Code Based on A Statistical Geometry Model

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Isao; Miyamaru, Hiroyuki [Division of Electrical, Electronic and Information Engineering, Osaka University, Yamada-oka 2-1, Suita, Osaka, 565-0871 (Japan)

    2008-07-01

    Spherical elements have remarkable features in various applications in the nuclear engineering field. In 1990's, by the project of HTR-PROTEUS at PSI various pebble bed reactor experiments were conducted including cores with a lot of spherical fuel elements loaded randomly. In this study, criticality experiments of the random-loading HTR-PROTEUS cores were analyzed by MCNP-BALL, which could deal with a random arrangement of spherical fuel elements exactly with a statistical geometry model. As a result of analysis, the calculated effective multiplication factors were in fairly good agreement with the measurements within about 0.5%DELTAk/k. In comparison with other numerical analysis, our effective multiplication factors were between the experimental values and the VSOP calculations. To investigate the discrepancy of the effective multiplication factors between the experiments and calculations, sensitivity analyses were performed. As the result, the sensitivity of impurity boron concentration was fairly large. The reason of the present slight overestimation was not made clear at present. However, the presently existing difference was thought to be related to the impurity boron concentration, not to the modelling of the reactor and the used nuclear data. From the present study, it was confirmed that MCNP-BALL would have an advantage to conventional transport codes by comparing with their numerical results and the experimental values. As for the criticality experiment of PROTEUS, we would conclude that the two cores of Core 4.2 and 4.3 could be regarded as an equivalent experiment of a reference critical core, which was packed in the packing fraction of RLP. (authors)

  8. The STATFLUX code: a statistical method for calculation of flow and set of parameters, based on the Multiple-Compartment Biokinetical Model

    Science.gov (United States)

    Garcia, F.; Mesa, J.; Arruda-Neto, J. D. T.; Helene, O.; Vanin, V.; Milian, F.; Deppman, A.; Rodrigues, T. E.; Rodriguez, O.

    2007-03-01

    The code STATFLUX, implementing a new and simple statistical procedure for the calculation of transfer coefficients in radionuclide transport to animals and plants, is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. Flow parameters were estimated by employing two different least-squares procedures: Derivative and Gauss-Marquardt methods, with the available experimental data of radionuclide concentrations as the input functions of time. The solution of the inverse problem, which relates a given set of flow parameter with the time evolution of concentration functions, is achieved via a Monte Carlo simulation procedure. Program summaryTitle of program:STATFLUX Catalogue identifier:ADYS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computer for which the program is designed and others on which it has been tested:Micro-computer with Intel Pentium III, 3.0 GHz Installation:Laboratory of Linear Accelerator, Department of Experimental Physics, University of São Paulo, Brazil Operating system:Windows 2000 and Windows XP Programming language used:Fortran-77 as implemented in Microsoft Fortran 4.0. NOTE: Microsoft Fortran includes non-standard features which are used in this program. Standard Fortran compilers such as, g77, f77, ifort and NAG95, are not able to compile the code and therefore it has not been possible for the CPC Program Library to test the program. Memory required to execute with typical data:8 Mbytes of RAM memory and 100 MB of Hard disk memory No. of bits in a word:16 No. of lines in distributed program, including test data, etc.:6912 No. of bytes in distributed program, including test data, etc.:229 541 Distribution format:tar.gz Nature of the physical problem:The investigation of transport mechanisms for

  9. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  10. Statistical screening of input variables in a complex computer code

    International Nuclear Information System (INIS)

    Krieger, T.J.

    1982-01-01

    A method is presented for ''statistical screening'' of input variables in a complex computer code. The object is to determine the ''effective'' or important input variables by estimating the relative magnitudes of their associated sensitivity coefficients. This is accomplished by performing a numerical experiment consisting of a relatively small number of computer runs with the code followed by a statistical analysis of the results. A formula for estimating the sensitivity coefficients is derived. Reference is made to an earlier work in which the method was applied to a complex reactor code with good results

  11. Aquelarre. A computer code for fast neutron cross sections from the statistical model; AQUELARRE. Un programa numerico para el calculo de secciones eficaces neutronicas mediante el modelo de nucleo compuesto

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J.

    1974-07-01

    A Fortran V computer code for Univac 1108/6 using the partial statistical (or compound nucleus) model is described. The code calculates fast neutron cross sections for the (n, n'), (n, p), (n, d) and (n, {alpha}) reactions and the angular distributions and Legendre moments for the (n, n) and (n, n') processes in heavy and intermediate spherical nuclei. A local Optical Model with spin-orbit interaction for each level is employed, allowing for the width fluctuation and Moldauer corrections, as well as the inclusion of discrete and continuous levels. (Author) 67 refs.

  12. Aquelarre. A computer code for fast neutron cross sections from the statistical model; AQUELARRE. Un programa numerico para el calculo de secciones eficaces neutronicas mediante el modelo de nucleo compuesto

    Energy Technology Data Exchange (ETDEWEB)

    Guasp, J

    1974-07-01

    A Fortran V computer code for Univac 1108/6 using the partial statistical (or compound nucleus) model is described. The code calculates fast neutron cross sections for the (n, n'), (n, p), (n, d) and (n, {alpha}) reactions and the angular distributions and Legendre moments for the (n, n) and (n, n') processes in heavy and intermediate spherical nuclei. A local Optical Model with spin-orbit interaction for each level is employed, allowing for the width fluctuation and Moldauer corrections, as well as the inclusion of discrete and continuous levels. (Author) 67 refs.

  13. Studies on DANESS Code Modeling

    International Nuclear Information System (INIS)

    Jeong, Chang Joon

    2009-09-01

    The DANESS code modeling study has been performed. DANESS code is widely used in a dynamic fuel cycle analysis. Korea Atomic Energy Research Institute (KAERI) has used the DANESS code for the Korean national nuclear fuel cycle scenario analysis. In this report, the important models such as Energy-demand scenario model, New Reactor Capacity Decision Model, Reactor and Fuel Cycle Facility History Model, and Fuel Cycle Model are investigated. And, some models in the interface module are refined and inserted for Korean nuclear fuel cycle model. Some application studies have also been performed for GNEP cases and for US fast reactor scenarios with various conversion ratios

  14. Bayesian models: A statistical primer for ecologists

    Science.gov (United States)

    Hobbs, N. Thompson; Hooten, Mevin B.

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models

  15. Statistical regularities in art: Relations with visual coding and perception.

    Science.gov (United States)

    Graham, Daniel J; Redies, Christoph

    2010-07-21

    Since at least 1935, vision researchers have used art stimuli to test human response to complex scenes. This is sensible given the "inherent interestingness" of art and its relation to the natural visual world. The use of art stimuli has remained popular, especially in eye tracking studies. Moreover, stimuli in common use by vision scientists are inspired by the work of famous artists (e.g., Mondrians). Artworks are also popular in vision science as illustrations of a host of visual phenomena, such as depth cues and surface properties. However, until recently, there has been scant consideration of the spatial, luminance, and color statistics of artwork, and even less study of ways that regularities in such statistics could affect visual processing. Furthermore, the relationship between regularities in art images and those in natural scenes has received little or no attention. In the past few years, there has been a concerted effort to study statistical regularities in art as they relate to neural coding and visual perception, and art stimuli have begun to be studied in rigorous ways, as natural scenes have been. In this minireview, we summarize quantitative studies of links between regular statistics in artwork and processing in the visual stream. The results of these studies suggest that art is especially germane to understanding human visual coding and perception, and it therefore warrants wider study. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Exclusion statistics and integrable models

    International Nuclear Information System (INIS)

    Mashkevich, S.

    1998-01-01

    The definition of exclusion statistics, as given by Haldane, allows for a statistical interaction between distinguishable particles (multi-species statistics). The thermodynamic quantities for such statistics ca be evaluated exactly. The explicit expressions for the cluster coefficients are presented. Furthermore, single-species exclusion statistics is realized in one-dimensional integrable models. The interesting questions of generalizing this correspondence onto the higher-dimensional and the multi-species cases remain essentially open

  17. A classical statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.; Teichert, J.

    1980-01-01

    The use of the computer code TRAJEC which represents the numerical realization of a classical statistical model for heavy ion collisions is described. The code calculates the results of a classical friction model as well as various multi-differential cross sections for heavy ion collisions. INPUT and OUTPUT information of the code are described. Two examples of data sets are given [ru

  18. Growth curve models and statistical diagnostics

    CERN Document Server

    Pan, Jian-Xin

    2002-01-01

    Growth-curve models are generalized multivariate analysis-of-variance models. These models are especially useful for investigating growth problems on short times in economics, biology, medical research, and epidemiology. This book systematically introduces the theory of the GCM with particular emphasis on their multivariate statistical diagnostics, which are based mainly on recent developments made by the authors and their collaborators. The authors provide complete proofs of theorems as well as practical data sets and MATLAB code.

  19. GNASH: a preequilibrium, statistical nuclear-model code for calculation of cross sections and emission spectra. [In FORTRAN for CDC 7600

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.G.; Arthur, E.D.

    1977-11-01

    A new multistep Hauser--Feshbach code that includes corrections for preequilibrium effects is described. The code can calculate up to 60 decay reactions (cross sections and energy spectra) in one computation, and thereby provide considerable flexibility for handling processes with complicated reaction chains. Input parameter setup, problem output, and subroutine descriptions are given along with a sample problem calculation. A brief theoretical description is also included. 8 figures, 3 tables.

  20. Statistical mechanics analysis of LDPC coding in MIMO Gaussian channels

    Energy Technology Data Exchange (ETDEWEB)

    Alamino, Roberto C; Saad, David [Neural Computing Research Group, Aston University, Birmingham B4 7ET (United Kingdom)

    2007-10-12

    Using analytical methods of statistical mechanics, we analyse the typical behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with binary inputs under low-density parity-check (LDPC) network coding and joint decoding. The saddle point equations for the replica symmetric solution are found in particular realizations of this channel, including a small and large number of transmitters and receivers. In particular, we examine the cases of a single transmitter, a single receiver and symmetric and asymmetric interference. Both dynamical and thermodynamical transitions from the ferromagnetic solution of perfect decoding to a non-ferromagnetic solution are identified for the cases considered, marking the practical and theoretical limits of the system under the current coding scheme. Numerical results are provided, showing the typical level of improvement/deterioration achieved with respect to the single transmitter/receiver result, for the various cases.

  1. Statistical mechanics analysis of LDPC coding in MIMO Gaussian channels

    International Nuclear Information System (INIS)

    Alamino, Roberto C; Saad, David

    2007-01-01

    Using analytical methods of statistical mechanics, we analyse the typical behaviour of a multiple-input multiple-output (MIMO) Gaussian channel with binary inputs under low-density parity-check (LDPC) network coding and joint decoding. The saddle point equations for the replica symmetric solution are found in particular realizations of this channel, including a small and large number of transmitters and receivers. In particular, we examine the cases of a single transmitter, a single receiver and symmetric and asymmetric interference. Both dynamical and thermodynamical transitions from the ferromagnetic solution of perfect decoding to a non-ferromagnetic solution are identified for the cases considered, marking the practical and theoretical limits of the system under the current coding scheme. Numerical results are provided, showing the typical level of improvement/deterioration achieved with respect to the single transmitter/receiver result, for the various cases

  2. Cheetah: Starspot modeling code

    Science.gov (United States)

    Walkowicz, Lucianne; Thomas, Michael; Finkestein, Adam

    2014-12-01

    Cheetah models starspots in photometric data (lightcurves) by calculating the modulation of a light curve due to starspots. The main parameters of the program are the linear and quadratic limb darkening coefficients, stellar inclination, spot locations and sizes, and the intensity ratio of the spots to the stellar photosphere. Cheetah uses uniform spot contrast and the minimum number of spots needed to produce a good fit and ignores bright regions for the sake of simplicity.

  3. Exclusion statistics and integrable models

    International Nuclear Information System (INIS)

    Mashkevich, S.

    1998-01-01

    The definition of exclusion statistics that was given by Haldane admits a 'statistical interaction' between distinguishable particles (multispecies statistics). For such statistics, thermodynamic quantities can be evaluated exactly; explicit expressions are presented here for cluster coefficients. Furthermore, single-species exclusion statistics is realized in one-dimensional integrable models of the Calogero-Sutherland type. The interesting questions of generalizing this correspondence to the higher-dimensional and the multispecies cases remain essentially open; however, our results provide some hints as to searches for the models in question

  4. Noise Residual Learning for Noise Modeling in Distributed Video Coding

    DEFF Research Database (Denmark)

    Luong, Huynh Van; Forchhammer, Søren

    2012-01-01

    Distributed video coding (DVC) is a coding paradigm which exploits the source statistics at the decoder side to reduce the complexity at the encoder. The noise model is one of the inherently difficult challenges in DVC. This paper considers Transform Domain Wyner-Ziv (TDWZ) coding and proposes...

  5. Correlated statistical uncertainties in coded-aperture imaging

    International Nuclear Information System (INIS)

    Fleenor, Matthew C.; Blackston, Matthew A.; Ziock, Klaus P.

    2015-01-01

    In nuclear security applications, coded-aperture imagers can provide a wealth of information regarding the attributes of both the radioactive and nonradioactive components of the objects being imaged. However, for optimum benefit to the community, spatial attributes need to be determined in a quantitative and statistically meaningful manner. To address a deficiency of quantifiable errors in coded-aperture imaging, we present uncertainty matrices containing covariance terms between image pixels for MURA mask patterns. We calculated these correlated uncertainties as functions of variation in mask rank, mask pattern over-sampling, and whether or not anti-mask data are included. Utilizing simulated point source data, we found that correlations arose when two or more image pixels were summed. Furthermore, we found that the presence of correlations was heightened by the process of over-sampling, while correlations were suppressed by the inclusion of anti-mask data and with increased mask rank. As an application of this result, we explored how statistics-based alarming is impacted in a radiological search scenario

  6. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose

    2004-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continously increase the knowledge on wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describe the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of high-sampled full-scale time series measurements...... are consistent, given the inevitabel uncertainties associated with model as well as with the extreme value data analysis. Keywords: Statistical model, extreme wind conditions, statistical analysis, turbulence, wind loading, statistical analysis, turbulence, wind loading, wind shear, wind turbines....

  7. Statistical modeling for degradation data

    CERN Document Server

    Lio, Yuhlong; Ng, Hon; Tsai, Tzong-Ru

    2017-01-01

    This book focuses on the statistical aspects of the analysis of degradation data. In recent years, degradation data analysis has come to play an increasingly important role in different disciplines such as reliability, public health sciences, and finance. For example, information on products’ reliability can be obtained by analyzing degradation data. In addition, statistical modeling and inference techniques have been developed on the basis of different degradation measures. The book brings together experts engaged in statistical modeling and inference, presenting and discussing important recent advances in degradation data analysis and related applications. The topics covered are timely and have considerable potential to impact both statistics and reliability engineering.

  8. Statistical modelling with quantile functions

    CERN Document Server

    Gilchrist, Warren

    2000-01-01

    Galton used quantiles more than a hundred years ago in describing data. Tukey and Parzen used them in the 60s and 70s in describing populations. Since then, the authors of many papers, both theoretical and practical, have used various aspects of quantiles in their work. Until now, however, no one put all the ideas together to form what turns out to be a general approach to statistics.Statistical Modelling with Quantile Functions does just that. It systematically examines the entire process of statistical modelling, starting with using the quantile function to define continuous distributions. The author shows that by using this approach, it becomes possible to develop complex distributional models from simple components. A modelling kit can be developed that applies to the whole model - deterministic and stochastic components - and this kit operates by adding, multiplying, and transforming distributions rather than data.Statistical Modelling with Quantile Functions adds a new dimension to the practice of stati...

  9. A Statistical Programme Assignment Model

    DEFF Research Database (Denmark)

    Rosholm, Michael; Staghøj, Jonas; Svarer, Michael

    When treatment effects of active labour market programmes are heterogeneous in an observable way  across the population, the allocation of the unemployed into different programmes becomes a particularly  important issue. In this paper, we present a statistical model designed to improve the present...... duration of unemployment spells may result if a statistical programme assignment model is introduced. We discuss several issues regarding the  plementation of such a system, especially the interplay between the statistical model and  case workers....

  10. Pump Component Model in SPACE Code

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kyoung Doo

    2010-08-01

    This technical report describes the pump component model in SPACE code. A literature survey was made on pump models in existing system codes. The models embedded in SPACE code were examined to check the confliction with intellectual proprietary rights. Design specifications, computer coding implementation, and test results are included in this report

  11. Tropical geometry of statistical models.

    Science.gov (United States)

    Pachter, Lior; Sturmfels, Bernd

    2004-11-16

    This article presents a unified mathematical framework for inference in graphical models, building on the observation that graphical models are algebraic varieties. From this geometric viewpoint, observations generated from a model are coordinates of a point in the variety, and the sum-product algorithm is an efficient tool for evaluating specific coordinates. Here, we address the question of how the solutions to various inference problems depend on the model parameters. The proposed answer is expressed in terms of tropical algebraic geometry. The Newton polytope of a statistical model plays a key role. Our results are applied to the hidden Markov model and the general Markov model on a binary tree.

  12. Statistical Model of Extreme Shear

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose; Larsen, Gunner Chr.

    2005-01-01

    In order to continue cost-optimisation of modern large wind turbines, it is important to continuously increase the knowledge of wind field parameters relevant to design loads. This paper presents a general statistical model that offers site-specific prediction of the probability density function...... by a model that, on a statistically consistent basis, describes the most likely spatial shape of an extreme wind shear event. Predictions from the model have been compared with results from an extreme value data analysis, based on a large number of full-scale measurements recorded with a high sampling rate...

  13. Statistical Models for Social Networks

    NARCIS (Netherlands)

    Snijders, Tom A. B.; Cook, KS; Massey, DS

    2011-01-01

    Statistical models for social networks as dependent variables must represent the typical network dependencies between tie variables such as reciprocity, homophily, transitivity, etc. This review first treats models for single (cross-sectionally observed) networks and then for network dynamics. For

  14. History by history statistical estimators in the BEAM code system

    International Nuclear Information System (INIS)

    Walters, B.R.B.; Kawrakow, I.; Rogers, D.W.O.

    2002-01-01

    A history by history method for estimating uncertainties has been implemented in the BEAMnrc and DOSXYZnrc codes replacing the method of statistical batches. This method groups scored quantities (e.g., dose) by primary history. When phase-space sources are used, this method groups incident particles according to the primary histories that generated them. This necessitated adding markers (negative energy) to phase-space files to indicate the first particle generated by a new primary history. The new method greatly reduces the uncertainty in the uncertainty estimate. The new method eliminates one dimension (which kept the results for each batch) from all scoring arrays, resulting in memory requirement being decreased by a factor of 2. Correlations between particles in phase-space sources are taken into account. The only correlations with any significant impact on uncertainty are those introduced by particle recycling. Failure to account for these correlations can result in a significant underestimate of the uncertainty. The previous method of accounting for correlations due to recycling by placing all recycled particles in the same batch did work. Neither the new method nor the batch method take into account correlations between incident particles when a phase-space source is restarted so one must avoid restarts

  15. Sensometrics: Thurstonian and Statistical Models

    DEFF Research Database (Denmark)

    Christensen, Rune Haubo Bojesen

    . sensR is a package for sensory discrimination testing with Thurstonian models and ordinal supports analysis of ordinal data with cumulative link (mixed) models. While sensR is closely connected to the sensometrics field, the ordinal package has developed into a generic statistical package applicable......This thesis is concerned with the development and bridging of Thurstonian and statistical models for sensory discrimination testing as applied in the scientific discipline of sensometrics. In sensory discrimination testing sensory differences between products are detected and quantified by the use...... and sensory discrimination testing in particular in a series of papers by advancing Thurstonian models for a range of sensory discrimination protocols in addition to facilitating their application by providing software for fitting these models. The main focus is on identifying Thurstonian models...

  16. User's manual for a process model code

    International Nuclear Information System (INIS)

    Kern, E.A.; Martinez, D.P.

    1981-03-01

    The MODEL code has been developed for computer modeling of materials processing facilities associated with the nuclear fuel cycle. However, it can also be used in other modeling applications. This report provides sufficient information for a potential user to apply the code to specific process modeling problems. Several examples that demonstrate most of the capabilities of the code are provided

  17. Development of statistical analysis code for meteorological data (W-View)

    International Nuclear Information System (INIS)

    Tachibana, Haruo; Sekita, Tsutomu; Yamaguchi, Takenori

    2003-03-01

    A computer code (W-View: Weather View) was developed to analyze the meteorological data statistically based on 'the guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). The code gives statistical meteorological data to assess the public dose in case of normal operation and severe accident to get the license of nuclear reactor operation. This code was revised from the original code used in a large office computer code to enable a personal computer user to analyze the meteorological data simply and conveniently and to make the statistical data tables and figures of meteorology. (author)

  18. Classical model of intermediate statistics

    International Nuclear Information System (INIS)

    Kaniadakis, G.

    1994-01-01

    In this work we present a classical kinetic model of intermediate statistics. In the case of Brownian particles we show that the Fermi-Dirac (FD) and Bose-Einstein (BE) distributions can be obtained, just as the Maxwell-Boltzmann (MD) distribution, as steady states of a classical kinetic equation that intrinsically takes into account an exclusion-inclusion principle. In our model the intermediate statistics are obtained as steady states of a system of coupled nonlinear kinetic equations, where the coupling constants are the transmutational potentials η κκ' . We show that, besides the FD-BE intermediate statistics extensively studied from the quantum point of view, we can also study the MB-FD and MB-BE ones. Moreover, our model allows us to treat the three-state mixing FD-MB-BE intermediate statistics. For boson and fermion mixing in a D-dimensional space, we obtain a family of FD-BE intermediate statistics by varying the transmutational potential η BF . This family contains, as a particular case when η BF =0, the quantum statistics recently proposed by L. Wu, Z. Wu, and J. Sun [Phys. Lett. A 170, 280 (1992)]. When we consider the two-dimensional FD-BE statistics, we derive an analytic expression of the fraction of fermions. When the temperature T→∞, the system is composed by an equal number of bosons and fermions, regardless of the value of η BF . On the contrary, when T=0, η BF becomes important and, according to its value, the system can be completely bosonic or fermionic, or composed both by bosons and fermions

  19. Three-Dimensional Color Code Thresholds via Statistical-Mechanical Mapping

    Science.gov (United States)

    Kubica, Aleksander; Beverland, Michael E.; Brandão, Fernando; Preskill, John; Svore, Krysta M.

    2018-05-01

    Three-dimensional (3D) color codes have advantages for fault-tolerant quantum computing, such as protected quantum gates with relatively low overhead and robustness against imperfect measurement of error syndromes. Here we investigate the storage threshold error rates for bit-flip and phase-flip noise in the 3D color code (3DCC) on the body-centered cubic lattice, assuming perfect syndrome measurements. In particular, by exploiting a connection between error correction and statistical mechanics, we estimate the threshold for 1D stringlike and 2D sheetlike logical operators to be p3DCC (1 )≃1.9 % and p3DCC (2 )≃27.6 % . We obtain these results by using parallel tempering Monte Carlo simulations to study the disorder-temperature phase diagrams of two new 3D statistical-mechanical models: the four- and six-body random coupling Ising models.

  20. Textual information access statistical models

    CERN Document Server

    Gaussier, Eric

    2013-01-01

    This book presents statistical models that have recently been developed within several research communities to access information contained in text collections. The problems considered are linked to applications aiming at facilitating information access:- information extraction and retrieval;- text classification and clustering;- opinion mining;- comprehension aids (automatic summarization, machine translation, visualization).In order to give the reader as complete a description as possible, the focus is placed on the probability models used in the applications

  1. Modeling peripheral olfactory coding in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Derek J Hoare

    Full Text Available The Drosophila larva possesses just 21 unique and identifiable pairs of olfactory sensory neurons (OSNs, enabling investigation of the contribution of individual OSN classes to the peripheral olfactory code. We combined electrophysiological and computational modeling to explore the nature of the peripheral olfactory code in situ. We recorded firing responses of 19/21 OSNs to a panel of 19 odors. This was achieved by creating larvae expressing just one functioning class of odorant receptor, and hence OSN. Odor response profiles of each OSN class were highly specific and unique. However many OSN-odor pairs yielded variable responses, some of which were statistically indistinguishable from background activity. We used these electrophysiological data, incorporating both responses and spontaneous firing activity, to develop a bayesian decoding model of olfactory processing. The model was able to accurately predict odor identity from raw OSN responses; prediction accuracy ranged from 12%-77% (mean for all odors 45.2% but was always significantly above chance (5.6%. However, there was no correlation between prediction accuracy for a given odor and the strength of responses of wild-type larvae to the same odor in a behavioral assay. We also used the model to predict the ability of the code to discriminate between pairs of odors. Some of these predictions were supported in a behavioral discrimination (masking assay but others were not. We conclude that our model of the peripheral code represents basic features of odor detection and discrimination, yielding insights into the information available to higher processing structures in the brain.

  2. Improved model for statistical alignment

    Energy Technology Data Exchange (ETDEWEB)

    Miklos, I.; Toroczkai, Z. (Zoltan)

    2001-01-01

    The statistical approach to molecular sequence evolution involves the stochastic modeling of the substitution, insertion and deletion processes. Substitution has been modeled in a reliable way for more than three decades by using finite Markov-processes. Insertion and deletion, however, seem to be more difficult to model, and thc recent approaches cannot acceptably deal with multiple insertions and deletions. A new method based on a generating function approach is introduced to describe the multiple insertion process. The presented algorithm computes the approximate joint probability of two sequences in 0(13) running time where 1 is the geometric mean of the sequence lengths.

  3. Impacts of Model Building Energy Codes

    Energy Technology Data Exchange (ETDEWEB)

    Athalye, Rahul A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sivaraman, Deepak [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Elliott, Douglas B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bartlett, Rosemarie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    The U.S. Department of Energy (DOE) Building Energy Codes Program (BECP) periodically evaluates national and state-level impacts associated with energy codes in residential and commercial buildings. Pacific Northwest National Laboratory (PNNL), funded by DOE, conducted an assessment of the prospective impacts of national model building energy codes from 2010 through 2040. A previous PNNL study evaluated the impact of the Building Energy Codes Program; this study looked more broadly at overall code impacts. This report describes the methodology used for the assessment and presents the impacts in terms of energy savings, consumer cost savings, and reduced CO2 emissions at the state level and at aggregated levels. This analysis does not represent all potential savings from energy codes in the U.S. because it excludes several states which have codes which are fundamentally different from the national model energy codes or which do not have state-wide codes. Energy codes follow a three-phase cycle that starts with the development of a new model code, proceeds with the adoption of the new code by states and local jurisdictions, and finishes when buildings comply with the code. The development of new model code editions creates the potential for increased energy savings. After a new model code is adopted, potential savings are realized in the field when new buildings (or additions and alterations) are constructed to comply with the new code. Delayed adoption of a model code and incomplete compliance with the code’s requirements erode potential savings. The contributions of all three phases are crucial to the overall impact of codes, and are considered in this assessment.

  4. Active Learning with Statistical Models.

    Science.gov (United States)

    1995-01-01

    Active Learning with Statistical Models ASC-9217041, NSF CDA-9309300 6. AUTHOR(S) David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan 7. PERFORMING...TERMS 15. NUMBER OF PAGES Al, MIT, Artificial Intelligence, active learning , queries, locally weighted 6 regression, LOESS, mixtures of gaussians...COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No. 1522 January 9. 1995 C.B.C.L. Paper No. 110 Active Learning with

  5. Systematic analysis of coding and noncoding DNA sequences using methods of statistical linguistics

    Science.gov (United States)

    Mantegna, R. N.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Peng, C. K.; Simons, M.; Stanley, H. E.

    1995-01-01

    We compare the statistical properties of coding and noncoding regions in eukaryotic and viral DNA sequences by adapting two tests developed for the analysis of natural languages and symbolic sequences. The data set comprises all 30 sequences of length above 50 000 base pairs in GenBank Release No. 81.0, as well as the recently published sequences of C. elegans chromosome III (2.2 Mbp) and yeast chromosome XI (661 Kbp). We find that for the three chromosomes we studied the statistical properties of noncoding regions appear to be closer to those observed in natural languages than those of coding regions. In particular, (i) a n-tuple Zipf analysis of noncoding regions reveals a regime close to power-law behavior while the coding regions show logarithmic behavior over a wide interval, while (ii) an n-gram entropy measurement shows that the noncoding regions have a lower n-gram entropy (and hence a larger "n-gram redundancy") than the coding regions. In contrast to the three chromosomes, we find that for vertebrates such as primates and rodents and for viral DNA, the difference between the statistical properties of coding and noncoding regions is not pronounced and therefore the results of the analyses of the investigated sequences are less conclusive. After noting the intrinsic limitations of the n-gram redundancy analysis, we also briefly discuss the failure of the zeroth- and first-order Markovian models or simple nucleotide repeats to account fully for these "linguistic" features of DNA. Finally, we emphasize that our results by no means prove the existence of a "language" in noncoding DNA.

  6. Statistical core design methodology using the VIPRE thermal-hydraulics code

    International Nuclear Information System (INIS)

    Lloyd, M.W.; Feltus, M.A.

    1995-01-01

    An improved statistical core design methodology for developing a computational departure from nucleate boiling ratio (DNBR) correlation has been developed and applied in order to analyze the nominal 1.3 DNBR limit on Westinghouse Pressurized Water Reactor (PWR) cores. This analysis, although limited in scope, found that the DNBR limit can be reduced from 1.3 to some lower value and be accurate within an adequate confidence level of 95%, for three particular FSAR operational transients: turbine trip, complete loss of flow, and inadvertent opening of a pressurizer relief valve. The VIPRE-01 thermal-hydraulics code, the SAS/STAT statistical package, and the EPRI/Columbia University DNBR experimental data base were used in this research to develop the Pennsylvania State Statistical Core Design Methodology (PSSCDM). The VIPRE code was used to perform the necessary sensitivity studies and generate the EPRI correlation-calculated DNBR predictions. The SAS package used for these EPRI DNBR correlation predictions from VIPRE as a data set to determine the best fit for the empirical model and to perform the statistical analysis. (author)

  7. Fatigue modelling according to the JCSS Probabilistic model code

    NARCIS (Netherlands)

    Vrouwenvelder, A.C.W.M.

    2007-01-01

    The Joint Committee on Structural Safety is working on a Model Code for full probabilistic design. The code consists out of three major parts: Basis of design, Load Models and Models for Material and Structural Properties. The code is intended as the operational counter part of codes like ISO,

  8. Encoding Dissimilarity Data for Statistical Model Building.

    Science.gov (United States)

    Wahba, Grace

    2010-12-01

    We summarize, review and comment upon three papers which discuss the use of discrete, noisy, incomplete, scattered pairwise dissimilarity data in statistical model building. Convex cone optimization codes are used to embed the objects into a Euclidean space which respects the dissimilarity information while controlling the dimension of the space. A "newbie" algorithm is provided for embedding new objects into this space. This allows the dissimilarity information to be incorporated into a Smoothing Spline ANOVA penalized likelihood model, a Support Vector Machine, or any model that will admit Reproducing Kernel Hilbert Space components, for nonparametric regression, supervised learning, or semi-supervised learning. Future work and open questions are discussed. The papers are: F. Lu, S. Keles, S. Wright and G. Wahba 2005. A framework for kernel regularization with application to protein clustering. Proceedings of the National Academy of Sciences 102, 12332-1233.G. Corrada Bravo, G. Wahba, K. Lee, B. Klein, R. Klein and S. Iyengar 2009. Examining the relative influence of familial, genetic and environmental covariate information in flexible risk models. Proceedings of the National Academy of Sciences 106, 8128-8133F. Lu, Y. Lin and G. Wahba. Robust manifold unfolding with kernel regularization. TR 1008, Department of Statistics, University of Wisconsin-Madison.

  9. GIGMF - A statistical model program

    International Nuclear Information System (INIS)

    Vladuca, G.; Deberth, C.

    1978-01-01

    The program GIGMF computes the differential and integrated statistical model cross sections for the reactions proceeding through a compound nuclear stage. The computational method is based on the Hauser-Feshbach-Wolfenstein theory, modified to include the modern version of Tepel et al. Although the program was written for a PDP-15 computer, with 16K high speed memory, many reaction channels can be taken into account with the following restrictions: the pro ectile spin must be less than 2, the maximum spin momenta of the compound nucleus can not be greater than 10. These restrictions are due solely to the storage allotments and may be easily relaxed. The energy of the impinging particle, the target and projectile masses, the spin and paritjes of the projectile, target, emergent and residual nuclei the maximum orbital momentum and transmission coefficients for each reaction channel are the input parameters of the program. (author)

  10. Development of statistical analysis code for meteorological data (W-View)

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Haruo; Sekita, Tsutomu; Yamaguchi, Takenori [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    A computer code (W-View: Weather View) was developed to analyze the meteorological data statistically based on 'the guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). The code gives statistical meteorological data to assess the public dose in case of normal operation and severe accident to get the license of nuclear reactor operation. This code was revised from the original code used in a large office computer code to enable a personal computer user to analyze the meteorological data simply and conveniently and to make the statistical data tables and figures of meteorology. (author)

  11. Coding with partially hidden Markov models

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Rissanen, J.

    1995-01-01

    Partially hidden Markov models (PHMM) are introduced. They are a variation of the hidden Markov models (HMM) combining the power of explicit conditioning on past observations and the power of using hidden states. (P)HMM may be combined with arithmetic coding for lossless data compression. A general...... 2-part coding scheme for given model order but unknown parameters based on PHMM is presented. A forward-backward reestimation of parameters with a redefined backward variable is given for these models and used for estimating the unknown parameters. Proof of convergence of this reestimation is given....... The PHMM structure and the conditions of the convergence proof allows for application of the PHMM to image coding. Relations between the PHMM and hidden Markov models (HMM) are treated. Results of coding bi-level images with the PHMM coding scheme is given. The results indicate that the PHMM can adapt...

  12. Genetic coding and gene expression - new Quadruplet genetic coding model

    Science.gov (United States)

    Shankar Singh, Rama

    2012-07-01

    Successful demonstration of human genome project has opened the door not only for developing personalized medicine and cure for genetic diseases, but it may also answer the complex and difficult question of the origin of life. It may lead to making 21st century, a century of Biological Sciences as well. Based on the central dogma of Biology, genetic codons in conjunction with tRNA play a key role in translating the RNA bases forming sequence of amino acids leading to a synthesized protein. This is the most critical step in synthesizing the right protein needed for personalized medicine and curing genetic diseases. So far, only triplet codons involving three bases of RNA, transcribed from DNA bases, have been used. Since this approach has several inconsistencies and limitations, even the promise of personalized medicine has not been realized. The new Quadruplet genetic coding model proposed and developed here involves all four RNA bases which in conjunction with tRNA will synthesize the right protein. The transcription and translation process used will be the same, but the Quadruplet codons will help overcome most of the inconsistencies and limitations of the triplet codes. Details of this new Quadruplet genetic coding model and its subsequent potential applications including relevance to the origin of life will be presented.

  13. Quantum statistical model for hot dense matter

    International Nuclear Information System (INIS)

    Rukhsana Kouser; Tasneem, G.; Saleem Shahzad, M.; Shafiq-ur-Rehman; Nasim, M.H.; Amjad Ali

    2015-01-01

    In solving numerous applied problems, one needs to know the equation of state, photon absorption coefficient and opacity of substances employed. We present a code for absorption coefficient and opacity calculation based on quantum statistical model. A self-consistent method for the calculation of potential is used. By solving Schrödinger equation with self-consistent potential we find energy spectrum of quantum mechanical system and corresponding wave functions. In addition we find mean occupation numbers of electron states and average charge state of the substance studied. The main processes of interaction of radiation with matter included in our opacity calculation are photon absorption in spectral lines (Bound-bound), photoionization (Bound-free), inverse bremsstrahlung (Free-free), Compton and Thomson scattering. Bound-bound line shape function has contribution from natural, Doppler, fine structure, collisional and stark broadening. To illustrate the main features of the code and its capabilities, calculation of average charge state, absorption coefficient, Rosseland and Planck mean and group opacities of aluminum and iron are presented. Results are satisfactorily compared with the published data. (authors)

  14. Statistical modeling of Earth's plasmasphere

    Science.gov (United States)

    Veibell, Victoir

    The behavior of plasma near Earth's geosynchronous orbit is of vital importance to both satellite operators and magnetosphere modelers because it also has a significant influence on energy transport, ion composition, and induced currents. The system is highly complex in both time and space, making the forecasting of extreme space weather events difficult. This dissertation examines the behavior and statistical properties of plasma mass density near geosynchronous orbit by using both linear and nonlinear models, as well as epoch analyses, in an attempt to better understand the physical processes that precipitates and drives its variations. It is shown that while equatorial mass density does vary significantly on an hourly timescale when a drop in the disturbance time scale index ( Dst) was observed, it does not vary significantly between the day of a Dst event onset and the day immediately following. It is also shown that increases in equatorial mass density were not, on average, preceded or followed by any significant change in the examined solar wind or geomagnetic variables, including Dst, despite prior results that considered a few selected events and found a notable influence. It is verified that equatorial mass density and and solar activity via the F10.7 index have a strong correlation, which is stronger over longer timescales such as 27 days than it is over an hourly timescale. It is then shown that this connection seems to affect the behavior of equatorial mass density most during periods of strong solar activity leading to large mass density reactions to Dst drops for high values of F10.7. It is also shown that equatorial mass density behaves differently before and after events based on the value of F10.7 at the onset of an equatorial mass density event or a Dst event, and that a southward interplanetary magnetic field at onset leads to slowed mass density growth after event onset. These behavioral differences provide insight into how solar and geomagnetic

  15. Transmutation Fuel Performance Code Thermal Model Verification

    Energy Technology Data Exchange (ETDEWEB)

    Gregory K. Miller; Pavel G. Medvedev

    2007-09-01

    FRAPCON fuel performance code is being modified to be able to model performance of the nuclear fuels of interest to the Global Nuclear Energy Partnership (GNEP). The present report documents the effort for verification of the FRAPCON thermal model. It was found that, with minor modifications, FRAPCON thermal model temperature calculation agrees with that of the commercial software ABAQUS (Version 6.4-4). This report outlines the methodology of the verification, code input, and calculation results.

  16. Improvement of MARS code reflood model

    International Nuclear Information System (INIS)

    Hwang, Moonkyu; Chung, Bub-Dong

    2011-01-01

    A specifically designed heat transfer model for the reflood process which normally occurs at low flow and low pressure was originally incorporated in the MARS code. The model is essentially identical to that of the RELAP5/MOD3.3 code. The model, however, is known to have under-estimated the peak cladding temperature (PCT) with earlier turn-over. In this study, the original MARS code reflood model is improved. Based on the extensive sensitivity studies for both hydraulic and wall heat transfer models, it is found that the dispersed flow film boiling (DFFB) wall heat transfer is the most influential process determining the PCT, whereas the interfacial drag model most affects the quenching time through the liquid carryover phenomenon. The model proposed by Bajorek and Young is incorporated for the DFFB wall heat transfer. Both space grid and droplet enhancement models are incorporated. Inverted annular film boiling (IAFB) is modeled by using the original PSI model of the code. The flow transition between the DFFB and IABF, is modeled using the TRACE code interpolation. A gas velocity threshold is also added to limit the top-down quenching effect. Assessment calculations are performed for the original and modified MARS codes for the Flecht-Seaset test and RBHT test. Improvements are observed in terms of the PCT and quenching time predictions in the Flecht-Seaset assessment. In case of the RBHT assessment, the improvement over the original MARS code is found marginal. A space grid effect, however, is clearly seen from the modified version of the MARS code. (author)

  17. Probing NWP model deficiencies by statistical postprocessing

    DEFF Research Database (Denmark)

    Rosgaard, Martin Haubjerg; Nielsen, Henrik Aalborg; Nielsen, Torben S.

    2016-01-01

    The objective in this article is twofold. On one hand, a Model Output Statistics (MOS) framework for improved wind speed forecast accuracy is described and evaluated. On the other hand, the approach explored identifies unintuitive explanatory value from a diagnostic variable in an operational....... Based on the statistical model candidates inferred from the data, the lifted index NWP model diagnostic is consistently found among the NWP model predictors of the best performing statistical models across sites....

  18. Steam condensation modelling in aerosol codes

    International Nuclear Information System (INIS)

    Dunbar, I.H.

    1986-01-01

    The principal subject of this study is the modelling of the condensation of steam into and evaporation of water from aerosol particles. These processes introduce a new type of term into the equation for the development of the aerosol particle size distribution. This new term faces the code developer with three major problems: the physical modelling of the condensation/evaporation process, the discretisation of the new term and the separate accounting for the masses of the water and of the other components. This study has considered four codes which model the condensation of steam into and its evaporation from aerosol particles: AEROSYM-M (UK), AEROSOLS/B1 (France), NAUA (Federal Republic of Germany) and CONTAIN (USA). The modelling in the codes has been addressed under three headings. These are the physical modelling of condensation, the mathematics of the discretisation of the equations, and the methods for modelling the separate behaviour of different chemical components of the aerosol. The codes are least advanced in area of solute effect modelling. At present only AEROSOLS/B1 includes the effect. The effect is greater for more concentrated solutions. Codes without the effect will be more in error (underestimating the total airborne mass) the less condensation they predict. Data are needed on the water vapour pressure above concentrated solutions of the substances of interest (especially CsOH and CsI) if the extent to which aerosols retain water under superheated conditions is to be modelled. 15 refs

  19. [Coding Causes of Death with IRIS Software. Impact in Navarre Mortality Statistic].

    Science.gov (United States)

    Floristán Floristán, Yugo; Delfrade Osinaga, Josu; Carrillo Prieto, Jesus; Aguirre Perez, Jesus; Moreno-Iribas, Conchi

    2016-08-02

    There are few studies that analyze changes in mortality statistics derived from the use of IRIS software, an automatic system for coding multiple causes of death and for the selection of the underlying cause of death, compared to manual coding. This study evaluated the impact of the use of IRIS in the Navarre mortality statistic. We proceeded to double coding 5,060 death certificates corresponding to residents in Navarra in 2014. We calculated coincidence between the two encodings for ICD10 chapters and for the list of causes of the Spanish National Statistics Institute (INE-102) and we estimated the change on mortality rates. IRIS automatically coded 90% of death certificates. The coincidence to 4 characters and in the same chapter of the CIE10 was 79.1% and 92.0%, respectively. Furthermore, coincidence with the short INE-102 list was 88.3%. Higher matches were found in death certificate of people under 65 years. In comparison with manual coding there was an increase in deaths from endocrine diseases (31%), mental disorders (19%) and disease of nervous system (9%), while a decrease of genitourinary system diseases was observed (21%). The coincidence at level of ICD10 chapters coding by IRIS in comparison to manual coding was 9 out of 10 deaths, similar to what is observed in other studies. The implementation of IRIS has led to increased of endocrine diseases, especially diabetes and hyperlipidaemia, and mental disorders, especially dementias.

  20. Economic aspects and models for building codes

    DEFF Research Database (Denmark)

    Bonke, Jens; Pedersen, Dan Ove; Johnsen, Kjeld

    It is the purpose of this bulletin to present an economic model for estimating the consequence of new or changed building codes. The object is to allow comparative analysis in order to improve the basis for decisions in this field. The model is applied in a case study.......It is the purpose of this bulletin to present an economic model for estimating the consequence of new or changed building codes. The object is to allow comparative analysis in order to improve the basis for decisions in this field. The model is applied in a case study....

  1. Modeling report of DYMOND code (DUPIC version)

    International Nuclear Information System (INIS)

    Park, Joo Hwan; Yacout, Abdellatif M.

    2003-04-01

    The DYMOND code employs the ITHINK dynamic modeling platform to assess the 100-year dynamic evolution scenarios for postulated global nuclear energy parks. Firstly, DYMOND code has been developed by ANL(Argonne National Laboratory) to perform the fuel cycle analysis of LWR once-through and LWR-FBR mixed plant. Since the extensive application of DYMOND code has been requested, the first version of DYMOND has been modified to adapt the DUPIC, MSR and RTF fuel cycle. DYMOND code is composed of three parts; the source language platform, input supply and output. But those platforms are not clearly distinguished. This report described all the equations which were modeled in the modified DYMOND code (which is called as DYMOND-DUPIC version). It divided into five parts;Part A deals model in reactor history which is included amount of the requested fuels and spent fuels. Part B aims to describe model of fuel cycle about fuel flow from the beginning to the end of fuel cycle. Part C is for model in re-processing which is included recovery of burned uranium, plutonium, minor actinide and fission product as well as the amount of spent fuels in storage and disposal. Part D is for model in other fuel cycle which is considered the thorium fuel cycle for MSR and RTF reactor. Part E is for model in economics. This part gives all the information of cost such as uranium mining cost, reactor operating cost, fuel cost etc

  2. Modeling report of DYMOND code (DUPIC version)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joo Hwan [KAERI, Taejon (Korea, Republic of); Yacout, Abdellatif M [Argonne National Laboratory, Ilinois (United States)

    2003-04-01

    The DYMOND code employs the ITHINK dynamic modeling platform to assess the 100-year dynamic evolution scenarios for postulated global nuclear energy parks. Firstly, DYMOND code has been developed by ANL(Argonne National Laboratory) to perform the fuel cycle analysis of LWR once-through and LWR-FBR mixed plant. Since the extensive application of DYMOND code has been requested, the first version of DYMOND has been modified to adapt the DUPIC, MSR and RTF fuel cycle. DYMOND code is composed of three parts; the source language platform, input supply and output. But those platforms are not clearly distinguished. This report described all the equations which were modeled in the modified DYMOND code (which is called as DYMOND-DUPIC version). It divided into five parts;Part A deals model in reactor history which is included amount of the requested fuels and spent fuels. Part B aims to describe model of fuel cycle about fuel flow from the beginning to the end of fuel cycle. Part C is for model in re-processing which is included recovery of burned uranium, plutonium, minor actinide and fission product as well as the amount of spent fuels in storage and disposal. Part D is for model in other fuel cycle which is considered the thorium fuel cycle for MSR and RTF reactor. Part E is for model in economics. This part gives all the information of cost such as uranium mining cost, reactor operating cost, fuel cost etc.

  3. High burnup models in computer code fair

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, B K; Swami Prasad, P; Kushwaha, H S; Mahajan, S C; Kakodar, A [Bhabha Atomic Research Centre, Bombay (India)

    1997-08-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ``Light water reactor fuel rod modelling code evaluation`` and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs.

  4. High burnup models in computer code fair

    International Nuclear Information System (INIS)

    Dutta, B.K.; Swami Prasad, P.; Kushwaha, H.S.; Mahajan, S.C.; Kakodar, A.

    1997-01-01

    An advanced fuel analysis code FAIR has been developed for analyzing the behavior of fuel rods of water cooled reactors under severe power transients and high burnups. The code is capable of analyzing fuel pins of both collapsible clad, as in PHWR and free standing clad as in LWR. The main emphasis in the development of this code is on evaluating the fuel performance at extended burnups and modelling of the fuel rods for advanced fuel cycles. For this purpose, a number of suitable models have been incorporated in FAIR. For modelling the fission gas release, three different models are implemented, namely Physically based mechanistic model, the standard ANS 5.4 model and the Halden model. Similarly the pellet thermal conductivity can be modelled by the MATPRO equation, the SIMFUEL relation or the Halden equation. The flux distribution across the pellet is modelled by using the model RADAR. For modelling pellet clad interaction (PCMI)/ stress corrosion cracking (SCC) induced failure of sheath, necessary routines are provided in FAIR. The validation of the code FAIR is based on the analysis of fuel rods of EPRI project ''Light water reactor fuel rod modelling code evaluation'' and also the analytical simulation of threshold power ramp criteria of fuel rods of pressurized heavy water reactors. In the present work, a study is carried out by analysing three CRP-FUMEX rods to show the effect of various combinations of fission gas release models and pellet conductivity models, on the fuel analysis parameters. The satisfactory performance of FAIR may be concluded through these case studies. (author). 12 refs, 5 figs

  5. Models and applications of the UEDGE code

    International Nuclear Information System (INIS)

    Rensink, M.E.; Knoll, D.A.; Porter, G.D.; Rognlien, T.D.; Smith, G.R.; Wising, F.

    1996-09-01

    The transport of particles and energy from the core of a tokamak to nearby material surfaces is an important problem for understanding present experiments and for designing reactor-grade devices. A number of fluid transport codes have been developed to model the plasma in the edge and scrape-off layer (SOL) regions. This report will focus on recent model improvements and illustrative results from the UEDGE code. Some geometric and mesh considerations are introduced, followed by a general description of the plasma and neutral fluid models. A few comments on computational issues are given and then two important applications are illustrated concerning benchmarking and the ITER radiative divertor. Finally, we report on some recent work to improve the models in UEDGE by coupling to a Monte Carlo neutrals code and by utilizing an adaptive grid

  6. The nuclear reaction model code MEDICUS

    International Nuclear Information System (INIS)

    Ibishia, A.I.

    2008-01-01

    The new computer code MEDICUS has been used to calculate cross sections of nuclear reactions. The code, implemented in MATLAB 6.5, Mathematica 5, and Fortran 95 programming languages, can be run in graphical and command line mode. Graphical User Interface (GUI) has been built that allows the user to perform calculations and to plot results just by mouse clicking. The MS Windows XP and Red Hat Linux platforms are supported. MEDICUS is a modern nuclear reaction code that can compute charged particle-, photon-, and neutron-induced reactions in the energy range from thresholds to about 200 MeV. The calculation of the cross sections of nuclear reactions are done in the framework of the Exact Many-Body Nuclear Cluster Model (EMBNCM), Direct Nuclear Reactions, Pre-equilibrium Reactions, Optical Model, DWBA, and Exciton Model with Cluster Emission. The code can be used also for the calculation of nuclear cluster structure of nuclei. We have calculated nuclear cluster models for some nuclei such as 177 Lu, 90 Y, and 27 Al. It has been found that nucleus 27 Al can be represented through the two different nuclear cluster models: 25 Mg + d and 24 Na + 3 He. Cross sections in function of energy for the reaction 27 Al( 3 He,x) 22 Na, established as a production method of 22 Na, are calculated by the code MEDICUS. Theoretical calculations of cross sections are in good agreement with experimental results. Reaction mechanisms are taken into account. (author)

  7. Statistical modelling of fish stocks

    DEFF Research Database (Denmark)

    Kvist, Trine

    1999-01-01

    for modelling the dynamics of a fish population is suggested. A new approach is introduced to analyse the sources of variation in age composition data, which is one of the most important sources of information in the cohort based models for estimation of stock abundancies and mortalities. The approach combines...... and it is argued that an approach utilising stochastic differential equations might be advantagous in fish stoch assessments....

  8. RCS modeling with the TSAR FDTD code

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, S.T.; Ray, S.L.

    1992-03-01

    The TSAR electromagnetic modeling system consists of a family of related codes that have been designed to work together to provide users with a practical way to set up, run, and interpret the results from complex 3-D finite-difference time-domain (FDTD) electromagnetic simulations. The software has been in development at the Lawrence Livermore National Laboratory (LLNL) and at other sites since 1987. Active internal use of the codes began in 1988 with limited external distribution and use beginning in 1991. TSAR was originally developed to analyze high-power microwave and EMP coupling problems. However, the general-purpose nature of the tools has enabled us to use the codes to solve a broader class of electromagnetic applications and has motivated the addition of new features. In particular a family of near-to-far field transformation routines have been added to the codes, enabling TSAR to be used for radar-cross section and antenna analysis problems.

  9. MELCOR code modeling for APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young; Park, S. Y.; Kim, D. H.; Ahn, K. I.; Song, Y. M.; Kim, S. D.; Park, J. H

    2001-11-01

    The severe accident phenomena of nuclear power plant have large uncertainties. For the retention of the containment integrity and improvement of nuclear reactor safety against severe accident, it is essential to understand severe accident phenomena and be able to access the accident progression accurately using computer code. Furthermore, it is important to attain a capability for developing technique and assessment tools for an advanced nuclear reactor design as well as for the severe accident prevention and mitigation. The objective of this report is to establish technical bases for an application of the MELCOR code to the Korean Next Generation Reactor (APR1400) by modeling the plant and analyzing plant steady state. This report shows the data and the input preparation for MELCOR code as well as state-state assessment results using MELCOR code.

  10. Statistical physics inspired energy-efficient coded-modulation for optical communications.

    Science.gov (United States)

    Djordjevic, Ivan B; Xu, Lei; Wang, Ting

    2012-04-15

    Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America

  11. ITER Dynamic Tritium Inventory Modeling Code

    International Nuclear Information System (INIS)

    Cristescu, Ioana-R.; Doerr, L.; Busigin, A.; Murdoch, D.

    2005-01-01

    A tool for tritium inventory evaluation within each sub-system of the Fuel Cycle of ITER is vital, with respect to both the process of licensing ITER and also for operation. It is very likely that measurements of total tritium inventories may not be possible for all sub-systems, however tritium accounting may be achieved by modeling its hold-up within each sub-system and by validating these models in real-time against the monitored flows and tritium streams between the systems. To get reliable results, an accurate dynamic modeling of the tritium content in each sub-system is necessary. In order to optimize the configuration and operation of the ITER fuel cycle, a dynamic fuel cycle model was developed progressively in the decade up to 2000-2001. As the design for some sub-systems from the fuel cycle (i.e. Vacuum pumping, Neutral Beam Injectors (NBI)) have substantially progressed meanwhile, a new code developed under a different platform to incorporate these modifications has been developed. The new code is taking over the models and algorithms for some subsystems, such as Isotope Separation System (ISS); where simplified models have been previously considered, more detailed have been introduced, as for the Water Detritiation System (WDS). To reflect all these changes, the new code developed inside EU participating team was nominated TRIMO (Tritium Inventory Modeling), to emphasize the use of the code on assessing the tritium inventory within ITER

  12. Statistical lung model for microdosimetry

    International Nuclear Information System (INIS)

    Fisher, D.R.; Hadley, R.T.

    1984-03-01

    To calculate the microdosimetry of plutonium in the lung, a mathematical description is needed of lung tissue microstructure that defines source-site parameters. Beagle lungs were expanded using a glutaraldehyde fixative at 30 cm water pressure. Tissue specimens, five microns thick, were stained with hematoxylin and eosin then studied using an image analyzer. Measurements were made along horizontal lines through the magnified tissue image. The distribution of air space and tissue chord lengths and locations of epithelial cell nuclei were recorded from about 10,000 line scans. The distribution parameters constituted a model of lung microstructure for predicting the paths of random alpha particle tracks in the lung and the probability of traversing biologically sensitive sites. This lung model may be used in conjunction with established deposition and retention models for determining the microdosimetry in the pulmonary lung for a wide variety of inhaled radioactive materials

  13. Statistical modelling for ship propulsion efficiency

    DEFF Research Database (Denmark)

    Petersen, Jóan Petur; Jacobsen, Daniel J.; Winther, Ole

    2012-01-01

    This paper presents a state-of-the-art systems approach to statistical modelling of fuel efficiency in ship propulsion, and also a novel and publicly available data set of high quality sensory data. Two statistical model approaches are investigated and compared: artificial neural networks...

  14. Actuarial statistics with generalized linear mixed models

    NARCIS (Netherlands)

    Antonio, K.; Beirlant, J.

    2007-01-01

    Over the last decade the use of generalized linear models (GLMs) in actuarial statistics has received a lot of attention, starting from the actuarial illustrations in the standard text by McCullagh and Nelder [McCullagh, P., Nelder, J.A., 1989. Generalized linear models. In: Monographs on Statistics

  15. STAC -- a new Swedish code for statistical analysis of cracks in SG-tubes

    International Nuclear Information System (INIS)

    Poern, K.

    1997-01-01

    Steam generator (SG) tubes in pressurized water reactor plants are exposed to various types of degradation processes, among which stress corrosion cracking in particular has been observed. To be able to evaluate the safety importance of such cracking of SG-tubes one has to have a good and empirically founded knowledge about the scope and the size of the cracks as well as the rate of their continuous growth. The basis of experience is to a large extent constituted of the annually performed SG-inspections and crack sizing procedures. On the basis of this experience one can estimate the distribution of existing crack lengths, and modify this distribution with regard to maintenance (plugging) and the predicted rate of crack propagation. Finally, one can calculate the rupture probability of SG-tubes as a function of a given critical crack length. On account of the Swedish Nuclear Power Inspectorate an introductory study has been performed in order to get a survey of what has been done elsewhere in this field. The study resulted in a proposal of a computerizable model to be able to estimate the distribution of true cracks, to modify this distribution due to the crack growth and to compute the probability of tube rupture. The model has now been implemented in a compute code, called STAC (STatistical Analysis of Cracks). This paper is aimed to give a brief outline of the model to facilitate the understanding of the possibilities and limitations associated with the model

  16. Spherical Process Models for Global Spatial Statistics

    KAUST Repository

    Jeong, Jaehong; Jun, Mikyoung; Genton, Marc G.

    2017-01-01

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture

  17. A method for modeling co-occurrence propensity of clinical codes with application to ICD-10-PCS auto-coding.

    Science.gov (United States)

    Subotin, Michael; Davis, Anthony R

    2016-09-01

    Natural language processing methods for medical auto-coding, or automatic generation of medical billing codes from electronic health records, generally assign each code independently of the others. They may thus assign codes for closely related procedures or diagnoses to the same document, even when they do not tend to occur together in practice, simply because the right choice can be difficult to infer from the clinical narrative. We propose a method that injects awareness of the propensities for code co-occurrence into this process. First, a model is trained to estimate the conditional probability that one code is assigned by a human coder, given than another code is known to have been assigned to the same document. Then, at runtime, an iterative algorithm is used to apply this model to the output of an existing statistical auto-coder to modify the confidence scores of the codes. We tested this method in combination with a primary auto-coder for International Statistical Classification of Diseases-10 procedure codes, achieving a 12% relative improvement in F-score over the primary auto-coder baseline. The proposed method can be used, with appropriate features, in combination with any auto-coder that generates codes with different levels of confidence. The promising results obtained for International Statistical Classification of Diseases-10 procedure codes suggest that the proposed method may have wider applications in auto-coding. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  19. Statistical Models and Methods for Lifetime Data

    CERN Document Server

    Lawless, Jerald F

    2011-01-01

    Praise for the First Edition"An indispensable addition to any serious collection on lifetime data analysis and . . . a valuable contribution to the statistical literature. Highly recommended . . ."-Choice"This is an important book, which will appeal to statisticians working on survival analysis problems."-Biometrics"A thorough, unified treatment of statistical models and methods used in the analysis of lifetime data . . . this is a highly competent and agreeable statistical textbook."-Statistics in MedicineThe statistical analysis of lifetime or response time data is a key tool in engineering,

  20. Statistics and the shell model

    International Nuclear Information System (INIS)

    Weidenmueller, H.A.

    1985-01-01

    Starting with N. Bohr's paper on compound-nucleus reactions, we confront regular dynamical features and chaotic motion in nuclei. The shell-model and, more generally, mean-field theories describe average nuclear properties which are thus identified as regular features. The fluctuations about the average show chaotic behaviour of the same type as found in classical chaotic systems upon quantisation. These features are therefore generic and quite independent of the specific dynamics of the nucleus. A novel method to calculate fluctuations is discussed, and the results of this method are described. (orig.)

  1. Chemistry models in the Victoria code

    International Nuclear Information System (INIS)

    Grimley, A.J. III

    1988-01-01

    The VICTORIA Computer code consists of the fission product release and chemistry models for the MELPROG severe accident analysis code. The chemistry models in VICTORIA are used to treat multi-phase interactions in four separate physical regions: fuel grains, gap/open porosity/clad, coolant/aerosols, and structure surfaces. The physical and chemical environment of each region is very different from the others and different models are required for each. The common thread in the modelling is the use of a chemical equilibrium assumption. The validity of this assumption along with a description of the various physical constraints applicable to each region will be discussed. The models that result from the assumptions and constraints will be presented along with samples of calculations in each region

  2. Statistical Model-Based Face Pose Estimation

    Institute of Scientific and Technical Information of China (English)

    GE Xinliang; YANG Jie; LI Feng; WANG Huahua

    2007-01-01

    A robust face pose estimation approach is proposed by using face shape statistical model approach and pose parameters are represented by trigonometric functions. The face shape statistical model is firstly built by analyzing the face shapes from different people under varying poses. The shape alignment is vital in the process of building the statistical model. Then, six trigonometric functions are employed to represent the face pose parameters. Lastly, the mapping function is constructed between face image and face pose by linearly relating different parameters. The proposed approach is able to estimate different face poses using a few face training samples. Experimental results are provided to demonstrate its efficiency and accuracy.

  3. Uncertainty the soul of modeling, probability & statistics

    CERN Document Server

    Briggs, William

    2016-01-01

    This book presents a philosophical approach to probability and probabilistic thinking, considering the underpinnings of probabilistic reasoning and modeling, which effectively underlie everything in data science. The ultimate goal is to call into question many standard tenets and lay the philosophical and probabilistic groundwork and infrastructure for statistical modeling. It is the first book devoted to the philosophy of data aimed at working scientists and calls for a new consideration in the practice of probability and statistics to eliminate what has been referred to as the "Cult of Statistical Significance". The book explains the philosophy of these ideas and not the mathematics, though there are a handful of mathematical examples. The topics are logically laid out, starting with basic philosophy as related to probability, statistics, and science, and stepping through the key probabilistic ideas and concepts, and ending with statistical models. Its jargon-free approach asserts that standard methods, suc...

  4. Determining coding CpG islands by identifying regions significant for pattern statistics on Markov chains.

    Science.gov (United States)

    Singer, Meromit; Engström, Alexander; Schönhuth, Alexander; Pachter, Lior

    2011-09-23

    Recent experimental and computational work confirms that CpGs can be unmethylated inside coding exons, thereby showing that codons may be subjected to both genomic and epigenomic constraint. It is therefore of interest to identify coding CpG islands (CCGIs) that are regions inside exons enriched for CpGs. The difficulty in identifying such islands is that coding exons exhibit sequence biases determined by codon usage and constraints that must be taken into account. We present a method for finding CCGIs that showcases a novel approach we have developed for identifying regions of interest that are significant (with respect to a Markov chain) for the counts of any pattern. Our method begins with the exact computation of tail probabilities for the number of CpGs in all regions contained in coding exons, and then applies a greedy algorithm for selecting islands from among the regions. We show that the greedy algorithm provably optimizes a biologically motivated criterion for selecting islands while controlling the false discovery rate. We applied this approach to the human genome (hg18) and annotated CpG islands in coding exons. The statistical criterion we apply to evaluating islands reduces the number of false positives in existing annotations, while our approach to defining islands reveals significant numbers of undiscovered CCGIs in coding exons. Many of these appear to be examples of functional epigenetic specialization in coding exons.

  5. Algorithm for image retrieval based on edge gradient orientation statistical code.

    Science.gov (United States)

    Zeng, Jiexian; Zhao, Yonggang; Li, Weiye; Fu, Xiang

    2014-01-01

    Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results.

  6. Automated statistical modeling of analytical measurement systems

    International Nuclear Information System (INIS)

    Jacobson, J.J.

    1992-01-01

    The statistical modeling of analytical measurement systems at the Idaho Chemical Processing Plant (ICPP) has been completely automated through computer software. The statistical modeling of analytical measurement systems is one part of a complete quality control program used by the Remote Analytical Laboratory (RAL) at the ICPP. The quality control program is an integration of automated data input, measurement system calibration, database management, and statistical process control. The quality control program and statistical modeling program meet the guidelines set forth by the American Society for Testing Materials and American National Standards Institute. A statistical model is a set of mathematical equations describing any systematic bias inherent in a measurement system and the precision of a measurement system. A statistical model is developed from data generated from the analysis of control standards. Control standards are samples which are made up at precise known levels by an independent laboratory and submitted to the RAL. The RAL analysts who process control standards do not know the values of those control standards. The object behind statistical modeling is to describe real process samples in terms of their bias and precision and, to verify that a measurement system is operating satisfactorily. The processing of control standards gives us this ability

  7. Topology for statistical modeling of petascale data.

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, Valerio (University of Utah, Salt Lake City, UT); Mascarenhas, Ajith Arthur; Rusek, Korben (Texas A& M University, College Station, TX); Bennett, Janine Camille; Levine, Joshua (University of Utah, Salt Lake City, UT); Pebay, Philippe Pierre; Gyulassy, Attila (University of Utah, Salt Lake City, UT); Thompson, David C.; Rojas, Joseph Maurice (Texas A& M University, College Station, TX)

    2011-07-01

    This document presents current technical progress and dissemination of results for the Mathematics for Analysis of Petascale Data (MAPD) project titled 'Topology for Statistical Modeling of Petascale Data', funded by the Office of Science Advanced Scientific Computing Research (ASCR) Applied Math program. Many commonly used algorithms for mathematical analysis do not scale well enough to accommodate the size or complexity of petascale data produced by computational simulations. The primary goal of this project is thus to develop new mathematical tools that address both the petascale size and uncertain nature of current data. At a high level, our approach is based on the complementary techniques of combinatorial topology and statistical modeling. In particular, we use combinatorial topology to filter out spurious data that would otherwise skew statistical modeling techniques, and we employ advanced algorithms from algebraic statistics to efficiently find globally optimal fits to statistical models. This document summarizes the technical advances we have made to date that were made possible in whole or in part by MAPD funding. These technical contributions can be divided loosely into three categories: (1) advances in the field of combinatorial topology, (2) advances in statistical modeling, and (3) new integrated topological and statistical methods.

  8. Statistical modelling of citation exchange between statistics journals.

    Science.gov (United States)

    Varin, Cristiano; Cattelan, Manuela; Firth, David

    2016-01-01

    Rankings of scholarly journals based on citation data are often met with scepticism by the scientific community. Part of the scepticism is due to disparity between the common perception of journals' prestige and their ranking based on citation counts. A more serious concern is the inappropriate use of journal rankings to evaluate the scientific influence of researchers. The paper focuses on analysis of the table of cross-citations among a selection of statistics journals. Data are collected from the Web of Science database published by Thomson Reuters. Our results suggest that modelling the exchange of citations between journals is useful to highlight the most prestigious journals, but also that journal citation data are characterized by considerable heterogeneity, which needs to be properly summarized. Inferential conclusions require care to avoid potential overinterpretation of insignificant differences between journal ratings. Comparison with published ratings of institutions from the UK's research assessment exercise shows strong correlation at aggregate level between assessed research quality and journal citation 'export scores' within the discipline of statistics.

  9. Daily precipitation statistics in regional climate models

    DEFF Research Database (Denmark)

    Frei, Christoph; Christensen, Jens Hesselbjerg; Déqué, Michel

    2003-01-01

    An evaluation is undertaken of the statistics of daily precipitation as simulated by five regional climate models using comprehensive observations in the region of the European Alps. Four limited area models and one variable-resolution global model are considered, all with a grid spacing of 50 km...

  10. Infinite Random Graphs as Statistical Mechanical Models

    DEFF Research Database (Denmark)

    Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria

    2011-01-01

    We discuss two examples of infinite random graphs obtained as limits of finite statistical mechanical systems: a model of two-dimensional dis-cretized quantum gravity defined in terms of causal triangulated surfaces, and the Ising model on generic random trees. For the former model we describe a ...

  11. Matrix Tricks for Linear Statistical Models

    CERN Document Server

    Puntanen, Simo; Styan, George PH

    2011-01-01

    In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple "tricks" which simplify and clarify the treatment of a problem - both for the student and

  12. Stochastic geometry, spatial statistics and random fields models and algorithms

    CERN Document Server

    2015-01-01

    Providing a graduate level introduction to various aspects of stochastic geometry, spatial statistics and random fields, this volume places a special emphasis on fundamental classes of models and algorithms as well as on their applications, for example in materials science, biology and genetics. This book has a strong focus on simulations and includes extensive codes in Matlab and R, which are widely used in the mathematical community. It can be regarded as a continuation of the recent volume 2068 of Lecture Notes in Mathematics, where other issues of stochastic geometry, spatial statistics and random fields were considered, with a focus on asymptotic methods.

  13. Coupling of system thermal–hydraulics and Monte-Carlo code: Convergence criteria and quantification of correlation between statistical uncertainty and coupled error

    International Nuclear Information System (INIS)

    Wu, Xu; Kozlowski, Tomasz

    2015-01-01

    Highlights: • Coupling of Monte Carlo code Serpent and thermal–hydraulics code RELAP5. • A convergence criterion is developed based on the statistical uncertainty of power. • Correlation between MC statistical uncertainty and coupled error is quantified. • Both UO 2 and MOX single assembly models are used in the coupled simulation. • Validation of coupling results with a multi-group transport code DeCART. - Abstract: Coupled multi-physics approach plays an important role in improving computational accuracy. Compared with deterministic neutronics codes, Monte Carlo codes have the advantage of a higher resolution level. In the present paper, a three-dimensional continuous-energy Monte Carlo reactor physics burnup calculation code, Serpent, is coupled with a thermal–hydraulics safety analysis code, RELAP5. The coupled Serpent/RELAP5 code capability is demonstrated by the improved axial power distribution of UO 2 and MOX single assembly models, based on the OECD-NEA/NRC PWR MOX/UO 2 Core Transient Benchmark. Comparisons of calculation results using the coupled code with those from the deterministic methods, specifically heterogeneous multi-group transport code DeCART, show that the coupling produces more precise results. A new convergence criterion for the coupled simulation is developed based on the statistical uncertainty in power distribution in the Monte Carlo code, rather than ad-hoc criteria used in previous research. The new convergence criterion is shown to be more rigorous, equally convenient to use but requiring a few more coupling steps to converge. Finally, the influence of Monte Carlo statistical uncertainty on the coupled error of power and thermal–hydraulics parameters is quantified. The results are presented such that they can be used to find the statistical uncertainty to use in Monte Carlo in order to achieve a desired precision in coupled simulation

  14. Statistical physics of pairwise probability models

    DEFF Research Database (Denmark)

    Roudi, Yasser; Aurell, Erik; Hertz, John

    2009-01-01

    (dansk abstrakt findes ikke) Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of  data......: knowledge of the means and correlations between pairs of elements in the system is sufficient. Not surprisingly, then, using pairwise models for studying neural data has been the focus of many studies in recent years. In this paper, we describe how tools from statistical physics can be employed for studying...

  15. Sodium pool fire model for CONACS code

    International Nuclear Information System (INIS)

    Yung, S.C.

    1982-01-01

    The modeling of sodium pool fires constitutes an important ingredient in conducting LMFBR accident analysis. Such modeling capability has recently come under scrutiny at Westinghouse Hanford Company (WHC) within the context of developing CONACS, the Containment Analysis Code System. One of the efforts in the CONACS program is to model various combustion processes anticipated to occur during postulated accident paths. This effort includes the selection or modification of an existing model and development of a new model if it clearly contributes to the program purpose. As part of this effort, a new sodium pool fire model has been developed that is directed at removing some of the deficiencies in the existing models, such as SOFIRE-II and FEUNA

  16. Towards Product Lining Model-Driven Development Code Generators

    OpenAIRE

    Roth, Alexander; Rumpe, Bernhard

    2015-01-01

    A code generator systematically transforms compact models to detailed code. Today, code generation is regarded as an integral part of model-driven development (MDD). Despite its relevance, the development of code generators is an inherently complex task and common methodologies and architectures are lacking. Additionally, reuse and extension of existing code generators only exist on individual parts. A systematic development and reuse based on a code generator product line is still in its inf...

  17. Distributions with given marginals and statistical modelling

    CERN Document Server

    Fortiana, Josep; Rodriguez-Lallena, José

    2002-01-01

    This book contains a selection of the papers presented at the meeting `Distributions with given marginals and statistical modelling', held in Barcelona (Spain), July 17-20, 2000. In 24 chapters, this book covers topics such as the theory of copulas and quasi-copulas, the theory and compatibility of distributions, models for survival distributions and other well-known distributions, time series, categorical models, definition and estimation of measures of dependence, monotonicity and stochastic ordering, shape and separability of distributions, hidden truncation models, diagonal families, orthogonal expansions, tests of independence, and goodness of fit assessment. These topics share the use and properties of distributions with given marginals, this being the fourth specialised text on this theme. The innovative aspect of the book is the inclusion of statistical aspects such as modelling, Bayesian statistics, estimation, and tests.

  18. Aspects of statistical model for multifragmentation

    International Nuclear Information System (INIS)

    Bhattacharyya, P.; Das Gupta, S.; Mekjian, A. Z.

    1999-01-01

    We deal with two different aspects of an exactly soluble statistical model of fragmentation. First we show, using zero range force and finite temperature Thomas-Fermi theory, that a common link can be found between finite temperature mean field theory and the statistical fragmentation model. We show the latter naturally arises in the spinodal region. Next we show that although the exact statistical model is a canonical model and uses temperature, microcanonical results which use constant energy rather than constant temperature can also be obtained from the canonical model using saddle-point approximation. The methodology is extremely simple to implement and at least in all the examples studied in this work is very accurate. (c) 1999 The American Physical Society

  19. Cracking the Neural Code for Sensory Perception by Combining Statistics, Intervention, and Behavior.

    Science.gov (United States)

    Panzeri, Stefano; Harvey, Christopher D; Piasini, Eugenio; Latham, Peter E; Fellin, Tommaso

    2017-02-08

    The two basic processes underlying perceptual decisions-how neural responses encode stimuli, and how they inform behavioral choices-have mainly been studied separately. Thus, although many spatiotemporal features of neural population activity, or "neural codes," have been shown to carry sensory information, it is often unknown whether the brain uses these features for perception. To address this issue, we propose a new framework centered on redefining the neural code as the neural features that carry sensory information used by the animal to drive appropriate behavior; that is, the features that have an intersection between sensory and choice information. We show how this framework leads to a new statistical analysis of neural activity recorded during behavior that can identify such neural codes, and we discuss how to combine intersection-based analysis of neural recordings with intervention on neural activity to determine definitively whether specific neural activity features are involved in a task. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Rapid installation of numerical models in multiple parent codes

    Energy Technology Data Exchange (ETDEWEB)

    Brannon, R.M.; Wong, M.K.

    1996-10-01

    A set of``model interface guidelines``, called MIG, is offered as a means to more rapidly install numerical models (such as stress-strain laws) into any parent code (hydrocode, finite element code, etc.) without having to modify the model subroutines. The model developer (who creates the model package in compliance with the guidelines) specifies the model`s input and storage requirements in a standardized way. For portability, database management (such as saving user inputs and field variables) is handled by the parent code. To date, NUG has proved viable in beta installations of several diverse models in vectorized and parallel codes written in different computer languages. A NUG-compliant model can be installed in different codes without modifying the model`s subroutines. By maintaining one model for many codes, MIG facilitates code-to-code comparisons and reduces duplication of effort potentially reducing the cost of installing and sharing models.

  1. Statistical Compression for Climate Model Output

    Science.gov (United States)

    Hammerling, D.; Guinness, J.; Soh, Y. J.

    2017-12-01

    Numerical climate model simulations run at high spatial and temporal resolutions generate massive quantities of data. As our computing capabilities continue to increase, storing all of the data is not sustainable, and thus is it important to develop methods for representing the full datasets by smaller compressed versions. We propose a statistical compression and decompression algorithm based on storing a set of summary statistics as well as a statistical model describing the conditional distribution of the full dataset given the summary statistics. We decompress the data by computing conditional expectations and conditional simulations from the model given the summary statistics. Conditional expectations represent our best estimate of the original data but are subject to oversmoothing in space and time. Conditional simulations introduce realistic small-scale noise so that the decompressed fields are neither too smooth nor too rough compared with the original data. Considerable attention is paid to accurately modeling the original dataset-one year of daily mean temperature data-particularly with regard to the inherent spatial nonstationarity in global fields, and to determining the statistics to be stored, so that the variation in the original data can be closely captured, while allowing for fast decompression and conditional emulation on modest computers.

  2. Performance modeling, loss networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi

    2009-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I

  3. Simple statistical model for branched aggregates

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Hansen, Jesper Schmidt

    2015-01-01

    , given that it already has bonds with others. The model is applied here to asphaltene nanoaggregates observed in molecular dynamics simulations of Cooee bitumen. The variation with temperature of the probabilities deduced from this model is discussed in terms of statistical mechanics arguments....... The relevance of the statistical model in the case of asphaltene nanoaggregates is checked by comparing the predicted value of the probability for one molecule to have exactly i bonds with the same probability directly measured in the molecular dynamics simulations. The agreement is satisfactory......We propose a statistical model that can reproduce the size distribution of any branched aggregate, including amylopectin, dendrimers, molecular clusters of monoalcohols, and asphaltene nanoaggregates. It is based on the conditional probability for one molecule to form a new bond with a molecule...

  4. MEMOPS: data modelling and automatic code generation.

    Science.gov (United States)

    Fogh, Rasmus H; Boucher, Wayne; Ionides, John M C; Vranken, Wim F; Stevens, Tim J; Laue, Ernest D

    2010-03-25

    In recent years the amount of biological data has exploded to the point where much useful information can only be extracted by complex computational analyses. Such analyses are greatly facilitated by metadata standards, both in terms of the ability to compare data originating from different sources, and in terms of exchanging data in standard forms, e.g. when running processes on a distributed computing infrastructure. However, standards thrive on stability whereas science tends to constantly move, with new methods being developed and old ones modified. Therefore maintaining both metadata standards, and all the code that is required to make them useful, is a non-trivial problem. Memops is a framework that uses an abstract definition of the metadata (described in UML) to generate internal data structures and subroutine libraries for data access (application programming interfaces--APIs--currently in Python, C and Java) and data storage (in XML files or databases). For the individual project these libraries obviate the need for writing code for input parsing, validity checking or output. Memops also ensures that the code is always internally consistent, massively reducing the need for code reorganisation. Across a scientific domain a Memops-supported data model makes it easier to support complex standards that can capture all the data produced in a scientific area, share them among all programs in a complex software pipeline, and carry them forward to deposition in an archive. The principles behind the Memops generation code will be presented, along with example applications in Nuclear Magnetic Resonance (NMR) spectroscopy and structural biology.

  5. Advances in statistical models for data analysis

    CERN Document Server

    Minerva, Tommaso; Vichi, Maurizio

    2015-01-01

    This edited volume focuses on recent research results in classification, multivariate statistics and machine learning and highlights advances in statistical models for data analysis. The volume provides both methodological developments and contributions to a wide range of application areas such as economics, marketing, education, social sciences and environment. The papers in this volume were first presented at the 9th biannual meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, held in September 2013 at the University of Modena and Reggio Emilia, Italy.

  6. Structured statistical models of inductive reasoning.

    Science.gov (United States)

    Kemp, Charles; Tenenbaum, Joshua B

    2009-01-01

    Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet both goals and describes [corrected] 4 applications of the framework: a taxonomic model, a spatial model, a threshold model, and a causal model. Each model makes probabilistic inferences about the extensions of novel properties, but the priors for the 4 models are defined over different kinds of structures that capture different relationships between the categories in a domain. The framework therefore shows how statistical inference can operate over structured background knowledge, and the authors argue that this interaction between structure and statistics is critical for explaining the power and flexibility of human reasoning.

  7. Model for neural signaling leap statistics

    International Nuclear Information System (INIS)

    Chevrollier, Martine; Oria, Marcos

    2011-01-01

    We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T 37.5 0 C, awaken regime) and Levy statistics (T = 35.5 0 C, sleeping period), characterized by rare events of long range connections.

  8. Statistical models based on conditional probability distributions

    International Nuclear Information System (INIS)

    Narayanan, R.S.

    1991-10-01

    We present a formulation of statistical mechanics models based on conditional probability distribution rather than a Hamiltonian. We show that it is possible to realize critical phenomena through this procedure. Closely linked with this formulation is a Monte Carlo algorithm, in which a configuration generated is guaranteed to be statistically independent from any other configuration for all values of the parameters, in particular near the critical point. (orig.)

  9. Model for neural signaling leap statistics

    Science.gov (United States)

    Chevrollier, Martine; Oriá, Marcos

    2011-03-01

    We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T = 37.5°C, awaken regime) and Lévy statistics (T = 35.5°C, sleeping period), characterized by rare events of long range connections.

  10. Model for neural signaling leap statistics

    Energy Technology Data Exchange (ETDEWEB)

    Chevrollier, Martine; Oria, Marcos, E-mail: oria@otica.ufpb.br [Laboratorio de Fisica Atomica e Lasers Departamento de Fisica, Universidade Federal da ParaIba Caixa Postal 5086 58051-900 Joao Pessoa, Paraiba (Brazil)

    2011-03-01

    We present a simple model for neural signaling leaps in the brain considering only the thermodynamic (Nernst) potential in neuron cells and brain temperature. We numerically simulated connections between arbitrarily localized neurons and analyzed the frequency distribution of the distances reached. We observed qualitative change between Normal statistics (with T 37.5{sup 0}C, awaken regime) and Levy statistics (T = 35.5{sup 0}C, sleeping period), characterized by rare events of long range connections.

  11. Hydrological model in STEALTH 2-D code

    International Nuclear Information System (INIS)

    Hart, R.; Hofmann, R.

    1979-10-01

    Porous media fluid flow logic has been added to the two-dimensional version of the STEALTH explicit finite-difference code. It is a first-order hydrological model based upon Darcy's Law. Anisotropic permeability can be prescribed through x and y directional permeabilities. The fluid flow equations are formulated for either two-dimensional translation symmetry or two-dimensional axial symmetry. The addition of the hydrological model to STEALTH is a first step toward analyzing a physical system's response to the coupling of thermal, mechanical, and fluid flow phenomena

  12. The MESORAD dose assessment model: Computer code

    International Nuclear Information System (INIS)

    Ramsdell, J.V.; Athey, G.F.; Bander, T.J.; Scherpelz, R.I.

    1988-10-01

    MESORAD is a dose equivalent model for emergency response applications that is designed to be run on minicomputers. It has been developed by the Pacific Northwest Laboratory for use as part of the Intermediate Dose Assessment System in the US Nuclear Regulatory Commission Operations Center in Washington, DC, and the Emergency Management System in the US Department of Energy Unified Dose Assessment Center in Richland, Washington. This volume describes the MESORAD computer code and contains a listing of the code. The technical basis for MESORAD is described in the first volume of this report (Scherpelz et al. 1986). A third volume of the documentation planned. That volume will contain utility programs and input and output files that can be used to check the implementation of MESORAD. 18 figs., 4 tabs

  13. Tokamak Simulation Code modeling of NSTX

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kaye, S.; Menard, J.; Kessel, C.; Glasser, A.H.

    2000-01-01

    The Tokamak Simulation Code [TSC] is widely used for the design of new axisymmetric toroidal experiments. In particular, TSC was used extensively in the design of the National Spherical Torus eXperiment [NSTX]. The authors have now benchmarked TSC with initial NSTX results and find excellent agreement for plasma and vessel currents and magnetic flux loops when the experimental coil currents are used in the simulations. TSC has also been coupled with a ballooning stability code and with DCON to provide stability predictions for NSTX operation. TSC has also been used to model initial CHI experiments where a large poloidal voltage is applied to the NSTX vacuum vessel, causing a force-free current to appear in the plasma. This is a phenomenon that is similar to the plasma halo current that sometimes develops during a plasma disruption

  14. Topology for Statistical Modeling of Petascale Data

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Levine, Joshua [Univ. of Utah, Salt Lake City, UT (United States); Gyulassy, Attila [Univ. of Utah, Salt Lake City, UT (United States); Bremer, P. -T. [Univ. of Utah, Salt Lake City, UT (United States)

    2013-10-31

    Many commonly used algorithms for mathematical analysis do not scale well enough to accommodate the size or complexity of petascale data produced by computational simulations. The primary goal of this project is to develop new mathematical tools that address both the petascale size and uncertain nature of current data. At a high level, the approach of the entire team involving all three institutions is based on the complementary techniques of combinatorial topology and statistical modelling. In particular, we use combinatorial topology to filter out spurious data that would otherwise skew statistical modelling techniques, and we employ advanced algorithms from algebraic statistics to efficiently find globally optimal fits to statistical models. The overall technical contributions can be divided loosely into three categories: (1) advances in the field of combinatorial topology, (2) advances in statistical modelling, and (3) new integrated topological and statistical methods. Roughly speaking, the division of labor between our 3 groups (Sandia Labs in Livermore, Texas A&M in College Station, and U Utah in Salt Lake City) is as follows: the Sandia group focuses on statistical methods and their formulation in algebraic terms, and finds the application problems (and data sets) most relevant to this project, the Texas A&M Group develops new algebraic geometry algorithms, in particular with fewnomial theory, and the Utah group develops new algorithms in computational topology via Discrete Morse Theory. However, we hasten to point out that our three groups stay in tight contact via videconference every 2 weeks, so there is much synergy of ideas between the groups. The following of this document is focused on the contributions that had grater direct involvement from the team at the University of Utah in Salt Lake City.

  15. Bayesian models a statistical primer for ecologists

    CERN Document Server

    Hobbs, N Thompson

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods-in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probabili

  16. Hitch code capabilities for modeling AVT chemistry

    International Nuclear Information System (INIS)

    Leibovitz, J.

    1985-01-01

    Several types of corrosion have damaged alloy 600 tubing in the secondary side of steam generators. The types of corrosion include wastage, denting, intergranular attack, stress corrosion, erosion-corrosion, etc. The environments which cause attack may originate from leaks of cooling water into the condensate, etc. When the contaminated feedwater is pumped into the generator, the impurities may concentrate first 200 to 400 fold in the bulk water, depending on the blowdown, and then further to saturation and dryness in heated tube support plate crevices. Characterization of local solution chemistries is the first step to predict and correct the type of corrosion that can occur. The pH is of particular importance because it is a major factor governing the rate of corrosion reactions. The pH of a solution at high temperature is not the same as the ambient temperature, since ionic dissociation constants, solubility and solubility products, activity coefficients, etc., all change with temperature. Because the high temperature chemistry of such solutions is not readily characterized experimentally, modeling techniques were developed under EPRI sponsorship to calculate the high temperature chemistry of the relevant solutions. In many cases, the effects of cooling water impurities on steam generator water chemistry with all volatile treatment (AVT), upon concentration by boiling, and in particular the resulting acid or base concentration can be calculated by a simple code, the HITCH code, which is very easy to use. The scope and applicability of the HITCH code are summarized

  17. Statistical 3D damage accumulation model for ion implant simulators

    CERN Document Server

    Hernandez-Mangas, J M; Enriquez, L E; Bailon, L; Barbolla, J; Jaraiz, M

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided.

  18. Statistical 3D damage accumulation model for ion implant simulators

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Lazaro, J.; Enriquez, L.; Bailon, L.; Barbolla, J.; Jaraiz, M.

    2003-01-01

    A statistical 3D damage accumulation model, based on the modified Kinchin-Pease formula, for ion implant simulation has been included in our physically based ion implantation code. It has only one fitting parameter for electronic stopping and uses 3D electron density distributions for different types of targets including compound semiconductors. Also, a statistical noise reduction mechanism based on the dose division is used. The model has been adapted to be run under parallel execution in order to speed up the calculation in 3D structures. Sequential ion implantation has been modelled including previous damage profiles. It can also simulate the implantation of molecular and cluster projectiles. Comparisons of simulated doping profiles with experimental SIMS profiles are presented. Also comparisons between simulated amorphization and experimental RBS profiles are shown. An analysis of sequential versus parallel processing is provided

  19. Top flooding modeling with MAAP4 code

    International Nuclear Information System (INIS)

    Brunet-Thibault, E.; Marguet, S.

    2006-01-01

    An engineering top flooding model was developed in MAAP4.04d.4, the severe accident code used in EDF, to simulate the thermal-hydraulic phenomena that should take place if emergency core cooling (ECC) water was injected in hot leg during quenching. In the framework of the ISTC (International Science and Technology Centre), a top flooding test was proposed in the PARAMETER facility (Podolsk, Russia). The MAAP calculation of the PARAMETER top flooding test is presented in this paper. A comparison between top and bottom flooding was made on the bundle test geometry. According to this study, top flooding appears to cool quickly and effectively the upper plenum internals. (author)

  20. Statistical transmutation in doped quantum dimer models.

    Science.gov (United States)

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  1. STATISTICAL MODELS OF REPRESENTING INTELLECTUAL CAPITAL

    Directory of Open Access Journals (Sweden)

    Andreea Feraru

    2016-06-01

    Full Text Available This article entitled Statistical Models of Representing Intellectual Capital approaches and analyses the concept of intellectual capital, as well as the main models which can support enterprisers/managers in evaluating and quantifying the advantages of intellectual capital. Most authors examine intellectual capital from a static perspective and focus on the development of its various evaluation models. In this chapter we surveyed the classical static models: Sveiby, Edvisson, Balanced Scorecard, as well as the canonical model of intellectual capital. Among the group of static models for evaluating organisational intellectual capital the canonical model stands out. This model enables the structuring of organisational intellectual capital in: human capital, structural capital and relational capital. Although the model is widely spread, it is a static one and can thus create a series of errors in the process of evaluation, because all the three entities mentioned above are not independent from the viewpoint of their contents, as any logic of structuring complex entities requires.

  2. (ajst) statistical mechanics model for orientational

    African Journals Online (AJOL)

    Science and Engineering Series Vol. 6, No. 2, pp. 94 - 101. STATISTICAL MECHANICS MODEL FOR ORIENTATIONAL. MOTION OF TWO-DIMENSIONAL RIGID ROTATOR. Malo, J.O. ... there is no translational motion and that they are well separated so .... constant and I is the moment of inertia of a linear rotator. Thus, the ...

  3. Statistical Model Checking for Biological Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Larsen, Kim Guldstrand; Legay, Axel

    2014-01-01

    Statistical Model Checking (SMC) is a highly scalable simulation-based verification approach for testing and estimating the probability that a stochastic system satisfies a given linear temporal property. The technique has been applied to (discrete and continuous time) Markov chains, stochastic...

  4. Topology for Statistical Modeling of Petascale Data

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Janine Camille [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pebay, Philippe Pierre [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Pascucci, Valerio [Univ. of Utah, Salt Lake City, UT (United States); Levine, Joshua [Univ. of Utah, Salt Lake City, UT (United States); Gyulassy, Attila [Univ. of Utah, Salt Lake City, UT (United States); Rojas, Maurice [Texas A & M Univ., College Station, TX (United States)

    2014-07-01

    This document presents current technical progress and dissemination of results for the Mathematics for Analysis of Petascale Data (MAPD) project titled "Topology for Statistical Modeling of Petascale Data", funded by the Office of Science Advanced Scientific Computing Research (ASCR) Applied Math program.

  5. Establishing statistical models of manufacturing parameters

    International Nuclear Information System (INIS)

    Senevat, J.; Pape, J.L.; Deshayes, J.F.

    1991-01-01

    This paper reports on the effect of pilgering and cold-work parameters on contractile strain ratio and mechanical properties that were investigated using a large population of Zircaloy tubes. Statistical models were established between: contractile strain ratio and tooling parameters, mechanical properties (tensile test, creep test) and cold-work parameters, and mechanical properties and stress-relieving temperature

  6. Statistical models for optimizing mineral exploration

    International Nuclear Information System (INIS)

    Wignall, T.K.; DeGeoffroy, J.

    1987-01-01

    The primary purpose of mineral exploration is to discover ore deposits. The emphasis of this volume is on the mathematical and computational aspects of optimizing mineral exploration. The seven chapters that make up the main body of the book are devoted to the description and application of various types of computerized geomathematical models. These chapters include: (1) the optimal selection of ore deposit types and regions of search, as well as prospecting selected areas, (2) designing airborne and ground field programs for the optimal coverage of prospecting areas, and (3) delineating and evaluating exploration targets within prospecting areas by means of statistical modeling. Many of these statistical programs are innovative and are designed to be useful for mineral exploration modeling. Examples of geomathematical models are applied to exploring for six main types of base and precious metal deposits, as well as other mineral resources (such as bauxite and uranium)

  7. A statistical model for mapping morphological shape

    Directory of Open Access Journals (Sweden)

    Li Jiahan

    2010-07-01

    Full Text Available Abstract Background Living things come in all shapes and sizes, from bacteria, plants, and animals to humans. Knowledge about the genetic mechanisms for biological shape has far-reaching implications for a range spectrum of scientific disciplines including anthropology, agriculture, developmental biology, evolution and biomedicine. Results We derived a statistical model for mapping specific genes or quantitative trait loci (QTLs that control morphological shape. The model was formulated within the mixture framework, in which different types of shape are thought to result from genotypic discrepancies at a QTL. The EM algorithm was implemented to estimate QTL genotype-specific shapes based on a shape correspondence analysis. Computer simulation was used to investigate the statistical property of the model. Conclusion By identifying specific QTLs for morphological shape, the model developed will help to ask, disseminate and address many major integrative biological and genetic questions and challenges in the genetic control of biological shape and function.

  8. Inclusion of temperature dependence of fission barriers in statistical model calculations

    International Nuclear Information System (INIS)

    Newton, J.O.; Popescu, D.G.; Leigh, J.R.

    1990-08-01

    The temperature dependence of fission barriers has been interpolated from the results of recent theoretical calculations and included in the statistical model code PACE2. It is shown that the inclusion of temperature dependence causes significant changes to the values of the statistical model parameters deduced from fits to experimental data. 21 refs., 2 figs

  9. Some uncertainty results obtained by the statistical version of the KARATE code system related to core design and safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Panka, Istvan; Hegyi, Gyoergy; Maraczy, Csaba; Temesvari, Emese [Hungarian Academy of Sciences, Budapest (Hungary). Reactor Analysis Dept.

    2017-11-15

    The best-estimate KARATE code system has been widely used for core design calculations and simulations of slow transients of VVER reactors. Recently there has been an increasing need for assessing the uncertainties of such calculations by propagating the basic input uncertainties of the models through the full calculation chain. In order to determine the uncertainties of quantities of interest during the burnup, the statistical version of the KARATE code system has been elaborated. In the first part of the paper, the main features of the new code system are discussed. The applied statistical method is based on Monte-Carlo sampling of the considered input data taking into account mainly the covariance matrices of the cross sections and/or the technological uncertainties. In the second part of the paper, only the uncertainties of cross sections are considered and an equilibrium cycle related to a VVER-440 type reactor is investigated. The burnup dependence of the uncertainties of some safety related parameters (e.g. critical boron concentration, rod worth, feedback coefficients, assembly-wise radial power and burnup distribution) are discussed and compared to the recently used limits.

  10. Performance modeling, stochastic networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi R

    2013-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan

  11. Statistical models for competing risk analysis

    International Nuclear Information System (INIS)

    Sather, H.N.

    1976-08-01

    Research results on three new models for potential applications in competing risks problems. One section covers the basic statistical relationships underlying the subsequent competing risks model development. Another discusses the problem of comparing cause-specific risk structure by competing risks theory in two homogeneous populations, P1 and P2. Weibull models which allow more generality than the Berkson and Elveback models are studied for the effect of time on the hazard function. The use of concomitant information for modeling single-risk survival is extended to the multiple failure mode domain of competing risks. The model used to illustrate the use of this methodology is a life table model which has constant hazards within pre-designated intervals of the time scale. Two parametric models for bivariate dependent competing risks, which provide interesting alternatives, are proposed and examined

  12. Statistical physics of pairwise probability models

    Directory of Open Access Journals (Sweden)

    Yasser Roudi

    2009-11-01

    Full Text Available Statistical models for describing the probability distribution over the states of biological systems are commonly used for dimensional reduction. Among these models, pairwise models are very attractive in part because they can be fit using a reasonable amount of data: knowledge of the means and correlations between pairs of elements in the system is sufficient. Not surprisingly, then, using pairwise models for studying neural data has been the focus of many studies in recent years. In this paper, we describe how tools from statistical physics can be employed for studying and using pairwise models. We build on our previous work on the subject and study the relation between different methods for fitting these models and evaluating their quality. In particular, using data from simulated cortical networks we study how the quality of various approximate methods for inferring the parameters in a pairwise model depends on the time bin chosen for binning the data. We also study the effect of the size of the time bin on the model quality itself, again using simulated data. We show that using finer time bins increases the quality of the pairwise model. We offer new ways of deriving the expressions reported in our previous work for assessing the quality of pairwise models.

  13. 24 CFR 200.925c - Model codes.

    Science.gov (United States)

    2010-04-01

    ... below. (1) Model Building Codes—(i) The BOCA National Building Code, 1993 Edition, The BOCA National..., Administration, for the Building, Plumbing and Mechanical Codes and the references to fire retardant treated wood... number 2 (Chapter 7) of the Building Code, but including the Appendices of the Code. Available from...

  14. Containment Modelling with the ASTEC Code

    International Nuclear Information System (INIS)

    Sadek, Sinisa; Grgic, Davor

    2014-01-01

    ASTEC is an integral computer code jointly developed by Institut de Radioprotection et de Surete Nucleaire (IRSN, France) and Gesellschaft fur Anlagen-und Reaktorsicherheit (GRS, Germany) to assess the nuclear power plant behaviour during a severe accident (SA). It consists of 13 coupled modules which compute various SA phenomena in primary and secondary circuits of the nuclear power plants (NPP), and in the containment. The ASTEC code was used to model and to simulate NPP behaviour during a postulated station blackout accident in the NPP Krsko, a two-loop pressurized water reactor (PWR) plant. The primary system of the plant was modelled with 110 thermal hydraulic (TH) volumes, 113 junctions and 128 heat structures. The secondary system was modelled with 76 TH volumes, 77 junctions and 87 heat structures. The containment was modelled with 10 TH volumes by taking into account containment representation as a set of distinctive compartments, connected with 23 junctions. A total of 79 heat structures were used to simulate outer containment walls and internal steel and concrete structures. Prior to the transient calculation, a steady state analysis was performed. In order to achieve correct plant initial conditions, the operation of regulation systems was modelled. Parameters which were subjected to regulation were the pressurizer pressure, the pressurizer narrow range level and steam mass flow rates in the steam lines. The accident analysis was focused on containment behaviour, however the complete integral NPP analysis was carried out in order to provide correct boundary conditions for the containment calculation. During the accident, the containment integrity was challenged by release of reactor system coolant through degraded coolant pump seals and, later in the accident following release of the corium out of the reactor pressure vessel, by the molten corium concrete interaction and direct containment heating mechanisms. Impact of those processes on relevant

  15. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh

    2015-08-12

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase in complexity. In this paper, we design a simple IDNC-like graph model for a specific subclass of ONC, by introducing a more generalized definition of its vertices and the notion of vertex aggregation in order to represent the storage of non-instantly-decodable packets in ONC. Based on this representation, we determine the set of pairwise vertex adjacency conditions that can populate this graph with edges so as to guarantee decodability or aggregation for the vertices of each clique in this graph. We then develop the algorithmic procedures that can be applied on the designed graph model to optimize any performance metric for this ONC subclass. A case study on reducing the completion time shows that the proposed framework improves on the performance of IDNC and gets very close to the optimal performance.

  16. Conservation of concrete structures according to fib Model Code 2010

    NARCIS (Netherlands)

    Matthews, S.; Bigaj-Van Vliet, A.; Ueda, T.

    2013-01-01

    Conservation of concrete structures forms an essential part of the fib Model Code for Concrete Structures 2010 (fib Model Code 2010). In particular, Chapter 9 of fib Model Code 2010 addresses issues concerning conservation strategies and tactics, conservation management, condition surveys, condition

  17. Gap Conductance model Validation in the TASS/SMR-S code using MARS code

    International Nuclear Information System (INIS)

    Ahn, Sang Jun; Yang, Soo Hyung; Chung, Young Jong; Lee, Won Jae

    2010-01-01

    Korea Atomic Energy Research Institute (KAERI) has been developing the TASS/SMR-S (Transient and Setpoint Simulation/Small and Medium Reactor) code, which is a thermal hydraulic code for the safety analysis of the advanced integral reactor. An appropriate work to validate the applicability of the thermal hydraulic models within the code should be demanded. Among the models, the gap conductance model which is describes the thermal gap conductivity between fuel and cladding was validated through the comparison with MARS code. The validation of the gap conductance model was performed by evaluating the variation of the gap temperature and gap width as the changed with the power fraction. In this paper, a brief description of the gap conductance model in the TASS/SMR-S code is presented. In addition, calculated results to validate the gap conductance model are demonstrated by comparing with the results of the MARS code with the test case

  18. Statistical models of petrol engines vehicles dynamics

    Science.gov (United States)

    Ilie, C. O.; Marinescu, M.; Alexa, O.; Vilău, R.; Grosu, D.

    2017-10-01

    This paper focuses on studying statistical models of vehicles dynamics. It was design and perform a one year testing program. There were used many same type cars with gasoline engines and different mileage. Experimental data were collected of onboard sensors and those on the engine test stand. A database containing data of 64th tests was created. Several mathematical modelling were developed using database and the system identification method. Each modelling is a SISO or a MISO linear predictive ARMAX (AutoRegressive-Moving-Average with eXogenous inputs) model. It represents a differential equation with constant coefficients. It were made 64th equations for each dependency like engine torque as output and engine’s load and intake manifold pressure, as inputs. There were obtained strings with 64 values for each type of model. The final models were obtained using average values of the coefficients. The accuracy of models was assessed.

  19. Equilibrium statistical mechanics of lattice models

    CERN Document Server

    Lavis, David A

    2015-01-01

    Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg—Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi—Hijmans—De Boer hierarchy of approximations. In Part III the use of alge...

  20. Statistical shape and appearance models of bones.

    Science.gov (United States)

    Sarkalkan, Nazli; Weinans, Harrie; Zadpoor, Amir A

    2014-03-01

    When applied to bones, statistical shape models (SSM) and statistical appearance models (SAM) respectively describe the mean shape and mean density distribution of bones within a certain population as well as the main modes of variations of shape and density distribution from their mean values. The availability of this quantitative information regarding the detailed anatomy of bones provides new opportunities for diagnosis, evaluation, and treatment of skeletal diseases. The potential of SSM and SAM has been recently recognized within the bone research community. For example, these models have been applied for studying the effects of bone shape on the etiology of osteoarthritis, improving the accuracy of clinical osteoporotic fracture prediction techniques, design of orthopedic implants, and surgery planning. This paper reviews the main concepts, methods, and applications of SSM and SAM as applied to bone. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Statistical Models of Adaptive Immune populations

    Science.gov (United States)

    Sethna, Zachary; Callan, Curtis; Walczak, Aleksandra; Mora, Thierry

    The availability of large (104-106 sequences) datasets of B or T cell populations from a single individual allows reliable fitting of complex statistical models for naïve generation, somatic selection, and hypermutation. It is crucial to utilize a probabilistic/informational approach when modeling these populations. The inferred probability distributions allow for population characterization, calculation of probability distributions of various hidden variables (e.g. number of insertions), as well as statistical properties of the distribution itself (e.g. entropy). In particular, the differences between the T cell populations of embryonic and mature mice will be examined as a case study. Comparing these populations, as well as proposed mixed populations, provides a concrete exercise in model creation, comparison, choice, and validation.

  2. CHF predictor derived from a 3D thermal-hydraulic code and an advanced statistical method

    International Nuclear Information System (INIS)

    Banner, D.; Aubry, S.

    2004-01-01

    A rod bundle CHF predictor has been determined by using a 3D code (THYC) to compute local thermal-hydraulic conditions at the boiling crisis location. These local parameters have been correlated to the critical heat flux by using an advanced statistical method based on spline functions. The main characteristics of the predictor are presented in conjunction with a detailed analysis of predictions (P/M ratio) in order to prove that the usual safety methodology can be applied with such a predictor. A thermal-hydraulic design criterion is obtained (1.13) and the predictor is compared with the WRB-1 correlation. (author)

  3. Cellular automata and statistical mechanical models

    International Nuclear Information System (INIS)

    Rujan, P.

    1987-01-01

    The authors elaborate on the analogy between the transfer matrix of usual lattice models and the master equation describing the time development of cellular automata. Transient and stationary properties of probabilistic automata are linked to surface and bulk properties, respectively, of restricted statistical mechanical systems. It is demonstrated that methods of statistical physics can be successfully used to describe the dynamic and the stationary behavior of such automata. Some exact results are derived, including duality transformations, exact mappings, disorder, and linear solutions. Many examples are worked out in detail to demonstrate how to use statistical physics in order to construct cellular automata with desired properties. This approach is considered to be a first step toward the design of fully parallel, probabilistic systems whose computational abilities rely on the cooperative behavior of their components

  4. Plutonium explosive dispersal modeling using the MACCS2 computer code

    International Nuclear Information System (INIS)

    Steele, C.M.; Wald, T.L.; Chanin, D.I.

    1998-01-01

    The purpose of this paper is to derive the necessary parameters to be used to establish a defensible methodology to perform explosive dispersal modeling of respirable plutonium using Gaussian methods. A particular code, MACCS2, has been chosen for this modeling effort due to its application of sophisticated meteorological statistical sampling in accordance with the philosophy of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.145, ''Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants''. A second advantage supporting the selection of the MACCS2 code for modeling purposes is that meteorological data sets are readily available at most Department of Energy (DOE) and NRC sites. This particular MACCS2 modeling effort focuses on the calculation of respirable doses and not ground deposition. Once the necessary parameters for the MACCS2 modeling are developed and presented, the model is benchmarked against empirical test data from the Double Tracks shot of project Roller Coaster (Shreve 1965) and applied to a hypothetical plutonium explosive dispersal scenario. Further modeling with the MACCS2 code is performed to determine a defensible method of treating the effects of building structure interaction on the respirable fraction distribution as a function of height. These results are related to the Clean Slate 2 and Clean Slate 3 bunkered shots of Project Roller Coaster. Lastly a method is presented to determine the peak 99.5% sector doses on an irregular site boundary in the manner specified in NRC Regulatory Guide 1.145 (1983). Parametric analyses are performed on the major analytic assumptions in the MACCS2 model to define the potential errors that are possible in using this methodology

  5. Plutonium explosive dispersal modeling using the MACCS2 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Steele, C.M.; Wald, T.L.; Chanin, D.I.

    1998-11-01

    The purpose of this paper is to derive the necessary parameters to be used to establish a defensible methodology to perform explosive dispersal modeling of respirable plutonium using Gaussian methods. A particular code, MACCS2, has been chosen for this modeling effort due to its application of sophisticated meteorological statistical sampling in accordance with the philosophy of Nuclear Regulatory Commission (NRC) Regulatory Guide 1.145, ``Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants``. A second advantage supporting the selection of the MACCS2 code for modeling purposes is that meteorological data sets are readily available at most Department of Energy (DOE) and NRC sites. This particular MACCS2 modeling effort focuses on the calculation of respirable doses and not ground deposition. Once the necessary parameters for the MACCS2 modeling are developed and presented, the model is benchmarked against empirical test data from the Double Tracks shot of project Roller Coaster (Shreve 1965) and applied to a hypothetical plutonium explosive dispersal scenario. Further modeling with the MACCS2 code is performed to determine a defensible method of treating the effects of building structure interaction on the respirable fraction distribution as a function of height. These results are related to the Clean Slate 2 and Clean Slate 3 bunkered shots of Project Roller Coaster. Lastly a method is presented to determine the peak 99.5% sector doses on an irregular site boundary in the manner specified in NRC Regulatory Guide 1.145 (1983). Parametric analyses are performed on the major analytic assumptions in the MACCS2 model to define the potential errors that are possible in using this methodology.

  6. A graph model for opportunistic network coding

    KAUST Repository

    Sorour, Sameh; Aboutoraby, Neda; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2015-01-01

    © 2015 IEEE. Recent advancements in graph-based analysis and solutions of instantly decodable network coding (IDNC) trigger the interest to extend them to more complicated opportunistic network coding (ONC) scenarios, with limited increase

  7. Code Differentiation for Hydrodynamic Model Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, R.J.; Maudlin, P.J.

    1999-06-27

    Use of a hydrodynamics code for experimental data fitting purposes (an optimization problem) requires information about how a computed result changes when the model parameters change. These so-called sensitivities provide the gradient that determines the search direction for modifying the parameters to find an optimal result. Here, the authors apply code-based automatic differentiation (AD) techniques applied in the forward and adjoint modes to two problems with 12 parameters to obtain these gradients and compare the computational efficiency and accuracy of the various methods. They fit the pressure trace from a one-dimensional flyer-plate experiment and examine the accuracy for a two-dimensional jet-formation problem. For the flyer-plate experiment, the adjoint mode requires similar or less computer time than the forward methods. Additional parameters will not change the adjoint mode run time appreciably, which is a distinct advantage for this method. Obtaining ''accurate'' sensitivities for the j et problem parameters remains problematic.

  8. Statistical Modelling of Wind Proles - Data Analysis and Modelling

    DEFF Research Database (Denmark)

    Jónsson, Tryggvi; Pinson, Pierre

    The aim of the analysis presented in this document is to investigate whether statistical models can be used to make very short-term predictions of wind profiles.......The aim of the analysis presented in this document is to investigate whether statistical models can be used to make very short-term predictions of wind profiles....

  9. Statistical modeling of geopressured geothermal reservoirs

    Science.gov (United States)

    Ansari, Esmail; Hughes, Richard; White, Christopher D.

    2017-06-01

    Identifying attractive candidate reservoirs for producing geothermal energy requires predictive models. In this work, inspectional analysis and statistical modeling are used to create simple predictive models for a line drive design. Inspectional analysis on the partial differential equations governing this design yields a minimum number of fifteen dimensionless groups required to describe the physics of the system. These dimensionless groups are explained and confirmed using models with similar dimensionless groups but different dimensional parameters. This study models dimensionless production temperature and thermal recovery factor as the responses of a numerical model. These responses are obtained by a Box-Behnken experimental design. An uncertainty plot is used to segment the dimensionless time and develop a model for each segment. The important dimensionless numbers for each segment of the dimensionless time are identified using the Boosting method. These selected numbers are used in the regression models. The developed models are reduced to have a minimum number of predictors and interactions. The reduced final models are then presented and assessed using testing runs. Finally, applications of these models are offered. The presented workflow is generic and can be used to translate the output of a numerical simulator into simple predictive models in other research areas involving numerical simulation.

  10. A statistical model for instable thermodynamical systems

    International Nuclear Information System (INIS)

    Sommer, Jens-Uwe

    2003-01-01

    A generic model is presented for statistical systems which display thermodynamic features in contrast to our everyday experience, such as infinite and negative heat capacities. Such system are instable in terms of classical equilibrium thermodynamics. Using our statistical model, we are able to investigate states of instable systems which are undefined in the framework of equilibrium thermodynamics. We show that a region of negative heat capacity in the adiabatic environment, leads to a first order like phase transition when the system is coupled to a heat reservoir. This phase transition takes place without a phase coexistence. Nevertheless, all intermediate states are stable due to fluctuations. When two instable system are brought in thermal contact, the temperature of the composed system is lower than the minimum temperature of the individual systems. Generally, the equilibrium states of instable system cannot be simply decomposed into equilibrium states of the individual systems. The properties of instable system depend on the environment, ensemble equivalence is broken

  11. Statistical analysis of coding for molecular properties in the olfactory bulb

    Directory of Open Access Journals (Sweden)

    Benjamin eAuffarth

    2011-07-01

    Full Text Available The relationship between molecular properties of odorants and neural activities is arguably one of the most important issues in olfaction and the rules governing this relationship are still not clear. In the olfactory bulb (OB, glomeruli relay olfactory information to second-order neurons which in turn project to cortical areas. We investigate relevance of odorant properties, spatial localization of glomerular coding sites, and size of coding zones in a dataset of 2-deoxyglucose images of glomeruli over the entire OB of the rat. We relate molecular properties to activation of glomeruli in the OB using a nonparametric statistical test and a support-vector machine classification study. Our method permits to systematically map the topographic representation of various classes of odorants in the OB. Our results suggest many localized coding sites for particular molecular properties and some molecular properties that could form the basis for a spatial map of olfactory information. We found that alkynes, alkanes, alkenes, and amines affect activation maps very strongly as compared to other properties and that amines, sulfur-containing compounds, and alkynes have small zones and high relevance to activation changes, while aromatics, alkanes, and carboxylics acid recruit very big zones in the dataset. Results suggest a local spatial encoding for molecular properties.

  12. Logarithmic transformed statistical models in calibration

    International Nuclear Information System (INIS)

    Zeis, C.D.

    1975-01-01

    A general type of statistical model used for calibration of instruments having the property that the standard deviations of the observed values increase as a function of the mean value is described. The application to the Helix Counter at the Rocky Flats Plant is primarily from a theoretical point of view. The Helix Counter measures the amount of plutonium in certain types of chemicals. The method described can be used also for other calibrations. (U.S.)

  13. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    OpenAIRE

    Palas Roy; Naba Kumar Mondal; Biswajit Das; Kousik Das

    2013-01-01

    High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India) has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Mul...

  14. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments.

    Science.gov (United States)

    Santos, José; Monteagudo, Angel

    2011-02-21

    As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the fact that the best possible codes show the patterns of the

  15. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments

    Directory of Open Access Journals (Sweden)

    Monteagudo Ángel

    2011-02-01

    Full Text Available Abstract Background As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Results Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Conclusions Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the

  16. ER@CEBAF: Modeling code developments

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Roblin, Y. [Brookhaven National Lab. (BNL), Upton, NY (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-13

    A proposal for a multiple-pass, high-energy, energy-recovery experiment using CEBAF is under preparation in the frame of a JLab-BNL collaboration. In view of beam dynamics investigations regarding this project, in addition to the existing model in use in Elegant a version of CEBAF is developed in the stepwise ray-tracing code Zgoubi, Beyond the ER experiment, it is also planned to use the latter for the study of polarization transport in the presence of synchrotron radiation, down to Hall D line where a 12 GeV polarized beam can be delivered. This Note briefly reports on the preliminary steps, and preliminary outcomes, based on an Elegant to Zgoubi translation.

  17. A simple statistical model for geomagnetic reversals

    Science.gov (United States)

    Constable, Catherine

    1990-01-01

    The diversity of paleomagnetic records of geomagnetic reversals now available indicate that the field configuration during transitions cannot be adequately described by simple zonal or standing field models. A new model described here is based on statistical properties inferred from the present field and is capable of simulating field transitions like those observed. Some insight is obtained into what one can hope to learn from paleomagnetic records. In particular, it is crucial that the effects of smoothing in the remanence acquisition process be separated from true geomagnetic field behavior. This might enable us to determine the time constants associated with the dominant field configuration during a reversal.

  18. Improved choked flow model for MARS code

    International Nuclear Information System (INIS)

    Chung, Moon Sun; Lee, Won Jae; Ha, Kwi Seok; Hwang, Moon Kyu

    2002-01-01

    Choked flow calculation is improved by using a new sound speed criterion for bubbly flow that is derived by the characteristic analysis of hyperbolic two-fluid model. This model was based on the notion of surface tension for the interfacial pressure jump terms in the momentum equations. Real eigenvalues obtained as the closed-form solution of characteristic polynomial represent the sound speed in the bubbly flow regime that agrees well with the existing experimental data. The present sound speed shows more reasonable result in the extreme case than the Nguyens did. The present choked flow criterion derived by the present sound speed is employed in the MARS code and assessed by using the Marviken choked flow tests. The assessment results without any adjustment made by some discharge coefficients demonstrate more accurate predictions of choked flow rate in the bubbly flow regime than those of the earlier choked flow calculations. By calculating the Typical PWR (SBLOCA) problem, we make sure that the present model can reproduce the reasonable transients of integral reactor system

  19. PetriCode: A Tool for Template-Based Code Generation from CPN Models

    DEFF Research Database (Denmark)

    Simonsen, Kent Inge

    2014-01-01

    Code generation is an important part of model driven methodologies. In this paper, we present PetriCode, a software tool for generating protocol software from a subclass of Coloured Petri Nets (CPNs). The CPN subclass is comprised of hierarchical CPN models describing a protocol system at different...

  20. Statistical Modelling of the Soil Dielectric Constant

    Science.gov (United States)

    Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy

    2010-05-01

    The dielectric constant of soil is the physical property being very sensitive on water content. It funds several electrical measurement techniques for determining the water content by means of direct (TDR, FDR, and others related to effects of electrical conductance and/or capacitance) and indirect RS (Remote Sensing) methods. The work is devoted to a particular statistical manner of modelling the dielectric constant as the property accounting a wide range of specific soil composition, porosity, and mass density, within the unsaturated water content. Usually, similar models are determined for few particular soil types, and changing the soil type one needs switching the model on another type or to adjust it by parametrization of soil compounds. Therefore, it is difficult comparing and referring results between models. The presented model was developed for a generic representation of soil being a hypothetical mixture of spheres, each representing a soil fraction, in its proper phase state. The model generates a serial-parallel mesh of conductive and capacitive paths, which is analysed for a total conductive or capacitive property. The model was firstly developed to determine the thermal conductivity property, and now it is extended on the dielectric constant by analysing the capacitive mesh. The analysis is provided by statistical means obeying physical laws related to the serial-parallel branching of the representative electrical mesh. Physical relevance of the analysis is established electrically, but the definition of the electrical mesh is controlled statistically by parametrization of compound fractions, by determining the number of representative spheres per unitary volume per fraction, and by determining the number of fractions. That way the model is capable covering properties of nearly all possible soil types, all phase states within recognition of the Lorenz and Knudsen conditions. In effect the model allows on generating a hypothetical representative of

  1. Bayesian statistic methods and theri application in probabilistic simulation models

    Directory of Open Access Journals (Sweden)

    Sergio Iannazzo

    2007-03-01

    Full Text Available Bayesian statistic methods are facing a rapidly growing level of interest and acceptance in the field of health economics. The reasons of this success are probably to be found on the theoretical fundaments of the discipline that make these techniques more appealing to decision analysis. To this point should be added the modern IT progress that has developed different flexible and powerful statistical software framework. Among them probably one of the most noticeably is the BUGS language project and its standalone application for MS Windows WinBUGS. Scope of this paper is to introduce the subject and to show some interesting applications of WinBUGS in developing complex economical models based on Markov chains. The advantages of this approach reside on the elegance of the code produced and in its capability to easily develop probabilistic simulations. Moreover an example of the integration of bayesian inference models in a Markov model is shown. This last feature let the analyst conduce statistical analyses on the available sources of evidence and exploit them directly as inputs in the economic model.

  2. Statistical models of global Langmuir mixing

    Science.gov (United States)

    Li, Qing; Fox-Kemper, Baylor; Breivik, Øyvind; Webb, Adrean

    2017-05-01

    The effects of Langmuir mixing on the surface ocean mixing may be parameterized by applying an enhancement factor which depends on wave, wind, and ocean state to the turbulent velocity scale in the K-Profile Parameterization. Diagnosing the appropriate enhancement factor online in global climate simulations is readily achieved by coupling with a prognostic wave model, but with significant computational and code development expenses. In this paper, two alternatives that do not require a prognostic wave model, (i) a monthly mean enhancement factor climatology, and (ii) an approximation to the enhancement factor based on the empirical wave spectra, are explored and tested in a global climate model. Both appear to reproduce the Langmuir mixing effects as estimated using a prognostic wave model, with nearly identical and substantial improvements in the simulated mixed layer depth and intermediate water ventilation over control simulations, but significantly less computational cost. Simpler approaches, such as ignoring Langmuir mixing altogether or setting a globally constant Langmuir number, are found to be deficient. Thus, the consequences of Stokes depth and misaligned wind and waves are important.

  3. ARSENIC CONTAMINATION IN GROUNDWATER: A STATISTICAL MODELING

    Directory of Open Access Journals (Sweden)

    Palas Roy

    2013-01-01

    Full Text Available High arsenic in natural groundwater in most of the tubewells of the Purbasthali- Block II area of Burdwan district (W.B, India has recently been focused as a serious environmental concern. This paper is intending to illustrate the statistical modeling of the arsenic contaminated groundwater to identify the interrelation of that arsenic contain with other participating groundwater parameters so that the arsenic contamination level can easily be predicted by analyzing only such parameters. Multivariate data analysis was done with the collected groundwater samples from the 132 tubewells of this contaminated region shows that three variable parameters are significantly related with the arsenic. Based on these relationships, a multiple linear regression model has been developed that estimated the arsenic contamination by measuring such three predictor parameters of the groundwater variables in the contaminated aquifer. This model could also be a suggestive tool while designing the arsenic removal scheme for any affected groundwater.

  4. 40 CFR 194.23 - Models and computer codes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Models and computer codes. 194.23... General Requirements § 194.23 Models and computer codes. (a) Any compliance application shall include: (1... obtain stable solutions; (iv) Computer models accurately implement the numerical models; i.e., computer...

  5. Optimizing refiner operation with statistical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, G [Noranda Research Centre, Pointe Claire, PQ (Canada)

    1997-02-01

    The impact of refining conditions on the energy efficiency of the process and on the handsheet quality of a chemi-mechanical pulp was studied as part of a series of pilot scale refining trials. Statistical models of refiner performance were constructed from these results and non-linear optimization of process conditions were conducted. Optimization results indicated that increasing the ratio of specific energy applied in the first stage led to a reduction of some 15 per cent in the total energy requirement. The strategy can also be used to obtain significant increases in pulp quality for a given energy input. 20 refs., 6 tabs.

  6. Average Nuclear properties based on statistical model

    International Nuclear Information System (INIS)

    El-Jaick, L.J.

    1974-01-01

    The rough properties of nuclei were investigated by statistical model, in systems with the same and different number of protons and neutrons, separately, considering the Coulomb energy in the last system. Some average nuclear properties were calculated based on the energy density of nuclear matter, from Weizsscker-Beth mass semiempiric formulae, generalized for compressible nuclei. In the study of a s surface energy coefficient, the great influence exercised by Coulomb energy and nuclear compressibility was verified. For a good adjust of beta stability lines and mass excess, the surface symmetry energy were established. (M.C.K.) [pt

  7. Statistical pairwise interaction model of stock market

    Science.gov (United States)

    Bury, Thomas

    2013-03-01

    Financial markets are a classical example of complex systems as they are compound by many interacting stocks. As such, we can obtain a surprisingly good description of their structure by making the rough simplification of binary daily returns. Spin glass models have been applied and gave some valuable results but at the price of restrictive assumptions on the market dynamics or they are agent-based models with rules designed in order to recover some empirical behaviors. Here we show that the pairwise model is actually a statistically consistent model with the observed first and second moments of the stocks orientation without making such restrictive assumptions. This is done with an approach only based on empirical data of price returns. Our data analysis of six major indices suggests that the actual interaction structure may be thought as an Ising model on a complex network with interaction strengths scaling as the inverse of the system size. This has potentially important implications since many properties of such a model are already known and some techniques of the spin glass theory can be straightforwardly applied. Typical behaviors, as multiple equilibria or metastable states, different characteristic time scales, spatial patterns, order-disorder, could find an explanation in this picture.

  8. Improved virtual channel noise model for transform domain Wyner-Ziv video coding

    DEFF Research Database (Denmark)

    Huang, Xin; Forchhammer, Søren

    2009-01-01

    Distributed video coding (DVC) has been proposed as a new video coding paradigm to deal with lossy source coding using side information to exploit the statistics at the decoder to reduce computational demands at the encoder. A virtual channel noise model is utilized at the decoder to estimate...... the noise distribution between the side information frame and the original frame. This is one of the most important aspects influencing the coding performance of DVC. Noise models with different granularity have been proposed. In this paper, an improved noise model for transform domain Wyner-Ziv video...... coding is proposed, which utilizes cross-band correlation to estimate the Laplacian parameters more accurately. Experimental results show that the proposed noise model can improve the rate-distortion (RD) performance....

  9. Statistical modeling to support power system planning

    Science.gov (United States)

    Staid, Andrea

    This dissertation focuses on data-analytic approaches that improve our understanding of power system applications to promote better decision-making. It tackles issues of risk analysis, uncertainty management, resource estimation, and the impacts of climate change. Tools of data mining and statistical modeling are used to bring new insight to a variety of complex problems facing today's power system. The overarching goal of this research is to improve the understanding of the power system risk environment for improved operation, investment, and planning decisions. The first chapter introduces some challenges faced in planning for a sustainable power system. Chapter 2 analyzes the driving factors behind the disparity in wind energy investments among states with a goal of determining the impact that state-level policies have on incentivizing wind energy. Findings show that policy differences do not explain the disparities; physical and geographical factors are more important. Chapter 3 extends conventional wind forecasting to a risk-based focus of predicting maximum wind speeds, which are dangerous for offshore operations. Statistical models are presented that issue probabilistic predictions for the highest wind speed expected in a three-hour interval. These models achieve a high degree of accuracy and their use can improve safety and reliability in practice. Chapter 4 examines the challenges of wind power estimation for onshore wind farms. Several methods for wind power resource assessment are compared, and the weaknesses of the Jensen model are demonstrated. For two onshore farms, statistical models outperform other methods, even when very little information is known about the wind farm. Lastly, chapter 5 focuses on the power system more broadly in the context of the risks expected from tropical cyclones in a changing climate. Risks to U.S. power system infrastructure are simulated under different scenarios of tropical cyclone behavior that may result from climate

  10. Fuel analysis code FAIR and its high burnup modelling capabilities

    International Nuclear Information System (INIS)

    Prasad, P.S.; Dutta, B.K.; Kushwaha, H.S.; Mahajan, S.C.; Kakodkar, A.

    1995-01-01

    A computer code FAIR has been developed for analysing performance of water cooled reactor fuel pins. It is capable of analysing high burnup fuels. This code has recently been used for analysing ten high burnup fuel rods irradiated at Halden reactor. In the present paper, the code FAIR and its various high burnup models are described. The performance of code FAIR in analysing high burnup fuels and its other applications are highlighted. (author). 21 refs., 12 figs

  11. The analysis of thermal-hydraulic models in MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, M H; Hur, C; Kim, D K; Cho, H J [POhang Univ., of Science and TECHnology, Pohang (Korea, Republic of)

    1996-07-15

    The objective of the present work is to verify the prediction and analysis capability of MELCOR code about the progression of severe accidents in light water reactor and also to evaluate appropriateness of thermal-hydraulic models used in MELCOR code. Comparing the results of experiment and calculation with MELCOR code is carried out to achieve the above objective. Specially, the comparison between the CORA-13 experiment and the MELCOR code calculation was performed.

  12. Acceleration transforms and statistical kinetic models

    International Nuclear Information System (INIS)

    LuValle, M.J.; Welsher, T.L.; Svoboda, K.

    1988-01-01

    For a restricted class of problems a mathematical model of microscopic degradation processes, statistical kinetics, is developed and linked through acceleration transforms to the information which can be obtained from a system in which the only observable sign of degradation is sudden and catastrophic failure. The acceleration transforms were developed in accelerated life testing applications as a tool for extrapolating from the observable results of an accelerated life test to the dynamics of the underlying degradation processes. A particular concern of a physicist attempting to interpreted the results of an analysis based on acceleration transforms is determining the physical species involved in the degradation process. These species may be (a) relatively abundant or (b) relatively rare. The main results of this paper are a theorem showing that for an important subclass of statistical kinetic models, acceleration transforms cannot be used to distinguish between cases a and b, and an example showing that in some cases falling outside the restrictions of the theorem, cases a and b can be distinguished by their acceleration transforms

  13. Atmospheric corrosion: statistical validation of models

    International Nuclear Information System (INIS)

    Diaz, V.; Martinez-Luaces, V.; Guineo-Cobs, G.

    2003-01-01

    In this paper we discuss two different methods for validation of regression models, applied to corrosion data. One of them is based on the correlation coefficient and the other one is the statistical test of lack of fit. Both methods are used here to analyse fitting of bi logarithmic model in order to predict corrosion for very low carbon steel substrates in rural and urban-industrial atmospheres in Uruguay. Results for parameters A and n of the bi logarithmic model are reported here. For this purpose, all repeated values were used instead of using average values as usual. Modelling is carried out using experimental data corresponding to steel substrates under the same initial meteorological conditions ( in fact, they are put in the rack at the same time). Results of correlation coefficient are compared with the lack of it tested at two different signification levels (α=0.01 and α=0.05). Unexpected differences between them are explained and finally, it is possible to conclude, at least in the studied atmospheres, that the bi logarithmic model does not fit properly the experimental data. (Author) 18 refs

  14. Efficient Coding and Statistically Optimal Weighting of Covariance among Acoustic Attributes in Novel Sounds

    Science.gov (United States)

    Stilp, Christian E.; Kluender, Keith R.

    2012-01-01

    To the extent that sensorineural systems are efficient, redundancy should be extracted to optimize transmission of information, but perceptual evidence for this has been limited. Stilp and colleagues recently reported efficient coding of robust correlation (r = .97) among complex acoustic attributes (attack/decay, spectral shape) in novel sounds. Discrimination of sounds orthogonal to the correlation was initially inferior but later comparable to that of sounds obeying the correlation. These effects were attenuated for less-correlated stimuli (r = .54) for reasons that are unclear. Here, statistical properties of correlation among acoustic attributes essential for perceptual organization are investigated. Overall, simple strength of the principal correlation is inadequate to predict listener performance. Initial superiority of discrimination for statistically consistent sound pairs was relatively insensitive to decreased physical acoustic/psychoacoustic range of evidence supporting the correlation, and to more frequent presentations of the same orthogonal test pairs. However, increased range supporting an orthogonal dimension has substantial effects upon perceptual organization. Connectionist simulations and Eigenvalues from closed-form calculations of principal components analysis (PCA) reveal that perceptual organization is near-optimally weighted to shared versus unshared covariance in experienced sound distributions. Implications of reduced perceptual dimensionality for speech perception and plausible neural substrates are discussed. PMID:22292057

  15. Tardos fingerprinting codes in the combined digit model

    NARCIS (Netherlands)

    Skoric, B.; Katzenbeisser, S.; Schaathun, H.G.; Celik, M.U.

    2009-01-01

    We introduce a new attack model for collusion-secure codes, called the combined digit model, which represents signal processing attacks against the underlying watermarking level better than existing models. In this paper, we analyze the performance of two variants of the Tardos code and show that

  16. Fast optimization of statistical potentials for structurally constrained phylogenetic models

    Directory of Open Access Journals (Sweden)

    Rodrigue Nicolas

    2009-09-01

    Full Text Available Abstract Background Statistical approaches for protein design are relevant in the field of molecular evolutionary studies. In recent years, new, so-called structurally constrained (SC models of protein-coding sequence evolution have been proposed, which use statistical potentials to assess sequence-structure compatibility. In a previous work, we defined a statistical framework for optimizing knowledge-based potentials especially suited to SC models. Our method used the maximum likelihood principle and provided what we call the joint potentials. However, the method required numerical estimations by the use of computationally heavy Markov Chain Monte Carlo sampling algorithms. Results Here, we develop an alternative optimization procedure, based on a leave-one-out argument coupled to fast gradient descent algorithms. We assess that the leave-one-out potential yields very similar results to the joint approach developed previously, both in terms of the resulting potential parameters, and by Bayes factor evaluation in a phylogenetic context. On the other hand, the leave-one-out approach results in a considerable computational benefit (up to a 1,000 fold decrease in computational time for the optimization procedure. Conclusion Due to its computational speed, the optimization method we propose offers an attractive alternative for the design and empirical evaluation of alternative forms of potentials, using large data sets and high-dimensional parameterizations.

  17. Spherical Process Models for Global Spatial Statistics

    KAUST Repository

    Jeong, Jaehong

    2017-11-28

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture the spatial and temporal behavior of these global data sets. Though the geodesic distance is the most natural metric for measuring distance on the surface of a sphere, mathematical limitations have compelled statisticians to use the chordal distance to compute the covariance matrix in many applications instead, which may cause physically unrealistic distortions. Therefore, covariance functions directly defined on a sphere using the geodesic distance are needed. We discuss the issues that arise when dealing with spherical data sets on a global scale and provide references to recent literature. We review the current approaches to building process models on spheres, including the differential operator, the stochastic partial differential equation, the kernel convolution, and the deformation approaches. We illustrate realizations obtained from Gaussian processes with different covariance structures and the use of isotropic and nonstationary covariance models through deformations and geographical indicators for global surface temperature data. To assess the suitability of each method, we compare their log-likelihood values and prediction scores, and we end with a discussion of related research problems.

  18. A statistical mechanical model of economics

    Science.gov (United States)

    Lubbers, Nicholas Edward Williams

    Statistical mechanics pursues low-dimensional descriptions of systems with a very large number of degrees of freedom. I explore this theme in two contexts. The main body of this dissertation explores and extends the Yard Sale Model (YSM) of economic transactions using a combination of simulations and theory. The YSM is a simple interacting model for wealth distributions which has the potential to explain the empirical observation of Pareto distributions of wealth. I develop the link between wealth condensation and the breakdown of ergodicity due to nonlinear diffusion effects which are analogous to the geometric random walk. Using this, I develop a deterministic effective theory of wealth transfer in the YSM that is useful for explaining many quantitative results. I introduce various forms of growth to the model, paying attention to the effect of growth on wealth condensation, inequality, and ergodicity. Arithmetic growth is found to partially break condensation, and geometric growth is found to completely break condensation. Further generalizations of geometric growth with growth in- equality show that the system is divided into two phases by a tipping point in the inequality parameter. The tipping point marks the line between systems which are ergodic and systems which exhibit wealth condensation. I explore generalizations of the YSM transaction scheme to arbitrary betting functions to develop notions of universality in YSM-like models. I find that wealth vi condensation is universal to a large class of models which can be divided into two phases. The first exhibits slow, power-law condensation dynamics, and the second exhibits fast, finite-time condensation dynamics. I find that the YSM, which exhibits exponential dynamics, is the critical, self-similar model which marks the dividing line between the two phases. The final chapter develops a low-dimensional approach to materials microstructure quantification. Modern materials design harnesses complex

  19. Interfacial and Wall Transport Models for SPACE-CAP Code

    International Nuclear Information System (INIS)

    Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul; Choi, Hoon; Ha, Sang Jun

    2009-01-01

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code

  20. Interfacial and Wall Transport Models for SPACE-CAP Code

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Soon Joon; Choo, Yeon Joon; Han, Tae Young; Hwang, Su Hyun; Lee, Byung Chul [FNC Tech., Seoul (Korea, Republic of); Choi, Hoon; Ha, Sang Jun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2009-10-15

    The development project for the domestic design code was launched to be used for the safety and performance analysis of pressurized light water reactors. And CAP (Containment Analysis Package) code has been also developed for the containment safety and performance analysis side by side with SPACE. The CAP code treats three fields (gas, continuous liquid, and dispersed drop) for the assessment of containment specific phenomena, and is featured by its multidimensional assessment capabilities. Thermal hydraulics solver was already developed and now under testing of its stability and soundness. As a next step, interfacial and wall transport models was setup. In order to develop the best model and correlation package for the CAP code, various models currently used in major containment analysis codes, which are GOTHIC, CONTAIN2.0, and CONTEMPT-LT, have been reviewed. The origins of the selected models used in these codes have also been examined to find out if the models have not conflict with a proprietary right. In addition, a literature survey of the recent studies has been performed in order to incorporate the better models for the CAP code. The models and correlations of SPACE were also reviewed. CAP models and correlations are composed of interfacial heat/mass, and momentum transport models, and wall heat/mass, and momentum transport models. This paper discusses on those transport models in the CAP code.

  1. MARS code manual volume I: code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Kim, Kyung Doo; Bae, Sung Won; Jeong, Jae Jun; Lee, Seung Wook; Hwang, Moon Kyu; Yoon, Churl

    2010-02-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This theory manual provides a complete list of overall information of code structure and major function of MARS including code architecture, hydrodynamic model, heat structure, trip / control system and point reactor kinetics model. Therefore, this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  2. Current algebra, statistical mechanics and quantum models

    Science.gov (United States)

    Vilela Mendes, R.

    2017-11-01

    Results obtained in the past for free boson systems at zero and nonzero temperatures are revisited to clarify the physical meaning of current algebra reducible functionals which are associated to systems with density fluctuations, leading to observable effects on phase transitions. To use current algebra as a tool for the formulation of quantum statistical mechanics amounts to the construction of unitary representations of diffeomorphism groups. Two mathematical equivalent procedures exist for this purpose. One searches for quasi-invariant measures on configuration spaces, the other for a cyclic vector in Hilbert space. Here, one argues that the second approach is closer to the physical intuition when modelling complex systems. An example of application of the current algebra methodology to the pairing phenomenon in two-dimensional fermion systems is discussed.

  3. Statistical model for OCT image denoising

    KAUST Repository

    Li, Muxingzi

    2017-08-01

    Optical coherence tomography (OCT) is a non-invasive technique with a large array of applications in clinical imaging and biological tissue visualization. However, the presence of speckle noise affects the analysis of OCT images and their diagnostic utility. In this article, we introduce a new OCT denoising algorithm. The proposed method is founded on a numerical optimization framework based on maximum-a-posteriori estimate of the noise-free OCT image. It combines a novel speckle noise model, derived from local statistics of empirical spectral domain OCT (SD-OCT) data, with a Huber variant of total variation regularization for edge preservation. The proposed approach exhibits satisfying results in terms of speckle noise reduction as well as edge preservation, at reduced computational cost.

  4. New advances in statistical modeling and applications

    CERN Document Server

    Santos, Rui; Oliveira, Maria; Paulino, Carlos

    2014-01-01

    This volume presents selected papers from the XIXth Congress of the Portuguese Statistical Society, held in the town of Nazaré, Portugal, from September 28 to October 1, 2011. All contributions were selected after a thorough peer-review process. It covers a broad range of papers in the areas of statistical science, probability and stochastic processes, extremes and statistical applications.

  5. Improving the quality of clinical coding: a comprehensive audit model

    Directory of Open Access Journals (Sweden)

    Hamid Moghaddasi

    2014-04-01

    Full Text Available Introduction: The review of medical records with the aim of assessing the quality of codes has long been conducted in different countries. Auditing medical coding, as an instructive approach, could help to review the quality of codes objectively using defined attributes, and this in turn would lead to improvement of the quality of codes. Method: The current study aimed to present a model for auditing the quality of clinical codes. The audit model was formed after reviewing other audit models, considering their strengths and weaknesses. A clear definition was presented for each quality attribute and more detailed criteria were then set for assessing the quality of codes. Results: The audit tool (based on the quality attributes included legibility, relevancy, completeness, accuracy, definition and timeliness; led to development of an audit model for assessing the quality of medical coding. Delphi technique was then used to reassure the validity of the model. Conclusion: The inclusive audit model designed could provide a reliable and valid basis for assessing the quality of codes considering more quality attributes and their clear definition. The inter-observer check suggested in the method of auditing is of particular importance to reassure the reliability of coding.

  6. A statistical model for predicting muscle performance

    Science.gov (United States)

    Byerly, Diane Leslie De Caix

    The objective of these studies was to develop a capability for predicting muscle performance and fatigue to be utilized for both space- and ground-based applications. To develop this predictive model, healthy test subjects performed a defined, repetitive dynamic exercise to failure using a Lordex spinal machine. Throughout the exercise, surface electromyography (SEMG) data were collected from the erector spinae using a Mega Electronics ME3000 muscle tester and surface electrodes placed on both sides of the back muscle. These data were analyzed using a 5th order Autoregressive (AR) model and statistical regression analysis. It was determined that an AR derived parameter, the mean average magnitude of AR poles, significantly correlated with the maximum number of repetitions (designated Rmax) that a test subject was able to perform. Using the mean average magnitude of AR poles, a test subject's performance to failure could be predicted as early as the sixth repetition of the exercise. This predictive model has the potential to provide a basis for improving post-space flight recovery, monitoring muscle atrophy in astronauts and assessing the effectiveness of countermeasures, monitoring astronaut performance and fatigue during Extravehicular Activity (EVA) operations, providing pre-flight assessment of the ability of an EVA crewmember to perform a given task, improving the design of training protocols and simulations for strenuous International Space Station assembly EVA, and enabling EVA work task sequences to be planned enhancing astronaut performance and safety. Potential ground-based, medical applications of the predictive model include monitoring muscle deterioration and performance resulting from illness, establishing safety guidelines in the industry for repetitive tasks, monitoring the stages of rehabilitation for muscle-related injuries sustained in sports and accidents, and enhancing athletic performance through improved training protocols while reducing

  7. MMA, A Computer Code for Multi-Model Analysis

    Science.gov (United States)

    Poeter, Eileen P.; Hill, Mary C.

    2007-01-01

    be well served by the default methods provided. To use the default methods, the only required input for MMA is a list of directories where the files for the alternate models are located. Evaluation and development of model-analysis methods are active areas of research. To facilitate exploration and innovation, MMA allows the user broad discretion to define alternatives to the default procedures. For example, MMA allows the user to (a) rank models based on model criteria defined using a wide range of provided and user-defined statistics in addition to the default AIC, AICc, BIC, and KIC criteria, (b) create their own criteria using model measures available from the code, and (c) define how each model criterion is used to calculate related posterior model probabilities. The default model criteria rate models are based on model fit to observations, the number of observations and estimated parameters, and, for KIC, the Fisher information matrix. In addition, MMA allows the analysis to include an evaluation of estimated parameter values. This is accomplished by allowing the user to define unreasonable estimated parameter values or relative estimated parameter values. An example of the latter is that it may be expected that one parameter value will be less than another, as might be the case if two parameters represented the hydraulic conductivity of distinct materials such as fine and coarse sand. Models with parameter values that violate the user-defined conditions are excluded from further consideration by MMA. Ground-water models are used as examples in this report, but MMA can be used to evaluate any set of models for which the required files have been produced. MMA needs to read files from a separate directory for each alternative model considered. The needed files are produced when using the Sensitivity-Analysis or Parameter-Estimation mode of UCODE_2005, or, possibly, the equivalent capability of another program. MMA is constructed using

  8. Repairing business process models as retrieved from source code

    NARCIS (Netherlands)

    Fernández-Ropero, M.; Reijers, H.A.; Pérez-Castillo, R.; Piattini, M.; Nurcan, S.; Proper, H.A.; Soffer, P.; Krogstie, J.; Schmidt, R.; Halpin, T.; Bider, I.

    2013-01-01

    The static analysis of source code has become a feasible solution to obtain underlying business process models from existing information systems. Due to the fact that not all information can be automatically derived from source code (e.g., consider manual activities), such business process models

  9. Statistical Model Checking of Rich Models and Properties

    DEFF Research Database (Denmark)

    Poulsen, Danny Bøgsted

    in undecidability issues for the traditional model checking approaches. Statistical model checking has proven itself a valuable supplement to model checking and this thesis is concerned with extending this software validation technique to stochastic hybrid systems. The thesis consists of two parts: the first part...... motivates why existing model checking technology should be supplemented by new techniques. It also contains a brief introduction to probability theory and concepts covered by the six papers making up the second part. The first two papers are concerned with developing online monitoring techniques...... systems. The fifth paper shows how stochastic hybrid automata are useful for modelling biological systems and the final paper is concerned with showing how statistical model checking is efficiently distributed. In parallel with developing the theory contained in the papers, a substantial part of this work...

  10. Content Coding of Psychotherapy Transcripts Using Labeled Topic Models.

    Science.gov (United States)

    Gaut, Garren; Steyvers, Mark; Imel, Zac E; Atkins, David C; Smyth, Padhraic

    2017-03-01

    Psychotherapy represents a broad class of medical interventions received by millions of patients each year. Unlike most medical treatments, its primary mechanisms are linguistic; i.e., the treatment relies directly on a conversation between a patient and provider. However, the evaluation of patient-provider conversation suffers from critical shortcomings, including intensive labor requirements, coder error, nonstandardized coding systems, and inability to scale up to larger data sets. To overcome these shortcomings, psychotherapy analysis needs a reliable and scalable method for summarizing the content of treatment encounters. We used a publicly available psychotherapy corpus from Alexander Street press comprising a large collection of transcripts of patient-provider conversations to compare coding performance for two machine learning methods. We used the labeled latent Dirichlet allocation (L-LDA) model to learn associations between text and codes, to predict codes in psychotherapy sessions, and to localize specific passages of within-session text representative of a session code. We compared the L-LDA model to a baseline lasso regression model using predictive accuracy and model generalizability (measured by calculating the area under the curve (AUC) from the receiver operating characteristic curve). The L-LDA model outperforms the lasso logistic regression model at predicting session-level codes with average AUC scores of 0.79, and 0.70, respectively. For fine-grained level coding, L-LDA and logistic regression are able to identify specific talk-turns representative of symptom codes. However, model performance for talk-turn identification is not yet as reliable as human coders. We conclude that the L-LDA model has the potential to be an objective, scalable method for accurate automated coding of psychotherapy sessions that perform better than comparable discriminative methods at session-level coding and can also predict fine-grained codes.

  11. Network Data: Statistical Theory and New Models

    Science.gov (United States)

    2016-02-17

    and with environmental scientists at JPL and Emory University to retrieval from NASA MISR remote sensing images aerosol index AOD for air pollution ...Beijing, May, 2013 Beijing Statistics Forum, Beijing, May, 2013 Statistics Seminar, CREST-ENSAE, Paris , March, 2013 Statistics Seminar, University...to retrieval from NASA MISR remote sensing images aerosol index AOD for air pollution monitoring and management. Satellite- retrieved Aerosol Optical

  12. Development of a code FITWR for nuclear cross section statistical analysis

    International Nuclear Information System (INIS)

    Alrwashdeh, Mohammad; Kan, Wang

    2014-01-01

    Highlights: • We used the weighted least square with nonlinear regression method to fit experimental nuclear data. • The FITWR code has been successful applied for both light and heavy nuclei with many resonance points. • More improvements will be applied in the future, by including a new methods for nuclear data fitting. - Abstract: A computer program named FITWR has been developed and applied to the experimental total cross sections for MEV incident energy particles such as neutron and proton. The computer program FITWR adapted the weighted least square method with weighted mathematical models with nonlinear regression applied to high order fitting polynomial, in order to meet the growing demands of the experimental nuclear data. The computer program FITWR deals with variance and covariance data provided along with experimental data and yields those for the evaluated ones

  13. WWER radial reflector modeling by diffusion codes

    International Nuclear Information System (INIS)

    Petkov, P. T.; Mittag, S.

    2005-01-01

    The two commonly used approaches to describe the WWER radial reflectors in diffusion codes, by albedo on the core-reflector boundary and by a ring of diffusive assembly size nodes, are discussed. The advantages and disadvantages of the first approach are presented first, then the Koebke's equivalence theory is outlined and its implementation for the WWER radial reflectors is discussed. Results for the WWER-1000 reactor are presented. Then the boundary conditions on the outer reflector boundary are discussed. The possibility to divide the library into fuel assembly and reflector parts and to generate each library by a separate code package is discussed. Finally, the homogenization errors for rodded assemblies are presented and discussed (Author)

  14. COMPBRN III: a computer code for modeling compartment fires

    International Nuclear Information System (INIS)

    Ho, V.; Siu, N.; Apostolakis, G.; Flanagan, G.F.

    1986-07-01

    The computer code COMPBRN III deterministically models the behavior of compartment fires. This code is an improvement of the original COMPBRN codes. It employs a different air entrainment model and numerical scheme to estimate properties of the ceiling hot gas layer model. Moreover, COMPBRN III incorporates a number of improvements in shape factor calculations and error checking, which distinguish it from the COMPBRN II code. This report presents the ceiling hot gas layer model employed by COMPBRN III as well as several other modifications. Information necessary to run COMPBRN III, including descriptions of required input and resulting output, are also presented. Simulation of experiments and a sample problem are included to demonstrate the usage of the code. 37 figs., 46 refs

  15. Modeling radiation belt dynamics using a 3-D layer method code

    Science.gov (United States)

    Wang, C.; Ma, Q.; Tao, X.; Zhang, Y.; Teng, S.; Albert, J. M.; Chan, A. A.; Li, W.; Ni, B.; Lu, Q.; Wang, S.

    2017-08-01

    A new 3-D diffusion code using a recently published layer method has been developed to analyze radiation belt electron dynamics. The code guarantees the positivity of the solution even when mixed diffusion terms are included. Unlike most of the previous codes, our 3-D code is developed directly in equatorial pitch angle (α0), momentum (p), and L shell coordinates; this eliminates the need to transform back and forth between (α0,p) coordinates and adiabatic invariant coordinates. Using (α0,p,L) is also convenient for direct comparison with satellite data. The new code has been validated by various numerical tests, and we apply the 3-D code to model the rapid electron flux enhancement following the geomagnetic storm on 17 March 2013, which is one of the Geospace Environment Modeling Focus Group challenge events. An event-specific global chorus wave model, an AL-dependent statistical plasmaspheric hiss wave model, and a recently published radial diffusion coefficient formula from Time History of Events and Macroscale Interactions during Substorms (THEMIS) statistics are used. The simulation results show good agreement with satellite observations, in general, supporting the scenario that the rapid enhancement of radiation belt electron flux for this event results from an increased level of the seed population by radial diffusion, with subsequent acceleration by chorus waves. Our results prove that the layer method can be readily used to model global radiation belt dynamics in three dimensions.

  16. RELAP5/MOD3 code manual: Code structure, system models, and solution methods. Volume 1

    International Nuclear Information System (INIS)

    1995-08-01

    The RELAP5 code has been developed for best estimate transient simulation of light water reactor coolant systems during postulated accidents. The code models the coupled behavior of the reactor coolant system and the core for loss-of-coolant accidents, and operational transients, such as anticipated transient without scram, loss of offsite power, loss of feedwater, and loss of flow. A generic modeling, approach is used that permits simulating a variety of thermal hydraulic systems. Control system and secondary system components are included to permit modeling of plant controls, turbines, condensers, and secondary feedwater systems. RELAP5/MOD3 code documentation is divided into seven volumes: Volume I provides modeling theory and associated numerical schemes

  17. GASFLOW computer code (physical models and input data)

    International Nuclear Information System (INIS)

    Muehlbauer, Petr

    2007-11-01

    The GASFLOW computer code was developed jointly by the Los Alamos National Laboratory, USA, and Forschungszentrum Karlsruhe, Germany. The code is primarily intended for calculations of the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and in other facilities. The physical models and the input data are described, and a commented simple calculation is presented

  18. Fuel behavior modeling using the MARS computer code

    International Nuclear Information System (INIS)

    Faya, S.C.S.; Faya, A.J.G.

    1983-01-01

    The fuel behaviour modeling code MARS against experimental data, was evaluated. Two cases were selected: an early comercial PWR rod (Maine Yankee rod) and an experimental rod from the Canadian BWR program (Canadian rod). The MARS predictions are compared with experimental data and predictions made by other fuel modeling codes. Improvements are suggested for some fuel behaviour models. Mars results are satisfactory based on the data available. (Author) [pt

  19. MIDAS/PK code development using point kinetics model

    International Nuclear Information System (INIS)

    Song, Y. M.; Park, S. H.

    1999-01-01

    In this study, a MIDAS/PK code has been developed for analyzing the ATWS (Anticipated Transients Without Scram) which can be one of severe accident initiating events. The MIDAS is an integrated computer code based on the MELCOR code to develop a severe accident risk reduction strategy by Korea Atomic Energy Research Institute. In the mean time, the Chexal-Layman correlation in the current MELCOR, which was developed under a BWR condition, is appeared to be inappropriate for a PWR. So as to provide ATWS analysis capability to the MIDAS code, a point kinetics module, PKINETIC, has first been developed as a stand-alone code whose reference model was selected from the current accident analysis codes. In the next step, the MIDAS/PK code has been developed via coupling PKINETIC with the MIDAS code by inter-connecting several thermal hydraulic parameters between the two codes. Since the major concern in the ATWS analysis is the primary peak pressure during the early few minutes into the accident, the peak pressure from the PKINETIC module and the MIDAS/PK are compared with the RETRAN calculations showing a good agreement between them. The MIDAS/PK code is considered to be valuable for analyzing the plant response during ATWS deterministically, especially for the early domestic Westinghouse plants which rely on the operator procedure instead of an AMSAC (ATWS Mitigating System Actuation Circuitry) against ATWS. This capability of ATWS analysis is also important from the view point of accident management and mitigation

  20. A BRDF statistical model applying to space target materials modeling

    Science.gov (United States)

    Liu, Chenghao; Li, Zhi; Xu, Can; Tian, Qichen

    2017-10-01

    In order to solve the problem of poor effect in modeling the large density BRDF measured data with five-parameter semi-empirical model, a refined statistical model of BRDF which is suitable for multi-class space target material modeling were proposed. The refined model improved the Torrance-Sparrow model while having the modeling advantages of five-parameter model. Compared with the existing empirical model, the model contains six simple parameters, which can approximate the roughness distribution of the material surface, can approximate the intensity of the Fresnel reflectance phenomenon and the attenuation of the reflected light's brightness with the azimuth angle changes. The model is able to achieve parameter inversion quickly with no extra loss of accuracy. The genetic algorithm was used to invert the parameters of 11 different samples in the space target commonly used materials, and the fitting errors of all materials were below 6%, which were much lower than those of five-parameter model. The effect of the refined model is verified by comparing the fitting results of the three samples at different incident zenith angles in 0° azimuth angle. Finally, the three-dimensional modeling visualizations of these samples in the upper hemisphere space was given, in which the strength of the optical scattering of different materials could be clearly shown. It proved the good describing ability of the refined model at the material characterization as well.

  1. Statistical Challenges in Modeling Big Brain Signals

    KAUST Repository

    Yu, Zhaoxia

    2017-11-01

    Brain signal data are inherently big: massive in amount, complex in structure, and high in dimensions. These characteristics impose great challenges for statistical inference and learning. Here we review several key challenges, discuss possible solutions, and highlight future research directions.

  2. Statistical Challenges in Modeling Big Brain Signals

    KAUST Repository

    Yu, Zhaoxia; Pluta, Dustin; Shen, Tong; Chen, Chuansheng; Xue, Gui; Ombao, Hernando

    2017-01-01

    Brain signal data are inherently big: massive in amount, complex in structure, and high in dimensions. These characteristics impose great challenges for statistical inference and learning. Here we review several key challenges, discuss possible

  3. Coupling a Basin Modeling and a Seismic Code using MOAB

    KAUST Repository

    Yan, Mi; Jordan, Kirk; Kaushik, Dinesh; Perrone, Michael; Sachdeva, Vipin; Tautges, Timothy J.; Magerlein, John

    2012-01-01

    We report on a demonstration of loose multiphysics coupling between a basin modeling code and a seismic code running on a large parallel machine. Multiphysics coupling, which is one critical capability for a high performance computing (HPC) framework, was implemented using the MOAB open-source mesh and field database. MOAB provides for code coupling by storing mesh data and input and output field data for the coupled analysis codes and interpolating the field values between different meshes used by the coupled codes. We found it straightforward to use MOAB to couple the PBSM basin modeling code and the FWI3D seismic code on an IBM Blue Gene/P system. We describe how the coupling was implemented and present benchmarking results for up to 8 racks of Blue Gene/P with 8192 nodes and MPI processes. The coupling code is fast compared to the analysis codes and it scales well up to at least 8192 nodes, indicating that a mesh and field database is an efficient way to implement loose multiphysics coupling for large parallel machines.

  4. Coupling a Basin Modeling and a Seismic Code using MOAB

    KAUST Repository

    Yan, Mi

    2012-06-02

    We report on a demonstration of loose multiphysics coupling between a basin modeling code and a seismic code running on a large parallel machine. Multiphysics coupling, which is one critical capability for a high performance computing (HPC) framework, was implemented using the MOAB open-source mesh and field database. MOAB provides for code coupling by storing mesh data and input and output field data for the coupled analysis codes and interpolating the field values between different meshes used by the coupled codes. We found it straightforward to use MOAB to couple the PBSM basin modeling code and the FWI3D seismic code on an IBM Blue Gene/P system. We describe how the coupling was implemented and present benchmarking results for up to 8 racks of Blue Gene/P with 8192 nodes and MPI processes. The coupling code is fast compared to the analysis codes and it scales well up to at least 8192 nodes, indicating that a mesh and field database is an efficient way to implement loose multiphysics coupling for large parallel machines.

  5. Statistical Learning Theory: Models, Concepts, and Results

    OpenAIRE

    von Luxburg, Ulrike; Schoelkopf, Bernhard

    2008-01-01

    Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We target at a broad audience, not necessarily machine learning researchers. This paper can serve as a starting point for people who want to get an overview on the field before diving into technical details.

  6. Online Statistical Modeling (Regression Analysis) for Independent Responses

    Science.gov (United States)

    Made Tirta, I.; Anggraeni, Dian; Pandutama, Martinus

    2017-06-01

    Regression analysis (statistical analmodelling) are among statistical methods which are frequently needed in analyzing quantitative data, especially to model relationship between response and explanatory variables. Nowadays, statistical models have been developed into various directions to model various type and complex relationship of data. Rich varieties of advanced and recent statistical modelling are mostly available on open source software (one of them is R). However, these advanced statistical modelling, are not very friendly to novice R users, since they are based on programming script or command line interface. Our research aims to developed web interface (based on R and shiny), so that most recent and advanced statistical modelling are readily available, accessible and applicable on web. We have previously made interface in the form of e-tutorial for several modern and advanced statistical modelling on R especially for independent responses (including linear models/LM, generalized linier models/GLM, generalized additive model/GAM and generalized additive model for location scale and shape/GAMLSS). In this research we unified them in the form of data analysis, including model using Computer Intensive Statistics (Bootstrap and Markov Chain Monte Carlo/ MCMC). All are readily accessible on our online Virtual Statistics Laboratory. The web (interface) make the statistical modeling becomes easier to apply and easier to compare them in order to find the most appropriate model for the data.

  7. EM modeling for GPIR using 3D FDTD modeling codes

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, S.D.

    1994-10-01

    An analysis of the one-, two-, and three-dimensional electrical characteristics of structural cement and concrete is presented. This work connects experimental efforts in characterizing cement and concrete in the frequency and time domains with the Finite Difference Time Domain (FDTD) modeling efforts of these substances. These efforts include Electromagnetic (EM) modeling of simple lossless homogeneous materials with aggregate and targets and the modeling dispersive and lossy materials with aggregate and complex target geometries for Ground Penetrating Imaging Radar (GPIR). Two- and three-dimensional FDTD codes (developed at LLNL) where used for the modeling efforts. Purpose of the experimental and modeling efforts is to gain knowledge about the electrical properties of concrete typically used in the construction industry for bridges and other load bearing structures. The goal is to optimize the performance of a high-sample-rate impulse radar and data acquisition system and to design an antenna system to match the characteristics of this material. Results show agreement to within 2 dB of the amplitudes of the experimental and modeled data while the frequency peaks correlate to within 10% the differences being due to the unknown exact nature of the aggregate placement.

  8. Cavitation Modeling in Euler and Navier-Stokes Codes

    Science.gov (United States)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Many previous researchers have modeled sheet cavitation by means of a constant pressure solution in the cavity region coupled with a velocity potential formulation for the outer flow. The present paper discusses the issues involved in extending these cavitation models to Euler or Navier-Stokes codes. The approach taken is to start from a velocity potential model to ensure our results are compatible with those of previous researchers and available experimental data, and then to implement this model in both Euler and Navier-Stokes codes. The model is then augmented in the Navier-Stokes code by the inclusion of the energy equation which allows the effect of subcooling in the vicinity of the cavity interface to be modeled to take into account the experimentally observed reduction in cavity pressures that occurs in cryogenic fluids such as liquid hydrogen. Although our goal is to assess the practicality of implementing these cavitation models in existing three-dimensional, turbomachinery codes, the emphasis in the present paper will center on two-dimensional computations, most specifically isolated airfoils and cascades. Comparisons between velocity potential, Euler and Navier-Stokes implementations indicate they all produce consistent predictions. Comparisons with experimental results also indicate that the predictions are qualitatively correct and give a reasonable first estimate of sheet cavitation effects in both cryogenic and non-cryogenic fluids. The impact on CPU time and the code modifications required suggests that these models are appropriate for incorporation in current generation turbomachinery codes.

  9. RELAP5/MOD3 code coupling model

    International Nuclear Information System (INIS)

    Martin, R.P.; Johnsen, G.W.

    1994-01-01

    A new capability has been incorporated into RELAP5/MOD3 that enables the coupling of RELAP5/MOD3 to other computer codes. The new capability has been designed to support analysis of the new advanced reactor concepts. Its user features rely solely on new RELAP5 open-quotes styledclose quotes input and the Parallel Virtual Machine (PVM) software, which facilitates process management and distributed communication of multiprocess problems. RELAP5/MOD3 manages the input processing, communication instruction, process synchronization, and its own send and receive data processing. The flexible capability requires that an explicit coupling be established, which updates boundary conditions at discrete time intervals. Two test cases are presented that demonstrate the functionality, applicability, and issues involving use of this capability

  10. GEMSFITS: Code package for optimization of geochemical model parameters and inverse modeling

    International Nuclear Information System (INIS)

    Miron, George D.; Kulik, Dmitrii A.; Dmytrieva, Svitlana V.; Wagner, Thomas

    2015-01-01

    Highlights: • Tool for generating consistent parameters against various types of experiments. • Handles a large number of experimental data and parameters (is parallelized). • Has a graphical interface and can perform statistical analysis on the parameters. • Tested on fitting the standard state Gibbs free energies of aqueous Al species. • Example on fitting interaction parameters of mixing models and thermobarometry. - Abstract: GEMSFITS is a new code package for fitting internally consistent input parameters of GEM (Gibbs Energy Minimization) geochemical–thermodynamic models against various types of experimental or geochemical data, and for performing inverse modeling tasks. It consists of the gemsfit2 (parameter optimizer) and gfshell2 (graphical user interface) programs both accessing a NoSQL database, all developed with flexibility, generality, efficiency, and user friendliness in mind. The parameter optimizer gemsfit2 includes the GEMS3K chemical speciation solver ( (http://gems.web.psi.ch/GEMS3K)), which features a comprehensive suite of non-ideal activity- and equation-of-state models of solution phases (aqueous electrolyte, gas and fluid mixtures, solid solutions, (ad)sorption. The gemsfit2 code uses the robust open-source NLopt library for parameter fitting, which provides a selection between several nonlinear optimization algorithms (global, local, gradient-based), and supports large-scale parallelization. The gemsfit2 code can also perform comprehensive statistical analysis of the fitted parameters (basic statistics, sensitivity, Monte Carlo confidence intervals), thus supporting the user with powerful tools for evaluating the quality of the fits and the physical significance of the model parameters. The gfshell2 code provides menu-driven setup of optimization options (data selection, properties to fit and their constraints, measured properties to compare with computed counterparts, and statistics). The practical utility, efficiency, and

  11. Integer Set Compression and Statistical Modeling

    DEFF Research Database (Denmark)

    Larsson, N. Jesper

    2014-01-01

    enumeration of elements may be arbitrary or random, but where statistics is kept in order to estimate probabilities of elements. We present a recursive subset-size encoding method that is able to benefit from statistics, explore the effects of permuting the enumeration order based on element probabilities......Compression of integer sets and sequences has been extensively studied for settings where elements follow a uniform probability distribution. In addition, methods exist that exploit clustering of elements in order to achieve higher compression performance. In this work, we address the case where...

  12. Case studies in Gaussian process modelling of computer codes

    International Nuclear Information System (INIS)

    Kennedy, Marc C.; Anderson, Clive W.; Conti, Stefano; O'Hagan, Anthony

    2006-01-01

    In this paper we present a number of recent applications in which an emulator of a computer code is created using a Gaussian process model. Tools are then applied to the emulator to perform sensitivity analysis and uncertainty analysis. Sensitivity analysis is used both as an aid to model improvement and as a guide to how much the output uncertainty might be reduced by learning about specific inputs. Uncertainty analysis allows us to reflect output uncertainty due to unknown input parameters, when the finished code is used for prediction. The computer codes themselves are currently being developed within the UK Centre for Terrestrial Carbon Dynamics

  13. Statistical modelling for social researchers principles and practice

    CERN Document Server

    Tarling, Roger

    2008-01-01

    This book explains the principles and theory of statistical modelling in an intelligible way for the non-mathematical social scientist looking to apply statistical modelling techniques in research. The book also serves as an introduction for those wishing to develop more detailed knowledge and skills in statistical modelling. Rather than present a limited number of statistical models in great depth, the aim is to provide a comprehensive overview of the statistical models currently adopted in social research, in order that the researcher can make appropriate choices and select the most suitable model for the research question to be addressed. To facilitate application, the book also offers practical guidance and instruction in fitting models using SPSS and Stata, the most popular statistical computer software which is available to most social researchers. Instruction in using MLwiN is also given. Models covered in the book include; multiple regression, binary, multinomial and ordered logistic regression, log-l...

  14. Linear Mixed Models in Statistical Genetics

    NARCIS (Netherlands)

    R. de Vlaming (Ronald)

    2017-01-01

    markdownabstractOne of the goals of statistical genetics is to elucidate the genetic architecture of phenotypes (i.e., observable individual characteristics) that are affected by many genetic variants (e.g., single-nucleotide polymorphisms; SNPs). A particular aim is to identify specific SNPs that

  15. Statistical models and methods for reliability and survival analysis

    CERN Document Server

    Couallier, Vincent; Huber-Carol, Catherine; Mesbah, Mounir; Huber -Carol, Catherine; Limnios, Nikolaos; Gerville-Reache, Leo

    2013-01-01

    Statistical Models and Methods for Reliability and Survival Analysis brings together contributions by specialists in statistical theory as they discuss their applications providing up-to-date developments in methods used in survival analysis, statistical goodness of fit, stochastic processes for system reliability, amongst others. Many of these are related to the work of Professor M. Nikulin in statistics over the past 30 years. The authors gather together various contributions with a broad array of techniques and results, divided into three parts - Statistical Models and Methods, Statistical

  16. ATHENA code manual. Volume 1. Code structure, system models, and solution methods

    International Nuclear Information System (INIS)

    Carlson, K.E.; Roth, P.A.; Ransom, V.H.

    1986-09-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code has been developed to perform transient simulation of the thermal hydraulic systems which may be found in fusion reactors, space reactors, and other advanced systems. A generic modeling approach is utilized which permits as much of a particular system to be modeled as necessary. Control system and secondary system components are included to permit modeling of a complete facility. Several working fluids are available to be used in one or more interacting loops. Different loops may have different fluids with thermal connections between loops. The modeling theory and associated numerical schemes are documented in Volume I in order to acquaint the user with the modeling base and thus aid effective use of the code. The second volume contains detailed instructions for input data preparation

  17. Geometric modeling in probability and statistics

    CERN Document Server

    Calin, Ovidiu

    2014-01-01

    This book covers topics of Informational Geometry, a field which deals with the differential geometric study of the manifold probability density functions. This is a field that is increasingly attracting the interest of researchers from many different areas of science, including mathematics, statistics, geometry, computer science, signal processing, physics and neuroscience. It is the authors’ hope that the present book will be a valuable reference for researchers and graduate students in one of the aforementioned fields. This textbook is a unified presentation of differential geometry and probability theory, and constitutes a text for a course directed at graduate or advanced undergraduate students interested in applications of differential geometry in probability and statistics. The book contains over 100 proposed exercises meant to help students deepen their understanding, and it is accompanied by software that is able to provide numerical computations of several information geometric objects. The reader...

  18. Challenges in dental statistics: data and modelling

    OpenAIRE

    Matranga, D.; Castiglia, P.; Solinas, G.

    2013-01-01

    The aim of this work is to present the reflections and proposals derived from the first Workshop of the SISMEC STATDENT working group on statistical methods and applications in dentistry, held in Ancona (Italy) on 28th September 2011. STATDENT began as a forum of comparison and discussion for statisticians working in the field of dental research in order to suggest new and improve existing biostatistical and clinical epidemiological methods. During the meeting, we dealt with very important to...

  19. ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES

    Energy Technology Data Exchange (ETDEWEB)

    Poole, B R; Nelson, S D; Langdon, S

    2005-05-05

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes.

  20. ADVANCED ELECTRIC AND MAGNETIC MATERIAL MODELS FOR FDTD ELECTROMAGNETIC CODES

    International Nuclear Information System (INIS)

    Poole, B R; Nelson, S D; Langdon, S

    2005-01-01

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which require nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes and 1-D codes

  1. A statistical model of future human actions

    International Nuclear Information System (INIS)

    Woo, G.

    1992-02-01

    A critical review has been carried out of models of future human actions during the long term post-closure period of a radioactive waste repository. Various Markov models have been considered as alternatives to the standard Poisson model, and the problems of parameterisation have been addressed. Where the simplistic Poisson model unduly exaggerates the intrusion risk, some form of Markov model may have to be introduced. This situation may well arise for shallow repositories, but it is less likely for deep repositories. Recommendations are made for a practical implementation of a computer based model and its associated database. (Author)

  2. Code Generation for Protocols from CPN models Annotated with Pragmatics

    DEFF Research Database (Denmark)

    Simonsen, Kent Inge; Kristensen, Lars Michael; Kindler, Ekkart

    software implementation satisfies the properties verified for the model. Coloured Petri Nets (CPNs) have been widely used to model and verify protocol software, but limited work exists on using CPN models of protocol software as a basis for automated code generation. In this report, we present an approach...... modelling languages, MDE further has the advantage that models are amenable to model checking which allows key behavioural properties of the software design to be verified. The combination of formally verified models and automated code generation contributes to a high degree of assurance that the resulting...... for generating protocol software from a restricted class of CPN models. The class of CPN models considered aims at being descriptive in that the models are intended to be helpful in understanding and conveying the operation of the protocol. At the same time, a descriptive model is close to a verifiable version...

  3. Fusion safety codes International modeling with MELCOR and ATHENA- INTRA

    CERN Document Server

    Marshall, T; Topilski, L; Merrill, B

    2002-01-01

    For a number of years, the world fusion safety community has been involved in benchmarking their safety analyses codes against experiment data to support regulatory approval of a next step fusion device. This paper discusses the benchmarking of two prominent fusion safety thermal-hydraulic computer codes. The MELCOR code was developed in the US for fission severe accident safety analyses and has been modified for fusion safety analyses. The ATHENA code is a multifluid version of the US-developed RELAP5 code that is also widely used for fusion safety analyses. The ENEA Fusion Division uses ATHENA in conjunction with the INTRA code for its safety analyses. The INTRA code was developed in Germany and predicts containment building pressures, temperatures and fluid flow. ENEA employs the French-developed ISAS system to couple ATHENA and INTRA. This paper provides a brief introduction of the MELCOR and ATHENA-INTRA codes and presents their modeling results for the following breaches of a water cooling line into the...

  4. Enhanced surrogate models for statistical design exploiting space mapping technology

    DEFF Research Database (Denmark)

    Koziel, Slawek; Bandler, John W.; Mohamed, Achmed S.

    2005-01-01

    We present advances in microwave and RF device modeling exploiting Space Mapping (SM) technology. We propose new SM modeling formulations utilizing input mappings, output mappings, frequency scaling and quadratic approximations. Our aim is to enhance circuit models for statistical analysis...

  5. Statistical models of shape optimisation and evaluation

    CERN Document Server

    Davies, Rhodri; Taylor, Chris

    2014-01-01

    Deformable shape models have wide application in computer vision and biomedical image analysis. This book addresses a key issue in shape modelling: establishment of a meaningful correspondence between a set of shapes. Full implementation details are provided.

  6. LMFBR models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    Croff, A.G.; McAdoo, J.W.; Bjerke, M.A.

    1981-10-01

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th- 238 U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given

  7. CMCpy: Genetic Code-Message Coevolution Models in Python

    Science.gov (United States)

    Becich, Peter J.; Stark, Brian P.; Bhat, Harish S.; Ardell, David H.

    2013-01-01

    Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes (“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implementations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source software available from http://pypi.python.org/pypi/CMCpy/. PMID:23532367

  8. How to practise Bayesian statistics outside the Bayesian church: What philosophy for Bayesian statistical modelling?

    NARCIS (Netherlands)

    Borsboom, D.; Haig, B.D.

    2013-01-01

    Unlike most other statistical frameworks, Bayesian statistical inference is wedded to a particular approach in the philosophy of science (see Howson & Urbach, 2006); this approach is called Bayesianism. Rather than being concerned with model fitting, this position in the philosophy of science

  9. WDEC: A Code for Modeling White Dwarf Structure and Pulsations

    Science.gov (United States)

    Bischoff-Kim, Agnès; Montgomery, Michael H.

    2018-05-01

    The White Dwarf Evolution Code (WDEC), written in Fortran, makes models of white dwarf stars. It is fast, versatile, and includes the latest physics. The code evolves hot (∼100,000 K) input models down to a chosen effective temperature by relaxing the models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models. WDEC has a long history going back to the late 1960s. Over the years, it has been updated and re-packaged for modern computer architectures and has specifically been used in computationally intensive asteroseismic fitting. Generations of white dwarf astronomers and dozens of publications have made use of the WDEC, although the last true instrument paper is the original one, published in 1975. This paper discusses the history of the code, necessary to understand why it works the way it does, details the physics and features in the code today, and points the reader to where to find the code and a user guide.

  10. Statistical Tests for Mixed Linear Models

    CERN Document Server

    Khuri, André I; Sinha, Bimal K

    2011-01-01

    An advanced discussion of linear models with mixed or random effects. In recent years a breakthrough has occurred in our ability to draw inferences from exact and optimum tests of variance component models, generating much research activity that relies on linear models with mixed and random effects. This volume covers the most important research of the past decade as well as the latest developments in hypothesis testing. It compiles all currently available results in the area of exact and optimum tests for variance component models and offers the only comprehensive treatment for these models a

  11. Improvement of a combustion model in MELCOR code

    International Nuclear Information System (INIS)

    Ogino, Masao; Hashimoto, Takashi

    1999-01-01

    NUPEC has been improving a hydrogen combustion model in MELCOR code for severe accident analysis. In the proposed combustion model, the flame velocity in a node was predicted using five different flame front shapes of fireball, prism, bubble, spherical jet, and plane jet. For validation of the proposed model, the results of the Battelle multi-compartment hydrogen combustion test were used. The selected test cases for the study were Hx-6, 13, 14, 20 and Ix-2 which had two, three or four compartments under homogeneous hydrogen concentration of 5 to 10 vol%. The proposed model could predict well the combustion behavior in multi-compartment containment geometry on the whole. MELCOR code, incorporating the present combustion model, can simulate combustion behavior during severe accident with acceptable computing time and some degree of accuracy. The applicability study of the improved MELCOR code to the actual reactor plants will be further continued. (author)

  12. Statistical modelling of traffic safety development

    DEFF Research Database (Denmark)

    Christens, Peter

    2004-01-01

    there were 6861 injury trafficc accidents reported by the police, resulting in 4519 minor injuries, 3946 serious injuries, and 431 fatalities. The general purpose of the research was to improve the insight into aggregated road safety methodology in Denmark. The aim was to analyse advanced statistical methods......, that were designed to study developments over time, including effects of interventions. This aim has been achieved by investigating variations in aggregated Danish traffic accident series and by applying state of the art methodologies to specific case studies. The thesis comprises an introduction...

  13. A statistical mechanical model for equilibrium ionization

    International Nuclear Information System (INIS)

    Macris, N.; Martin, P.A.; Pule, J.

    1990-01-01

    A quantum electron interacts with a classical gas of hard spheres and is in thermal equilibrium with it. The interaction is attractive and the electron can form a bound state with the classical particles. It is rigorously shown that in a well defined low density and low temperature limit, the ionization probability for the electron tends to the value predicted by the Saha formula for thermal ionization. In this regime, the electron is found to be in a statistical mixture of a bound and a free state. (orig.)

  14. Statistical image processing and multidimensional modeling

    CERN Document Server

    Fieguth, Paul

    2010-01-01

    Images are all around us! The proliferation of low-cost, high-quality imaging devices has led to an explosion in acquired images. When these images are acquired from a microscope, telescope, satellite, or medical imaging device, there is a statistical image processing task: the inference of something - an artery, a road, a DNA marker, an oil spill - from imagery, possibly noisy, blurry, or incomplete. A great many textbooks have been written on image processing. However this book does not so much focus on images, per se, but rather on spatial data sets, with one or more measurements taken over

  15. NRC model simulations in support of the hydrologic code intercomparison study (HYDROCOIN): Level 1-code verification

    International Nuclear Information System (INIS)

    1988-03-01

    HYDROCOIN is an international study for examining ground-water flow modeling strategies and their influence on safety assessments of geologic repositories for nuclear waste. This report summarizes only the combined NRC project temas' simulation efforts on the computer code bench-marking problems. The codes used to simulate thesee seven problems were SWIFT II, FEMWATER, UNSAT2M USGS-3D, AND TOUGH. In general, linear problems involving scalars such as hydraulic head were accurately simulated by both finite-difference and finite-element solution algorithms. Both types of codes produced accurate results even for complex geometrics such as intersecting fractures. Difficulties were encountered in solving problems that invovled nonlinear effects such as density-driven flow and unsaturated flow. In order to fully evaluate the accuracy of these codes, post-processing of results using paricle tracking algorithms and calculating fluxes were examined. This proved very valuable by uncovering disagreements among code results even through the hydraulic-head solutions had been in agreement. 9 refs., 111 figs., 6 tabs

  16. JPEG2000 COMPRESSION CODING USING HUMAN VISUAL SYSTEM MODEL

    Institute of Scientific and Technical Information of China (English)

    Xiao Jiang; Wu Chengke

    2005-01-01

    In order to apply the Human Visual System (HVS) model to JPEG2000 standard,several implementation alternatives are discussed and a new scheme of visual optimization isintroduced with modifying the slope of rate-distortion. The novelty is that the method of visual weighting is not lifting the coefficients in wavelet domain, but is complemented by code stream organization. It remains all the features of Embedded Block Coding with Optimized Truncation (EBCOT) such as resolution progressive, good robust for error bit spread and compatibility of lossless compression. Well performed than other methods, it keeps the shortest standard codestream and decompression time and owns the ability of VIsual Progressive (VIP) coding.

  17. The ELOCA fuel modelling code: past, present and future

    International Nuclear Information System (INIS)

    Williams, A.F.

    2005-01-01

    ELOCA is the Industry Standard Toolset (IST) computer code for modelling CANDU fuel under the transient coolant conditions typical of an accident scenario. Since its original inception in the early 1970's, the code has undergone continual development and improvement. The code now embodies much of the knowledge and experience of fuel behaviour gained by the Canadian nuclear industry over this period. ELOCA has proven to be a valuable tool for the safety analyst, and continues to be used extensively to support the licensing cases of CANDU reactors. This paper provides a brief and much simplified view of this development history, its current status, and plans for future development. (author)

  18. Hamming Code Based Watermarking Scheme for 3D Model Verification

    Directory of Open Access Journals (Sweden)

    Jen-Tse Wang

    2014-01-01

    Full Text Available Due to the explosive growth of the Internet and maturing of 3D hardware techniques, protecting 3D objects becomes a more and more important issue. In this paper, a public hamming code based fragile watermarking technique is proposed for 3D objects verification. An adaptive watermark is generated from each cover model by using the hamming code technique. A simple least significant bit (LSB substitution technique is employed for watermark embedding. In the extraction stage, the hamming code based watermark can be verified by using the hamming code checking without embedding any verification information. Experimental results shows that 100% vertices of the cover model can be watermarked, extracted, and verified. It also shows that the proposed method can improve security and achieve low distortion of stego object.

  19. Modeling Guidelines for Code Generation in the Railway Signaling Context

    Science.gov (United States)

    Ferrari, Alessio; Bacherini, Stefano; Fantechi, Alessandro; Zingoni, Niccolo

    2009-01-01

    Modeling guidelines constitute one of the fundamental cornerstones for Model Based Development. Their relevance is essential when dealing with code generation in the safety-critical domain. This article presents the experience of a railway signaling systems manufacturer on this issue. Introduction of Model-Based Development (MBD) and code generation in the industrial safety-critical sector created a crucial paradigm shift in the development process of dependable systems. While traditional software development focuses on the code, with MBD practices the focus shifts to model abstractions. The change has fundamental implications for safety-critical systems, which still need to guarantee a high degree of confidence also at code level. Usage of the Simulink/Stateflow platform for modeling, which is a de facto standard in control software development, does not ensure by itself production of high-quality dependable code. This issue has been addressed by companies through the definition of modeling rules imposing restrictions on the usage of design tools components, in order to enable production of qualified code. The MAAB Control Algorithm Modeling Guidelines (MathWorks Automotive Advisory Board)[3] is a well established set of publicly available rules for modeling with Simulink/Stateflow. This set of recommendations has been developed by a group of OEMs and suppliers of the automotive sector with the objective of enforcing and easing the usage of the MathWorks tools within the automotive industry. The guidelines have been published in 2001 and afterwords revisited in 2007 in order to integrate some additional rules developed by the Japanese division of MAAB [5]. The scope of the current edition of the guidelines ranges from model maintainability and readability to code generation issues. The rules are conceived as a reference baseline and therefore they need to be tailored to comply with the characteristics of each industrial context. Customization of these

  20. Fluctuations and correlations in statistical models of hadron production

    International Nuclear Information System (INIS)

    Gorenstein, M. I.

    2012-01-01

    An extension of the standard concept of the statistical ensembles is suggested. Namely, the statistical ensembles with extensive quantities fluctuating according to an externally given distribution are introduced. Applications in the statistical models of multiple hadron production in high energy physics are discussed.

  1. Analysis and Evaluation of Statistical Models for Integrated Circuits Design

    Directory of Open Access Journals (Sweden)

    Sáenz-Noval J.J.

    2011-10-01

    Full Text Available Statistical models for integrated circuits (IC allow us to estimate the percentage of acceptable devices in the batch before fabrication. Actually, Pelgrom is the statistical model most accepted in the industry; however it was derived from a micrometer technology, which does not guarantee reliability in nanometric manufacturing processes. This work considers three of the most relevant statistical models in the industry and evaluates their limitations and advantages in analog design, so that the designer has a better criterion to make a choice. Moreover, it shows how several statistical models can be used for each one of the stages and design purposes.

  2. Modeling of uncertainties in statistical inverse problems

    International Nuclear Information System (INIS)

    Kaipio, Jari

    2008-01-01

    In all real world problems, the models that tie the measurements to the unknowns of interest, are at best only approximations for reality. While moderate modeling and approximation errors can be tolerated with stable problems, inverse problems are a notorious exception. Typical modeling errors include inaccurate geometry, unknown boundary and initial data, properties of noise and other disturbances, and simply the numerical approximations of the physical models. In principle, the Bayesian approach to inverse problems, in which all uncertainties are modeled as random variables, is capable of handling these uncertainties. Depending on the type of uncertainties, however, different strategies may be adopted. In this paper we give an overview of typical modeling errors and related strategies within the Bayesian framework.

  3. Interpretation of commonly used statistical regression models.

    Science.gov (United States)

    Kasza, Jessica; Wolfe, Rory

    2014-01-01

    A review of some regression models commonly used in respiratory health applications is provided in this article. Simple linear regression, multiple linear regression, logistic regression and ordinal logistic regression are considered. The focus of this article is on the interpretation of the regression coefficients of each model, which are illustrated through the application of these models to a respiratory health research study. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  4. Statistical modeling and extrapolation of carcinogenesis data

    International Nuclear Information System (INIS)

    Krewski, D.; Murdoch, D.; Dewanji, A.

    1986-01-01

    Mathematical models of carcinogenesis are reviewed, including pharmacokinetic models for metabolic activation of carcinogenic substances. Maximum likelihood procedures for fitting these models to epidemiological data are discussed, including situations where the time to tumor occurrence is unobservable. The plausibility of different possible shapes of the dose response curve at low doses is examined, and a robust method for linear extrapolation to low doses is proposed and applied to epidemiological data on radiation carcinogenesis

  5. Plan Recognition using Statistical Relational Models

    Science.gov (United States)

    2014-08-25

    corresponding undirected model can be significantly more complex since there is no closed form solution for the maximum-likelihood set of parameters unlike in...algorithm did not scale to larger training sets, and the overall results are still not competitive with BALPs. 5In directed models, a closed form solution...opinions of ARO, DARPA, NSF or any other government agency. References Albrecht DW, Zukerman I, Nicholson AE. Bayesian models for keyhole plan

  6. Multivariate statistical modelling based on generalized linear models

    CERN Document Server

    Fahrmeir, Ludwig

    1994-01-01

    This book is concerned with the use of generalized linear models for univariate and multivariate regression analysis. Its emphasis is to provide a detailed introductory survey of the subject based on the analysis of real data drawn from a variety of subjects including the biological sciences, economics, and the social sciences. Where possible, technical details and proofs are deferred to an appendix in order to provide an accessible account for non-experts. Topics covered include: models for multi-categorical responses, model checking, time series and longitudinal data, random effects models, and state-space models. Throughout, the authors have taken great pains to discuss the underlying theoretical ideas in ways that relate well to the data at hand. As a result, numerous researchers whose work relies on the use of these models will find this an invaluable account to have on their desks. "The basic aim of the authors is to bring together and review a large part of recent advances in statistical modelling of m...

  7. Bootstrap and Order Statistics for Quantifying Thermal-Hydraulic Code Uncertainties in the Estimation of Safety Margins

    Directory of Open Access Journals (Sweden)

    Enrico Zio

    2008-01-01

    Full Text Available In the present work, the uncertainties affecting the safety margins estimated from thermal-hydraulic code calculations are captured quantitatively by resorting to the order statistics and the bootstrap technique. The proposed framework of analysis is applied to the estimation of the safety margin, with its confidence interval, of the maximum fuel cladding temperature reached during a complete group distribution blockage scenario in a RBMK-1500 nuclear reactor.

  8. Improving system modeling accuracy with Monte Carlo codes

    International Nuclear Information System (INIS)

    Johnson, A.S.

    1996-01-01

    The use of computer codes based on Monte Carlo methods to perform criticality calculations has become common-place. Although results frequently published in the literature report calculated k eff values to four decimal places, people who use the codes in their everyday work say that they only believe the first two decimal places of any result. The lack of confidence in the computed k eff values may be due to the tendency of the reported standard deviation to underestimate errors associated with the Monte Carlo process. The standard deviation as reported by the codes is the standard deviation of the mean of the k eff values for individual generations in the computer simulation, not the standard deviation of the computed k eff value compared with the physical system. A more subtle problem with the standard deviation of the mean as reported by the codes is that all the k eff values from the separate generations are not statistically independent since the k eff of a given generation is a function of k eff of the previous generation, which is ultimately based on the starting source. To produce a standard deviation that is more representative of the physical system, statistically independent values of k eff are needed

  9. Statistical Modelling of Extreme Rainfall in Taiwan

    NARCIS (Netherlands)

    L-F. Chu (Lan-Fen); M.J. McAleer (Michael); C-C. Chang (Ching-Chung)

    2012-01-01

    textabstractIn this paper, the annual maximum daily rainfall data from 1961 to 2010 are modelled for 18 stations in Taiwan. We fit the rainfall data with stationary and non-stationary generalized extreme value distributions (GEV), and estimate their future behaviour based on the best fitting model.

  10. Statistical Modelling of Extreme Rainfall in Taiwan

    NARCIS (Netherlands)

    L. Chu (LanFen); M.J. McAleer (Michael); C-H. Chang (Chu-Hsiang)

    2013-01-01

    textabstractIn this paper, the annual maximum daily rainfall data from 1961 to 2010 are modelled for 18 stations in Taiwan. We fit the rainfall data with stationary and non-stationary generalized extreme value distributions (GEV), and estimate their future behaviour based on the best fitting model.

  11. MARS CODE MANUAL VOLUME V: Models and Correlations

    International Nuclear Information System (INIS)

    Chung, Bub Dong; Bae, Sung Won; Lee, Seung Wook; Yoon, Churl; Hwang, Moon Kyu; Kim, Kyung Doo; Jeong, Jae Jun

    2010-02-01

    Korea Advanced Energy Research Institute (KAERI) conceived and started the development of MARS code with the main objective of producing a state-of-the-art realistic thermal hydraulic systems analysis code with multi-dimensional analysis capability. MARS achieves this objective by very tightly integrating the one dimensional RELAP5/MOD3 with the multi-dimensional COBRA-TF codes. The method of integration of the two codes is based on the dynamic link library techniques, and the system pressure equation matrices of both codes are implicitly integrated and solved simultaneously. In addition, the Equation-Of-State (EOS) for the light water was unified by replacing the EOS of COBRA-TF by that of the RELAP5. This models and correlations manual provides a complete list of detailed information of the thermal-hydraulic models used in MARS, so that this report would be very useful for the code users. The overall structure of the manual is modeled on the structure of the RELAP5 and as such the layout of the manual is very similar to that of the RELAP. This similitude to RELAP5 input is intentional as this input scheme will allow minimum modification between the inputs of RELAP5 and MARS3.1. MARS3.1 development team would like to express its appreciation to the RELAP5 Development Team and the USNRC for making this manual possible

  12. The drift flux model in the ASSERT subchannel code

    International Nuclear Information System (INIS)

    Carver, M.B.; Judd, R.A.; Kiteley, J.C.; Tahir, A.

    1987-01-01

    The ASSERT subchannel code has been developed specifically to model flow and phase distributions within CANDU fuel bundles. ASSERT uses a drift-flux model that permits the phases to have unequal velocities, and can thus model phase separation tendencies that may occur in horizontal flow. The basic principles of ASSERT are outlined, and computed results are compared against data from various experiments for validation purposes. The paper concludes with an example of the use of the code to predict critical heat flux in CANDU geometries

  13. On the Logical Development of Statistical Models.

    Science.gov (United States)

    1983-12-01

    1978). "Modelos con parametros variables en el analisis de series temporales " Questiio, 4, 2, 75-87. [25] Seal, H. L. (1967). "The historical...example, a classical state-space representation of a simple time series model is: yt = it + ut Ut = *It-I + Ct (2.2) ut and et are independent normal...on its past values is displayed in the structural equation. This approach has been particularly useful in time series models. For example, model (2.2

  14. A Noise Robust Statistical Texture Model

    DEFF Research Database (Denmark)

    Hilger, Klaus Baggesen; Stegmann, Mikkel Bille; Larsen, Rasmus

    2002-01-01

    Appearance Models segmentation framework. This is accomplished by augmenting the model with an estimate of the covariance of the noise present in the training data. This results in a more compact model maximising the signal-to-noise ratio, thus favouring subspaces rich on signal, but low on noise......This paper presents a novel approach to the problem of obtaining a low dimensional representation of texture (pixel intensity) variation present in a training set after alignment using a Generalised Procrustes analysis.We extend the conventional analysis of training textures in the Active...

  15. Fuel rod modelling during transients: The TOUTATIS code

    International Nuclear Information System (INIS)

    Bentejac, F.; Bourreau, S.; Brochard, J.; Hourdequin, N.; Lansiart, S.

    2001-01-01

    The TOUTATIS code is devoted to the PCI local phenomena simulation, in correlation with the METEOR code for the global behaviour of the fuel rod. More specifically, the TOUTATIS objective is to evaluate the mechanical constraints on the cladding during a power transient thus predicting its behaviour in term of stress corrosion cracking. Based upon the finite element computation code CASTEM 2000, TOUTATIS is a set of modules written in a macro language. The aim of this paper is to present both code modules: The axisymmetric bi-dimensional module, modeling a unique block pellet; The tri dimensional module modeling a radially fragmented pellet. Having shown the boundary conditions and the algorithms used, the application will be illustrated by: A short presentation of the bidimensional axisymmetric modeling performances as well as its limits; The enhancement due to the three dimensional modeling will be displayed by sensitivity studies to the geometry, in this case the pellet height/diameter ratio. Finally, we will show the easiness of the development inherent to the CASTEM 2000 system by depicting the process of a modeling enhancement by adding the possibility of an axial (horizontal) fissuration of the pellet. As conclusion, the future improvements planned for the code are depicted. (author)

  16. Statistics

    CERN Document Server

    Hayslett, H T

    1991-01-01

    Statistics covers the basic principles of Statistics. The book starts by tackling the importance and the two kinds of statistics; the presentation of sample data; the definition, illustration and explanation of several measures of location; and the measures of variation. The text then discusses elementary probability, the normal distribution and the normal approximation to the binomial. Testing of statistical hypotheses and tests of hypotheses about the theoretical proportion of successes in a binomial population and about the theoretical mean of a normal population are explained. The text the

  17. 12th Workshop on Stochastic Models, Statistics and Their Applications

    CERN Document Server

    Rafajłowicz, Ewaryst; Szajowski, Krzysztof

    2015-01-01

    This volume presents the latest advances and trends in stochastic models and related statistical procedures. Selected peer-reviewed contributions focus on statistical inference, quality control, change-point analysis and detection, empirical processes, time series analysis, survival analysis and reliability, statistics for stochastic processes, big data in technology and the sciences, statistical genetics, experiment design, and stochastic models in engineering. Stochastic models and related statistical procedures play an important part in furthering our understanding of the challenging problems currently arising in areas of application such as the natural sciences, information technology, engineering, image analysis, genetics, energy and finance, to name but a few. This collection arises from the 12th Workshop on Stochastic Models, Statistics and Their Applications, Wroclaw, Poland.

  18. Materials Informatics: Statistical Modeling in Material Science.

    Science.gov (United States)

    Yosipof, Abraham; Shimanovich, Klimentiy; Senderowitz, Hanoch

    2016-12-01

    Material informatics is engaged with the application of informatic principles to materials science in order to assist in the discovery and development of new materials. Central to the field is the application of data mining techniques and in particular machine learning approaches, often referred to as Quantitative Structure Activity Relationship (QSAR) modeling, to derive predictive models for a variety of materials-related "activities". Such models can accelerate the development of new materials with favorable properties and provide insight into the factors governing these properties. Here we provide a comparison between medicinal chemistry/drug design and materials-related QSAR modeling and highlight the importance of developing new, materials-specific descriptors. We survey some of the most recent QSAR models developed in materials science with focus on energetic materials and on solar cells. Finally we present new examples of material-informatic analyses of solar cells libraries produced from metal oxides using combinatorial material synthesis. Different analyses lead to interesting physical insights as well as to the design of new cells with potentially improved photovoltaic parameters. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Introduction to statistical modelling: linear regression.

    Science.gov (United States)

    Lunt, Mark

    2015-07-01

    In many studies we wish to assess how a range of variables are associated with a particular outcome and also determine the strength of such relationships so that we can begin to understand how these factors relate to each other at a population level. Ultimately, we may also be interested in predicting the outcome from a series of predictive factors available at, say, a routine clinic visit. In a recent article in Rheumatology, Desai et al. did precisely that when they studied the prediction of hip and spine BMD from hand BMD and various demographic, lifestyle, disease and therapy variables in patients with RA. This article aims to introduce the statistical methodology that can be used in such a situation and explain the meaning of some of the terms employed. It will also outline some common pitfalls encountered when performing such analyses. © The Author 2013. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Latent domain models for statistical machine translation

    NARCIS (Netherlands)

    Hoàng, C.

    2017-01-01

    A data-driven approach to model translation suffers from the data mismatch problem and demands domain adaptation techniques. Given parallel training data originating from a specific domain, training an MT system on the data would result in a rather suboptimal translation for other domains. But does

  1. Behavioral and statistical models of educational inequality

    DEFF Research Database (Denmark)

    Holm, Anders; Breen, Richard

    2016-01-01

    This paper addresses the question of how students and their families make educational decisions. We describe three types of behavioral model that might underlie decision-making and we show that they have consequences for what decisions are made. Our study thus has policy implications if we wish...

  2. Statistical modelling of fine red wine production

    Directory of Open Access Journals (Sweden)

    María Rosa Castro

    2010-01-01

    Full Text Available Producing wine is a very important economic activity in the province of San Juan in Argentina; it is therefore most important to predict production regarding the quantity of raw material needed. This work was aimed at obtaining a model relating kilograms of crushed grape to the litres of wine so produced. Such model will be used for predicting precise future values and confidence intervals for determined quantities of crushed grapes. Data from a vineyard in the province of San Juan was thus used in this work. The sampling coefficient of correlation was calculated and a dispersion diagram was then constructed; this indicated a li- neal relationship between the litres of wine obtained and the kilograms of crushed grape. Two lineal models were then adopted and variance analysis was carried out because the data came from normal populations having the same variance. The most appropriate model was obtained from this analysis; it was validated with experimental values, a good approach being obtained.

  3. Sampling, Probability Models and Statistical Reasoning -RE ...

    Indian Academy of Sciences (India)

    random sampling allows data to be modelled with the help of probability ... g based on different trials to get an estimate of the experimental error. ... research interests lie in the .... if e is indeed the true value of the proportion of defectives in the.

  4. Statistical Model Checking for Product Lines

    DEFF Research Database (Denmark)

    ter Beek, Maurice H.; Legay, Axel; Lluch Lafuente, Alberto

    2016-01-01

    average cost of products (in terms of the attributes of the products’ features) and the probability of features to be (un)installed at runtime. The product lines must be modelled in QFLan, which extends the probabilistic feature-oriented language PFLan with novel quantitative constraints among features...

  5. A Statistical Model for Energy Intensity

    Directory of Open Access Journals (Sweden)

    Marjaneh Issapour

    2012-12-01

    Full Text Available A promising approach to improve scientific literacy in regards to global warming and climate change is using a simulation as part of a science education course. The simulation needs to employ scientific analysis of actual data from internationally accepted and reputable databases to demonstrate the reality of the current climate change situation. One of the most important criteria for using a simulation in a science education course is the fidelity of the model. The realism of the events and consequences modeled in the simulation is significant as well. Therefore, all underlying equations and algorithms used in the simulation must have real-world scientific basis. The "Energy Choices" simulation is one such simulation. The focus of this paper is the development of a mathematical model for "Energy Intensity" as a part of the overall system dynamics in "Energy Choices" simulation. This model will define the "Energy Intensity" as a function of other independent variables that can be manipulated by users of the simulation. The relationship discovered by this research will be applied to an algorithm in the "Energy Choices" simulation.

  6. Structured Statistical Models of Inductive Reasoning

    Science.gov (United States)

    Kemp, Charles; Tenenbaum, Joshua B.

    2009-01-01

    Everyday inductive inferences are often guided by rich background knowledge. Formal models of induction should aim to incorporate this knowledge and should explain how different kinds of knowledge lead to the distinctive patterns of reasoning found in different inductive contexts. This article presents a Bayesian framework that attempts to meet…

  7. Statistical Analysis and Modelling of Olkiluoto Structures

    International Nuclear Information System (INIS)

    Hellae, P.; Vaittinen, T.; Saksa, P.; Nummela, J.

    2004-11-01

    Posiva Oy is carrying out investigations for the disposal of the spent nuclear fuel at the Olkiluoto site in SW Finland. The investigations have focused on the central part of the island. The layout design of the entire repository requires characterization of notably larger areas and must rely at least at the current stage on borehole information from a rather sparse network and on the geophysical soundings providing information outside and between the holes. In this work, the structural data according to the current version of the Olkiluoto bedrock model is analyzed. The bedrock model relies much on the borehole data although results of the seismic surveys and, for example, pumping tests are used in determining the orientation and continuation of the structures. Especially in the analysis, questions related to the frequency of structures and size of the structures are discussed. The structures observed in the boreholes are mainly dipping gently to the southeast. About 9 % of the sample length belongs to structures. The proportion is higher in the upper parts of the rock. The number of fracture and crushed zones seems not to depend greatly on the depth, whereas the hydraulic features concentrate on the depth range above -100 m. Below level -300 m, the hydraulic conductivity occurs in connection of fractured zones. Especially the hydraulic features, but also fracture and crushed zones often occur in groups. The frequency of the structure (area of structures per total volume) is estimated to be of the order of 1/100m. The size of the local structures was estimated by calculating the intersection of the zone to the nearest borehole where the zone has not been detected. Stochastic models using the Fracman software by Golder Associates were generated based on the bedrock model data complemented with the magnetic ground survey data. The seismic surveys (from boreholes KR5, KR13, KR14, and KR19) were used as alternative input data. The generated models were tested by

  8. Modeling statistical properties of written text.

    Directory of Open Access Journals (Sweden)

    M Angeles Serrano

    Full Text Available Written text is one of the fundamental manifestations of human language, and the study of its universal regularities can give clues about how our brains process information and how we, as a society, organize and share it. Among these regularities, only Zipf's law has been explored in depth. Other basic properties, such as the existence of bursts of rare words in specific documents, have only been studied independently of each other and mainly by descriptive models. As a consequence, there is a lack of understanding of linguistic processes as complex emergent phenomena. Beyond Zipf's law for word frequencies, here we focus on burstiness, Heaps' law describing the sublinear growth of vocabulary size with the length of a document, and the topicality of document collections, which encode correlations within and across documents absent in random null models. We introduce and validate a generative model that explains the simultaneous emergence of all these patterns from simple rules. As a result, we find a connection between the bursty nature of rare words and the topical organization of texts and identify dynamic word ranking and memory across documents as key mechanisms explaining the non trivial organization of written text. Our research can have broad implications and practical applications in computer science, cognitive science and linguistics.

  9. Advanced data analysis in neuroscience integrating statistical and computational models

    CERN Document Server

    Durstewitz, Daniel

    2017-01-01

    This book is intended for use in advanced graduate courses in statistics / machine learning, as well as for all experimental neuroscientists seeking to understand statistical methods at a deeper level, and theoretical neuroscientists with a limited background in statistics. It reviews almost all areas of applied statistics, from basic statistical estimation and test theory, linear and nonlinear approaches for regression and classification, to model selection and methods for dimensionality reduction, density estimation and unsupervised clustering.  Its focus, however, is linear and nonlinear time series analysis from a dynamical systems perspective, based on which it aims to convey an understanding also of the dynamical mechanisms that could have generated observed time series. Further, it integrates computational modeling of behavioral and neural dynamics with statistical estimation and hypothesis testing. This way computational models in neuroscience are not only explanat ory frameworks, but become powerfu...

  10. Universal Regularizers For Robust Sparse Coding and Modeling

    OpenAIRE

    Ramirez, Ignacio; Sapiro, Guillermo

    2010-01-01

    Sparse data models, where data is assumed to be well represented as a linear combination of a few elements from a dictionary, have gained considerable attention in recent years, and their use has led to state-of-the-art results in many signal and image processing tasks. It is now well understood that the choice of the sparsity regularization term is critical in the success of such models. Based on a codelength minimization interpretation of sparse coding, and using tools from universal coding...

  11. Model-Driven Engineering of Machine Executable Code

    Science.gov (United States)

    Eichberg, Michael; Monperrus, Martin; Kloppenburg, Sven; Mezini, Mira

    Implementing static analyses of machine-level executable code is labor intensive and complex. We show how to leverage model-driven engineering to facilitate the design and implementation of programs doing static analyses. Further, we report on important lessons learned on the benefits and drawbacks while using the following technologies: using the Scala programming language as target of code generation, using XML-Schema to express a metamodel, and using XSLT to implement (a) transformations and (b) a lint like tool. Finally, we report on the use of Prolog for writing model transformations.

  12. An improved thermal model for the computer code NAIAD

    International Nuclear Information System (INIS)

    Rainbow, M.T.

    1982-12-01

    An improved thermal model, based on the concept of heat slabs, has been incorporated as an option into the thermal hydraulic computer code NAIAD. The heat slabs are one-dimensional thermal conduction models with temperature independent thermal properties which may be internal and/or external to the fluid. Thermal energy may be added to or removed from the fluid via heat slabs and passed across the external boundary of external heat slabs at a rate which is a linear function of the external surface temperatures. The code input for the new option has been restructured to simplify data preparation. A full description of current input requirements is presented

  13. Anthropomorphic Coding of Speech and Audio: A Model Inversion Approach

    Directory of Open Access Journals (Sweden)

    W. Bastiaan Kleijn

    2005-06-01

    Full Text Available Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features that are most relevant to the listener. The aim of this paper is to provide a tutorial on perceptual speech and audio coding using an invertible auditory model. In this approach, the audio signal is converted into an auditory representation using an invertible auditory model. The auditory representation is quantized and coded. Upon decoding, it is then transformed back into the acoustic domain. This transformation converts a complex distortion criterion into a simple one, thus facilitating quantization with low complexity. We briefly review past work on auditory models and describe in more detail the components of our invertible model and its inversion procedure, that is, the method to reconstruct the signal from the output of the auditory model. We summarize attempts to use the auditory representation for low-bit-rate coding. Our approach also allows the exploitation of the inherent redundancy of the human auditory system for the purpose of multiple description (joint source-channel coding.

  14. Data model description for the DESCARTES and CIDER codes

    International Nuclear Information System (INIS)

    Miley, T.B.; Ouderkirk, S.J.; Nichols, W.E.; Eslinger, P.W.

    1993-01-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation dose that individuals could have received as a result of emissions since 1944 from the US Department of Energy's (DOE) Hanford Site near Richland, Washington. One of the major objectives of the HEDR Project is to develop several computer codes to model the airborne releases. transport and envirorunental accumulation of radionuclides resulting from Hanford operations from 1944 through 1972. In July 1992, the HEDR Project Manager determined that the computer codes being developed (DESCARTES, calculation of environmental accumulation from airborne releases, and CIDER, dose calculations from environmental accumulation) were not sufficient to create accurate models. A team of HEDR staff members developed a plan to assure that computer codes would meet HEDR Project goals. The plan consists of five tasks: (1) code requirements definition. (2) scoping studies, (3) design specifications, (4) benchmarking, and (5) data modeling. This report defines the data requirements for the DESCARTES and CIDER codes

  15. COCOA code for creating mock observations of star cluster models

    Science.gov (United States)

    Askar, Abbas; Giersz, Mirek; Pych, Wojciech; Dalessandro, Emanuele

    2018-04-01

    We introduce and present results from the COCOA (Cluster simulatiOn Comparison with ObservAtions) code that has been developed to create idealized mock photometric observations using results from numerical simulations of star cluster evolution. COCOA is able to present the output of realistic numerical simulations of star clusters carried out using Monte Carlo or N-body codes in a way that is useful for direct comparison with photometric observations. In this paper, we describe the COCOA code and demonstrate its different applications by utilizing globular cluster (GC) models simulated with the MOCCA (MOnte Carlo Cluster simulAtor) code. COCOA is used to synthetically observe these different GC models with optical telescopes, perform point spread function photometry, and subsequently produce observed colour-magnitude diagrams. We also use COCOA to compare the results from synthetic observations of a cluster model that has the same age and metallicity as the Galactic GC NGC 2808 with observations of the same cluster carried out with a 2.2 m optical telescope. We find that COCOA can effectively simulate realistic observations and recover photometric data. COCOA has numerous scientific applications that maybe be helpful for both theoreticians and observers that work on star clusters. Plans for further improving and developing the code are also discussed in this paper.

  16. Code-code comparisons of DIVIMP's 'onion-skin model' and the EDGE2D fluid code

    International Nuclear Information System (INIS)

    Stangeby, P.C.; Elder, J.D.; Horton, L.D.; Simonini, R.; Taroni, A.; Matthews, O.F.; Monk, R.D.

    1997-01-01

    In onion-skin modelling, O-SM, of the edge plasma, the cross-field power and particle flows are treated very simply e.g. as spatially uniform. The validity of O-S modelling requires demonstration that such approximations can still result in reasonable solutions for the edge plasma. This is demonstrated here by comparison of O-SM with full 2D fluid edge solutions generated by the EDGE2D code. The target boundary conditions for the O-SM are taken from the EDGE2D output and the complete O-SM solutions are then compared with the EDGE2D ones. Agreement is generally within 20% for n e , T e , T i and parallel particle flux density Γ for the medium and high recycling JET cases examined and somewhat less good for a strongly detached CMOD example. (orig.)

  17. Statistically Based Morphodynamic Modeling of Tracer Slowdown

    Science.gov (United States)

    Borhani, S.; Ghasemi, A.; Hill, K. M.; Viparelli, E.

    2017-12-01

    Tracer particles are used to study bedload transport in gravel-bed rivers. One of the advantages associated with using of tracer particles is that they allow for direct measures of the entrainment rates and their size distributions. The main issue in large scale studies with tracer particles is the difference between tracer stone short term and long term behavior. This difference is due to the fact that particles undergo vertical mixing or move to less active locations such as bars or even floodplains. For these reasons the average virtual velocity of tracer particle decreases in time, i.e. the tracer slowdown. In summary, tracer slowdown can have a significant impact on the estimation of bedload transport rate or long term dispersal of contaminated sediment. The vast majority of the morphodynamic models that account for the non-uniformity of the bed material (tracer and not tracer, in this case) are based on a discrete description of the alluvial deposit. The deposit is divided in two different regions; the active layer and the substrate. The active layer is a thin layer in the topmost part of the deposit whose particles can interact with the bed material transport. The substrate is the part of the deposit below the active layer. Due to the discrete representation of the alluvial deposit, active layer models are not able to reproduce tracer slowdown. In this study we try to model the slowdown of tracer particles with the continuous Parker-Paola-Leclair morphodynamic framework. This continuous, i.e. not layer-based, framework is based on a stochastic description of the temporal variation of bed surface elevation, and of the elevation specific particle entrainment and deposition. Particle entrainment rates are computed as a function of the flow and sediment characteristics, while particle deposition is estimated with a step length formulation. Here we present one of the first implementation of the continuum framework at laboratory scale, its validation against

  18. Advanced Electric and Magnetic Material Models for FDTD Electromagnetic Codes

    CERN Document Server

    Poole, Brian R; Nelson, Scott D

    2005-01-01

    The modeling of dielectric and magnetic materials in the time domain is required for pulse power applications, pulsed induction accelerators, and advanced transmission lines. For example, most induction accelerator modules require the use of magnetic materials to provide adequate Volt-sec during the acceleration pulse. These models require hysteresis and saturation to simulate the saturation wavefront in a multipulse environment. In high voltage transmission line applications such as shock or soliton lines the dielectric is operating in a highly nonlinear regime, which requires nonlinear models. Simple 1-D models are developed for fast parameterization of transmission line structures. In the case of nonlinear dielectrics, a simple analytic model describing the permittivity in terms of electric field is used in a 3-D finite difference time domain code (FDTD). In the case of magnetic materials, both rate independent and rate dependent Hodgdon magnetic material models have been implemented into 3-D FDTD codes an...

  19. Hybrid microscopic depletion model in nodal code DYN3D

    International Nuclear Information System (INIS)

    Bilodid, Y.; Kotlyar, D.; Shwageraus, E.; Fridman, E.; Kliem, S.

    2016-01-01

    Highlights: • A new hybrid method of accounting for spectral history effects is proposed. • Local concentrations of over 1000 nuclides are calculated using micro depletion. • The new method is implemented in nodal code DYN3D and verified. - Abstract: The paper presents a general hybrid method that combines the micro-depletion technique with correction of micro- and macro-diffusion parameters to account for the spectral history effects. The fuel in a core is subjected to time- and space-dependent operational conditions (e.g. coolant density), which cannot be predicted in advance. However, lattice codes assume some average conditions to generate cross sections (XS) for nodal diffusion codes such as DYN3D. Deviation of local operational history from average conditions leads to accumulation of errors in XS, which is referred as spectral history effects. Various methods to account for the spectral history effects, such as spectral index, burnup-averaged operational parameters and micro-depletion, were implemented in some nodal codes. Recently, an alternative method, which characterizes fuel depletion state by burnup and 239 Pu concentration (denoted as Pu-correction) was proposed, implemented in nodal code DYN3D and verified for a wide range of history effects. The method is computationally efficient, however, it has applicability limitations. The current study seeks to improve the accuracy and applicability range of Pu-correction method. The proposed hybrid method combines the micro-depletion method with a XS characterization technique similar to the Pu-correction method. The method was implemented in DYN3D and verified on multiple test cases. The results obtained with DYN3D were compared to those obtained with Monte Carlo code Serpent, which was also used to generate the XS. The observed differences are within the statistical uncertainties.

  20. Radiation transport phenomena and modeling - part A: Codes

    International Nuclear Information System (INIS)

    Lorence, L.J.

    1997-01-01

    The need to understand how particle radiation (high-energy photons and electrons) from a variety of sources affects materials and electronics has motivated the development of sophisticated computer codes that describe how radiation with energies from 1.0 keV to 100.0 GeV propagates through matter. Predicting radiation transport is the necessary first step in predicting radiation effects. The radiation transport codes that are described here are general-purpose codes capable of analyzing a variety of radiation environments including those produced by nuclear weapons (x-rays, gamma rays, and neutrons), by sources in space (electrons and ions) and by accelerators (x-rays, gamma rays, and electrons). Applications of these codes include the study of radiation effects on electronics, nuclear medicine (imaging and cancer treatment), and industrial processes (food disinfestation, waste sterilization, manufacturing.) The primary focus will be on coupled electron-photon transport codes, with some brief discussion of proton transport. These codes model a radiation cascade in which electrons produce photons and vice versa. This coupling between particles of different types is important for radiation effects. For instance, in an x-ray environment, electrons are produced that drive the response in electronics. In an electron environment, dose due to bremsstrahlung photons can be significant once the source electrons have been stopped

  1. Three-dimensional modeling with finite element codes

    Energy Technology Data Exchange (ETDEWEB)

    Druce, R.L.

    1986-01-17

    This paper describes work done to model magnetostatic field problems in three dimensions. Finite element codes, available at LLNL, and pre- and post-processors were used in the solution of the mathematical model, the output from which agreed well with the experimentally obtained data. The geometry used in this work was a cylinder with ports in the periphery and no current sources in the space modeled. 6 refs., 8 figs.

  2. Code Development for Control Design Applications: Phase I: Structural Modeling

    International Nuclear Information System (INIS)

    Bir, G. S.; Robinson, M.

    1998-01-01

    The design of integrated controls for a complex system like a wind turbine relies on a system model in an explicit format, e.g., state-space format. Current wind turbine codes focus on turbine simulation and not on system characterization, which is desired for controls design as well as applications like operating turbine model analysis, optimal design, and aeroelastic stability analysis. This paper reviews structural modeling that comprises three major steps: formation of component equations, assembly into system equations, and linearization

  3. Statistics

    Science.gov (United States)

    Links to sources of cancer-related statistics, including the Surveillance, Epidemiology and End Results (SEER) Program, SEER-Medicare datasets, cancer survivor prevalence data, and the Cancer Trends Progress Report.

  4. Statistical mechanics of the cluster Ising model

    International Nuclear Information System (INIS)

    Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko

    2011-01-01

    We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.

  5. Statistical mechanics of the cluster Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Smacchia, Pietro [SISSA - via Bonomea 265, I-34136, Trieste (Italy); Amico, Luigi [CNR-MATIS-IMM and Dipartimento di Fisica e Astronomia Universita di Catania, C/O ed. 10, viale Andrea Doria 6, I-95125 Catania (Italy); Facchi, Paolo [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Fazio, Rosario [NEST, Scuola Normale Superiore and Istituto Nanoscienze - CNR, 56126 Pisa (Italy); Center for Quantum Technology, National University of Singapore, 117542 Singapore (Singapore); Florio, Giuseppe; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Vedral, Vlatko [Center for Quantum Technology, National University of Singapore, 117542 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom)

    2011-08-15

    We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.

  6. Verification and Validation of Heat Transfer Model of AGREE Code

    Energy Technology Data Exchange (ETDEWEB)

    Tak, N. I. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Seker, V.; Drzewiecki, T. J.; Downar, T. J. [Department of Nuclear Engineering and Radiological Sciences, Univ. of Michigan, Michigan (United States); Kelly, J. M. [US Nuclear Regulatory Commission, Washington (United States)

    2013-05-15

    The AGREE code was originally developed as a multi physics simulation code to perform design and safety analysis of Pebble Bed Reactors (PBR). Currently, additional capability for the analysis of Prismatic Modular Reactor (PMR) core is in progress. Newly implemented fluid model for a PMR core is based on a subchannel approach which has been widely used in the analyses of light water reactor (LWR) cores. A hexagonal fuel (or graphite block) is discretized into triangular prism nodes having effective conductivities. Then, a meso-scale heat transfer model is applied to the unit cell geometry of a prismatic fuel block. Both unit cell geometries of multi-hole and pin-in-hole types of prismatic fuel blocks are considered in AGREE. The main objective of this work is to verify and validate the heat transfer model newly implemented for a PMR core in the AGREE code. The measured data in the HENDEL experiment were used for the validation of the heat transfer model for a pin-in-hole fuel block. However, the HENDEL tests were limited to only steady-state conditions of pin-in-hole fuel blocks. There exist no available experimental data regarding a heat transfer in multi-hole fuel blocks. Therefore, numerical benchmarks using conceptual problems are considered to verify the heat transfer model of AGREE for multi-hole fuel blocks as well as transient conditions. The CORONA and GAMMA+ codes were used to compare the numerical results. In this work, the verification and validation study were performed for the heat transfer model of the AGREE code using the HENDEL experiment and the numerical benchmarks of selected conceptual problems. The results of the present work show that the heat transfer model of AGREE is accurate and reliable for prismatic fuel blocks. Further validation of AGREE is in progress for a whole reactor problem using the HTTR safety test data such as control rod withdrawal tests and loss-of-forced convection tests.

  7. Variability in faecal egg counts – a statistical model to achieve reliable determination of anthelmintic resistance in livestock

    DEFF Research Database (Denmark)

    Nielsen, Martin Krarup; Vidyashankar, Anand N.; Hanlon, Bret

    statistical model was therefore developed for analysis of FECRT data from multiple farms. Horse age, gender, zip code and pre-treatment egg count were incorporated into the model. Horses and farms were kept as random effects. Resistance classifications were based on model-based 95% lower confidence limit (LCL...

  8. The statistical significance of error probability as determined from decoding simulations for long codes

    Science.gov (United States)

    Massey, J. L.

    1976-01-01

    The very low error probability obtained with long error-correcting codes results in a very small number of observed errors in simulation studies of practical size and renders the usual confidence interval techniques inapplicable to the observed error probability. A natural extension of the notion of a 'confidence interval' is made and applied to such determinations of error probability by simulation. An example is included to show the surprisingly great significance of as few as two decoding errors in a very large number of decoding trials.

  9. NOBAI: a web server for character coding of geometrical and statistical features in RNA structure

    Science.gov (United States)

    Knudsen, Vegeir; Caetano-Anollés, Gustavo

    2008-01-01

    The Numeration of Objects in Biology: Alignment Inferences (NOBAI) web server provides a web interface to the applications in the NOBAI software package. This software codes topological and thermodynamic information related to the secondary structure of RNA molecules as multi-state phylogenetic characters, builds character matrices directly in NEXUS format and provides sequence randomization options. The web server is an effective tool that facilitates the search for evolutionary history embedded in the structure of functional RNA molecules. The NOBAI web server is accessible at ‘http://www.manet.uiuc.edu/nobai/nobai.php’. This web site is free and open to all users and there is no login requirement. PMID:18448469

  10. Functional summary statistics for the Johnson-Mehl model

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad

    The Johnson-Mehl germination-growth model is a spatio-temporal point process model which among other things have been used for the description of neurotransmitters datasets. However, for such datasets parametric Johnson-Mehl models fitted by maximum likelihood have yet not been evaluated by means...... of functional summary statistics. This paper therefore invents four functional summary statistics adapted to the Johnson-Mehl model, with two of them based on the second-order properties and the other two on the nuclei-boundary distances for the associated Johnson-Mehl tessellation. The functional summary...... statistics theoretical properties are investigated, non-parametric estimators are suggested, and their usefulness for model checking is examined in a simulation study. The functional summary statistics are also used for checking fitted parametric Johnson-Mehl models for a neurotransmitters dataset....

  11. Statistical modelling in biostatistics and bioinformatics selected papers

    CERN Document Server

    Peng, Defen

    2014-01-01

    This book presents selected papers on statistical model development related mainly to the fields of Biostatistics and Bioinformatics. The coverage of the material falls squarely into the following categories: (a) Survival analysis and multivariate survival analysis, (b) Time series and longitudinal data analysis, (c) Statistical model development and (d) Applied statistical modelling. Innovations in statistical modelling are presented throughout each of the four areas, with some intriguing new ideas on hierarchical generalized non-linear models and on frailty models with structural dispersion, just to mention two examples. The contributors include distinguished international statisticians such as Philip Hougaard, John Hinde, Il Do Ha, Roger Payne and Alessandra Durio, among others, as well as promising newcomers. Some of the contributions have come from researchers working in the BIO-SI research programme on Biostatistics and Bioinformatics, centred on the Universities of Limerick and Galway in Ireland and fu...

  12. Performance Theories for Sentence Coding: Some Quantitative Models

    Science.gov (United States)

    Aaronson, Doris; And Others

    1977-01-01

    This study deals with the patterns of word-by-word reading times over a sentence when the subject must code the linguistic information sufficiently for immediate verbatim recall. A class of quantitative models is considered that would account for reading times at phrase breaks. (Author/RM)

  13. Modeling of PHWR fuel elements using FUDA code

    International Nuclear Information System (INIS)

    Tripathi, Rahul Mani; Soni, Rakesh; Prasad, P.N.; Pandarinathan, P.R.

    2008-01-01

    The computer code FUDA (Fuel Design Analysis) is used for modeling PHWR fuel bundle operation history and carry out fuel element thermo-mechanical analysis. The radial temperature profile across fuel and sheath, fission gas release, internal gas pressure, sheath stress and strains during the life of fuel bundle are estimated

  14. 28 CFR 36.608 - Guidance concerning model codes.

    Science.gov (United States)

    2010-07-01

    ... Section 36.608 Judicial Administration DEPARTMENT OF JUSTICE NONDISCRIMINATION ON THE BASIS OF DISABILITY BY PUBLIC ACCOMMODATIONS AND IN COMMERCIAL FACILITIES Certification of State Laws or Local Building... private entity responsible for developing a model code, the Assistant Attorney General may review the...

  15. Code Shift: Grid Specifications and Dynamic Wind Turbine Models

    DEFF Research Database (Denmark)

    Ackermann, Thomas; Ellis, Abraham; Fortmann, Jens

    2013-01-01

    Grid codes (GCs) and dynamic wind turbine (WT) models are key tools to allow increasing renewable energy penetration without challenging security of supply. In this article, the state of the art and the further development of both tools are discussed, focusing on the European and North American e...

  16. Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models.

    Science.gov (United States)

    Petersson, K M; Nichols, T E; Poline, J B; Holmes, A P

    1999-01-01

    Functional neuroimaging (FNI) provides experimental access to the intact living brain making it possible to study higher cognitive functions in humans. In this review and in a companion paper in this issue, we discuss some common methods used to analyse FNI data. The emphasis in both papers is on assumptions and limitations of the methods reviewed. There are several methods available to analyse FNI data indicating that none is optimal for all purposes. In order to make optimal use of the methods available it is important to know the limits of applicability. For the interpretation of FNI results it is also important to take into account the assumptions, approximations and inherent limitations of the methods used. This paper gives a brief overview over some non-inferential descriptive methods and common statistical models used in FNI. Issues relating to the complex problem of model selection are discussed. In general, proper model selection is a necessary prerequisite for the validity of the subsequent statistical inference. The non-inferential section describes methods that, combined with inspection of parameter estimates and other simple measures, can aid in the process of model selection and verification of assumptions. The section on statistical models covers approaches to global normalization and some aspects of univariate, multivariate, and Bayesian models. Finally, approaches to functional connectivity and effective connectivity are discussed. In the companion paper we review issues related to signal detection and statistical inference. PMID:10466149

  17. Statistics

    International Nuclear Information System (INIS)

    2005-01-01

    For the years 2004 and 2005 the figures shown in the tables of Energy Review are partly preliminary. The annual statistics published in Energy Review are presented in more detail in a publication called Energy Statistics that comes out yearly. Energy Statistics also includes historical time-series over a longer period of time (see e.g. Energy Statistics, Statistics Finland, Helsinki 2004.) The applied energy units and conversion coefficients are shown in the back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes, precautionary stock fees and oil pollution fees

  18. Mixed deterministic statistical modelling of regional ozone air pollution

    KAUST Repository

    Kalenderski, Stoitchko

    2011-03-17

    We develop a physically motivated statistical model for regional ozone air pollution by separating the ground-level pollutant concentration field into three components, namely: transport, local production and large-scale mean trend mostly dominated by emission rates. The model is novel in the field of environmental spatial statistics in that it is a combined deterministic-statistical model, which gives a new perspective to the modelling of air pollution. The model is presented in a Bayesian hierarchical formalism, and explicitly accounts for advection of pollutants, using the advection equation. We apply the model to a specific case of regional ozone pollution-the Lower Fraser valley of British Columbia, Canada. As a predictive tool, we demonstrate that the model vastly outperforms existing, simpler modelling approaches. Our study highlights the importance of simultaneously considering different aspects of an air pollution problem as well as taking into account the physical bases that govern the processes of interest. © 2011 John Wiley & Sons, Ltd..

  19. Coding and classification in drug statistics – From national to global application

    Directory of Open Access Journals (Sweden)

    Marit Rønning

    2009-11-01

    Full Text Available  SUMMARYThe Anatomical Therapeutic Chemical (ATC classification system and the defined daily dose (DDDwas developed in Norway in the early seventies. The creation of the ATC/DDD methodology was animportant basis for presenting drug utilisation statistics in a sensible way. Norway was in 1977 also thefirst country to publish national drug utilisation statistics from wholesalers on an annual basis. Thecombination of these activities in Norway in the seventies made us a pioneer country in the area of drugutilisation research. Over the years, the use of the ATC/DDD methodology has gradually increased incountries outside Norway. Since 1996, the methodology has been recommended by WHO for use ininternational drug utilisation studies. The WHO Collaborating Centre for Drug Statistics Methodologyin Oslo handles the maintenance and development of the ATC/DDD system. The Centre is now responsiblefor the global co-ordination. After nearly 30 years of experience with ATC/DDD, the methodologyhas demonstrated its suitability in drug use research. The main challenge in the coming years is toeducate the users worldwide in how to use the methodology properly.

  20. Modeling RERTR experimental fuel plates using the PLATE code

    International Nuclear Information System (INIS)

    Hayes, S.L.; Meyer, M.K.; Hofman, G.L.; Snelgrove, J.L.; Brazener, R.A.

    2003-01-01

    Modeling results using the PLATE dispersion fuel performance code are presented for the U-Mo/Al experimental fuel plates from the RERTR-1, -2, -3 and -5 irradiation tests. Agreement of the calculations with experimental data obtained in post-irradiation examinations of these fuels, where available, is shown to be good. Use of the code to perform a series of parametric evaluations highlights the sensitivity of U-Mo dispersion fuel performance to fabrication variables, especially fuel particle shape and size distributions. (author)

  1. Second-order statistics of colour codes modulate transformations that effectuate varying degrees of scene invariance and illumination invariance.

    Science.gov (United States)

    Mausfeld, Rainer; Andres, Johannes

    2002-01-01

    We argue, from an ethology-inspired perspective, that the internal concepts 'surface colours' and 'illumination colours' are part of the data format of two different representational primitives. Thus, the internal concept of 'colour' is not a unitary one but rather refers to two different types of 'data structure', each with its own proprietary types of parameters and relations. The relation of these representational structures is modulated by a class of parameterised transformations whose effects are mirrored in the idealised computational achievements of illumination invariance of colour codes, on the one hand, and scene invariance, on the other hand. Because the same characteristics of a light array reaching the eye can be physically produced in many different ways, the visual system, then, has to make an 'inference' whether a chromatic deviation of the space-averaged colour codes from the neutral point is due to a 'non-normal', ie chromatic, illumination or due to an imbalanced spectral reflectance composition. We provide evidence that the visual system uses second-order statistics of chromatic codes of a single view of a scene in order to modulate corresponding transformations. In our experiments we used centre surround configurations with inhomogeneous surrounds given by a random structure of overlapping circles, referred to as Seurat configurations. Each family of surrounds has a fixed space-average of colour codes, but differs with respect to the covariance matrix of colour codes of pixels that defines the chromatic variance along some chromatic axis and the covariance between luminance and chromatic channels. We found that dominant wavelengths of red-green equilibrium settings of the infield exhibited a stable and strong dependence on the chromatic variance of the surround. High variances resulted in a tendency towards 'scene invariance', low variances in a tendency towards 'illumination invariance' of the infield.

  2. A Model of Statistics Performance Based on Achievement Goal Theory.

    Science.gov (United States)

    Bandalos, Deborah L.; Finney, Sara J.; Geske, Jenenne A.

    2003-01-01

    Tests a model of statistics performance based on achievement goal theory. Both learning and performance goals affected achievement indirectly through study strategies, self-efficacy, and test anxiety. Implications of these findings for teaching and learning statistics are discussed. (Contains 47 references, 3 tables, 3 figures, and 1 appendix.)…

  3. Kolmogorov complexity, pseudorandom generators and statistical models testing

    Czech Academy of Sciences Publication Activity Database

    Šindelář, Jan; Boček, Pavel

    2002-01-01

    Roč. 38, č. 6 (2002), s. 747-759 ISSN 0023-5954 R&D Projects: GA ČR GA102/99/1564 Institutional research plan: CEZ:AV0Z1075907 Keywords : Kolmogorov complexity * pseudorandom generators * statistical models testing Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.341, year: 2002

  4. Statistical properties of several models of fractional random point processes

    Science.gov (United States)

    Bendjaballah, C.

    2011-08-01

    Statistical properties of several models of fractional random point processes have been analyzed from the counting and time interval statistics points of view. Based on the criterion of the reduced variance, it is seen that such processes exhibit nonclassical properties. The conditions for these processes to be treated as conditional Poisson processes are examined. Numerical simulations illustrate part of the theoretical calculations.

  5. Statistics

    International Nuclear Information System (INIS)

    2001-01-01

    For the year 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions from the use of fossil fuels, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in 2000, Energy exports by recipient country in 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  6. Statistics

    International Nuclear Information System (INIS)

    2000-01-01

    For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g., Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-March 2000, Energy exports by recipient country in January-March 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  7. Statistics

    International Nuclear Information System (INIS)

    1999-01-01

    For the year 1998 and the year 1999, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy Review appear in more detail from the publication Energiatilastot - Energy Statistics issued annually, which also includes historical time series over a longer period (see e.g. Energiatilastot 1998, Statistics Finland, Helsinki 1999, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 1999, Energy exports by recipient country in January-June 1999, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  8. Thermohydraulic modeling of nuclear thermal rockets: The KLAXON code

    International Nuclear Information System (INIS)

    Hall, M.L.; Rider, W.J.; Cappiello, M.W.

    1992-01-01

    The hydrogen flow from the storage tanks, through the reactor core, and out the nozzle of a Nuclear Thermal Rocket is an integral design consideration. To provide an analysis and design tool for this phenomenon, the KLAXON code is being developed. A shock-capturing numerical methodology is used to model the gas flow (the Harten, Lax, and van Leer method, as implemented by Einfeldt). Preliminary results of modeling the flow through the reactor core and nozzle are given in this paper

  9. Automatic modeling for the monte carlo transport TRIPOLI code

    International Nuclear Information System (INIS)

    Zhang Junjun; Zeng Qin; Wu Yican; Wang Guozhong; FDS Team

    2010-01-01

    TRIPOLI, developed by CEA, France, is Monte Carlo particle transport simulation code. It has been widely applied to nuclear physics, shielding design, evaluation of nuclear safety. However, it is time-consuming and error-prone to manually describe the TRIPOLI input file. This paper implemented bi-directional conversion between CAD model and TRIPOLI model. Its feasibility and efficiency have been demonstrated by several benchmarking examples. (authors)

  10. Improving statistical reasoning theoretical models and practical implications

    CERN Document Server

    Sedlmeier, Peter

    1999-01-01

    This book focuses on how statistical reasoning works and on training programs that can exploit people''s natural cognitive capabilities to improve their statistical reasoning. Training programs that take into account findings from evolutionary psychology and instructional theory are shown to have substantially larger effects that are more stable over time than previous training regimens. The theoretical implications are traced in a neural network model of human performance on statistical reasoning problems. This book apppeals to judgment and decision making researchers and other cognitive scientists, as well as to teachers of statistics and probabilistic reasoning.

  11. Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter

    International Nuclear Information System (INIS)

    Martin, R.

    1977-01-01

    The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermi's equation. Approximate calculus methods are found from analytic study of the T-Fermi's equation for non zero temperature. T-Fermi's equation is solved with the code ''Golem''written in Fortran V (Univac). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (author) [es

  12. Application of the Thomas-Fermi statistical model to the thermodynamics of high density matter

    International Nuclear Information System (INIS)

    Martin, R.

    1977-01-01

    The Thomas-Fermi statistical model, from the N-body point of view is used in order to have systematic corrections to the T-Fermis equation. Approximate calculus methods are found from analytic study of the T-Fermis equation for non zero temperature. T-Fermis equation is solved with the code GOLEM written in FORTRAN V (UNIVAC). It also provides the thermodynamical quantities and a new method to calculate several isothermal tables. (Author) 24 refs

  13. Steam generator and circulator model for the HELAP code

    International Nuclear Information System (INIS)

    Ludewig, H.

    1975-07-01

    An outline is presented of the work carried out in the 1974 fiscal year on the GCFBR safety research project consisting of the development of improved steam generator and circulator (steam turbine driven helium compressor) models which will eventually be inserted in the HELAP (1) code. Furthermore, a code was developed which will be used to generate steady state input for the primary and secondary sides of the steam generator. The following conclusions and suggestions for further work are made: (1) The steam-generator and circulator model are consistent with the volume and junction layout used in HELAP, (2) with minor changes these models, when incorporated in HELAP, could be used to simulate a direct cycle plant, (3) an explicit control valve model is still to be developed and would be very desirable to control the flow to the turbine during a transient (initially this flow will be controlled by using the existing check valve model); (4) the friction factor in the laminar flow region is computed inaccurately, this might cause significant errors in loss-of-flow accidents; and (5) it is felt that HELAP will still use a large amount of computer time and will thus be limited to design basis accidents without scram or loss of flow transients with and without scram. Finally it may also be used as a test bed for the development of prototype component models which would be incorporated in a more sophisticated system code, developed specifically for GCFBR's

  14. Background-Modeling-Based Adaptive Prediction for Surveillance Video Coding.

    Science.gov (United States)

    Zhang, Xianguo; Huang, Tiejun; Tian, Yonghong; Gao, Wen

    2014-02-01

    The exponential growth of surveillance videos presents an unprecedented challenge for high-efficiency surveillance video coding technology. Compared with the existing coding standards that were basically developed for generic videos, surveillance video coding should be designed to make the best use of the special characteristics of surveillance videos (e.g., relative static background). To do so, this paper first conducts two analyses on how to improve the background and foreground prediction efficiencies in surveillance video coding. Following the analysis results, we propose a background-modeling-based adaptive prediction (BMAP) method. In this method, all blocks to be encoded are firstly classified into three categories. Then, according to the category of each block, two novel inter predictions are selectively utilized, namely, the background reference prediction (BRP) that uses the background modeled from the original input frames as the long-term reference and the background difference prediction (BDP) that predicts the current data in the background difference domain. For background blocks, the BRP can effectively improve the prediction efficiency using the higher quality background as the reference; whereas for foreground-background-hybrid blocks, the BDP can provide a better reference after subtracting its background pixels. Experimental results show that the BMAP can achieve at least twice the compression ratio on surveillance videos as AVC (MPEG-4 Advanced Video Coding) high profile, yet with a slightly additional encoding complexity. Moreover, for the foreground coding performance, which is crucial to the subjective quality of moving objects in surveillance videos, BMAP also obtains remarkable gains over several state-of-the-art methods.

  15. Statistical validation of normal tissue complication probability models

    NARCIS (Netherlands)

    Xu, Cheng-Jian; van der Schaaf, Arjen; van t Veld, Aart; Langendijk, Johannes A.; Schilstra, Cornelis

    2012-01-01

    PURPOSE: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: A penalized regression method, LASSO (least absolute shrinkage

  16. Some remarks on the statistical model of heavy ion collisions

    International Nuclear Information System (INIS)

    Koch, V.

    2003-01-01

    This contribution is an attempt to assess what can be learned from the remarkable success of this statistical model in describing ratios of particle abundances in ultra-relativistic heavy ion collisions

  17. Eigenfunction statistics for Anderson model with Hölder continuous ...

    Indian Academy of Sciences (India)

    The Institute of Mathematical Sciences, Taramani, Chennai 600 113, India ... Anderson model; Hölder continuous measure; Poisson statistics. ...... [4] Combes J-M, Hislop P D and Klopp F, An optimal Wegner estimate and its application to.

  18. An improved steam generator model for the SASSYS code

    International Nuclear Information System (INIS)

    Pizzica, P.A.

    1989-01-01

    A new steam generator model has been developed for the SASSYS computer code, which analyzes accident conditions in a liquid-metal-cooled fast reactor. It has been incorporated into the new SASSYS balance-of-plant model, but it can also function as a stand-alone model. The model provides a full solution of the steady-state condition before the transient calculation begins for given sodium and water flow rates, inlet and outlet sodium temperatures, and inlet enthalpy and region lengths on the water side

  19. A no extensive statistical model for the nucleon structure function

    International Nuclear Information System (INIS)

    Trevisan, Luis A.; Mirez, Carlos

    2013-01-01

    We studied an application of nonextensive thermodynamics to describe the structure function of nucleon, in a model where the usual Fermi-Dirac and Bose-Einstein energy distribution were replaced by the equivalent functions of the q-statistical. The parameters of the model are given by an effective temperature T, the q parameter (from Tsallis statistics), and two chemical potentials given by the corresponding up (u) and down (d) quark normalization in the nucleon.

  20. Adaptive colour contrast coding in the salamander retina efficiently matches natural scene statistics.

    Directory of Open Access Journals (Sweden)

    Genadiy Vasserman

    Full Text Available The visual system continually adjusts its sensitivity to the statistical properties of the environment through an adaptation process that starts in the retina. Colour perception and processing is commonly thought to occur mainly in high visual areas, and indeed most evidence for chromatic colour contrast adaptation comes from cortical studies. We show that colour contrast adaptation starts in the retina where ganglion cells adjust their responses to the spectral properties of the environment. We demonstrate that the ganglion cells match their responses to red-blue stimulus combinations according to the relative contrast of each of the input channels by rotating their functional response properties in colour space. Using measurements of the chromatic statistics of natural environments, we show that the retina balances inputs from the two (red and blue stimulated colour channels, as would be expected from theoretical optimal behaviour. Our results suggest that colour is encoded in the retina based on the efficient processing of spectral information that matches spectral combinations in natural scenes on the colour processing level.

  1. Dose-rate and temperature dependent statistical damage accumulation model for ion implantation into silicon

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Mangas, J.M. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)]. E-mail: jesus.hernandez.mangas@tel.uva.es; Arias, J. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Marques, L.A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Ruiz-Bueno, A. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain); Bailon, L. [Dpto. de Electricidad y Electronica, Universidad de Valladolid, ETSI Telecomunicaciones, Campus Miguel Delibes, Valladolid E-47011 (Spain)

    2005-01-01

    Currently there are extensive atomistic studies that model some characteristics of the damage buildup due to ion irradiation (e.g. L. Pelaz et al., Appl. Phys. Lett. 82 (2003) 2038-2040). Our interest is to develop a novel statistical damage buildup model for our BCA ion implant simulator (IIS) code in order to extend its ranges of applicability. The model takes into account the abrupt regime of the crystal-amorphous transition. It works with different temperatures and dose-rates and also models the transition temperature. We have tested it with some projectiles (Ge, P) implanted into silicon. In this work we describe the new statistical damage accumulation model based on the modified Kinchin-Pease model. The results obtained have been compared with existing experimental results.

  2. Dose-rate and temperature dependent statistical damage accumulation model for ion implantation into silicon

    International Nuclear Information System (INIS)

    Hernandez-Mangas, J.M.; Arias, J.; Marques, L.A.; Ruiz-Bueno, A.; Bailon, L.

    2005-01-01

    Currently there are extensive atomistic studies that model some characteristics of the damage buildup due to ion irradiation (e.g. L. Pelaz et al., Appl. Phys. Lett. 82 (2003) 2038-2040). Our interest is to develop a novel statistical damage buildup model for our BCA ion implant simulator (IIS) code in order to extend its ranges of applicability. The model takes into account the abrupt regime of the crystal-amorphous transition. It works with different temperatures and dose-rates and also models the transition temperature. We have tested it with some projectiles (Ge, P) implanted into silicon. In this work we describe the new statistical damage accumulation model based on the modified Kinchin-Pease model. The results obtained have been compared with existing experimental results

  3. Statistical models and NMR analysis of polymer microstructure

    Science.gov (United States)

    Statistical models can be used in conjunction with NMR spectroscopy to study polymer microstructure and polymerization mechanisms. Thus, Bernoullian, Markovian, and enantiomorphic-site models are well known. Many additional models have been formulated over the years for additional situations. Typica...

  4. Dual coding: a cognitive model for psychoanalytic research.

    Science.gov (United States)

    Bucci, W

    1985-01-01

    Four theories of mental representation derived from current experimental work in cognitive psychology have been discussed in relation to psychoanalytic theory. These are: verbal mediation theory, in which language determines or mediates thought; perceptual dominance theory, in which imagistic structures are dominant; common code or propositional models, in which all information, perceptual or linguistic, is represented in an abstract, amodal code; and dual coding, in which nonverbal and verbal information are each encoded, in symbolic form, in separate systems specialized for such representation, and connected by a complex system of referential relations. The weight of current empirical evidence supports the dual code theory. However, psychoanalysis has implicitly accepted a mixed model-perceptual dominance theory applying to unconscious representation, and verbal mediation characterizing mature conscious waking thought. The characterization of psychoanalysis, by Schafer, Spence, and others, as a domain in which reality is constructed rather than discovered, reflects the application of this incomplete mixed model. The representations of experience in the patient's mind are seen as without structure of their own, needing to be organized by words, thus vulnerable to distortion or dissolution by the language of the analyst or the patient himself. In these terms, hypothesis testing becomes a meaningless pursuit; the propositions of the theory are no longer falsifiable; the analyst is always more or less "right." This paper suggests that the integrated dual code formulation provides a more coherent theoretical framework for psychoanalysis than the mixed model, with important implications for theory and technique. In terms of dual coding, the problem is not that the nonverbal representations are vulnerable to distortion by words, but that the words that pass back and forth between analyst and patient will not affect the nonverbal schemata at all. Using the dual code

  5. Statistics

    International Nuclear Information System (INIS)

    2003-01-01

    For the year 2002, part of the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot 2001, Statistics Finland, Helsinki 2002). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supply and total consumption of electricity GWh, Energy imports by country of origin in January-June 2003, Energy exports by recipient country in January-June 2003, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees on energy products

  6. Statistics

    International Nuclear Information System (INIS)

    2004-01-01

    For the year 2003 and 2004, the figures shown in the tables of the Energy Review are partly preliminary. The annual statistics of the Energy Review also includes historical time-series over a longer period (see e.g. Energiatilastot, Statistics Finland, Helsinki 2003, ISSN 0785-3165). The applied energy units and conversion coefficients are shown in the inside back cover of the Review. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in GDP, energy consumption and electricity consumption, Carbon dioxide emissions from fossile fuels use, Coal consumption, Consumption of natural gas, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices in heat production, Fuel prices in electricity production, Price of electricity by type of consumer, Average monthly spot prices at the Nord pool power exchange, Total energy consumption by source and CO 2 -emissions, Supplies and total consumption of electricity GWh, Energy imports by country of origin in January-March 2004, Energy exports by recipient country in January-March 2004, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Price of natural gas by type of consumer, Price of electricity by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Excise taxes, precautionary stock fees on oil pollution fees

  7. Statistics

    International Nuclear Information System (INIS)

    2000-01-01

    For the year 1999 and 2000, part of the figures shown in the tables of the Energy Review are preliminary or estimated. The annual statistics of the Energy also includes historical time series over a longer period (see e.g., Energiatilastot 1999, Statistics Finland, Helsinki 2000, ISSN 0785-3165). The inside of the Review's back cover shows the energy units and the conversion coefficients used for them. Explanatory notes to the statistical tables can be found after tables and figures. The figures presents: Changes in the volume of GNP and energy consumption, Changes in the volume of GNP and electricity, Coal consumption, Natural gas consumption, Peat consumption, Domestic oil deliveries, Import prices of oil, Consumer prices of principal oil products, Fuel prices for heat production, Fuel prices for electricity production, Carbon dioxide emissions, Total energy consumption by source and CO 2 -emissions, Electricity supply, Energy imports by country of origin in January-June 2000, Energy exports by recipient country in January-June 2000, Consumer prices of liquid fuels, Consumer prices of hard coal, natural gas and indigenous fuels, Average electricity price by type of consumer, Price of district heating by type of consumer, Excise taxes, value added taxes and fiscal charges and fees included in consumer prices of some energy sources and Energy taxes and precautionary stock fees on oil products

  8. Phenomenological optical potentials and optical model computer codes

    International Nuclear Information System (INIS)

    Prince, A.

    1980-01-01

    An introduction to the Optical Model is presented. Starting with the purpose and nature of the physical problems to be analyzed, a general formulation and the various phenomenological methods of solution are discussed. This includes the calculation of observables based on assumed potentials such as local and non-local and their forms, e.g. Woods-Saxon, folded model etc. Also discussed are the various calculational methods and model codes employed to describe nuclear reactions in the spherical and deformed regions (e.g. coupled-channel analysis). An examination of the numerical solutions and minimization techniques associated with the various codes, is briefly touched upon. Several computer programs are described for carrying out the calculations. The preparation of input, (formats and options), determination of model parameters and analysis of output are described. The class is given a series of problems to carry out using the available computer. Interpretation and evaluation of the samples includes the effect of varying parameters, and comparison of calculations with the experimental data. Also included is an intercomparison of the results from the various model codes, along with their advantages and limitations. (author)

  9. What's statistical about learning? Insights from modelling statistical learning as a set of memory processes.

    Science.gov (United States)

    Thiessen, Erik D

    2017-01-05

    Statistical learning has been studied in a variety of different tasks, including word segmentation, object identification, category learning, artificial grammar learning and serial reaction time tasks (e.g. Saffran et al. 1996 Science 274: , 1926-1928; Orban et al. 2008 Proceedings of the National Academy of Sciences 105: , 2745-2750; Thiessen & Yee 2010 Child Development 81: , 1287-1303; Saffran 2002 Journal of Memory and Language 47: , 172-196; Misyak & Christiansen 2012 Language Learning 62: , 302-331). The difference among these tasks raises questions about whether they all depend on the same kinds of underlying processes and computations, or whether they are tapping into different underlying mechanisms. Prior theoretical approaches to statistical learning have often tried to explain or model learning in a single task. However, in many cases these approaches appear inadequate to explain performance in multiple tasks. For example, explaining word segmentation via the computation of sequential statistics (such as transitional probability) provides little insight into the nature of sensitivity to regularities among simultaneously presented features. In this article, we will present a formal computational approach that we believe is a good candidate to provide a unifying framework to explore and explain learning in a wide variety of statistical learning tasks. This framework suggests that statistical learning arises from a set of processes that are inherent in memory systems, including activation, interference, integration of information and forgetting (e.g. Perruchet & Vinter 1998 Journal of Memory and Language 39: , 246-263; Thiessen et al. 2013 Psychological Bulletin 139: , 792-814). From this perspective, statistical learning does not involve explicit computation of statistics, but rather the extraction of elements of the input into memory traces, and subsequent integration across those memory traces that emphasize consistent information (Thiessen and Pavlik

  10. Nuclear Level Densities for Modeling Nuclear Reactions: An Efficient Approach Using Statistical Spectroscopy

    International Nuclear Information System (INIS)

    Calvin W. Johnson

    2005-01-01

    The general goal of the project is to develop and implement computer codes and input files to compute nuclear densities of state. Such densities are important input into calculations of statistical neutron capture, and are difficult to access experimentally. In particular, we will focus on calculating densities for nuclides in the mass range A ∼ 50-100. We use statistical spectroscopy, a moments method based upon a microscopic framework, the interacting shell model. Second year goals and milestones: Develop two or three competing interactions (based upon surface-delta, Gogny, and NN-scattering) suitable for application to nuclei up to A = 100. Begin calculations for nuclides with A = 50-70

  11. Improvement of blow down model for LEAP code

    International Nuclear Information System (INIS)

    Itooka, Satoshi; Fujimata, Kazuhiro

    2003-03-01

    In Japan Nuclear Cycle Development Institute, the improvement of analysis method for overheating tube rapture was studied for the accident of sodium-water reactions in the steam generator of a fast breeder reactor and the evaluation of heat transfer condition in the tube were carried out based on study of critical heat flux (CHF) and post-CHF heat transfer equation in Light Water Reactors. In this study, the improvement of blow down model for the LEAP code was carried out taking into consideration the above-mentioned evaluation of heat transfer condition. Improvements of the LEAP code were following items. Calculations and verification were performed with the improved LEAP code in order to confirm the code functions. The addition of critical heat flux (CHF) by the formula of Katto and the formula of Tong. The addition of post-CHF heat transfer equation by the formula of Condie-BengstonIV and the formula of Groeneveld 5.9. The physical properties of the water and steam are expanded to the critical conditions of the water. The expansion of the total number of section and the improvement of the input form. The addition of the function to control the valve setting by the PID control model. (author)

  12. Finding the Root Causes of Statistical Inconsistency in Community Earth System Model Output

    Science.gov (United States)

    Milroy, D.; Hammerling, D.; Baker, A. H.

    2017-12-01

    Baker et al (2015) developed the Community Earth System Model Ensemble Consistency Test (CESM-ECT) to provide a metric for software quality assurance by determining statistical consistency between an ensemble of CESM outputs and new test runs. The test has proved useful for detecting statistical difference caused by compiler bugs and errors in physical modules. However, detection is only the necessary first step in finding the causes of statistical difference. The CESM is a vastly complex model comprised of millions of lines of code which is developed and maintained by a large community of software engineers and scientists. Any root cause analysis is correspondingly challenging. We propose a new capability for CESM-ECT: identifying the sections of code that cause statistical distinguishability. The first step is to discover CESM variables that cause CESM-ECT to classify new runs as statistically distinct, which we achieve via Randomized Logistic Regression. Next we use a tool developed to identify CESM components that define or compute the variables found in the first step. Finally, we employ the application Kernel GENerator (KGEN) created in Kim et al (2016) to detect fine-grained floating point differences. We demonstrate an example of the procedure and advance a plan to automate this process in our future work.

  13. Models for probability and statistical inference theory and applications

    CERN Document Server

    Stapleton, James H

    2007-01-01

    This concise, yet thorough, book is enhanced with simulations and graphs to build the intuition of readersModels for Probability and Statistical Inference was written over a five-year period and serves as a comprehensive treatment of the fundamentals of probability and statistical inference. With detailed theoretical coverage found throughout the book, readers acquire the fundamentals needed to advance to more specialized topics, such as sampling, linear models, design of experiments, statistical computing, survival analysis, and bootstrapping.Ideal as a textbook for a two-semester sequence on probability and statistical inference, early chapters provide coverage on probability and include discussions of: discrete models and random variables; discrete distributions including binomial, hypergeometric, geometric, and Poisson; continuous, normal, gamma, and conditional distributions; and limit theory. Since limit theory is usually the most difficult topic for readers to master, the author thoroughly discusses mo...

  14. The 2010 fib Model Code for Structural Concrete: A new approach to structural engineering

    NARCIS (Netherlands)

    Walraven, J.C.; Bigaj-Van Vliet, A.

    2011-01-01

    The fib Model Code is a recommendation for the design of reinforced and prestressed concrete which is intended to be a guiding document for future codes. Model Codes have been published before, in 1978 and 1990. The draft for fib Model Code 2010 was published in May 2010. The most important new

  15. The WARP Code: Modeling High Intensity Ion Beams

    International Nuclear Information System (INIS)

    Grote, David P.; Friedman, Alex; Vay, Jean-Luc; Haber, Irving

    2005-01-01

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand

  16. The WARP Code: Modeling High Intensity Ion Beams

    International Nuclear Information System (INIS)

    Grote, D P; Friedman, A; Vay, J L; Haber, I

    2004-01-01

    The Warp code, developed for heavy-ion driven inertial fusion energy studies, is used to model high intensity ion (and electron) beams. Significant capability has been incorporated in Warp, allowing nearly all sections of an accelerator to be modeled, beginning with the source. Warp has as its core an explicit, three-dimensional, particle-in-cell model. Alongside this is a rich set of tools for describing the applied fields of the accelerator lattice, and embedded conducting surfaces (which are captured at sub-grid resolution). Also incorporated are models with reduced dimensionality: an axisymmetric model and a transverse ''slice'' model. The code takes advantage of modern programming techniques, including object orientation, parallelism, and scripting (via Python). It is at the forefront in the use of the computational technique of adaptive mesh refinement, which has been particularly successful in the area of diode and injector modeling, both steady-state and time-dependent. In the presentation, some of the major aspects of Warp will be overviewed, especially those that could be useful in modeling ECR sources. Warp has been benchmarked against both theory and experiment. Recent results will be presented showing good agreement of Warp with experimental results from the STS500 injector test stand. Additional information can be found on the web page http://hif.lbl.gov/theory/WARP( ) summary.html

  17. Right-sizing statistical models for longitudinal data.

    Science.gov (United States)

    Wood, Phillip K; Steinley, Douglas; Jackson, Kristina M

    2015-12-01

    Arguments are proposed that researchers using longitudinal data should consider more and less complex statistical model alternatives to their initially chosen techniques in an effort to "right-size" the model to the data at hand. Such model comparisons may alert researchers who use poorly fitting, overly parsimonious models to more complex, better-fitting alternatives and, alternatively, may identify more parsimonious alternatives to overly complex (and perhaps empirically underidentified and/or less powerful) statistical models. A general framework is proposed for considering (often nested) relationships between a variety of psychometric and growth curve models. A 3-step approach is proposed in which models are evaluated based on the number and patterning of variance components prior to selection of better-fitting growth models that explain both mean and variation-covariation patterns. The orthogonal free curve slope intercept (FCSI) growth model is considered a general model that includes, as special cases, many models, including the factor mean (FM) model (McArdle & Epstein, 1987), McDonald's (1967) linearly constrained factor model, hierarchical linear models (HLMs), repeated-measures multivariate analysis of variance (MANOVA), and the linear slope intercept (linearSI) growth model. The FCSI model, in turn, is nested within the Tuckerized factor model. The approach is illustrated by comparing alternative models in a longitudinal study of children's vocabulary and by comparing several candidate parametric growth and chronometric models in a Monte Carlo study. (c) 2015 APA, all rights reserved).

  18. Geochemical modelling of groundwater evolution using chemical equilibrium codes

    International Nuclear Information System (INIS)

    Pitkaenen, P.; Pirhonen, V.

    1991-01-01

    Geochemical equilibrium codes are a modern tool in studying interaction between groundwater and solid phases. The most common used programs and application subjects are shortly presented in this article. The main emphasis is laid on the approach method of using calculated results in evaluating groundwater evolution in hydrogeological system. At present in geochemical equilibrium modelling also kinetic as well as hydrologic constrains along a flow path are taken into consideration

  19. Optical model calculations with the code ECIS95

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, B V [Departamento de Fisica, Instituto Tecnologico da Aeronautica, Centro Tecnico Aeroespacial (Brazil)

    2001-12-15

    The basic features of elastic and inelastic scattering within the framework of the spherical and deformed nuclear optical models are discussed. The calculation of cross sections, angular distributions and other scattering quantities using J. Raynal's code ECIS95 is described. The use of the ECIS method (Equations Couplees en Iterations Sequentielles) in coupled-channels and distorted-wave Born approximation calculations is also reviewed. (author)

  20. A Stochastic Fractional Dynamics Model of Rainfall Statistics

    Science.gov (United States)

    Kundu, Prasun; Travis, James

    2013-04-01

    Rainfall varies in space and time in a highly irregular manner and is described naturally in terms of a stochastic process. A characteristic feature of rainfall statistics is that they depend strongly on the space-time scales over which rain data are averaged. A spectral model of precipitation has been developed based on a stochastic differential equation of fractional order for the point rain rate, that allows a concise description of the second moment statistics of rain at any prescribed space-time averaging scale. The model is designed to faithfully reflect the scale dependence and is thus capable of providing a unified description of the statistics of both radar and rain gauge data. The underlying dynamical equation can be expressed in terms of space-time derivatives of fractional orders that are adjusted together with other model parameters to fit the data. The form of the resulting spectrum gives the model adequate flexibility to capture the subtle interplay between the spatial and temporal scales of variability of rain but strongly constrains the predicted statistical behavior as a function of the averaging length and times scales. The main restriction is the assumption that the statistics of the precipitation field is spatially homogeneous and isotropic and stationary in time. We test the model with radar and gauge data collected contemporaneously at the NASA TRMM ground validation sites located near Melbourne, Florida and in Kwajalein Atoll, Marshall Islands in the tropical Pacific. We estimate the parameters by tuning them to the second moment statistics of the radar data. The model predictions are then found to fit the second moment statistics of the gauge data reasonably well without any further adjustment. Some data sets containing periods of non-stationary behavior that involves occasional anomalously correlated rain events, present a challenge for the model.

  1. International codes and model intercomparison for intermediate energy activation yields

    International Nuclear Information System (INIS)

    Rolf, M.; Nagel, P.

    1997-01-01

    The motivation for this intercomparison came from data needs of accelerator-based waste transmutation, energy amplification and medical therapy. The aim of this exercise is to determine the degree of reliability of current nuclear reaction models and codes when calculating activation yields in the intermediate energy range up to 5000 MeV. Emphasis has been placed for a wide range of target elements ( O, Al, Fe, Co, Zr and Au). This work is mainly based on calculation of (P,xPyN) integral cross section for incident proton. A qualitative description of some of the nuclear models and code options employed is made. The systematics of graphical presentation of the results allows a quick quantitative measure of agreement or deviation. This code intercomparison highlights the fact that modeling calculations of energy activation yields may at best have uncertainties of a factor of two. The causes of such discrepancies are multi-factorial. Problems are encountered which are connected with the calculation of nuclear masses, binding energies, Q-values, shell effects, medium energy fission and Fermi break-up. (A.C.)

  2. Film grain noise modeling in advanced video coding

    Science.gov (United States)

    Oh, Byung Tae; Kuo, C.-C. Jay; Sun, Shijun; Lei, Shawmin

    2007-01-01

    A new technique for film grain noise extraction, modeling and synthesis is proposed and applied to the coding of high definition video in this work. The film grain noise is viewed as a part of artistic presentation by people in the movie industry. On one hand, since the film grain noise can boost the natural appearance of pictures in high definition video, it should be preserved in high-fidelity video processing systems. On the other hand, video coding with film grain noise is expensive. It is desirable to extract film grain noise from the input video as a pre-processing step at the encoder and re-synthesize the film grain noise and add it back to the decoded video as a post-processing step at the decoder. Under this framework, the coding gain of the denoised video is higher while the quality of the final reconstructed video can still be well preserved. Following this idea, we present a method to remove film grain noise from image/video without distorting its original content. Besides, we describe a parametric model containing a small set of parameters to represent the extracted film grain noise. The proposed model generates the film grain noise that is close to the real one in terms of power spectral density and cross-channel spectral correlation. Experimental results are shown to demonstrate the efficiency of the proposed scheme.

  3. Variability aware compact model characterization for statistical circuit design optimization

    Science.gov (United States)

    Qiao, Ying; Qian, Kun; Spanos, Costas J.

    2012-03-01

    Variability modeling at the compact transistor model level can enable statistically optimized designs in view of limitations imposed by the fabrication technology. In this work we propose an efficient variabilityaware compact model characterization methodology based on the linear propagation of variance. Hierarchical spatial variability patterns of selected compact model parameters are directly calculated from transistor array test structures. This methodology has been implemented and tested using transistor I-V measurements and the EKV-EPFL compact model. Calculation results compare well to full-wafer direct model parameter extractions. Further studies are done on the proper selection of both compact model parameters and electrical measurement metrics used in the method.

  4. Linear mixed models a practical guide using statistical software

    CERN Document Server

    West, Brady T; Galecki, Andrzej T

    2006-01-01

    Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-navigate reference details the use of procedures for fitting LMMs in five popular statistical software packages: SAS, SPSS, Stata, R/S-plus, and HLM. The authors introduce basic theoretical concepts, present a heuristic approach to fitting LMMs based on bo

  5. Speech emotion recognition based on statistical pitch model

    Institute of Scientific and Technical Information of China (English)

    WANG Zhiping; ZHAO Li; ZOU Cairong

    2006-01-01

    A modified Parzen-window method, which keep high resolution in low frequencies and keep smoothness in high frequencies, is proposed to obtain statistical model. Then, a gender classification method utilizing the statistical model is proposed, which have a 98% accuracy of gender classification while long sentence is dealt with. By separation the male voice and female voice, the mean and standard deviation of speech training samples with different emotion are used to create the corresponding emotion models. Then the Bhattacharyya distance between the test sample and statistical models of pitch, are utilized for emotion recognition in speech.The normalization of pitch for the male voice and female voice are also considered, in order to illustrate them into a uniform space. Finally, the speech emotion recognition experiment based on K Nearest Neighbor shows that, the correct rate of 81% is achieved, where it is only 73.85%if the traditional parameters are utilized.

  6. Multiple commodities in statistical microeconomics: Model and market

    Science.gov (United States)

    Baaquie, Belal E.; Yu, Miao; Du, Xin

    2016-11-01

    A statistical generalization of microeconomics has been made in Baaquie (2013). In Baaquie et al. (2015), the market behavior of single commodities was analyzed and it was shown that market data provides strong support for the statistical microeconomic description of commodity prices. The case of multiple commodities is studied and a parsimonious generalization of the single commodity model is made for the multiple commodities case. Market data shows that the generalization can accurately model the simultaneous correlation functions of up to four commodities. To accurately model five or more commodities, further terms have to be included in the model. This study shows that the statistical microeconomics approach is a comprehensive and complete formulation of microeconomics, and which is independent to the mainstream formulation of microeconomics.

  7. Adaptive Maneuvering Frequency Method of Current Statistical Model

    Institute of Scientific and Technical Information of China (English)

    Wei Sun; Yongjian Yang

    2017-01-01

    Current statistical model(CSM) has a good performance in maneuvering target tracking. However, the fixed maneuvering frequency will deteriorate the tracking results, such as a serious dynamic delay, a slowly converging speedy and a limited precision when using Kalman filter(KF) algorithm. In this study, a new current statistical model and a new Kalman filter are proposed to improve the performance of maneuvering target tracking. The new model which employs innovation dominated subjection function to adaptively adjust maneuvering frequency has a better performance in step maneuvering target tracking, while a fluctuant phenomenon appears. As far as this problem is concerned, a new adaptive fading Kalman filter is proposed as well. In the new Kalman filter, the prediction values are amended in time by setting judgment and amendment rules,so that tracking precision and fluctuant phenomenon of the new current statistical model are improved. The results of simulation indicate the effectiveness of the new algorithm and the practical guiding significance.

  8. Modelling diversity in building occupant behaviour: a novel statistical approach

    DEFF Research Database (Denmark)

    Haldi, Frédéric; Calì, Davide; Andersen, Rune Korsholm

    2016-01-01

    We propose an advanced modelling framework to predict the scope and effects of behavioural diversity regarding building occupant actions on window openings, shading devices and lighting. We develop a statistical approach based on generalised linear mixed models to account for the longitudinal nat...

  9. On an uncorrelated jet model with Bose-Einstein statistics

    International Nuclear Information System (INIS)

    Bilic, N.; Dadic, I.; Martinis, M.

    1978-01-01

    Starting from the density of states of an ideal Bose-Einstein gas, an uncorrelated jet model with Bose-Einstein statistics has been formulated. The transition to continuum is based on the Touschek invariant measure. It has been shown that in this model average multiplicity increases logarithmically with total energy, while the inclusive distribution shows ln s violation of scaling. (author)

  10. Complex Data Modeling and Computationally Intensive Statistical Methods

    CERN Document Server

    Mantovan, Pietro

    2010-01-01

    The last years have seen the advent and development of many devices able to record and store an always increasing amount of complex and high dimensional data; 3D images generated by medical scanners or satellite remote sensing, DNA microarrays, real time financial data, system control datasets. The analysis of this data poses new challenging problems and requires the development of novel statistical models and computational methods, fueling many fascinating and fast growing research areas of modern statistics. The book offers a wide variety of statistical methods and is addressed to statistici

  11. Direct containment heating models in the CONTAIN code

    International Nuclear Information System (INIS)

    Washington, K.E.; Williams, D.C.

    1995-08-01

    The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale

  12. Direct containment heating models in the CONTAIN code

    Energy Technology Data Exchange (ETDEWEB)

    Washington, K.E.; Williams, D.C.

    1995-08-01

    The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale.

  13. Validation of statistical models for creep rupture by parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65, Fisher Ave., Rugby, Warks CV22 5HW (United Kingdom)

    2012-01-15

    Statistical analysis is an efficient method for the optimisation of any candidate mathematical model of creep rupture data, and for the comparative ranking of competing models. However, when a series of candidate models has been examined and the best of the series has been identified, there is no statistical criterion to determine whether a yet more accurate model might be devised. Hence there remains some uncertainty that the best of any series examined is sufficiently accurate to be considered reliable as a basis for extrapolation. This paper proposes that models should be validated primarily by parametric graphical comparison to rupture data and rupture gradient data. It proposes that no mathematical model should be considered reliable for extrapolation unless the visible divergence between model and data is so small as to leave no apparent scope for further reduction. This study is based on the data for a 12% Cr alloy steel used in BS PD6605:1998 to exemplify its recommended statistical analysis procedure. The models considered in this paper include a) a relatively simple model, b) the PD6605 recommended model and c) a more accurate model of somewhat greater complexity. - Highlights: Black-Right-Pointing-Pointer The paper discusses the validation of creep rupture models derived from statistical analysis. Black-Right-Pointing-Pointer It demonstrates that models can be satisfactorily validated by a visual-graphic comparison of models to data. Black-Right-Pointing-Pointer The method proposed utilises test data both as conventional rupture stress and as rupture stress gradient. Black-Right-Pointing-Pointer The approach is shown to be more reliable than a well-established and widely used method (BS PD6605).

  14. International nuclear model and code comparison on pre-equilibrium effects

    International Nuclear Information System (INIS)

    Gruppelaar, H.; van der Kamp, H.A.J.; Nagel, P.

    1983-01-01

    This paper gives the specification of an intercomparison of statistical nuclear models and codes with emphasis on pre-equilibrium effects. It is partly based upon the conclusions of a meeting of an ad-hoc working group on this subject. The parameters studied are: masses, Q values, level scheme data, optical model parameters, X-ray competition parameters, total level-density specifications, for 86 Rb, 89 Sr, 90 Y, 92 Y, 92 Zr, 93 Zr, 89 Y, 91 Nb, 92 Nb and 93 Nb

  15. Development of Parallel Code for the Alaska Tsunami Forecast Model

    Science.gov (United States)

    Bahng, B.; Knight, W. R.; Whitmore, P.

    2014-12-01

    The Alaska Tsunami Forecast Model (ATFM) is a numerical model used to forecast propagation and inundation of tsunamis generated by earthquakes and other means in both the Pacific and Atlantic Oceans. At the U.S. National Tsunami Warning Center (NTWC), the model is mainly used in a pre-computed fashion. That is, results for hundreds of hypothetical events are computed before alerts, and are accessed and calibrated with observations during tsunamis to immediately produce forecasts. ATFM uses the non-linear, depth-averaged, shallow-water equations of motion with multiply nested grids in two-way communications between domains of each parent-child pair as waves get closer to coastal waters. Even with the pre-computation the task becomes non-trivial as sub-grid resolution gets finer. Currently, the finest resolution Digital Elevation Models (DEM) used by ATFM are 1/3 arc-seconds. With a serial code, large or multiple areas of very high resolution can produce run-times that are unrealistic even in a pre-computed approach. One way to increase the model performance is code parallelization used in conjunction with a multi-processor computing environment. NTWC developers have undertaken an ATFM code-parallelization effort to streamline the creation of the pre-computed database of results with the long term aim of tsunami forecasts from source to high resolution shoreline grids in real time. Parallelization will also permit timely regeneration of the forecast model database with new DEMs; and, will make possible future inclusion of new physics such as the non-hydrostatic treatment of tsunami propagation. The purpose of our presentation is to elaborate on the parallelization approach and to show the compute speed increase on various multi-processor systems.

  16. Channel modeling, signal processing and coding for perpendicular magnetic recording

    Science.gov (United States)

    Wu, Zheng

    With the increasing areal density in magnetic recording systems, perpendicular recording has replaced longitudinal recording to overcome the superparamagnetic limit. Studies on perpendicular recording channels including aspects of channel modeling, signal processing and coding techniques are presented in this dissertation. To optimize a high density perpendicular magnetic recording system, one needs to know the tradeoffs between various components of the system including the read/write transducers, the magnetic medium, and the read channel. We extend the work by Chaichanavong on the parameter optimization for systems via design curves. Different signal processing and coding techniques are studied. Information-theoretic tools are utilized to determine the acceptable region for the channel parameters when optimal detection and linear coding techniques are used. Our results show that a considerable gain can be achieved by the optimal detection and coding techniques. The read-write process in perpendicular magnetic recording channels includes a number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The signal distortion induced by NLTS can be reduced by write precompensation during data recording. We numerically evaluate the effect of NLTS on the read-back signal and examine the effectiveness of several write precompensation schemes in combating NLTS in a channel characterized by both transition jitter noise and additive white Gaussian electronics noise. We also present an analytical method to estimate the bit-error-rate and use it to help determine the optimal write precompensation values in multi-level precompensation schemes. We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detection algorithm for use on the channel with NLTS. We show that this detector can offer significant improvements in bit-error-rate (BER) compared to conventional Viterbi and PDNP detectors. Moreover, the system performance can be further improved by

  17. Understanding and forecasting polar stratospheric variability with statistical models

    Directory of Open Access Journals (Sweden)

    C. Blume

    2012-07-01

    Full Text Available The variability of the north-polar stratospheric vortex is a prominent aspect of the middle atmosphere. This work investigates a wide class of statistical models with respect to their ability to model geopotential and temperature anomalies, representing variability in the polar stratosphere. Four partly nonstationary, nonlinear models are assessed: linear discriminant analysis (LDA; a cluster method based on finite elements (FEM-VARX; a neural network, namely the multi-layer perceptron (MLP; and support vector regression (SVR. These methods model time series by incorporating all significant external factors simultaneously, including ENSO, QBO, the solar cycle, volcanoes, to then quantify their statistical importance. We show that variability in reanalysis data from 1980 to 2005 is successfully modeled. The period from 2005 to 2011 can be hindcasted to a certain extent, where MLP performs significantly better than the remaining models. However, variability remains that cannot be statistically hindcasted within the current framework, such as the unexpected major warming in January 2009. Finally, the statistical model with the best generalization performance is used to predict a winter 2011/12 with warm and weak vortex conditions. A vortex breakdown is predicted for late January, early February 2012.

  18. Modelling of LOCA Tests with the BISON Fuel Performance Code

    Energy Technology Data Exchange (ETDEWEB)

    Williamson, Richard L [Idaho National Laboratory; Pastore, Giovanni [Idaho National Laboratory; Novascone, Stephen Rhead [Idaho National Laboratory; Spencer, Benjamin Whiting [Idaho National Laboratory; Hales, Jason Dean [Idaho National Laboratory

    2016-05-01

    BISON is a modern finite-element based, multidimensional nuclear fuel performance code that is under development at Idaho National Laboratory (USA). Recent advances of BISON include the extension of the code to the analysis of LWR fuel rod behaviour during loss-of-coolant accidents (LOCAs). In this work, BISON models for the phenomena relevant to LWR cladding behaviour during LOCAs are described, followed by presentation of code results for the simulation of LOCA tests. Analysed experiments include separate effects tests of cladding ballooning and burst, as well as the Halden IFA-650.2 fuel rod test. Two-dimensional modelling of the experiments is performed, and calculations are compared to available experimental data. Comparisons include cladding burst pressure and temperature in separate effects tests, as well as the evolution of fuel rod inner pressure during ballooning and time to cladding burst. Furthermore, BISON three-dimensional simulations of separate effects tests are performed, which demonstrate the capability to reproduce the effect of azimuthal temperature variations in the cladding. The work has been carried out in the frame of the collaboration between Idaho National Laboratory and Halden Reactor Project, and the IAEA Coordinated Research Project FUMAC.

  19. The top-down reflooding model in the Cathare code

    International Nuclear Information System (INIS)

    Bartak, J.; Bestion, D.; Haapalehto, T.

    1993-01-01

    A top-down reflooding model was developed for the French best-estimate thermalhydraulic code CATHARE. The paper presents the current state of development of this model. Based on a literature survey and on compatibility considerations with respect to the existing CATHARE bottom reflooding package, a falling film top-down reflooding model was developed and implemented into CATHARE version 1.3E. Following a brief review of previous work, the paper describes the most important features of the model. The model was validated with the WINFRITH single tube top-down reflooding experiment and with the REWET - II simultaneous bottom and top-down reflooding experiment in rod bundle geometry. The results demonstrate the ability of the new package to describe the falling film rewetting phenomena and the main parametric trends both in a simple analytical experimental setup and in a much more complex rod bundle reflooding experiment. (authors). 9 figs., 28 refs

  20. Toward a Probabilistic Automata Model of Some Aspects of Code-Switching.

    Science.gov (United States)

    Dearholt, D. W.; Valdes-Fallis, G.

    1978-01-01

    The purpose of the model is to select either Spanish or English as the language to be used; its goals at this stage of development include modeling code-switching for lexical need, apparently random code-switching, dependency of code-switching upon sociolinguistic context, and code-switching within syntactic constraints. (EJS)

  1. Statistical Validation of Engineering and Scientific Models: Background

    International Nuclear Information System (INIS)

    Hills, Richard G.; Trucano, Timothy G.

    1999-01-01

    A tutorial is presented discussing the basic issues associated with propagation of uncertainty analysis and statistical validation of engineering and scientific models. The propagation of uncertainty tutorial illustrates the use of the sensitivity method and the Monte Carlo method to evaluate the uncertainty in predictions for linear and nonlinear models. Four example applications are presented; a linear model, a model for the behavior of a damped spring-mass system, a transient thermal conduction model, and a nonlinear transient convective-diffusive model based on Burger's equation. Correlated and uncorrelated model input parameters are considered. The model validation tutorial builds on the material presented in the propagation of uncertainty tutoriaI and uses the damp spring-mass system as the example application. The validation tutorial illustrates several concepts associated with the application of statistical inference to test model predictions against experimental observations. Several validation methods are presented including error band based, multivariate, sum of squares of residuals, and optimization methods. After completion of the tutorial, a survey of statistical model validation literature is presented and recommendations for future work are made

  2. Benchmarking of computer codes and approaches for modeling exposure scenarios

    International Nuclear Information System (INIS)

    Seitz, R.R.; Rittmann, P.D.; Wood, M.I.; Cook, J.R.

    1994-08-01

    The US Department of Energy Headquarters established a performance assessment task team (PATT) to integrate the activities of DOE sites that are preparing performance assessments for the disposal of newly generated low-level waste. The PATT chartered a subteam with the task of comparing computer codes and exposure scenarios used for dose calculations in performance assessments. This report documents the efforts of the subteam. Computer codes considered in the comparison include GENII, PATHRAE-EPA, MICROSHIELD, and ISOSHLD. Calculations were also conducted using spreadsheets to provide a comparison at the most fundamental level. Calculations and modeling approaches are compared for unit radionuclide concentrations in water and soil for the ingestion, inhalation, and external dose pathways. Over 30 tables comparing inputs and results are provided

  3. Modeling RIA scenarios with the FRAPTRAN and SCANAIR codes

    International Nuclear Information System (INIS)

    Sagrado Garcia, I. C.; Vallejo, I.; Herranz, L. E.

    2013-01-01

    The need of defining new RIA safety criteria has pointed out the importance of performing a rigorous assessment of the transient codes capabilities. The present work is a comparative exercise devoted to identify the origin of the key deviations found between the predictions of FRAPTRAN-1.4 and SCANAIR-7.1. To do so, the calculations submitted by CIEMAT to the OECD/NEA RIA benchmark have been exploited. This work shows that deviations in clad temperatures mainly come from the treatment of the oxide layer. The systematically higher deformations calculated by FRAPTRAN-1.4 in early failed tests are caused by the different gap closure estimation. Besides, the dissimilarities observed in the FGR predictions are inherent to the different modeling strategies adopted in each code.

  4. Modeling RIA scenarios with the FRAPTRAN and SCANAIR codes

    Energy Technology Data Exchange (ETDEWEB)

    Sagrado Garcia, I. C.; Vallejo, I.; Herranz, L. E.

    2013-07-01

    The need of defining new RIA safety criteria has pointed out the importance of performing a rigorous assessment of the transient codes capabilities. The present work is a comparative exercise devoted to identify the origin of the key deviations found between the predictions of FRAPTRAN-1.4 and SCANAIR-7.1. To do so, the calculations submitted by CIEMAT to the OECD/NEA RIA benchmark have been exploited. This work shows that deviations in clad temperatures mainly come from the treatment of the oxide layer. The systematically higher deformations calculated by FRAPTRAN-1.4 in early failed tests are caused by the different gap closure estimation. Besides, the dissimilarities observed in the FGR predictions are inherent to the different modeling strategies adopted in each code.

  5. Statistical Validation of Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Veld, Aart A. van' t; Langendijk, Johannes A. [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schilstra, Cornelis [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Radiotherapy Institute Friesland, Leeuwarden (Netherlands)

    2012-09-01

    Purpose: To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. Methods and Materials: A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Results: Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Conclusion: Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use.

  6. Statistical validation of normal tissue complication probability models.

    Science.gov (United States)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Van't Veld, Aart A; Langendijk, Johannes A; Schilstra, Cornelis

    2012-09-01

    To investigate the applicability and value of double cross-validation and permutation tests as established statistical approaches in the validation of normal tissue complication probability (NTCP) models. A penalized regression method, LASSO (least absolute shrinkage and selection operator), was used to build NTCP models for xerostomia after radiation therapy treatment of head-and-neck cancer. Model assessment was based on the likelihood function and the area under the receiver operating characteristic curve. Repeated double cross-validation showed the uncertainty and instability of the NTCP models and indicated that the statistical significance of model performance can be obtained by permutation testing. Repeated double cross-validation and permutation tests are recommended to validate NTCP models before clinical use. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Shell model in large spaces and statistical spectroscopy

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    1996-01-01

    For many nuclear structure problems of current interest it is essential to deal with shell model in large spaces. For this, three different approaches are now in use and two of them are: (i) the conventional shell model diagonalization approach but taking into account new advances in computer technology; (ii) the shell model Monte Carlo method. A brief overview of these two methods is given. Large space shell model studies raise fundamental questions regarding the information content of the shell model spectrum of complex nuclei. This led to the third approach- the statistical spectroscopy methods. The principles of statistical spectroscopy have their basis in nuclear quantum chaos and they are described (which are substantiated by large scale shell model calculations) in some detail. (author)

  8. Simplified model for radioactive contaminant transport: the TRANSS code

    International Nuclear Information System (INIS)

    Simmons, C.S.; Kincaid, C.T.; Reisenauer, A.E.

    1986-09-01

    A simplified ground-water transport model called TRANSS was devised to estimate the rate of migration of a decaying radionuclide that is subject to sorption governed by a linear isotherm. Transport is modeled as a contaminant mass transmitted along a collection of streamlines constituting a streamtube, which connects a source release zone with an environmental arrival zone. The probability-weighted contaminant arrival distribution along each streamline is represented by an analytical solution of the one-dimensional advection-dispersion equation with constant velocity and dispersion coefficient. The appropriate effective constant velocity for each streamline is based on the exact travel time required to traverse a streamline with a known length. An assumption used in the model to facilitate the mathematical simplification is that transverse dispersion within a streamtube is negligible. Release of contaminant from a source is described in terms of a fraction-remaining curve provided as input information. However, an option included in the code is the calculation of a fraction-remaining curve based on four specialized release models: (1) constant release rate, (2) solubility-controlled release, (3) adsorption-controlled release, and (4) diffusion-controlled release from beneath an infiltration barrier. To apply the code, a user supplies only a certain minimal number of parameters: a probability-weighted list of travel times for streamlines, a local-scale dispersion coefficient, a sorption distribution coefficient, total initial radionuclide inventory, radioactive half-life, a release model choice, and size dimensions of the source. The code is intended to provide scoping estimates of contaminant transport and does not predict the evolution of a concentration distribution in a ground-water flow field. Moreover, the required travel times along streamlines must be obtained from a prior ground-water flow simulation

  9. Computationally efficient statistical differential equation modeling using homogenization

    Science.gov (United States)

    Hooten, Mevin B.; Garlick, Martha J.; Powell, James A.

    2013-01-01

    Statistical models using partial differential equations (PDEs) to describe dynamically evolving natural systems are appearing in the scientific literature with some regularity in recent years. Often such studies seek to characterize the dynamics of temporal or spatio-temporal phenomena such as invasive species, consumer-resource interactions, community evolution, and resource selection. Specifically, in the spatial setting, data are often available at varying spatial and temporal scales. Additionally, the necessary numerical integration of a PDE may be computationally infeasible over the spatial support of interest. We present an approach to impose computationally advantageous changes of support in statistical implementations of PDE models and demonstrate its utility through simulation using a form of PDE known as “ecological diffusion.” We also apply a statistical ecological diffusion model to a data set involving the spread of mountain pine beetle (Dendroctonus ponderosae) in Idaho, USA.

  10. Growth Curve Models and Applications : Indian Statistical Institute

    CERN Document Server

    2017-01-01

    Growth curve models in longitudinal studies are widely used to model population size, body height, biomass, fungal growth, and other variables in the biological sciences, but these statistical methods for modeling growth curves and analyzing longitudinal data also extend to general statistics, economics, public health, demographics, epidemiology, SQC, sociology, nano-biotechnology, fluid mechanics, and other applied areas.   There is no one-size-fits-all approach to growth measurement. The selected papers in this volume build on presentations from the GCM workshop held at the Indian Statistical Institute, Giridih, on March 28-29, 2016. They represent recent trends in GCM research on different subject areas, both theoretical and applied. This book includes tools and possibilities for further work through new techniques and modification of existing ones. The volume includes original studies, theoretical findings and case studies from a wide range of app lied work, and these contributions have been externally r...

  11. A critical flow model for the Cathena thermalhydraulic code

    International Nuclear Information System (INIS)

    Popov, N.K.; Hanna, B.N.

    1990-01-01

    The calculation of critical flow rate, e.g., of choked flow through a break, is required for simulating a loss of coolant transient in a reactor or reactor-like experimental facility. A model was developed to calculate the flow rate through the break for given geometrical parameters near the break and fluid parameters upstream of the break for ordinary water, as well as heavy water, with or without non- condensible gases. This model has been incorporated in the CATHENA, one-dimensional, two-fluid thermalhydraulic code. In the CATHENA code a standard staggered-mesh, finite-difference representation is used to solve the thermalhydraulic equations. This model compares the fluid mixture velocity, calculated using the CATHENA momentum equations, with a critical velocity. When the mixture velocity is smaller than the critical velocity, the flow is assumed to be subcritical, and the model remains passive. When the fluid mixture velocity is higher than the critical velocity, the model sets the fluid mixture velocity equal to the critical velocity. In this paper the critical velocity at a link (momentum cell) is first estimated separately for single-phase liquid, two- phase, or single-phase gas flow condition at the upstream node (mass/energy cell). In all three regimes non-condensible gas can be present in the flow. For single-phase liquid flow, the critical velocity is estimated using a Bernoulli- type of equation, the pressure at the link is estimated by the pressure undershoot method

  12. Statistical modelling for recurrent events: an application to sports injuries.

    Science.gov (United States)

    Ullah, Shahid; Gabbett, Tim J; Finch, Caroline F

    2014-09-01

    Injuries are often recurrent, with subsequent injuries influenced by previous occurrences and hence correlation between events needs to be taken into account when analysing such data. This paper compares five different survival models (Cox proportional hazards (CoxPH) model and the following generalisations to recurrent event data: Andersen-Gill (A-G), frailty, Wei-Lin-Weissfeld total time (WLW-TT) marginal, Prentice-Williams-Peterson gap time (PWP-GT) conditional models) for the analysis of recurrent injury data. Empirical evaluation and comparison of different models were performed using model selection criteria and goodness-of-fit statistics. Simulation studies assessed the size and power of each model fit. The modelling approach is demonstrated through direct application to Australian National Rugby League recurrent injury data collected over the 2008 playing season. Of the 35 players analysed, 14 (40%) players had more than 1 injury and 47 contact injuries were sustained over 29 matches. The CoxPH model provided the poorest fit to the recurrent sports injury data. The fit was improved with the A-G and frailty models, compared to WLW-TT and PWP-GT models. Despite little difference in model fit between the A-G and frailty models, in the interest of fewer statistical assumptions it is recommended that, where relevant, future studies involving modelling of recurrent sports injury data use the frailty model in preference to the CoxPH model or its other generalisations. The paper provides a rationale for future statistical modelling approaches for recurrent sports injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. SPIDERMAN: an open-source code to model phase curves and secondary eclipses

    Science.gov (United States)

    Louden, Tom; Kreidberg, Laura

    2018-03-01

    We present SPIDERMAN (Secondary eclipse and Phase curve Integrator for 2D tempERature MAppiNg), a fast code for calculating exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. Using a geometrical algorithm, the code solves exactly the area of sections of the disc of the planet that are occulted by the star. The code is written in C with a user-friendly Python interface, and is optimised to run quickly, with no loss in numerical precision. Approximately 1000 models can be generated per second in typical use, making Markov Chain Monte Carlo analyses practicable. The modular nature of the code allows easy comparison of the effect of multiple different brightness distributions for the dataset. As a test case we apply the code to archival data on the phase curve of WASP-43b using a physically motivated analytical model for the two dimensional brightness map. The model provides a good fit to the data; however, it overpredicts the temperature of the nightside. We speculate that this could be due to the presence of clouds on the nightside of the planet, or additional reflected light from the dayside. When testing a simple cloud model we find that the best fitting model has a geometric albedo of 0.32 ± 0.02 and does not require a hot nightside. We also test for variation of the map parameters as a function of wavelength and find no statistically significant correlations. SPIDERMAN is available for download at https://github.com/tomlouden/spiderman.

  14. SPIDERMAN: an open-source code to model phase curves and secondary eclipses

    Science.gov (United States)

    Louden, Tom; Kreidberg, Laura

    2018-06-01

    We present SPIDERMAN (Secondary eclipse and Phase curve Integrator for 2D tempERature MAppiNg), a fast code for calculating exoplanet phase curves and secondary eclipses with arbitrary surface brightness distributions in two dimensions. Using a geometrical algorithm, the code solves exactly the area of sections of the disc of the planet that are occulted by the star. The code is written in C with a user-friendly Python interface, and is optimized to run quickly, with no loss in numerical precision. Approximately 1000 models can be generated per second in typical use, making Markov Chain Monte Carlo analyses practicable. The modular nature of the code allows easy comparison of the effect of multiple different brightness distributions for the data set. As a test case, we apply the code to archival data on the phase curve of WASP-43b using a physically motivated analytical model for the two-dimensional brightness map. The model provides a good fit to the data; however, it overpredicts the temperature of the nightside. We speculate that this could be due to the presence of clouds on the nightside of the planet, or additional reflected light from the dayside. When testing a simple cloud model, we find that the best-fitting model has a geometric albedo of 0.32 ± 0.02 and does not require a hot nightside. We also test for variation of the map parameters as a function of wavelength and find no statistically significant correlations. SPIDERMAN is available for download at https://github.com/tomlouden/spiderman.

  15. Statistical Model of the 2001 Czech Census for Interactive Presentation

    Czech Academy of Sciences Publication Activity Database

    Grim, Jiří; Hora, Jan; Boček, Pavel; Somol, Petr; Pudil, Pavel

    Vol. 26, č. 4 (2010), s. 1-23 ISSN 0282-423X R&D Projects: GA ČR GA102/07/1594; GA MŠk 1M0572 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : Interactive statistical model * census data presentation * distribution mixtures * data modeling * EM algorithm * incomplete data * data reproduction accuracy * data mining Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.492, year: 2010 http://library.utia.cas.cz/separaty/2010/RO/grim-0350513.pdf

  16. The Statistical Modeling of the Trends Concerning the Romanian Population

    Directory of Open Access Journals (Sweden)

    Gabriela OPAIT

    2014-11-01

    Full Text Available This paper reflects the statistical modeling concerning the resident population in Romania, respectively the total of the romanian population, through by means of the „Least Squares Method”. Any country it develops by increasing of the population, respectively of the workforce, which is a factor of influence for the growth of the Gross Domestic Product (G.D.P.. The „Least Squares Method” represents a statistical technique for to determine the trend line of the best fit concerning a model.

  17. Modeling of fission product release in integral codes

    International Nuclear Information System (INIS)

    Obaidurrahman, K.; Raman, Rupak K.; Gaikwad, Avinash J.

    2014-01-01

    The Great Tohoku earthquake and tsunami that stroke the Fukushima-Daiichi nuclear power station in March 11, 2011 has intensified the needs of detailed nuclear safety research and with this objective all streams associated with severe accident phenomenology are being revisited thoroughly. The present paper would cover an overview of state of art FP release models being used, the important phenomenon considered in semi-mechanistic models and knowledge gaps in present FP release modeling. Capability of FP release module, ELSA of ASTEC integral code in appropriate prediction of FP release under several diversified core degraded conditions will also be demonstrated. Use of semi-mechanistic fission product release models at AERB in source-term estimation shall be briefed. (author)

  18. Applied systems ecology: models, data, and statistical methods

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, L L

    1976-01-01

    In this report, systems ecology is largely equated to mathematical or computer simulation modelling. The need for models in ecology stems from the necessity to have an integrative device for the diversity of ecological data, much of which is observational, rather than experimental, as well as from the present lack of a theoretical structure for ecology. Different objectives in applied studies require specialized methods. The best predictive devices may be regression equations, often non-linear in form, extracted from much more detailed models. A variety of statistical aspects of modelling, including sampling, are discussed. Several aspects of population dynamics and food-chain kinetics are described, and it is suggested that the two presently separated approaches should be combined into a single theoretical framework. It is concluded that future efforts in systems ecology should emphasize actual data and statistical methods, as well as modelling.

  19. Analyzing sickness absence with statistical models for survival data

    DEFF Research Database (Denmark)

    Christensen, Karl Bang; Andersen, Per Kragh; Smith-Hansen, Lars

    2007-01-01

    OBJECTIVES: Sickness absence is the outcome in many epidemiologic studies and is often based on summary measures such as the number of sickness absences per year. In this study the use of modern statistical methods was examined by making better use of the available information. Since sickness...... absence data deal with events occurring over time, the use of statistical models for survival data has been reviewed, and the use of frailty models has been proposed for the analysis of such data. METHODS: Three methods for analyzing data on sickness absences were compared using a simulation study...... involving the following: (i) Poisson regression using a single outcome variable (number of sickness absences), (ii) analysis of time to first event using the Cox proportional hazards model, and (iii) frailty models, which are random effects proportional hazards models. Data from a study of the relation...

  20. Improved Flow Modeling in Transient Reactor Safety Analysis Computer Codes

    International Nuclear Information System (INIS)

    Holowach, M.J.; Hochreiter, L.E.; Cheung, F.B.

    2002-01-01

    A method of accounting for fluid-to-fluid shear in between calculational cells over a wide range of flow conditions envisioned in reactor safety studies has been developed such that it may be easily implemented into a computer code such as COBRA-TF for more detailed subchannel analysis. At a given nodal height in the calculational model, equivalent hydraulic diameters are determined for each specific calculational cell using either laminar or turbulent velocity profiles. The velocity profile may be determined from a separate CFD (Computational Fluid Dynamics) analysis, experimental data, or existing semi-empirical relationships. The equivalent hydraulic diameter is then applied to the wall drag force calculation so as to determine the appropriate equivalent fluid-to-fluid shear caused by the wall for each cell based on the input velocity profile. This means of assigning the shear to a specific cell is independent of the actual wetted perimeter and flow area for the calculational cell. The use of this equivalent hydraulic diameter for each cell within a calculational subchannel results in a representative velocity profile which can further increase the accuracy and detail of heat transfer and fluid flow modeling within the subchannel when utilizing a thermal hydraulics systems analysis computer code such as COBRA-TF. Utilizing COBRA-TF with the flow modeling enhancement results in increased accuracy for a coarse-mesh model without the significantly greater computational and time requirements of a full-scale 3D (three-dimensional) transient CFD calculation. (authors)

  1. A Review of Modeling Bioelectrochemical Systems: Engineering and Statistical Aspects

    Directory of Open Access Journals (Sweden)

    Shuai Luo

    2016-02-01

    Full Text Available Bioelectrochemical systems (BES are promising technologies to convert organic compounds in wastewater to electrical energy through a series of complex physical-chemical, biological and electrochemical processes. Representative BES such as microbial fuel cells (MFCs have been studied and advanced for energy recovery. Substantial experimental and modeling efforts have been made for investigating the processes involved in electricity generation toward the improvement of the BES performance for practical applications. However, there are many parameters that will potentially affect these processes, thereby making the optimization of system performance hard to be achieved. Mathematical models, including engineering models and statistical models, are powerful tools to help understand the interactions among the parameters in BES and perform optimization of BES configuration/operation. This review paper aims to introduce and discuss the recent developments of BES modeling from engineering and statistical aspects, including analysis on the model structure, description of application cases and sensitivity analysis of various parameters. It is expected to serves as a compass for integrating the engineering and statistical modeling strategies to improve model accuracy for BES development.

  2. Auditory information coding by modeled cochlear nucleus neurons.

    Science.gov (United States)

    Wang, Huan; Isik, Michael; Borst, Alexander; Hemmert, Werner

    2011-06-01

    In this paper we use information theory to quantify the information in the output spike trains of modeled cochlear nucleus globular bushy cells (GBCs). GBCs are part of the sound localization pathway. They are known for their precise temporal processing, and they code amplitude modulations with high fidelity. Here we investigated the information transmission for a natural sound, a recorded vowel. We conclude that the maximum information transmission rate for a single neuron was close to 1,050 bits/s, which corresponds to a value of approximately 5.8 bits per spike. For quasi-periodic signals like voiced speech, the transmitted information saturated as word duration increased. In general, approximately 80% of the available information from the spike trains was transmitted within about 20 ms. Transmitted information for speech signals concentrated around formant frequency regions. The efficiency of neural coding was above 60% up to the highest temporal resolution we investigated (20 μs). The increase in transmitted information to that precision indicates that these neurons are able to code information with extremely high fidelity, which is required for sound localization. On the other hand, only 20% of the information was captured when the temporal resolution was reduced to 4 ms. As the temporal resolution of most speech recognition systems is limited to less than 10 ms, this massive information loss might be one of the reasons which are responsible for the lack of noise robustness of these systems.

  3. New robust statistical procedures for the polytomous logistic regression models.

    Science.gov (United States)

    Castilla, Elena; Ghosh, Abhik; Martin, Nirian; Pardo, Leandro

    2018-05-17

    This article derives a new family of estimators, namely the minimum density power divergence estimators, as a robust generalization of the maximum likelihood estimator for the polytomous logistic regression model. Based on these estimators, a family of Wald-type test statistics for linear hypotheses is introduced. Robustness properties of both the proposed estimators and the test statistics are theoretically studied through the classical influence function analysis. Appropriate real life examples are presented to justify the requirement of suitable robust statistical procedures in place of the likelihood based inference for the polytomous logistic regression model. The validity of the theoretical results established in the article are further confirmed empirically through suitable simulation studies. Finally, an approach for the data-driven selection of the robustness tuning parameter is proposed with empirical justifications. © 2018, The International Biometric Society.

  4. A model of R-D performance evaluation for Rate-Distortion-Complexity evaluation of H.264 video coding

    DEFF Research Database (Denmark)

    Wu, Mo; Forchhammer, Søren

    2007-01-01

    This paper considers a method for evaluation of Rate-Distortion-Complexity (R-D-C) performance of video coding. A statistical model of the transformed coefficients is used to estimate the Rate-Distortion (R-D) performance. A model frame work for rate, distortion and slope of the R-D curve for inter...... and intra frame is presented. Assumptions are given for analyzing an R-D model for fast R-D-C evaluation. The theoretical expressions are combined with H.264 video coding, and confirmed by experimental results. The complexity frame work is applied to the integer motion estimation....

  5. An improved steam generator model for the SASSYS code

    International Nuclear Information System (INIS)

    Pizzica, P.A.

    1989-01-01

    A new steam generator model has been developed for the SASSYS computer code, which analyzes accident conditions in a liquid metal cooled fast reactor. It has been incorporated into the new SASSYS balance-of-plant model but it can also function on a stand-alone basis. The steam generator can be used in a once-through mode, or a variant of the model can be used as a separate evaporator and a superheater with recirculation loop. The new model provides for an exact steady-state solution as well as the transient calculation. There was a need for a faster and more flexible model than the old steam generator model. The new model provides for more detail with its multi-mode treatment as opposed to the previous model's one node per region approach. Numerical instability problems which were the result of cell-centered spatial differencing, fully explicit time differencing, and the moving boundary treatment of the boiling crisis point in the boiling region have been reduced. This leads to an increase in speed as larger time steps can now be taken. The new model is an improvement in many respects. 2 refs., 3 figs

  6. Simple classical model for Fano statistics in radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, David V. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)], E-mail: David.Jordan@pnl.gov; Renholds, Andrea S.; Jaffe, John E.; Anderson, Kevin K.; Rene Corrales, L.; Peurrung, Anthony J. [Pacific Northwest National Laboratory, National Security Division - Radiological and Chemical Sciences Group PO Box 999, Richland, WA 99352 (United States)

    2008-02-01

    A simple classical model that captures the essential statistics of energy partitioning processes involved in the creation of information carriers (ICs) in radiation detectors is presented. The model pictures IC formation from a fixed amount of deposited energy in terms of the statistically analogous process of successively sampling water from a large, finite-volume container ('bathtub') with a small dipping implement ('shot or whiskey glass'). The model exhibits sub-Poisson variance in the distribution of the number of ICs generated (the 'Fano effect'). Elementary statistical analysis of the model clarifies the role of energy conservation in producing the Fano effect and yields Fano's prescription for computing the relative variance of the IC number distribution in terms of the mean and variance of the underlying, single-IC energy distribution. The partitioning model is applied to the development of the impact ionization cascade in semiconductor radiation detectors. It is shown that, in tandem with simple assumptions regarding the distribution of energies required to create an (electron, hole) pair, the model yields an energy-independent Fano factor of 0.083, in accord with the lower end of the range of literature values reported for silicon and high-purity germanium. The utility of this simple picture as a diagnostic tool for guiding or constraining more detailed, 'microscopic' physical models of detector material response to ionizing radiation is discussed.

  7. Application of a Statistical Linear Time-Varying System Model of High Grazing Angle Sea Clutter for Computing Interference Power

    Science.gov (United States)

    2017-12-08

    STATISTICAL LINEAR TIME-VARYING SYSTEM MODEL OF HIGH GRAZING ANGLE SEA CLUTTER FOR COMPUTING INTERFERENCE POWER 1. INTRODUCTION Statistical linear time...beam. We can approximate one of the sinc factors using the Dirichlet kernel to facilitate computation of the integral in (6) as follows: ∣∣∣∣sinc(WB...plotted in Figure 4. The resultant autocorrelation can then be found by substituting (18) into (28). The Python code used to generate Figures 1-4 is found

  8. Nuclear Level Densities for Modeling Nuclear Reactions: An Efficient Approach Using Statistical Spectroscopy: Annual Scientific Report July 2004

    International Nuclear Information System (INIS)

    Calvin W. Johnson

    2004-01-01

    The general goal of the project is to develop and implement computer codes and input files to compute nuclear densities of state. Such densities are important input into calculations of statistical neutron capture, and are difficult to access experimentally. In particular, we will focus on calculating densities for nuclides in the mass range A ?????? 50 - 100. We use statistical spectroscopy, a moments method based upon a microscopic framework, the interacting shell model. In this report we present our progress for the past year

  9. Development of 3D statistical mandible models for cephalometric measurements

    International Nuclear Information System (INIS)

    Kim, Sung Goo; Yi, Won Jin; Hwang, Soon Jung; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il; Hong, Helen; Yoo, Ji Hyun

    2012-01-01

    The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a 3D surface model, which was parameterized to establish correspondence between different individual surfaces. The principal component analysis (PCA) applied to all mandible shapes produced a mean model and characteristic models of variation. The cephalometric parameters were measured directly from the mean models to evaluate the 3D shape models. The means of the measured parameters were compared with those from other conventional studies. The male and female 3D statistical mean models were developed from 23 individual mandibles, respectively. The male and female characteristic shapes of variation produced by PCA showed a large variability included in the individual mandibles. The cephalometric measurements from the developed models were very close to those from some conventional studies. We described the construction of 3D mandibular shape models and presented the application of the 3D mandibular template in cephalometric measurements. Optimal reference models determined from variations produced by PCA could be used for craniofacial patients with various types of skeletal shape.

  10. Development of 3D statistical mandible models for cephalometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Goo; Yi, Won Jin; Hwang, Soon Jung; Choi, Soon Chul; Lee, Sam Sun; Heo, Min Suk; Huh, Kyung Hoe; Kim, Tae Il [School of Dentistry, Seoul National University, Seoul (Korea, Republic of); Hong, Helen; Yoo, Ji Hyun [Division of Multimedia Engineering, Seoul Women' s University, Seoul (Korea, Republic of)

    2012-09-15

    The aim of this study was to provide sex-matched three-dimensional (3D) statistical shape models of the mandible, which would provide cephalometric parameters for 3D treatment planning and cephalometric measurements in orthognathic surgery. The subjects used to create the 3D shape models of the mandible included 23 males and 23 females. The mandibles were segmented semi-automatically from 3D facial CT images. Each individual mandible shape was reconstructed as a 3D surface model, which was parameterized to establish correspondence between different individual surfaces. The principal component analysis (PCA) applied to all mandible shapes produced a mean model and characteristic models of variation. The cephalometric parameters were measured directly from the mean models to evaluate the 3D shape models. The means of the measured parameters were compared with those from other conventional studies. The male and female 3D statistical mean models were developed from 23 individual mandibles, respectively. The male and female characteristic shapes of variation produced by PCA showed a large variability included in the individual mandibles. The cephalometric measurements from the developed models were very close to those from some conventional studies. We described the construction of 3D mandibular shape models and presented the application of the 3D mandibular template in cephalometric measurements. Optimal reference models determined from variations produced by PCA could be used for craniofacial patients with various types of skeletal shape.

  11. Modeling of the CTEx subcritical unit using MCNPX code

    International Nuclear Information System (INIS)

    Santos, Avelino; Silva, Ademir X. da; Rebello, Wilson F.; Cunha, Victor L. Lassance

    2011-01-01

    The present work aims at simulating the subcritical unit of Army Technology Center (CTEx) namely ARGUS pile (subcritical uranium-graphite arrangement) by using the computational code MCNPX. Once such modeling is finished, it could be used in k-effective calculations for systems using natural uranium as fuel, for instance. ARGUS is a subcritical assembly which uses reactor-grade graphite as moderator of fission neutrons and metallic uranium fuel rods with aluminum cladding. The pile is driven by an Am-Be spontaneous neutron source. In order to achieve a higher value for k eff , a higher concentration of U235 can be proposed, provided it safely remains below one. (author)

  12. A new computer code for discrete fracture network modelling

    Science.gov (United States)

    Xu, Chaoshui; Dowd, Peter

    2010-03-01

    The authors describe a comprehensive software package for two- and three-dimensional stochastic rock fracture simulation using marked point processes. Fracture locations can be modelled by a Poisson, a non-homogeneous, a cluster or a Cox point process; fracture geometries and properties are modelled by their respective probability distributions. Virtual sampling tools such as plane, window and scanline sampling are included in the software together with a comprehensive set of statistical tools including histogram analysis, probability plots, rose diagrams and hemispherical projections. The paper describes in detail the theoretical basis of the implementation and provides a case study in rock fracture modelling to demonstrate the application of the software.

  13. Status of emergency spray modelling in the integral code ASTEC

    International Nuclear Information System (INIS)

    Plumecocq, W.; Passalacqua, R.

    2001-01-01

    Containment spray systems are emergency systems that would be used in very low probability events which may lead to severe accidents in Light Water Reactors. In most cases, the primary function of the spray would be to remove heat and condense steam in order to reduce pressure and temperature in the containment building. Spray would also wash out fission products (aerosols and gaseous species) from the containment atmosphere. The efficiency of the spray system in the containment depressurization as well as in the removal of aerosols, during a severe accident, depends on the evolution of the spray droplet size distribution with the height in the containment, due to kinetic and thermal relaxation, gravitational agglomeration and mass transfer with the gas. A model has been developed taking into account all of these phenomena. This model has been implemented in the ASTEC code with a validation of the droplets relaxation against the CARAIDAS experiment (IPSN). Applications of this modelling to a PWR 900, during a severe accident, with special emphasis on the effect of spray on containment hydrogen distribution have been performed in multi-compartment configuration with the ASTEC V0.3 code. (author)

  14. Statistical sampling and modelling for cork oak and eucalyptus stands

    NARCIS (Netherlands)

    Paulo, M.J.

    2002-01-01

    This thesis focuses on the use of modern statistical methods to solve problems on sampling, optimal cutting time and agricultural modelling in Portuguese cork oak and eucalyptus stands. The results are contained in five chapters that have been submitted for publication

  15. Two-dimensional models in statistical mechanics and field theory

    International Nuclear Information System (INIS)

    Koberle, R.

    1980-01-01

    Several features of two-dimensional models in statistical mechanics and Field theory, such as, lattice quantum chromodynamics, Z(N), Gross-Neveu and CP N-1 are discussed. The problems of confinement and dynamical mass generation are also analyzed. (L.C.) [pt

  16. Statistical Modeling of Energy Production by Photovoltaic Farms

    Czech Academy of Sciences Publication Activity Database

    Brabec, Marek; Pelikán, Emil; Krč, Pavel; Eben, Kryštof; Musílek, P.

    2011-01-01

    Roč. 5, č. 9 (2011), s. 785-793 ISSN 1934-8975 Grant - others:GA AV ČR(CZ) M100300904 Institutional research plan: CEZ:AV0Z10300504 Keywords : electrical energy * solar energy * numerical weather prediction model * nonparametric regression * beta regression Subject RIV: BB - Applied Statistics, Operational Research

  17. Model selection for contingency tables with algebraic statistics

    NARCIS (Netherlands)

    Krampe, A.; Kuhnt, S.; Gibilisco, P.; Riccimagno, E.; Rogantin, M.P.; Wynn, H.P.

    2009-01-01

    Goodness-of-fit tests based on chi-square approximations are commonly used in the analysis of contingency tables. Results from algebraic statistics combined with MCMC methods provide alternatives to the chi-square approximation. However, within a model selection procedure usually a large number of

  18. Syntactic discriminative language model rerankers for statistical machine translation

    NARCIS (Netherlands)

    Carter, S.; Monz, C.

    2011-01-01

    This article describes a method that successfully exploits syntactic features for n-best translation candidate reranking using perceptrons. We motivate the utility of syntax by demonstrating the superior performance of parsers over n-gram language models in differentiating between Statistical

  19. Using statistical compatibility to derive advanced probabilistic fatigue models

    Czech Academy of Sciences Publication Activity Database

    Fernández-Canteli, A.; Castillo, E.; López-Aenlle, M.; Seitl, Stanislav

    2010-01-01

    Roč. 2, č. 1 (2010), s. 1131-1140 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] Institutional research plan: CEZ:AV0Z20410507 Keywords : Fatigue models * Statistical compatibility * Functional equations Subject RIV: JL - Materials Fatigue, Friction Mechanics

  20. Statistical properties of the nuclear shell-model Hamiltonian

    International Nuclear Information System (INIS)

    Dias, H.; Hussein, M.S.; Oliveira, N.A. de

    1986-01-01

    The statistical properties of realistic nuclear shell-model Hamiltonian are investigated in sd-shell nuclei. The probability distribution of the basic-vector amplitude is calculated and compared with the Porter-Thomas distribution. Relevance of the results to the calculation of the giant resonance mixing parameter is pointed out. (Author) [pt

  1. Statistical shape model with random walks for inner ear segmentation

    DEFF Research Database (Denmark)

    Pujadas, Esmeralda Ruiz; Kjer, Hans Martin; Piella, Gemma

    2016-01-01

    is required. We propose a new framework for segmentation of micro-CT cochlear images using random walks combined with a statistical shape model (SSM). The SSM allows us to constrain the less contrasted areas and ensures valid inner ear shape outputs. Additionally, a topology preservation method is proposed...

  2. Hierarchical modelling for the environmental sciences statistical methods and applications

    CERN Document Server

    Clark, James S

    2006-01-01

    New statistical tools are changing the way in which scientists analyze and interpret data and models. Hierarchical Bayes and Markov Chain Monte Carlo methods for analysis provide a consistent framework for inference and prediction where information is heterogeneous and uncertain, processes are complicated, and responses depend on scale. Nowhere are these methods more promising than in the environmental sciences.

  3. A Statistical Model for the Estimation of Natural Gas Consumption

    Czech Academy of Sciences Publication Activity Database

    Vondráček, Jiří; Pelikán, Emil; Konár, Ondřej; Čermáková, Jana; Eben, Kryštof; Malý, Marek; Brabec, Marek

    2008-01-01

    Roč. 85, c. 5 (2008), s. 362-370 ISSN 0306-2619 R&D Projects: GA AV ČR 1ET400300513 Institutional research plan: CEZ:AV0Z10300504 Keywords : nonlinear regression * gas consumption modeling Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.371, year: 2008

  4. 49 CFR 41.120 - Acceptable model codes.

    Science.gov (United States)

    2010-10-01

    ... 1991 International Conference of Building Officials (ICBO) Uniform Building Code, published by the... Supplement to the Building Officials and Code Administrators International (BOCA) National Building Code, published by the Building Officials and Code Administrators, 4051 West Flossmoor Rd., Country Club Hills...

  5. Statistical learning modeling method for space debris photometric measurement

    Science.gov (United States)

    Sun, Wenjing; Sun, Jinqiu; Zhang, Yanning; Li, Haisen

    2016-03-01

    Photometric measurement is an important way to identify the space debris, but the present methods of photometric measurement have many constraints on star image and need complex image processing. Aiming at the problems, a statistical learning modeling method for space debris photometric measurement is proposed based on the global consistency of the star image, and the statistical information of star images is used to eliminate the measurement noises. First, the known stars on the star image are divided into training stars and testing stars. Then, the training stars are selected as the least squares fitting parameters to construct the photometric measurement model, and the testing stars are used to calculate the measurement accuracy of the photometric measurement model. Experimental results show that, the accuracy of the proposed photometric measurement model is about 0.1 magnitudes.

  6. Workshop on Model Uncertainty and its Statistical Implications

    CERN Document Server

    1988-01-01

    In this book problems related to the choice of models in such diverse fields as regression, covariance structure, time series analysis and multinomial experiments are discussed. The emphasis is on the statistical implications for model assessment when the assessment is done with the same data that generated the model. This is a problem of long standing, notorious for its difficulty. Some contributors discuss this problem in an illuminating way. Others, and this is a truly novel feature, investigate systematically whether sample re-use methods like the bootstrap can be used to assess the quality of estimators or predictors in a reliable way given the initial model uncertainty. The book should prove to be valuable for advanced practitioners and statistical methodologists alike.

  7. Statistical models describing the energy signature of buildings

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Thavlov, Anders

    2010-01-01

    Approximately one third of the primary energy production in Denmark is used for heating in buildings. Therefore efforts to accurately describe and improve energy performance of the building mass are very important. For this purpose statistical models describing the energy signature of a building, i...... or varying energy prices. The paper will give an overview of statistical methods and applied models based on experiments carried out in FlexHouse, which is an experimental building in SYSLAB, Risø DTU. The models are of different complexity and can provide estimates of physical quantities such as UA......-values, time constants of the building, and other parameters related to the heat dynamics. A method for selecting the most appropriate model for a given building is outlined and finally a perspective of the applications is given. Aknowledgements to the Danish Energy Saving Trust and the Interreg IV ``Vind i...

  8. Improved air ventilation rate estimation based on a statistical model

    International Nuclear Information System (INIS)

    Brabec, M.; Jilek, K.

    2004-01-01

    A new approach to air ventilation rate estimation from CO measurement data is presented. The approach is based on a state-space dynamic statistical model, allowing for quick and efficient estimation. Underlying computations are based on Kalman filtering, whose practical software implementation is rather easy. The key property is the flexibility of the model, allowing various artificial regimens of CO level manipulation to be treated. The model is semi-parametric in nature and can efficiently handle time-varying ventilation rate. This is a major advantage, compared to some of the methods which are currently in practical use. After a formal introduction of the statistical model, its performance is demonstrated on real data from routine measurements. It is shown how the approach can be utilized in a more complex situation of major practical relevance, when time-varying air ventilation rate and radon entry rate are to be estimated simultaneously from concurrent radon and CO measurements

  9. Influential input parameters for reflood model of MARS code

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Deog Yeon; Bang, Young Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-10-15

    Best Estimate (BE) calculation has been more broadly used in nuclear industries and regulations to reduce the significant conservatism for evaluating Loss of Coolant Accident (LOCA). Reflood model has been identified as one of the problems in BE calculation. The objective of the Post BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) program of OECD/NEA is to make progress the issue of the quantification of the uncertainty of the physical models in system thermal hydraulic codes, by considering an experimental result especially for reflood. It is important to establish a methodology to identify and select the parameters influential to the response of reflood phenomena following Large Break LOCA. For this aspect, a reference calculation and sensitivity analysis to select the dominant influential parameters for FEBA experiment are performed.

  10. Modeling the PUSPATI TRIGA Reactor using MCNP code

    International Nuclear Information System (INIS)

    Mohamad Hairie Rabir; Mark Dennis Usang; Naim Syauqi Hamzah; Julia Abdul Karim; Mohd Amin Sharifuldin Salleh

    2012-01-01

    The 1 MW TRIGA MARK II research reactor at Malaysian Nuclear Agency achieved initial criticality on June 28, 1982. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes. This paper describes the reactor parameters calculation for the PUSPATI TRIGA REACTOR (RTP); focusing on the application of the developed reactor 3D model for criticality calculation, analysis of power and neutron flux distribution and depletion study of TRIGA fuel. The 3D continuous energy Monte Carlo code MCNP was used to develop a versatile and accurate full model of the TRIGA reactor. The model represents in detailed all important components of the core and shielding with literally no physical approximation. (author)

  11. Bayesian Nonparametric Statistical Inference for Shock Models and Wear Processes.

    Science.gov (United States)

    1979-12-01

    also note that the results in Section 2 do not depend on the support of F .) This shock model have been studied by Esary, Marshall and Proschan (1973...Barlow and Proschan (1975), among others. The analogy of the shock model in risk and acturial analysis has been given by BUhlmann (1970, Chapter 2... Mathematical Statistics, Vol. 4, pp. 894-906. Billingsley, P. (1968), CONVERGENCE OF PROBABILITY MEASURES, John Wiley, New York. BUhlmann, H. (1970

  12. Statistical and RBF NN models : providing forecasts and risk assessment

    OpenAIRE

    Marček, Milan

    2009-01-01

    Forecast accuracy of economic and financial processes is a popular measure for quantifying the risk in decision making. In this paper, we develop forecasting models based on statistical (stochastic) methods, sometimes called hard computing, and on a soft method using granular computing. We consider the accuracy of forecasting models as a measure for risk evaluation. It is found that the risk estimation process based on soft methods is simplified and less critical to the question w...

  13. A Statistical Model for Synthesis of Detailed Facial Geometry

    OpenAIRE

    Golovinskiy, Aleksey; Matusik, Wojciech; Pfister, Hanspeter; Rusinkiewicz, Szymon; Funkhouser, Thomas

    2006-01-01

    Detailed surface geometry contributes greatly to the visual realism of 3D face models. However, acquiring high-resolution face geometry is often tedious and expensive. Consequently, most face models used in games, virtual reality, or computer vision look unrealistically smooth. In this paper, we introduce a new statistical technique for the analysis and synthesis of small three-dimensional facial features, such as wrinkles and pores. We acquire high-resolution face geometry for people across ...

  14. Statistical and Biophysical Models for Predicting Total and Outdoor Water Use in Los Angeles

    Science.gov (United States)

    Mini, C.; Hogue, T. S.; Pincetl, S.

    2012-04-01

    Modeling water demand is a complex exercise in the choice of the functional form, techniques and variables to integrate in the model. The goal of the current research is to identify the determinants that control total and outdoor residential water use in semi-arid cities and to utilize that information in the development of statistical and biophysical models that can forecast spatial and temporal urban water use. The City of Los Angeles is unique in its highly diverse socio-demographic, economic and cultural characteristics across neighborhoods, which introduces significant challenges in modeling water use. Increasing climate variability also contributes to uncertainties in water use predictions in urban areas. Monthly individual water use records were acquired from the Los Angeles Department of Water and Power (LADWP) for the 2000 to 2010 period. Study predictors of residential water use include socio-demographic, economic, climate and landscaping variables at the zip code level collected from US Census database. Climate variables are estimated from ground-based observations and calculated at the centroid of each zip code by inverse-distance weighting method. Remotely-sensed products of vegetation biomass and landscape land cover are also utilized. Two linear regression models were developed based on the panel data and variables described: a pooled-OLS regression model and a linear mixed effects model. Both models show income per capita and the percentage of landscape areas in each zip code as being statistically significant predictors. The pooled-OLS model tends to over-estimate higher water use zip codes and both models provide similar RMSE values.Outdoor water use was estimated at the census tract level as the residual between total water use and indoor use. This residual is being compared with the output from a biophysical model including tree and grass cover areas, climate variables and estimates of evapotranspiration at very high spatial resolution. A

  15. Model comparisons of the reactive burn model SURF in three ASC codes

    Energy Technology Data Exchange (ETDEWEB)

    Whitley, Von Howard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Stalsberg, Krista Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Reichelt, Benjamin Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Shipley, Sarah Jayne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-12

    A study of the SURF reactive burn model was performed in FLAG, PAGOSA and XRAGE. In this study, three different shock-to-detonation transition experiments were modeled in each code. All three codes produced similar model results for all the experiments modeled and at all resolutions. Buildup-to-detonation time, particle velocities and resolution dependence of the models was notably similar between the codes. Given the current PBX 9502 equations of state and SURF calibrations, each code is equally capable of predicting the correct detonation time and distance when impacted by a 1D impactor at pressures ranging from 10-16 GPa, as long as the resolution of the mesh is not too coarse.

  16. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  17. WE-A-201-02: Modern Statistical Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Niemierko, A.

    2016-06-15

    Chris Marshall: Memorial Introduction Donald Edmonds Herbert Jr., or Don to his colleagues and friends, exemplified the “big tent” vision of medical physics, specializing in Applied Statistics and Dynamical Systems theory. He saw, more clearly than most, that “Making models is the difference between doing science and just fooling around [ref Woodworth, 2004]”. Don developed an interest in chemistry at school by “reading a book” - a recurring theme in his story. He was awarded a Westinghouse Science scholarship and attended the Carnegie Institute of Technology (later Carnegie Mellon University) where his interest turned to physics and led to a BS in Physics after transfer to Northwestern University. After (voluntary) service in the Navy he earned his MS in Physics from the University of Oklahoma, which led him to Johns Hopkins University in Baltimore to pursue a PhD. The early death of his wife led him to take a salaried position in the Physics Department of Colorado College in Colorado Springs so as to better care for their young daughter. There, a chance invitation from Dr. Juan del Regato to teach physics to residents at the Penrose Cancer Hospital introduced him to Medical Physics, and he decided to enter the field. He received his PhD from the University of London (UK) under Prof. Joseph Rotblat, where I first met him, and where he taught himself statistics. He returned to Penrose as a clinical medical physicist, also largely self-taught. In 1975 he formalized an evolving interest in statistical analysis as Professor of Radiology and Head of the Division of Physics and Statistics at the College of Medicine of the University of South Alabama in Mobile, AL where he remained for the rest of his career. He also served as the first Director of their Bio-Statistics and Epidemiology Core Unit working in part on a sickle-cell disease. After retirement he remained active as Professor Emeritus. Don served for several years as a consultant to the Nuclear

  18. WE-A-201-02: Modern Statistical Modeling

    International Nuclear Information System (INIS)

    Niemierko, A.

    2016-01-01

    Chris Marshall: Memorial Introduction Donald Edmonds Herbert Jr., or Don to his colleagues and friends, exemplified the “big tent” vision of medical physics, specializing in Applied Statistics and Dynamical Systems theory. He saw, more clearly than most, that “Making models is the difference between doing science and just fooling around [ref Woodworth, 2004]”. Don developed an interest in chemistry at school by “reading a book” - a recurring theme in his story. He was awarded a Westinghouse Science scholarship and attended the Carnegie Institute of Technology (later Carnegie Mellon University) where his interest turned to physics and led to a BS in Physics after transfer to Northwestern University. After (voluntary) service in the Navy he earned his MS in Physics from the University of Oklahoma, which led him to Johns Hopkins University in Baltimore to pursue a PhD. The early death of his wife led him to take a salaried position in the Physics Department of Colorado College in Colorado Springs so as to better care for their young daughter. There, a chance invitation from Dr. Juan del Regato to teach physics to residents at the Penrose Cancer Hospital introduced him to Medical Physics, and he decided to enter the field. He received his PhD from the University of London (UK) under Prof. Joseph Rotblat, where I first met him, and where he taught himself statistics. He returned to Penrose as a clinical medical physicist, also largely self-taught. In 1975 he formalized an evolving interest in statistical analysis as Professor of Radiology and Head of the Division of Physics and Statistics at the College of Medicine of the University of South Alabama in Mobile, AL where he remained for the rest of his career. He also served as the first Director of their Bio-Statistics and Epidemiology Core Unit working in part on a sickle-cell disease. After retirement he remained active as Professor Emeritus. Don served for several years as a consultant to the Nuclear

  19. An exercise in model validation: Comparing univariate statistics and Monte Carlo-based multivariate statistics

    International Nuclear Information System (INIS)

    Weathers, J.B.; Luck, R.; Weathers, J.W.

    2009-01-01

    The complexity of mathematical models used by practicing engineers is increasing due to the growing availability of sophisticated mathematical modeling tools and ever-improving computational power. For this reason, the need to define a well-structured process for validating these models against experimental results has become a pressing issue in the engineering community. This validation process is partially characterized by the uncertainties associated with the modeling effort as well as the experimental results. The net impact of the uncertainties on the validation effort is assessed through the 'noise level of the validation procedure', which can be defined as an estimate of the 95% confidence uncertainty bounds for the comparison error between actual experimental results and model-based predictions of the same quantities of interest. Although general descriptions associated with the construction of the noise level using multivariate statistics exists in the literature, a detailed procedure outlining how to account for the systematic and random uncertainties is not available. In this paper, the methodology used to derive the covariance matrix associated with the multivariate normal pdf based on random and systematic uncertainties is examined, and a procedure used to estimate this covariance matrix using Monte Carlo analysis is presented. The covariance matrices are then used to construct approximate 95% confidence constant probability contours associated with comparison error results for a practical example. In addition, the example is used to show the drawbacks of using a first-order sensitivity analysis when nonlinear local sensitivity coefficients exist. Finally, the example is used to show the connection between the noise level of the validation exercise calculated using multivariate and univariate statistics.

  20. An exercise in model validation: Comparing univariate statistics and Monte Carlo-based multivariate statistics

    Energy Technology Data Exchange (ETDEWEB)

    Weathers, J.B. [Shock, Noise, and Vibration Group, Northrop Grumman Shipbuilding, P.O. Box 149, Pascagoula, MS 39568 (United States)], E-mail: James.Weathers@ngc.com; Luck, R. [Department of Mechanical Engineering, Mississippi State University, 210 Carpenter Engineering Building, P.O. Box ME, Mississippi State, MS 39762-5925 (United States)], E-mail: Luck@me.msstate.edu; Weathers, J.W. [Structural Analysis Group, Northrop Grumman Shipbuilding, P.O. Box 149, Pascagoula, MS 39568 (United States)], E-mail: Jeffrey.Weathers@ngc.com

    2009-11-15

    The complexity of mathematical models used by practicing engineers is increasing due to the growing availability of sophisticated mathematical modeling tools and ever-improving computational power. For this reason, the need to define a well-structured process for validating these models against experimental results has become a pressing issue in the engineering community. This validation process is partially characterized by the uncertainties associated with the modeling effort as well as the experimental results. The net impact of the uncertainties on the validation effort is assessed through the 'noise level of the validation procedure', which can be defined as an estimate of the 95% confidence uncertainty bounds for the comparison error between actual experimental results and model-based predictions of the same quantities of interest. Although general descriptions associated with the construction of the noise level using multivariate statistics exists in the literature, a detailed procedure outlining how to account for the systematic and random uncertainties is not available. In this paper, the methodology used to derive the covariance matrix associated with the multivariate normal pdf based on random and systematic uncertainties is examined, and a procedure used to estimate this covariance matrix using Monte Carlo analysis is presented. The covariance matrices are then used to construct approximate 95% confidence constant probability contours associated with comparison error results for a practical example. In addition, the example is used to show the drawbacks of using a first-order sensitivity analysis when nonlinear local sensitivity coefficients exist. Finally, the example is used to show the connection between the noise level of the validation exercise calculated using multivariate and univariate statistics.

  1. Computational modeling of neural activities for statistical inference

    CERN Document Server

    Kolossa, Antonio

    2016-01-01

    This authored monograph supplies empirical evidence for the Bayesian brain hypothesis by modeling event-related potentials (ERP) of the human electroencephalogram (EEG) during successive trials in cognitive tasks. The employed observer models are useful to compute probability distributions over observable events and hidden states, depending on which are present in the respective tasks. Bayesian model selection is then used to choose the model which best explains the ERP amplitude fluctuations. Thus, this book constitutes a decisive step towards a better understanding of the neural coding and computing of probabilities following Bayesian rules. The target audience primarily comprises research experts in the field of computational neurosciences, but the book may also be beneficial for graduate students who want to specialize in this field. .

  2. Comprehensive nuclear model calculations: theory and use of the GNASH code

    International Nuclear Information System (INIS)

    Young, P.G.; Arthur, E.D.; Chadwick, M.B.

    1998-01-01

    The theory and operation of the nuclear reaction theory computer code GNASH is described, and detailed instructions are presented for code users. The code utilizes statistical Hauser-Feshbach theory with full angular momentum conservation and includes corrections for preequilibrium effects. This version is expected to be applicable for incident particle energies between 1 keV and 150 MeV and for incident photon energies to 140 MeV. General features of the code, the nuclear models that are utilized, input parameters needed to perform calculations, and the output quantities from typical problems are described in detail. A number of new features compared to previous versions are described in this manual, including the following: (1) inclusion of multiple preequilibrium processes, which allows the model calculations to be performed above 50 MeV; (2) a capability to calculate photonuclear reactions; (3) a method for determining the spin distribution of residual nuclei following preequilibrium reactions; and (4) a description of how preequilibrium spectra calculated with the FKK theory can be utilized (the 'FKK-GNASH' approach). The computational structure of the code and the subroutines and functions that are called are summarized as well. Two detailed examples are considered: 14-MeV neutrons incident on 93 Nb and 12-MeV neutrons incident on 238 U. The former example illustrates a typical calculation aimed at determining neutron, proton, and alpha emission spectra from 14-MeV reactions, and the latter example demonstrates use of the fission model in GNASH. Results from a variety of other cases are illustrated. (author)

  3. Computer modelling of statistical properties of SASE FEL radiation

    International Nuclear Information System (INIS)

    Saldin, E. L.; Schneidmiller, E. A.; Yurkov, M. V.

    1997-01-01

    The paper describes an approach to computer modelling of statistical properties of the radiation from self amplified spontaneous emission free electron laser (SASE FEL). The present approach allows one to calculate the following statistical properties of the SASE FEL radiation: time and spectral field correlation functions, distribution of the fluctuations of the instantaneous radiation power, distribution of the energy in the electron bunch, distribution of the radiation energy after monochromator installed at the FEL amplifier exit and the radiation spectrum. All numerical results presented in the paper have been calculated for the 70 nm SASE FEL at the TESLA Test Facility being under construction at DESY

  4. C code generation applied to nonlinear model predictive control for an artificial pancreas

    DEFF Research Database (Denmark)

    Boiroux, Dimitri; Jørgensen, John Bagterp

    2017-01-01

    This paper presents a method to generate C code from MATLAB code applied to a nonlinear model predictive control (NMPC) algorithm. The C code generation uses the MATLAB Coder Toolbox. It can drastically reduce the time required for development compared to a manual porting of code from MATLAB to C...

  5. GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science

    Science.gov (United States)

    Caron, L.; Ivins, E. R.; Larour, E.; Adhikari, S.; Nilsson, J.; Blewitt, G.

    2018-03-01

    We provide a new analysis of glacial isostatic adjustment (GIA) with the goal of assembling the model uncertainty statistics required for rigorously extracting trends in surface mass from the Gravity Recovery and Climate Experiment (GRACE) mission. Such statistics are essential for deciphering sea level, ocean mass, and hydrological changes because the latter signals can be relatively small (≤2 mm/yr water height equivalent) over very large regions, such as major ocean basins and watersheds. With abundant new >7 year continuous measurements of vertical land motion (VLM) reported by Global Positioning System stations on bedrock and new relative sea level records, our new statistical evaluation of GIA uncertainties incorporates Bayesian methodologies. A unique aspect of the method is that both the ice history and 1-D Earth structure vary through a total of 128,000 forward models. We find that best fit models poorly capture the statistical inferences needed to correctly invert for lower mantle viscosity and that GIA uncertainty exceeds the uncertainty ascribed to trends from 14 years of GRACE data in polar regions.

  6. A Model Fit Statistic for Generalized Partial Credit Model

    Science.gov (United States)

    Liang, Tie; Wells, Craig S.

    2009-01-01

    Investigating the fit of a parametric model is an important part of the measurement process when implementing item response theory (IRT), but research examining it is limited. A general nonparametric approach for detecting model misfit, introduced by J. Douglas and A. S. Cohen (2001), has exhibited promising results for the two-parameter logistic…

  7. Risk prediction model: Statistical and artificial neural network approach

    Science.gov (United States)

    Paiman, Nuur Azreen; Hariri, Azian; Masood, Ibrahim

    2017-04-01

    Prediction models are increasingly gaining popularity and had been used in numerous areas of studies to complement and fulfilled clinical reasoning and decision making nowadays. The adoption of such models assist physician's decision making, individual's behavior, and consequently improve individual outcomes and the cost-effectiveness of care. The objective of this paper is to reviewed articles related to risk prediction model in order to understand the suitable approach, development and the validation process of risk prediction model. A qualitative review of the aims, methods and significant main outcomes of the nineteen published articles that developed risk prediction models from numerous fields were done. This paper also reviewed on how researchers develop and validate the risk prediction models based on statistical and artificial neural network approach. From the review done, some methodological recommendation in developing and validating the prediction model were highlighted. According to studies that had been done, artificial neural network approached in developing the prediction model were more accurate compared to statistical approach. However currently, only limited published literature discussed on which approach is more accurate for risk prediction model development.

  8. Kinetic models of gene expression including non-coding RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r

    2011-03-15

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  9. On boundary layer modelling using the ASTEC code

    International Nuclear Information System (INIS)

    Smith, B.L.

    1991-07-01

    The modelling of fluid boundary layers adjacent to non-slip, heated surface using the ASTEC code is described. The pricipal boundary layer characteristics are derived using simple dimensional arguments and these are developed into criteria for optimum placement of the computational mesh to achieve realistic simulation. In particular, the need for externally-imposed drag and heat transfer correlations as a function of the local mesh concentration is discussed in the context of both laminar and turbulent flow conditions. Special emphasis is placed in the latter case on the (k-ε) turbulence model, which is standard in the code. As far as possible, the analyses are pursued from first principles, so that no comprehensive knowledge of the history of the subject is required for the general ASTEC user to derive practical advice from the document. Some attention is paid to the use of heat transfer correlations for internal solid/fluid surfaces, whose treatment is not straightforward in ASTEC. It is shown that three formulations are possible to effect the heat transfer, called Explicit, Jacobian and Implicit. The particular advantages and disadvantages of each are discussed with regard to numerical stability and computational efficiency. (author) 18 figs., 1 tab., 39 refs

  10. Physicochemical analog for modeling superimposed and coded memories

    Science.gov (United States)

    Ensanian, Minas

    1992-07-01

    The mammalian brain is distinguished by a life-time of memories being stored within the same general region of physicochemical space, and having two extraordinary features. First, memories to varying degrees are superimposed, as well as coded. Second, instantaneous recall of past events can often be affected by relatively simple, and seemingly unrelated sensory clues. For the purposes of attempting to mathematically model such complex behavior, and for gaining additional insights, it would be highly advantageous to be able to simulate or mimic similar behavior in a nonbiological entity where some analogical parameters of interest can reasonably be controlled. It has recently been discovered that in nonlinear accumulative metal fatigue memories (related to mechanical deformation) can be superimposed and coded in the crystal lattice, and that memory, that is, the total number of stress cycles can be recalled (determined) by scanning not the surfaces but the `edges' of the objects. The new scanning technique known as electrotopography (ETG) now makes the state space modeling of metallic networks possible. The author provides an overview of the new field and outlines the areas that are of immediate interest to the science of artificial neural networks.

  11. HTR fuel modelling with the ATLAS code. Thermal mechanical behaviour and fission product release assessment

    International Nuclear Information System (INIS)

    Guillermier, Pierre; Daniel, Lucile; Gauthier, Laurent

    2009-01-01

    To support AREVA NP in its design on HTR reactor and its HTR fuel R and D program, the Commissariat a l'Energie Atomique developed the ATLAS code (Advanced Thermal mechanicaL Analysis Software) with the objectives: - to quantify, with a statistical approach, the failed particle fraction and fission product release of a HTR fuel core under normal and accidental conditions (compact or pebble design). - to simulate irradiation tests or benchmark in order to compare measurements or others code results with ATLAS evaluation. These two objectives aim at qualifying the code in order to predict fuel behaviour and to design fuel according to core performance and safety requirements. A statistical calculation uses numerous deterministic calculations. The finite element method is used for these deterministic calculations, in order to be able to choose among three types of meshes, depending on what must be simulated: - One-dimensional calculation of one single particle, for intact particles or particles with fully debonded layers. - Two-dimensional calculations of one single particle, in the case of particles which are cracked, partially debonded or shaped in various ways. - Three-dimensional calculations of a whole compact slice, in order to simulate the interactions between the particles, the thermal gradient and the transport of fission products up to the coolant. - Some calculations of a whole pebble, using homogenization methods are being studied. The temperatures, displacements, stresses, strains and fission product concentrations are calculated on each mesh of the model. Statistical calculations are done using these results, taking into account ceramic failure mode, but also fabrication tolerances and material property uncertainties, variations of the loads (fluence, temperature, burn-up) and core data parameters. The statistical method used in ATLAS is the importance sampling. The model of migration of long-lived fission products in the coated particle and more

  12. Statistical model selection with “Big Data”

    Directory of Open Access Journals (Sweden)

    Jurgen A. Doornik

    2015-12-01

    Full Text Available Big Data offer potential benefits for statistical modelling, but confront problems including an excess of false positives, mistaking correlations for causes, ignoring sampling biases and selecting by inappropriate methods. We consider the many important requirements when searching for a data-based relationship using Big Data, and the possible role of Autometrics in that context. Paramount considerations include embedding relationships in general initial models, possibly restricting the number of variables to be selected over by non-statistical criteria (the formulation problem, using good quality data on all variables, analyzed with tight significance levels by a powerful selection procedure, retaining available theory insights (the selection problem while testing for relationships being well specified and invariant to shifts in explanatory variables (the evaluation problem, using a viable approach that resolves the computational problem of immense numbers of possible models.

  13. Experimental, statistical, and biological models of radon carcinogenesis

    International Nuclear Information System (INIS)

    Cross, F.T.

    1991-09-01

    Risk models developed for underground miners have not been consistently validated in studies of populations exposed to indoor radon. Imprecision in risk estimates results principally from differences between exposures in mines as compared to domestic environments and from uncertainties about the interaction between cigarette-smoking and exposure to radon decay products. Uncertainties in extrapolating miner data to domestic exposures can be reduced by means of a broad-based health effects research program that addresses the interrelated issues of exposure, respiratory tract dose, carcinogenesis (molecular/cellular and animal studies, plus developing biological and statistical models), and the relationship of radon to smoking and other copollutant exposures. This article reviews experimental animal data on radon carcinogenesis observed primarily in rats at Pacific Northwest Laboratory. Recent experimental and mechanistic carcinogenesis models of exposures to radon, uranium ore dust, and cigarette smoke are presented with statistical analyses of animal data. 20 refs., 1 fig

  14. Multimesonic decays of charmonium states in the statistical quark model

    International Nuclear Information System (INIS)

    Montvay, I.; Toth, J.D.

    1978-01-01

    The data known at present of multimesonic decays of chi and psi states are fitted in a statistical quark model, in which the matrix elements are assumed to be constant and resonances as well as both strong and second order electromagnetic processes are taken into account. The experimental data are well reproduced by the model. Unknown branching ratios for the rest of multimesonic channels are predicted. The fit leaves about 40% for baryonic and radiative channels in the case of J/psi(3095). The fitted parameters of the J/psi decays are used to predict the mesonic decays of the pseudoscalar eta c. The statistical quark model seems to allow the calculation of competitive multiparticle processes for the studied decays. (D.P.)

  15. SoS contract verification using statistical model checking

    Directory of Open Access Journals (Sweden)

    Alessandro Mignogna

    2013-11-01

    Full Text Available Exhaustive formal verification for systems of systems (SoS is impractical and cannot be applied on a large scale. In this paper we propose to use statistical model checking for efficient verification of SoS. We address three relevant aspects for systems of systems: 1 the model of the SoS, which includes stochastic aspects; 2 the formalization of the SoS requirements in the form of contracts; 3 the tool-chain to support statistical model checking for SoS. We adapt the SMC technique for application to heterogeneous SoS. We extend the UPDM/SysML specification language to express the SoS requirements that the implemented strategies over the SoS must satisfy. The requirements are specified with a new contract language specifically designed for SoS, targeting a high-level English- pattern language, but relying on an accurate semantics given by the standard temporal logics. The contracts are verified against the UPDM/SysML specification using the Statistical Model Checker (SMC PLASMA combined with the simulation engine DESYRE, which integrates heterogeneous behavioral models through the functional mock-up interface (FMI standard. The tool-chain allows computing an estimation of the satisfiability of the contracts by the SoS. The results help the system architect to trade-off different solutions to guide the evolution of the SoS.

  16. 7 CFR Exhibit E to Subpart A of... - Voluntary National Model Building Codes

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Voluntary National Model Building Codes E Exhibit E... National Model Building Codes The following documents address the health and safety aspects of buildings and related structures and are voluntary national model building codes as defined in § 1924.4(h)(2) of...

  17. Structural reliability in context of statistical uncertainties and modelling discrepancies

    International Nuclear Information System (INIS)

    Pendola, Maurice

    2000-01-01

    Structural reliability methods have been largely improved during the last years and have showed their ability to deal with uncertainties during the design stage or to optimize the functioning and the maintenance of industrial installations. They are based on a mechanical modeling of the structural behavior according to the considered failure modes and on a probabilistic representation of input parameters of this modeling. In practice, only limited statistical information is available to build the probabilistic representation and different sophistication levels of the mechanical modeling may be introduced. Thus, besides the physical randomness, other uncertainties occur in such analyses. The aim of this work is triple: 1. at first, to propose a methodology able to characterize the statistical uncertainties due to the limited number of data in order to take them into account in the reliability analyses. The obtained reliability index measures the confidence in the structure considering the statistical information available. 2. Then, to show a methodology leading to reliability results evaluated from a particular mechanical modeling but by using a less sophisticated one. The objective is then to decrease the computational efforts required by the reference modeling. 3. Finally, to propose partial safety factors that are evolving as a function of the number of statistical data available and as a function of the sophistication level of the mechanical modeling that is used. The concepts are illustrated in the case of a welded pipe and in the case of a natural draught cooling tower. The results show the interest of the methodologies in an industrial context. [fr

  18. A Census of Statistics Requirements at U.S. Journalism Programs and a Model for a "Statistics for Journalism" Course

    Science.gov (United States)

    Martin, Justin D.

    2017-01-01

    This essay presents data from a census of statistics requirements and offerings at all 4-year journalism programs in the United States (N = 369) and proposes a model of a potential course in statistics for journalism majors. The author proposes that three philosophies underlie a statistics course for journalism students. Such a course should (a)…

  19. Isotopic modelling using the ENIGMA-B fuel performance code

    International Nuclear Information System (INIS)

    Rossiter, G.D.; Cook, P.M.A.; Weston, R.

    2001-01-01

    A number of experimental programmes by BNFL and other MOX fabricators have now shown that the in-pile performance of MOX fuel is generally similar to that of conventional UO 2 fuel. Models based on UO 2 fuel experience form a good basis for a description of MOX fuel behaviour. However, an area where the performance of MOX fuel is sufficiently different from that of UO 2 to warrant model changes is in the radial power and burnup profile. The differences in radial power and burnup profile arise from the presence of significant concentrations of plutonium in MOX fuel, at beginning of life, and their subsequent evolution with burnup. Amongst other effects, plutonium has a greater neutron absorption cross-section than uranium. This paper focuses on the development of a new model for the radial power and burnup profile within a UO 2 or MOX fuel rod, in which the underlying fissile isotope concentration distributions are tracked during irradiation. The new model has been incorporated into the ENIGMA-B fuel performance code and has been extended to track the isotopic concentrations of the fission gases, xenon and krypton. The calculated distributions have been validated against results from rod puncture measurements and electron probe micro-analysis (EPMA) linescans, performed during the M501 post irradiation examination (PIE) programme. The predicted gas inventory of the fuel/clad gap is compared with the isotopic composition measured during rod puncture and the measured radial distributions of burnup (from neodymium measurements) and plutonium in the fuel are compared with the calculated distributions. It is shown that there is good agreement between the code predictions and the measurements. (author)

  20. A statistical model for radar images of agricultural scenes

    Science.gov (United States)

    Frost, V. S.; Shanmugan, K. S.; Holtzman, J. C.; Stiles, J. A.

    1982-01-01

    The presently derived and validated statistical model for radar images containing many different homogeneous fields predicts the probability density functions of radar images of entire agricultural scenes, thereby allowing histograms of large scenes composed of a variety of crops to be described. Seasat-A SAR images of agricultural scenes are accurately predicted by the model on the basis of three assumptions: each field has the same SNR, all target classes cover approximately the same area, and the true reflectivity characterizing each individual target class is a uniformly distributed random variable. The model is expected to be useful in the design of data processing algorithms and for scene analysis using radar images.

  1. Discrete ellipsoidal statistical BGK model and Burnett equations

    Science.gov (United States)

    Zhang, Yu-Dong; Xu, Ai-Guo; Zhang, Guang-Cai; Chen, Zhi-Hua; Wang, Pei

    2018-06-01

    A new discrete Boltzmann model, the discrete ellipsoidal statistical Bhatnagar-Gross-Krook (ESBGK) model, is proposed to simulate nonequilibrium compressible flows. Compared with the original discrete BGK model, the discrete ES-BGK has a flexible Prandtl number. For the discrete ES-BGK model in the Burnett level, two kinds of discrete velocity model are introduced and the relations between nonequilibrium quantities and the viscous stress and heat flux in the Burnett level are established. The model is verified via four benchmark tests. In addition, a new idea is introduced to recover the actual distribution function through the macroscopic quantities and their space derivatives. The recovery scheme works not only for discrete Boltzmann simulation but also for hydrodynamic ones, for example, those based on the Navier-Stokes or the Burnett equations.

  2. Statistics of a neuron model driven by asymmetric colored noise.

    Science.gov (United States)

    Müller-Hansen, Finn; Droste, Felix; Lindner, Benjamin

    2015-02-01

    Irregular firing of neurons can be modeled as a stochastic process. Here we study the perfect integrate-and-fire neuron driven by dichotomous noise, a Markovian process that jumps between two states (i.e., possesses a non-Gaussian statistics) and exhibits nonvanishing temporal correlations (i.e., represents a colored noise). Specifically, we consider asymmetric dichotomous noise with two different transition rates. Using a first-passage-time formulation, we derive exact expressions for the probability density and the serial correlation coefficient of the interspike interval (time interval between two subsequent neural action potentials) and the power spectrum of the spike train. Furthermore, we extend the model by including additional Gaussian white noise, and we give approximations for the interspike interval (ISI) statistics in this case. Numerical simulations are used to validate the exact analytical results for pure dichotomous noise, and to test the approximations of the ISI statistics when Gaussian white noise is included. The results may help to understand how correlations and asymmetry of noise and signals in nerve cells shape neuronal firing statistics.

  3. Spatio-temporal statistical models with applications to atmospheric processes

    International Nuclear Information System (INIS)

    Wikle, C.K.

    1996-01-01

    This doctoral dissertation is presented as three self-contained papers. An introductory chapter considers traditional spatio-temporal statistical methods used in the atmospheric sciences from a statistical perspective. Although this section is primarily a review, many of the statistical issues considered have not been considered in the context of these methods and several open questions are posed. The first paper attempts to determine a means of characterizing the semiannual oscillation (SAO) spatial variation in the northern hemisphere extratropical height field. It was discovered that the midlatitude SAO in 500hPa geopotential height could be explained almost entirely as a result of spatial and temporal asymmetries in the annual variation of stationary eddies. It was concluded that the mechanism for the SAO in the northern hemisphere is a result of land-sea contrasts. The second paper examines the seasonal variability of mixed Rossby-gravity waves (MRGW) in lower stratospheric over the equatorial Pacific. Advanced cyclostationary time series techniques were used for analysis. It was found that there are significant twice-yearly peaks in MRGW activity. Analyses also suggested a convergence of horizontal momentum flux associated with these waves. In the third paper, a new spatio-temporal statistical model is proposed that attempts to consider the influence of both temporal and spatial variability. This method is mainly concerned with prediction in space and time, and provides a spatially descriptive and temporally dynamic model

  4. Solar radiation data - statistical analysis and simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Mustacchi, C; Cena, V; Rocchi, M; Haghigat, F

    1984-01-01

    The activities consisted in collecting meteorological data on magnetic tape for ten european locations (with latitudes ranging from 42/sup 0/ to 56/sup 0/ N), analysing the multi-year sequences, developing mathematical models to generate synthetic sequences having the same statistical properties of the original data sets, and producing one or more Short Reference Years (SRY's) for each location. The meteorological parameters examinated were (for all the locations) global + diffuse radiation on horizontal surface, dry bulb temperature, sunshine duration. For some of the locations additional parameters were available, namely, global, beam and diffuse radiation on surfaces other than horizontal, wet bulb temperature, wind velocity, cloud type, cloud cover. The statistical properties investigated were mean, variance, autocorrelation, crosscorrelation with selected parameters, probability density function. For all the meteorological parameters, various mathematical models were built: linear regression, stochastic models of the AR and the DAR type. In each case, the model with the best statistical behaviour was selected for the production of a SRY for the relevant parameter/location.

  5. A statistical model for porous structure of rocks

    Institute of Scientific and Technical Information of China (English)

    JU Yang; YANG YongMing; SONG ZhenDuo; XU WenJing

    2008-01-01

    The geometric features and the distribution properties of pores in rocks were In-vestigated by means of CT scanning tests of sandstones. The centroidal coordl-nares of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob-ability density functions upon which the random distribution of pore position, dis-tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex-amine the stress distribution, the pattern of element failure and the inoaculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.

  6. A statistical model for porous structure of rocks

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The geometric features and the distribution properties of pores in rocks were in- vestigated by means of CT scanning tests of sandstones. The centroidal coordi- nates of pores, the statistic characterristics of pore distance, quantity, size and their probability density functions were formulated in this paper. The Monte Carlo method and the random number generating algorithm were employed to generate two series of random numbers with the desired statistic characteristics and prob- ability density functions upon which the random distribution of pore position, dis- tance and quantity were determined. A three-dimensional porous structural model of sandstone was constructed based on the FLAC3D program and the information of the pore position and distribution that the series of random numbers defined. On the basis of modelling, the Brazil split tests of rock discs were carried out to ex- amine the stress distribution, the pattern of element failure and the inosculation of failed elements. The simulation indicated that the proposed model was consistent with the realistic porous structure of rock in terms of their statistic properties of pores and geometric similarity. The built-up model disclosed the influence of pores on the stress distribution, failure mode of material elements and the inosculation of failed elements.

  7. Can spatial statistical river temperature models be transferred between catchments?

    Science.gov (United States)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across

  8. Impurity seeding in ASDEX upgrade tokamak modeled by COREDIV code

    Energy Technology Data Exchange (ETDEWEB)

    Galazka, K.; Ivanova-Stanik, I.; Czarnecka, A.; Zagoerski, R. [Institute of Plasma Physics and Laser Microfusion, Warsaw (Poland); Bernert, M.; Kallenbach, A. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Collaboration: ASDEX Upgrade Team

    2016-08-15

    The self-consistent COREDIV code is used to simulate discharges in a tokamak plasma, especially the influence of impurities during nitrogen and argon seeding on the key plasma parameters. The calculations are performed with and without taking into account the W prompt redeposition in the divertor area and are compared to the experimental results acquired on ASDEX Upgrade tokamak (shots 29254 and 29257). For both impurities the modeling shows a better agreement with the experiment in the case without prompt redeposition. It is attributed to higher average tungsten concentration, which on the other hand seriously exceeds the experimental value. By turning the prompt redeposition process on, the W concentration is lowered, what, in turn, results in underestimation of the radiative power losses. By analyzing the influence of the transport coefficients on the radiative power loss and average W concentration it is concluded that the way to compromise the opposing tendencies is to include the edge-localized mode flushing mechanism into the code, which dominates the experimental particle and energy balance. Also performing the calculations with both anomalous and neoclassical diffusion transport mechanisms included is suggested. (copyright 2016 The Authors. Contributions to Plasma Physics published by Wiley-VCH Verlag GmbH and Co. KGaA Weinheim. This)

  9. Modelling guidelines for core exit temperature simulations with system codes

    Energy Technology Data Exchange (ETDEWEB)

    Freixa, J., E-mail: jordi.freixa-terradas@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Martínez-Quiroga, V., E-mail: victor.martinez@nortuen.com [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain); Zerkak, O., E-mail: omar.zerkak@psi.ch [Paul Scherrer Institut (PSI), 5232 Villigen (Switzerland); Reventós, F., E-mail: francesc.reventos@upc.edu [Department of Physics and Nuclear Engineering, Technical University of Catalonia (UPC) (Spain)

    2015-05-15

    Highlights: • Core exit temperature is used in PWRs as an indication of core heat up. • Modelling guidelines of CET response with system codes. • Modelling of heat transfer processes in the core and UP regions. - Abstract: Core exit temperature (CET) measurements play an important role in the sequence of actions under accidental conditions in pressurized water reactors (PWR). Given the difficulties in placing measurements in the core region, CET readings are used as criterion for the initiation of accident management (AM) procedures because they can indicate a core heat up scenario. However, the CET responses have some limitation in detecting inadequate core cooling and core uncovery simply because the measurement is not placed inside the core. Therefore, it is of main importance in the field of nuclear safety for PWR power plants to assess the capabilities of system codes for simulating the relation between the CET and the peak cladding temperature (PCT). The work presented in this paper intends to address this open question by making use of experimental work at integral test facilities (ITF) where experiments related to the evolution of the CET and the PCT during transient conditions have been carried out. In particular, simulations of two experiments performed at the ROSA/LSTF and PKL facilities are presented. The two experiments are part of a counterpart exercise between the OECD/NEA ROSA-2 and OECD/NEA PKL-2 projects. The simulations are used to derive guidelines in how to correctly reproduce the CET response during a core heat up scenario. Three aspects have been identified to be of main importance: (1) the need for a 3-dimensional representation of the core and Upper Plenum (UP) regions in order to model the heterogeneity of the power zones and axial areas, (2) the detailed representation of the active and passive heat structures, and (3) the use of simulated thermocouples instead of steam temperatures to represent the CET readings.

  10. Probing the exchange statistics of one-dimensional anyon models

    Science.gov (United States)

    Greschner, Sebastian; Cardarelli, Lorenzo; Santos, Luis

    2018-05-01

    We propose feasible scenarios for revealing the modified exchange statistics in one-dimensional anyon models in optical lattices based on an extension of the multicolor lattice-depth modulation scheme introduced in [Phys. Rev. A 94, 023615 (2016), 10.1103/PhysRevA.94.023615]. We show that the fast modulation of a two-component fermionic lattice gas in the presence a magnetic field gradient, in combination with additional resonant microwave fields, allows for the quantum simulation of hardcore anyon models with periodic boundary conditions. Such a semisynthetic ring setup allows for realizing an interferometric arrangement sensitive to the anyonic statistics. Moreover, we show as well that simple expansion experiments may reveal the formation of anomalously bound pairs resulting from the anyonic exchange.

  11. Statistical inference to advance network models in epidemiology.

    Science.gov (United States)

    Welch, David; Bansal, Shweta; Hunter, David R

    2011-03-01

    Contact networks are playing an increasingly important role in the study of epidemiology. Most of the existing work in this area has focused on considering the effect of underlying network structure on epidemic dynamics by using tools from probability theory and computer simulation. This work has provided much insight on the role that heterogeneity in host contact patterns plays on infectious disease dynamics. Despite the important understanding afforded by the probability and simulation paradigm, this approach does not directly address important questions about the structure of contact networks such as what is the best network model for a particular mode of disease transmission, how parameter values of a given model should be estimated, or how precisely the data allow us to estimate these parameter values. We argue that these questions are best answered within a statistical framework and discuss the role of statistical inference in estimating contact networks from epidemiological data. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. CODE's new solar radiation pressure model for GNSS orbit determination

    Science.gov (United States)

    Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A.

    2015-08-01

    The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009-2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft's solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which

  13. TASS/SMR Code Topical Report for SMART Plant, Vol. I: Code Structure, System Models, and Solution Methods

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Young Jong; Kim, Soo Hyoung; Kim, See Darl (and others)

    2008-10-15

    The TASS/SMR code has been developed with domestic technologies for the safety analysis of the SMART plant which is an integral type pressurized water reactor. It can be applied to the analysis of design basis accidents including non-LOCA (loss of coolant accident) and LOCA of the SMART plant. The TASS/SMR code can be applied to any plant regardless of the structural characteristics of a reactor since the code solves the same governing equations for both the primary and secondary system. The code has been developed to meet the requirements of the safety analysis code. This report describes the overall structure of the TASS/SMR, input processing, and the processes of a steady state and transient calculations. In addition, basic differential equations, finite difference equations, state relationships, and constitutive models are described in the report. First, the conservation equations, a discretization process for numerical analysis, search method for state relationship are described. Then, a core power model, heat transfer models, physical models for various components, and control and trip models are explained.

  14. A Realistic Model under which the Genetic Code is Optimal

    NARCIS (Netherlands)

    Buhrman, H.; van der Gulik, P.T.S.; Klau, G.W.; Schaffner, C.; Speijer, D.; Stougie, L.

    2013-01-01

    The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By

  15. Simplified modeling and code usage in the PASC-3 code system by the introduction of a programming environment

    International Nuclear Information System (INIS)

    Pijlgroms, B.J.; Oppe, J.; Oudshoorn, H.L.; Slobben, J.

    1991-06-01

    A brief description is given of the PASC-3 (Petten-AMPX-SCALE) Reactor Physics code system and associated UNIPASC work environment. The PASC-3 code system is used for criticality and reactor calculations and consists of a selection from the Oak Ridge National Laboratory AMPX-SCALE-3 code collection complemented with a number of additional codes and nuclear data bases. The original codes have been adapted to run under the UNIX operating system. The recommended nuclear data base is a complete 219 group cross section library derived from JEF-1 of which some benchmark results are presented. By the addition of the UNIPASC work environment the usage of the code system is greatly simplified. Complex chains of programs can easily be coupled together to form a single job. In addition, the model parameters can be represented by variables instead of literal values which enhances the readability and may improve the integrity of the code inputs. (author). 8 refs.; 6 figs.; 1 tab

  16. Statistical models of a gas diffusion electrode: II. Current resistent

    Energy Technology Data Exchange (ETDEWEB)

    Proksch, D B; Winsel, O W

    1965-07-01

    The authors describe an apparatus for measuring the flow resistance of gas diffusion electrodes which is a mechanical analog of the Wheatstone bridge for measuring electric resistance. The flow resistance of a circular DSK electrode sheet, consisting of two covering layers and a working layer between them, was measured as a function of the gas pressure. While the pressure first was increased and then decreased, a hysteresis occurred, which is discussed and explained by a statistical model of a porous electrode.

  17. A Statistical Model for Soliton Particle Interaction in Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans; Truelsen, J.

    1986-01-01

    A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....

  18. Statistical model of a gas diffusion electrode. III. Photomicrograph study

    Energy Technology Data Exchange (ETDEWEB)

    Winsel, A W

    1965-12-01

    A linear section through a gas diffusion electrode produces a certain distribution function of sinews with the pores. From this distribution function some qualities of the pore structure are derived, and an automatic device to determine the distribution function is described. With a statistical model of a gas diffusion electrode the behavior of a DSK electrode is discussed and compared with earlier measurements of the flow resistance of this material.

  19. A statistical model of structure functions and quantum chromodynamics

    International Nuclear Information System (INIS)

    Mac, E.; Ugaz, E.; Universidad Nacional de Ingenieria, Lima

    1989-01-01

    We consider a model for the x-dependence of the quark distributions in the proton. Within the context of simple statistical assumptions, we obtain the parton densities in the infinite momentum frame. In a second step lowest order QCD corrections are incorporated to these distributions. Crude, but reasonable, agreement with experiment is found for the F 2 , valence and q, anti q distributions for x> or approx.0.2. (orig.)

  20. Modeling the basic superconductor thermodynamical-statistical characteristics

    International Nuclear Information System (INIS)

    Palenskis, V.; Maknys, K.

    1999-01-01

    In accordance with the Landau second-order phase transition and other thermodynamical-statistical relations for superconductors, and using the energy gap as an order parameter in the electron free energy presentation, the fundamental characteristics of electrons, such as the free energy, the total energy, the energy gap, the entropy, and the heat capacity dependences on temperature were obtained. The obtained modeling results, in principle, well reflect the basic low- and high-temperature superconductor characteristics

  1. Environmental radionuclide concentrations: statistical model to determine uniformity of distribution

    International Nuclear Information System (INIS)

    Cawley, C.N.; Fenyves, E.J.; Spitzberg, D.B.; Wiorkowski, J.; Chehroudi, M.T.

    1980-01-01

    In the evaluation of data from environmental sampling and measurement, a basic question is whether the radionuclide (or pollutant) is distributed uniformly. Since physical measurements have associated errors, it is inappropriate to consider the measurements alone in this determination. Hence, a statistical model has been developed. It consists of a weighted analysis of variance with subsequent t-tests between weighted and independent means. A computer program to perform the calculations is included

  2. Software Code Smell Prediction Model Using Shannon, Rényi and Tsallis Entropies

    Directory of Open Access Journals (Sweden)

    Aakanshi Gupta

    2018-05-01

    Full Text Available The current era demands high quality software in a limited time period to achieve new goals and heights. To meet user requirements, the source codes undergo frequent modifications which can generate the bad smells in software that deteriorate the quality and reliability of software. Source code of the open source software is easily accessible by any developer, thus frequently modifiable. In this paper, we have proposed a mathematical model to predict the bad smells using the concept of entropy as defined by the Information Theory. Open-source software Apache Abdera is taken into consideration for calculating the bad smells. Bad smells are collected using a detection tool from sub components of the Apache Abdera project, and different measures of entropy (Shannon, Rényi and Tsallis entropy. By applying non-linear regression techniques, the bad smells that can arise in the future versions of software are predicted based on the observed bad smells and entropy measures. The proposed model has been validated using goodness of fit parameters (prediction error, bias, variation, and Root Mean Squared Prediction Error (RMSPE. The values of model performance statistics ( R 2 , adjusted R 2 , Mean Square Error (MSE and standard error also justify the proposed model. We have compared the results of the prediction model with the observed results on real data. The results of the model might be helpful for software development industries and future researchers.

  3. Statistical and non statistical models for delayed neutron emission: applications to nuclei near A = 90

    International Nuclear Information System (INIS)

    De Oliveira, Z.M.

    1980-01-01

    A detailed analysis of the simple statistical model description for delayed neutron emission of 87 Br, 137 I, 85 As and 135 Sb has been performed. In agreement with experimental findings, structure in the #betta#-strength function is required to reproduce the envelope of the neutron spectrum from 87 Br. For 85 As and 135 Sb the model is found incapable of simultaneously reproducing envelopes of delayed neutron spectra and neutron branching ratios to excited states in the final nuclei for any choice of #betta#-strength function. The results indicate that partial widths for neutron emission are not compatible with optical-model transmission coefficients. The simple shell model with pairing is shown to qualitatively describe the main features of the #betta#-strength functions for decay of 87 Br and 91 93 95 97 Rb. It is found that the location of apparent resonances in the experimental data are in rough agreement with the location of centroids of strength calculated with this model. An extension of the shell model picture which includes the Gamow-Teller residual interaction is used to investigate decay properties of 84 86 As, 86 92 Br and 88 102 Rb. For a realistic choice of interaction strength, the half lives of these isotopes are fairly well reproduced and semiquantitative agreement with experimental #betta#-strength functions is found. Delayed neutron emission probabilities are reproduced for precursors nearer stability with systematic deviations being observed for the heavier nuclei. Contrary to the assumption of a structureless Gamow-Teller giant resonance as embodied gross theory of #betta#-decay, we find that structures in the tail of the Gamow-Teller giant resonances are expected which strongly influence the decay properties of nuclides in this region

  4. Statistical methods for mechanistic model validation: Salt Repository Project

    International Nuclear Information System (INIS)

    Eggett, D.L.

    1988-07-01

    As part of the Department of Energy's Salt Repository Program, Pacific Northwest Laboratory (PNL) is studying the emplacement of nuclear waste containers in a salt repository. One objective of the SRP program is to develop an overall waste package component model which adequately describes such phenomena as container corrosion, waste form leaching, spent fuel degradation, etc., which are possible in the salt repository environment. The form of this model will be proposed, based on scientific principles and relevant salt repository conditions with supporting data. The model will be used to predict the future characteristics of the near field environment. This involves several different submodels such as the amount of time it takes a brine solution to contact a canister in the repository, how long it takes a canister to corrode and expose its contents to the brine, the leach rate of the contents of the canister, etc. These submodels are often tested in a laboratory and should be statistically validated (in this context, validate means to demonstrate that the model adequately describes the data) before they can be incorporated into the waste package component model. This report describes statistical methods for validating these models. 13 refs., 1 fig., 3 tabs

  5. Estimating preferential flow in karstic aquifers using statistical mixed models.

    Science.gov (United States)

    Anaya, Angel A; Padilla, Ingrid; Macchiavelli, Raul; Vesper, Dorothy J; Meeker, John D; Alshawabkeh, Akram N

    2014-01-01

    Karst aquifers are highly productive groundwater systems often associated with conduit flow. These systems can be highly vulnerable to contamination, resulting in a high potential for contaminant exposure to humans and ecosystems. This work develops statistical models to spatially characterize flow and transport patterns in karstified limestone and determines the effect of aquifer flow rates on these patterns. A laboratory-scale Geo-HydroBed model is used to simulate flow and transport processes in a karstic limestone unit. The model consists of stainless steel tanks containing a karstified limestone block collected from a karst aquifer formation in northern Puerto Rico. Experimental work involves making a series of flow and tracer injections, while monitoring hydraulic and tracer response spatially and temporally. Statistical mixed models (SMMs) are applied to hydraulic data to determine likely pathways of preferential flow in the limestone units. The models indicate a highly heterogeneous system with dominant, flow-dependent preferential flow regions. Results indicate that regions of preferential flow tend to expand at higher groundwater flow rates, suggesting a greater volume of the system being flushed by flowing water at higher rates. Spatial and temporal distribution of tracer concentrations indicates the presence of conduit-like and diffuse flow transport in the system, supporting the notion of both combined transport mechanisms in the limestone unit. The temporal response of tracer concentrations at different locations in the model coincide with, and confirms the preferential flow distribution generated with the SMMs used in the study. © 2013, National Ground Water Association.

  6. A generalized statistical model for the size distribution of wealth

    International Nuclear Information System (INIS)

    Clementi, F; Gallegati, M; Kaniadakis, G

    2012-01-01

    In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature. (paper)

  7. A generalized statistical model for the size distribution of wealth

    Science.gov (United States)

    Clementi, F.; Gallegati, M.; Kaniadakis, G.

    2012-12-01

    In a recent paper in this journal (Clementi et al 2009 J. Stat. Mech. P02037), we proposed a new, physically motivated, distribution function for modeling individual incomes, having its roots in the framework of the κ-generalized statistical mechanics. The performance of the κ-generalized distribution was checked against real data on personal income for the United States in 2003. In this paper we extend our previous model so as to be able to account for the distribution of wealth. Probabilistic functions and inequality measures of this generalized model for wealth distribution are obtained in closed form. In order to check the validity of the proposed model, we analyze the US household wealth distributions from 1984 to 2009 and conclude an excellent agreement with the data that is superior to any other model already known in the literature.

  8. Statistical model of natural stimuli predicts edge-like pooling of spatial frequency channels in V2

    Directory of Open Access Journals (Sweden)

    Gutmann Michael

    2005-02-01

    Full Text Available Abstract Background It has been shown that the classical receptive fields of simple and complex cells in the primary visual cortex emerge from the statistical properties of natural images by forcing the cell responses to be maximally sparse or independent. We investigate how to learn features beyond the primary visual cortex from the statistical properties of modelled complex-cell outputs. In previous work, we showed that a new model, non-negative sparse coding, led to the emergence of features which code for contours of a given spatial frequency band. Results We applied ordinary independent component analysis to modelled outputs of complex cells that span different frequency bands. The analysis led to the emergence of features which pool spatially coherent across-frequency activity in the modelled primary visual cortex. Thus, the statistically optimal way of processing complex-cell outputs abandons separate frequency channels, while preserving and even enhancing orientation tuning and spatial localization. As a technical aside, we found that the non-negativity constraint is not necessary: ordinary independent component analysis produces essentially the same results as our previous work. Conclusion We propose that the pooling that emerges allows the features to code for realistic low-level image features related to step edges. Further, the results prove the viability of statistical modelling of natural images as a framework that produces quantitative predictions of visual processing.

  9. A MODEL BUILDING CODE ARTICLE ON FALLOUT SHELTERS WITH RECOMMENDATIONS FOR INCLUSION OF REQUIREMENTS FOR FALLOUT SHELTER CONSTRUCTION IN FOUR NATIONAL MODEL BUILDING CODES.

    Science.gov (United States)

    American Inst. of Architects, Washington, DC.

    A MODEL BUILDING CODE FOR FALLOUT SHELTERS WAS DRAWN UP FOR INCLUSION IN FOUR NATIONAL MODEL BUILDING CODES. DISCUSSION IS GIVEN OF FALLOUT SHELTERS WITH RESPECT TO--(1) NUCLEAR RADIATION, (2) NATIONAL POLICIES, AND (3) COMMUNITY PLANNING. FALLOUT SHELTER REQUIREMENTS FOR SHIELDING, SPACE, VENTILATION, CONSTRUCTION, AND SERVICES SUCH AS ELECTRICAL…

  10. Modeling Vortex Generators in a Navier-Stokes Code

    Science.gov (United States)

    Dudek, Julianne C.

    2011-01-01

    A source-term model that simulates the effects of vortex generators was implemented into the Wind-US Navier-Stokes code. The source term added to the Navier-Stokes equations simulates the lift force that would result from a vane-type vortex generator in the flowfield. The implementation is user-friendly, requiring the user to specify only three quantities for each desired vortex generator: the range of grid points over which the force is to be applied and the planform area and angle of incidence of the physical vane. The model behavior was evaluated for subsonic flow in a rectangular duct with a single vane vortex generator, subsonic flow in an S-duct with 22 corotating vortex generators, and supersonic flow in a rectangular duct with a counter-rotating vortex-generator pair. The model was also used to successfully simulate microramps in supersonic flow by treating each microramp as a pair of vanes with opposite angles of incidence. The validation results indicate that the source-term vortex-generator model provides a useful tool for screening vortex-generator configurations and gives comparable results to solutions computed using gridded vanes.

  11. Modelling RF sources using 2-D PIC codes

    Energy Technology Data Exchange (ETDEWEB)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  12. Modelling RF sources using 2-D PIC codes

    Energy Technology Data Exchange (ETDEWEB)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  13. Modelling RF sources using 2-D PIC codes

    International Nuclear Information System (INIS)

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (''port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation

  14. Maximizing entropy of image models for 2-D constrained coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...

  15. UPPAAL-SMC: Statistical Model Checking for Priced Timed Automata

    DEFF Research Database (Denmark)

    Bulychev, Petr; David, Alexandre; Larsen, Kim Guldstrand

    2012-01-01

    on a series of extensions of the statistical model checking approach generalized to handle real-time systems and estimate undecidable problems. U PPAAL - SMC comes together with a friendly user interface that allows a user to specify complex problems in an efficient manner as well as to get feedback...... in the form of probability distributions and compare probabilities to analyze performance aspects of systems. The focus of the survey is on the evolution of the tool – including modeling and specification formalisms as well as techniques applied – together with applications of the tool to case studies....

  16. Statistical mechanics of attractor neural network models with synaptic depression

    International Nuclear Information System (INIS)

    Igarashi, Yasuhiko; Oizumi, Masafumi; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato

    2009-01-01

    Synaptic depression is known to control gain for presynaptic inputs. Since cortical neurons receive thousands of presynaptic inputs, and their outputs are fed into thousands of other neurons, the synaptic depression should influence macroscopic properties of neural networks. We employ simple neural network models to explore the macroscopic effects of synaptic depression. Systems with the synaptic depression cannot be analyzed due to asymmetry of connections with the conventional equilibrium statistical-mechanical approach. Thus, we first propose a microscopic dynamical mean field theory. Next, we derive macroscopic steady state equations and discuss the stabilities of steady states for various types of neural network models.

  17. A model independent safeguard against background mismodeling for statistical inference

    Energy Technology Data Exchange (ETDEWEB)

    Priel, Nadav; Landsman, Hagar; Manfredini, Alessandro; Budnik, Ranny [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Herzl St. 234, Rehovot (Israel); Rauch, Ludwig, E-mail: nadav.priel@weizmann.ac.il, E-mail: rauch@mpi-hd.mpg.de, E-mail: hagar.landsman@weizmann.ac.il, E-mail: alessandro.manfredini@weizmann.ac.il, E-mail: ran.budnik@weizmann.ac.il [Teilchen- und Astroteilchenphysik, Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2017-05-01

    We propose a safeguard procedure for statistical inference that provides universal protection against mismodeling of the background. The method quantifies and incorporates the signal-like residuals of the background model into the likelihood function, using information available in a calibration dataset. This prevents possible false discovery claims that may arise through unknown mismodeling, and corrects the bias in limit setting created by overestimated or underestimated background. We demonstrate how the method removes the bias created by an incomplete background model using three realistic case studies.

  18. Physical model of the nuclear fuel cycle simulation code SITON

    International Nuclear Information System (INIS)

    Brolly, Á.; Halász, M.; Szieberth, M.; Nagy, L.; Fehér, S.

    2017-01-01

    Finding answers to main challenges of nuclear energy, like resource utilisation or waste minimisation, calls for transient fuel cycle modelling. This motivation led to the development of SITON v2.0 a dynamic, discrete facilities/discrete materials and also discrete events fuel cycle simulation code. The physical model of the code includes the most important fuel cycle facilities. Facilities can be connected flexibly; their number is not limited. Material transfer between facilities is tracked by taking into account 52 nuclides. Composition of discharged fuel is determined using burnup tables except for the 2400 MW thermal power design of the Gas-Cooled Fast Reactor (GFR2400). For the GFR2400 the FITXS method is used, which fits one-group microscopic cross-sections as polynomial functions of the fuel composition. This method is accurate and fast enough to be used in fuel cycle simulations. Operation of the fuel cycle, i.e. material requests and transfers, is described by discrete events. In advance of the simulation reactors and plants formulate their requests as events; triggered requests are tracked. After that, the events are simulated, i.e. the requests are fulfilled and composition of the material flow between facilities is calculated. To demonstrate capabilities of SITON v2.0, a hypothetical transient fuel cycle is presented in which a 4-unit VVER-440 reactor park was replaced by one GFR2400 that recycled its own spent fuel. It is found that the GFR2400 can be started if the cooling time of its spent fuel is 2 years. However, if the cooling time is 5 years it needs an additional plutonium feed, which can be covered from the spent fuel of a Generation III light water reactor.

  19. Document Categorization with Modified Statistical Language Models for Agglutinative Languages

    Directory of Open Access Journals (Sweden)

    Tantug

    2010-11-01

    Full Text Available In this paper, we investigate the document categorization task with statistical language models. Our study mainly focuses on categorization of documents in agglutinative languages. Due to the productive morphology of agglutinative languages, the number of word forms encountered in naturally occurring text is very large. From the language modeling perspective, a large vocabulary results in serious data sparseness problems. In order to cope with this drawback, previous studies in various application areas suggest modified language models based on different morphological units. It is reported that performance improvements can be achieved with these modified language models. In our document categorization experiments, we use standard word form based language models as well as other modified language models based on root words, root words and part-of-speech information, truncated word forms and character sequences. Additionally, to find an optimum parameter set, multiple tests are carried out with different language model orders and smoothing methods. Similar to previous studies on other tasks, our experimental results on categorization of Turkish documents reveal that applying linguistic preprocessing steps for language modeling provides improvements over standard language models to some extent. However, it is also observed that similar level of performance improvements can also be acquired by simpler character level or truncated word form models which are language independent.

  20. A neighborhood statistics model for predicting stream pathogen indicator levels.

    Science.gov (United States)

    Pandey, Pramod K; Pasternack, Gregory B; Majumder, Mahbubul; Soupir, Michelle L; Kaiser, Mark S

    2015-03-01

    Because elevated levels of water-borne Escherichia coli in streams are a leading cause of water quality impairments in the U.S., water-quality managers need tools for predicting aqueous E. coli levels. Presently, E. coli levels may be predicted using complex mechanistic models that have a high degree of unchecked uncertainty or simpler statistical models. To assess spatio-temporal patterns of instream E. coli levels, herein we measured E. coli, a pathogen indicator, at 16 sites (at four different times) within the Squaw Creek watershed, Iowa, and subsequently, the Markov Random Field model was exploited to develop a neighborhood statistics model for predicting instream E. coli levels. Two observed covariates, local water temperature (degrees Celsius) and mean cross-sectional depth (meters), were used as inputs to the model. Predictions of E. coli levels in the water column were compared with independent observational data collected from 16 in-stream locations. The results revealed that spatio-temporal averages of predicted and observed E. coli levels were extremely close. Approximately 66 % of individual predicted E. coli concentrations were within a factor of 2 of the observed values. In only one event, the difference between prediction and observation was beyond one order of magnitude. The mean of all predicted values at 16 locations was approximately 1 % higher than the mean of the observed values. The approach presented here will be useful while assessing instream contaminations such as pathogen/pathogen indicator levels at the watershed scale.