Proton-rich nuclear statistical equilibrium
International Nuclear Information System (INIS)
Seitenzahl, I.R.; Timmes, F.X.; Marin-Lafleche, A.; Brown, E.; Magkotsios, G.; Truran, J.
2008-01-01
Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of an equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or a neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar disk drive the matter proton-rich prior to or during the nucleosynthesis. In this Letter we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton-to-nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freezeout temperature is mainly composed of 56Ni and free protons. Previous results of nuclear reaction network calculations rely on this nonintuitive high-proton abundance, which this Letter explains. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and nuclear binding energy.
Equilibrium statistical mechanics
Mayer, J E
1968-01-01
The International Encyclopedia of Physical Chemistry and Chemical Physics, Volume 1: Equilibrium Statistical Mechanics covers the fundamental principles and the development of theoretical aspects of equilibrium statistical mechanics. Statistical mechanical is the study of the connection between the macroscopic behavior of bulk matter and the microscopic properties of its constituent atoms and molecules. This book contains eight chapters, and begins with a presentation of the master equation used for the calculation of the fundamental thermodynamic functions. The succeeding chapters highlight t
Meyer, Bradley S.; Krishnan, Tracy D.; Clayton, Donald D.
1998-05-01
Our first purpose is construction of a formal theory of quasi-equilibrium. We define quasi-equilibrium, in its simplest form, as statistical equilibrium in the face of an extra constraint on the nuclear populations. We show that the extra constraint introduces a uniform translation of the chemical potentials for the heavy nuclei and derive the abundances in terms of it. We then generalize this theory to accommodate any number of constraints. For nucleosynthesis, the most important constraint occurs when the total number of heavy nuclei Yh within a system of nuclei differs from the number that would exist in nuclear statistical equilibrium (NSE) under the same conditions of density and temperature. Three situations of high relevance are (1) silicon burning, wherein the total number of nuclei exceeds but asymptotically approaches the NSE number; (2) alpha-rich freezeout expansions of high entropy, wherein Yh is less than the NSE number; and (3) expansions from high temperature of low-entropy matter, in which Yh exceeds the NSE number. These are of importance, respectively, within (1) supernova shells, (2) Type II supernova cores modestly outside the mass cut, and (3) Type Ia supernova cores in near-Chandrasekhar-mass events. Our next goal is the detailed analysis of situation (2), the high-entropy alpha-rich neutron-rich freezeout. We employ a nuclear reaction network, which we integrate, to compare the actual abundances with those obtained at the same thermal conditions by the quasi-equilibrium (QSE) theory and by the NSE theory. For this detailed comparison, we choose a high-entropy photon-to-nucleon ratio φ = 6.8, for which we conduct expansions at initial bulk neutron excess η0 = 0.10. We demonstrate that the abundance populations, as they begin expansion and cooling from temperature 10 × 109 K, are characterized by three distinct phases: (1) NSE, (2) QSE having Yh smaller than the NSE value, and (3) final reaction rate-dependent freezeout modifications of the
Equilibrium statistical mechanics
Jackson, E Atlee
2000-01-01
Ideal as an elementary introduction to equilibrium statistical mechanics, this volume covers both classical and quantum methodology for open and closed systems. Introductory chapters familiarize readers with probability and microscopic models of systems, while additional chapters describe the general derivation of the fundamental statistical mechanics relationships. The final chapter contains 16 sections, each dealing with a different application, ordered according to complexity, from classical through degenerate quantum statistical mechanics. Key features include an elementary introduction t
Renyi statistics in equilibrium statistical mechanics
International Nuclear Information System (INIS)
Parvan, A.S.; Biro, T.S.
2010-01-01
The Renyi statistics in the canonical and microcanonical ensembles is examined both in general and in particular for the ideal gas. In the microcanonical ensemble the Renyi statistics is equivalent to the Boltzmann-Gibbs statistics. By the exact analytical results for the ideal gas, it is shown that in the canonical ensemble, taking the thermodynamic limit, the Renyi statistics is also equivalent to the Boltzmann-Gibbs statistics. Furthermore it satisfies the requirements of the equilibrium thermodynamics, i.e. the thermodynamical potential of the statistical ensemble is a homogeneous function of first degree of its extensive variables of state. We conclude that the Renyi statistics arrives at the same thermodynamical relations, as those stemming from the Boltzmann-Gibbs statistics in this limit.
J-NSE: Neutron spin echo spectrometer
Directory of Open Access Journals (Sweden)
Olaf Holderer
2015-08-01
Full Text Available Neutron Spin-Echo (NSE spectroscopy is well known as the only neutron scattering technique that achieves energy resolution of several neV. By using the spin precession of polarized neutrons in magnetic field one can measure tiny velocity changes of the individual neutron during the scattering process. Contrary to other inelastic neutron scattering techniques, NSE measures the intermediate scattering function S(Q,t in reciprocal space and time directly. The Neutron Spin-Echo spectrometer J-NSE, operated by JCNS, Forschungszentrum Jülich at the Heinz Maier-Leibnitz Zentrum (MLZ in Garching, covers a time range (2 ps to 200 ns on length scales accessible by small angle scattering technique. Along with conventional NSE spectroscopy that allows bulk measurements in transmission mode, J-NSE offers a new possibility - gracing incidence spin echo spectroscopy (GINSENS, developed to be used as "push-button" option in order to resolve the depth dependent near surface dynamics.
Directory of Open Access Journals (Sweden)
Jessica J R Hudson
2011-02-01
Full Text Available The SMC5-6 protein complex is involved in the cellular response to DNA damage. It is composed of 6-8 polypeptides, of which Nse1, Nse3 and Nse4 form a tight sub-complex. MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen protein family and Nse4 is related to the EID (E1A-like inhibitor of differentiation family of transcriptional repressors.Using site-directed mutagenesis, protein-protein interaction analyses and molecular modelling, we have identified a conserved hydrophobic surface on the C-terminal domain of Nse3 that interacts with Nse4 and identified residues in its N-terminal domain that are essential for interaction with Nse1. We show that these interactions are conserved in the human orthologs. Furthermore, interaction of MAGEG1, the mammalian ortholog of Nse3, with NSE4b, one of the mammalian orthologs of Nse4, results in transcriptional co-activation of the nuclear receptor, steroidogenic factor 1 (SF1. In an examination of the evolutionary conservation of the Nse3-Nse4 interactions, we find that several MAGE proteins can interact with at least one of the NSE4/EID proteins.We have found that, despite the evolutionary diversification of the MAGE family, the characteristic hydrophobic surface shared by all MAGE proteins from yeast to humans mediates its binding to NSE4/EID proteins. Our work provides new insights into the interactions, evolution and functions of the enigmatic MAGE proteins.
Statistical equilibrium equations for trace elements in stellar atmospheres
Kubat, Jiri
2010-01-01
The conditions of thermodynamic equilibrium, local thermodynamic equilibrium, and statistical equilibrium are discussed in detail. The equations of statistical equilibrium and the supplementary equations are shown together with the expressions for radiative and collisional rates with the emphasize on the solution for trace elements.
Limiting processes in non-equilibrium classical statistical mechanics
International Nuclear Information System (INIS)
Jancel, R.
1983-01-01
After a recall of the basic principles of the statistical mechanics, the results of ergodic theory, the transient at the thermodynamic limit and his link with the transport theory near the equilibrium are analyzed. The fundamental problems put by the description of non-equilibrium macroscopic systems are investigated and the kinetic methods are stated. The problems of the non-equilibrium statistical mechanics are analyzed: irreversibility and coarse-graining, macroscopic variables and kinetic description, autonomous reduced descriptions, limit processes, BBGKY hierarchy, limit theorems [fr
International Nuclear Information System (INIS)
Pappas, C.; Mezei, F.; Triolo, A.; Zorn, R.
2005-01-01
Neutron spin echo (NSE) is characterized by a broad variety of new developments. The obvious trend is towards the highest possible energy resolution at the highest possible wavelengths by further developing the generic IN11 design. The planned NSE spectrometer at the SNS will further push the limits of NSE reaching Fourier times as long as 1 μs. On the other hand, simultaneous measurements over higher total solid angles require the real cylindrical symmetry of the magnetic field configuration realized with the spectrometer SPAN at BENSC. The state-of-the-art neutron optical elements lead to considerable gains in neutron flux and allow for extending the wavelength range up to very high wavelengths as well as down to the thermal spectrum. With thermal neutrons NSE reaches energy transfers, which up to now were reserved to TOF spectroscopy, while keeping the advantage of the most straightforward data analysis combine with the most wide dynamic range also in the sub-picosecond Fourier time range. This is illustrated by a detailed analysis of both the alpha and beta processes of glass forming polymers close to the glass transition
Energy Technology Data Exchange (ETDEWEB)
Pappas, C. [BENSC, Hahn Meitner Institut Berlin, Glienickerstrasse 100, 14109 Berlin (Germany)]. E-mail: pappas@hmi.de; Mezei, F. [BENSC, Hahn Meitner Institut Berlin, Glienickerstrasse 100, 14109 Berlin (Germany); Triolo, A. [BENSC, Hahn Meitner Institut Berlin, Glienickerstrasse 100, 14109 Berlin (Germany); IPCF Sezione di Messina, via La Farina 237, 98123 Messina (Italy); Zorn, R. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, 52425 Juelich (Germany)
2005-02-15
Neutron spin echo (NSE) is characterized by a broad variety of new developments. The obvious trend is towards the highest possible energy resolution at the highest possible wavelengths by further developing the generic IN11 design. The planned NSE spectrometer at the SNS will further push the limits of NSE reaching Fourier times as long as 1 {mu}s. On the other hand, simultaneous measurements over higher total solid angles require the real cylindrical symmetry of the magnetic field configuration realized with the spectrometer SPAN at BENSC. The state-of-the-art neutron optical elements lead to considerable gains in neutron flux and allow for extending the wavelength range up to very high wavelengths as well as down to the thermal spectrum. With thermal neutrons NSE reaches energy transfers, which up to now were reserved to TOF spectroscopy, while keeping the advantage of the most straightforward data analysis combine with the most wide dynamic range also in the sub-picosecond Fourier time range. This is illustrated by a detailed analysis of both the alpha and beta processes of glass forming polymers close to the glass transition.
Line radiative transfer and statistical equilibrium*
Directory of Open Access Journals (Sweden)
Kamp Inga
2015-01-01
Full Text Available Atomic and molecular line emission from protoplanetary disks contains key information of their detailed physical and chemical structures. To unravel those structures, we need to understand line radiative transfer in dusty media and the statistical equilibrium, especially of molecules. I describe here the basic principles of statistical equilibrium and illustrate them through the two-level atom. In a second part, the fundamentals of line radiative transfer are introduced along with the various broadening mechanisms. I explain general solution methods with their drawbacks and also specific difficulties encountered in solving the line radiative transfer equation in disks (e.g. velocity gradients. I am closing with a few special cases of line emission from disks: Radiative pumping, masers and resonance scattering.
Immunoreactive neuron-specific enolase (NSE) is expressed in testicular carcinoma-in-situ
DEFF Research Database (Denmark)
Kang, J L; Rajpert-De Meyts, E; Skakkebaek, N E
1996-01-01
Neuron-specific enolase (NSE) is a well-known marker of tumours that have neuroendocrine origin. High levels of NSE have also been described in various types of testicular germ cell neoplasms, particularly in seminomas. To evaluate the presence of NSE in testicular carcinoma-in situ (CIS), a prei...... are evidence against a relationship between NSE and N-myc in testicular germ cell tumours. The high expression of NSE in CIS and overt germ cell tumours may be due to the increased gene dosage effect associated with the overrepresentation of isochromosome 12p....
Line radiative transfer and statistical equilibrium
Kamp, Inga
Atomic and molecular line emission from protoplanetary disks contains key information of their detailed physical and chemical structures. To unravel those structures, we need to understand line radiative transfer in dusty media and the statistical equilibrium, especially of molecules. I describe
Gyrokinetic Statistical Absolute Equilibrium and Turbulence
International Nuclear Information System (INIS)
Zhu, Jian-Zhou; Hammett, Gregory W.
2011-01-01
A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence (T.-D. Lee, 'On some statistical properties of hydrodynamical and magnetohydrodynamical fields,' Q. Appl. Math. 10, 69 (1952)) is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.
Statistical fluctuations and correlations in hadronic equilibrium systems
International Nuclear Information System (INIS)
Hauer, Michael
2010-01-01
This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation is investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction is tested against qualitative and quantitative predictions. (orig.)
Statistical fluctuations and correlations in hadronic equilibrium systems
Energy Technology Data Exchange (ETDEWEB)
Hauer, Michael
2010-06-17
This thesis is dedicated to the study of fluctuation and correlation observables of hadronic equilibrium systems. The statistical hadronization model of high energy physics, in its ideal, i.e. non-interacting, gas approximation is investigated in different ensemble formulations. The hypothesis of thermal and chemical equilibrium in high energy interaction is tested against qualitative and quantitative predictions. (orig.)
Introduction to NSE spectroscopy
International Nuclear Information System (INIS)
Pappas, C.
2001-01-01
Neutron Spin Echo (NSE) spectroscopy allows for reaching the highest energy resolution in inelastic neutron scattering while keeping the high intensity advantage of a beam which is only 10-20% monochromatic. Most spectroscopic methods determine separately the energies of the incident (ω 0 ) and scattered beams (ω) in order to deduce the energy transfer (Δω = ω-ω 0 ), which is the relevant parameter in inelastic neutron scattering. The accuracy in the determination of ω 0 and ω also determines the lowest limit for Δω, which can reach 10 -3 , but with the cost of a high incident beam monocromatisation. In NSE the precession of neutron spins in a magnetic field is used as a stop-watch, which is carried by each neutron individually and measures directly, with an accuracy of 10 -5 to 10 -3 , the difference in energy before and after the scattering process at the sample. (R.P.)
Wide-angle NSE and TOF the spectrometer SPAN at BENSC
Pappas, C; Kischnik, R; Mezei, F
2002-01-01
The cylindrical symmetry of the magnetic field configuration of SPAN allows for simultaneous neutron spin echo (NSE) measurements over the whole range of scattering angles accessible by a spectrometer. The open construction also allows for time-of-flight (TOF) measurements, which can be performed under the same conditions as NSE, in particular with polarization analysis. TOF and NSE spectra are then directly comparable with each other, without any adjustable parameters, covering a dynamic range of more than four orders of magnitude at a single wavelength. (orig.)
Wide-angle NSE and TOF: the spectrometer SPAN at BENSC
International Nuclear Information System (INIS)
Pappas, C.; Triolo, A.; Kischnik, R.; Mezei, F.
2002-01-01
The cylindrical symmetry of the magnetic field configuration of SPAN allows for simultaneous neutron spin echo (NSE) measurements over the whole range of scattering angles accessible by a spectrometer. The open construction also allows for time-of-flight (TOF) measurements, which can be performed under the same conditions as NSE, in particular with polarization analysis. TOF and NSE spectra are then directly comparable with each other, without any adjustable parameters, covering a dynamic range of more than four orders of magnitude at a single wavelength. (orig.)
Planar-channeling spatial density under statistical equilibrium
International Nuclear Information System (INIS)
Ellison, J.A.; Picraux, S.T.
1978-01-01
The phase-space density for planar channeled particles has been derived for the continuum model under statistical equilibrium. This is used to obtain the particle spatial probability density as a function of incident angle. The spatial density is shown to depend on only two parameters, a normalized incident angle and a normalized planar spacing. This normalization is used to obtain, by numerical calculation, a set of universal curves for the spatial density and also for the channeled-particle wavelength as a function of amplitude. Using these universal curves, the statistical-equilibrium spatial density and the channeled-particle wavelength can be easily obtained for any case for which the continuum model can be applied. Also, a new one-parameter analytic approximation to the spatial density is developed. This parabolic approximation is shown to give excellent agreement with the exact calculations
Statistical approach to partial equilibrium analysis
Wang, Yougui; Stanley, H. E.
2009-04-01
A statistical approach to market equilibrium and efficiency analysis is proposed in this paper. One factor that governs the exchange decisions of traders in a market, named willingness price, is highlighted and constitutes the whole theory. The supply and demand functions are formulated as the distributions of corresponding willing exchange over the willingness price. The laws of supply and demand can be derived directly from these distributions. The characteristics of excess demand function are analyzed and the necessary conditions for the existence and uniqueness of equilibrium point of the market are specified. The rationing rates of buyers and sellers are introduced to describe the ratio of realized exchange to willing exchange, and their dependence on the market price is studied in the cases of shortage and surplus. The realized market surplus, which is the criterion of market efficiency, can be written as a function of the distributions of willing exchange and the rationing rates. With this approach we can strictly prove that a market is efficient in the state of equilibrium.
Gyrokinetic statistical absolute equilibrium and turbulence
International Nuclear Information System (INIS)
Zhu Jianzhou; Hammett, Gregory W.
2010-01-01
A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: a finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N+1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.
International Nuclear Information System (INIS)
Che Ruchang; Wu Jianyuan; Tao Zhiqiang
2008-01-01
Objective: To investigate the relationship between the neuron-specific enolase (NSE) contents of serum and drainage fluid in patients with chronic subdural hematoma (CSDH). Methods: Serum and drainage fluid NSE contents were determined with RIA right after and 24, 48, 72, 96, 120 hours after trephining in 28 patients with CSDH as well as 28 controls (once and serum only). Results: The serum contents of NSE in the patients were significantly higher than those in the controls (P<0.01). The drainage fluid contents of NSE were correlated with the patients concurrent own serum NSE contents (r=0.917) and were higher than the respective serum NSE value (P<0.01). All the NSE contents dropped continuously throughout the observation period. Conclusion: Changes of drainage fluid NSE contents might reflect progress of the degree of nervous tissue injury in patients with chronic subdural hematoma. (authors)
Stability and equilibrium in quantum statistical mechanics
International Nuclear Information System (INIS)
Kastler, Daniel.
1975-01-01
A derivation of the Gibbs Ansatz, base of the equilibrium statistical mechanics is provided from a stability requirements, in technical connection with the harmonic analysis of non-commutative dynamical systems. By the same token a relation is established between stability and the positivity of Hamiltonian in the zero temperature case [fr
Detection and significance of S-100 protein and NSE during mild hypothermia cardiopulmonary bypass
International Nuclear Information System (INIS)
Liu Xiuqin; Jin Mu; Tan Jiefang; Huang Wenqi; Chen Bingxue; Huang Weiming; Huang Xiongqing
2001-01-01
To observe dynamic changes of S-100 protein and NSE during mild hypothermia cardiopulmonary bypass (CPB), the venous blood samples of 25 patients with elective cardiac surgery were obtained simultaneously from the left artery and left jugular bulb before CPB(A), hypothermia period (32-35 degree C) (B) and rewarming to 36 degree C (C) during CPB, 30 minutes (D), 4-6 hours (E) and 24 hours (F) after CPB. Plasma S-100 protein concentration was determined by chemiluminescence immunoassay, and NSE level was determined by radioimmunoassay. The results showed that the levels of S-100 protein and NSE increased significantly during CPB, and NSE peaked at 30 minutes (D) after CPB. It suggested the central nervous system dysfunctions. The S-100 protein and NSE concentrations decreased gradually and retuned to normal nearly (F) after mild hypothermia CPB. It suggested that there were not obvious central nervous system dysfunctions
Directory of Open Access Journals (Sweden)
Rui-Feng Liu
2017-09-01
Full Text Available Objective: To investigate the change and significance of serum inflammatory factors, neuron specific enolase (NSE, S100 protein and stress hormone levels in patients with brain diseases. Methods: A total of 115 patients with craniocerebral injury were selected as the observation group, according to the Glasgow Coma Scale (GCS, they were divided into light-sized group (n=38, middle-sized group (n=40 and severe-sized group (n=37, at the same time the other 120 healthy subjects were selected as the control group. The levels of serum inflammatory cytokines [tumor necrosis factor alpha (TNF-α and procalcitonin (PCT], neuron specific enolase (NSE, S100 protein and the stress hormone cortisol [(COR, adrenocorticotropic hormone (ACTH, β-endorphin (β-EP] of both groups were compared. Results: The levels of TNF-α, PCT, NSE, S100, COR, ACTH and β-EP in the observation group were (145.73±19.24 ng/L, (2.41±0.64 ng/mL, (38.11±12.28 ng/mL, (0.87±0.32 μg/L, (818.87±121.14 nmol/L, (107.38±13.94 ng/L, (126.74±39.04 ng/mL, which were significantly higher than control group, the difference was statistically significant; Comparison of indexes among the observation group, NF-α, PCT, NSE, S100, COR, ACTH and β-EP levels in the middle-sized group and severe-sized group were significantly higher than those in the light-sized group, and the levels in the severe-sized group were significantly higher than those of the middle-sized group, the difference was statistically significant. Conclusion: The levels of Serum inflammatory factors, NSE, S100 protein and stress hormone were significantly increased in patients with craniocerebral injury, the level was related to the degree of traumatic brain injury, which could be used as an important indicator to assess the severity of the disease.
Significance of changes of serum NSE and CEA levels in patients with pneumonia and malignant tumors
International Nuclear Information System (INIS)
Liu Hengguo; Luo Nanping; Wang Ruishan; Bai Lu
2005-01-01
Objective: To investigate the significance of changes of serum NSE and CEA levels in patients with pneumonia and malignant tumors. Methods: Serum NSE (with RIA) and CEA (with ECLIA) levels in patients with pneumonia or various kinds of malignant tumors (altogether 140 patients) and 32 controls. Results: Serum NSE and CEA levels were significantly higher in patients with lung cancer, gastric cancer, renal cancer, brain tumor and pneumonia than those in the controls (P<0.05,P <0. 05 ,P <0. 01, P<0.01, P<0.01). Positive rate of serum NSE highest in patients with pneumonia, followed successively by renal cancer, brain tumor and lung cancer. NSE levels were positively correlated with CEA levels (r=0.29, P<0.05). Conclusion: As a tumor marker, NSE has important clinical significance in the diagnoses of malignant tumor and pneumonia. (authors)
Non-equilibrium statistical physics with application to disordered systems
Cáceres, Manuel Osvaldo
2017-01-01
This textbook is the result of the enhancement of several courses on non-equilibrium statistics, stochastic processes, stochastic differential equations, anomalous diffusion and disorder. The target audience includes students of physics, mathematics, biology, chemistry, and engineering at undergraduate and graduate level with a grasp of the basic elements of mathematics and physics of the fourth year of a typical undergraduate course. The little-known physical and mathematical concepts are described in sections and specific exercises throughout the text, as well as in appendices. Physical-mathematical motivation is the main driving force for the development of this text. It presents the academic topics of probability theory and stochastic processes as well as new educational aspects in the presentation of non-equilibrium statistical theory and stochastic differential equations.. In particular it discusses the problem of irreversibility in that context and the dynamics of Fokker-Planck. An introduction on fluc...
International Nuclear Information System (INIS)
Zhou Juying; Wang Lili; Yu Zhiying; Qin Songbing; Xu Xiaoting; Li Li; Tu Yu
2007-01-01
Objective: To explore the protection of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: Thirty six mature Sprague-Dawley rats were randomly divided into 3 groups: blank control group, experimental control group and experimental administered group. The whole brain of SD rats of experimental control group and experimental-therapeutic group were irradiated with a dose of 20 Gy using 6 MeV electron beam. Magnesium sulfate was injected intraperitoneally into the rats of experimental-therapeutic group before and after irradiation for five times. The brain tissue were taken on days 1, 7, 14 and 30 after irradiation. Immunohistochemical method was used to detect the expressions of NSE and S-100 in brain tissue. All data were processed statistically with One-ANOVA analysis. Results: The expressions of NSE and S-100 after whole brain irradiation were time-dependent. Compared with blank control group, the expression of NSE in brains of experimental control group decreased significantly (P 4 can inhibit the expression of S-100, but induce the expression of NSE on radiation-induced acute brain injury. MgSO 4 has a protective effect on radiation-induced acute brain injury. (authors)
International Nuclear Information System (INIS)
Yan, Tao; Skaftnesmo, Kai Ove; Leiss, Lina; Sleire, Linda; Wang, Jian; Li, Xingang; Enger, Per Øyvind
2011-01-01
Expression of neuronal elements has been identified in various glial tumors, and glioblastomas (GBMs) with neuronal differentiation patterns have reportedly been associated with longer survival. However, the neuronal class III β-tubulin has been linked to increasing malignancy in astrocytomas. Thus, the significance of neuronal markers in gliomas is not established. The expressions of class III β-tubulin, neurofilament protein (NFP), microtubule-associated protein 2 (MAP2) and neuron-specific enolase (NSE) were investigated in five GBM cell lines and two GBM biopsies with immunocytochemistry and Western blot. Moreover, the expression levels were quantified by real-time qPCR under different culture conditions. Following NSE siRNA treatment we used Electric cell-substrate impedance sensing (ECIS) to monitor cell growth and migration and MTS assays to study viability after irradiation and temozolomide treatment. Finally, we quantitated NSE expression in a series of human glioma biopsies with immunohistochemistry using a morphometry software, and collected survival data for the corresponding patients. The biopsies were then grouped according to expression in two halves which were compared by survival analysis. Immunocytochemistry and Western blotting showed that all markers except NFP were expressed both in GBM cell lines and biopsies. Notably, qPCR demonstrated that NSE was upregulated in cellular stress conditions, such as serum-starvation and hypoxia, while we found no uniform pattern for the other markers. NSE knockdown reduced the migration of glioma cells, sensitized them to hypoxia, radio- and chemotherapy. Furthermore, we found that GBM patients in the group with the highest NSE expression lived significantly shorter than patients in the low-expression group. Neuronal markers are aberrantly expressed in human GBMs, and NSE is consistently upregulated in different cellular stress conditions. Knockdown of NSE reduces the migration of GBM cells and sensitizes
NSE, CEA and SCC - a useful combination of tumor markers in lung cancer
International Nuclear Information System (INIS)
Fischbach, W.; Jany, B.
1988-01-01
The usefulness of neuronspecific enolase (NSE), CEA, and of the tumor associated antigen SSC was investigated in 61 patients with histologically proven lung cancer (small cell lung cancer n=25, adenocarcinoma n=14, squamous cell carcinoma n=18 and large cell carcinoma n=4). The sensitivity of NSE was 93.3% in small cell lung cancer (SCLC), whereas in adeno- and squamous cell carcinoma only 8 or 13%, resp., elevated serum NSE were found. CEA was the most sensitive marker for adenocarcinoma (58.3%). Contrary to NSE, however, CEA does not allow any conclusions concerning differential diagnosis as pathological serum concentrations were also observed in 46.6% both in small cell lung cancer and in squamous cell carcinoma. SCC demonstrated a sensitivity of 53% in squamous cell carcinoma. Elevated serum levels were also found in adenocarcinoma (41.6%), but never in small lung cancer. For all three markers tested, high serum concentrations were predominantly present in patients with advanced disease state. (orig.) [de
Equilibrium statistical mechanics of lattice models
Lavis, David A
2015-01-01
Most interesting and difficult problems in equilibrium statistical mechanics concern models which exhibit phase transitions. For graduate students and more experienced researchers this book provides an invaluable reference source of approximate and exact solutions for a comprehensive range of such models. Part I contains background material on classical thermodynamics and statistical mechanics, together with a classification and survey of lattice models. The geometry of phase transitions is described and scaling theory is used to introduce critical exponents and scaling laws. An introduction is given to finite-size scaling, conformal invariance and Schramm—Loewner evolution. Part II contains accounts of classical mean-field methods. The parallels between Landau expansions and catastrophe theory are discussed and Ginzburg—Landau theory is introduced. The extension of mean-field theory to higher-orders is explored using the Kikuchi—Hijmans—De Boer hierarchy of approximations. In Part III the use of alge...
Statistical equilibrium and symplectic geometry in general relativity
International Nuclear Information System (INIS)
Iglesias, P.
1981-09-01
A geometrical construction is given of the statistical equilibrium states of a system of particles in the gravitational field in general relativity. By a method of localization variables, the expression of thermodynamic values is given and the compatibility of this description is shown with a macroscopic model of a relativistic continuous medium for a given value of the free-energy function [fr
International Nuclear Information System (INIS)
Song Hua
2009-01-01
Objective: To explore the clinical significance of changes of plasma ET and serum NSE, NPY levels in patients with Alzheimer diseases. Methods: Plasma ET and serum NSE, NPY levels were determined with RIA in 31 patients with Alzheimer diseases and 30 controls. Results: The plasma ET and serum NSE, NPY levels in the patients were significantly higher than those in controls (P<0.01). Plasma ET and serum NSE, NPY levels were mutually positively correlated (r=0.4895, 0.6014, P<0.01). Conclusion: Detection of plasma ET and serum NSE, NPY levels was helpful for the prediction of treatment effieacy in patients with Alzheimer diseases. (authors)
SRB states and nonequilibrium statistical mechanics close to equilibrium
Gallavotti, Giovannni; Ruelle, David
1996-01-01
Nonequilibrium statistical mechanics close to equilibrium is studied using SRB states and a formula for their derivatives with respect to parameters. We write general expressions for the thermodynamic fluxes (or currents) and the transport coefficients, generalizing previous results. In this framework we give a general proof of the Onsager reciprocity relations.
BIOMARKERS S100B AND NSE PREDICT OUTCOME IN HYPOTHERMIA-TREATED ENCEPHALOPATHIC NEWBORNS
Massaro, An N.; Chang, Taeun; Baumgart, Stephen; McCarter, Robert; Nelson, Karin B.; Glass, Penny
2014-01-01
Objective To evaluate if serum S100B protein and neuron specific enolase (NSE) measured during therapeutic hypothermia are predictive of neurodevelopmental outcome at 15 months in children with neonatal encephalopathy (NE). Design Prospective longitudinal cohort study Setting A level IV neonatal intensive care unit in a free-standing children’s hospital. Patients Term newborns with moderate to severe NE referred for therapeutic hypothermia during the study period. Interventions Serum NSE and S100B were measured at 0, 12, 24 and 72 hrs of hypothermia. Measurements and Main Reseults Of the 83 infants were enrolled, fifteen (18%) died in the newborn period. Survivors were evaluated by the Bayley Scales of Infant Development (BSID-II) at 15 months of age. Outcomes were assessed in 49/68 (72%) survivors at a mean age of 15.2±2.7 months. Neurodevelopmental outcome was classified by BSID-II Mental (MDI) and Psychomotor (PDI) Developmental Index scores, reflecting cognitive and motor outcomes respectively. Four-level outcome classifications were defined a priori: normal= MDI/PDI within 1SD (>85), mild= MDI/PDI <1SD (70–85), moderate/severe= MDI/PDI <2SD (<70), or died. Elevated serum S100B and NSE levels measured during hypothermia were associated with increasing outcome severity after controlling for baseline and soceioeconomic characteristics in ordinal regression models. Adjusted odds ratios for cognitive outcome were: S100B 2.5 (95% CI 1.3–4.8) and NSE 2.1 (1.2–3.6); for motor outcome: S100B 2.6 (1.2–5.6) and NSE 2.1 (1.2–3.6). Conclusions Serum S100B and NSE levels in babies with NE are associated with neurodevelopmental outcome at 15 months. These putative biomarkers of brain injury may help direct care during therapeutic hypothermia. PMID:24777302
DEFF Research Database (Denmark)
Eslamimanesh, Ali; Gharagheizi, Farhad; Mohammadi, Amir H.
2012-01-01
We, herein, present a statistical method for diagnostics of the outliers in phase equilibrium data (dissociation data) of simple clathrate hydrates. The applied algorithm is performed on the basis of the Leverage mathematical approach, in which the statistical Hat matrix, Williams Plot, and the r......We, herein, present a statistical method for diagnostics of the outliers in phase equilibrium data (dissociation data) of simple clathrate hydrates. The applied algorithm is performed on the basis of the Leverage mathematical approach, in which the statistical Hat matrix, Williams Plot...... in exponential form is used to represent/predict the hydrate dissociation pressures for three-phase equilibrium conditions (liquid water/ice–vapor-hydrate). The investigated hydrate formers are methane, ethane, propane, carbon dioxide, nitrogen, and hydrogen sulfide. It is interpreted from the obtained results...
A statistical mechanical model for equilibrium ionization
International Nuclear Information System (INIS)
Macris, N.; Martin, P.A.; Pule, J.
1990-01-01
A quantum electron interacts with a classical gas of hard spheres and is in thermal equilibrium with it. The interaction is attractive and the electron can form a bound state with the classical particles. It is rigorously shown that in a well defined low density and low temperature limit, the ionization probability for the electron tends to the value predicted by the Saha formula for thermal ionization. In this regime, the electron is found to be in a statistical mixture of a bound and a free state. (orig.)
Directory of Open Access Journals (Sweden)
Fang-Fang Zheng
2017-08-01
Full Text Available Objective: To investigate the effects of donepezil combined with folic acid and vitamin B12 on the levels of serum inflammatory factors, Hcy, NSE and neurotransmitters in elderly patients with Alzheimer's disease (AD complicated with hyperhomocysteinemia. Methods: A total of 98 elderly patients with AD complicated with hyperhomocysteinemia were randomly divided into control group (n=48 and observation group (n=50 according to the random data table method. Patients in the control group were treated with donepezil. On this basis, the patients in the observation group were treated with folic acid and vitamin B12, all patients were treated for 3 months. Before and after treatment, the levels of serum inflammatory factors (TNF-α, IL-6 and hs-CRP, Hcy, NSE and brain neurotransmitter (5-HT, NE and DA were compared between the two groups. Results: Before treatment, the levels of TNF-α, IL-6, hs-CRP, Hcy, NSE, 5-HT, NE and DA of the control group and the observation group were not statistically significant. Compared with the group before treatment, the levels of TNF-α, IL-6, hs-CRP, Hcy and NSE in the two groups were significantly lower, and the level of the observation group was significantly lower than those of the control group, the difference was statistically significant; Compared with the group before treatment, the levels of 5-HT, NE and DA in the two groups were significantly increased, and the observation group was significantly higher than that of the control group, the difference was statistically significant. Conclusion: Donepezil combined folic acid and vitamin B12 in treatment of AD with hyperhomocysteinemia, which can effectively reduce the body's inflammatory response, reduced Hcy and NSE levels, elevated levels of brain neurotransmitters, has important clinical significance.
International Nuclear Information System (INIS)
Zhang Yuhong; Zhang Yujuan; Zhou Xiujuan; Shan Huali
2010-01-01
Objective: To study the clinical significance of changes of serum NSE, TNF-α and IL-6 levels in neonates with hypoxic ischemic encephalopathy. Methods: Serum NSE (with ELISA) and TNF-α, IL-6 (with RIA) levels were measured in 30 neonates with hypoxic ischemic encephalopathy and 30 controls. Results: Serum NSE, TNF-α and IL-6 levels were significantly higher in neonates with hypoxic-ischemic encephalopathy than those in controls (P<0.01). Serum NSE levels were positively correlated with those of TNF-α, IL-6 (r=0.5812, 0.6014, P<0.01). Conclusion: Serum NSE, TNF-α and IL-6 levels were closely related to the diseases process of hypoxic-ischemic encephalopathy. (authors)
He, Ping
2012-01-01
The long-standing puzzle surrounding the statistical mechanics of self-gravitating systems has not yet been solved successfully. We formulate a systematic theoretical framework of entropy-based statistical mechanics for spherically symmetric collisionless self-gravitating systems. We use an approach that is very different from that of the conventional statistical mechanics of short-range interaction systems. We demonstrate that the equilibrium states of self-gravitating systems consist of both mechanical and statistical equilibria, with the former characterized by a series of velocity-moment equations and the latter by statistical equilibrium equations, which should be derived from the entropy principle. The velocity-moment equations of all orders are derived from the steady-state collisionless Boltzmann equation. We point out that the ergodicity is invalid for the whole self-gravitating system, but it can be re-established locally. Based on the local ergodicity, using Fermi-Dirac-like statistics, with the non-degenerate condition and the spatial independence of the local microstates, we rederive the Boltzmann-Gibbs entropy. This is consistent with the validity of the collisionless Boltzmann equation, and should be the correct entropy form for collisionless self-gravitating systems. Apart from the usual constraints of mass and energy conservation, we demonstrate that the series of moment or virialization equations must be included as additional constraints on the entropy functional when performing the variational calculus; this is an extension to the original prescription by White & Narayan. Any possible velocity distribution can be produced by the statistical-mechanical approach that we have developed with the extended Boltzmann-Gibbs/White-Narayan statistics. Finally, we discuss the questions of negative specific heat and ensemble inequivalence for self-gravitating systems.
International Nuclear Information System (INIS)
Zhang Chunying; Li Zuoxiao; Gan Xilun; Li Xiaohong; Tan Hua
2006-01-01
Objective: To investigate the changes of serum NSE levels in patients with acute cerebral hemorrhage and the effect of nimodepine treatment. Methods: Serum neuron specific enolase (NSE) levels were measured with CLIA in 60 patients with cerebral hemorrhage both before and after treatment as well as in 30 controls. Half of the patients (n=30) were treated with nimodepine and the their half were not. Results: In all the 60 patients, serum NSE levels were significantly higher than those in Controls (P<0.01). After treatment, the NSE levels dropped markedly in all the patients. However, the decrease in the patient group treated with nimodepine was significantly higher than that in the patient group treated without nimodepine (P<0.01). Conclusion: Nimodepine treatment is efficient for reducing the serum NSE levels, which may be related to the residual hematoma size. (authors)
International Nuclear Information System (INIS)
Yeh, L.
1992-01-01
The phase-space-picture approach to quantum non-equilibrium statistical mechanics via the characteristic function of infinite- mode squeezed coherent states is introduced. We use quantum Brownian motion as an example to show how this approach provides an interesting geometrical interpretation of quantum non-equilibrium phenomena
International Nuclear Information System (INIS)
Chen Xiaoxiao
2008-01-01
Objective: To study the clinical value of combined determination of serum and pleural effusion levels of CEA, CYFRA21-1 and NSE in patients with malignancy. Methods: Serum and pleural effusion CEA, CYFRA21-1 and NSE levels were measured with RIA in 40 patients with malignant and 32 patients with tuberculous pleural effusions. Results: The pleural effusion CEA, CYFRA21-1, NSE levels and pleural effusion serum levels ratio in malignant group were significantly higher than those in tuberculous group (P<0.01). The specificity of CEA (90%) was higher than those in that of CYFRA21-1 and NSE, and the sensitivity of CYFRA21-1 (83%) was higher than that of CEA and NSE. With combined detection of CEA, CYFRA21-1 and NSE, the sensitivity was 90% and the specificity was 89% for diagnosis of malignant pleural effusion. Conclusion: Combined determination of serum and pleural effusion CEA, CYFRA21-1 and NSE levels would be more sensitive for diagnosis of malignant pleural effusion. (authors)
International Nuclear Information System (INIS)
Van Well, A.A.; Bleuel, M.; Pappas, C.
2011-01-01
Neutron Spin Echo (NSE) spectrometers typically cover a dynamic range of three orders of magnitude at a given wavelength. At long Fourier times the limits are given by the homogeneity of precession fields. At short Fourier times, the quasi-elastic approximation and the NSE formalism mark a methodological limit. We propose to overcome this limitation and by combining Time Of Flight with Larmor precession to extend the capabilities of Neutron Spin Echo spectrometers towards short Fourier times. TOFLAR should be easily implemented on NSE spectrometers equipped with a chopper system such as IN15 or the planned WASP. (authors)
Thermal equilibrium and statistical thermometers in special relativity.
Cubero, David; Casado-Pascual, Jesús; Dunkel, Jörn; Talkner, Peter; Hänggi, Peter
2007-10-26
There is an intense debate in the recent literature about the correct generalization of Maxwell's velocity distribution in special relativity. The most frequently discussed candidate distributions include the Jüttner function as well as modifications thereof. Here we report results from fully relativistic one-dimensional molecular dynamics simulations that resolve the ambiguity. The numerical evidence unequivocally favors the Jüttner distribution. Moreover, our simulations illustrate that the concept of "thermal equilibrium" extends naturally to special relativity only if a many-particle system is spatially confined. They make evident that "temperature" can be statistically defined and measured in an observer frame independent way.
International Nuclear Information System (INIS)
Hu, Y.; Liu, Z.; Shi, X.; Wang, B.
2006-01-01
A brief introduction of characteristic statistic algorithm (CSA) is given in the paper, which is a new global optimization algorithm to solve the problem of PWR in-core fuel management optimization. CSA is modified by the adoption of back propagation neural network and fast local adjustment. Then the modified CSA is applied to PWR Equilibrium Cycle Reloading Optimization, and the corresponding optimization code of CSA-DYW is developed. CSA-DYW is used to optimize the equilibrium cycle of 18 month reloading of Daya bay nuclear plant Unit 1 reactor. The results show that CSA-DYW has high efficiency and good global performance on PWR Equilibrium Cycle Reloading Optimization. (authors)
Generation of NSE-MerCreMer transgenic mice with tamoxifen inducible Cre activity in neurons.
Directory of Open Access Journals (Sweden)
Mandy Ka Man Kam
Full Text Available To establish a genetic tool for conditional deletion or expression of gene in neurons in a temporally controlled manner, we generated a transgenic mouse (NSE-MerCreMer, which expressed a tamoxifen inducible type of Cre recombinase specifically in neurons. The tamoxifen inducible Cre recombinase (MerCreMer is a fusion protein containing Cre recombinase with two modified estrogen receptor ligand binding domains at both ends, and is driven by the neural-specific rat neural specific enolase (NSE promoter. A total of two transgenic lines were established, and expression of MerCreMer in neurons of the central and enteric nervous systems was confirmed. Transcript of MerCreMer was detected in several non-neural tissues such as heart, liver, and kidney in these lines. In the background of the Cre reporter mouse strain Rosa26R, Cre recombinase activity was inducible in neurons of adult NSE-MerCreMer mice treated with tamoxifen by intragastric gavage, but not in those fed with corn oil only. We conclude that NSE-MerCreMer lines will be useful for studying gene functions in neurons for the conditions that Cre-mediated recombination resulting in embryonic lethality, which precludes investigation of gene functions in neurons through later stages of development and in adult.
International Nuclear Information System (INIS)
Avrigeanu, M.; Avrigeanu, V.
1992-02-01
A systematic study on effects of statistical model parameters and semi-classical pre-equilibrium emission models has been carried out for the (n,p) reactions on the 56 Fe and 60 Co target nuclei. The results obtained by using various assumptions within a given pre-equilibrium emission model differ among them more than the ones of different models used under similar conditions. The necessity of using realistic level density formulas is emphasized especially in connection with pre-equilibrium emission models (i.e. with the exciton state density expression), while a basic support could be found only by replacement of the Williams exciton state density formula with a realistic one. (author). 46 refs, 12 figs, 3 tabs
Directory of Open Access Journals (Sweden)
G. P. Girish
2014-09-01
Full Text Available Box spread is a trading strategy in which one simultaneously buys and sells options having the same underlying asset and time to expiration, but different exercise prices. This study examined the efficiency of European style S&P CNX Nifty Index options of National Stock Exchange, (NSE India by making use of high-frequency data on put and call options written on Nifty (Time-stamped transactions data for the time period between 1st January 2002 and 31st December 2005 using box-spread arbitrage strategy. The advantages of box-spreads include reduced joint hypothesis problem since there is no consideration of pricing model or market equilibrium, no consideration of inter-market non-synchronicity since trading box spreads involve only one market, computational simplicity with less chances of mis-specification error, estimation error and the fact that buying and selling box spreads more or less replicates risk-free lending and borrowing. One thousand three hundreds and fifty eight exercisable box-spreads were found for the time period considered of which 78 Box spreads were found to be profitable after incorporating transaction costs (32 profitable box spreads were identified for the year 2002, 19 in 2003, 14 in 2004 and 13 in 2005 The results of our study suggest that internal option market efficiency has improved over the years for S&P CNX Nifty Index options of NSE India.
International Nuclear Information System (INIS)
Dou Huanzhi; Lu Meng
2011-01-01
To explore the clinical significance of changes of plasma leptin and serun Hcy, S100B and NSE levels in patients with Alzheimer Disease (AD). The plasma leptin and serum NSE levels in 32 AD patients and 30 controls were determined by using RIA, and the serum Hcy and S100B levels were measured by using CLIA. The results showed that the plasma leptin and serun Hcy, S100B and NSE levels in AD patients were significantly higher than these in controls (P<0.01). The plasma leptin levels in AD patients was mutually positively correlated with serum Hcy, S100B and NSE levels (r=0.5982, 0.4762, 0.6014, P<0.01). The detection of plasma leptin and serum Hcy, S100B and NSE levels may be helpful for the prediction of treatment efficiency in patients with Alzheimer disease. (authors)
International Nuclear Information System (INIS)
Su Wentang; Shu Lingling; Yang Huaxi
2007-01-01
Objective: To study the clinical value of combined determination of CEA, CA125, NSE levels both in serum and hydrothorax fluid in the diagnosis of lung cancer. Methods: Serum and hydrothorax fluid levels of CEA, CA125, NSE were determined with RIA in 88 patients with lung cancers, 100 patients with inflammatory hydrothorax, and 50 controls. Results: The levels of serum and hydrothorax fluid CEA, CA125, NSE in lung cancer patients were significantly higher than those in patients with inflammatory hydrothorax and controls (P <0.05). In lung cancer group, the positive rate of combined detection of serum CEA, CA125, NSE was 70.5%, the positive rate of combined detection of hydrothorax fluid CEA, CA125, NSE was 79.5% and the positive rate of combined detection of serum and hydrothorax fluid three kinds of tumor markers was 87. 5%. Conclusion: Combined detection of serum and hydrothuax fluid levels of CEA, CA125, NSE is to be advocated because of higher sensitivity for diagnosis of lung cancer. (authors)
International Nuclear Information System (INIS)
Jin Bo; Zheng Guo
2007-01-01
Objective: To explore the significance ef changes of serum NSE and plasma NPY levels after treatment in pediatric patients with viral encephalitis. Methods: Serum NSE and plasma NPY levels were measured with RIA in 32 pediatric patients with viral encephalitis both before and after treatment as well as in 30 controls. Results: Before treatment, in the patients, the serum NSE and plasma NPY levels were significantly higher than those in controls (P<0.01). After 1 month's treatment the levels dropped markedly but still remained significantly higher than those in controls (P<0.05). Conclusion: Serum NSE and plasma NPY levels changes were closely related to the progress of viral encephalitis. (authors)
From statistic mechanic outside equilibrium to transport equations
International Nuclear Information System (INIS)
Balian, R.
1995-01-01
This lecture notes give a synthetic view on the foundations of non-equilibrium statistical mechanics. The purpose is to establish the transport equations satisfied by the relevant variables, starting from the microscopic dynamics. The Liouville representation is introduced, and a projection associates with any density operator , for given choice of relevant observables, a reduced density operator. An exact integral-differential equation for the relevant variables is thereby derived. A short-memory approximation then yields the transport equations. A relevant entropy which characterizes the coarseness of the description is associated with each level of description. As an illustration, the classical gas, with its three levels of description and with the Chapman-Enskog method, is discussed. (author). 3 figs., 5 refs
International Nuclear Information System (INIS)
Gu Yan; Wang Yuyi
2009-01-01
Objective: To explore the clinical significance of changes of serum CEA, NSE, CA19-9 and VEGF levels in patients with lung cancer. Methods: Serum CEA, NES, CA19-9 (with RIA) and VEGF (with ELISA) levels were detected in 31 patients with lung cancer and 35 controls. Results: The levels of serum CEA, NSE, CA19-9 and VEGF were significantly higher in the patients than those in controls (P<0.01). Serum CEA, NSE, CA19-9 levels were positively correlated with the VEGF levels (r=0.6218, 0.6101, 0.6317, P<0.01). Conclusion: Serum CEA, NSE, CA19-9 and VEGF levels were closely related to the diseases process of lung cancer and were of prognostic values. (authors)
Directory of Open Access Journals (Sweden)
Ramon F. Alvarez-Estrada
2012-02-01
Full Text Available We consider non-equilibrium open statistical systems, subject to potentials and to external “heat baths” (hb at thermal equilibrium at temperature T (either with ab initio dissipation or without it. Boltzmann’s classical equilibrium distributions generate, as Gaussian weight functions in momenta, orthogonal polynomials in momenta (the position-independent Hermite polynomialsHn’s. The moments of non-equilibrium classical distributions, implied by the Hn’s, fulfill a hierarchy: for long times, the lowest moment dominates the evolution towards thermal equilibrium, either with dissipation or without it (but under certain approximation. We revisit that hierarchy, whose solution depends on operator continued fractions. We review our generalization of that moment method to classical closed many-particle interacting systems with neither a hb nor ab initio dissipation: with initial states describing thermal equilibrium at T at large distances but non-equilibrium at finite distances, the moment method yields, approximately, irreversible thermalization of the whole system at T, for long times. Generalizations to non-equilibrium quantum interacting systems meet additional difficulties. Three of them are: (i equilibrium distributions (represented through Wigner functions are neither Gaussian in momenta nor known in closed form; (ii they may depend on dissipation; and (iii the orthogonal polynomials in momenta generated by them depend also on positions. We generalize the moment method, dealing with (i, (ii and (iii, to some non-equilibrium one-particle quantum interacting systems. Open problems are discussed briefly.
Statistical thermodynamics of equilibrium polymers at interfaces
Gucht, van der J.; Besseling, N.A.M.
2002-01-01
The behavior of a solution of equilibrium polymers (or living polymers) at an interface is studied, using a Bethe-Guggenheim lattice model for molecules with orientation dependent interactions. The density profile of polymers and the chain length distribution are calculated. For equilibrium polymers
Problems of a Statistical Ensemble Theory for Systems Far from Equilibrium
Ebeling, Werner
The development of a general statistical physics of nonequilibrium systems was one of the main unfinished tasks of statistical physics of the 20th century. The aim of this work is the study of a special class of nonequilibrium systems where the formulation of an ensemble theory of some generality is possible. These are the so-called canonical-dissipative systems, where the driving terms are determined by invariants of motion. We construct canonical-dissipative systems which are ergodic on certain surfaces on the phase plane. These systems may be described by a non-equilibrium microcanocical ensemble, corresponding to an equal distribution on the target surface. Next we construct and solve Fokker-Planck equations; this leads to a kind of canonical-dissipative ensemble. In the last part we discuss the thoretical problem how to define bifurcations in the framework of nonequilibrium statistics and several possible applications.
International Nuclear Information System (INIS)
Bian Baoxiang; Hu Nan; Wu Fenglei; Yang Chengxi
2008-01-01
Objective: To appraise the clinical diagnostic significance of combined detection of serum and chest fluid levels of CEA, NSE, CYFRA21-1 and SCC-Ag in patients with lung cancer. Methods: Serum and pleural effusion contents of CEA, NSE, CYFRA21-1 and SCC-Ag were determined with RIA in 54 patients with lung cancer and 35 patients with benign lung disorders. Results: The serum and pleural effusion contents of CEA, NSE, CYFRA21-1 and SCC-Ag in patients with lung cancer were significantly higher than those in patients with benign lung disorders (P<0.01). The contents of CEA, NSE, CYFRA21-1 and SCC-Ag in patients pleural effusion were significantly higher than those in patients serum (P<0.01). For combined detection of CEA, NSE, CYFRA21-1 and SCC-Ag in serum and pleural effusion, the positive rate was 83.33% and 92.59% respectively. Conclusion: Combined detection of CEA, NSE, CYFRA21-1 and SCC-Ag contents in serum and pleural effusion can increase the positive rate of lung cancer diagnosis. (authors)
International Nuclear Information System (INIS)
Ji Yajun; Yang Chengxi; Bian Baoxiang; Song Ziyan
2008-01-01
Objective: To detect the changes of serum NSE, IGF-II and TNF-α levels after chemotherapy in patients with lung cancer. Methods: Serum NSE, IGF-II and TNF-α levels were determined with RIA in 38 patients with lung cancer both be- fore and after chemotherapy as well as in 35 controls. Results: Before chemotherapy, serum NSE, IGF-II and TNF-α levels in the patients were significantly higher than those in the controls (P<0.01), After chemotherapy, in 25 cases without recurrence at 6 months, the levels were remained dropped markedly and approached those in controls. However in the 5 patients with recurrence, the levels increased again, approaching those before chemotherapy. Conclusion: Serum levels of NSE, IGF-II and TNF-α might be useful for diagnosis and predicting therapeutic effects after chemotherapy in patients with lung cancer. (authors)
Chronic exercise ameliorates the neuroinflammation in mice carrying NSE/htau23
International Nuclear Information System (INIS)
Leem, Yea-Hyun; Lee, Young-Ik; Son, Hee-Jeong; Lee, Sang-Ho
2011-01-01
Research highlights: → The progress of neurodegeration are directly linked to the neuroinflammatory response. → We investigate whether exercise improves the neuroinflammation using T g -NSE/htau23 mice. → This provides insights that exercise may beneficial effects on the neuroinflammatory disorders. -- Abstract: The objective of the present study was to investigate whether chronic endurance exercise attenuates the neuroinflammation in the brain of mice with NSE/htau23. In this study, the tau-transgenic (Tg) mouse, Tg-NSE/htau23, which over expresses human Tau23 in its brain, was subjected to chronic exercise for 3 months, from 16 months of age. The brains of Tg mice exhibited increased immunoreactivity and active morphological changes in GFAP (astrocyte marker) and MAC-1 (microglia marker) expression in an age-dependent manner. To identify the effects of chronic exercise on gliosis, the exercised Tg mice groups were treadmill run at a speed of 12 m/min (intermediate exercise group) or 19 m/min (high exercise group) for 1 h/day and 5 days/week during the 3 month period. The neuroinflammatory response characterized by activated astroglia and microglia was significantly repressed in the exercised Tg mice in an exercise intensity-dependent manner. In parallel, chronic exercise in Tg mice reduced the increased expression of TNF-α, IL-6, IL-1β, COX-2, and iNOS. Consistently with these changes, the levels of phospho-p38 and phospho-ERK were markedly downregulated in the brain of Tg mice after exercise. In addition, nuclear NF-κB activity was profoundly reduced after chronic exercise in an exercise intensity-dependent manner. These findings suggest that chronic endurance exercise may alleviate neuroinflammation in the Tau pathology of Alzheimer's disease.
Modular reweighting software for statistical mechanical analysis of biased equilibrium data
Sindhikara, Daniel J.
2012-07-01
Here a simple, useful, modular approach and software suite designed for statistical reweighting and analysis of equilibrium ensembles is presented. Statistical reweighting is useful and sometimes necessary for analysis of equilibrium enhanced sampling methods, such as umbrella sampling or replica exchange, and also in experimental cases where biasing factors are explicitly known. Essentially, statistical reweighting allows extrapolation of data from one or more equilibrium ensembles to another. Here, the fundamental separable steps of statistical reweighting are broken up into modules - allowing for application to the general case and avoiding the black-box nature of some “all-inclusive” reweighting programs. Additionally, the programs included are, by-design, written with little dependencies. The compilers required are either pre-installed on most systems, or freely available for download with minimal trouble. Examples of the use of this suite applied to umbrella sampling and replica exchange molecular dynamics simulations will be shown along with advice on how to apply it in the general case. New version program summaryProgram title: Modular reweighting version 2 Catalogue identifier: AEJH_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJH_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 179 118 No. of bytes in distributed program, including test data, etc.: 8 518 178 Distribution format: tar.gz Programming language: C++, Python 2.6+, Perl 5+ Computer: Any Operating system: Any RAM: 50-500 MB Supplementary material: An updated version of the original manuscript (Comput. Phys. Commun. 182 (2011) 2227) is available Classification: 4.13 Catalogue identifier of previous version: AEJH_v1_0 Journal reference of previous version: Comput. Phys. Commun. 182 (2011) 2227 Does the new
International Nuclear Information System (INIS)
Zhu Mingfeng; Wen Chijun; Zhu Cuiying
2005-01-01
Objective: To enhance the diagnosis of pulmonary cancer by determination of optimal combinations of various tumor markers. Methods: Serum CYFRA 21-1 , NSE, CA-50 (with RIA) and CEA (with CLIA) contents were determined in 107 patients with various types of pulmonary cancers, 66 patients with various benign pulmonary diseases and 59 controls. Results: It was revealed that CYFRA 21-1 determination was most sensitive for detection of squamous cell carcinoma. The same was true for CEA in the detection of adenocarcinoma. NSE determination was very specific for small cell carcinoma. Combined determinations of either CYFRA 21- l + NSE or CYFRA 21-1 + NSE + CEA were excellent for general screening. Conclusion: Combined determination of these tumor markers could be applied expediently as supplementary diagnostic measure for pulmonary malignancies. (authors)
International Nuclear Information System (INIS)
Alam, J.M.; Baig, J.A.; Asghar, S.S.; Mahmood, S.R.; Ansari, M.A.; Jamil, S.
2010-01-01
Several past and recent investigations have focused on the determination of tumor markers in pleural fluids to assess their Usefulness as less invasive replacement method of diagnosis. In this regard, few studies have dealt with the determination of the tumor marker, neuron specific enolase (NSE), in pleural fluids of patients suffering from both benign and malignant diseases such as non small cell lung carcinoma( NSCLC), small cell lung carcinoma( SCLC) and tuberculosis. Therefore, the present study was undertaken to establish the diagnostic utility of NSE in malignant condition by assessing levels in serum and pleural fluids of patients with lung cancer and by comparing it with a benign pulmonary disease of tuberculosis. Pleural fluids were obtained from 22 patients with carcinomatous pleurisy due to SCLC, 11 patients with carcinomatous pleurisy due to non-small cell lung cancer, and 30 patients with tuberculosis pleurisy for comparison purpose. Determination of NSE levels was performed by ECL technology according to the manufacturer's instructions. NSE levels of pleural fluids from SCLC patients were significantly elevated( P<0.0001) when compared with pleural fluids from NSCLC and tuberculosis patients. Moreover, pleural fluids of all 30 tuberculosis patients and 11 NSCLC patients showed moderate significance ( P< O.05 and P < 0.01, respectively) when compared with each other. In addition, cumulative results of NSE levels from SCLC and NSCLC combined also showed high significance (P<0.001) as compared to pleural fluids of tuberculosis patients and moderate significance (P<0.01) when compared with serum levels of both malignant and benign groups. It is concluded that determination of NSE levels in pleural fluids of lung cancer patients noted to be an effective diagnostic tool to differentiate carcinomatous pleurisy due to SCLC from those occurring due to NSCLC and tuberculosis. Further studies with larger group of patients are under progress to further establish
International Nuclear Information System (INIS)
Tan Zongxian
2005-01-01
Objective: To detect the changes of serum NSE, SIL-2R and TNF levels in the 33 patients with lung cancer undergoing chemotherapy. Methods: Serum NSE, SIL-2R and TNF levels were determined with RIA and SIL-2R levels with ELISA in 33 lung cancer patients both before and after chemotherapy (n=28) as well as in 30 controls. Results: Before chemotherapy, serum NSE, SIL-2R and TNF levels in the patients were significantly higher than those in the controls (P<0.01). After chemotherapy, in 20 cases without recurrence at 6 months, the levels were much lower but still significantly higher than those in controls (P < 0.05 ). However, in the 8 patients with recurrence, the levels increased again to approaching those before chemotherapy. Conclusion: Serum levels of NSE, SIL-2R and TNF might be useful for diagnosis and predicting therapeutic effects after chemotherapy in patients with lung cancer. (authors)
International Nuclear Information System (INIS)
Chen Bo
2010-01-01
Objective: To investigate the clinical significance of changes of plasma ET, IGF-II, CNP and serum NSE contents in patients with acute brain injury. Methods: Serum contents of neuron specific enolase (NSE) were measured with chemiluminescence immunoassay and plasma endothelin (ET), insulin-like growth factor-II (IGF-II) and C-type natriuretic peptide (CNP) were measured with radioimmunoassay in 30 patients with acute brain injury and 35 controls. Results: Serum contents of NSE and plasma IGF-II, CNP were not much different in patients with mild brain injury from those in controls (P >0.05), but plasma contents of ET were already significantly higher in patients with mild brain injury than those in controls(P < 0.01). The serum NSE and plasma ET levels in patients with moderate and severe brain injury were significantly higher than those in patients with mild brain injury and controls (P < 0.01). Decrease of plasma levels of IGF-II and CNP was not significant in patients with mild brain injury (vs controls). However, the plasma levels of IGF-II and CNP were significantly lower in patients with moderate and severe brain injury than those in patients with mild brain injury and controls (P <0.01). As a whole, the magnitude of changes of these parameters was proportional to the severity of the injury. Conclusion: Changes of serum NSE and plasma IGF-II, ET and CNP levels were closely related to the pathological process of brain injury. Determination of these parameters was of clinical importance for evaluation of the severity of injury and outcome prediction. (authors)
International Nuclear Information System (INIS)
Hu He; Li Yanhua; Liang Weida; Zhang Qin
2011-01-01
To explore clinical value of combined detection of CYFRA21-1, NSE and CEA in classification and staging of patients with lung cancer, the CYFRA21-1, NSE and CEA levels in pleural effusion in 330 patients with lung cancer and in 43 patients with benign were detected by the electrochemiluminescence. The results showed that CYFRA21-1, NSE and CEA levels in pleural effusion in patients with lung cancer group were significantly higher than that of in benign group (P<0.01). The positive rate of tumor markers in different pathological type lung cancer were different,which CYFRA21-1 positive rate in squamous cell cancer group was highest with 65.5%; CEA positive rate in glands cancer group was supreme with 65.0%; the NSE positive rate in differentiation cancer group was highest with 79.5%. The positive rate in three markers combined detection was higher than that in one item detection. The tumor marker levels in lung cancer were positively related with clinical staging. The higher of tumor marker levels and the more late of clinical staging, and the clinical III∼IV period was obviously higher than that I∼II period (P<0.05). The combined detection of CYFRA21-1, NSE and CEA may enhance the positive rate in lung cancer detection, and may have significant clinical value in the classification and staging of patients with lung cancer. (authors)
International Nuclear Information System (INIS)
Wu Wei; Yao Dengfu; Qiu Liwei; Wu Xinghua
2003-01-01
Objective: To explore the expression and the diagnostic value of determining serum neuron-specific enolase (NSE), tumor necrosis factor-α (TNF-α) and lipid-associated sialic acid (LSA) in patients with lung cancer. Methods: The concentrations of NSE, TNF-α and LSA were measured in 78 patients with lung cancer and 32 patients with benign lung diseases as well as 109 controls by enzymelinked immunosorbent assay (ELISA) and chemical assay respectively. Results: The levels of NSE (19.78 ± 12.10 ng/ml), TNF-α (135.64 ± 49.01 pg/ml) and LSA (106 ± 0.31 ng/ml) were significantly higher in patients with lung cancer than those in patients with benign lung diseases (NSE 7.56 ± 3.41 ng/ml, TNF-α 84.70 ± 24.89 pg/ml, LSA 0.78 ± 0.18 mg/ml) and controls (NSE 8.01 ± 2.81 ng/ml, TNF-α 71.25 ± 13.50 pg/ml, LSA 0.70 ± 0.13 ng/ml) (all p < 0.01). Conclusion: The present data suggest that the syntheses of NSE, TNF-α and LSA increase in patients with lung cancer and combined determination of NSE, TNF-α and LSA be helpful to diagnosis of lung cancer
Directory of Open Access Journals (Sweden)
Krzysztof Jόzwikowska
2015-06-01
Full Text Available The main goal of this work is to determine a statistical non-equilibrium distribution function for the electron and holes in semiconductor heterostructures in steady-state conditions. Based on the postulates of local equilibrium, as well as on the integral form of the weighted Gyarmati’s variational principle in the force representation, using an alternative method, we have derived general expressions, which have the form of the Fermi–Dirac distribution function with four additional components. The physical interpretation of these components has been carried out in this paper. Some numerical results of a non-equilibrium distribution function for an electron in HgCdTe structures are also presented.
Gupta, Hoshin V.; Kling, Harald; Yilmaz, Koray K.; Martinez-Baquero, Guillermo F.
2009-01-01
The mean squared error (MSE) and the related normalization, the Nash-Sutcliffe efficiency (NSE), are the two criteria most widely used for calibration and evaluation of hydrological models with observed data. Here, we present a diagnostically interesting decomposition of NSE (and hence MSE), which facilitates analysis of the relative importance of its different components in the context of hydrological modelling, and show how model calibration problems can arise due to interactions among these components. The analysis is illustrated by calibrating a simple conceptual precipitation-runoff model to daily data for a number of Austrian basins having a broad range of hydro-meteorological characteristics. Evaluation of the results clearly demonstrates the problems that can be associated with any calibration based on the NSE (or MSE) criterion. While we propose and test an alternative criterion that can help to reduce model calibration problems, the primary purpose of this study is not to present an improved measure of model performance. Instead, we seek to show that there are systematic problems inherent with any optimization based on formulations related to the MSE. The analysis and results have implications to the manner in which we calibrate and evaluate environmental models; we discuss these and suggest possible ways forward that may move us towards an improved and diagnostically meaningful approach to model performance evaluation and identification.
International Nuclear Information System (INIS)
Sun Qihe; Sun Bin
2008-01-01
Objective: To explore the clinical diagnostic value of combined determination of serum TSGF, CEA, CYFRA21-1 and NSE levels in patients with lung cancer. Methods: The four serum tumor markers were determined with RIA or other methods in 179 patients with lung cancer, 48 patients with benign lung diseases and 51 controls. Results: The serum levels of all these four markers in the cancer patients were significantly higher (P<0.05-P<0.01) than those in patients with benign pulmonary disorders with the exception of: (1) Serum TSGF, CEA and NSE levels in patients with stage I and II squamous cell carcinoma (n=37) and (2) serum NSE levels in patients with stage I and II adenocarcinoma (n=32). As a whole, the levels of the markers increased along with the increase of the severity of the disease. Conclusion: For the early diagnosis of lung cancer, serum CYFRA21-1 levels determination is the most specific and serum NSE levels determination for diagnosis in patients with NSCLC is the least sensitive. The combined determination of tumor markers is the best choice. (authors)
Statistical equilibrium of copper in the solar atmosphere
International Nuclear Information System (INIS)
Shi, J. R.; Mashonkina, L.; Zhao, G.; Gehren, T.; Zeng, J. L.
2014-01-01
Non-local thermodynamic equilibrium (NLTE) line formation for neutral copper in the one-dimensional solar atmospheres is presented for the atomic model, including 96 terms of Cu I and the ground state of Cu II. The accurate oscillator strengths for all the line transitions in model atom and photoionization cross sections were calculated using the R-matrix method in the Russell-Saunders coupling scheme. The main NLTE mechanism for Cu I is the ultraviolet overionization. We find that NLTE leads to systematically depleted total absorption in the Cu I lines and, accordingly, positive abundance corrections. Inelastic collisions with neutral hydrogen atoms produce minor effects on the statistical equilibrium of Cu I in the solar atmosphere. For the solar Cu I lines, the departures from LTE are found to be small, the mean NLTE abundance correction of ∼0.01 dex. It was found that the six low-excitation lines, with excitation energy of the lower level E exc ≤ 1.64 eV, give a 0.14 dex lower mean solar abundance compared to that from the six E exc > 3.7 eV lines, when applying experimental gf-values of Kock and Richter. Without the two strong resonance transitions, the solar mean NLTE abundance from 10 lines of Cu I is log ε ☉ (Cu) = 4.19 ± 0.10, which is consistent within the error bars with the meteoritic value 4.25 ± 0.05 of Lodders et al. The discrepancy between E exc = 1.39-1.64 eV and E exc > 3.7 eV lines can be removed when the calculated gf-values are adopted and a mean solar abundance of log ε ☉ (Cu) = 4.24 ± 0.08 is derived.
Study of energy fluctuation effect on the statistical mechanics of equilibrium systems
International Nuclear Information System (INIS)
Lysogorskiy, Yu V; Wang, Q A; Tayurskii, D A
2012-01-01
This work is devoted to the modeling of energy fluctuation effect on the behavior of small classical thermodynamic systems. It is known that when an equilibrium system gets smaller and smaller, one of the major quantities that becomes more and more uncertain is its internal energy. These increasing fluctuations can considerably modify the original statistics. The present model considers the effect of such energy fluctuations and is based on an overlapping between the Boltzmann-Gibbs statistics and the statistics of the fluctuation. Within this o verlap statistics , we studied the effects of several types of energy fluctuations on the probability distribution, internal energy and heat capacity. It was shown that the fluctuations can considerably change the temperature dependence of internal energy and heat capacity in the low energy range and at low temperatures. Particularly, it was found that, due to the lower energy limit of the systems, the fluctuations reduce the probability for the low energy states close to the lowest energy and increase the total average energy. This energy increasing is larger for lower temperatures, making negative heat capacity possible for this case.
International Nuclear Information System (INIS)
Lv Weihua; Huang Weiliang
2009-01-01
Objective: To study the clinical significance of changes of serum NSE, cortisol, ADM, Ca ++ , Mg ++ levels and platalet count in neonates with HIE. Methods: Serum NSE, ADM(with RIA), cortisol(with CLIA), Ca ++ and Mg ++ (with biochemistry) levels and platalet count were determined in 52 neonates with HIE(mild, n=26, moderate, n=16, advanced, n=10) and 30 controls. Results: In the neonates with mild HIE, the serum NSE and ADM levels were not significantly different from those in controls (P>0.05) but cortisol levels were significantly higher (P ++ and Mg ++ levels as well as decrease of platelet count, might reflect the severity of the disease process of HIE in neonates and might be of prognostic importance. (authors)
Directory of Open Access Journals (Sweden)
Bing-Feng Tian
2018-07-01
Full Text Available Objective: To study the correlation of serum GFAP, S100B and NSE contents with posttraumatic oxidative stress response and insulin resistance in patients with traumatic brain injury. Methods: A total of 110 patients with traumatic brain injury who were treated in our hospital between January 2015 and December 2016 were collected as the observation group, and 60 healthy subjects who received physical examination in our hospital during the same period were collected as normal control group. Serum GFAP, S100B and NSE levels as well as oxidative stress index and insulin resistance index levels of two groups of subjects were detected, and Pearson test was used to further evaluate the correlation of serum GFAP, S100B and NSE contents with oxidative stress response and insulin resistance in patients with traumatic brain injury. Results: Serum GFAP, S100B and NSE contents of observation group were significantly higher than those of normal control group; serum oxidative stress indexes MDA, MPO and LPO contents were higher than those of normal control group while SOD and TAC contents were lower than those of normal control group; serum insulin resistance indexes GLU, INS and HOMA-IR levels were higher than those of control group. Pearson test showed that serum GFAP, S100B and NSE contents in patients with traumatic brain injury were directly correlated with post-traumatic oxidative stress and insulin resistance. Conclusion: The serum GFAP, S100B and NSE contents increase in patients with traumatic brain injury, and the increase is directly correlated with the oxidative stress and insulin resistance.
International Nuclear Information System (INIS)
Jin Xiumu; Xie Wenhui; Yu Zhichang; Zhang Peiling
2000-01-01
Three tumor markers or CEA, CYFRA 21-1 and NSE were assayed in 239 cases with lung cancer (adenocarcinoma 129, squamous-cell carcinoma 59, small cell lung cancer 35, mixed type of adenocarcinoma and squamous-cell carcinoma 16) and 66 cases with benign lung disease. The positive rate of CEA, CYFRA 21-1 and NSE for detecting lung cancer were 51.4%, 43.5% and 48.1% respectively. It seemed there was a relationship between the sensitivity and the pathologic patterns of lung cancer. The highest diagnostic sensitivities were 76.3% for CYFRA 21-1 in the detection of squamous-cell carcinoma, 57.4% for CEA in adenocarcinoma and 94.3% for NSE in the small cell lung cancer respectively. In 49 cases with pleural effusion (adenocarcinoma 27, small cell lung cancer 7, benign disease 15), three tumor markers in serum and pleural fluid were both measured. The results indicated that the sensitivity of the CEA and CYFRA 21-1 in pleural fluid in patients with adenocarcinoma was superior to serum. The detection of the NSE in pleural fluid was a very reliable method in diagnosing the small cell lung cancer. The sensitivity and specificity of CEA, CYFRA 21-1 and NSE in different pathologic patterns of lung cancer was compared and also the false positive and false negative in benign lung disease. Moreover, the clinical role and necessity of combined determination were also discussed
Nuclear Statistical Equilibrium for compact stars: modelling the nuclear energy functional
International Nuclear Information System (INIS)
Aymard, Francois
2015-01-01
The core collapse supernova is one of the most powerful known phenomena in the universe. It results from the explosion of very massive stars after they have burnt all their fuel. The hot compact remnant, the so-called proto-neutron star, cools down to become an inert catalyzed neutron star. The dynamics and structure of compact stars, that is core collapse supernovae, proto-neutron stars and neutron stars, are still not fully understood and are currently under active research, in association with astrophysical observations and nuclear experiments. One of the key components for modelling compact stars concerns the Equation of State. The task of computing a complete realistic consistent Equation of State for all such stars is challenging because a wide range of densities, proton fractions and temperatures is spanned. This thesis deals with the microscopic modelling of the structure and internal composition of baryonic matter with nucleonic degrees of freedom in compact stars, in order to obtain a realistic unified Equation of State. In particular, we are interested in a formalism which can be applied both at sub-saturation and super-saturation densities, and which gives in the zero temperature limit results compatible with the microscopic Hartree-Fock-Bogoliubov theory with modern realistic effective interactions constrained on experimental nuclear data. For this purpose, we present, for sub-saturated matter, a Nuclear Statistical Equilibrium model which corresponds to a statistical superposition of finite configurations, the so-called Wigner-Seitz cells. Each cell contains a nucleus, or cluster, embedded in a homogeneous electron gas as well as a homogeneous neutron and proton gas. Within each cell, we investigate the different components of the nuclear energy of clusters in interaction with gases. The use of the nuclear mean-field theory for the description of both the clusters and the nucleon gas allows a theoretical consistency with the treatment at saturation
Non-equilibrium statistical theory about microscopic fatigue cracks of metal in magnetic field
International Nuclear Information System (INIS)
Zhao-Long, Liu; Hai-Yun, Hu; Tian-You, Fan; Xiu-San, Xing
2010-01-01
This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of micro-crack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field. (cross-disciplinary physics and related areas of science and technology)
Wang, Peng; Piao, Yingzhe; Zhang, Xiaohui; Li, Wenliang; Hao, Xishan
2013-01-01
We aimed to investigate the concentration of CYFRA 21-1, NSE and CEA in cerebro-spinal fluid (CSF) and to explore their clinical value in the meningeal carcinomatosis (MC) of lung cancer. So that, sensitive and specificity of CSF examination can be improved in the initial diagnosis of MC. A total of 35 lung cancer patients and 35 patients with benign brain tumor in the same period enrolled in this study. The concentrations of tumor markers CEA, CYFRA 21-1 and NSE in CSF and peripheral blood were examined. The concentrations of three tumor markers of CYFRA 21-1, NSE and CEA in blood serum and CSF were obviously higher than that of benign disease group. In MC patients, the concentrations of three tumor markers of CYFRA 21-1, NSE and CEA in blood serum were significant lower than that in CSF. The maximum of Youden's index was identified as the cutoff value of indicator of MC in three tumor markers in CSF which were CEA > 4.7 μg/L, NSE > 14.6 μg/L and CYFRA21-1 > 5.5 μg/L respectively. Based on the cutoff values, the CEA had the highest sensitivity while the CYFRA21-1 had the highest specificitiy. Three tumor markers in the CSF had higher positive rate than those in blood serum. We combined the levels of CEA, NSE and CYFRA21-1 in CSF to diagnosis of MC. Positive of CEA or CYFRA21-1 had the greatest sensitivity of 100% while the specificity of 91.4%; the positive of both CEA and CYFRA21-1 had the highest specificity of 100% while the sensitivity of 74.3%. Both positive predictive value and negative predictive value were 100% when combination positive were confirmed when the all three markers were positive. The combination of CEA and CYFRA21-1 can be recommended in early screening of meningeal carcinoma. Especially, for the patient who was difficult to be diagnosed by CSF histology and MRI, it will be a useful auxiliary marker in diagnosis of MC. The combination of CEA, NSE and CYFRA21-1 can be an effective clinically confirmation and exclusively diagnose indictor of
Du, Xinzhong; Shrestha, Narayan Kumar; Ficklin, Darren L.; Wang, Junye
2018-04-01
Stream temperature is an important indicator for biodiversity and sustainability in aquatic ecosystems. The stream temperature model currently in the Soil and Water Assessment Tool (SWAT) only considers the impact of air temperature on stream temperature, while the hydroclimatological stream temperature model developed within the SWAT model considers hydrology and the impact of air temperature in simulating the water-air heat transfer process. In this study, we modified the hydroclimatological model by including the equilibrium temperature approach to model heat transfer processes at the water-air interface, which reflects the influences of air temperature, solar radiation, wind speed and streamflow conditions on the heat transfer process. The thermal capacity of the streamflow is modeled by the variation of the stream water depth. An advantage of this equilibrium temperature model is the simple parameterization, with only two parameters added to model the heat transfer processes. The equilibrium temperature model proposed in this study is applied and tested in the Athabasca River basin (ARB) in Alberta, Canada. The model is calibrated and validated at five stations throughout different parts of the ARB, where close to monthly samplings of stream temperatures are available. The results indicate that the equilibrium temperature model proposed in this study provided better and more consistent performances for the different regions of the ARB with the values of the Nash-Sutcliffe Efficiency coefficient (NSE) greater than those of the original SWAT model and the hydroclimatological model. To test the model performance for different hydrological and environmental conditions, the equilibrium temperature model was also applied to the North Fork Tolt River Watershed in Washington, United States. The results indicate a reasonable simulation of stream temperature using the model proposed in this study, with minimum relative error values compared to the other two models
Groundwater flux estimation in streams: A thermal equilibrium approach
Zhou, Yan; Fox, Garey A.; Miller, Ron B.; Mollenhauer, Robert; Brewer, Shannon
2018-06-01
Stream and groundwater interactions play an essential role in regulating flow, temperature, and water quality for stream ecosystems. Temperature gradients have been used to quantify vertical water movement in the streambed since the 1960s, but advancements in thermal methods are still possible. Seepage runs are a method commonly used to quantify exchange rates through a series of streamflow measurements but can be labor and time intensive. The objective of this study was to develop and evaluate a thermal equilibrium method as a technique for quantifying groundwater flux using monitored stream water temperature at a single point and readily available hydrological and atmospheric data. Our primary assumption was that stream water temperature at the monitored point was at thermal equilibrium with the combination of all heat transfer processes, including mixing with groundwater. By expanding the monitored stream point into a hypothetical, horizontal one-dimensional thermal modeling domain, we were able to simulate the thermal equilibrium achieved with known atmospheric variables at the point and quantify unknown groundwater flux by calibrating the model to the resulting temperature signature. Stream water temperatures were monitored at single points at nine streams in the Ozark Highland ecoregion and five reaches of the Kiamichi River to estimate groundwater fluxes using the thermal equilibrium method. When validated by comparison with seepage runs performed at the same time and reach, estimates from the two methods agreed with each other with an R2 of 0.94, a root mean squared error (RMSE) of 0.08 (m/d) and a Nash-Sutcliffe efficiency (NSE) of 0.93. In conclusion, the thermal equilibrium method was a suitable technique for quantifying groundwater flux with minimal cost and simple field installation given that suitable atmospheric and hydrological data were readily available.
Blakemore, J S
1962-01-01
Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co
Zou, Yingchang; Wang, Lin; Zhao, Cong; Hu, Yanjie; Xu, Shan; Ying, Kejing; Wang, Ping; Chen, Xing
2013-12-01
Lung cancer (LC) is the leading cause of cancer-related death. The sensitive and non-invasive diagnostic tools in the early stage are still poor. We present a pilot study on the early diagnosis of LC by detecting markers in exhaled breath condensate (EBC). EBC samples were collected from 105 patients with LC and 56 healthy controls. We applied chemiluminescence immunoassay to detect CEA (carcinoembryonic antigen), SCC (squamous cell carcinoma) antigen and NSE (neuron specific enolase) in EBC and serum. Concentrations of markers were compared between independent groups and subgroups. A significantly higher concentration level of each marker was found in patients with LC than healthy controls. The areas under curve of receiver operating characteristic (ROC) curves were 0.800, 0.771, 0.659, 0.679, 0.636 and 0.626 for EBC-CEA, serum-CEA, EBC-SCC, serum-SCC, EBC-NSE and serum-NSE, respectively. Markers in EBC had a higher positive rate (PR) and were more specific to histologic types than markers in serum. In addition, multivariate analysis was performed to evaluate the association of presenting markers with the stages of non-small cell lung cancer (NSCLC). EBC-CEA showed the best predictive characteristic (p tumor markers in EBC may have a better diagnostic performance for LC than those in serum. With further investigation on the combination of markers in EBC, detection of EBC could probably be a novel and non-invasive method to detect NSCLC earlier.
Directory of Open Access Journals (Sweden)
Xiliang Zheng
2015-04-01
Full Text Available We uncovered the universal statistical laws for the biomolecular recognition/binding process. We quantified the statistical energy landscapes for binding, from which we can characterize the distributions of the binding free energy (affinity, the equilibrium constants, the kinetics and the specificity by exploring the different ligands binding with a particular receptor. The results of the analytical studies are confirmed by the microscopic flexible docking simulations. The distribution of binding affinity is Gaussian around the mean and becomes exponential near the tail. The equilibrium constants of the binding follow a log-normal distribution around the mean and a power law distribution in the tail. The intrinsic specificity for biomolecular recognition measures the degree of discrimination of native versus non-native binding and the optimization of which becomes the maximization of the ratio of the free energy gap between the native state and the average of non-native states versus the roughness measured by the variance of the free energy landscape around its mean. The intrinsic specificity obeys a Gaussian distribution near the mean and an exponential distribution near the tail. Furthermore, the kinetics of binding follows a log-normal distribution near the mean and a power law distribution at the tail. Our study provides new insights into the statistical nature of thermodynamics, kinetics and function from different ligands binding with a specific receptor or equivalently specific ligand binding with different receptors. The elucidation of distributions of the kinetics and free energy has guiding roles in studying biomolecular recognition and function through small-molecule evolution and chemical genetics.
Brain injury markers (S100B and NSE) in chronic cocaine dependents
Kessler, Felix Henrique Paim; Woody, George; Portela, Luís Valmor Cruz; Tort, Adriano Bretanha Lopes; De Boni, Raquel; Peuker, Ana Carolina Wolf Baldino; Genro, Vanessa; Diemen, Lísia von; Souza, Diogo Onofre Gomes de; Pechansky, Flavio
2007-01-01
OBJECTIVE: Studies have shown signs of brain damage caused by different mechanisms in cocaine users. The serum neuron specific enolase and S100B protein are considered specific biochemical markers of neuronal and glial cell injury. This study aimed at comparing blood levels of S100B and NSE in chronic cocaine users and in volunteers who did not use cocaine or other illicit drugs. METHOD: Twenty subjects dependent on cocaine but not on alcohol or marijuana, and 20 non-substance using controls ...
International Nuclear Information System (INIS)
Liu Juzhen; Cai Tietie; Qin Shana
2007-01-01
Objective: To investigate the diagnostic value of combined determination of serum NSE, CA242, tissue polypeptide antigen (TPA) and CEA levels in patients with primary lung cancer. Methods: Serum NSE, CA242, TPA and CEA levels were determined with ELISA in (1) 102 patients with various types of primary lung carcinoma (adenocarcinoma 38, squamous cell carcinoma 32, small cell lung carcinoma 32) (2) 33 patients with open lung T. B. and (3) 30 controls. Results: (1) In patients with lung cancer, serum levels of all the four markers were increased and significantly higher than their respective values in patients with open lung T.B. and controls. (2) Positive rate of combined any two markers were 75% for adenocarcinoma, 50% for squamous cell carcinoma and 65% for small cell lung carcinoma, while false positive rate was only 9% for T.B patients and none for the controls. (3) The most appropriate single marker for each specific type of lung cancer was: NSE for SCLC (sensitivity 72%, specificity 97%, CA242 for adenocarcinoma sensitivity 62%, specificity 90%). Conclusion: Combined determination of these tumor markers would improve the sensitivity and specificity for diagnosis of primary lung carcinoma. (authors)
Non-equilibrium dog-flea model
Ackerson, Bruce J.
2017-11-01
We develop the open dog-flea model to serve as a check of proposed non-equilibrium theories of statistical mechanics. The model is developed in detail. Then it is applied to four recent models for non-equilibrium statistical mechanics. Comparison of the dog-flea solution with these different models allows checking claims and giving a concrete example of the theoretical models.
International Nuclear Information System (INIS)
Roh, Heui-Seol
2015-01-01
Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms
Open problems in non-equilibrium physics
International Nuclear Information System (INIS)
Kusnezov, D.
1997-01-01
The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions
Open problems in non-equilibrium physics
Energy Technology Data Exchange (ETDEWEB)
Kusnezov, D.
1997-09-22
The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.
Belof, Jonathan; Orlikowski, Daniel; Wu, Christine; McLaughlin, Keith
2013-06-01
Shock and ramp compression experiments are allowing us to probe condensed matter under extreme conditions where phase transitions and other non-equilibrium aspects can now be directly observed, but first principles simulation of kinetics remains a challenge. A multi-scale approach is presented here, with non-equilibrium statistical mechanical quantities calculated by molecular dynamics (MD) and then leveraged to inform a classical nucleation and growth kinetics model at the hydrodynamic scale. Of central interest is the free energy barrier for the formation of a critical nucleus, with direct NEMD presenting the challenge of relatively long timescales necessary to resolve nucleation. Rather than attempt to resolve the time-dependent nucleation sequence directly, the methodology derived here is built upon the non-equilibrium work theorem in order to bias the formation of a critical nucleus and thus construct the nucleation and growth rates. Having determined these kinetic terms from MD, a hydrodynamics implementation of Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics and metastabilty is applied to the dynamic compressive freezing of water and compared with recent ramp compression experiments [Dolan et al., Nature (2007)] Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.
Directory of Open Access Journals (Sweden)
Shu-Qin Zhang
2017-03-01
Full Text Available Objective: To study the effects of Atorvastatin calcium combined with Aspirin on serum levels of homocysteine (Hcy, neuron-specific enolase (NSE, uric acid (UA, high sensitity C-reactive protein (hs-CRP and inflammatory factors of patients with cerebral infarction. Methods: 100 cases of patients with cerebral infarction from March 2014 to May 2016 were treated in the Department of Neurology of our hospital and affiliated to Huazhong University of Science and Technology of traditional Chinese medicine and Western Medicine. The subjects were divided into the control group (n=50 and the treatment group (n=50 randomly. The control group was treated with Aspirin, the treatment group were treated with Atorvastatin calcium combined with Aspirin. The two groups were treated for 28 d. The serum levels of Hcy, NSE, UA, hs- CRP, interleukin-6 (IL-6, interleukin-8 (IL-8 and tumor necrosis factor-α (TNF-α of the two groups before and after treatment were compared. Results: There were no significantly differences of the serum levels of the Hcy, NSE, UA and hs-CRP of the two groups before treatment (P>0.05. After treatment, the serum levels of the Hcy, NSE, UA and hs-CRP of the two groups were significantly lower than before treatment, and that of the treatment group were significantly lower than the control group (P0.05. After treatment, the serum levels of the IL-6, IL-8 and TNF-α of the two groups were significantly lower than before treatment, and that of the treatment group were significantly lower than the control group (P<0.05. Conclusions: Atorvastatin calcium combined with Aspirin can significantly reduce the serum levels of Hcy, NSE, UA, hs-CRP, IL-6, IL-8 and TNF-α of the patients with cerebral infarction.
Statistical downscaling of rainfall: a non-stationary and multi-resolution approach
Rashid, Md. Mamunur; Beecham, Simon; Chowdhury, Rezaul Kabir
2016-05-01
A novel downscaling technique is proposed in this study whereby the original rainfall and reanalysis variables are first decomposed by wavelet transforms and rainfall is modelled using the semi-parametric additive model formulation of Generalized Additive Model in Location, Scale and Shape (GAMLSS). The flexibility of the GAMLSS model makes it feasible as a framework for non-stationary modelling. Decomposition of a rainfall series into different components is useful to separate the scale-dependent properties of the rainfall as this varies both temporally and spatially. The study was conducted at the Onkaparinga river catchment in South Australia. The model was calibrated over the period 1960 to 1990 and validated over the period 1991 to 2010. The model reproduced the monthly variability and statistics of the observed rainfall well with Nash-Sutcliffe efficiency (NSE) values of 0.66 and 0.65 for the calibration and validation periods, respectively. It also reproduced well the seasonal rainfall over the calibration (NSE = 0.37) and validation (NSE = 0.69) periods for all seasons. The proposed model was better than the tradition modelling approach (application of GAMLSS to the original rainfall series without decomposition) at reproducing the time-frequency properties of the observed rainfall, and yet it still preserved the statistics produced by the traditional modelling approach. When downscaling models were developed with general circulation model (GCM) historical output datasets, the proposed wavelet-based downscaling model outperformed the traditional downscaling model in terms of reproducing monthly rainfall for both the calibration and validation periods.
Statistical equilibrium calculations for silicon in early-type model stellar atmospheres
International Nuclear Information System (INIS)
Kamp, L.W.
1976-02-01
Line profiles of 36 multiplets of silicon (Si) II, III, and IV were computed for a grid of model atmospheres covering the range from 15,000 to 35,000 K in effective temperature and 2.5 to 4.5 in log (gravity). The computations involved simultaneous solution of the steady-state statistical equilibrium equations for the populations and of the equation of radiative transfer in the lines. The variables were linearized, and successive corrections were computed until a minimal accuracy of 1/1000 in the line intensities was reached. The common assumption of local thermodynamic equilibrium (LTE) was dropped. The model atmospheres used also were computed by non-LTE methods. Some effects that were incorporated into the calculations were the depression of the continuum by free electrons, hydrogen and ionized helium line blocking, and auto-ionization and dielectronic recombination, which later were found to be insignificant. Use of radiation damping and detailed electron (quadratic Stark) damping constants had small but significant effects on the strong resonance lines of Si III and IV. For weak and intermediate-strength lines, large differences with respect to LTE computations, the results of which are also presented, were found in line shapes and strengths. For the strong lines the differences are generally small, except for the models at the hot, low-gravity extreme of the range. These computations should be useful in the interpretation of the spectra of stars in the spectral range B0--B5, luminosity classes III, IV, and V
Some recent developments in non-equilibrium statistical physics
Indian Academy of Sciences (India)
: ... This canonical prescription is the starting point for studying a system in ... abilistic approach to non-equilibrium dynamics by treating the case of Markovian ..... equation in this network between the incoming flux and the outgoing flux at each.
The non-equilibrium statistical mechanics of a simple geophysical fluid dynamics model
Verkley, Wim; Severijns, Camiel
2014-05-01
Lorenz [1] has devised a dynamical system that has proved to be very useful as a benchmark system in geophysical fluid dynamics. The system in its simplest form consists of a periodic array of variables that can be associated with an atmospheric field on a latitude circle. The system is driven by a constant forcing, is damped by linear friction and has a simple advection term that causes the model to behave chaotically if the forcing is large enough. Our aim is to predict the statistics of Lorenz' model on the basis of a given average value of its total energy - obtained from a numerical integration - and the assumption of statistical stationarity. Our method is the principle of maximum entropy [2] which in this case reads: the information entropy of the system's probability density function shall be maximal under the constraints of normalization, a given value of the average total energy and statistical stationarity. Statistical stationarity is incorporated approximately by using `stationarity constraints', i.e., by requiring that the average first and possibly higher-order time-derivatives of the energy are zero in the maximization of entropy. The analysis [3] reveals that, if the first stationarity constraint is used, the resulting probability density function rather accurately reproduces the statistics of the individual variables. If the second stationarity constraint is used as well, the correlations between the variables are also reproduced quite adequately. The method can be generalized straightforwardly and holds the promise of a viable non-equilibrium statistical mechanics of the forced-dissipative systems of geophysical fluid dynamics. [1] E.N. Lorenz, 1996: Predictability - A problem partly solved, in Proc. Seminar on Predictability (ECMWF, Reading, Berkshire, UK), Vol. 1, pp. 1-18. [2] E.T. Jaynes, 2003: Probability Theory - The Logic of Science (Cambridge University Press, Cambridge). [3] W.T.M. Verkley and C.A. Severijns, 2014: The maximum entropy
Equilibrium and out-of-equilibrium thermodynamics in supercooled liquids and glasses
International Nuclear Information System (INIS)
Mossa, S; Nave, E La; Tartaglia, P; Sciortino, F
2003-01-01
We review the inherent structure thermodynamical formalism and the formulation of an equation of state (EOS) for liquids in equilibrium based on the (volume) derivatives of the statistical properties of the potential energy surface. We also show that, under the hypothesis that during ageing the system explores states associated with equilibrium configurations, it is possible to generalize the proposed EOS to out-of-equilibrium (OOE) conditions. The proposed formulation is based on the introduction of one additional parameter which, in the chosen thermodynamic formalism, can be chosen as the local minimum where the slowly relaxing OOE liquid is trapped
Schwabl, Franz
2006-01-01
The completely revised new edition of the classical book on Statistical Mechanics covers the basic concepts of equilibrium and non-equilibrium statistical physics. In addition to a deductive approach to equilibrium statistics and thermodynamics based on a single hypothesis - the form of the microcanonical density matrix - this book treats the most important elements of non-equilibrium phenomena. Intermediate calculations are presented in complete detail. Problems at the end of each chapter help students to consolidate their understanding of the material. Beyond the fundamentals, this text demonstrates the breadth of the field and its great variety of applications. Modern areas such as renormalization group theory, percolation, stochastic equations of motion and their applications to critical dynamics, kinetic theories, as well as fundamental considerations of irreversibility, are discussed. The text will be useful for advanced students of physics and other natural sciences; a basic knowledge of quantum mechan...
Institute of Scientific and Technical Information of China (English)
Zhen-Ping Cui
2017-01-01
Objective:To explore the effect of early rehabilitation training on the serum NGF, NSE, BDNF, and motor function in patients with acute cerebral infarction (ACI).Methods: A total of 150 patients with ACI who were admitted in our hospital from October, 2015 to October, 2016 were included in the study and randomized into the observation group and the control group. The patients in the two groups were given anti-coagulation, anti-platelet aggregation, cerebral circulation improving, and brain cell activators. The patients in the control group were given routine neurological nursing, while the patients in the observation group were given early comprehensive rehabilitation training on the basis of stable vital signs and no disease progression within 48 h. The morning fasting peripheral venous blood before treatment, 2 and 4 weeks after treatment in the two groups was collected. The serum NGF, NSE, BDNF, IL-6, hs-CRP, and TNF-α were detected. The activities of daily living and motor function before treatment, 2 and 4 weeks after treatment in the two groups were evaluated.Results:IL-6, hs-CRP, and TNF-α levels 2 and 4 weeks after treatment in the observation group were significantly lower than those in the control group (P<0.05). NGF and BDNF levels 2 and 4 weeks after treatment in the observation group were significantly higher than those in the control group (P<0.05), while NSE level was significantly lower than that in the control group (P<0.05). MBI and FMA scores 2 and 4 weeks after treatment in the observation group were significantly higher than those in the control group (P<0.05).Conclusions: The early rehabilitation training can effectively reduce the inflammatory reaction of nervous system in patients with ACI, regulate NGF, BDNF, and NSE levels, and play the cerebral function remodeling in order to promote the neural function recovery, and improve the motor function.
Felix Henrique Paim Kessler; George Woody; Luís Valmor Cruz Portela; Adriano Bretanha Lopes Tort; Raquel De Boni; Ana Carolina Wolf Baldino Peuker; Vanessa Genro; Lísia von Diemen; Diogo Onofre Gomes de Souza; Flavio Pechansky
2007-01-01
OBJECTIVE: Studies have shown signs of brain damage caused by different mechanisms in cocaine users. The serum neuron specific enolase and S100B protein are considered specific biochemical markers of neuronal and glial cell injury. This study aimed at comparing blood levels of S100B and NSE in chronic cocaine users and in volunteers who did not use cocaine or other illicit drugs. METHOD: Twenty subjects dependent on cocaine but not on alcohol or marijuana, and 20 non-substance using controls ...
Lattice ellipsoidal statistical BGK model for thermal non-equilibrium flows
Meng, Jianping; Zhang, Yonghao; Hadjiconstantinou, Nicolas G.; Radtke, Gregg A.; Shan, Xiaowen
2013-03-01
A thermal lattice Boltzmann model is constructed on the basis of the ellipsoidal statistical Bhatnagar-Gross-Krook (ES-BGK) collision operator via the Hermite moment representation. The resulting lattice ES-BGK model uses a single distribution function and features an adjustable Prandtl number. Numerical simulations show that using a moderate discrete velocity set, this model can accurately recover steady and transient solutions of the ES-BGK equation in the slip-flow and early transition regimes in the small Mach number limit that is typical of microscale problems of practical interest. In the transition regime in particular, comparisons with numerical solutions of the ES-BGK model, direct Monte Carlo and low-variance deviational Monte Carlo simulations show good accuracy for values of the Knudsen number up to approximately 0.5. On the other hand, highly non-equilibrium phenomena characterized by high Mach numbers, such as viscous heating and force-driven Poiseuille flow for large values of the driving force, are more difficult to capture quantitatively in the transition regime using discretizations chosen with computational efficiency in mind such as the one used here, although improved accuracy is observed as the number of discrete velocities is increased.
Shang, Xiaojing; Song, Chunqing; Du, Xiaoming; Shao, Hailin; Xu, Donghong; Wang, Xiaolai
2017-02-01
To investigate whether there is a difference in carbohydrate antigen 19-9 (CA19-9), carcinoembryonic antigen (CEA), carbohydrate antigen 72-4 (CA72-4), and neuron-specific enolase (NSE) between diabetic and non-diabetic patients. Methods: A retrospective analysis was performed in 268 type 2 diabetic patients and 95 non-diabetic ones, and their serum levels of CA19-9, CEA, CA72-4, and NSE were compared in our endocrine ward at the Tianjin Fourth Central Hospital, Tianjin, Chinaduring the period from January to June 2015. The diabetic patients were divided into 4 groups based on glycosylated hemoglobin (HbA1c) levels to investigate the relationship between levels of tumor markers and glucose status. Results: Diabetic patients had higher levels of tumor markers than non-diabetic subjects (CA19-9: 13.0 versus 7.25U/mL, p=0.000; CEA: 2.55 versus 2.25 ng/mL, p=0.012; CA72-4: 1.95 versus 1.50U/mL, p=0.001; NSE: 11.64 versus 10.22ng/mL, p=0.000). CA19-9 levels increased in a stepwise manner with poor diabetes status. CEA levels were increased in patients with HbA1c ≥9% and CA72-4 elevation was predominant in patients with poor glycemic control (HbA1c ≥11%). NSE levels were not associated with metabolic parameters. Conclusion: Serum levels of CA19-9, CEA, CA72-4, and NSE were elevated in type 2 diabetes; however, only CA19-9, CEA, and CA72-4 levels were associated with hyperglycemia.
Directory of Open Access Journals (Sweden)
Chunqing Song
2017-02-01
Full Text Available Objectives: To investigate whether there is a difference in carbohydrate antigen 19-9 (CA19-9, carcinoembryonic antigen (CEA, carbohydrate antigen 72-4 (CA72-4, and neuron-specific enolase (NSE between diabetic and non-diabetic patients. Methods: A retrospective analysis was performed in 268 type 2 diabetic patients and 95 non-diabetic ones, and their serum levels of CA19-9, CEA, CA72-4, and NSE were compared in our endocrine ward at the Tianjin Fourth Central Hospital, Tianjin, China during the period from January to June 2015. The diabetic patients were divided into 4 groups based on glycosylated hemoglobin (HbA1c levels to investigate the relationship between levels of tumor markers and glucose status. Results: Diabetic patients had higher levels of tumor markers than non-diabetic subjects (CA19-9: 13.0 versus 7.25U/mL, p=0.000; CEA: 2.55 versus 2.25 ng/mL, p=0.012; CA72-4: 1.95 versus 1.50U/mL, p=0.001; NSE: 11.64 versus 10.22ng/mL, p=0.000. CA19-9 levels increased in a stepwise manner with poor diabetes status. CEA levels were increased in patients with HbA1c ≥9% and CA72-4 elevation was predominant in patients with poor glycemic control (HbA1c ≥11%. NSE levels were not associated with metabolic parameters. Conclusion: Serum levels of CA19-9, CEA, CA72-4, and NSE were elevated in type 2 diabetes; however, only CA19-9, CEA, and CA72-4 levels were associated with hyperglycemia.
Non-Equilibrium Heavy Flavored Hadron Yields from Chemical Equilibrium Strangeness-Rich QGP
Kuznetsova, Inga; Rafelski, Johann
2008-01-01
The yields of heavy flavored hadrons emitted from strangeness-rich QGP are evaluated within chemical non-equilibrium statistical hadronization model, conserving strangeness, charm, and entropy yields at hadronization.
Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L
2017-04-28
In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).
International Nuclear Information System (INIS)
Yu Hua; Zhu Wenru; Sun Shuhong; Xu Shuhua; Yu Hui
2005-01-01
The level s of four tumor markers (AM, CYFRA21-1, NSE and CEA) pleural effusion in plearal effusion were determined by RIA in 52 patients with tuberculous pleural effusion and 74 patients with malignant pleural effusion. The results showed that the levels of the four tumor markers in malignant pleural effusion were significantly higher than those in tuberculous pleural effusion. Combined detection of the four tumor markers could improve the diagnostic sensitivity and the accuracy to 90.5% and 92.9%, respectively (P<0.01). Detection of AM, CYFRA21-1, NSE and CEA levels in pleural effusion is very useful for the differentiation of malignant from tuberculous pleural effusion. Combined detection of the four markers may greatly improve the diagnostic accuracy. (authors)
Dynamical scaling and critical scattering in pure and disordered ferromagnets probed by NSE
Energy Technology Data Exchange (ETDEWEB)
Alba, M. [LLB, CEA-CNRS UMR12, CEA-Saclay, 91191 Gif/Yvette Cedex (France)]. E-mail: michel.alba@cea.fr; Pouget, S. [DRFMC/SPSMS, CEN-Grenoble, 17 rue des Martyrs, 38054 Grenoble (France); Fouquet, P. [ILL, 6 rue Jules Horowitz, 38042 Grenoble (France); Farago, B. [ILL, 6 rue Jules Horowitz, 38042 Grenoble (France); Pappas, C. [Hahn-Meitner Institut, Glienickerstr. 100, 14109 Berlin (Germany)
2007-07-15
We have studied the 3D Heisenberg ferromagnetic model system CdCr{sub 2} {sub x} In{sub 2-2} {sub x} S{sub 4} in the ferromagnetic and reentrant phases as a function of temperature and momentum transfer using neutron spin echo (NSE) spectroscopy. The results from the pure sample CdCr{sub 2}S{sub 4} are in excellent agreement with the predictions of the renormalization group theory. In the presence of disorder, we see the evolution from a simple critical ferromagnetic scattering with single fast relaxation times to a more complex slow dynamics characteristic of spin glasses.
International Nuclear Information System (INIS)
Alvarez-Romero, J. T.
2006-01-01
We present a discussion to show that the absorbed dose D is a time-dependent function. This time dependence is demonstrated based on the concepts of charged particle equilibrium and on radiation equilibrium within the context of thermodynamic non-equilibrium. In the latter, the time dependence is due to changes of the rest mass energy of the nuclei and elementary particles involved in the terms ΣQ and Q that appear in the definitions of energy imparted ε and energy deposit ε i , respectively. In fact, nothing is said about the averaging operation of the non-stochastic quantity mean energy imparted ε-bar, which is used in the definition of D according to ICRU 60. It is shown in this research that the averaging operation necessary to define the ε-bar employed to get D cannot be performed with an equilibrium statistical operator ρ(r) as could be expected. Rather, the operation has to be defined with a time-dependent non-equilibrium statistical operator (r, t) therefore, D is a time-dependent function D(r, t). (authors)
Lecarpentier, Yves; Claes, Victor; Hébert, Jean-Louis; Krokidis, Xénophon; Blanc, François-Xavier; Michel, Francine; Timbely, Oumar
2015-01-01
All near-equilibrium systems under linear regime evolve to stationary states in which there is constant entropy production rate. In an open chemical system that exchanges matter and energy with the exterior, we can identify both the energy and entropy flows associated with the exchange of matter and energy. This can be achieved by applying statistical mechanics (SM), which links the microscopic properties of a system to its bulk properties. In the case of contractile tissues such as human placenta, Huxley's equations offer a phenomenological formalism for applying SM. SM was investigated in human placental stem villi (PSV) (n = 40). PSV were stimulated by means of KCl exposure (n = 20) and tetanic electrical stimulation (n = 20). This made it possible to determine statistical entropy (S), internal energy (E), affinity (A), thermodynamic force (A / T) (T: temperature), thermodynamic flow (v) and entropy production rate (A / T x v). We found that PSV operated near equilibrium, i.e., A ≺≺ 2500 J/mol and in a stationary linear regime, i.e., (A / T) varied linearly with v. As v was dramatically low, entropy production rate which quantified irreversibility of chemical processes appeared to be the lowest ever observed in any contractile system.
Camelo, Lidyane do Valle; Rodrigues, Jôsi Fernandes de Castro; Giatti, Luana; Barreto, Sandhi Maria
2012-11-01
The objective of this paper was to investigate whether sedentary leisure time was associated with increased regular consumption of unhealthy foods, independently of socio-demographic indicators and family context. The analysis included 59,809 students from the Brazilian National School-Based Adolescent Health Survey (PeNSE) in 2009. The response variable was sedentary leisure time, defined as watching more than two hours of TV daily. The target explanatory variables were regular consumption of soft drinks, sweets, cookies, and processed meat. Odds ratios (OR) and 95% confidence limits (95%CI) were obtained by multiple logistic regression. Prevalence of sedentary leisure time was 65%. Regular consumption of unhealthy foods was statistically higher among students reporting sedentary leisure time, before and after adjusting for sex, age, skin color, school administration (public versus private), household assets index, and household composition. The results indicate the need for integrated interventions to promote healthy leisure-time activities and healthy eating habits among young people.
Directory of Open Access Journals (Sweden)
Jangho Yang
2018-02-01
Full Text Available This paper studies the pattern of technical change at the firm level by applying and extending the Quantal Response Statistical Equilibrium model (QRSE. The model assumes that a large number of cost minimizing firms decide whether to adopt a new technology based on the potential rate of cost reduction. The firm in the model is assumed to have a limited capacity to process market signals so there is a positive degree of uncertainty in adopting a new technology. The adoption decision by the firm, in turn, makes an impact on the whole market through changes in the factor-price ratio. The equilibrium distribution of the model is a unimodal probability distribution with four parameters, which is qualitatively different from the Walrasian notion of equilibrium in so far as the state of equilibrium is not a single state but a probability distribution of multiple states. This paper applies Bayesian inference to estimate the unknown parameters of the model using the firm-level data of seven advanced OECD countries over eight years and shows that the mentioned equilibrium distribution from the model can satisfactorily recover the observed pattern of technical change.
Kulikov, Mikhail Y.; Nechaev, Anton A.; Belikovich, Mikhail V.; Ermakova, Tatiana S.; Feigin, Alexander M.
2018-05-01
This Technical Note presents a statistical approach to evaluating simultaneous measurements of several atmospheric components under the assumption of photochemical equilibrium. We consider simultaneous measurements of OH, HO2, and O3 at the altitudes of the mesosphere as a specific example and their daytime photochemical equilibrium as an evaluating relationship. A simplified algebraic equation relating local concentrations of these components in the 50-100 km altitude range has been derived. The parameters of the equation are temperature, neutral density, local zenith angle, and the rates of eight reactions. We have performed a one-year simulation of the mesosphere and lower thermosphere using a 3-D chemical-transport model. The simulation shows that the discrepancy between the calculated evolution of the components and the equilibrium value given by the equation does not exceed 3-4 % in the full range of altitudes independent of season or latitude. We have developed a statistical Bayesian evaluation technique for simultaneous measurements of OH, HO2, and O3 based on the equilibrium equation taking into account the measurement error. The first results of the application of the technique to MLS/Aura data (Microwave Limb Sounder) are presented in this Technical Note. It has been found that the satellite data of the HO2 distribution regularly demonstrate lower altitudes of this component's mesospheric maximum. This has also been confirmed by model HO2 distributions and comparison with offline retrieval of HO2 from the daily zonal means MLS radiance.
Teaching at the edge of knowledge: Non-equilibrium statistical physics
Schmittmann, Beate
2007-03-01
As physicists become increasingly interested in biological problems, we frequently find ourselves confronted with complex open systems, involving many interacting constituents and characterized by non-vanishing fluxes of mass or energy. Faced with the task of predicting macroscopic behaviors from microscopic information for these non-equilibrium systems, the familiar Gibbs-Boltzmann framework fails. The development of a comprehensive theoretical characterization of non-equilibrium behavior is one of the key challenges of modern condensed matter physics. In its absence, several approaches have been developed, from master equations to thermostatted molecular dynamics, which provide key insights into the rich and often surprising phenomenology of systems far from equilibrium. In my talk, I will address some of these methods, selecting those that are most relevant for a broad range of interdisciplinary problems from biology to traffic, finance, and sociology. The ``portability'' of these methods makes them valuable for graduate students from a variety of disciplines. To illustrate how different methods can complement each other when probing a problem from, e.g., the life sciences, I will discuss some recent attempts at modeling translation, i.e., the process by which the genetic information encoded on an mRNA is translated into the corresponding protein.
A new equation of state Based on Nuclear Statistical Equilibrium for Core-Collapse Simulations
Furusawa, Shun; Yamada, Shoichi; Sumiyoshi, Kohsuke; Suzuki, Hideyuki
2012-09-01
We calculate a new equation of state for baryons at sub-nuclear densities for the use in core-collapse simulations of massive stars. The formulation is the nuclear statistical equilibrium description and the liquid drop approximation of nuclei. The model free energy to minimize is calculated by relativistic mean field theory for nucleons and the mass formula for nuclei with atomic number up to ~ 1000. We have also taken into account the pasta phase. We find that the free energy and other thermodynamical quantities are not very different from those given in the standard EOSs that adopt the single nucleus approximation. On the other hand, the average mass is systematically different, which may have an important effect on the rates of electron captures and coherent neutrino scatterings on nuclei in supernova cores.
Gibbs equilibrium averages and Bogolyubov measure
International Nuclear Information System (INIS)
Sankovich, D.P.
2011-01-01
Application of the functional integration methods in equilibrium statistical mechanics of quantum Bose-systems is considered. We show that Gibbs equilibrium averages of Bose-operators can be represented as path integrals over a special Gauss measure defined in the corresponding space of continuous functions. We consider some problems related to integration with respect to this measure
Examples of equilibrium and non-equilibrium behavior in evolutionary systems
Soulier, Arne
With this thesis, we want to shed some light into the darkness of our understanding of simply defined statistical mechanics systems and the surprisingly complex dynamical behavior they exhibit. We will do so by presenting in turn one equilibrium and then one non-equilibrium system with evolutionary dynamics. In part 1, we will present the seceder-model, a newly developed system that cannot equilibrate. We will then study several properties of the system and obtain an idea of the richness of the dynamics of the seceder model, which is particular impressive given the minimal amount of modeling necessary in its setup. In part 2, we will present extensions to the directed polymer in random media problem on a hypercube and its connection to the Eigen model of evolution. Our main interest will be the influence of time-dependent and time-independent changes in the fitness landscape viewed by an evolving population. This part contains the equilibrium dynamics. The stochastic models and the topic of evolution and non-equilibrium in general will allow us to point out similarities to the various lines of thought in game theory.
International Nuclear Information System (INIS)
Li Xiaohong; Wang Yingqiu; Sun Gaofeng; Zhang Anyu; Zuo Changjing
2012-01-01
Objective: To investigate the value of 99 Tc m -HL91 hypoxia imaging combined the detection of serum neuron-specific enolase (NSE), carcinoembryonic antigen(CEA) and cytokeratin 19 fragment (CYFRA21-1) in the diagnosis of lung cancer. Methods: 63 patients with lung neoplasm were carried out 99 Tc m -Hail hypoxia imaging, and the serum tumor markers levels of Nose, Cea and CYFRA21-1 were detected. The sensitivity, specificity and accuracy of each and combined method were calculated respectively and compared with each other. Results: The sensitivity,specificity and accuracy in diagnosis of lung cancer with 99 Tc m -HL91 hypoxia imaging were 85.4%, 100% and 88.9% respectively; and with serum tumor markers NSE, CEA and CYFRA21-1 detection were 72.9%, 86.7% and 76.1% respectively. Compared with the detection of serum tumor marker levels of NSE, CEA and CYFRA21-1, 99 Tc m -HL91 hypoxia imaging had the higher sensitivity and specificity,and similar accuracy. The sensitivity, specificity and accuracy of combined two methods in diagnosis of lung cancer were 95.8%, 86.7% and 93.6% respectively. The sensitivity and accuracy of the combined method were significantly increased than single method (P 0.05). Conclusion: 99 Tc m -HL91 hypoxia imaging and the detection of serum level of NSE, CEA and CYFRA21-1 have an important diagnostic value, and their combination could improve the sensitivity and accuracy in the diagnosis of lung cancer. (authors)
International Nuclear Information System (INIS)
Lim, Gyeong Hui
2008-03-01
This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics
International Nuclear Information System (INIS)
Zhu Yalin; Zhu Xiangping
2004-01-01
Objective: To explore the clinical value of combined determination of serum/chest fluid CEA,CYFRA21-1 and NSE levels in the diagnosis of lung cancer. Methods: Combined determination of serum levels of CEA,CYFRA21-1 and NSE were done in 53 patients with lung cancer , 26 patients with benign lung diseases and 37 controls. Levels of these three tumor markers were also determined in the pleural fluid present in 33 of the 53 lung cancer patients. Results: In the controls, the serum levels of CEA, CYFRA21-1 and NSE were 2.68 ± 1.75, 1.52 ± 0.86 and 8.77 ± 4.13 ng/ml respectively. In patients with benign lung diseases, the values were 5.48 ± 3.26, 5.32 ± 2.27 and 15.21 ± 11.36 ng/ml respectively. In patients with lung cancer, they were 24.95 ± 18.36, 17.81 ± 11.35 and 19.85 ± 14.22 ng/ml respectively. Serum levels of all these three markers were significantly higher in patients with lung cancer than those in the controls (P 0.05). Levels of all these markers were significantly higher in patients with benign lung diseases than those in the controls (P 0.05); only levels of CYFRA21-1 were significantly higher (P<0.01). Sensitivity of the respective marker in pleural fluid was higher than that in serum. Conclusion: For diagnosis of lung cancer, determination of serum CYFRA21-1 levels or combined determination of the three tumor markers would be most valuable to test levels in pleural fluid, if available, would be more sensitive. (authors)
Hoffmann, Ingo; Michel, Raphael; Sharp, Melissa; Holderer, Olaf; Appavou, Marie-Sousai; Polzer, Frank; Farago, Bela; Gradzielski, Michael
2014-05-01
The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon binding of the nanoparticles. This surprising finding may be a relevant aspect for the further understanding of the effects that nanoparticles have on phospholipid bilayers.The interactions between nanoparticles and vesicles are of significant interest both from a fundamental as well as from a practical point of view, as vesicles can serve as a model system for cell membranes. Accordingly the effect of nanoparticles that bind to the vesicle bilayer is very important with respect to understanding their biological impact and also may shed some light on the mechanisms behind the effect of nanotoxicity. In this study we have investigated the influence of small adsorbed silica nanoparticles (SiNPs) on the structure of zwitterionic DOPC vesicles. By a combination of SANS, cryo-TEM, and DLS, we observed that the SiNPs are bound to the outer vesicle surface without significantly affecting the vesicle structure. Most interestingly, by means of neutron spin-echo (NSE) local bilayer fluctuations were studied and one finds a small but marked decrease of the membrane rigidity upon
Statistical properties of deep inelastic reactions
International Nuclear Information System (INIS)
Moretto, L.G.
1983-08-01
The multifaceted aspects of deep-inelastic heavy-ion collisions are discussed in terms of the statistical equilibrium limit. It is shown that a conditional statistical equilibrium, where a number of degrees of freedom are thermalized while others are still relaxing, prevails in most of these reactions. The individual degrees of freedom that have been explored experimentally are considered in their statistical equilibrium limit, and the extent to which they appear to be thermalized is discussed. The interaction between degrees of freedom on their way towards equilibrium is shown to create complex feedback phenomena that may lead to self-regulation. A possible example of self-regulation is shown for the process of energy partition between fragments promoted by particle exchange. 35 references
Thermodynamic theory of equilibrium fluctuations
International Nuclear Information System (INIS)
Mishin, Y.
2015-01-01
The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.
Brownian quasi-particles in statistical physics
International Nuclear Information System (INIS)
Tellez-Arenas, A.; Fronteau, J.; Combis, P.
1979-01-01
The idea of a Brownian quasi-particle and the associated differentiable flow (with nonselfadjoint forces) are used here in the context of a stochastic description of the approach towards statistical equilibrium. We show that this quasi-particle flow acquires, at equilibrium, the principal properties of a conservative Hamiltonian flow. Thus the model of Brownian quasi-particles permits us to establish a link between the stochastic description and the Gibbs description of statistical equilibrium
International Nuclear Information System (INIS)
Wang Jianguo; Zhai Shijun; Liu Ruihua; Quan Min
2003-01-01
Objective: To improve the diagnostic accuracy in the differentiation of malignant hydrothorax from tuberculous hydrothorax by combined detection of the levels of the four tumor markers in chest effusion fluid. Methods: The chest fluid levels of the four tumor markers were determined with RIA (for CYFRA21-1 and NSE) and chemiluminescence method (for CEA and SF) in 69 patients with tuberculous hydrothorax and 107 patients with malignant hydrothorax. Results: The positive rate and mean levels of the four tumor markers in malignant chest fluid were significantly higher than those in tuberculous chest fluid (p<0.01). Positive rate of combined detection in malignant chest fluid was 95.33%. Conclusion: Detection of chest fluid CEA, CYFRA21-1, NSE and SF levels is very useful for the differentiation of malignant hydrothorax from tuberculous hydrothorax. Combined detection of the four markers will greatly improve the diagnostic accuracy
Thermodynamic evolution far from equilibrium
Khantuleva, Tatiana A.
2018-05-01
The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.
DEFF Research Database (Denmark)
Credali, Alfredo; Garcia-Calderón, Margarita; Dam, Svend Secher
2013-01-01
The physiological role of K+-dependent and K+-independent asparaginases in plants remains unclear, and the contribution from individual isoforms during development is poorly understood. We have used reverse genetics to assess the phenotypes produced by the deficiency of K+-dependent NSE1 asparagi...
Directory of Open Access Journals (Sweden)
Lidyane do Valle Camelo
2012-11-01
Full Text Available O objetivo deste trabalho foi investigar se o lazer sedentário está associado a um maior consumo regular de alimentos não saudáveis independentemente de indicadores sociodemográficos e de contexto familiar. A análise envolveu 59.809 escolares da Pesquisa Nacional de Saúde do Escolar (PeNSE conduzida em 2009. A variável resposta foi o lazer sedentário, definido como o tempo diário em frente à TV superior a duas horas/dia. As variáveis explicativas de interesse foram o consumo regular de refrigerantes, guloseimas, biscoitos doces e embutidos. Odds ratios (OR e intervalos de 95% de confiança (IC95% foram obtidos por regressão logística múltipla. A prevalência de lazer sedentário foi de 65%. O consumo regular de alimentos não saudáveis foi estatisticamente maior entre os que relataram lazer sedentário, antes e após ajuste por sexo, idade, cor da pele autorreferida, dependência administrativa da escola, índice de bens no domicílio e composição familiar. Esses resultados apontam a necessidade de intervenções que promovam, de forma integrada, lazer e dieta saudável entre os jovens.The objective of this paper was to investigate whether sedentary leisure time was associated with increased regular consumption of unhealthy foods, independently of socio-demographic indicators and family context. The analysis included 59,809 students from the Brazilian National School-Based Adolescent Health Survey (PeNSE in 2009. The response variable was sedentary leisure time, defined as watching more than two hours of TV daily. The target explanatory variables were regular consumption of soft drinks, sweets, cookies, and processed meat. Odds ratios (OR and 95% confidence limits (95%CI were obtained by multiple logistic regression. Prevalence of sedentary leisure time was 65%. Regular consumption of unhealthy foods was statistically higher among students reporting sedentary leisure time, before and after adjusting for sex, age, skin color
Directory of Open Access Journals (Sweden)
Maria do Carmo Matias Freire
2012-01-01
Full Text Available O objetivo deste estudo foi estimar a prevalência da dor de dente em adolescentes brasileiros e analisar fatores sociodemográficos e comportamentais associados, utilizando os dados da Pesquisa Nacional de Saúde do Escolar (PeNSE de 2009. A pesquisa foi realizada pelo Instituto Brasileiro de Geografia e Estatística e pelo Ministério da Saúde em escolares com idades entre 11 e 17 anos ou mais, das 27 capitais brasileiras, por meio de questionário autoaplicável. Utilizou-se a análise de regressão de Poisson, segundo um modelo hierárquico de determinação. A prevalência de dor na amostra (n = 54.985 nos últimos seis meses foi de 17,8% (IC95%: 17,5-18,1. Prevalências mais elevadas foram encontradas em mulheres, naqueles com 14 anos ou mais, das raças preta, parda e indígena, de escolas públicas, cujas mães tinham baixa escolaridade, que não moravam com a mãe, que haviam experimentado cigarro e álcool alguma vez na vida, que relataram menor frequência de escovação e maior consumo de guloseimas e refrigerantes. A prevalência de dor foi considerável e associada a aspectos sociodemográficos e de comportamentos relacionados à saúde.The aim of this study was to assess the prevalence of dental pain and associated socio-demographic and behavioral factors in Brazilian adolescents, using data from the National School-Based Health Survey (PeNSE, Brazil, 2009. The survey was conducted by the Brazilian Institute of Geography and Statistics (IBGE and Ministry of Health in students 11 to 17 years of age or older in the 27 State capitals, using a self-administered questionnaire. Analyses included Poisson regression following a hierarchical approach. Prevalence of dental pain in the sample (n = 54,985 in the previous six months was 17.8% (95%CI: 17.5-18.1. Higher prevalence was associated with female gender, age 14 years and over, racial self-identification as black, brown, or indigenous, enrollment in public schools, lower maternal
Non-Equilibrium Properties from Equilibrium Free Energy Calculations
Pohorille, Andrew; Wilson, Michael A.
2012-01-01
Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.
Coronal emission-line polarization from the statistical equilibrium of magnetic sublevels. I. Fe XII
International Nuclear Information System (INIS)
House, L.L.
1977-01-01
A general formulation for the polarization of coronal emission lines is presented, and the physics is illustrated through application of the formulation to the lines of Fe XIII at 10747 and 10798 A. The goal is to present a foundation for the determination of the orientation of coronal magnetic fields from emission-line polarization measurements. The physics of emission-line polarization is discussed using the statistical equilibrium equations for the magnetic sublevels of a coronal ion. The formulation of these equations, which describe the polarization of the radiation field in terms of Stokes parameters, is presented; and the various rate parameters: both radiative and collisional: are considered. The emission Stokes vector is constructed from the solution of the equilibrium equations for a point in the corona where the magnetic field has an arbitrary orientation. On the basis of a model, a computer code for the calculation of emission-line polarization is briefly described and illustrated with a number of sample calculations for Fe XIII. Calculations are carried out for three-dimensional models that demonstrate the physics of the formation of emission-line polarization and illustrate how the degree of polarization and angle of polarization and their variations over the corona are related to the density and magnetic field structure. The models considered range from simple cases in which the density distribution with height is spherically symmetric and the field is radial or dipole to a complex case in which both the density and magnetic field distributions are derived from realistic three-dimensional distributions for the 1973 eclipse on the basis of K-coronameter measurements for the density and potential-field extrapolation of surface magnetic fields in the corona
Information-theoretic equilibrium and observable thermalization
Anzà, F.; Vedral, V.
2017-03-01
A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.
Near-equilibrium dumb-bell-shaped figures for cohesionless small bodies
Descamps, Pascal
2016-02-01
In a previous paper (Descamps, P. [2015]. Icarus 245, 64-79), we developed a specific method aimed to retrieve the main physical characteristics (shape, density, surface scattering properties) of highly elongated bodies from their rotational lightcurves through the use of dumb-bell-shaped equilibrium figures. The present work is a test of this method. For that purpose we introduce near-equilibrium dumb-bell-shaped figures which are base dumb-bell equilibrium shapes modulated by lognormal statistics. Such synthetic irregular models are used to generate lightcurves from which our method is successfully applied. Shape statistical parameters of such near-equilibrium dumb-bell-shaped objects are in good agreement with those calculated for example for the Asteroid (216) Kleopatra from its dog-bone radar model. It may suggest that such bilobed and elongated asteroids can be approached by equilibrium figures perturbed be the interplay with a substantial internal friction modeled by a Gaussian random sphere.
Multiscale measures of equilibrium on finite dynamic systems
International Nuclear Information System (INIS)
Bigerelle, M.; Iost, A.
2004-01-01
This article presents a new method for the study of the evolution of dynamic systems based on the notion of quantity of information. The system is divided into elementary cells and the quantity of information is studied with respect to the cell size. We have introduced an analogy between quantity of information and entropy, and defined the intrinsic entropy as the entropy of the whole system independent of the size of the cells. It is shown that the intrinsic entropy follows a Gaussian probability density function (PDF) and thereafter, the time needed by the system to reach equilibrium is a random variable. For a finite system, statistical analyses show that this entropy converges to a state of equilibrium and an algorithmic method is proposed to quantify the time needed to reach equilibrium for a given confidence interval level. A Monte-Carlo simulation of diffusion of A* atoms in A is then provided to illustrate the proposed simulation. It follows that the time to reach equilibrium for a constant error probability, t e , depends on the number, n, of elementary cells as: t e ∝n 2.22 ±0.06 . For an infinite system size (n infinite), the intrinsic entropy obtained by statistical modelling is a pertinent characteristic number of the system at the equilibrium
A study of complex particle emission in the pre-equilibrium statistical model
International Nuclear Information System (INIS)
Miao Rongzhi; Wu Guohua
1986-01-01
A concept of the quasi-composite system in the process of the pre-equilibrium emission is presented in this paper. On the basis of the principle of detailed balance, the existence of the factor, [γ β ω(π β , 0, ν β , 0, E-U)g π,ν ], has been proved with an account of the distinguishabllity between protons and neutrons. A formula for the rate of the complex particle emission in the pre-equilibrium process can be obtained. The theoretical calculation results fit the experimental data quite well, especially in the high energy part of the energy spectrum the agreement are much better than ever before
Sadovskii, Michael V
2012-01-01
This volume provides a compact presentation of modern statistical physics at an advanced level. Beginning with questions on the foundations of statistical mechanics all important aspects of statistical physics are included, such as applications to ideal gases, the theory of quantum liquids and superconductivity and the modern theory of critical phenomena. Beyond that attention is given to new approaches, such as quantum field theory methods and non-equilibrium problems.
Equilibrium distribution function in collisionless systems
International Nuclear Information System (INIS)
Pergamenshchik, V.M.
1988-01-01
Collisionless systems of a large number of N particles interacting by Coulomb forces are widely spread in cosmic and laboratory plasma. A statistical theory of equilibrium state of collisionless Coulomb systems which evolution obeys Vlasov equation is proposed. The developed formalism permits a sequential consideration of such distributed in one-particle six-dimensional phase space of a system and to obtain a simple result: equilibrium distribution function has the form of Fermi-Dirac distribution and doesn't depend on initial state factors
Far-from-Equilibrium Route to Superthermal Light in Bimodal Nanolasers
Directory of Open Access Journals (Sweden)
Mathias Marconi
2018-01-01
Full Text Available Microscale and nanoscale lasers inherently exhibit rich photon statistics due to complex light-matter interaction in a strong spontaneous emission noise background. It is well known that they may display superthermal fluctuations—photon superbunching—in specific situations due to either gain competition, leading to mode-switching instabilities, or carrier-carrier coupling in superradiant microcavities. Here we show a generic route to superbunching in bimodal nanolasers by preparing the system far from equilibrium through a parameter quench. We demonstrate, both theoretically and experimentally, that transient dynamics after a short-pump-pulse-induced quench leads to heavy-tailed superthermal statistics when projected onto the weak mode. We implement a simple experimental technique to access the probability density functions that further enables quantifying the distance from thermal equilibrium via the thermodynamic entropy. The universality of this mechanism relies on the far-from-equilibrium dynamical scenario, which can be mapped to a fast cooling process of a suspension of Brownian particles in a liquid. Our results open up new avenues to mold photon statistics in multimode optical systems and may constitute a test bed to investigate out-of-equilibrium thermodynamics using micro or nanocavity arrays.
Far-from-Equilibrium Route to Superthermal Light in Bimodal Nanolasers
Marconi, Mathias; Javaloyes, Julien; Hamel, Philippe; Raineri, Fabrice; Levenson, Ariel; Yacomotti, Alejandro M.
2018-02-01
Microscale and nanoscale lasers inherently exhibit rich photon statistics due to complex light-matter interaction in a strong spontaneous emission noise background. It is well known that they may display superthermal fluctuations—photon superbunching—in specific situations due to either gain competition, leading to mode-switching instabilities, or carrier-carrier coupling in superradiant microcavities. Here we show a generic route to superbunching in bimodal nanolasers by preparing the system far from equilibrium through a parameter quench. We demonstrate, both theoretically and experimentally, that transient dynamics after a short-pump-pulse-induced quench leads to heavy-tailed superthermal statistics when projected onto the weak mode. We implement a simple experimental technique to access the probability density functions that further enables quantifying the distance from thermal equilibrium via the thermodynamic entropy. The universality of this mechanism relies on the far-from-equilibrium dynamical scenario, which can be mapped to a fast cooling process of a suspension of Brownian particles in a liquid. Our results open up new avenues to mold photon statistics in multimode optical systems and may constitute a test bed to investigate out-of-equilibrium thermodynamics using micro or nanocavity arrays.
An introduction to equilibrium thermodynamics
Morrill, Bernard; Hartnett, James P; Hughes, William F
1973-01-01
An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a
The equilibrium of neural firing: A mathematical theory
Energy Technology Data Exchange (ETDEWEB)
Lan, Sizhong, E-mail: lsz@fuyunresearch.org [Fuyun Research, Beijing, 100055 (China)
2014-12-15
Inspired by statistical thermodynamics, we presume that neuron system has equilibrium condition with respect to neural firing. We show that, even with dynamically changeable neural connections, it is inevitable for neural firing to evolve to equilibrium. To study the dynamics between neural firing and neural connections, we propose an extended communication system where noisy channel has the tendency towards fixed point, implying that neural connections are always attracted into fixed points such that equilibrium can be reached. The extended communication system and its mathematics could be useful back in thermodynamics.
Equilibrium reconstruction in the TCA/Br tokamak
International Nuclear Information System (INIS)
Sa, Wanderley Pires de
1996-01-01
The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author)
Silicon Burning. II. Quasi-Equilibrium and Explosive Burning
International Nuclear Information System (INIS)
Hix, W.R.; Thielemann, F.
1999-01-01
Having examined the application of quasi-equilibrium to hydrostatic silicon burning in Paper I of this series, we now turn our attention to explosive silicon burning. Previous authors have shown that for material that is heated to high temperature by a passing shock and then cooled by adiabatic expansion, the results can be divided into three broad categories, incomplete burning, normal freezeout, and α-rich freezeout, with the outcome depending on the temperature, density, and cooling timescale. In all three cases, we find that the important abundances obey quasi-equilibrium for temperatures greater than approximately 3x10 9 K, with relatively little nucleosynthesis occurring following the breakdown of quasi-equilibrium. We will show that quasi-equilibrium provides better abundance estimates than global nuclear statistical equilibrium, even for normal freezeout, and particularly for α-rich freezeout. We will also examine the accuracy with which the final nuclear abundances can be estimated from quasi-equilibrium. copyright copyright 1999. The American Astronomical Society
Dependence of equilibrium properties of channeled particles on transverse quasi temperature
International Nuclear Information System (INIS)
Kashlev, Yu.A.
2006-01-01
Quasi-equilibrium and kinetic characteristics of channeled particles are investigated by methods of nonequilibrium statistical thermodynamics. The equilibrium equation of the transverse energy of fast particles and the equilibrium equation of the transverse momentum of particles are derived. It is shown that equilibrium equations solution permits to obtain the expression for the transverse quasi-temperature of the channeled particle subsystem. The quasi-equilibrium angular distribution of particles after transmission through a thin monocrystal and the angular distribution at backscattering are studied. The evaluated data of the transverse quasi-temperature are presented for the case of iodine ion channeling through silver crystals [ru
Temperature in non-equilibrium states: a review of open problems and current proposals
International Nuclear Information System (INIS)
Casas-Vazquez, J; Jou, D
2003-01-01
The conceptual problems arising in the definition and measurement of temperature in non-equilibrium states are discussed in this paper in situations where the local-equilibrium hypothesis is no longer satisfactory. This is a necessary and urgent discussion because of the increasing interest in thermodynamic theories beyond local equilibrium, in computer simulations, in non-linear statistical mechanics, in new experiments, and in technological applications of nanoscale systems and material sciences. First, we briefly review the concept of temperature from the perspectives of equilibrium thermodynamics and statistical mechanics. Afterwards, we explore which of the equilibrium concepts may be extrapolated beyond local equilibrium and which of them should be modified, then we review several attempts to define temperature in non-equilibrium situations from macroscopic and microscopic bases. A wide review of proposals is offered on effective non-equilibrium temperatures and their application to ideal and real gases, electromagnetic radiation, nuclear collisions, granular systems, glasses, sheared fluids, amorphous semiconductors and turbulent fluids. The consistency between the different relativistic transformation laws for temperature is discussed in the new light gained from this perspective. A wide bibliography is provided in order to foster further research in this field
Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation
Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.
2016-11-01
Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.
International Nuclear Information System (INIS)
Nemnes, G A; Anghel, D V
2010-01-01
We present a stochastic method for the simulation of the time evolution in systems which obey generalized statistics, namely fractional exclusion statistics and Gentile's statistics. The transition rates are derived in the framework of canonical ensembles. This approach introduces a tool for describing interacting fermionic and bosonic systems in non-equilibrium as ideal FES systems, in a computationally efficient manner. The two types of statistics are analyzed comparatively, indicating their intrinsic thermodynamic differences and revealing key aspects related to the species size
Rogério Lessa Horta; Bernardo Lessa Horta; Andre Wallace Nery da Costa; Rogério Ruscitto do Prado; Maryane Oliveira-Campos; Deborah Carvalho Malta
2014-01-01
OBJECTIVE: This study aimed at describing the prevalence of illicit drug use among 9th grade students in the morning period of public and private schools in Brazil, and assessing associated factors. METHOD: The Brazilian survey PeNSE (National Adolescent School-based Health Survey) 2012 evaluated a representative sample of 9th grade students in the morning period, in Brazil and its five regions. The use of illicit drugs at least once in life was assessed for the most commonly used drugs,...
Comments on equilibrium, transient equilibrium, and secular equilibrium in serial radioactive decay
International Nuclear Information System (INIS)
Prince, J.R.
1979-01-01
Equations describing serial radioactive decay are reviewed along with published descriptions or transient and secular equilibrium. It is shown that terms describing equilibrium are not used in the same way by various authors. Specific definitions are proposed; they suggest that secular equilibrium is a subset of transient equilibrium
Statistical mechanics of two-dimensional and geophysical flows
International Nuclear Information System (INIS)
Bouchet, Freddy; Venaille, Antoine
2012-01-01
The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.
Statistical analysis of the equilibrium configurations of the W7-X stellarator
Energy Technology Data Exchange (ETDEWEB)
Sengupta, A [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Greifswald (Germany); Geiger, J [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Greifswald (Germany); Mc Carthy, P J [Department of Physics, University College Cork, Association EURATOM-DCU, Cork (Ireland)
2007-05-15
Equilibrium magnetic configurations of W7-X stellarator plasma were analysed in this study. The statistical method of function parametrization was used to recover the physical properties of the magnetic configurations, such as the flux surface geometry, the magnetic field and the iota profile from simulated experimental data. The study was carried out with a net toroidal current. Idealized 'measurements' were first used to recover the configuration. These ' measurements' were then perturbed with noise and the effect of this perturbation on the recovered configuration parameters was estimated. The noise was scanned over a range large enough to encompass that expected in the actual experiment. In the process, it was possible to ascertain the limit of tolerable noise that can be allowed in the inputs so as not to significantly perturb the outputs recovered with noiseless 'measurements'. Generally, a cubic polynomial model was found to be necessary for noise levels below 10%. For higher noise levels, a quadratic polynomial performed as well as the cubic. The noise level of 10% was also the approximate limit up to which the recovery with ideal measurements was generally reproduced. For the flux geometry recovery, however, the quadratic model performed similarly to the cubic for any value of noise, with the latter model proving to be significantly better only for the noiseless case. Also, with noisy predictors the recovery error for the flux surfaces increases linearly with effective radius from the plasma core up to the edge.
Instability Versus Equilibrium Propagation of Laser Beam in Plasma
Lushnikov, Pavel M.; Rose, Harvey A.
2003-01-01
We obtain, for the first time, an analytic theory of the forward stimulated Brillouin scattering instability of a spatially and temporally incoherent laser beam, that controls the transition between statistical equilibrium and non-equilibrium (unstable) self-focusing regimes of beam propagation. The stability boundary may be used as a comprehensive guide for inertial confinement fusion designs. Well into the stable regime, an analytic expression for the angular diffusion coefficient is obtain...
Non-equilibrium thermodynamics and physical kinetics
Bikkin, Halid
2014-01-01
This graduate textbook covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. With one of the main propositions being to avoid terms such as "obviously" and "it is easy to show", this treatise is an easy-to-read introduction into this traditional, yet vibrant field.
Non-equilibrium thermionic electron emission for metals at high temperatures
Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.
2015-08-01
Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.
Nagarajan, Ramanathan
2015-07-01
Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to
Local equilibrium in bird flocks
Mora, Thierry; Walczak, Aleksandra M.; Del Castello, Lorenzo; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene
2016-12-01
The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.
Microcanonical ensemble extensive thermodynamics of Tsallis statistics
International Nuclear Information System (INIS)
Parvan, A.S.
2005-01-01
The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics.The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ = 1/q - 1 in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z bar = 1/(q - 1)N = const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit
Microcanonical ensemble extensive thermodynamics of Tsallis statistics
International Nuclear Information System (INIS)
Parvan, A.S.
2006-01-01
The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ=1/(q-1) in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z-bar =1/(q-1)N=const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit
Statistical-mechanical entropy by the thin-layer method
International Nuclear Information System (INIS)
Feng, He; Kim, Sung Won
2003-01-01
G. Hooft first studied the statistical-mechanical entropy of a scalar field in a Schwarzschild black hole background by the brick-wall method and hinted that the statistical-mechanical entropy is the statistical origin of the Bekenstein-Hawking entropy of the black hole. However, according to our viewpoint, the statistical-mechanical entropy is only a quantum correction to the Bekenstein-Hawking entropy of the black-hole. The brick-wall method based on thermal equilibrium at a large scale cannot be applied to the cases out of equilibrium such as a nonstationary black hole. The statistical-mechanical entropy of a scalar field in a nonstationary black hole background is calculated by the thin-layer method. The condition of local equilibrium near the horizon of the black hole is used as a working postulate and is maintained for a black hole which evaporates slowly enough and whose mass is far greater than the Planck mass. The statistical-mechanical entropy is also proportional to the area of the black hole horizon. The difference from the stationary black hole is that the result relies on a time-dependent cutoff
Non-Equilibrium Thermodynamics in Multiphase Flows
Mauri, Roberto
2013-01-01
Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...
What Can Reinforcement Learning Teach Us About Non-Equilibrium Quantum Dynamics
Bukov, Marin; Day, Alexandre; Sels, Dries; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj
Equilibrium thermodynamics and statistical physics are the building blocks of modern science and technology. Yet, our understanding of thermodynamic processes away from equilibrium is largely missing. In this talk, I will reveal the potential of what artificial intelligence can teach us about the complex behaviour of non-equilibrium systems. Specifically, I will discuss the problem of finding optimal drive protocols to prepare a desired target state in quantum mechanical systems by applying ideas from Reinforcement Learning [one can think of Reinforcement Learning as the study of how an agent (e.g. a robot) can learn and perfect a given policy through interactions with an environment.]. The driving protocols learnt by our agent suggest that the non-equilibrium world features possibilities easily defying intuition based on equilibrium physics.
Temperature in and out of equilibrium: A review of concepts, tools and attempts
Puglisi, A.; Sarracino, A.; Vulpiani, A.
2017-11-01
We review the general aspects of the concept of temperature in equilibrium and non-equilibrium statistical mechanics. Although temperature is an old and well-established notion, it still presents controversial facets. After a short historical survey of the key role of temperature in thermodynamics and statistical mechanics, we tackle a series of issues which have been recently reconsidered. In particular, we discuss different definitions and their relevance for energy fluctuations. The interest in such a topic has been triggered by the recent observation of negative temperatures in condensed matter experiments. Moreover, the ability to manipulate systems at the micro and nano-scale urges to understand and clarify some aspects related to the statistical properties of small systems (as the issue of temperature's ;fluctuations;). We also discuss the notion of temperature in a dynamical context, within the theory of linear response for Hamiltonian systems at equilibrium and stochastic models with detailed balance, and the generalized fluctuation-response relations, which provide a hint for an extension of the definition of temperature in far-from-equilibrium systems. To conclude we consider non-Hamiltonian systems, such as granular materials, turbulence and active matter, where a general theoretical framework is still lacking.
Non-equilibrium thermodynamics of radiation-induced processes in solids
International Nuclear Information System (INIS)
Yurov, V.M.; Eshchanov, A.N.; Kuketaev, A.T.; Sidorenya, Yu.S.
2005-01-01
In the paper an item about a defect system response in solids on external action (temperature, pressure, light, etc.) from the point of view of non-equilibrium statistical thermodynamics is considered
EVOLUTION OF PROGENITORS FOR ELECTRON CAPTURE SUPERNOVAE
International Nuclear Information System (INIS)
Takahashi, Koh; Umeda, Hideyuki; Yoshida, Takashi
2013-01-01
We provide progenitor models for electron capture supernovae (ECSNe) with detailed evolutionary calculation. We include minor electron capture nuclei using a large nuclear reaction network with updated reaction rates. For electron capture, the Coulomb correction of rates is treated and the contribution from neutron-rich isotopes is taken into account in each nuclear statistical equilibrium (NSE) composition. We calculate the evolution of the most massive super asymptotic giant branch stars and show that these stars undergo off-center carbon burning and form ONe cores at the center. These cores become heavier up to the critical mass of 1.367 M ☉ and keep contracting even after the initiation of O+Ne deflagration. Inclusion of minor electron capture nuclei causes convective URCA cooling during the contraction phase, but the effect on the progenitor evolution is small. On the other hand, electron capture by neutron-rich isotopes in the NSE region has a more significant effect. We discuss the uniqueness of the critical core mass for ECSNe and the effect of wind mass loss on the plausibility of our models for ECSN progenitors.
Validation of equilibrium tools on the COMPASS tokamak
Energy Technology Data Exchange (ETDEWEB)
Urban, J., E-mail: urban@ipp.cas.cz [Institute of Plasma Physics ASCR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Appel, L.C. [CCFE, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Artaud, J.F. [CEA, IRFM, F-13108 Saint Paul Lez Durance (France); Faugeras, B. [Laboratoire J.A. Dieudonné, UMR 7351, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02 (France); Havlicek, J. [Institute of Plasma Physics ASCR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8 (Czech Republic); Komm, M. [Institute of Plasma Physics ASCR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Lupelli, I. [CCFE, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Peterka, M. [Institute of Plasma Physics ASCR, Za Slovankou 3, 182 00 Praha 8 (Czech Republic); Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha 8 (Czech Republic)
2015-10-15
Highlights: • Three equilibrium codes—EFIT++, FREEBIE and VacTH—have been successfully set up and validated on COMPASS. • FREEBIE can predictively calculate the equilibrium and corresponding poloidal field coil currents. • EFIT++ can reconstruct equilibria generated by FREEBIE from synthetic, optionally noisy diagnostic data. • VacTH is a promising tool for real time plasma shape reconstruction. • Optimized parameters are estimated for EFIT++ and VacTH by a statistical analysis. - Abstract: Various MHD (magnetohydrodynamic) equilibrium tools, some of which being recently developed or considerably updated, are used on the COMPASS tokamak at IPP Prague. MHD equilibrium is a fundamental property of the tokamak plasma, whose knowledge is required for many diagnostics and modelling tools. Proper benchmarking and validation of equilibrium tools is thus key for interpreting and planning tokamak experiments. We present here benchmarks and comparisons to experimental data of the EFIT++ reconstruction code (Appel et al., 2006), the free-boundary equilibrium code FREEBIE (Artaud and Kim, 2012), and a rapid plasma boundary reconstruction code VacTH (Faugeras et al., 2014). We demonstrate that FREEBIE can calculate the equilibrium and corresponding poloidal field (PF) coils currents consistently with EFIT++ reconstructions from experimental data. Both EFIT++ and VacTH can reconstruct equilibria generated by FREEBIE from synthetic, optionally noisy diagnostic data. Hence, VacTH is suitable for real-time control. Optimum reconstruction parameters are estimated.
Equilibrium Droplets on Deformable Substrates: Equilibrium Conditions.
Koursari, Nektaria; Ahmed, Gulraiz; Starov, Victor M
2018-05-15
Equilibrium conditions of droplets on deformable substrates are investigated, and it is proven using Jacobi's sufficient condition that the obtained solutions really provide equilibrium profiles of both the droplet and the deformed support. At the equilibrium, the excess free energy of the system should have a minimum value, which means that both necessary and sufficient conditions of the minimum should be fulfilled. Only in this case, the obtained profiles provide the minimum of the excess free energy. The necessary condition of the equilibrium means that the first variation of the excess free energy should vanish, and the second variation should be positive. Unfortunately, the mentioned two conditions are not the proof that the obtained profiles correspond to the minimum of the excess free energy and they could not be. It is necessary to check whether the sufficient condition of the equilibrium (Jacobi's condition) is satisfied. To the best of our knowledge Jacobi's condition has never been verified for any already published equilibrium profiles of both the droplet and the deformable substrate. A simple model of the equilibrium droplet on the deformable substrate is considered, and it is shown that the deduced profiles of the equilibrium droplet and deformable substrate satisfy the Jacobi's condition, that is, really provide the minimum to the excess free energy of the system. To simplify calculations, a simplified linear disjoining/conjoining pressure isotherm is adopted for the calculations. It is shown that both necessary and sufficient conditions for equilibrium are satisfied. For the first time, validity of the Jacobi's condition is verified. The latter proves that the developed model really provides (i) the minimum of the excess free energy of the system droplet/deformable substrate and (ii) equilibrium profiles of both the droplet and the deformable substrate.
A statistical model for instable thermodynamical systems
International Nuclear Information System (INIS)
Sommer, Jens-Uwe
2003-01-01
A generic model is presented for statistical systems which display thermodynamic features in contrast to our everyday experience, such as infinite and negative heat capacities. Such system are instable in terms of classical equilibrium thermodynamics. Using our statistical model, we are able to investigate states of instable systems which are undefined in the framework of equilibrium thermodynamics. We show that a region of negative heat capacity in the adiabatic environment, leads to a first order like phase transition when the system is coupled to a heat reservoir. This phase transition takes place without a phase coexistence. Nevertheless, all intermediate states are stable due to fluctuations. When two instable system are brought in thermal contact, the temperature of the composed system is lower than the minimum temperature of the individual systems. Generally, the equilibrium states of instable system cannot be simply decomposed into equilibrium states of the individual systems. The properties of instable system depend on the environment, ensemble equivalence is broken
Non-equilibrium statistical thermodynamics of neutron gas in reactor
International Nuclear Information System (INIS)
Hayasaka, Hideo
1977-01-01
The thermodynamic structures of non-equilibrium steady states of highly rarefied neutron gas in various media are considered for the irreversible processes owing to creative and destructive reactions of neutrons with nuclei of these media and supply from the external sources. Under the so-called clean and cold condition in reactor, the medium is regarded virtually as offering the different chemical potential fields for each subsystem of a steady neutron gas system. The fluctuations around a steady state are considered in a Markovian-Gaussian process. The generalized Einstein relations are derived for stationary neutron gas systems. The forces and flows of neutron gases in a medium are defined upon the general stationary solution of the Fokker-Planck equation. There exist the symmetry of the kinetic coefficients, and the minimum entropy production upon neutron-nuclear reactions. The distribution functions in various media are determined by each corresponding extremum condition under the vanishing of changes of the respective total entropies in the Gibbs equation. (auth.)
A modern course in statistical physics
Reichl, Linda E
2016-01-01
"A Modern Course in Statistical Physics" is a textbook that illustrates the foundations of equilibrium and non-equilibrium statistical physics, and the universal nature of thermodynamic processes, from the point of view of contemporary research problems. The book treats such diverse topics as the microscopic theory of critical phenomena, superfluid dynamics, quantum conductance, light scattering, transport processes, and dissipative structures, all in the framework of the foundations of statistical physics and thermodynamics. It shows the quantum origins of problems in classical statistical physics. One focus of the book is fluctuations that occur due to the discrete nature of matter, a topic of growing importance for nanometer scale physics and biophysics. Another focus concerns classical and quantum phase transitions, in both monatomic and mixed particle systems. This fourth edition extends the range of topics considered to include, for example, entropic forces, electrochemical processes in biological syste...
Statistical mechanics of nonequilibrium liquids
Evans, Denis J; Craig, D P; McWeeny, R
1990-01-01
Statistical Mechanics of Nonequilibrium Liquids deals with theoretical rheology. The book discusses nonlinear response of systems and outlines the statistical mechanical theory. In discussing the framework of nonequilibrium statistical mechanics, the book explains the derivation of a nonequilibrium analogue of the Gibbsian basis for equilibrium statistical mechanics. The book reviews the linear irreversible thermodynamics, the Liouville equation, and the Irving-Kirkwood procedure. The text then explains the Green-Kubo relations used in linear transport coefficients, the linear response theory,
Statistical mechanics out of equilibrium the irreversibility
International Nuclear Information System (INIS)
Alvarez Estrada, R. F.
2001-01-01
A Round Table about the issue of Irreversibility and related matters has taken place during the last (20th) Statistical Mechanics Conference, held in Paris (July 1998). This article tries to provide a view (necessarily limited, and hence, uncompleted) of some approaches to the subject: the one based upon deterministic chaos (which is currently giving rise to a very active research) and the classical interpretation due to Boltzmann. An attempt has been made to write this article in a self-contained way, and to avoid a technical presentation wherever possible. (Author) 29 refs
Modelling Thomson scattering for systems with non-equilibrium electron distributions
Directory of Open Access Journals (Sweden)
Chapman D.A.
2013-11-01
Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.
Davidson, Norman
2003-01-01
Clear and readable, this fine text assists students in achieving a grasp of the techniques and limitations of statistical mechanics. The treatment follows a logical progression from elementary to advanced theories, with careful attention to detail and mathematical development, and is sufficiently rigorous for introductory or intermediate graduate courses.Beginning with a study of the statistical mechanics of ideal gases and other systems of non-interacting particles, the text develops the theory in detail and applies it to the study of chemical equilibrium and the calculation of the thermody
Lectures on statistical mechanics
Bowler, M G
1982-01-01
Anyone dissatisfied with the almost ritual dullness of many 'standard' texts in statistical mechanics will be grateful for the lucid explanation and generally reassuring tone. Aimed at securing firm foundations for equilibrium statistical mechanics, topics of great subtlety are presented transparently and enthusiastically. Very little mathematical preparation is required beyond elementary calculus and prerequisites in physics are limited to some elementary classical thermodynamics. Suitable as a basis for a first course in statistical mechanics, the book is an ideal supplement to more convent
The large deviation approach to statistical mechanics
International Nuclear Information System (INIS)
Touchette, Hugo
2009-01-01
The theory of large deviations is concerned with the exponential decay of probabilities of large fluctuations in random systems. These probabilities are important in many fields of study, including statistics, finance, and engineering, as they often yield valuable information about the large fluctuations of a random system around its most probable state or trajectory. In the context of equilibrium statistical mechanics, the theory of large deviations provides exponential-order estimates of probabilities that refine and generalize Einstein's theory of fluctuations. This review explores this and other connections between large deviation theory and statistical mechanics, in an effort to show that the mathematical language of statistical mechanics is the language of large deviation theory. The first part of the review presents the basics of large deviation theory, and works out many of its classical applications related to sums of random variables and Markov processes. The second part goes through many problems and results of statistical mechanics, and shows how these can be formulated and derived within the context of large deviation theory. The problems and results treated cover a wide range of physical systems, including equilibrium many-particle systems, noise-perturbed dynamics, nonequilibrium systems, as well as multifractals, disordered systems, and chaotic systems. This review also covers many fundamental aspects of statistical mechanics, such as the derivation of variational principles characterizing equilibrium and nonequilibrium states, the breaking of the Legendre transform for nonconcave entropies, and the characterization of nonequilibrium fluctuations through fluctuation relations.
The large deviation approach to statistical mechanics
Touchette, Hugo
2009-07-01
The theory of large deviations is concerned with the exponential decay of probabilities of large fluctuations in random systems. These probabilities are important in many fields of study, including statistics, finance, and engineering, as they often yield valuable information about the large fluctuations of a random system around its most probable state or trajectory. In the context of equilibrium statistical mechanics, the theory of large deviations provides exponential-order estimates of probabilities that refine and generalize Einstein’s theory of fluctuations. This review explores this and other connections between large deviation theory and statistical mechanics, in an effort to show that the mathematical language of statistical mechanics is the language of large deviation theory. The first part of the review presents the basics of large deviation theory, and works out many of its classical applications related to sums of random variables and Markov processes. The second part goes through many problems and results of statistical mechanics, and shows how these can be formulated and derived within the context of large deviation theory. The problems and results treated cover a wide range of physical systems, including equilibrium many-particle systems, noise-perturbed dynamics, nonequilibrium systems, as well as multifractals, disordered systems, and chaotic systems. This review also covers many fundamental aspects of statistical mechanics, such as the derivation of variational principles characterizing equilibrium and nonequilibrium states, the breaking of the Legendre transform for nonconcave entropies, and the characterization of nonequilibrium fluctuations through fluctuation relations.
Equilibrium statistical mechanics on correlated random graphs
Barra, Adriano; Agliari, Elena
2011-02-01
Biological and social networks have recently attracted great attention from physicists. Among several aspects, two main ones may be stressed: a non-trivial topology of the graph describing the mutual interactions between agents and, typically, imitative, weighted, interactions. Despite such aspects being widely accepted and empirically confirmed, the schemes currently exploited in order to generate the expected topology are based on a priori assumptions and, in most cases, implement constant intensities for links. Here we propose a simple shift [-1,+1]\\to [0,+1] in the definition of patterns in a Hopfield model: a straightforward effect is the conversion of frustration into dilution. In fact, we show that by varying the bias of pattern distribution, the network topology (generated by the reciprocal affinities among agents, i.e. the Hebbian rule) crosses various well-known regimes, ranging from fully connected, to an extreme dilution scenario, then to completely disconnected. These features, as well as small-world properties, are, in this context, emergent and no longer imposed a priori. The model is throughout investigated also from a thermodynamics perspective: the Ising model defined on the resulting graph is analytically solved (at a replica symmetric level) by extending the double stochastic stability technique, and presented together with its fluctuation theory for a picture of criticality. Overall, our findings show that, at least at equilibrium, dilution (of whatever kind) simply decreases the strength of the coupling felt by the spins, but leaves the paramagnetic/ferromagnetic flavors unchanged. The main difference with respect to previous investigations is that, within our approach, replicas do not appear: instead of (multi)-overlaps as order parameters, we introduce a class of magnetizations on all the possible subgraphs belonging to the main one investigated: as a consequence, for these objects a closure for a self-consistent relation is achieved.
Equilibrium statistical mechanics on correlated random graphs
International Nuclear Information System (INIS)
Barra, Adriano; Agliari, Elena
2011-01-01
Biological and social networks have recently attracted great attention from physicists. Among several aspects, two main ones may be stressed: a non-trivial topology of the graph describing the mutual interactions between agents and, typically, imitative, weighted, interactions. Despite such aspects being widely accepted and empirically confirmed, the schemes currently exploited in order to generate the expected topology are based on a priori assumptions and, in most cases, implement constant intensities for links. Here we propose a simple shift [-1,+1]→[0,+1] in the definition of patterns in a Hopfield model: a straightforward effect is the conversion of frustration into dilution. In fact, we show that by varying the bias of pattern distribution, the network topology (generated by the reciprocal affinities among agents, i.e. the Hebbian rule) crosses various well-known regimes, ranging from fully connected, to an extreme dilution scenario, then to completely disconnected. These features, as well as small-world properties, are, in this context, emergent and no longer imposed a priori. The model is throughout investigated also from a thermodynamics perspective: the Ising model defined on the resulting graph is analytically solved (at a replica symmetric level) by extending the double stochastic stability technique, and presented together with its fluctuation theory for a picture of criticality. Overall, our findings show that, at least at equilibrium, dilution (of whatever kind) simply decreases the strength of the coupling felt by the spins, but leaves the paramagnetic/ferromagnetic flavors unchanged. The main difference with respect to previous investigations is that, within our approach, replicas do not appear: instead of (multi)-overlaps as order parameters, we introduce a class of magnetizations on all the possible subgraphs belonging to the main one investigated: as a consequence, for these objects a closure for a self-consistent relation is achieved
Directory of Open Access Journals (Sweden)
Lourival Marin Mendes
2014-03-01
Full Text Available The aim of this study was to evaluate different statistical models to estimate the equilibrium moisture content of OSB panels exposed to different conditions of air temperature and relative humidity, And also to evaluate the influence of the adhesive and veneer inclusion in the equilibrium moisture content. The panels were produced with three different adhesive types (phenol-formaldehyde - FF, melamine-urea-formaldehyde - MUF, and phenol-melamine-urea-formaldehyde - PMUF and with and without veneer inclusion. The evaluation of the equilibrium moisture content of the panels was carried out at temperatures of 30, 40 and 50°C and relative humidity of 40, 50, 60, 70, 80 and 90%. The modeling of equilibrium moisture content was performed using the statistical non-linear and polynomial models. In general, the polynomial models are most indicated for determining the equilibrium moisture content of OSB. The models adjusted only with air relative humidity presented the best precision measurements. The type of adhesive affected the equilibrium moisture content of the panels, being observed for adhesives PMUF and FF the same trend of variation, and the highest values obtained for the panels produced with adhesive MUF. The veneer inclusion decreased the equilibrium moisture content only in the panels with MUF adhesive.
Nonequilibrium statistical mechanics ensemble method
Eu, Byung Chan
1998-01-01
In this monograph, nonequilibrium statistical mechanics is developed by means of ensemble methods on the basis of the Boltzmann equation, the generic Boltzmann equations for classical and quantum dilute gases, and a generalised Boltzmann equation for dense simple fluids The theories are developed in forms parallel with the equilibrium Gibbs ensemble theory in a way fully consistent with the laws of thermodynamics The generalised hydrodynamics equations are the integral part of the theory and describe the evolution of macroscopic processes in accordance with the laws of thermodynamics of systems far removed from equilibrium Audience This book will be of interest to researchers in the fields of statistical mechanics, condensed matter physics, gas dynamics, fluid dynamics, rheology, irreversible thermodynamics and nonequilibrium phenomena
Theory of chemical equilibrium in a lattice
International Nuclear Information System (INIS)
Dietrich, K.; Dufour, M.; Balazs, N.L.
1989-01-01
The chemical equilibrium is studied for the reaction A+B↔C, assuming that, initially, the particles B form a lattice and the particles A are statistically distributed on interstices. A mass action law is derived which defines the numbers n A , n B , n C of particles A, B, C in the chemical equilibrium assuming the initial distribution to be known. It predicts a considerably larger number n C of fused particles C compared to the mass action law for the gaseous phase. The result holds for an ordinary as well as for a nuclear lattice. Its possible relevance for the production of proton-rich isotopes in the universe is discussed. (orig.)
Non-equilibrium Dynamics, Thermalization and Entropy Production
International Nuclear Information System (INIS)
Hinrichsen, Haye; Janotta, Peter; Gogolin, Christian
2011-01-01
This paper addresses fundamental aspects of statistical mechanics such as the motivation of a classical state space with spontaneous transitions, the meaning of non-equilibrium in the context of thermalization, and the justification of these concepts from the quantum-mechanical point of view. After an introductory part we focus on the problem of entropy production in non-equilibrium systems. In particular, the generally accepted formula for entropy production in the environment is analyzed from a critical perspective. It is shown that this formula is only valid in the limit of separated time scales of the system's and the environmental degrees of freedom. Finally, we present an alternative simple proof of the fluctuation theorem.
Annotations to quantum statistical mechanics
Kim, In-Gee
2018-01-01
This book is a rewritten and annotated version of Leo P. Kadanoff and Gordon Bayms lectures that were presented in the book Quantum Statistical Mechanics: Greens Function Methods in Equilibrium and Nonequilibrium Problems. The lectures were devoted to a discussion on the use of thermodynamic Greens functions in describing the properties of many-particle systems. The functions provided a method for discussing finite-temperature problems with no more conceptual difficulty than ground-state problems, and the method was equally applicable to boson and fermion systems and equilibrium and nonequilibrium problems. The lectures also explained nonequilibrium statistical physics in a systematic way and contained essential concepts on statistical physics in terms of Greens functions with sufficient and rigorous details. In-Gee Kim thoroughly studied the lectures during one of his research projects but found that the unspecialized method used to present them in the form of a book reduced their readability. He st...
Statistical mechanics rigorous results
Ruelle, David
1999-01-01
This classic book marks the beginning of an era of vigorous mathematical progress in equilibrium statistical mechanics. Its treatment of the infinite system limit has not been superseded, and the discussion of thermodynamic functions and states remains basic for more recent work. The conceptual foundation provided by the Rigorous Results remains invaluable for the study of the spectacular developments of statistical mechanics in the second half of the 20th century.
Thermodynamic quantities and defect equilibrium in La2-xSrxNiO4+δ
International Nuclear Information System (INIS)
Nakamura, Takashi; Yashiro, Keiji; Sato, Kazuhisa; Mizusaki, Junichiro
2009-01-01
In order to elucidate the relation between thermodynamic quantities, the defect structure, and the defect equilibrium in La 2-x Sr x NiO 4+δ , statistical thermodynamic calculation is carried out and calculated results are compared to those obtained from experimental data. Partial molar enthalpy of oxygen and partial molar entropy of oxygen are obtained from δ-P(O 2 )-T relation by using Gibbs-Helmholtz equation. Statistical thermodynamic model is derived from defect equilibrium models proposed before by authors, localized electron model and delocalized electron model which could well explain the variation of oxygen content of La 2-x Sr x NiO 4+δ . Although assumed defect species and their equilibrium are different, the results of thermodynamic calculation by localized electron model and delocalized electron model show minor difference. Calculated results by the both models agree with the thermodynamic quantities obtained from oxygen nonstoichiometry of La 2-x Sr x NiO 4+δ . - Graphical abstract: In order to elucidate the relation between thermodynamic quantities, the defect structure, and the defect equilibrium in La 2-x Sr x NiO 4+δ , statistics thermodynamic calculation is carried out and calculated results are compared to those obtained from experimental data.
Vettore, Mario Vianna; Moysés, Samuel Jorge; Sardinha, Luciana Monteiro Vasconcelos; Iser, Betine Pinto Moehlecke
2012-01-01
This study investigated the association between oral and general health-related behaviors and socioeconomic status, and the relationship between health-related behaviors and toothbrushing among adolescents. The database used here was the National School-Based Health Survey (PeNSE), a cross-sectional population-based study in 2009 with students from 27 Brazilian State capitals. Socio-demographic and health-related behavior data were collected. The survey included 49,189 adolescents (47.5% males), the majority of whom were 14 years of age and enrolled in public schools. The associations between toothbrushing frequency and other health-related behaviors and socioeconomic status varied between boys and girls. Associations were observed between health-related habits and toothbrushing frequency in both sexes, but with variations according to socioeconomic status. Planning health promotion interventions for adolescents should take their individual characteristics and family and social context into account.
Quasilocal equilibrium condition for black ring
International Nuclear Information System (INIS)
Astefanesei, Dumitru; Rodriguez, Maria J.; Theisen, Stefan
2009-01-01
We use the conservation of the renormalized boundary stress-energy tensor to obtain the equilibrium condition for a general (thin or fat) black ring solution. We also investigate the role of the spatial stress in the thermodynamics of deformation within the quasilocal formalism of Brown and York and discuss the relation with other methods. In particular, we discuss the quantum statistical relation for the unbalanced black ring solution.
Leermakers, F.A.M.
1988-01-01
The aim of the present study was to unravel the general equilibrium physical properties of lipid bilayer membranes. We consider four major questions:
1. What determines the morphology of the association colloids (micelles, membranes, vesicles) in general?
2. Do the
Ordered phase and non-equilibrium fluctuation in stock market
Maskawa, Jun-ichi
2002-08-01
We analyze the statistics of daily price change of stock market in the framework of a statistical physics model for the collective fluctuation of stock portfolio. In this model the time series of price changes are coded into the sequences of up and down spins, and the Hamiltonian of the system is expressed by spin-spin interactions as in spin glass models of disordered magnetic systems. Through the analysis of Dow-Jones industrial portfolio consisting of 30 stock issues by this model, we find a non-equilibrium fluctuation mode on the point slightly below the boundary between ordered and disordered phases. The remaining 29 modes are still in disordered phase and well described by Gibbs distribution. The variance of the fluctuation is outlined by the theoretical curve and peculiarly large in the non-equilibrium mode compared with those in the other modes remaining in ordinary phase.
Zeno dynamics in quantum statistical mechanics
International Nuclear Information System (INIS)
Schmidt, Andreas U
2003-01-01
We study the quantum Zeno effect in quantum statistical mechanics within the operator algebraic framework. We formulate a condition for the appearance of the effect in W*-dynamical systems, in terms of the short-time behaviour of the dynamics. Examples of quantum spin systems show that this condition can be effectively applied to quantum statistical mechanical models. Furthermore, we derive an explicit form of the Zeno generator, and use it to construct Gibbs equilibrium states for the Zeno dynamics. As a concrete example, we consider the X-Y model, for which we show that a frequent measurement at a microscopic level, e.g. a single lattice site, can produce a macroscopic effect in changing the global equilibrium
Equilibrium and non-equilibrium phenomena in arcs and torches
Mullen, van der J.J.A.M.
2000-01-01
A general treatment of non-equilibrium plasma aspects is obtained by relating transport fluxes to equilibrium restoring processes in so-called disturbed Bilateral Relations. The (non) equilibrium stage of a small microwave induced plasma serves as case study.
Statistical mechanics of driven diffusive systems
Schmittmann, B
1995-01-01
Far-from-equilibrium phenomena, while abundant in nature, are not nearly as well understood as their equilibrium counterparts. On the theoretical side, progress is slowed by the lack of a simple framework, such as the Boltzmann-Gbbs paradigm in the case of equilibrium thermodynamics. On the experimental side, the enormous structural complexity of real systems poses serious obstacles to comprehension. Similar difficulties have been overcome in equilibrium statistical mechanics by focusing on model systems. Even if they seem too simplistic for known physical systems, models give us considerable insight, provided they capture the essential physics. They serve as important theoretical testing grounds where the relationship between the generic physical behavior and the key ingredients of a successful theory can be identified and understood in detail. Within the vast realm of non-equilibrium physics, driven diffusive systems form a subset with particularly interesting properties. As a prototype model for these syst...
Locatelli, Nathália Tarossi; Canella, Daniela Silva; Bandoni, Daniel Henrique
2017-05-18
The aim was to study the association between socio-demographic and routine dietary variables and consumption of school meals by adolescents enrolled in public schools in Brazil. The study used data used from the National School Health Survey (PeNSE) 2012. To assess differences between schoolchildren based on whether or not they ate school meals, the study used Pearson's chi-square test, and associations were analyzed with univariate and multivariate Poisson regression models. Of the 86,660 students included in the study, 22.8% eat school meals. Higher consumption of school meals is associated with male gender, brown skin color, residence outside state capitals, working, and low maternal schooling, for those that ate breakfast and lunch with their parents. The findings are relevant for planning strategies to encourage consumption of school meals.
Directory of Open Access Journals (Sweden)
Nathália Luíza Ferreira
2015-12-01
Full Text Available Abstract This study aimed to analyze the consumption of high-sugar foods by Brazilian schoolchildren and to identify associated factors, based on data from the National School Health Survey (PeNSE 2012. Consumption of these foods was classified as: do not consume sweets and soft drinks regularly; consume sweets or soft drinks regularly; and consume sweets and soft drinks regularly. Its association with sociodemographic information, eating habits, and family contexts were investigated via multiple ordinal regressions. Regular consumption of sweets and/or soft drinks was reported by 19.2% and 36.1% of adolescents, respectively, and higher prevalence was associated with female gender, age 14-15 years, higher maternal education, not living with the mother and father, not eating meals with the parents, eating while watching TV, and longer TV time. Nearly one-fifth of adolescents regularly consumed sweets and soft drinks, which was associated with socio-demographic and behavioral factors that should be targeted in order to improve their food consumption.
Molina, Rafael; Auge, Jose Maria; Escudero, Jose Miguel; Marrades, Ramon; Viñolas, Nuria; Carcereny, Emilio; Ramirez, Jose; Filella, Xavier
2008-01-01
Tumor marker serum levels were prospectively studied in 289 patients with suspected, but unconfirmed, lung cancer and in 513 patients with lung cancer [417 non-small cell lung cancer (NSCLC) patients and 96 small cell lung cancer (SCLC) patients]. In patients with benign disease, abnormal serum levels were found for the following tumor markers: CEA (in 6.6% of patients); CA 19.9 (6.2%); CA 125 (28.7%); NSE (0.7%); CYFRA (8.7%); TAG-72.3 (4.2%); SCC (3.5%), and CA 15.3 (3.5%). Excluding patients with renal failure or liver diseases, tumor marker specificity improved with abnormal levels in 0.5% for NSE, 0.9% for SCC, 2.8% for CEA, CA 15.3 and TAG-72.3, 3.8% for CA 19.9, 4.2% for CYFRA and 21.4% for CA 125. Excluding CA 125, one of the markers was abnormal in 15% of patients without malignancy. Tumor marker sensitivity was related to cancer histology and tumor extension. NSE had the highest sensitivity in SCLC and CYFRA and CEA in NSCLC. Significantly higher concentrations of CEA, SCC, CA 125, CA 15.3 and TAG-72.3 were found in NSCLC than in SCLC. Likewise, significantly higher CEA (p tumors. Using a combination of 3 tumor markers (CEA, CYFRA 21-1 in all histologies, SCC in squamous tumors and CA 15.3 in adenocarcinomas), a high sensitivity may be achieved in all histological types. Tumor markers may be useful in the histological differentiation of NSCLC and SCLC. Using specific criteria for the differentiation of SCLC and NSCLC, the sensitivity was 84.2 and 68.8%, the specificity was 93.8 and 99.7%, the positive predictive value was 98.3 and 98.5% and the negative predictive value was 57.7 and 93.3%, respectively. Copyright 2008 S. Karger AG, Basel.
Directory of Open Access Journals (Sweden)
Matthew Sybeldon
2017-01-01
Full Text Available Brain–Computer Interfaces (BCI using Steady-State Visual Evoked Potentials (SSVEP are sometimes used by injured patients seeking to use a computer. Canonical Correlation Analysis (CCA is seen as state-of-the-art for SSVEP BCI systems. However, this assumes that the user has full control over their covert attention, which may not be the case. This introduces high calibration requirements when using other machine learning techniques. These may be circumvented by using transfer learning to utilize data from other participants. This paper proposes a combination of ensemble learning via Learn++ for Nonstationary Environments (Learn++.NSEand similarity measures such as mutual information to identify ensembles of pre-existing data that result in higher classification. Results show that this approach performed worse than CCA in participants with typical SSVEP responses, but outperformed CCA in participants whose SSVEP responses violated CCA assumptions. This indicates that similarity measures and Learn++.NSE can introduce a transfer learning mechanism to bring SSVEP system accessibility to users unable to control their covert attention.
Einstein's statistical mechanics
Energy Technology Data Exchange (ETDEWEB)
Baracca, A; Rechtman S, R
1985-08-01
The foundation of equilibrium classical statistical mechanics were laid down in 1902 independently by Gibbs and Einstein. The latter's contribution, developed in three papers published between 1902 and 1904, is usually forgotten and when not, rapidly dismissed as equivalent to Gibb's. We review in detail Einstein's ideas on the foundations of statistical mechanics and show that they constitute the beginning of a research program that led Einstein to quantum theory. We also show how these ideas may be used as a starting point for an introductory course on the subject.
Einstein's statistical mechanics
International Nuclear Information System (INIS)
Baracca, A.; Rechtman S, R.
1985-01-01
The foundation of equilibrium classical statistical mechanics were laid down in 1902 independently by Gibbs and Einstein. The latter's contribution, developed in three papers published between 1902 and 1904, is usually forgotten and when not, rapidly dismissed as equivalent to Gibb's. We review in detail Einstein's ideas on the foundations of statistical mechanics and show that they constitute the beginning of a research program that led Einstein to quantum theory. We also show how these ideas may be used as a starting point for an introductory course on the subject. (author)
Takiyama, Ken
2017-12-01
How neural adaptation affects neural information processing (i.e. the dynamics and equilibrium state of neural activities) is a central question in computational neuroscience. In my previous works, I analytically clarified the dynamics and equilibrium state of neural activities in a ring-type neural network model that is widely used to model the visual cortex, motor cortex, and several other brain regions. The neural dynamics and the equilibrium state in the neural network model corresponded to a Bayesian computation and statistically optimal multiple information integration, respectively, under a biologically inspired condition. These results were revealed in an analytically tractable manner; however, adaptation effects were not considered. Here, I analytically reveal how the dynamics and equilibrium state of neural activities in a ring neural network are influenced by spike-frequency adaptation (SFA). SFA is an adaptation that causes gradual inhibition of neural activity when a sustained stimulus is applied, and the strength of this inhibition depends on neural activities. I reveal that SFA plays three roles: (1) SFA amplifies the influence of external input in neural dynamics; (2) SFA allows the history of the external input to affect neural dynamics; and (3) the equilibrium state corresponds to the statistically optimal multiple information integration independent of the existence of SFA. In addition, the equilibrium state in a ring neural network model corresponds to the statistically optimal integration of multiple information sources under biologically inspired conditions, independent of the existence of SFA.
Thermodynamics and statistical physics. 2. rev. ed.
International Nuclear Information System (INIS)
Schnakenberg, J.
2002-01-01
This textbook covers tthe following topics: Thermodynamic systems and equilibrium, irreversible thermodynamics, thermodynamic potentials, stability, thermodynamic processes, ideal systems, real gases and phase transformations, magnetic systems and Landau model, low temperature thermodynamics, canonical ensembles, statistical theory, quantum statistics, fermions and bosons, kinetic theory, Bose-Einstein condensation, photon gas
An equilibrium for frustrated quantum spin systems in the stochastic state selection method
International Nuclear Information System (INIS)
Munehisa, Tomo; Munehisa, Yasuko
2007-01-01
We develop a new method to calculate eigenvalues in frustrated quantum spin models. It is based on the stochastic state selection (SSS) method, which is an unconventional Monte Carlo technique that we have investigated in recent years. We observe that a kind of equilibrium is realized under some conditions when we repeatedly operate a Hamiltonian and a random choice operator, which is defined by stochastic variables in the SSS method, to a trial state. In this equilibrium, which we call the SSS equilibrium, we can evaluate the lowest eigenvalue of the Hamiltonian using the statistical average of the normalization factor of the generated state. The SSS equilibrium itself has already been observed in unfrustrated models. Our study in this paper shows that we can also see the equilibrium in frustrated models, with some restriction on values of a parameter introduced in the SSS method. As a concrete example, we employ the spin-1/2 frustrated J 1 -J 2 Heisenberg model on the square lattice. We present numerical results on the 20-, 32-, and 36-site systems, which demonstrate that statistical averages of the normalization factors reproduce the known exact eigenvalue to good precision. Finally, we apply the method to the 40-site system. Then we obtain the value of the lowest energy eigenvalue with an error of less than 0.2%
Energy flow in non-equilibrium conformal field theory
Bernard, Denis; Doyon, Benjamin
2012-09-01
We study the energy current and its fluctuations in quantum gapless 1d systems far from equilibrium modeled by conformal field theory, where two separated halves are prepared at distinct temperatures and glued together at a point contact. We prove that these systems converge towards steady states, and give a general description of such non-equilibrium steady states in terms of quantum field theory data. We compute the large deviation function, also called the full counting statistics, of energy transfer through the contact. These are universal and satisfy fluctuation relations. We provide a simple representation of these quantum fluctuations in terms of classical Poisson processes whose intensities are proportional to Boltzmann weights.
Statistical Thermodynamics of Disperse Systems
DEFF Research Database (Denmark)
Shapiro, Alexander
1996-01-01
Principles of statistical physics are applied for the description of thermodynamic equilibrium in disperse systems. The cells of disperse systems are shown to possess a number of non-standard thermodynamic parameters. A random distribution of these parameters in the system is determined....... On the basis of this distribution, it is established that the disperse system has an additional degree of freedom called the macro-entropy. A large set of bounded ideal disperse systems allows exact evaluation of thermodynamic characteristics. The theory developed is applied to the description of equilibrium...
Neutrino statistics: elementary problems and some applications
Energy Technology Data Exchange (ETDEWEB)
Kuchowicz, B
1973-01-01
The treatment of neutrinos includes neutrinos in statistical equilibrium, mathematical refinements, application to stars, the relic neutrinos in cosmology, and some unsolved problems and prospects. (JFP)
Equilibrium and pre-equilibrium emissions in proton-induced ...
Indian Academy of Sciences (India)
necessary for the domain of fission-reactor technology for the calculation of nuclear transmutation ... tions occur in three stages: INC, pre-equilibrium and equilibrium (or compound. 344. Pramana ... In the evaporation phase of the reaction, the.
Shape characteristics of equilibrium and non-equilibrium fractal clusters.
Mansfield, Marc L; Douglas, Jack F
2013-07-28
It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other
International Nuclear Information System (INIS)
Murari, A; Peluso, E; Gaudio, P; Gelfusa, M; Maviglia, F; Hawkes, N
2012-01-01
The configuration of magnetic fields is an essential ingredient of tokamak physics. In modern day devices, the magnetic topology is normally derived from equilibrium codes, which solve the Grad–Shafranov equation with constraints imposed by the available measurements. On JET, the main code used for this purpose is EFIT and the more commonly used diagnostics are external pick-up coils. Both the code and the measurements present worse performance during edge localized modes (ELMs). To quantify this aspect, various statistical indicators, based on the values of the residuals and their probability distribution, are defined and calculated. They all show that the quality of EFIT reconstructions is clearly better in the absence of ELMs. To investigate the possible causes of the detrimental effects of ELMs on the reconstruction, the pick-up coils are characterized individually and both the spatial distribution and time behaviour of their residuals are analysed in detail. The coils with a faster time response are the ones reproduced less well by EFIT. The constraints of current and pressure at the separatrix are also varied but the effects of such modifications do not result in decisive improvements in the quality of the reconstructions. The interpretation of this experimental evidence is not absolutely compelling but strongly indicative of deficiencies in the physics model on which the JET reconstruction code is based. (paper)
Information-theoretic equilibrium and observable thermalization
Anza, Fabio; Vedral, Vlatko
2015-01-01
To understand under which conditions thermodynamics emerges from the microscopic dynamics is the ultimate goal of statistical mechanics. Despite the fact that the theory is more than 100 years old, we are still discussing its foundations and its regime of applicability. A point of crucial importance is the definition of the notion of thermal equilibrium, which is given as the state that maximises the von Neumann entropy. Here we argue that it is necessary to propose a new way of describing th...
Ghaani, Mohammad Reza; English, Niall J
2018-03-21
Equilibrium and non-equilibrium molecular-dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar propane-hydrate interfaces in contact with liquid water over the 260-320 K range. Two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water, for comparison: a 001-direct surface cleavage and one with completed cages. Statistically significant differences in melting temperatures and initial break-up rates were observed between both interface types. Dissociation rates were observed to be strongly dependent on temperature, with higher rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model, developed previously, was applied to fit the observed dissociation profiles, and this helps us to identify clearly two distinct hydrate-decomposition régimes; following a highly temperature-dependent break-up phase, a second well-defined stage is essentially independent of temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. Further equilibrium MD-analysis of the two-phase systems at their melting point, with consideration of the relaxation times gleaned from the auto-correlation functions of fluctuations in a number of enclathrated guest molecules, led to statistically significant differences between the two surface-termination cases; a consistent correlation emerged in both cases between the underlying, non-equilibrium, thermal-driven dissociation rates sampled directly from melting with that from an equilibrium-MD fluctuation-dissipation approach.
Beyond the second law entropy production and non-equilibrium systems
Lineweaver, Charles; Niven, Robert; Regenauer-Lieb, Klaus
2014-01-01
The Second Law, a cornerstone of thermodynamics, governs the average direction of dissipative, non-equilibrium processes. But it says nothing about their actual rates or the probability of fluctuations about the average. This interdisciplinary book, written and peer-reviewed by international experts, presents recent advances in the search for new non-equilibrium principles beyond the Second Law, and their applications to a wide range of systems across physics, chemistry and biology. Beyond The Second Law brings together traditionally isolated areas of non-equilibrium research and highlights potentially fruitful connections between them, with entropy production playing the unifying role. Key theoretical concepts include the Maximum Entropy Production principle, the Fluctuation Theorem, and the Maximum Entropy method of statistical inference. Applications of these principles are illustrated in such diverse fields as climatology, cosmology, crystal growth morphology, Earth system science, environmental physics, ...
Statistical black-hole thermodynamics
International Nuclear Information System (INIS)
Bekenstein, J.D.
1975-01-01
Traditional methods from statistical thermodynamics, with appropriate modifications, are used to study several problems in black-hole thermodynamics. Jaynes's maximum-uncertainty method for computing probabilities is used to show that the earlier-formulated generalized second law is respected in statistically averaged form in the process of spontaneous radiation by a Kerr black hole discovered by Hawking, and also in the case of a Schwarzschild hole immersed in a bath of black-body radiation, however cold. The generalized second law is used to motivate a maximum-entropy principle for determining the equilibrium probability distribution for a system containing a black hole. As an application we derive the distribution for the radiation in equilibrium with a Kerr hole (it is found to agree with what would be expected from Hawking's results) and the form of the associated distribution among Kerr black-hole solution states of definite mass. The same results are shown to follow from a statistical interpretation of the concept of black-hole entropy as the natural logarithm of the number of possible interior configurations that are compatible with the given exterior black-hole state. We also formulate a Jaynes-type maximum-uncertainty principle for black holes, and apply it to obtain the probability distribution among Kerr solution states for an isolated radiating Kerr hole
Thermalized solutions, statistical mechanics and turbulence
Indian Academy of Sciences (India)
2015-02-20
Feb 20, 2015 ... In this study, we examine the intriguing connection between turbulence and equilibrium statistical mechanics. There are several recent works which emphasize this connection. Thus in the last ... Current Issue : Vol. 90, Issue 6.
NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE
International Nuclear Information System (INIS)
Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit
2016-01-01
The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed
Statistical properties of three-dimensional two-fluid plasma model
Energy Technology Data Exchange (ETDEWEB)
Qaisrani, M. Hasnain [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, Hubei 430074 (China); Xia, ZhenWei [Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Zou, Dandan, E-mail: ddzou@hust.edu.cn [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, WuHan, Hubei 430074 (China); School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023 (China)
2015-09-15
The nonlinear dynamics of incompressible non-dissipative two-fluid plasma model is investigated through classical Gibbs ensemble methods. Liouville's theorem of phase space for each wave number is proved, and the absolute equilibrium spectra for Galerkin truncated two-fluid model are calculated. In two-fluid theory, the equilibrium is built on the conservation of three quadratic invariants: the total energy and the self-helicities for ions and electrons fluid, respectively. The implications of statistic equilibrium spectra with arbitrary ratios of conserved invariants are discussed.
Beyond quantum microcanonical statistics
International Nuclear Information System (INIS)
Fresch, Barbara; Moro, Giorgio J.
2011-01-01
Descriptions of molecular systems usually refer to two distinct theoretical frameworks. On the one hand the quantum pure state, i.e., the wavefunction, of an isolated system is determined to calculate molecular properties and their time evolution according to the unitary Schroedinger equation. On the other hand a mixed state, i.e., a statistical density matrix, is the standard formalism to account for thermal equilibrium, as postulated in the microcanonical quantum statistics. In the present paper an alternative treatment relying on a statistical analysis of the possible wavefunctions of an isolated system is presented. In analogy with the classical ergodic theory, the time evolution of the wavefunction determines the probability distribution in the phase space pertaining to an isolated system. However, this alone cannot account for a well defined thermodynamical description of the system in the macroscopic limit, unless a suitable probability distribution for the quantum constants of motion is introduced. We present a workable formalism assuring the emergence of typical values of thermodynamic functions, such as the internal energy and the entropy, in the large size limit of the system. This allows the identification of macroscopic properties independently of the specific realization of the quantum state. A description of material systems in agreement with equilibrium thermodynamics is then derived without constraints on the physical constituents and interactions of the system. Furthermore, the canonical statistics is recovered in all generality for the reduced density matrix of a subsystem.
Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry
Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.
1988-01-01
An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.
Estimating Dynamic Equilibrium Models using Macro and Financial Data
DEFF Research Database (Denmark)
Christensen, Bent Jesper; Posch, Olaf; van der Wel, Michel
We show that including financial market data at daily frequency, along with macro series at standard lower frequency, facilitates statistical inference on structural parameters in dynamic equilibrium models. Our continuous-time formulation conveniently accounts for the difference in observation...... of the estimators and estimate the model using 20 years of U.S. macro and financial data....
Isospin equilibrium and non-equilibrium in heavy-ion collisions at intermediate energies
International Nuclear Information System (INIS)
Chen Liewen; Ge Lingxiao; Zhang Xiaodong; Zhang Fengshou
1997-01-01
The equilibrium and non-equilibrium of the isospin degree of freedom are studied in terms of an isospin-dependent QMD model, which includes isospin-dependent symmetry energy, Coulomb energy, N-N cross sections and Pauli blocking. It is shown that there exists a transition from the isospin equilibrium to non-equilibrium as the incident energy from below to above a threshold energy in central, asymmetric heavy-ion collisions. Meanwhile, it is found that the phenomenon results from the co-existence and competition of different reaction mechanisms, namely, the isospin degree of freedom reaches an equilibrium if the incomplete fusion (ICF) component is dominant and does not reach equilibrium if the fragmentation component is dominant. Moreover, it is also found that the isospin-dependent N-N cross sections and symmetry energy are crucial for the equilibrium of the isospin degree of freedom in heavy-ion collisions around the Fermi energy. (author)
Tang, Yifeng; Akhavan, Rayhaneh
2014-11-01
A nested-LES wall-modeling approach for high Reynolds number, wall-bounded turbulence is presented. In this approach, a coarse-grained LES is performed in the full-domain, along with a nested, fine-resolution LES in a minimal flow unit. The coupling between the two domains is achieved by renormalizing the instantaneous LES velocity fields to match the profiles of kinetic energies of components of the mean velocity and velocity fluctuations in both domains to those of the minimal flow unit in the near-wall region, and to those of the full-domain in the outer region. The method is of fixed computational cost, independent of Reτ , in homogenous flows, and is O (Reτ) in strongly non-homogenous flows. The method has been applied to equilibrium turbulent channel flows at 1000 shear-driven, 3D turbulent channel flow at Reτ ~ 2000 . In equilibrium channel flow, the friction coefficient and the one-point turbulence statistics are predicted in agreement with Dean's correlation and available DNS and experimental data. In shear-driven, 3D channel flow, the evolution of turbulence statistics is predicted in agreement with experimental data of Driver & Hebbar (1991) in shear-driven, 3D boundary layer flow.
English, Niall J; Clarke, Elaine T
2013-09-07
Equilibrium and non-equilibrium molecular dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar CO2 hydrate interfaces in liquid water at 300-320 K. Different guest compositions, at 85%, 95%, and 100% of maximum theoretical occupation, led to statistically-significant differences in the observed initial dissociation rates. The melting temperatures of each interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model developed previously was applied to fit the observed dissociation profiles, and this helps to identify clearly two distinct régimes of break-up; a second well-defined region is essentially independent of composition and temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. From equilibrium MD of the two-phase systems at their melting point, the relaxation times of the auto-correlation functions of fluctuations in number of enclathrated guest molecules were used as a basis for comparison of the variation in the underlying, non-equilibrium, thermal-driven dissociation rates via Onsager's hypothesis, and statistically significant differences were found, confirming the value of a fluctuation-dissipation approach in this case.
Gibbs' theorem for open systems with incomplete statistics
International Nuclear Information System (INIS)
Bagci, G.B.
2009-01-01
Gibbs' theorem, which is originally intended for canonical ensembles with complete statistics has been generalized to open systems with incomplete statistics. As a result of this generalization, it is shown that the stationary equilibrium distribution of inverse power law form associated with the incomplete statistics has maximum entropy even for open systems with energy or matter influx. The renormalized entropy definition given in this paper can also serve as a measure of self-organization in open systems described by incomplete statistics.
Mixed quantum-classical equilibrium in global flux surface hopping
International Nuclear Information System (INIS)
Sifain, Andrew E.; Wang, Linjun; Prezhdo, Oleg V.
2015-01-01
Global flux surface hopping (GFSH) generalizes fewest switches surface hopping (FSSH)—one of the most popular approaches to nonadiabatic molecular dynamics—for processes exhibiting superexchange. We show that GFSH satisfies detailed balance and leads to thermodynamic equilibrium with accuracy similar to FSSH. This feature is particularly important when studying electron-vibrational relaxation and phonon-assisted transport. By studying the dynamics in a three-level quantum system coupled to a classical atom in contact with a classical bath, we demonstrate that both FSSH and GFSH achieve the Boltzmann state populations. Thermal equilibrium is attained significantly faster with GFSH, since it accurately represents the superexchange process. GFSH converges closer to the Boltzmann averages than FSSH and exhibits significantly smaller statistical errors
Guénault, Tony
2007-01-01
In this revised and enlarged second edition of an established text Tony Guénault provides a clear and refreshingly readable introduction to statistical physics, an essential component of any first degree in physics. The treatment itself is self-contained and concentrates on an understanding of the physical ideas, without requiring a high level of mathematical sophistication. A straightforward quantum approach to statistical averaging is adopted from the outset (easier, the author believes, than the classical approach). The initial part of the book is geared towards explaining the equilibrium properties of a simple isolated assembly of particles. Thus, several important topics, for example an ideal spin-½ solid, can be discussed at an early stage. The treatment of gases gives full coverage to Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statistics. Towards the end of the book the student is introduced to a wider viewpoint and new chapters are included on chemical thermodynamics, interactions in, for exam...
Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere
Leenaarts, J.|info:eu-repo/dai/nl/304837946; Carlsson, M.; Hansteen, V.; Rutten, R.J.|info:eu-repo/dai/nl/074143662
2007-01-01
Context: The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. Since the pressure, temperature, and
On the definition of equilibrium and non-equilibrium states in dynamical systems
Akimoto, Takuma
2008-01-01
We propose a definition of equilibrium and non-equilibrium states in dynamical systems on the basis of the time average. We show numerically that there exists a non-equilibrium non-stationary state in the coupled modified Bernoulli map lattice.
Boltzmann and Einstein: Statistics and dynamics –An unsolved ...
Indian Academy of Sciences (India)
The struggle of Boltzmann with the proper description of the behavior of classical macroscopic bodies in equilibrium in terms of the properties of the particles out of which they consist will be sketched. He used both a dynamical and a statistical method. However, Einstein strongly disagreed with Boltzmann's statistical method ...
A general theory of non-equilibrium dynamics of lipid-protein fluid membranes
DEFF Research Database (Denmark)
Lomholt, Michael Andersen; Hansen, Per Lyngs; Miao, L.
2005-01-01
We present a general and systematic theory of non-equilibrium dynamics of multi-component fluid membranes, in general, and membranes containing transmembrane proteins, in particular. Developed based on a minimal number of principles of statistical physics and designed to be a meso...
International Nuclear Information System (INIS)
Balter, H.S.
1994-01-01
This work studies the behaviour of radionuclides when it produce a desintegration activity,decay and the isotopes stable creation. It gives definitions about the equilibrium between activity of parent and activity of the daughter, radioactive decay,isotope stable and transient equilibrium and maxim activity time. Some considerations had been given to generators that permit a disgregation of two radioisotopes in equilibrium and its good performance. Tabs
Pre-equilibrium effects in (n,2n) cross sections at 14.5 MeV
International Nuclear Information System (INIS)
Gupta, S.K.; Chatterjee, Ambar
The Griffin-Williams exciton model is used to calculate the pre-equilibrium contribution to the (n,2n) reaction around 14.5 MeV neutron energy for nuclei throughout the periodic table. The experimental cross sections for 60< A<209 are explained with an r.m.s. deviation of 0.31 by including a statistical evaporation and a pre-equilibrium component taking into account the competing proton emission. For A<60 the data is not reproduced very well. (auth.)
Directory of Open Access Journals (Sweden)
Oral Ospanov
2018-03-01
Full Text Available Background Patients with metabolic syndrome are at a greater risk of experiencing a cerebrovascular event. Several studies show that patients with metabolic syndrome have asymptomatic ischemic brain injury. In this case, there is a need for rapid determination of asymptomatic brain lesions and prediction of acute stroke. Aims The aim of the study was to determine the neuron-specific enolase (NSE serum level in patients with metabolic syndrome and the value of this level for forecasting acute stroke. Methods The study used the following information to determine metabolic syndrome: waist circumference, total cholesterol, triglycerides, high-density lipoprotein cholesterol, blood pressure, and blood glucose. Doppler sonography mapping of the brachiocephalic trunk was held to determine the percentage of the carotid artery stenosis. To determine asymptomatic ischemic brain injury, the NSE serum marker was measured. Statistical processing of the measurements was performed using the H test and the Mann–Whitney test. The possible link between MS and NSE were determined by logistic regression analysis. Mathematical modeling was performed using logistic regression. Results There are statistically significant differences in NSE concentrations in groups with metabolic syndrome and ischemic stroke patients. This assertion is confirmed by logistic regression analysis, which revealed the existence of a relationship between metabolic syndrome and increased concentration of NSE. Conclusion Patients with metabolic syndrome have an increased concentration of NSE. This indicates the presence of asymptomatic ischemic neuronal damage. A prognostic model for determining the probability that patients with metabolic syndrome will have an acute stroke was developed.
Some Examples of Formation of Shells and Their Role in Establishment of Equilibrium
Koutandos, Spyridon
2011-01-01
In this article we discuss the concept of equilibrium establishment in four most usual instances as is electrostriction and vaporization as related to the concept of equilibrium shell formation. Two more cases are then studied which are of relevance. One is the Brownian movement , the study of which is essential for pedagogical reasons as to exclusion of basic facts from statistics in a simple manner. The last one case studied is the very passage of current in a conductor. What is new in all ...
Some Examples of Formation of Shells and Their Role in Establishment of Equilibrium
Koutandos, Spyridon
2012-01-01
In this article we discuss the concept of equilibrium establishment in four most usual instances as is electrostriction and vaporization as related to the concept of equilibrium shell formation. Two more cases are then studied which are of relevance. One is the Brownian movement , the study of which is essential for pedagogical reasons as to exclusion of basic facts from statistics in a simple manner. The last one case studied is the very passage of current in a conductor. What is new in all ...
Chemical Principles Revisited: Chemical Equilibrium.
Mickey, Charles D.
1980-01-01
Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)
Para-equilibrium phase diagrams
International Nuclear Information System (INIS)
Pelton, Arthur D.; Koukkari, Pertti; Pajarre, Risto; Eriksson, Gunnar
2014-01-01
Highlights: • A rapidly cooled system may attain a state of para-equilibrium. • In this state rapidly diffusing elements reach equilibrium but others are immobile. • Application of the Phase Rule to para-equilibrium phase diagrams is discussed. • A general algorithm to calculate para-equilibrium phase diagrams is described. - Abstract: If an initially homogeneous system at high temperature is rapidly cooled, a temporary para-equilibrium state may result in which rapidly diffusing elements have reached equilibrium but more slowly diffusing elements have remained essentially immobile. The best known example occurs when homogeneous austenite is quenched. A para-equilibrium phase assemblage may be calculated thermodynamically by Gibbs free energy minimization under the constraint that the ratios of the slowly diffusing elements are the same in all phases. Several examples of calculated para-equilibrium phase diagram sections are presented and the application of the Phase Rule is discussed. Although the rules governing the geometry of these diagrams may appear at first to be somewhat different from those for full equilibrium phase diagrams, it is shown that in fact they obey exactly the same rules with the following provision. Since the molar ratios of non-diffusing elements are the same in all phases at para-equilibrium, these ratios act, as far as the geometry of the diagram is concerned, like “potential” variables (such as T, pressure or chemical potentials) rather than like “normal” composition variables which need not be the same in all phases. A general algorithm to calculate para-equilibrium phase diagrams is presented. In the limit, if a para-equilibrium calculation is performed under the constraint that no elements diffuse, then the resultant phase diagram shows the single phase with the minimum Gibbs free energy at any point on the diagram; such calculations are of interest in physical vapor deposition when deposition is so rapid that phase
Analysis of non-equilibrium phenomena in inductively coupled plasma generators
Energy Technology Data Exchange (ETDEWEB)
Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu [University of Illinois at Urbana-Champaign, Urbana, Illinois 61822 (United States); Lani, A. [Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)
2016-07-15
This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.
An introduction to statistical thermodynamics
Hill, Terrell L
1987-01-01
""A large number of exercises of a broad range of difficulty make this book even more useful…a good addition to the literature on thermodynamics at the undergraduate level."" - Philosophical MagazineAlthough written on an introductory level, this wide-ranging text provides extensive coverage of topics of current interest in equilibrium statistical mechanics. Indeed, certain traditional topics are given somewhat condensed treatment to allow room for a survey of more recent advances.The book is divided into four major sections. Part I deals with the principles of quantum statistical mechanics a
Two-proton correlation functions for equilibrium and non-equilibrium emission
International Nuclear Information System (INIS)
Gong, W.G.; Gelbke, C.K.; Carlin, N.; De Souza, R.T.; Kim, Y.D.; Lynch, W.G.; Murakami, T.; Poggi, G.; Sanderson, D.; Tsang, M.B.; Xu, H.M.; Michigan State Univ., East Lansing; Fields, D.E.; Kwiatkowski, K.; Planeta, R.; Viola, V.E. Jr.; Yennello, S.J.; Indiana Univ., Bloomington; Indiana Univ., Bloomington; Pratt, S.
1990-01-01
Two-proton correlation functions are compared for equilibrium and non-equilibrium emission processes investigated, respectively, in ''reverse kinematics'' for the reactions 129 Xe+ 27 Al and 129 Xe+ 122 Sn at E/A=31 MeV and in ''forward kinematics'' for the reaction 14 N+ 197 Au at E/A=75 MeV. Observed differences in the shapes of the correlation functions are understood in terms of the different time scales for equilibrium and preequilibrium emission. Transverse and longitudinal correlation functions are very similar. (orig.)
STUDY OF THE DETONATION PHASE IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE
International Nuclear Information System (INIS)
Meakin, Casey A.; Townsley, Dean; Jordan, George C.; Truran, James; Lamb, Don; Seitenzahl, Ivo
2009-01-01
We study the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia) through the detonation phase and into homologous expansion. In the GCD model, a detonation is triggered by the surface flow due to single-point, off-center flame ignition in carbon-oxygen white dwarfs (WDs). The simulations are unique in terms of the degree to which nonidealized physics is used to treat the reactive flow, including weak reaction rates and a time-dependent treatment of material in nuclear statistical equilibrium (NSE). Careful attention is paid to accurately calculating the final composition of material which is burned to NSE and frozen out in the rapid expansion following the passage of a detonation wave over the high-density core of the WD; and an efficient method for nucleosynthesis postprocessing is developed which obviates the need for costly network calculations along tracer particle thermodynamic trajectories. Observational diagnostics are presented for the explosion models, including abundance stratifications and integrated yields. We find that for all of the ignition conditions studied here a self-regulating process comprised of neutronization and stellar expansion results in final 56 Ni masses of ∼1.1 M sun . But, more energetic models result in larger total NSE and stable Fe-peak yields. The total yield of intermediate mass elements is ∼0.1 M sun and the explosion energies are all around 1.5 x 10 51 erg. The explosion models are briefly compared to the inferred properties of recent SN Ia observations. The potential for surface detonation models to produce lower-luminosity (lower 56 Ni mass) SNe is discussed.
Isotope anomalies in oxygen isotope exchange equilibrium systems
International Nuclear Information System (INIS)
Kotaka, M.
1997-01-01
The purpose of the present work is to elucidate the isotope anomalies in oxygen isotope exchange equilibrium systems, according to the calculations of the equilibrium constants for oxygen isotopic exchange reactions, and the calculations of the oxygen isotope separation factors between two phases. The equilibrium constants (K65, K67, K68 and K69) of 16 O- 15 O, 16 O 17 O, 16 O- 18 O, and 16 O- 19 O exchange reactions between diatomic oxides were calculated in a wide temperature range on the basis of quantum statistical mechanics. Many equilibrium constants showed the anomalous mass effects, and then had the crossover temperatures and the mass independent fractionation (MIF) temperatures which held K67 = K65, K67 = K68, or K67 = K69, etc. For example, the equilibrium constants for the reactions between OH and the other diatomic oxides (MO) showed the anomalous mass effects, when M was Li, Na, Mg, K, Fe, Al, Ge, Zr, Pt, etc. The 16 O 15 O, 16 O 17 O, 16 O- 18 O, and 16 O- 19 O oxygen isotope separation factors (S65, S67, S68 and S69) between two phases were calculated, when OH and CO were in the first phase, and SiO was in the second phase. Although the oxygen isotopic exchange equilibria in the two phases had no MIF and crossover temperatures, the separation factors showed the anomalous mass effects and had the temperatures. According to what is called the normal mass effects for the equilibrium constant of isotopic exchange reaction, the value of InK68/InK67 is 1.885. Therefore, the value of InS68/InS67 should be 1.885 too. The value calculated, however, widely changed. It can be concluded from the results obtained in the present work that some oxygen isotopic exchange equilibria cause the anomalous mass effects, the anomalous oxygen isotope separation factors, and then isotope anomalies
Thermal equilibrium in strongly damped collisions
International Nuclear Information System (INIS)
Samaddar, S.K.; De, J.N.; Krishan, K.
1985-01-01
Energy division between colliding nuclei in damped collisions is studied in the statistical nucleon exchange model. The reactions 56 Fe+ 165 Ho and 56 Fe+ 238 U at incident energy of 465 MeV are considered for this purpose. It is found that the excitation energy is approximately equally shared between the nuclei for the peripheral collisions and the systems slowly approach equilibrium for more central collisions. This is in conformity with the recent experimental observations. The calculated variances of the charge distributions are found to depend appreciably on the temperature and are in very good agreement with the experimental data
MHD equilibrium with toroidal rotation
International Nuclear Information System (INIS)
Li, J.
1987-03-01
The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)
Equilibrium reconstruction in the TCA/Br tokamak; Reconstrucao do equilibrio no tokamak TCA/BR
Energy Technology Data Exchange (ETDEWEB)
Sa, Wanderley Pires de
1996-12-31
The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author) 68 refs., 31 figs., 16 tabs.
Equilibrium and non equilibrium in fragmentation
International Nuclear Information System (INIS)
Dorso, C.O.; Chernomoretz, A.; Lopez, J.A.
2001-01-01
Full text: In this communication we present recent results regarding the interplay of equilibrium and non equilibrium in the process of fragmentation of excited finite Lennard Jones drops. Because the general features of such a potential resemble the ones of the nuclear interaction (fact that is reinforced by the similarity between the EOS of both systems) these studies are not only relevant from a fundamental point of view but also shed light on the problem of nuclear multifragmentation. We focus on the microscopic analysis of the state of the fragmenting system at fragmentation time. We show that the Caloric Curve (i e. the functional relationship between the temperature of the system and the excitation energy) is of the type rise plateau with no vapor branch. The usual rise plateau rise pattern is only recovered when equilibrium is artificially imposed. This result puts a serious question on the validity of the freeze out hypothesis. This feature is independent of the dimensionality or excitation mechanism. Moreover we explore the behavior of magnitudes which can help us determine the degree of the assumed phase transition. It is found that no clear cut criteria is presently available. (Author)
Directory of Open Access Journals (Sweden)
Katalin Martinás
2007-02-01
Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.
Directory of Open Access Journals (Sweden)
Gabriel J. Turbay
2011-03-01
Full Text Available The strategic equilibrium of an N-person cooperative game with transferable utility is a system composed of a cover collection of subsets of N and a set of extended imputations attainable through such equilibrium cover. The system describes a state of coalitional bargaining stability where every player has a bargaining alternative against any other player to support his corresponding equilibrium claim. Any coalition in the sable system may form and divide the characteristic value function of the coalition as prescribed by the equilibrium payoffs. If syndicates are allowed to form, a formed coalition may become a syndicate using the equilibrium payoffs as disagreement values in bargaining for a part of the complementary coalition incremental value to the grand coalition when formed. The emergent well known-constant sum derived game in partition function is described in terms of parameters that result from incumbent binding agreements. The strategic-equilibrium corresponding to the derived game gives an equal value claim to all players. This surprising result is alternatively explained in terms of strategic-equilibrium based possible outcomes by a sequence of bargaining stages that when the binding agreements are in the right sequential order, von Neumann and Morgenstern (vN-M non-discriminatory solutions emerge. In these solutions a preferred branch by a sufficient number of players is identified: the weaker players syndicate against the stronger player. This condition is referred to as the stronger player paradox. A strategic alternative available to the stronger players to overcome the anticipated not desirable results is to voluntarily lower his bargaining equilibrium claim. In doing the original strategic equilibrium is modified and vN-M discriminatory solutions may occur, but also a different stronger player may emerge that has eventually will have to lower his equilibrium claim. A sequence of such measures converges to the equal
Ion exchange equilibrium constants
Marcus, Y
2013-01-01
Ion Exchange Equilibrium Constants focuses on the test-compilation of equilibrium constants for ion exchange reactions. The book first underscores the scope of the compilation, equilibrium constants, symbols used, and arrangement of the table. The manuscript then presents the table of equilibrium constants, including polystyrene sulfonate cation exchanger, polyacrylate cation exchanger, polymethacrylate cation exchanger, polysterene phosphate cation exchanger, and zirconium phosphate cation exchanger. The text highlights zirconium oxide anion exchanger, zeolite type 13Y cation exchanger, and
Directory of Open Access Journals (Sweden)
Deborah Carvalho Malta
2010-10-01
Full Text Available Este artigo apresenta os principais resultados da Pesquisa Nacional de Saúde do Escolar (PeNSE. Aplicou-se questionário em uma amostra de conglomerados de 60.973 estudantes do 9º ano do ensino fundamental de escolas públicas e privadas das capitais dos estados brasileiros e do Distrito Federal, entre março e junho de 2009. Analisam-se prevalências e intervalos de confiança de 95% (IC95% das situações de violência envolvendo adolescentes. Foram identificadas as seguintes situações: insegurança no trajeto casa-escola (6,4%; IC95%: 6,1%-6,8% e na escola (5,5%; IC95%: 5,2%-5,8%; envolvimento em brigas com agressão física (12,9%; IC95%: 12,4%-13,4%, com arma branca (6,1%; IC95%: 5,7%-6,4% ou arma de fogo (4,0%; IC95%: 3,7%-4,3%; agressão física por familiar (9,5%; IC95%: 9,1%-9,9%. As situações de violência foram mais prevalentes entre estudantes do sexo masculino. Houve grande variação segundo as cidades estudadas. Os adolescentes estão expostos a diferentes manifestações de violência nas instituições que supostamente deveriam garantir sua proteção e desenvolvimento saudável e seguro - a escola e o lar. Esses resultados visam apoiar medidas de promoção à saúde e prevenção desses fatores de risco.This article presents the main results of the National Adolescent School-based Health Survey (PeNSE. A questionnaire was applied to a sample of 60,973 students of the 9th year of Junior high school in public and private schools of the Brazilian state capitals and the Federal District, between March and June 2009. The prevalence and confidence interval of 95% (CI 95% of the violence situations involving adolescents were analyzed. The following situations were identified: lack of safety on the way home-school (6.4%; CI95%: 6.1%-6.8% and at school (5.5%; CI95%: 5.2%-5.8%; involving fights with physical aggression (12.9%; CI95%: 12.4%-13.4%, with knife (6.1%; CI95%: 5.7%-6.4% or fire arm (4.0%; CI95%: 3.7%-4.3%; physical
Dotov, D G; Kim, S; Frank, T D
2015-02-01
We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
On the establishment of thermal equilibrium in simplest mechanical systems
International Nuclear Information System (INIS)
Kotsinyan, Ar.M.
1987-01-01
The process of the establishment of thermal equilibrium of the damping oscillators and a ''free'' particle in interaction with the blackbody radiation field is considered. A special attention is payed to the principal role of non-closedness of real systems as well as to the irreversibility of the microscopic equations of motion in the question of grounding of the statistical physics
Non-equilibrium fluctuation-induced interactions
International Nuclear Information System (INIS)
Dean, David S
2012-01-01
We discuss non-equilibrium aspects of fluctuation-induced interactions. While the equilibrium behavior of such interactions has been extensively studied and is relatively well understood, the study of these interactions out of equilibrium is relatively new. We discuss recent results on the non-equilibrium behavior of systems whose dynamics is of the dissipative stochastic type and identify a number of outstanding problems concerning non-equilibrium fluctuation-induced interactions.
Brignole, Esteban Alberto
2013-01-01
Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and
Extended irreversible thermodynamics and non-equilibrium temperature
Directory of Open Access Journals (Sweden)
Casas-Vazquez, Jose'
2008-02-01
Full Text Available We briefly review the concept of non-equilibrium temperature from the perspectives of extended irreversible thermodynamics, fluctuation theory, and statistical mechanics. The relations between different proposals are explicitly examined in two especially simple systems: an ideal gas in steady shear flow and a forced harmonic oscillator in a thermal bath. We examine with special detail temperatures related to the average molecular kinetic energy along different spatial directions, to the average configurational energy, to the derivative of the entropy with respect to internal energy, to fluctuation-dissipation relation and discuss their measurement.
Energy Technology Data Exchange (ETDEWEB)
Hamilton, D.C.; Ree, F.H.
1987-07-01
Calculations are reported for the equation-of-state properties of shock-compressed liquid nitrogen. The statistical mechanical, chemical equilibrium calculations, which allow for the simultaneous presence of both the diatomic and monatomic forms of nitrogen, show good agreement with recent dynamic experiments.
International Nuclear Information System (INIS)
Hamilton, D.C.; Ree, F.H.
1987-07-01
Calculations are reported for the equation-of-state properties of shock-compressed liquid nitrogen. The statistical mechanical, chemical equilibrium calculations, which allow for the simultaneous presence of both the diatomic and monatomic forms of nitrogen, show good agreement with recent dynamic experiments
Quantity Constrained General Equilibrium
Babenko, R.; Talman, A.J.J.
2006-01-01
In a standard general equilibrium model it is assumed that there are no price restrictions and that prices adjust infinitely fast to their equilibrium values.In case of price restrictions a general equilibrium may not exist and rationing on net demands or supplies is needed to clear the markets.In
Statistical mechanics of systems of unbounded spins
Energy Technology Data Exchange (ETDEWEB)
Lebowitz, J L [Yeshiva Univ., New York (USA). Belfer Graduate School of Science; Presutti, E [L' Aquila Univ. (Italy). Istituto di Matematica
1976-11-01
We develop the statistical mechanics of unbounded n-component spin systems interacting via potentials which are superstable and strongly tempered. The uniqueness of the equilibrium state is then proven for one component ferromagnetic spins whose free energy is differentiable with respect to the magnetic field.
Non-equilibrium versus equilibrium emission of complex fragments from hot nuclei
International Nuclear Information System (INIS)
Viola, V.E.; Kwiatkowski, K.; Yennello, S.; Fields, D.E.
1989-01-01
The relative contributions of equilibrium and non-equilibrium mechanisms for intermediate-mass fragment emission have been deduced for Z=3-14 fragments formed in 3 He- and 14 N-induced reactions on Ag and Au targets. Complete inclusive excitation function measurements have been performed for 3 He projectiles from E/A=67 to 1,200 MeV and for 14 N from E/A=20 to 50 MeV. The data are consistent with a picture in which equilibrated emission is important at the lowest energies, but with increasing bombarding energy the cross sections are increasingly dominated by non-equilibrium processes. Non-equilibrium emission is also shown to be favored for light fragments relative to heavy fragments. These results are supported by coincidence studies of intermediate-mass fragments tagged by linear momentum transfer measurements
Introduction to quantum statistical mechanics
International Nuclear Information System (INIS)
Bogolyubov, N.N.; Bogolyubov, N.N.
1980-01-01
In a set of lectures, which has been delivered at the Physical Department of Moscow State University as a special course for students represented are some basic ideas of quantum statistical mechanics. Considered are in particular, the Liouville equations in classical and quantum mechanics, canonical distribution and thermodynamical functions, two-time correlation functions and Green's functions in the theory of thermal equilibrium
Non-equilibrium supramolecular polymerization.
Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M
2017-09-18
Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.
Statistical mechanics of black holes
International Nuclear Information System (INIS)
Harms, B.; Leblanc, Y.
1992-01-01
We analyze the statistical mechanics of a gas of neutral and charged black holes. The microcanonical ensemble is the only possible approach to this system, and the equilibrium configuration is the one for which most of the energy is carried by a single black hole. Schwarzschild black holes are found to obey the statistical bootstrap condition. In all cases, the microcanonical temperature is identical to the Hawking temperature of the most massive black hole in the gas. U(1) charges in general break the bootstrap property. The problems of black-hole decay and of quantum coherence are also addressed
Baranger, Michel
2002-03-01
It is a remarkable fact that the traditional teaching of thermodynamics, as reflected in the textbooks and including the long developments about ensembles and thermodynamic functions, is almost entirely about systems in equilibrium. The time variable does not enter. There is one exception, however. The single most important item, the flagship of the thermodynamic navy, the second law, is about the irreversibility of the time evolution of systems out of equilibrium. This is a bizarre situation, to say the least; a glaring case of the drunk man looking for his key under the lamp-post, when he knows that he lost it in the dark part of the street. The moment has come for us to go looking in the dark part, the behavior of systems as a function of time. We have been given a powerful new flashlight, chaos theory. We should use it. There, on the formerly dark pavement, we can find Tsallis statistics.
DEFF Research Database (Denmark)
Jahnke, Annika; Mayer, Philipp; Adolfsson-Erici, Margaretha
2011-01-01
of the equilibrium sampling technique, while at the same time confirming that the fugacity capacity of these lipid-rich tissues for PCBs was dominated by the lipid fraction. Equilibrium sampling was also applied to homogenates of the same fish tissues. The PCB concentrations in the PDMS were 1.2 to 2.0 times higher...... in the homogenates (statistically significant in 18 of 21 cases, phomogenization increased the chemical activity of the PCBs and decreased the fugacity capacity of the tissue. This observation has implications for equilibrium sampling and partition coefficients determined using tissue...... homogenates....
Random walk to a nonergodic equilibrium concept
Bel, G.; Barkai, E.
2006-01-01
Random walk models, such as the trap model, continuous time random walks, and comb models, exhibit weak ergodicity breaking, when the average waiting time is infinite. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory for such systems? In this paper a nonergodic equilibrium concept is investigated, for a continuous time random walk model in a potential field. In particular we show that in the nonergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. We show that when conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the nonergodic dynamics and canonical statistical mechanics. In the ergodic phase the distribution function of the occupation times approaches a δ function centered on the value predicted based on standard Boltzmann-Gibbs statistics. The relation of our work to single-molecule experiments is briefly discussed.
Hot nuclear matter and thermodynamical equilibrium
International Nuclear Information System (INIS)
Borderie, B.; Bacri, C.O.; Dore, D.; Frankland, J.D.; Plagnol, E.; Rivet, M.F.; Tassan-Got, L.
1999-01-01
Quasi-complete events from collisions between 36 Ar and 58 Ni corresponding to vaporized sources have been detected with the multidetector INDRA over the excitation energy range 10 - 28 AMeV. For the first time complete information concerning kinematical properties of emitted particles and chemical composition (mean values but also variances) are derived. Despite the very extreme conditions in which such sources are produced (binary collisions with short reaction times and source life-times), their properties are in agreement with the results of a statistical model including a final state excluded volume interaction and describing a gas of fermions and bosons in thermodynamical equilibrium. (authors)
A simple non-equilibrium, statistical-physics toy model of thin-film growth
International Nuclear Information System (INIS)
Ochab, Jeremi K; Nagel, Hannes; Janke, Wolfhard; Waclaw, Bartlomiej
2015-01-01
We present a simple non-equilibrium model of mass condensation with Lennard–Jones interactions between particles and the substrate. We show that when some number of particles is deposited onto the surface and the system is left to equilibrate, particles condense into an island if the density of particles becomes higher than some critical density. We illustrate this with numerically obtained phase diagrams for three-dimensional systems. We also solve a two-dimensional counterpart of this model analytically and show that not only the phase diagram but also the shape of the cross-sections of three-dimensional condensates qualitatively matches the two-dimensional predictions. Lastly, we show that when particles are being deposited with a constant rate, the system has two phases: a single condensate for low deposition rates, and multiple condensates for fast deposition. The behaviour of our model is thus similar to that of thin film growth processes, and in particular to Stranski–Krastanov growth. (paper)
Statistical Thermodynamics and Microscale Thermophysics
Carey, Van P.
1999-08-01
Many exciting new developments in microscale engineering are based on the application of traditional principles of statistical thermodynamics. In this text Van Carey offers a modern view of thermodynamics, interweaving classical and statistical thermodynamic principles and applying them to current engineering systems. He begins with coverage of microscale energy storage mechanisms from a quantum mechanics perspective and then develops the fundamental elements of classical and statistical thermodynamics. Subsequent chapters discuss applications of equilibrium statistical thermodynamics to solid, liquid, and gas phase systems. The remainder of the book is devoted to nonequilibrium thermodynamics of transport phenomena and to nonequilibrium effects and noncontinuum behavior at the microscale. Although the text emphasizes mathematical development, Carey includes many examples and exercises to illustrate how the theoretical concepts are applied to systems of scientific and engineering interest. In the process he offers a fresh view of statistical thermodynamics for advanced undergraduate and graduate students, as well as practitioners, in mechanical, chemical, and materials engineering.
Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.
He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming
2018-02-28
Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.
Non-equilibrium dynamics of one-dimensional Bose gases
International Nuclear Information System (INIS)
Langen, T.
2013-01-01
Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom
Equilibrium and off-equilibrium trap-size scaling in one-dimensional ultracold bosonic gases
International Nuclear Information System (INIS)
Campostrini, Massimo; Vicari, Ettore
2010-01-01
We study some aspects of equilibrium and off-equilibrium quantum dynamics of dilute bosonic gases in the presence of a trapping potential. We consider systems with a fixed number of particles and study their scaling behavior with increasing the trap size. We focus on one-dimensional bosonic systems, such as gases described by the Lieb-Liniger model and its Tonks-Girardeau limit of impenetrable bosons, and gases constrained in optical lattices as described by the Bose-Hubbard model. We study their quantum (zero-temperature) behavior at equilibrium and off equilibrium during the unitary time evolution arising from changes of the trapping potential, which may be instantaneous or described by a power-law time dependence, starting from the equilibrium ground state for an initial trap size. Renormalization-group scaling arguments and analytical and numerical calculations show that the trap-size dependence of the equilibrium and off-equilibrium dynamics can be cast in the form of a trap-size scaling in the low-density regime, characterized by universal power laws of the trap size, in dilute gases with repulsive contact interactions and lattice systems described by the Bose-Hubbard model. The scaling functions corresponding to several physically interesting observables are computed. Our results are of experimental relevance for systems of cold atomic gases trapped by tunable confining potentials.
Isotope effects in the equilibrium and non-equilibrium vaporization of tritiated water and ice
International Nuclear Information System (INIS)
Baumgaertner, F.; Kim, M.-A.
1990-01-01
The vaporization isotope effect of the HTO/H 2 O system has been measured at various temperatures and pressures under equilibrium as well as non-equilibrium conditions. The isotope effect values measured in equilibrium sublimation or distillation are in good agreement with the theoretical values based on the harmonic oscillator model. In non-equilibrium vaporization at low temperatures ( 0 C), the isotope effect decreases rapidly with decreasing system pressure and becomes negligible when the system pressure is lowered more than one tenth of the equilibrium vapor pressure. At higher temperatures, the isotope effect decreases very slowly with decreasing system pressure. Discussion is extended for the application of the present results to the study of biological enrichment of tritium. (author)
On generalized operator quasi-equilibrium problems
Kum, Sangho; Kim, Won Kyu
2008-09-01
In this paper, we will introduce the generalized operator equilibrium problem and generalized operator quasi-equilibrium problem which generalize the operator equilibrium problem due to Kazmi and Raouf [K.R. Kazmi, A. Raouf, A class of operator equilibrium problems, J. Math. Anal. Appl. 308 (2005) 554-564] into multi-valued and quasi-equilibrium problems. Using a Fan-Browder type fixed point theorem in [S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean Math. Soc. 31 (1994) 493-519] and an existence theorem of equilibrium for 1-person game in [X.-P. Ding, W.K. Kim, K.-K. Tan, Equilibria of non-compact generalized games with L*-majorized preferences, J. Math. Anal. Appl. 164 (1992) 508-517] as basic tools, we prove new existence theorems on generalized operator equilibrium problem and generalized operator quasi-equilibrium problem which includes operator equilibrium problems.
The non-equilibrium nature of culinary evolution
Kinouchi, Osame; Diez-Garcia, Rosa W.; Holanda, Adriano J.; Zambianchi, Pedro; Roque, Antonio C.
2008-07-01
Food is an essential part of civilization, with a scope that ranges from the biological to the economic and cultural levels. Here, we study the statistics of ingredients and recipes taken from Brazilian, British, French and Medieval cookery books. We find universal distributions with scale invariant behaviour. We propose a copy-mutate process to model culinary evolution that fits our empirical data very well. We find a cultural 'founder effect' produced by the non-equilibrium dynamics of the model. Both the invariant and idiosyncratic aspects of culture are accounted for by our model, which may have applications in other kinds of evolutionary processes.
Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations
Directory of Open Access Journals (Sweden)
Ramon F. Álvarez-Estrada
2014-03-01
Full Text Available We treat the non-equilibrium evolution of an open one-particle statistical system, subject to a potential and to an external “heat bath” (hb with negligible dissipation. For the classical equilibrium Boltzmann distribution, Wc,eq, a non-equilibrium three-term hierarchy for moments fulfills Hermiticity, which allows one to justify an approximate long-time thermalization. That gives partial dynamical support to Boltzmann’s Wc,eq, out of the set of classical stationary distributions, Wc;st, also investigated here, for which neither Hermiticity nor that thermalization hold, in general. For closed classical many-particle systems without hb (by using Wc,eq, the long-time approximate thermalization for three-term hierarchies is justified and yields an approximate Lyapunov function and an arrow of time. The largest part of the work treats an open quantum one-particle system through the non-equilibrium Wigner function, W. Weq for a repulsive finite square well is reported. W’s (< 0 in various cases are assumed to be quasi-definite functionals regarding their dependences on momentum (q. That yields orthogonal polynomials, HQ,n(q, for Weq (and for stationary Wst, non-equilibrium moments, Wn, of W and hierarchies. For the first excited state of the harmonic oscillator, its stationary Wst is a quasi-definite functional, and the orthogonal polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum hierarchies (associated with Weq for the Wn’s are not three-term ones. As an illustration, we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized operator continued fractions. Such structures also allow one to formulate long-time approximations, but make it more difficult to justify thermalization. For large thermal and de Broglie wavelengths, the dominant Weq and a non-equilibrium equation for W are reported: the non-equilibrium hierarchy could plausibly be a three-term one and possibly not
Pinger, Cody W; Heller, Andrew A; Spence, Dana M
2017-07-18
Equilibrium dialysis is a simple and effective technique used for investigating the binding of small molecules and ions to proteins. A three-dimensional (3D) printer was used to create a device capable of measuring binding constants between a protein and a small ion based on equilibrium dialysis. Specifically, the technology described here enables the user to customize an equilibrium dialysis device to fit their own experiments by choosing membranes of various material and molecular-weight cutoff values. The device has dimensions similar to that of a standard 96-well plate, thus being amenable to automated sample handlers and multichannel pipettes. The device consists of a printed base that hosts multiple windows containing a porous regenerated-cellulose membrane with a molecular-weight cutoff of ∼3500 Da. A key step in the fabrication process is a print-pause-print approach for integrating membranes directly into the windows subsequently inserted into the base. The integrated membranes display no leaking upon placement into the base. After characterizing the system's requirements for reaching equilibrium, the device was used to successfully measure an equilibrium dissociation constant for Zn 2+ and human serum albumin (K d = (5.62 ± 0.93) × 10 -7 M) under physiological conditions that is statistically equal to the constants reported in the literature.
Introduction to nonequilibrium statistical mechanics with quantum field theory
International Nuclear Information System (INIS)
Kita, Takafumi
2010-01-01
In this article, we present a concise and self-contained introduction to nonequilibrium statistical mechanics with quantum field theory by considering an ensemble of interacting identical bosons or fermions as an example. Readers are assumed to be familiar with the Matsubara formalism of equilibrium statistical mechanics such as Feynman diagrams, the proper self-energy, and Dyson's equation. The aims are threefold: (1) to explain the fundamentals of nonequilibrium quantum field theory as simple as possible on the basis of the knowledge of the equilibrium counterpart; (2) to elucidate the hierarchy in describing nonequilibrium systems from Dyson's equation on the Keldysh contour to the Navier-Stokes equation in fluid mechanics via quantum transport equations and the Boltzmann equation; (3) to derive an expression of nonequilibrium entropy that evolves with time. In stage (1), we introduce nonequilibrium Green's function and the self-energy uniquely on the round-trip Keldysh contour, thereby avoiding possible confusions that may arise from defining multiple Green's functions at the very beginning. We try to present the Feynman rules for the perturbation expansion as simple as possible. In particular, we focus on the self-consistent perturbation expansion with the Luttinger-Ward thermodynamic functional, i.e., Baym's Φ-derivable approximation, which has a crucial property for nonequilibrium systems of obeying various conservation laws automatically. We also show how the two-particle correlations can be calculated within the Φ-derivable approximation, i.e., an issue of how to handle the 'Bogoliubov-Born-Green-Kirkwood-Yvons (BBGKY) hierarchy'. Aim (2) is performed through successive reductions of relevant variables with the Wigner transformation, the gradient expansion based on the Groenewold-Moyal product, and Enskog's expansion from local equilibrium. This part may be helpful for convincing readers that nonequilibrium systems can be handled microscopically with
Statistical mechanics and the foundations of thermodynamics
International Nuclear Information System (INIS)
Martin-Loef, A.
1979-01-01
These lectures are designed as an introduction to classical statistical mechanics and its relation to thermodynamics. They are intended to bridge the gap between the treatment of the subject in physics text books and the modern presentations of mathematically rigorous results. We shall first introduce the probability distributions, ensembles, appropriate for describing systems in equilibrium and consider some of their basic physical applications. We also discuss the problem of approach to equilibrium and how irreversibility comes into the dynamics. We then give a detailed description of how the law of large numbers for macrovariables in equilibrium is derived from the fact that entropy is an extensive quantity in the thermodynamic limit. We show in a natural way how to split the energy changes in an thermodynamical process into work and heat leading to a derivation of the first and second laws of thermodynamics from the rules of thermodynamical equilibrium. We have elaborated this part in detail because we feel it is quite satisfactory, that the establishment of the limit of thermodynamic functions as achieved in the modern development of the mathematical aspects of statistical mechanics allows a more general and logically clearer presentation of the bases of thermodynamics. We close these lectures by presenting the basic facts about fluctuation theory. The treatment aims to be reasonably self-contained both concerning the physics and mathematics needed. No knowledge of quantum mechanics is presupposed. Since we spent a large part on mathematical proofs and give many technical facts these lectures are probably most digestive for the mathematically inclined reader who wants to understand the physics of the subject. (HJ)
Kleppe, J.; Borm, P.E.M.; Hendrickx, R.L.P.
2008-01-01
Fall back equilibrium is a refinement of the Nash equilibrium concept. In the underly- ing thought experiment each player faces the possibility that, after all players decided on their action, his chosen action turns out to be blocked. Therefore, each player has to decide beforehand on a back-up
Multi-period equilibrium/near-equilibrium in electricity markets based on locational marginal prices
Garcia Bertrand, Raquel
In this dissertation we propose an equilibrium procedure that coordinates the point of view of every market agent resulting in an equilibrium that simultaneously maximizes the independent objective of every market agent and satisfies network constraints. Therefore, the activities of the generating companies, consumers and an independent system operator are modeled: (1) The generating companies seek to maximize profits by specifying hourly step functions of productions and minimum selling prices, and bounds on productions. (2) The goals of the consumers are to maximize their economic utilities by specifying hourly step functions of demands and maximum buying prices, and bounds on demands. (3) The independent system operator then clears the market taking into account consistency conditions as well as capacity and line losses so as to achieve maximum social welfare. Then, we approach this equilibrium problem using complementarity theory in order to have the capability of imposing constraints on dual variables, i.e., on prices, such as minimum profit conditions for the generating units or maximum cost conditions for the consumers. In this way, given the form of the individual optimization problems, the Karush-Kuhn-Tucker conditions for the generating companies, the consumers and the independent system operator are both necessary and sufficient. The simultaneous solution to all these conditions constitutes a mixed linear complementarity problem. We include minimum profit constraints imposed by the units in the market equilibrium model. These constraints are added as additional constraints to the equivalent quadratic programming problem of the mixed linear complementarity problem previously described. For the sake of clarity, the proposed equilibrium or near-equilibrium is first developed for the particular case considering only one time period. Afterwards, we consider an equilibrium or near-equilibrium applied to a multi-period framework. This model embodies binary
Non-equilibrium phase transitions
Henkel, Malte; Lübeck, Sven
2009-01-01
This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.
Oliveira-Campos, Maryane; Nunes, Marília Lavocart; Madeira, Fátima de Carvalho; Santos, Maria Goreth; Bregmann, Silvia Reise; Malta, Deborah Carvalho; Giatti, Luana; Barreto, Sandhi Maria
2014-01-01
This study describes the sexual behavior among students who participated in the National Adolescent School-based Health Survey (PeNSE) 2012 and investigates whether social inequalities, the use of psychoactive substances and the dissemination of information on sexual and reproductive health in school are associated with differences in behavior. The response variable was the sexual behavior described in three categories (never had sexual intercourse, had protected sexual intercourse, had unprotected sexual intercourse). The explanatory variables were grouped into socio- demographic characteristics, substance use and information on sexual and reproductive health in school. Variables associated with the conduct and unprotected sex were identified through multinomial logistic regression, using "never had sexual intercourse" as a reference. Over nearly a quarter of the adolescents have had sexual intercourse in life, being more frequent among boys. About 25% did not use a condom in the last intercourse. Low maternal education and work increased the chance of risky sexual behavior. Any chance of protected and unprotected sex increased with the number of psychoactive substances used. Among those who don't receive guidance on the prevention of pregnancy in school, the chance to have sexual intercourse increased, with the largest magnitude for unprotected sex (OR = 1.41 and OR = 1.87 ). The information on preventing pregnancy and STD/AIDS need to be disseminated before the 9th grade. Social inequalities negatively affect risky sexual behavior. Substance use is strongly associated with unprotected sex. Information on the prevention of pregnancy and STD/AIDS need to be disseminated early.
Influence of collective excitations on pre-equilibrium and equilibrium processes
International Nuclear Information System (INIS)
Ignatyuk, A.V.; Lunev, V.P.
1990-01-01
The influence of the collective states excitations on equilibrium and preequilibrium processes in reaction is discussed. It is shown that for a consistent description of the contribution of preequilibrium and equilibrium compound processes collective states should be taken into account in the level density calculations. The microscopic and phenomenological approaches for the level density calculations are discussed. 13 refs.; 8 figs
Silverberg, Lee J.; Raff, Lionel M.
2015-01-01
Thermodynamic spontaneity-equilibrium criteria require that in a single-reaction system, reactions in either the forward or reverse direction at equilibrium be nonspontaneous. Conversely, the concept of dynamic equilibrium holds that forward and reverse reactions both occur at equal rates at equilibrium to the extent allowed by kinetic…
Weak Form Efficiency of the Insurance Industry: Empirical Evidence from Nigeria
Directory of Open Access Journals (Sweden)
Emenike Kalu Onwukwe
2018-02-01
Full Text Available This paper evaluated the insurance sector of Nigeria Stock Exchange (NSE for evidence weak-form efficiency using daily returns from January 2009 to February 2016. The study employs descriptive analysis, non-parametric runs test and autocorrelation function as well as Ljung-Box Q statistics in conducting the evaluation. Descriptive statistics of the insurance sector return series showed negative skewness and leptokurtic distribution. Estimates from the Jarque-Bera normality test showed that the insurance sector returns did not follow normal distribution. Results of the runs test reject null hypothesis of randomness in the return series of the insurance sector in the period studied. Furthermore, the autocorrelation functions and the Ljung-Box Q tests provide evidence of serial correlation in the stock returns of the insurance sector. Overall results from the study suggested that the insurance sector of NSE is not weak-form efficient. Consequently, technical analysis on the insurance sector of the NSE may not be fruitless.
Weak-form Efficiency of the Insurance Industry: Empirical Evidence from Nigeria
Directory of Open Access Journals (Sweden)
Emenike Kalu Onwukwe
2018-02-01
Full Text Available This paper evaluates the insurance sector of Nigeria Stock Exchange (NSE for evidence weak-form efficiency using daily returns from January 2009 to February 2016. The study employs descriptive analysis, non-parametric runs test and autocorrelation function as well as Ljung-Box Q statistics in conducting the evaluation. Descriptive statistics of the insurance sector return series show negative skewness and leptokurtic distribution. Estimates from the Jarque-Bera normality test show that the insurance sector returns do not follow a normal distribution. Results of the runs test reject the null hypothesis of randomness in the return series of the insurance sector in the period studied. Furthermore, the autocorrelation functions and the Ljung-Box Q tests provide evidence of serial correlation in the stock returns of the insurance sector. Overall results from the study suggest that the insurance sector of NSE is not weak-form efficient. Consequently, technical analysis on the insurance sector of the NSE may not be fruitless.
International Nuclear Information System (INIS)
Moretto, L.G.
1979-01-01
The angular momentum effects in deep inelastic processes and fission have been studied in the limit of statistical equilibrium. The model consists of two touching liquid drop spheres. Angular momentum fractionation has been found to occur along the mass asymmetry coordinate. If neutron competition is included (i.e., in compound nucleus formation and fission), the fractionation occurs only to a slight degree, while extensive fractionation is predicted if no neutron competition occurs (i.e., in fusion--fission without compound nucleus formation). Thermal fluctuations in the angular momentum are predicted to occur due to degrees of freedom which can bear angular momentum, like wriggling, tilting, bending, and twisting. The coupling of relative motion to one of the wriggling modes, leading to fluctuations between orbital and intrinsic angular momentum, is considered first. Next the effect of the excitation of all the collective modes on the fragment spin is treated. General expressions for the first and second moments of the fragment spins are derived as a function of total angular momentum and the limiting behavior at large and small total angular momentum is examined. Furthermore, the effect of collective mode excitation on the fragment spin alignment is explored and is discussed in light of recent experiments. The relevance of the present study to the measured first and second moments of the γ-ray multiplicities as well as to sequential fission angular distributions is illustrated by applying the results of the theory to a well studied heavy ion reaction
Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio
2015-01-01
A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…
International Nuclear Information System (INIS)
Li, Ji W.; Chang, Lei; Li, Yun S.; Li, Jing H.
2011-01-01
For the ICF capsule surrounded by a high-Z pusher which traps the radiation and confines the hot fuel, the fuel will first be ignited in thermal equilibrium with radiation at a much lower temperature than hot-spot ignition, which is also the low temperature ignition. Because of the lower areal density for ICF capsules, the equilibrium ignition must be developed into a non-equilibrium burn to shorten the reaction time and lower the drive energy. In this paper, the transition from the equilibrium ignition to non-equilibrium burn is discussed and the energy deposited by α particles required for the equilibrium ignition and non-equilibrium burn to occur is estimated.
Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure.
Campi, Gaetano; Di Gioacchino, Michael; Poccia, Nicola; Ricci, Alessandro; Burghammer, Manfred; Ciasca, Gabriele; Bianconi, Antonio
2018-01-23
Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.
On conditional scalar increment and joint velocity-scalar increment statistics
International Nuclear Information System (INIS)
Zhang Hengbin; Wang Danhong; Tong Chenning
2004-01-01
Conditional velocity and scalar increment statistics are usually studied in the context of Kolmogorov's refined similarity hypotheses and are considered universal (quasi-Gaussian) for inertial-range separations. In such analyses the locally averaged energy and scalar dissipation rates are used as conditioning variables. Recent studies have shown that certain local turbulence structures can be captured when the local scalar variance (φ 2 ) r and the local kinetic energy k r are used as the conditioning variables. We study the conditional increments using these conditioning variables, which also provide the local turbulence scales. Experimental data obtained in the fully developed region of an axisymmetric turbulent jet are used to compute the statistics. The conditional scalar increment probability density function (PDF) conditional on (φ 2 ) r is found to be close to Gaussian for (φ 2 ) r small compared with its mean and is sub-Gaussian and bimodal for large (φ 2 ) r , and therefore is not universal. We find that the different shapes of the conditional PDFs are related to the instantaneous degree of non-equilibrium (production larger than dissipation) of the local scalar. There is further evidence of this from the conditional PDF conditional on both (φ 2 ) r and χ r , which is largely a function of (φ 2 ) r /χ r , a measure of the degree of non-equilibrium. The velocity-scalar increment joint PDF is close to joint Gaussian and quad-modal for equilibrium and non-equilibrium local velocity and scalar, respectively. The latter shape is associated with a combination of the ramp-cliff and plane strain structures. Kolmogorov's refined similarity hypotheses also predict a dependence of the conditional PDF on the degree of non-equilibrium. Therefore, the quasi-Gaussian (joint) PDF, previously observed in the context of Kolmogorov's refined similarity hypotheses, is only one of the conditional PDF shapes of inertial range turbulence. The present study suggests that
International Nuclear Information System (INIS)
Mc Carthy, P.J.; Sengupta, A.; Geiger, J.; Werner, A.
2005-01-01
The W7-X stellarator, under construction at IPP-Greifswald, is being designed to demonstrate the steady state capability of fusion devices. Due to the pulse length involved, real time monitoring and control of the discharges is a crucial issue in steady state operations. For W7-X, we have planned a sequence of in-depth analyses of the magnetic configurations which, ultimately, will lead to a proper understanding of plasma equilibrium, stability and transport. It should also provide insight into the parameterization of the various plasma-related quantities which is important from the point of view of real time study. The first step in our sequence of analyses involved a study of the vacuum configuration, including the detectable magnetic islands, of W7-X. We now proceed to the scenario at finite beta considering full magnetohydrodynamic (MHD) equilibria based on vmec2000 calculations. A database of order 10000 equilibria was calculated on the same parameter space for the coil current ratios. The parameters which were varied randomly and independently consist of the external coil current ratios (6), the parameters of the profiles (as functions of normalised toroidal flux) of plasma pressure and toroidal current (4+4) and the plasma size (a eff ) which is required to vary the plasma volume. A statistical analysis, using Function Parametrization (FP), was performed on a sample of well-converged equilibria. The plasma parameters were varied to allow a good FP for the expected values in W7-X, i.e. volume-averaged up to 5% and toroidal net-current of up to ±50 kA for a mean field strength of about 2 T throughout the database. The profiles were chosen as a sequence of polynomials with the property that the addition of a higher order polynomial would not change the lower order volume-averaged moments of the resulting profile. The aim of this was to try to avoid cross correlations in the independent input parameters for the database generation. However, some restrictions
Equilibrium models and variational inequalities
Konnov, Igor
2007-01-01
The concept of equilibrium plays a central role in various applied sciences, such as physics (especially, mechanics), economics, engineering, transportation, sociology, chemistry, biology and other fields. If one can formulate the equilibrium problem in the form of a mathematical model, solutions of the corresponding problem can be used for forecasting the future behavior of very complex systems and, also, for correcting the the current state of the system under control. This book presents a unifying look on different equilibrium concepts in economics, including several models from related sciences.- Presents a unifying look on different equilibrium concepts and also the present state of investigations in this field- Describes static and dynamic input-output models, Walras, Cassel-Wald, spatial price, auction market, oligopolistic equilibrium models, transportation and migration equilibrium models- Covers the basics of theory and solution methods both for the complementarity and variational inequality probl...
Deviations from thermal equilibrium in plasmas
International Nuclear Information System (INIS)
Burm, K.T.A.L.
2004-01-01
A plasma system in local thermal equilibrium can usually be described with only two parameters. To describe deviations from equilibrium two extra parameters are needed. However, it will be shown that deviations from temperature equilibrium and deviations from Saha equilibrium depend on one another. As a result, non-equilibrium plasmas can be described with three parameters. This reduction in parameter space will ease the plasma describing effort enormously
Weak Form Efficiency of the Nigerian Stock Market: An Empirical Analysis (1984 – 2009
Directory of Open Access Journals (Sweden)
Pyemo Afego
2012-01-01
Full Text Available This paper examines the weak-form of the efficient markets hypothesis for the Nigerian Stock Exchange (NSE by testing for random walks in the monthly index returns over the period 1984-2009. The results of the non-parametric runs test show that index returns on the NSE display a predictable component, thus suggesting that traders can earn superior returns by employing trading rules. Statistically significant deviations from randomness are also suggestive of sub-optimal allocation of investment capital within the economy. The findings, in general, contradict the weak-form of the efficient markets hypothesis, and a range of policy strategies for improving the allocative capacity and quality of the information environment of the NSE are discussed.
Evaluation of observables in statistical multifragmentation theories
International Nuclear Information System (INIS)
Cole, A.J.
1989-01-01
The canonical formulation of equilibrium statistical multifragmentation is examined. It is shown that the explicit construction of observables (average values) by sampling the partition probabilities is unnecessary insofar as closed expressions in the form of recursion relations can be obtained quite easily. Such expressions may conversely be used to verify the sampling algorithms
A Simulational approach to teaching statistical mechanics and kinetic theory
International Nuclear Information System (INIS)
Karabulut, H.
2005-01-01
A computer simulation demonstrating how Maxwell-Boltzmann distribution is reached in gases from a nonequilibrium distribution is presented. The algorithm can be generalized to the cases of gas particles (atoms or molecules) with internal degrees of freedom such as electronic excitations and vibrational-rotational energy levels. Another generalization of the algorithm is the case of mixture of two different gases. By choosing the collision cross sections properly one can create quasi equilibrium distributions. For example by choosing same atom cross sections large and different atom cross sections very small one can create mixture of two gases with different temperatures where two gases slowly interact and come to equilibrium in a long time. Similarly, for the case one kind of atom with internal degrees of freedom one can create situations that internal degrees of freedom come to the equilibrium much later than translational degrees of freedom. In all these cases the equilibrium distribution that the algorithm gives is the same as expected from the statistical mechanics. The algorithm can also be extended to cover the case of chemical equilibrium where species A and B react to form AB molecules. The laws of chemical equilibrium can be observed from this simulation. The chemical equilibrium simulation can also help to teach the elusive concept of chemical potential
Khanh, Phan Quoc; Plubtieng, Somyot; Sombut, Kamonrat
2014-01-01
The purpose of this paper is introduce several types of Levitin-Polyak well-posedness for bilevel vector equilibrium and optimization problems with equilibrium constraints. Base on criterion and characterizations for these types of Levitin-Polyak well-posedness we argue on diameters and Kuratowski’s, Hausdorff’s, or Istrǎtescus measures of noncompactness of approximate solution sets under suitable conditions, and we prove the Levitin-Polyak well-posedness for bilevel vector equilibrium and op...
Non-equilibrium QCD of high-energy multi-gluon dynamics
International Nuclear Information System (INIS)
Geiger, K.
1996-01-01
A non-equilibrium QCD description of multiparticle dynamics in space-time is of both fundamental and phenomenological interest. Here the authors discusses an attempt to derive from first principles, a real-time formalism to study the dynamical interplay of quantum and statistical-kinetic properties of non-equilibrium multi-parton systems produced in high-energy QCD processes. The ultimate goal (from which one is still far away) is to have a practically applicable description of the space-time evolution of a general initial system of gluons and quarks, characterized by some large energy or momentum scale, that expands, diffuses and dissipates according to the self- and mutual-interactions, and eventually converts dynamically into final state hadrons. For example, the evolution of parton showers in the mechanism of parton-hadron conversion in high-energy hadronic collisions, or, the description of formation, evolution and freezeout of a quark-gluon plasma, in ultra-relativistic heavy-ion collisions
Directory of Open Access Journals (Sweden)
Helena Maria Campos
Full Text Available Este artigo analisa a saúde sexual e reprodutiva de adolescentes, com base em resultados da PeNSE, a partir de três variáveis comparativas: a dependência administrativa (escolas públicas e privadas; b sexo; c localidade (Brasil e Belo Horizonte, utilizando proporções e intervalos de confiança de 95% (IC95%. A proporção de escolares que já tiveram relação sexual (30,5% é maior nas escolas públicas do que nas privadas, ocorrendo mais cedo e em dobro para o sexo masculino. Entre os entrevistados, o preservativo não foi utilizado por 24,1% na ultima relação sexual, sem diferenças entre sexos e tipo de escola. Constata-se, assim, a necessidade de políticas públicas e compromisso com a promoção da saúde sexual e reprodutiva na adolescência.
Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.
Hu, Yujing; Gao, Yang; An, Bo
2015-07-01
An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.
A Multiperiod Equilibrium Pricing Model
Directory of Open Access Journals (Sweden)
Minsuk Kwak
2014-01-01
Full Text Available We propose an equilibrium pricing model in a dynamic multiperiod stochastic framework with uncertain income. There are one tradable risky asset (stock/commodity, one nontradable underlying (temperature, and also a contingent claim (weather derivative written on the tradable risky asset and the nontradable underlying in the market. The price of the contingent claim is priced in equilibrium by optimal strategies of representative agent and market clearing condition. The risk preferences are of exponential type with a stochastic coefficient of risk aversion. Both subgame perfect strategy and naive strategy are considered and the corresponding equilibrium prices are derived. From the numerical result we examine how the equilibrium prices vary in response to changes in model parameters and highlight the importance of our equilibrium pricing principle.
Equilibrium studies of helical axis stellarators
International Nuclear Information System (INIS)
Hender, T.C.; Carreras, B.A.; Garcia, L.; Harris, J.H.; Rome, J.A.; Cantrell, J.L.; Lynch, V.E.
1984-01-01
The equilibrium properties of helical axis stellarators are studied with a 3-D equilibrium code and with an average method (2-D). The helical axis ATF is shown to have a toroidally dominated equilibrium shift and good equilibria up to at least 10% peak beta. Low aspect ratio heliacs, with relatively large toroidal shifts, are shown to have low equilibrium beta limits (approx. 5%). Increasing the aspect ratio and number of field periods proportionally is found to improve the equilibrium beta limit. Alternatively, increasing the number of field periods at fixed aspect ratio which raises and lowers the toroidal shift improves the equilibrium beta limit
The Equilibrium Rule--A Personal Discovery
Hewitt, Paul G.
2016-01-01
Examples of equilibrium are evident everywhere and the equilibrium rule provides a reasoned way to view all things, whether in static (balancing rocks, steel beams in building construction) or dynamic (airplanes, bowling balls) equilibrium. Interestingly, the equilibrium rule applies not just to objects at rest but whenever any object or system of…
Statistical mechanics of the fashion game on random networks
International Nuclear Information System (INIS)
Sun, YiFan
2016-01-01
A model of fashion on networks is studied. This model consists of two groups of agents that are located on a network and have opposite viewpoints towards being fashionable: behaving consistently with either the majority or the minority of adjacent agents. Checking whether the fashion game has a pure Nash equilibrium (pure NE) is a non-deterministic polynomial complete problem. Using replica-symmetric mean field theory, the largest proportion of satisfied agents and the region where at least one pure NE should exist are determined for several types of random networks. Furthermore, a quantitive analysis of the asynchronous best response dynamics yields the phase diagram of existence and detectability of pure NE in the fashion game on some random networks. (paper: classical statistical mechanics, equilibrium and non-equilibrium).
DIAGNOSIS OF FINANCIAL EQUILIBRIUM
Directory of Open Access Journals (Sweden)
SUCIU GHEORGHE
2013-04-01
Full Text Available The analysis based on the balance sheet tries to identify the state of equilibrium (disequilibrium that exists in a company. The easiest way to determine the state of equilibrium is by looking at the balance sheet and at the information it offers. Because in the balance sheet there are elements that do not reflect their real value, the one established on the market, they must be readjusted, and those elements which are not related to the ordinary operating activities must be eliminated. The diagnosis of financial equilibrium takes into account 2 components: financing sources (ownership equity, loaned, temporarily attracted. An efficient financial equilibrium must respect 2 fundamental requirements: permanent sources represented by ownership equity and loans for more than 1 year should finance permanent needs, and temporary resources should finance the operating cycle.
International Nuclear Information System (INIS)
Louis-Martinez, Domingo J
2011-01-01
A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well-known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.
Tropical limit and a micro-macro correspondence in statistical physics
Angelelli, Mario
2017-10-01
Tropical mathematics is used to establish a correspondence between certain microscopic and macroscopic objects in statistical models. Tropical algebra gives a common framework for macrosystems (subsets) and their elementary constituents (elements) that is well-behaved with respect to composition. This kind of connection is studied with maps that preserve a monoid structure. The approach highlights an underlying order relation that is explored through the concepts of filter and ideal. Particular attention is paid to asymmetry and duality between max- and min-criteria. Physical implementations are presented through simple examples in thermodynamics and non-equilibrium physics. The phenomenon of ultrametricity, the notion of tropical equilibrium and the role of ground energy in non-equilibrium models are discussed. Tropical symmetry, i.e. idempotence, is investigated.
The geometry of finite equilibrium sets
DEFF Research Database (Denmark)
Balasko, Yves; Tvede, Mich
2009-01-01
We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely noncollinear....
International Nuclear Information System (INIS)
Ivascu, M.; Avrigeanu, M.; Ivascu, I.; Avrigeanu, V.
1989-01-01
The experimentally well known (n,p), (n,α) and (n,2n) reaction excitation functions, from threshold to 20 MeV incident energy, and neutron, proton and alpha-particle emission spectra at 14.8 MeV from Fe, Cr and Ni isotopes are calculated in the frame of a generalized Geometry-Dependent-Hybrid pre-equilibrium emission model, including angular momentum and parity conservation and alpha-particle emission, and the Hauser-Feshbach statistical model. Use of a consistent statistical model parameter set enables the validation of the pre-equilibrium emission model. Moreover, an enhanced pre-equilibrium emission from higher spin composite system states, associated with higher incident orbital momenta, has been evidenced. Higher orbital momenta involved also in the emergent channels of this process are suggested by calculations of the residual nuclei level populations. Finally, the unitary account of the (n, p) and (n, 2n) reaction excitation functions for Fe, Cr and Ni isotopes has allowed the proper establishment of the limits of the transition excitation range between the two different nuclear level density models used at medium and higher excitation energies, respectively. (author). 83 refs, 15 figs
Relevance of equilibrium in multifragmentation
International Nuclear Information System (INIS)
Furuta, Takuya; Ono, Akira
2009-01-01
The relevance of equilibrium in a multifragmentation reaction of very central 40 Ca + 40 Ca collisions at 35 MeV/nucleon is investigated by using simulations of antisymmetrized molecular dynamics (AMD). Two types of ensembles are compared. One is the reaction ensemble of the states at each reaction time t in collision events simulated by AMD, and the other is the equilibrium ensemble prepared by solving the AMD equation of motion for a many-nucleon system confined in a container for a long time. The comparison of the ensembles is performed for the fragment charge distribution and the excitation energies. Our calculations show that there exists an equilibrium ensemble that well reproduces the reaction ensemble at each reaction time t for the investigated period 80≤t≤300 fm/c. However, there are some other observables that show discrepancies between the reaction and equilibrium ensembles. These may be interpreted as dynamical effects in the reaction. The usual static equilibrium at each instant is not realized since any equilibrium ensemble with the same volume as that of the reaction system cannot reproduce the fragment observables
Cavaglieri, Daniele; Bewley, Thomas; Mashayek, Ali
2015-11-01
We present a new code, Diablo 2.0, for the simulation of the incompressible NSE in channel and duct flows with strong grid stretching near walls. The code leverages the fractional step approach with a few twists. New low-storage IMEX (implicit-explicit) Runge-Kutta time-marching schemes are tested which are superior to the traditional and widely-used CN/RKW3 (Crank-Nicolson/Runge-Kutta-Wray) approach; the new schemes tested are L-stable in their implicit component, and offer improved overall order of accuracy and stability with, remarkably, similar computational cost and storage requirements. For duct flow simulations, our new code also introduces a new smoother for the multigrid solver for the pressure Poisson equation. The classic approach, involving alternating-direction zebra relaxation, is replaced by a new scheme, dubbed tweed relaxation, which achieves the same convergence rate with roughly half the computational cost. The code is then tested on the simulation of a shear flow instability in a duct, a classic problem in fluid mechanics which has been the object of extensive numerical modelling for its role as a canonical pathway to energetic turbulence in several fields of science and engineering.
From Wang-Chen System with Only One Stable Equilibrium to a New Chaotic System Without Equilibrium
Pham, Viet-Thanh; Wang, Xiong; Jafari, Sajad; Volos, Christos; Kapitaniak, Tomasz
2017-06-01
Wang-Chen system with only one stable equilibrium as well as the coexistence of hidden attractors has attracted increasing interest due to its striking features. In this work, the effect of state feedback on Wang-Chen system is investigated by introducing a further state variable. It is worth noting that a new chaotic system without equilibrium is obtained. We believe that the system is an interesting example to illustrate the conversion of hidden attractors with one stable equilibrium to hidden attractors without equilibrium.
Direct vs statistical decay of nuclear giant multipole resonances
International Nuclear Information System (INIS)
Hussein, M.S.
1986-07-01
A theoretical framework for the description of the decay of giant multipole resonances is developed. Besides the direct decay, both the pre-equilibrium and statistical (compound) decays are taken into account in a consistent way. It is shown that the statistical decay of the GR is not necessarily correctly described by the Hauser-Feshbach theory owing to the presence of a mixing parameter, which measures the degree of fragmentation. Applications are made to several cases. (Author) [pt
Direct vs statistical decay of nuclear giant multipole resonances
International Nuclear Information System (INIS)
Dias, H.; Hussein, M.S.; Carlson, B.V.; Merchant, A.C.; Adhikari, S.K.
1986-01-01
A theoretical framework for the description of the decay of giant multipole resonances id developed. Besides the direct decay, both the pre-equilibrium and statistical (compound) decays are taken into account in a consistent way. It is shown that the statistical decay of the giant resonance is not necessarily described by the Hauser-Feshbach theory owing to the presence of a mixing parameter, which measures the degree of fragmentation. Applications are made to several cases. (Author) [pt
Eberl, Gérard
2016-08-01
The classical model of immunity posits that the immune system reacts to pathogens and injury and restores homeostasis. Indeed, a century of research has uncovered the means and mechanisms by which the immune system recognizes danger and regulates its own activity. However, this classical model does not fully explain complex phenomena, such as tolerance, allergy, the increased prevalence of inflammatory pathologies in industrialized nations and immunity to multiple infections. In this Essay, I propose a model of immunity that is based on equilibrium, in which the healthy immune system is always active and in a state of dynamic equilibrium between antagonistic types of response. This equilibrium is regulated both by the internal milieu and by the microbial environment. As a result, alteration of the internal milieu or microbial environment leads to immune disequilibrium, which determines tolerance, protective immunity and inflammatory pathology.
Grinding kinetics and equilibrium states
Opoczky, L.; Farnady, F.
1984-01-01
The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.
The Geometry of Finite Equilibrium Datasets
DEFF Research Database (Denmark)
Balasko, Yves; Tvede, Mich
We investigate the geometry of finite datasets defined by equilibrium prices, income distributions, and total resources. We show that the equilibrium condition imposes no restrictions if total resources are collinear, a property that is robust to small perturbations. We also show that the set...... of equilibrium datasets is pathconnected when the equilibrium condition does impose restrictions on datasets, as for example when total resources are widely non collinear....
Chernyak, Vladimir Y.; Chertkov, Michael; Bierkens, Joris; Kappen, Hilbert J.
2014-01-01
In stochastic optimal control (SOC) one minimizes the average cost-to-go, that consists of the cost-of-control (amount of efforts), cost-of-space (where one wants the system to be) and the target cost (where one wants the system to arrive), for a system participating in forced and controlled Langevin dynamics. We extend the SOC problem by introducing an additional cost-of-dynamics, characterized by a vector potential. We propose derivation of the generalized gauge-invariant Hamilton-Jacobi-Bellman equation as a variation over density and current, suggest hydrodynamic interpretation and discuss examples, e.g., ergodic control of a particle-within-a-circle, illustrating non-equilibrium space-time complexity.
International nuclear model and code comparison on pre-equilibrium effects
International Nuclear Information System (INIS)
Gruppelaar, H.; van der Kamp, H.A.J.; Nagel, P.
1983-01-01
This paper gives the specification of an intercomparison of statistical nuclear models and codes with emphasis on pre-equilibrium effects. It is partly based upon the conclusions of a meeting of an ad-hoc working group on this subject. The parameters studied are: masses, Q values, level scheme data, optical model parameters, X-ray competition parameters, total level-density specifications, for 86 Rb, 89 Sr, 90 Y, 92 Y, 92 Zr, 93 Zr, 89 Y, 91 Nb, 92 Nb and 93 Nb
A note on existence of mixed solutions to equilibrium problems with equilibrium constraints
Czech Academy of Sciences Publication Activity Database
Červinka, Michal
2007-01-01
Roč. 2007, č. 24 (2007), s. 27-44 ISSN 1212-074X R&D Projects: GA AV ČR IAA1030405 Institutional research plan: CEZ:AV0Z10750506 Keywords : equilibrium problems with equilibrium constraints * variational analysis * mixed strategy Subject RIV: BA - General Mathematics
On nonequilibrium many-body systems. 1: The nonequilibrium statistical operator method
International Nuclear Information System (INIS)
Algarte, A.C.S.; Vasconcellos, A.R.; Luzzi, R.; Sampaio, A.J.C.
1985-01-01
The theoretical aspects involved in the treatment of many-body systems strongly departed from equilibrium are discussed. The nonequilibrium statistical operator (NSO) method is considered in detail. Using Jaynes' maximum entropy formalism complemented with an ad hoc hypothesis a nonequilibrium statistical operator is obtained. This approach introduces irreversibility from the outset and we recover statistical operators like those of Green-Mori and Zubarev as particular cases. The connection with Generalized Thermodynamics and the construction of nonlinear transport equations are briefly described. (Author) [pt
2015-01-01
This book presents cutting-edge experimental and computational results and provides comprehensive coverage on the impact of non-equilibrium structure and dynamics on the properties of soft matter confined to the nanoscale. The book is organized into three main sections: · Equilibration and physical aging: by treating non-equilibrium phenomena with the formal methodology of statistical physics in bulk, the analysis of the kinetics of equilibration sheds new light on the physical origin of the non-equilibrium character of thin polymer films. Both the impact of sample preparation and that of interfacial interactions are analyzed using a large set of experiments. A historical overview of the investigation of the non-equilibrium character of thin polymer films is also presented. Furthermore, the discussion focuses on how interfaces and geometrical confinement perturb the pathways and kinetics of equilibrations of soft glasses (a process of tremendous technological interest). · Irr...
International Nuclear Information System (INIS)
Azis, Abdul; Teramoto, Masaaki; Matsuyama, Hideto.
1995-01-01
Equilibrium and non-equilibrium extraction separations of rare earth metals were carried out in the presence of chelating agent in the aqueous phase. The separation systems of the rare earth metal mixtures used were Y/Dy, Y/Ho, Y/Er and Y/Tm, and the chelating agent and the extractant were diethylenetriaminepentaacetic acid (DTPA) and bis (2,4,4-trimethylpentyl) phosphinic acid (CYANEXR 272), respectively. For Y/Dy and Y/Ho systems, higher selectivities were obtained in equilibrium separation compared with those in non-equilibrium separation. On the other hand, the selectivities in non-equilibrium separation were higher for Y/Er and Y/Tm systems. In the separation condition suitable to each system, the addition of DTPA to the aqueous phase was found to be very effective for obtaining higher selectivities. The distribution ratios of the rare earth metals and the selectivities in the equilibrium separations obtained experimentally were thoroughly analyzed by considering various equilibria such as the extraction equilibrium and the complex formation equilibrium between rare earth metals and DTPA in the aqueous phase. Moreover, the extraction rates and the selectivities in the non-equilibrium separations were also analyzed by the extraction model considering the dissociation reactions of the rare earth metal-DTPA complexes in the aqueous stagnant layer. Based on these analyses, we presented an index which is useful for selecting the optimum operation mode. Using this index, we can predict that the selectivities under equilibrium conditions are higher than those under non-equilibrium conditions for Y/Dy and Y/Ho systems, while for Y/Er and Y/Tm systems, higher selectivities are obtained under non-equilibrium conditions. The experimental results were in agreement with predictions by this index. Further, the selectivities in various systems including other chelating agents and extractants were discussed based on this index. (J.P.N.)
Mental Equilibrium and Rational Emotions
Eyal Winter; Ignacio Garcia-Jurado; Jose Mendez-Naya; Luciano Mendez-Naya
2009-01-01
We introduce emotions into an equilibrium notion. In a mental equilibrium each player "selects" an emotional state which determines the player's preferences over the outcomes of the game. These preferences typically differ from the players' material preferences. The emotional states interact to play a Nash equilibrium and in addition each player's emotional state must be a best response (with respect to material preferences) to the emotional states of the others. We discuss the concept behind...
Noncompact Equilibrium Points and Applications
Directory of Open Access Journals (Sweden)
Zahra Al-Rumaih
2012-01-01
Full Text Available We prove an equilibrium existence result for vector functions defined on noncompact domain and we give some applications in optimization and Nash equilibrium in noncooperative game.
Advancing non-equilibrium ARPES experiments by a 9.3 eV coherent ultrafast photon source
Energy Technology Data Exchange (ETDEWEB)
Cilento, F., E-mail: federico.cilento@elettra.eu [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); C.N.R. – I.O.M., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Crepaldi, A. [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Manzoni, G.; Sterzi, A. [Universitá degli Studi di Trieste, Via A. Valerio 2, Trieste 34127 (Italy); Zacchigna, M. [C.N.R. – I.O.M., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Bugnon, Ph.; Berger, H. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Parmigiani, F. [Elettra – Sincrotrone Trieste S.C.p.A., Strada Statale 14, km 163.5, Trieste 34149 (Italy); Universitá degli Studi di Trieste, Via A. Valerio 2, Trieste 34127 (Italy); International Faculty, University of Köln, 50937 Köln (Germany)
2016-02-15
The quest for investigating the non-equilibrium dynamics of the band structure of strongly-correlated materials over their entire Brillouin zone is a primary objective. However, the actual ultrafast UV light sources are not suitable for addressing several critical questions in the field. Here we report on a novel light source generating sub-250 fs, 9.3 eV photon energy light pulses at 250 kHz repetition rate, obtained via third-harmonic generation in Xe of frequency-doubled 50 fs laser pulses at 1.55 eV. By reporting the measured band dispersion of a Cu(111) crystal and the non-equilibrium dynamics of the Bi{sub 2}Se{sub 3} topological insulator, we prove that this source is suitable for studying the non-equilibrium dynamics of the entire Fermi surface of several complex materials, with high signal statistics and limited space-charge effect.
Local Nash equilibrium in social networks.
Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong
2014-08-29
Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.
Standardization of 125 Sb in equilibrium non-equilibrium situations with 125m Te
International Nuclear Information System (INIS)
Rodriguez Barquero, L.; Jimenez de Mingo, A.; Grau Carles, A.
1997-10-01
We study the stability of ''125 Sb in the following scintillators: HiSafeIII''TM, Insta- Gel reg s ign Plus and '' Ultima-Gold'' TM. Since ''125 m Te requires more than one year to reach the secular equilibrium with ''125 Sb, we cannot be sure, for a given sample, whether equilibrium is reached or not. In this report we present a new procedure that permits one calibrate mixtures of ''125 Sb+''125 m Te out of the equilibrium. The steps required for the radiochemical separation of the components are indicated. Finally, we study the evolution of counting rate when column yields are less than 100%. (Author)
Nonequilibrium statistical mechanics of systems with long-range interactions
Energy Technology Data Exchange (ETDEWEB)
Levin, Yan, E-mail: levin@if.ufrgs.br; Pakter, Renato, E-mail: pakter@if.ufrgs.br; Rizzato, Felipe B., E-mail: rizzato@if.ufrgs.br; Teles, Tarcísio N., E-mail: tarcisio.teles@fi.infn.it; Benetti, Fernanda P.C., E-mail: fbenetti@if.ufrgs.br
2014-02-01
Systems with long-range (LR) forces, for which the interaction potential decays with the interparticle distance with an exponent smaller than the dimensionality of the embedding space, remain an outstanding challenge to statistical physics. The internal energy of such systems lacks extensivity and additivity. Although the extensivity can be restored by scaling the interaction potential with the number of particles, the non-additivity still remains. Lack of additivity leads to inequivalence of statistical ensembles. Before relaxing to thermodynamic equilibrium, isolated systems with LR forces become trapped in out-of-equilibrium quasi-stationary states (qSSs), the lifetime of which diverges with the number of particles. Therefore, in the thermodynamic limit LR systems will not relax to equilibrium. The qSSs are attained through the process of collisionless relaxation. Density oscillations lead to particle–wave interactions and excitation of parametric resonances. The resonant particles escape from the main cluster to form a tenuous halo. Simultaneously, this cools down the core of the distribution and dampens out the oscillations. When all the oscillations die out the ergodicity is broken and a qSS is born. In this report, we will review a theory which allows us to quantitatively predict the particle distribution in the qSS. The theory is applied to various LR interacting systems, ranging from plasmas to self-gravitating clusters and kinetic spin models.
International Nuclear Information System (INIS)
Song, S.-H.; Shen, D.-D.; Yuan, Z.-X.; Liu, J.; Xu, T.-D.; Weng, L.-Q.
2003-01-01
Grain boundary segregation of phosphorus in a P-doped 2.25Cr1Mo steel during ageing at 540 deg. C after quenching from 980 deg. C is examined by Auger electron spectroscopy. The segregation is a combined effect of equilibrium segregation and non-equilibrium segregation. The effect of phosphorus non-equilibrium segregation is to enhance the kinetics of its equilibrium segregation
On the local equilibrium condition
International Nuclear Information System (INIS)
Hessling, H.
1994-11-01
A physical system is in local equilibrium if it cannot be distinguished from a global equilibrium by ''infinitesimally localized measurements''. This should be a natural characterization of local equilibrium, but the problem is to give a precise meaning to the qualitative phrase ''infinitesimally localized measurements''. A solution is suggested in form of a Local Equilibrium Condition (LEC), which can be applied to linear relativistic quantum field theories but not directly to selfinteracting quantum fields. The concept of local temperature resulting from LEC is compared to an old approach to local temperature based on the principle of maximal entropy. It is shown that the principle of maximal entropy does not always lead to physical states if it is applied to relativistic quantum field theories. (orig.)
Modern Thermodynamics with Statistical Mechanics
Helrich, Carl S
2009-01-01
With the aim of presenting thermodynamics in as simple and as unified a form as possible, this textbook starts with an introduction to the first and second laws and then promptly addresses the complete set of the potentials in a subsequent chapter and as a central theme throughout. Before discussing modern laboratory measurements, the book shows that the fundamental quantities sought in the laboratory are those which are required for determining the potentials. Since the subjects of thermodynamics and statistical mechanics are a seamless whole, statistical mechanics is treated as integral part of the text. Other key topics such as irreversibility, the ideas of Ilya Prigogine, chemical reaction rates, equilibrium of heterogeneous systems, and transition-state theory serve to round out this modern treatment. An additional chapter covers quantum statistical mechanics due to active current research in Bose-Einstein condensation. End-of-chapter exercises, chapter summaries, and an appendix reviewing fundamental pr...
The Conceptual Change Approach to Teaching Chemical Equilibrium
Canpolat, Nurtac; Pinarbasi, Tacettin; Bayrakceken, Samih; Geban, Omer
2006-01-01
This study investigates the effect of a conceptual change approach over traditional instruction on students' understanding of chemical equilibrium concepts (e.g. dynamic nature of equilibrium, definition of equilibrium constant, heterogeneous equilibrium, qualitative interpreting of equilibrium constant, changing the reaction conditions). This…
Spontaneity and Equilibrium: Why "?G Equilibrium" Are Incorrect
Raff, Lionel M.
2014-01-01
The fundamental criteria for chemical reactions to be spontaneous in a given direction are generally incorrectly stated as ?G equilibrium are also misstated as being ?G = 0 or ?A = 0. Following a brief review of the…
Broken detailed balance and non-equilibrium dynamics in living systems: a review
Gnesotto, F. S.; Mura, F.; Gladrow, J.; Broedersz, C. P.
2018-06-01
Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.
Broken detailed balance and non-equilibrium dynamics in living systems: a review.
Gnesotto, F S; Mura, F; Gladrow, J; Broedersz, C P
2018-03-05
Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.
Numerical evaluation of the statistical properties of a potential energy landscape
International Nuclear Information System (INIS)
Nave, E La; Sciortino, F; Tartaglia, P; Michele, C De; Mossa, S
2003-01-01
The techniques which allow the numerical evaluation of the statistical properties of the potential energy landscape for models of simple liquids are reviewed and critically discussed. Expressions for the liquid free energy and its vibrational and configurational components are reported. Finally, a possible model for the statistical properties of the landscape, which appears to describe correctly fragile liquids in the region where equilibrium simulations are feasible, is discussed
Approach to transverse equilibrium in axial channeling
International Nuclear Information System (INIS)
Fearick, R.W.
2000-01-01
Analytical treatments of channeling rely on the assumption of equilibrium on the transverse energy shell. The approach to equilibrium, and the nature of the equilibrium achieved, is examined using solutions of the equations of motion in the continuum multi-string model. The results show that the motion is chaotic in the absence of dissipative processes, and a complicated structure develops in phase space which prevent the development of the simple equilibrium usually assumed. The role of multiple scattering in smoothing out the equilibrium distribution is investigated
Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands.
Valente, Luis M; Phillimore, Albert B; Etienne, Rampal S
2015-08-01
Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galápagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Galápagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Step-wise pulling protocols for non-equilibrium dynamics
Ngo, Van Anh
The fundamental laws of thermodynamics and statistical mechanics, and the deeper understandings of quantum mechanics have been rebuilt in recent years. It is partly because of the increasing power of computing resources nowadays, that allow shedding direct insights into the connections among the thermodynamics laws, statistical nature of our world, and the concepts of quantum mechanics, which have not yet been understood. But mostly, the most important reason, also the ultimate goal, is to understand the mechanisms, statistics and dynamics of biological systems, whose prevailing non-equilibrium processes violate the fundamental laws of thermodynamics, deviate from statistical mechanics, and finally complicate quantum effects. I believe that investigations of the fundamental laws of non-equilibrium dynamics will be a frontier research for at least several more decades. One of the fundamental laws was first discovered in 1997 by Jarzynski, so-called Jarzynski's Equality. Since then, different proofs, alternative descriptions of Jarzynski's Equality, and its further developments and applications have been quickly accumulated. My understandings, developments and applications of an alternative theory on Jarzynski's Equality form the bulk of this dissertation. The core of my theory is based on stepwise pulling protocols, which provide deeper insight into how fluctuations of reaction coordinates contribute to free-energy changes along a reaction pathway. We find that the most optimal pathways, having the largest contribution to free-energy changes, follow the principle of detailed balance. This is a glimpse of why the principle of detailed balance appears so powerful for sampling the most probable statistics of events. In a further development on Jarzynski's Equality, I have been trying to use it in the formalism of diagonal entropy to propose a way to extract useful thermodynamic quantities such temperature, work and free-energy profiles from far-from-equilibrium
Ergodic theory, interpretations of probability and the foundations of statistical mechanics
van Lith, J.H.
2001-01-01
The traditional use of ergodic theory in the foundations of equilibrium statistical mechanics is that it provides a link between thermodynamic observables and microcanonical probabilities. First of all, the ergodic theorem demonstrates the equality of microcanonical phase averages and infinite time
Non equilibrium atomic processes and plasma spectroscopy
International Nuclear Information System (INIS)
Kato, Takako
2003-01-01
Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)
Equilibrium sampling by reweighting nonequilibrium simulation trajectories.
Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin
2016-03-01
Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.
On Nonextensive Statistics, Chaos and Fractal Strings
Castro, C
2004-01-01
Motivated by the growing evidence of universality and chaos in QFT and string theory, we study the Tsallis non-extensive statistics ( with a non-additive $ q$-entropy ) of an ensemble of fractal strings and branes of different dimensionalities. Non-equilibrium systems with complex dynamics in stationary states may exhibit large fluctuations of intensive quantities which are described in terms of generalized statistics. Tsallis statistics is a particular representative of such class. The non-extensive entropy and probability distribution of a canonical ensemble of fractal strings and branes is studied in terms of their dimensional spectrum which leads to a natural upper cutoff in energy and establishes a direct correlation among dimensions, energy and temperature. The absolute zero temperature ( Kelvin ) corresponds to zero dimensions (energy ) and an infinite temperature corresponds to infinite dimensions. In the concluding remarks some applications of fractal statistics, quasi-particles, knot theory, quantum...
Energy Technology Data Exchange (ETDEWEB)
Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.; Kewley, Lisa J. [Research School of Astronomy and Astrophysics, Australian National University, Cotter Rd., Weston ACT 2611 (Australia); Palay, Ethan, E-mail: david@mso.anu.edu.au [Department of Astronomy, Ohio State University, Columbus, OH 43210 (United States)
2013-08-15
In this paper we develop tools for observers to use when analyzing nebular spectra for temperatures and metallicities, with two goals: to present a new, simple method to calculate equilibrium electron temperatures for collisionally excited line flux ratios, using the latest atomic data; and to adapt current methods to include the effects of possible non-equilibrium ''{kappa}'' electron energy distributions. Adopting recent collision strength data for [O III], [S III], [O II], [S II], and [N II], we find that existing methods based on older atomic data seriously overestimate the electron temperatures, even when considering purely Maxwellian statistics. If {kappa} distributions exist in H II regions and planetary nebulae as they do in solar system plasmas, it is important to investigate the observational consequences. This paper continues our previous work on the {kappa} distribution. We present simple formulaic methods that allow observers to (1) measure equilibrium electron temperatures and atomic abundances using the latest atomic data, and (2) to apply simple corrections to existing equilibrium analysis techniques to allow for possible non-equilibrium effects. These tools should lead to better consistency in temperature and abundance measurements, and a clearer understanding of the physics of H II regions and planetary nebulae.
Condensate statistics in interacting and ideal dilute bose gases
Kocharovsky; Kocharovsky; Scully
2000-03-13
We obtain analytical formulas for the statistics, in particular, for the characteristic function and all cumulants, of the Bose-Einstein condensate in dilute weakly interacting and ideal equilibrium gases in the canonical ensemble via the particle-number-conserving operator formalism of Girardeau and Arnowitt. We prove that the ground-state occupation statistics is not Gaussian even in the thermodynamic limit. We calculate the effect of Bogoliubov coupling on suppression of ground-state occupation fluctuations and show that they are governed by a pair-correlation, squeezing mechanism.
The automated design of materials far from equilibrium
Miskin, Marc Z.
density. We examine how the results of a design process are contingent upon operating conditions by studying which shapes dissipate energy fastest in a granular gas. We even move to create optimization algorithms for the expressed purpose of material design, by integrating them with statistical mechanics. In all of these cases, we show that turning to machines puts a fresh perspective on materials far from equilibrium. By matching forms to functions, complexities become possibilities, motifs emerge that describe new physics, and the door opens to rational design.
The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics
Directory of Open Access Journals (Sweden)
Hameed Metghalchi
2012-01-01
Full Text Available The Rate-Controlled Constrained-Equilibrium (RCCE method for the description of the time-dependent behavior of dynamical systems in non-equilibrium states is a general, effective, physically based method for model order reduction that was originally developed in the framework of thermodynamics and chemical kinetics. A generalized mathematical formulation is presented here that allows including nonlinear constraints in non-local equilibrium systems characterized by the existence of a non-increasing Lyapunov functional under the system’s internal dynamics. The generalized formulation of RCCE enables to clarify the essentials of the method and the built-in general feature of thermodynamic consistency in the chemical kinetics context. In this paper, we work out the details of the method in a generalized mathematical-physics framework, but for definiteness we detail its well-known implementation in the traditional chemical kinetics framework. We detail proofs and spell out explicit functional dependences so as to bring out and clarify each underlying assumption of the method. In the standard context of chemical kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed balance condition off-equilibrium and the thermodynamic consistency of the method. We also discuss two examples of RCCE gas-phase combustion calculations to emphasize the constraint-dependent performance of the RCCE method.
Jahnke, Annika; Mayer, Philipp; Adolfsson-Erici, Margaretha; McLachlan, Michael S
2011-07-01
Equilibrium sampling of organic pollutants into the silicone polydimethylsiloxane (PDMS) has recently been applied in biological tissues including fish. Pollutant concentrations in PDMS can then be multiplied with lipid/PDMS distribution coefficients (D(Lipid,PDMS) ) to obtain concentrations in fish lipids. In the present study, PDMS thin films were used for equilibrium sampling of polychlorinated biphenyls (PCBs) in intact tissue of two eels and one salmon. A classical exhaustive extraction technique to determine lipid-normalized PCB concentrations, which assigns the body burden of the chemical to the lipid fraction of the fish, was additionally applied. Lipid-based PCB concentrations obtained by equilibrium sampling were 85 to 106% (Norwegian Atlantic salmon), 108 to 128% (Baltic Sea eel), and 51 to 83% (Finnish lake eel) of those determined using total extraction. This supports the validity of the equilibrium sampling technique, while at the same time confirming that the fugacity capacity of these lipid-rich tissues for PCBs was dominated by the lipid fraction. Equilibrium sampling was also applied to homogenates of the same fish tissues. The PCB concentrations in the PDMS were 1.2 to 2.0 times higher in the homogenates (statistically significant in 18 of 21 cases, p equilibrium sampling and partition coefficients determined using tissue homogenates. Copyright © 2011 SETAC.
Wallace, Rodrick; Wallace, Deborah
We argue that mesoscale ecosystem resilience shifts akin to sudden phase transitions in physical systems can entrain similarly punctuated events of gene expression on more rapid time scales, and, in part through such means, slower changes induced by selection pressure, triggering punctuated equilibrium Darwinian evolutionary transitions on geologic time scales. The approach reduces ecosystem, gene expression, and Darwinian genetic dynamics to a least common denominator of information sources interacting by crosstalk at markedly differing rates. Pettini's 'topological hypothesis', via a homology between information source uncertainty and free energy density, generates a regression-like class of statistical models of sudden coevolutionary phase transition based on the Rate Distortion and Shannon-McMillan Theorems of information theory which links all three levels. A mathematical treatment of Holling's extended keystone hypothesis regarding the particular role of mesoscale phenomena in entraining both slower and faster dynamical structures produces the result. A main theme is the necessity of a cognitive paradigm for gene expression, mirroring I. Cohen's cognitive approach to immune function. Invocation of the necessary conditions imposed by the asymptotic limit theorems of communication theory enables us to penetrate one layer more deeply before needing to impose an empirically-derived phenomenological system of 'Onsager relation' recursive coevolutionary stochastic differential equations. Extending the development to second order via a large deviations argument permits modeling the influence of human cultural structures on ecosystems as 'farming'.
Equilibrium ignition for ICF capsules
International Nuclear Information System (INIS)
Lackner, K.S.; Colgate, S.A.; Johnson, N.L.; Kirkpatrick, R.C.; Menikoff, R.; Petschek, A.G.
1993-01-01
There are two fundamentally different approaches to igniting DT fuel in an ICF capsule which can be described as equilibrium and hot spot ignition. In both cases, a capsule which can be thought of as a pusher containing the DT fuel is imploded until the fuel reaches ignition conditions. In comparing high-gain ICF targets using cryogenic DT for a pusher with equilibrium ignition targets using high-Z pushers which contain the radiation. The authors point to the intrinsic advantages of the latter. Equilibrium or volume ignition sacrifices high gain for lower losses, lower ignition temperature, lower implosion velocity and lower sensitivity of the more robust capsule to small fluctuations and asymmetries in the drive system. The reduction in gain is about a factor of 2.5, which is small enough to make the more robust equilibrium ignition an attractive alternative
Numerical Verification Of Equilibrium Chemistry
International Nuclear Information System (INIS)
Piro, Markus; Lewis, Brent; Thompson, William T.; Simunovic, Srdjan; Besmann, Theodore M.
2010-01-01
A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.
Non-equilibrium spectroscopy of high-Tc superconductors
International Nuclear Information System (INIS)
Krasnov, V M
2009-01-01
In superconductors, recombination of two non-equilibrium quasiparticles into a Cooper pair results in emission of excitation that mediates superconductivity. This is the basis of the proposed new type of 'non-equilibrium' spectroscopy of high T c superconductors, which may open a possibility for direct and unambiguous determination of the coupling mechanism of high T c superconductivity. In case of low T c superconductors, the feasibility of such the non-equilibrium spectroscopy was demonstrated in classical phonon generation-detection experiments almost four decades ago. Recently it was demonstrated that a similar technique can be used for high T c superconductors, using natural intrinsic Josephson junctions both for injection of non-equilibrium quasiparticles and for detection of the non-equilibrium radiation. Here I analyze theoretically non-equilibrium phenomena in intrinsic Josephson junctions. It is shown that extreme non-equilibrium state can be achieved at bias equal to integer number of the gap voltage, which can lead to laser-like emission from the stack. I argue that identification of the boson type, constituting this non-equilibrium radiation would unambiguously reveal the coupling mechanism of high Tc superconductors.
International Nuclear Information System (INIS)
Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.
1976-01-01
The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)
Non-equilibrium dynamics from RPMD and CMD.
Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F
2016-11-28
We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.
Equilibrium thermodynamics - Callen's postulational approach
Jongschaap, R.J.J.; Öttinger, Hans Christian
2001-01-01
In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates
Non-equilibrium hydrogen ionization in 2D simulations of the solar atmosphere
Leenaarts, J.; Carlsson, M.; Hansteen, V.; Rutten, R. J.
2007-10-01
Context: The ionization of hydrogen in the solar chromosphere and transition region does not obey LTE or instantaneous statistical equilibrium because the timescale is long compared with important hydrodynamical timescales, especially of magneto-acoustic shocks. Since the pressure, temperature, and electron density depend sensitively on hydrogen ionization, numerical simulation of the solar atmosphere requires non-equilibrium treatment of all pertinent hydrogen transitions. The same holds for any diagnostic application employing hydrogen lines. Aims: To demonstrate the importance and to quantify the effects of non-equilibrium hydrogen ionization, both on the dynamical structure of the solar atmosphere and on hydrogen line formation, in particular Hα. Methods: We implement an algorithm to compute non-equilibrium hydrogen ionization and its coupling into the MHD equations within an existing radiation MHD code, and perform a two-dimensional simulation of the solar atmosphere from the convection zone to the corona. Results: Analysis of the simulation results and comparison to a companion simulation assuming LTE shows that: a) non-equilibrium computation delivers much smaller variations of the chromospheric hydrogen ionization than for LTE. The ionization is smaller within shocks but subsequently remains high in the cool intershock phases. As a result, the chromospheric temperature variations are much larger than for LTE because in non-equilibrium, hydrogen ionization is a less effective internal energy buffer. The actual shock temperatures are therefore higher and the intershock temperatures lower. b) The chromospheric populations of the hydrogen n = 2 level, which governs the opacity of Hα, are coupled to the ion populations. They are set by the high temperature in shocks and subsequently remain high in the cool intershock phases. c) The temperature structure and the hydrogen level populations differ much between the chromosphere above photospheric magnetic elements
Emergent dynamic structures and statistical law in spherical lattice gas automata
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
Emergent dynamic structures and statistical law in spherical lattice gas automata.
Yao, Zhenwei
2017-12-01
Various lattice gas automata have been proposed in the past decades to simulate physics and address a host of problems on collective dynamics arising in diverse fields. In this work, we employ the lattice gas model defined on the sphere to investigate the curvature-driven dynamic structures and analyze the statistical behaviors in equilibrium. Under the simple propagation and collision rules, we show that the uniform collective movement of the particles on the sphere is geometrically frustrated, leading to several nonequilibrium dynamic structures not found in the planar lattice, such as the emergent bubble and vortex structures. With the accumulation of the collision effect, the system ultimately reaches equilibrium in the sense that the distribution of the coarse-grained speed approaches the two-dimensional Maxwell-Boltzmann distribution despite the population fluctuations in the coarse-grained cells. The emergent regularity in the statistical behavior of the system is rationalized by mapping our system to a generalized random walk model. This work demonstrates the capability of the spherical lattice gas automaton in revealing the lattice-guided dynamic structures and simulating the equilibrium physics. It suggests the promising possibility of using lattice gas automata defined on various curved surfaces to explore geometrically driven nonequilibrium physics.
International Nuclear Information System (INIS)
Imai, M.; Sataka, M.; Matsuda, M.; Okayasu, S.; Kawatsura, K.; Takahiro, K.; Komaki, K.; Shibata, H.; Nishio, K.
2015-01-01
Both equilibrium and non-equilibrium charge-state distributions were studied experimentally for 2.0 MeV/u carbon ions after passing through carbon foils. Measured charge-state distribution established the equilibrium at a target thickness of 10 μg/cm 2 and this remained unchanged until a maximum target thickness of 98 μg/cm 2 . The equilibrium charge-state distribution, the equilibrium mean charge-state, and the width and skewness of the equilibrium distribution were compared with predictions using existing semi-empirical formulae as well as simulation results, including the ETACHA code. It was found that charge-state distributions, mean charge states, and distribution widths for C 2+ , C 3+ , and C 4+ incident ions merged into quasi-equilibrium values at a target thickness of 5.7 μg/cm 2 in the pre-equilibrium region and evolved simultaneously to the ‘real equilibrium’ values for all of the initial charge states, including C 5+ and C 6+ ions, as previously demonstrated for sulfur projectile ions at the same velocity (Imai et al., 2009). Two kinds of simulation, ETACHA and solution of rate equations taking only single electron transfers into account, were used, and both of them reproduced the measured charge evolution qualitatively. The quasi-equilibrium behavior could be reproduced with the ETACHA code, but not with solution of elementary rate equations
Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states
International Nuclear Information System (INIS)
Gamba, Irene M.; Tharkabhushanam, Sri Harsha
2009-01-01
We propose a new spectral Lagrangian based deterministic solver for the non-linear Boltzmann transport equation (BTE) in d-dimensions for variable hard sphere (VHS) collision kernels with conservative or non-conservative binary interactions. The method is based on symmetries of the Fourier transform of the collision integral, where the complexity in its computation is reduced to a separate integral over the unit sphere S d-1 . The conservation of moments is enforced by Lagrangian constraints. The resulting scheme, implemented in free space, is very versatile and adjusts in a very simple manner to several cases that involve energy dissipation due to local micro-reversibility (inelastic interactions) or elastic models of slowing down process. Our simulations are benchmarked with available exact self-similar solutions, exact moment equations and analytical estimates for the homogeneous Boltzmann equation, both for elastic and inelastic VHS interactions. Benchmarking of the simulations involves the selection of a time self-similar rescaling of the numerical distribution function which is performed using the continuous spectrum of the equation for Maxwell molecules as studied first in Bobylev et al. [A.V. Bobylev, C. Cercignani, G. Toscani, Proof of an asymptotic property of self-similar solutions of the Boltzmann equation for granular materials, Journal of Statistical Physics 111 (2003) 403-417] and generalized to a wide range of related models in Bobylev et al. [A.V. Bobylev, C. Cercignani, I.M. Gamba, On the self-similar asymptotics for generalized non-linear kinetic Maxwell models, Communication in Mathematical Physics, in press. URL: ( )]. The method also produces accurate results in the case of inelastic diffusive Boltzmann equations for hard spheres (inelastic collisions under thermal bath), where overpopulated non-Gaussian exponential tails have been conjectured in computations by stochastic methods [T.V. Noije, M. Ernst, Velocity distributions in homogeneously
On the use of statistical concepts in grand unified theories
International Nuclear Information System (INIS)
Dresden, M.
1982-01-01
The study raises the question-whether the use of traditional statistical mechanical concepts is legitimate in the early epochs of the development of the univese (from approx. equal to10 -40 s after the big bang, until about 10 -30 s). Several current procedures are examined in detail; the use of the equilibrium notion, the use of Boltzmann-like rate equations, the use of ideas from the theory of phase transitions. It is stressed that from the general viewpoint of statistical mechanics there is no convincing evidence that dynamical systems described by spontaneously broken gauge theories necessarily approach equilibrium. Techniques are suggested whereby this question might be approached. It is noted that the usual treatment by starting from the assumption of a homogeneous, isotropic universe is in principle incapable of discussing local non-equilibrium features. It is very questionable whether this assumption is valid for the epochs considered. Attention is called to the circumstance that if the phase transition picture is taken literally, the presence of both fermions and bosons indicates that a consistent treatment requires the existence of a critical line Tsub(c)(xi), rather than a critical temperature, xi is the ratio of the Fermi to Bose concentrations. This might well alter the qualitative picture of successive stages in the development of the universe. (orig.)
Equilibrium Solubility of CO2 in Alkanolamines
DEFF Research Database (Denmark)
Waseem Arshad, Muhammad; Fosbøl, Philip Loldrup; von Solms, Nicolas
2014-01-01
Equilibrium solubility of CO2 were measured in aqueous solutions of Monoethanolamine (MEA) and N,N-diethylethanolamine(DEEA). Equilibrium cells are generally used for these measurements. In this study, the equilibrium data were measured from the calorimetry. For this purpose a reaction calorimeter...... (model CPA 122 from ChemiSens AB, Sweden) was used. The advantage of this method is being the measurement of both heats of absorption and equilibrium solubility data of CO2 at the same time. The measurements were performed for 30 mass % MEA and 5M DEEA solutions as a function of CO2 loading at three...... different temperatures 40, 80 and 120 ºC. The measured 30 mass % MEA and 5M DEEA data were compared with the literature data obtained from different equilibrium cells which validated the use of calorimeters for equilibrium solubility measurements....
Phase equilibrium condition of marine carbon dioxide hydrate
International Nuclear Information System (INIS)
Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang
2013-01-01
Highlights: ► CO 2 hydrate phase equilibrium was studied in simulated marine sediments. ► CO 2 hydrate equilibrium temperature in NaCl and submarine pore water was depressed. ► Coarse-grained silica sand does not affect CO 2 hydrate phase equilibrium. ► The relationship between equilibrium temperature and freezing point was discussed. - Abstract: The phase equilibrium of ocean carbon dioxide hydrate should be understood for ocean storage of carbon dioxide. In this paper, the isochoric multi-step heating dissociation method was employed to investigate the phase equilibrium of carbon dioxide hydrate in a variety of systems (NaCl solution, submarine pore water, silica sand + NaCl solution mixture). The experimental results show that the depression in the phase equilibrium temperature of carbon dioxide hydrate in NaCl solution is caused mainly by Cl − ion. The relationship between the equilibrium temperature and freezing point in NaCl solution was discussed. The phase equilibrium temperature of carbon dioxide hydrate in submarine pore water is shifted by −1.1 K to lower temperature region than that in pure water. However, the phase equilibrium temperature of carbon dioxide hydrate in mixture samples of coarsed-grained silica sand and NaCl solution is in agreement with that in NaCl solution with corresponding concentrations. The relationship between the equilibrium temperature and freezing point in mixture samples was also discussed.
Sousa, Tânia; Domingos, Tiago
2006-11-01
We develop a unified conceptual and mathematical structure for equilibrium econophysics, i.e., the use of concepts and tools of equilibrium thermodynamics in neoclassical microeconomics and vice versa. Within this conceptual structure the results obtained in microeconomic theory are: (1) the definition of irreversibility in economic behavior; (2) the clarification that the Engel curve and the offer curve are not descriptions of real processes dictated by the maximization of utility at constant endowment; (3) the derivation of a relation between elasticities proving that economic elasticities are not all independent; (4) the proof that Giffen goods do not exist in a stable equilibrium; (5) the derivation that ‘economic integrability’ is equivalent to the generalized Le Chatelier principle and (6) the definition of a first order phase transition, i.e., a transition between separate points in the utility function. In thermodynamics the results obtained are: (1) a relation between the non-dimensional isothermal and adiabatic compressibilities and the increase or decrease in the thermodynamic potentials; (2) the distinction between mathematical integrability and optimization behavior and (3) the generalization of the Clapeyron equation.
Hiwatashi, A; Togao, O; Yamashita, K; Kikuchi, K; Momosaka, D; Honda, H
2018-03-20
The purpose of this study was to correlate diffusivity of extraocular muscles, measured by three-dimensional turbo field echo (3DTFE) magnetic resonance (MR) imaging using diffusion-sensitized driven-equilibrium preparation, with their size and activity in patients with Grave's ophthalmopathy. Twenty-three patients with Grave's ophthalmopathy were included. There were 17 women and 6 men with a mean age of 55.8±12.6 (SD) years (range: 26-83 years). 3DTFE with diffusion-sensitized driven-equilibrium MR images were obtained with b-values of 0 and 500s/mm 2 . The apparent diffusion coefficient (ADC) of extraocular muscles was measured on coronal reformatted MR images. Signal intensities of extraocular muscles on conventional MR images were compared to those of normal-appearing white matter, and cross-sectional areas of the muscles were also measured. The clinical activity score was also evaluated. Statistical analyses were performed with Pearson correlation and Mann-Whitney U tests. On 3DTFE with diffusion-sensitized driven-equilibrium preparation, the mean ADC of the extraocular muscles was 2.23±0.37 (SD)×10 -3 mm2/s (range: 1.70×10 -3 -3.11×10 -3 mm 2 /s). There was a statistically significant moderate correlation between ADC and the size of the muscles (r=0.61). There were no statistically significant correlations between ADC and signal intensity on conventional MR and the clinical activity score. 3DTFE with diffusion-sensitized driven-equilibrium preparation technique allows quantifying diffusivity of extraocular muscles in patients with Grave's ophthalmopathy. The diffusivity of the extraocular muscles on 3DTFE with diffusion-sensitized driven-equilibrium preparation MR images moderately correlates with their size. Copyright © 2018. Published by Elsevier Masson SAS.
Features of statistical dynamics in a finite system
International Nuclear Information System (INIS)
Yan, Shiwei; Sakata, Fumihiko; Zhuo Yizhong
2002-01-01
We study features of statistical dynamics in a finite Hamilton system composed of a relevant one degree of freedom coupled to an irrelevant multidegree of freedom system through a weak interaction. Special attention is paid on how the statistical dynamics changes depending on the number of degrees of freedom in the irrelevant system. It is found that the macrolevel statistical aspects are strongly related to an appearance of the microlevel chaotic motion, and a dissipation of the relevant motion is realized passing through three distinct stages: dephasing, statistical relaxation, and equilibrium regimes. It is clarified that the dynamical description and the conventional transport approach provide us with almost the same macrolevel and microlevel mechanisms only for the system with a very large number of irrelevant degrees of freedom. It is also shown that the statistical relaxation in the finite system is an anomalous diffusion and the fluctuation effects have a finite correlation time
Helical axis stellarator equilibrium model
International Nuclear Information System (INIS)
Koniges, A.E.; Johnson, J.L.
1985-02-01
An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift
The equilibrium theory of inhomogeneous polymers (international series of monographs on physics)
Fredrickson, Glenn
2013-01-01
The Equilibrium Theory of Inhomogeneous Polymers provides an introduction to the field-theoretic methods and computer simulation techniques that are used in the design of structured polymeric fluids. By such methods, the principles that dictate equilibrium self-assembly in systems ranging from block and graft copolymers, to polyelectrolytes, liquid crystalline polymers, and polymer nanocomposites can be established. Building on an introductory discussion of single-polymer statistical mechanics, the book provides a detailed treatment of analytical and numerical techniques for addressing the conformational properties of polymers subjected to spatially-varying potential fields. This problem is shown to be central to the field-theoretic description of interacting polymeric fluids, and models for a number of important polymer systems are elaborated. Chapter 5 serves to unify and expound the topic of self-consistent field theory, which is a collection of analytical and numerical techniques for obtaining solutions o...
African Journals Online (AJOL)
NESG PUBLICATIONS
of women. Eliminate gender ... good governance, development and poverty reduction – nationally and ... Equality and Empower Women. The ratio of ... better household practices, access to drinking .... four-fifth of workforce are employed),.
International Nuclear Information System (INIS)
Zach, R.
1980-09-01
Transfer coefficients have become virtually indispensible in the study of the fate of radioisotopes released from nuclear installations. These coefficients are used in equilibrium assessment models where they specify the degree of transfer in food chains of individual radioisotopes from soil to plant products and from feed or forage and drinking water to animal products and ultimately to man. Information on transfer coefficients for terrestrial food chain models is very piecemeal and occurs in a wide variety of journals and reports. To enable us to choose or determine suitable values for assessments, we have addressed the following aspects of transfer coefficients on a very broad scale: (1) definitions, (2) equilibrium assumption, which stipulates that transfer coefficients be restricted to equilibrium or steady rate conditions, (3) assumption of linearity, that is the idea that radioisotope concentrations in food products increase linearly with contamination levels in the soil or animal feed, (4) methods of determination, (5) variability, (6) generic versus site-specific values, (7) statistical aspects, (8) use, (9) sources of currently used values, (10) criteria for revising values, (11) establishment and maintenance of files on transfer coefficients, and (12) future developments. (auth)
Partial chemical equilibrium in fluid dynamics
International Nuclear Information System (INIS)
Ramshaw, J.D.
1980-01-01
An analysis is given for the flow of a multicomponent fluid in which an arbitrary number of chemical reactions may occur, some of which are in equilibrium while the others proceed kinetically. The primitive equations describing this situation are inconvenient to use because the progress rates omega-dot/sub s/ for the equilibrium reactions are determined implicitly by the associated equilibrium constraint conditions. Two alternative equivalent equation systems that are more pleasant to deal with are derived. In the first system, the omega-dot/sub s/ are eliminated by replacing the transport equations for the chemical species involved in the equilibrium reactions with transport equations for the basic components of which these species are composed. The second system retains the usual species transport equations, but eliminates the nonlinear algebraic equilibrium constraint conditions by deriving an explicit expression for the omega-dot/sub s/. Both systems are specialized to the case of an ideal gas mixture. Considerations involved in solving these equation systems numerically are discussed briefly
Adib, Artur B.
In the last two decades or so, a collection of results in nonequilibrium statistical mechanics that departs from the traditional near-equilibrium framework introduced by Lars Onsager in 1931 has been derived, yielding new fundamental insights into far-from-equilibrium processes in general. Apart from offering a more quantitative statement of the second law of thermodynamics, some of these results---typified by the so-called "Jarzynski equality"---have also offered novel means of estimating equilibrium quantities from nonequilibrium processes, such as free energy differences from single-molecule "pulling" experiments. This thesis contributes to such efforts by offering three novel results in nonequilibrium statistical mechanics: (a) The entropic analog of the Jarzynski equality; (b) A methodology for estimating free energies from "clamp-and-release" nonequilibrium processes; and (c) A directly measurable symmetry relation in chemical kinetics similar to (but more general than) chemical detailed balance. These results share in common the feature of remaining valid outside Onsager's near-equilibrium regime, and bear direct applicability in protein folding kinetics as well as in single-molecule free energy estimation.
Non-equilibrium modelling of distillation
Wesselingh, JA; Darton, R
1997-01-01
There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase
Financial equilibrium with career concerns
Directory of Open Access Journals (Sweden)
Amil Dasgupta
2006-03-01
Full Text Available What are the equilibrium features of a financial market where a sizeable proportion of traders face reputational concerns? This question is central to our understanding of financial markets, which are increasingly dominated by institutional investors. We construct a model of delegated portfolio management that captures key features of the US mutual fund industry and embed it in an asset pricing framework. We thus provide a formal model of financial equilibrium with career concerned agents. Fund managers differ in their ability to understand market fundamentals, and in every period investors choose a fund. In equilibrium, the presence of career concerns induces uninformed fund managers to churn, i.e., to engage in trading even when they face a negative expected return. Churners act as noise traders and enhance the level of trading volume. The equilibrium relationship between fund return and net fund flows displays a skewed shape that is consistent with stylized facts. The robustness of our core results is probed from several angles.
Computing Equilibrium Chemical Compositions
Mcbride, Bonnie J.; Gordon, Sanford
1995-01-01
Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.
Boson spectra and correlations for thermal locally equilibrium systems
International Nuclear Information System (INIS)
Sinyukov, Y.M.
1999-01-01
The single- and multi-particle inclusive spectra for strongly inhomogeneous thermal boson systems are studied using the method of statistical operator. The thermal Wick's theorem is generalized and the analytical solution of the problem for a boost-invariant expanding boson gas is found. The results demonstrate the effects of inhomogeneity for such a system: the spectra and correlations for particles with wavelengths larger than the system's homogeneity lengths change essentially as compared with the results based on the local Bose-Einstein thermal distributions. The effects noticeably grow for overpopulated media, where the chemical potential associated with violation of chemical equilibrium is large enough. (author)
International Nuclear Information System (INIS)
Venkataraman, G.
1992-01-01
Treating radiation gas as a classical gas, Einstein derived Planck's law of radiation by considering the dynamic equilibrium between atoms and radiation. Dissatisfied with this treatment, S.N. Bose derived Plank's law by another original way. He treated the problem in generality: he counted how many cells were available for the photon gas in phase space and distributed the photons into these cells. In this manner of distribution, there were three radically new ideas: The indistinguishability of particles, the spin of the photon (with only two possible orientations) and the nonconservation of photon number. This gave rise to a new discipline of quantum statistical mechanics. Physics underlying Bose's discovery, its significance and its role in development of the concept of ideal gas, spin-statistics theorem and spin particles are described. The book has been written in a simple and direct language in an informal style aiming to stimulate the curiosity of a reader. (M.G.B.)
Principles of classical statistical mechanics: A perspective from the notion of complementarity
International Nuclear Information System (INIS)
Velazquez Abad, Luisberis
2012-01-01
Quantum mechanics and classical statistical mechanics are two physical theories that share several analogies in their mathematical apparatus and physical foundations. In particular, classical statistical mechanics is hallmarked by the complementarity between two descriptions that are unified in thermodynamics: (i) the parametrization of the system macrostate in terms of mechanical macroscopic observablesI=(I i ), and (ii) the dynamical description that explains the evolution of a system towards the thermodynamic equilibrium. As expected, such a complementarity is related to the uncertainty relations of classical statistical mechanics ΔI i Δη i ≥k. Here, k is the Boltzmann constant, η i =∂S(I|θ)/∂I i are the restituting generalized forces derived from the entropy S(I|θ) of a closed system, which is found in an equilibrium situation driven by certain control parameters θ=(θ α ). These arguments constitute the central ingredients of a reformulation of classical statistical mechanics from the notion of complementarity. In this new framework, Einstein postulate of classical fluctuation theory dp(I|θ)∼exp[S(I|θ)/k]dI appears as the correspondence principle between classical statistical mechanics and thermodynamics in the limit k→0, while the existence of uncertainty relations can be associated with the non-commuting character of certain operators. - Highlights: ► There exists a direct analogy between quantum and classical statistical mechanics. ► Statistical form of Le Chatellier principle leads to the uncertainty principle. ► Einstein postulate is simply the correspondence principle. ► Complementary quantities are associated with non-commuting operators.
The concept of equilibrium in organization theory
Gazendam, H.W.M.
1998-01-01
Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or
The concept of equilibrium in organization theory
Gazendam, Henk W.M.
1997-01-01
Many organization theories consist of an interpretation frame and an idea about the ideal equilibrium state. This article explains how the equilibrium concept is used in four organization theories: the theories of Fayol, Mintzberg, Morgan, and Volberda. Equilibrium can be defined as balance, fit or
Quantum Statistical Mechanics, L-Series and Anabelian Geometry I: Partition Functions
Marcolli, Matilde; Cornelissen, Gunther
2014-01-01
The zeta function of a number field can be interpreted as the partition function of an associated quantum statistical mechanical (QSM) system, built from abelian class field theory. We introduce a general notion of isomorphism of QSM-systems and prove that it preserves (extremal) KMS equilibrium
Dannhauser, Walter
1980-01-01
Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)
Directory of Open Access Journals (Sweden)
Dandara de Oliveira Ramos
Full Text Available Abstract: This study assessed the consistency of self-reports of risk behavior (overall and within four specific domains: alcohol use, tobacco use, drug use, and sexual activity in two editions of the Brazilian National School Based Survey of Adolescent Health (PeNSE: 2009 and 2012. The overall proportion of cases with at least one inconsistent response in the two editions was 11.7% (2.7% on the alcohol items, 2.1% for drug use, 4.3% for cigarette use, 3% for sexual activity and 22.7% (12.8% on alcohol items, 2.5% for drug use, 4.3% for cigarette use, 4.1% for sexual activity, respectively. Such inconsistency was more prevalent among males, delayed students, those who reported having experimented with drugs, and those who did not have a cellphone. Because inconsistent responses were more prevalent among the students who claimed to have engaged in risky activities, removing inconsistent responders affected the estimated prevalence of all risk behaviors in both editions of the survey. This study supports the importance of performing consistency checks of self-report surveys, following the growing body of literature on this topic.
Spontaneity and Equilibrium: Why "?G Equilibrium" Are Incorrect
Raff, Lionel M.
2014-01-01
The fundamental criteria for chemical reactions to be spontaneous in a given direction are generally incorrectly stated as ?G chemistry textbooks and even in some more advanced texts. Similarly, the criteria for equilibrium are also misstated as being ?G = 0 or ?A = 0. Following a brief review of the…
Equilibrium shoreface profiles
DEFF Research Database (Denmark)
Aagaard, Troels; Hughes, Michael G
2017-01-01
Large-scale coastal behaviour models use the shoreface profile of equilibrium as a fundamental morphological unit that is translated in space to simulate coastal response to, for example, sea level oscillations and variability in sediment supply. Despite a longstanding focus on the shoreface...... profile and its relevance to predicting coastal response to changing environmental conditions, the processes and dynamics involved in shoreface equilibrium are still not fully understood. Here, we apply a process-based empirical sediment transport model, combined with morphodynamic principles to provide......; there is no tuning or calibration and computation times are short. It is therefore easily implemented with repeated iterations to manage uncertainty....
Fundamental functions in equilibrium thermodynamics
Horst, H.J. ter
In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using
46 CFR 42.20-12 - Conditions of equilibrium.
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Conditions of equilibrium. 42.20-12 Section 42.20-12... BY SEA Freeboards § 42.20-12 Conditions of equilibrium. The following conditions of equilibrium are... stability. Through an angle of 20 degrees beyond its position of equilibrium, the vessel must meet the...
Local Equilibrium and Retardation Revisited.
Hansen, Scott K; Vesselinov, Velimir V
2018-01-01
In modeling solute transport with mobile-immobile mass transfer (MIMT), it is common to use an advection-dispersion equation (ADE) with a retardation factor, or retarded ADE. This is commonly referred to as making the local equilibrium assumption (LEA). Assuming local equilibrium, Eulerian textbook treatments derive the retarded ADE, ostensibly exactly. However, other authors have presented rigorous mathematical derivations of the dispersive effect of MIMT, applicable even in the case of arbitrarily fast mass transfer. We resolve the apparent contradiction between these seemingly exact derivations by adopting a Lagrangian point of view. We show that local equilibrium constrains the expected time immobile, whereas the retarded ADE actually embeds a stronger, nonphysical, constraint: that all particles spend the same amount of every time increment immobile. Eulerian derivations of the retarded ADE thus silently commit the gambler's fallacy, leading them to ignore dispersion due to mass transfer that is correctly modeled by other approaches. We then present a particle tracking simulation illustrating how poor an approximation the retarded ADE may be, even when mobile and immobile plumes are continually near local equilibrium. We note that classic "LEA" (actually, retarded ADE validity) criteria test for insignificance of MIMT-driven dispersion relative to hydrodynamic dispersion, rather than for local equilibrium. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Equilibrium and muscle flexibility in elderly people subjected to physiotherapeutic intervention
Directory of Open Access Journals (Sweden)
Mariane Fernandes Ribeiro
2016-09-01
Full Text Available To evaluate the equilibrium and flexibility of elderly people submitted to a training program involving physical therapy exercises. Six elderly people were selected, average age 69.66 years. Wells’s Bench and the Functional Reach Test (FRT plus Timed Up and Go Test (TUG were employed respectively to assess muscle flexibility and balance analysis. Tests were performed before and after the exercise program which consisted of thirty-five 50 min physical therapy group sessions, twice a week, with stretching exercises, gait training, active exercises, postural correction exercises and breathing exercises. Statistical analysis was done with Sigma-Stat® 3.5. Assessments occurred before and after sessions, and the final test was undertaken after 35 sessions. There was a statistically significant increase in the flexibility of the posterior muscle chain. In the TUG test, the group achieved a shorter time after treatment, with statistical significance between tests. There was a statistically significant increase in the average FRT after the sessions. Current study showed better results in the execution of tests evaluated after the program of physiotherapy activities, contributing towards the improvement of muscle flexibility and balance of elderly people.
Teaching Chemical Equilibrium with the Jigsaw Technique
Doymus, Kemal
2008-03-01
This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students’ understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes was randomly assigned as the non-jigsaw group (control) and other as the jigsaw group (cooperative). Students participating in the jigsaw group were divided into four “home groups” since the topic chemical equilibrium is divided into four subtopics (Modules A, B, C and D). Each of these home groups contained four students. The groups were as follows: (1) Home Group A (HGA), representin g the equilibrium state and quantitative aspects of equilibrium (Module A), (2) Home Group B (HGB), representing the equilibrium constant and relationships involving equilibrium constants (Module B), (3) Home Group C (HGC), representing Altering Equilibrium Conditions: Le Chatelier’s principle (Module C), and (4) Home Group D (HGD), representing calculations with equilibrium constants (Module D). The home groups then broke apart, like pieces of a jigsaw puzzle, and the students moved into jigsaw groups consisting of members from the other home groups who were assigned the same portion of the material. The jigsaw groups were then in charge of teaching their specific subtopic to the rest of the students in their learning group. The main data collection tool was a Chemical Equilibrium Achievement Test (CEAT), which was applied to both the jigsaw and non-jigsaw groups The results indicated that the jigsaw group was more successful than the non-jigsaw group (individual learning method).
Directory of Open Access Journals (Sweden)
Mario Vianna Vettore
2012-01-01
Full Text Available Investigou-se a associação entre comportamentos relacionados à saúde bucal e geral e condição socioeconômica, e a relação entre comportamentos relacionados à saúde e escovação dentária em adolescentes. A base de dados utilizada foi da Pesquisa Nacional de Saúde do Escolar (PeNSE, um estudo transversal de base populacional realizado em 2009 com alunos das 27 capitais brasileiras. Informações sociodemográficas e comportamentos relacionados à saúde foram coletados. O estudo envolveu 49.189 adolescentes (47,5% do sexo masculino, sendo a maioria com 14 anos de idade e de escola pública. A frequência de escovação dentária assim como outros comportamentos relacionados à saúde se associou com a condição socioeconômica de maneira distinta entre sexos. Foram observadas associações entre hábitos relacionados à saúde e a frequência de escovação dentária em ambos os sexos, porém com variações conforme a condição socioeconômica. O planejamento de intervenções para promoção da saúde de adolescentes deve levar em conta suas características individuais, o contexto familiar e social.This study investigated the association between oral and general health-related behaviors and socioeconomic status, and the relationship between health-related behaviors and toothbrushing among adolescents. The database used here was the National School-Based Health Survey (PeNSE, a cross-sectional population-based study in 2009 with students from 27 Brazilian State capitals. Socio-demographic and health-related behavior data were collected. The survey included 49,189 adolescents (47.5% males, the majority of whom were 14 years of age and enrolled in public schools. The associations between toothbrushing frequency and other health-related behaviors and socioeconomic status varied between boys and girls. Associations were observed between health-related habits and toothbrushing frequency in both sexes, but with variations according to
Ismail, M.S.
2014-01-01
We introduce a new concept which extends von Neumann and Morgenstern's maximin strategy solution by incorporating `individual rationality' of the players. Maximin equilibrium, extending Nash's value approach, is based on the evaluation of the strategic uncertainty of the whole game. We show that
Directory of Open Access Journals (Sweden)
Felix Henrique Paim Kessler
2007-06-01
Full Text Available OBJECTIVE: Studies have shown signs of brain damage caused by different mechanisms in cocaine users. The serum neuron specific enolase and S100B protein are considered specific biochemical markers of neuronal and glial cell injury. This study aimed at comparing blood levels of S100B and NSE in chronic cocaine users and in volunteers who did not use cocaine or other illicit drugs. METHOD: Twenty subjects dependent on cocaine but not on alcohol or marijuana, and 20 non-substance using controls were recruited. Subjects were selected by consecutive and non-probabilistic sampling. Neuron specific enolase and S100B levels were determined by luminescence assay. RESULTS: Cocaine users had significantly higher scores than controls in all psychiatric dimensions of the SCL-90 and had cognitive deficits in the subtest cubes of WAIS and the word span. Mean serum S100B level was 0.09 ± 0.04 µg/l among cocaine users and 0.08 ± 0.04 µg/l among controls. Mean serum neuron specific enolase level was 9.7 ± 3.5 ng/l among cocaine users and 8.3 ± 2.6 ng/l among controls. CONCLUSIONS: In this first study using these specific brain damage markers in cocaine users, serum levels of S100B and neuron specific enolase were not statistically different between cocaine dependent subjects and controls.OBJETIVO: Estudos têm demonstrado sinais de lesão cerebral causadas por diferentes mecanismos em usuários de cocaína. A enolase sérica neurônio-específica e a proteína S100B são consideradas marcadores bioquímicos específicos de lesão neuronal e glial. Este estudo objetivou comparar os níveis sangüíneos de S100B e enolase sérica neurônio-específica em usuários crônicos de cocaína e em voluntários que não usam cocaína ou outras drogas ilícitas. MÉTODO: Vinte sujeitos dependentes de cocaína, mas não dependentes de álcool, maconha ou outra droga, e 20 sujeitos controles não usuários de drogas foram recrutados. Os sujeitos foram selecionados por
Collapse and equilibrium of rotating, adiabatic clouds
International Nuclear Information System (INIS)
Boss, A.P.
1980-01-01
A numerical hydrodynamics computer code has been used to follow the collapse and establishment of equilibrium of adiabatic gas clouds restricted to axial symmetry. The clouds are initially uniform in density and rotation, with adiabatic exponents γ=5/3 and 7/5. The numerical technique allows, for the first time, a direct comparison to be made between the dynamic collapse and approach to equilibrium of unconstrained clouds on the one hand, and the results for incompressible, uniformly rotating equilibrium clouds, and the equilibrium structures of differentially rotating polytropes, on the other hand
Directory of Open Access Journals (Sweden)
Florentina A. Cziple
2006-10-01
Full Text Available The paper forwards the conclusions of a survey performed on a mathematical model of the phase equilibrium from the ternary system Al-Cu-Si. The author presents the calculus of the statistic equation of the liquidus surface model from this diagram, the plotting and statistical-mathematical interpretation of the results obtained.
Mazarico, E; Llurba, E; Cabero, L; Sánchez, O; Valls, A; Martín-Ancel, A; Cardenas, D; Gómez Roig, M D
2018-04-18
The aim of this study was to evaluate the relationships between brain injury biomarkers in intrauterine growth-restricted (IUGR) infants (S100B and neuron-specific enolase (NSE)) and neurodevelopment at 2 years of age. This prospective case-control study was a cooperative effort among Spanish Maternal and Child Health Network (Retic SAMID) hospitals. At inclusion, biometry for estimated fetal weight and feto-placental Doppler variables were measured for each infant. Maternal venous blood and fetal umbilical arterial blood samples were collected at the time of delivery and neural injury markers S100B and NSE concentrations were measured. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales of Infant and Toddler Development, third edition (Bayley-III). Fifty six pregnancies were included. Thirty-one infants were classified as IUGR and 25 as non-IUGR. Neurodevelopmental evaluation at 2 years of age indicated that there were no between-group differences for any of the tests. For all patients in both groups, we found statistically significant inverse relationships between the concentrations of NSE in the cord blood and the results of the cognitive test (r = -271, p = .042), fine motor subtest (r = -280, p = .036), and social-emotional test (r = -349, p = .015). We also found statistically significant differences between the concentrations of S100B in the cord blood and the results of the cognitive test (r = -306, p = .022) and expressive communication subtest (r = -304, p = .023). For the IUGR group, we found a significant inverse relationship between the concentrations of S100B in the maternal serum and the results of adaptive behavior test (p < .05). In the non-IUGR group, we found statistically significant inverse relationships between the concentration of NSE in the cord blood and the results of the fine motor subtest (r = -446, p = .025) and social-emotional test (r = -489, p = .021
Non-Equilibrium Thermodynamics of Self-Replicating Protocells
DEFF Research Database (Denmark)
Fellermann, Harold; Corominas-Murtra, Bernat; Hansen, Per Lyngs
2018-01-01
We provide a non-equilibrium thermodynamic description of the life-cycle of a droplet based, chemically feasible, system of protocells. By coupling the protocells metabolic kinetics with its thermodynamics, we demonstrate how the system can be driven out of equilibrium to ensure protocell growth...... and replication. This coupling allows us to derive the equations of evolution and to rigorously demonstrate how growth and replication life-cycle can be understood as a non-equilibrium thermodynamic cycle. The process does not appeal to genetic information or inheritance, and is based only on non......-equilibrium physics considerations. Our non-equilibrium thermodynamic description of simple, yet realistic, processes of protocell growth and replication, represents an advance in our physical understanding of a central biological phenomenon both in connection to the origin of life and for modern biology....
Approach to equilibrium in high energy heavy ion collisions
International Nuclear Information System (INIS)
Epelbaum, Thomas
2014-01-01
This thesis deals with the theory of the early stages of a heavy ion collision. Just after such a collision, the matter produced - called the Quark-Gluon-Plasma (QGP) - has been shown to be far out of thermal equilibrium. One would like to know whether the QGP thermalizes, and what is the typical time scale for this. Proving that the QGP thermalizes would also justify from first principles the hydrodynamical treatment of the subsequent evolution of a heavy ion collision. After having recalled some essential theoretical concepts, the manuscript addresses these questions in two different theories. In a first part, we study a scalar field theory. Starting from an out of equilibrium initial condition, one studies the approach to equilibrium in a fixed volume or in a one-dimensional expanding system. In both cases, clear signs of thermalization are obtained: an equation of state is formed, the pressure tensor becomes isotropic and the occupation number approaches a classical thermal distribution. These results are obtained thanks to the classical statistical approximation (CSA), that includes contributions beyond the Leading Order perturbative calculation. In a second part, the Color Glass Condensate - a quantum chromodynamics (QCD) effective theory well suited to describe the early life of the QGP - is used to treat more realistically the approach to thermalization in heavy ion collisions. After having derived some analytical prerequisites for the application of the CSA, the numerical simulations performed with the Yang-Mills equations show evidences of an early onset of hydrodynamical behavior of the QGP: the system becomes isotropic on short time scales, while the shear viscosity over entropy ratio is very small, which is characteristic of a quasi perfect fluid. (author) [fr
Incorporation of quantum statistical features in molecular dynamics
International Nuclear Information System (INIS)
Ohnishi, Akira; Randrup, J.
1995-01-01
We formulate a method for incorporating quantum fluctuations into molecular-dynamics simulations of many-body systems, such as those employed for energetic nuclear collision processes. Based on Fermi's Golden Rule, we allow spontaneous transitions to occur between the wave packets which are not energy eigenstates. The ensuing diffusive evolution in the space of the wave packet parameters exhibits appealing physical properties, including relaxation towards quantum-statistical equilibrium. (author)
Intermittent many-body dynamics at equilibrium
Danieli, C.; Campbell, D. K.; Flach, S.
2017-06-01
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body system. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. Long excursions arise from sticky dynamics close to q -breathers localized in normal mode space. Measuring the exponent allows one to predict the transition into nonergodic dynamics. We generalize our method to Klein-Gordon lattices where the sticky dynamics is due to discrete breathers localized in real space.
Equilibrium calculations, ch. 6
International Nuclear Information System (INIS)
Deursen, A.P.J. van
1976-01-01
A calculation is presented of dimer intensities obtained in supersonic expansions. There are two possible limiting considerations; the dimers observed are already present in the source, in thermodynamic equilibrium, and are accelerated in the expansion. Destruction during acceleration is neglected, as are processes leading to newly formed dimers. On the other hand one can apply a kinetic approach, where formation and destruction processes are followed throughout the expansion. The difficulty of this approach stems from the fact that the density, temperature and rate constants have to be known at all distances from the nozzle. The simple point of view has been adopted and the measured dimer intensities are compared with the equilibrium concentration in the source. The comparison is performed under the assumption that the detection efficiency for dimers is twice the detection efficiency for monomers. The experimental evidence against the simple point of view that the dimers of the onset region are formed in the source already, under equilibrium conditions, is discussed. (Auth.)
International Nuclear Information System (INIS)
Jiang, Shixiao W; Lu, Haihao; Zhou, Douglas; Cai, David
2016-01-01
Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β -Fermi–Pasta–Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems. (paper)
Non-equilibrium synergistic effects in atmospheric pressure plasmas.
Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken
2018-03-19
Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.
African Journals Online (AJOL)
context of antimicrobial therapy in malnutrition. Dialysis has in the past presented technical problems, being complicated and time-consuming. A new dialysis system based on the equilibrium technique has now become available, and it is the principles and practical application of this apparatus (Kontron Diapack; Kontron.
The Donnan equilibrium: I. On the thermodynamic foundation of the Donnan equation of state
International Nuclear Information System (INIS)
Philipse, A; Vrij, A
2011-01-01
The thermodynamic equilibrium between charged colloids and an electrolyte reservoir is named after Frederic Donnan who first published on it one century ago (Donnan 1911 Z. Electrochem. 17 572). One of the intriguing features of the Donnan equilibrium is the ensuing osmotic equation of state which is a nonlinear one, even when both colloids and ions obey Van 't Hoff's ideal osmotic pressure law. The Donnan equation of state, nevertheless, is internally consistent; we demonstrate it to be a rigorous consequence of the phenomenological thermodynamics of a neutral bulk suspension equilibrating with an infinite salt reservoir. Our proof is based on an exact thermodynamic relation between osmotic pressure and salt adsorption which, when applied to ideal ions, does indeed entail the Donnan equation of state. Our derivation also shows that, contrary to what is often assumed, the Donnan equilibrium does not require ideality of the colloids: the Donnan model merely evaluates the osmotic pressure of homogeneously distributed ions, in excess of the pressure exerted by an arbitrary reference fluid of uncharged colloids. We also conclude that results from the phenomenological Donnan model coincide with predictions from statistical thermodynamics in the limit of weakly charged, point-like colloids.
Comparative evaluation of kinetic, equilibrium and semi-equilibrium models for biomass gasification
Energy Technology Data Exchange (ETDEWEB)
Buragohain, Buljit [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Chakma, Sankar; Kumar, Peeush [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Mahanta, Pinakeswar [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Moholkar, Vijayanand S. [Center for Energy, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India); Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati – 781 039, Assam (India)
2013-07-01
Modeling of biomass gasification has been an active area of research for past two decades. In the published literature, three approaches have been adopted for the modeling of this process, viz. thermodynamic equilibrium, semi-equilibrium and kinetic. In this paper, we have attempted to present a comparative assessment of these three types of models for predicting outcome of the gasification process in a circulating fluidized bed gasifier. Two model biomass, viz. rice husk and wood particles, have been chosen for analysis, with gasification medium being air. Although the trends in molar composition, net yield and LHV of the producer gas predicted by three models are in concurrence, significant quantitative difference is seen in the results. Due to rather slow kinetics of char gasification and tar oxidation, carbon conversion achieved in single pass of biomass through the gasifier, calculated using kinetic model, is quite low, which adversely affects the yield and LHV of the producer gas. Although equilibrium and semi-equilibrium models reveal relative insensitivity of producer gas characteristics towards temperature, the kinetic model shows significant effect of temperature on LHV of the gas at low air ratios. Kinetic models also reveal volume of the gasifier to be an insignificant parameter, as the net yield and LHV of the gas resulting from 6 m and 10 m riser is same. On a whole, the analysis presented in this paper indicates that thermodynamic models are useful tools for quantitative assessment of the gasification process, while kinetic models provide physically more realistic picture.
Equilibrium of rotating and nonrotating plasmas in tokamaks
International Nuclear Information System (INIS)
Pustovitov, V.D.
2003-01-01
One studied plasma equilibrium in tokamak in case of toroidal rotation. Rotation associated centrifugal force is shown to result in decrease of equilibrium limit as to β. One analyzes unlike opinion and considers its supports. It is shown that in possible case of local improvement of equilibrium conditions associated with special selection of profile of plasma rotation rate, the combined integral effect turns to be negative one. But in case of typical conditions, decrease of equilibrium β caused by plasma rotation is negligible one and one may ignore effect of plasma rotation on its equilibrium for hot plasma [ru
Pavlos, George; Malandraki, Olga; Pavlos, Evgenios; Iliopoulos, Aggelos; Karakatsanis, Leonidas
2017-04-01
As the solar plasma lives far from equilibrium it is an excellent laboratory for testing non-equilibrium statistical mechanics. In this study, we present the highlights of Tsallis non-extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at solar wind phenomena and magnetosphere. In this study we present some new and significant results concerning the dynamics of interplanetary coronal mass ejections (ICMEs) observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of SEPs time series observed at the interplanetary space and magnetic field time series of the ICME observed at the Earth resulting from the solar eruptive activity on March 7, 2012 at the Sun. For the magnetic field, we used a multi-spacecraft approach based on data experiments from ACE, CLUSTER 4, THEMIS-E and THEMIS-C spacecraft. For the data analysis different time periods were considered, sorted as "quiet", "shock" and "aftershock", while different space domains such as the Interplanetary space (near Earth at L1 and upstream of the Earth's bowshock), the Earth's magnetosheath and magnetotail, were also taken into account. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the SEPs profile in time, and magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states. So far, Tsallis non-extensive statistical theory and Tsallis extension of the Boltzmann-Gibbs entropy principle to the q-entropy entropy principle (Tsallis, 1988, 2009) reveal strong universality character concerning non-equilibrium dynamics (Pavlos et al. 2012a,b, 2014, 2015, 2016; Karakatsanis et al. 2013). Tsallis q
Equilibrium 𝛽-limits in classical stellarators
Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.
2017-12-01
A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.
Dissipation and the relaxation to equilibrium
International Nuclear Information System (INIS)
Evans, Denis J; Williams, Stephen R; Searles, Debra J
2009-01-01
Using the recently derived dissipation theorem and a corollary of the transient fluctuation theorem (TFT), namely the second-law inequality, we derive the unique time independent, equilibrium phase space distribution function for an ergodic Hamiltonian system in contact with a remote heat bath. We prove under very general conditions that any deviation from this equilibrium distribution breaks the time independence of the distribution. Provided temporal correlations decay, we show that any nonequilibrium distribution that is an even function of the momenta eventually relaxes (not necessarily monotonically) to the equilibrium distribution. Finally we prove that the negative logarithm of the microscopic partition function is equal to the thermodynamic Helmholtz free energy divided by the thermodynamic temperature and Boltzmann's constant. Our results complement and extend the findings of modern ergodic theory and show the importance of dissipation in the process of relaxation towards equilibrium
Equilibrium-torus bifurcation in nonsmooth systems
DEFF Research Database (Denmark)
Zhusubahyev, Z.T.; Mosekilde, Erik
2008-01-01
Considering a set of two coupled nonautonomous differential equations with discontinuous right-hand sides describing the behavior of a DC/DC power converter, we discuss a border-collision bifurcation that can lead to the birth of a two-dimensional invariant torus from a stable node equilibrium...... point. We obtain the chart of dynamic modes and show that there is a region of parameter space in which the system has a single stable node equilibrium point. Under variation of the parameters, this equilibrium may disappear as it collides with a discontinuity boundary between two smooth regions...... in the phase space. The disappearance of the equilibrium point is accompanied by the soft appearance of an unstable focus period-1 orbit surrounded by a resonant or ergodic torus. Detailed numerical calculations are supported by a theoretical investigation of the normal form map that represents the piecewise...
Introductory statistical mechanics for electron storage rings
International Nuclear Information System (INIS)
Jowett, J.M.
1986-07-01
These lectures introduce the beam dynamics of electron-positron storage rings with particular emphasis on the effects due to synchrotron radiation. They differ from most other introductions in their systematic use of the physical principles and mathematical techniques of the non-equilibrium statistical mechanics of fluctuating dynamical systems. A self-contained exposition of the necessary topics from this field is included. Throughout the development, a Hamiltonian description of the effects of the externally applied fields is maintained in order to preserve the links with other lectures on beam dynamics and to show clearly the extent to which electron dynamics in non-Hamiltonian. The statistical mechanical framework is extended to a discussion of the conceptual foundations of the treatment of collective effects through the Vlasov equation
Non-equilibrium quantum heat machines
Alicki, Robert; Gelbwaser-Klimovsky, David
2015-11-01
Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.
Non-equilibrium quantum heat machines
International Nuclear Information System (INIS)
Alicki, Robert; Gelbwaser-Klimovsky, David
2015-01-01
Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound. (paper)
The applications of Complexity Theory and Tsallis Non-extensive Statistics at Solar Plasma Dynamics
Pavlos, George
2015-04-01
As the solar plasma lives far from equilibrium it is an excellent laboratory for testing complexity theory and non-equilibrium statistical mechanics. In this study, we present the highlights of complexity theory and Tsallis non extensive statistical mechanics as concerns their applications at solar plasma dynamics, especially at sunspot, solar flare and solar wind phenomena. Generally, when a physical system is driven far from equilibrium states some novel characteristics can be observed related to the nonlinear character of dynamics. Generally, the nonlinearity in space plasma dynamics can generate intermittent turbulence with the typical characteristics of the anomalous diffusion process and strange topologies of stochastic space plasma fields (velocity and magnetic fields) caused by the strange dynamics and strange kinetics (Zaslavsky, 2002). In addition, according to Zelenyi and Milovanov (2004) the complex character of the space plasma system includes the existence of non-equilibrium (quasi)-stationary states (NESS) having the topology of a percolating fractal set. The stabilization of a system near the NESS is perceived as a transition into a turbulent state determined by self-organization processes. The long-range correlation effects manifest themselves as a strange non-Gaussian behavior of kinetic processes near the NESS plasma state. The complex character of space plasma can also be described by the non-extensive statistical thermodynamics pioneered by Tsallis, which offers a consistent and effective theoretical framework, based on a generalization of Boltzmann - Gibbs (BG) entropy, to describe far from equilibrium nonlinear complex dynamics (Tsallis, 2009). In a series of recent papers, the hypothesis of Tsallis non-extensive statistics in magnetosphere, sunspot dynamics, solar flares, solar wind and space plasma in general, was tested and verified (Karakatsanis et al., 2013; Pavlos et al., 2014; 2015). Our study includes the analysis of solar plasma time
Mann, Stephen
2009-10-01
Understanding how chemically derived processes control the construction and organization of matter across extended and multiple length scales is of growing interest in many areas of materials research. Here we review present equilibrium and non-equilibrium self-assembly approaches to the synthetic construction of discrete hybrid (inorganic-organic) nano-objects and higher-level nanostructured networks. We examine a range of synthetic modalities under equilibrium conditions that give rise to integrative self-assembly (supramolecular wrapping, nanoscale incarceration and nanostructure templating) or higher-order self-assembly (programmed/directed aggregation). We contrast these strategies with processes of transformative self-assembly that use self-organizing media, reaction-diffusion systems and coupled mesophases to produce higher-level hybrid structures under non-equilibrium conditions. Key elements of the constructional codes associated with these processes are identified with regard to existing theoretical knowledge, and presented as a heuristic guideline for the rational design of hybrid nano-objects and nanomaterials.
14 CFR 67.205 - Ear, nose, throat, and equilibrium.
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.205..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class airman..., vertigo or a disturbance of equilibrium. ...
Numerical method for partial equilibrium flow
International Nuclear Information System (INIS)
Ramshaw, J.D.; Cloutman, L.D.; Los Alamos, New Mexico 87545)
1981-01-01
A numerical method is presented for chemically reactive fluid flow in which equilibrium and nonequilibrium reactions occur simultaneously. The equilibrium constraints on the species concentrations are established by a quadratic iterative procedure. If the equilibrium reactions are uncoupled and of second or lower order, the procedure converges in a single step. In general, convergence is most rapid when the reactions are weakly coupled. This can frequently be achieved by a judicious choice of the independent reactions. In typical transient calculations, satisfactory accuracy has been achieved with about five iterations per time step
International Nuclear Information System (INIS)
Nfon, Erick; Cousins, Ian T.
2006-01-01
Multi-year monitoring data for PCBs in abiotic media and biota collected from the Baltic region were compiled into a database and analyzed using the equilibrium lipid partitioning (ELP) approach to study temporal trends as well as to investigate food web biomagnification. Statistically significant reductions in ELP concentrations between 1987 and 2001 were observed in guillemots, air, and some fish species and a general, but not always statistically significant decline in concentrations was observed throughout the Baltic ecosystem. Estimated clearance half-lives ranged from 2.7-10.7 years. The database contained concentrations for a range of different Baltic species, which comprise a well-known Baltic food web. It was possible to derive the trophic position of the species in this food web and relate them to ELP concentrations. A significant positive correlation between ELP concentrations and trophic position was obtained. Estimated food web magnification factors ranged between 1.9 and 5.1 for selected congeners. - The equilibrium lipid partitioning approach is applied to a large Baltic database of PCB concentrations in abiotic and biota media to investigate time trends and biomagnification
The r-Java 2.0 code: nuclear physics
Kostka, M.; Koning, N.; Shand, Z.; Ouyed, R.; Jaikumar, P.
2014-08-01
Aims: We present r-Java 2.0, a nucleosynthesis code for open use that performs r-process calculations, along with a suite of other analysis tools. Methods: Equipped with a straightforward graphical user interface, r-Java 2.0 is capable of simulating nuclear statistical equilibrium (NSE), calculating r-process abundances for a wide range of input parameters and astrophysical environments, computing the mass fragmentation from neutron-induced fission and studying individual nucleosynthesis processes. Results: In this paper we discuss enhancements to this version of r-Java, especially the ability to solve the full reaction network. The sophisticated fission methodology incorporated in r-Java 2.0 that includes three fission channels (beta-delayed, neutron-induced, and spontaneous fission), along with computation of the mass fragmentation, is compared to the upper limit on mass fission approximation. The effects of including beta-delayed neutron emission on r-process yield is studied. The role of Coulomb interactions in NSE abundances is shown to be significant, supporting previous findings. A comparative analysis was undertaken during the development of r-Java 2.0 whereby we reproduced the results found in the literature from three other r-process codes. This code is capable of simulating the physical environment of the high-entropy wind around a proto-neutron star, the ejecta from a neutron star merger, or the relativistic ejecta from a quark nova. Likewise the users of r-Java 2.0 are given the freedom to define a custom environment. This software provides a platform for comparing proposed r-process sites.
Disturbances in equilibrium function after major earthquake.
Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi
2012-01-01
Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.
Equilibrium and non-equilibrium metal-ceramic interfaces
International Nuclear Information System (INIS)
Gao, Y.; Merkle, K.L.
1992-01-01
Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO 2 ) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO 2 system, ZrO 2 precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO 2 phase. It appears that formation of the cubic ZrO 2 is facilitated by alignment with the Au matrix. Most of the ZrO 2 precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO 2 interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent or semi-coherent. This paper reports that this indicates that there may be a relatively strong bond between MgO and Au
Mathematical models and equilibrium in irreversible microeconomics
Directory of Open Access Journals (Sweden)
Anatoly M. Tsirlin
2010-07-01
Full Text Available A set of equilibrium states in a system consisting of economic agents, economic reservoirs, and firms is considered. Methods of irreversible microeconomics are used. We show that direct sale/purchase leads to an equilibrium state which depends upon the coefficients of supply/demand functions. To reach the unique equilibrium state it is necessary to add either monetary exchange or an intermediate firm.
Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.
Vetterick, Gregory A; Gruber, Jacob; Suri, Pranav K; Baldwin, Jon K; Kirk, Marquis A; Baldo, Pete; Wang, Yong Q; Misra, Amit; Tucker, Garritt J; Taheri, Mitra L
2017-09-25
Many methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation. These results were coupled with atomistic simulations to better reveal the underlying processes occurring on timescales too short to capture using in situ TEM. After irradiation, NC iron with non-equilibrium GBs contains both a smaller number density of defect clusters and a smaller average defect cluster size. Simulations showed that excess free volume contribute to a decreased survival rate of point defects in cascades occurring adjacent to the GB and that these boundaries undergo less dramatic changes in structure upon irradiation. These results suggest that non-equilibrium GBs act as more efficient sinks for defects and could be utilized to create more radiation tolerant materials in future.
Do intertidal flats ever reach equilibrium?
Maan, D.C.; van Prooijen, B.C.; Wang, Z.B.; de Vriend, H.J.
2015-01-01
Various studies have identified a strong relation between the hydrodynamic forces and the equilibrium profile for intertidal flats. A thorough understanding of the interplay between the hydrodynamic forces and the morphology, however, concerns more than the equilibrium state alone. We study the
Thermal and statistical properties of nuclei and nuclear systems
International Nuclear Information System (INIS)
Moretto, L.G.; Wozniak, G.J.
1989-07-01
The term statistical decay, statistical or thermodynamic equilibrium, thermalization, temperature, etc., have been used in nuclear physics since the introduction of the compound nucleus (CN) concept, and they are still used, perhaps even more frequently, in the context of intermediate- and high-energy heavy-ion reactions. Unfortunately, the increased popularity of these terms has not made them any clearer, and more often than not one encounters sweeping statements about the alleged statisticity of a nuclear process where the ''statistical'' connotation is a more apt description of the state of the speaker's mind than of the nuclear reaction. It is our goal, in this short set of lectures, to set at least some ideas straight on this broad and beautiful subject, on the one hand by clarifying some fundamental concepts, on the other by presenting some interesting applications to actual physical cases. 74 refs., 38 figs
Simulations of NMR pulse sequences during equilibrium and non-equilibrium chemical exchange
International Nuclear Information System (INIS)
Helgstrand, Magnus; Haerd, Torleif; Allard, Peter
2000-01-01
The McConnell equations combine the differential equations for a simple two-state chemical exchange process with the Bloch differential equations for a classical description of the behavior of nuclear spins in a magnetic field. This equation system provides a useful starting point for the analysis of slow, intermediate and fast chemical exchange studied using a variety of NMR experiments. The McConnell equations are in the mathematical form of an inhomogeneous system of first-order differential equations. Here we rewrite the McConnell equations in a homogeneous form in order to facilitate fast and simple numerical calculation of the solution to the equation system. The McConnell equations can only treat equilibrium chemical exchange. We therefore also present a homogeneous equation system that can handle both equilibrium and non-equilibrium chemical processes correctly, as long as the kinetics is of first-order. Finally, the same method of rewriting the inhomogeneous form of the McConnell equations into a homogeneous form is applied to a quantum mechanical treatment of a spin system in chemical exchange. In order to illustrate the homogeneous McConnell equations, we have simulated pulse sequences useful for measuring exchange rates in slow, intermediate and fast chemical exchange processes. A stopped-flow NMR experiment was simulated using the equations for non-equilibrium chemical exchange. The quantum mechanical treatment was tested by the simulation of a sensitivity enhanced 15 N-HSQC with pulsed field gradients during slow chemical exchange and by the simulation of the transfer efficiency of a two-dimensional heteronuclear cross-polarization based experiment as a function of both chemical shift difference and exchange rate constants
14 CFR 67.105 - Ear, nose, throat, and equilibrium.
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.105..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class airman... may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium. ...
International Nuclear Information System (INIS)
Zolnierczuk, P.A.; Ohl, M.; Holderer, O.; Monkenbusch, M.
2015-01-01
Neutron spin echo (NSE) method at a pulsed neutron source presents new challenges to the data reduction and analysis as compared to the instruments installed at reactor sources. The main advantage of the pulsed source NSE is the ability to resolve the neutron wavelength and collect neutrons over a wider bandwidth. This allows us to more precisely determine the symmetry phase and measure the data for several Q-values at the same time. Based on the experience gained at the SNS NSE - the first, and to date the only one, NSE instrument installed at a pulsed spallation source, we propose a novel and unified approach to the NSE data processing called DrSPINE. The goals of the DrSPINE project are: -) exploit better symmetry phase determination due to the broader bandwidth at a pulsed source; -) take advantage of larger Q coverage for TOF instruments; -) use objective statistical criteria to get the echo fits right; -) provide robust reduction with report generation; -) incorporate absolute instrument calibration; and -) allow for background subtraction. The software must be able to read the data from various instruments, perform data integrity, consistency and compatibility checks and combine the data from compatible sets, partial scans, etc. We chose to provide a console-based interface with the ability to process macros (scripts) for batch evaluation. And last and not the least, a good software package has to provide adequate documentation. DrSPINE software is currently under development
van Damme, E.E.C.
2000-01-01
An outcome in a noncooperative game is said to be self-enforcing, or a strategic equilibrium, if, whenever it is recommended to the players, no player has an incentive to deviate from it.This paper gives an overview of the concepts that have been proposed as formalizations of this requirement and of
Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.
Tian, Huanhuan; Zhang, Li; Wang, Moran
2015-08-15
Understanding ionic transport in nanochannels has attracted broad attention from various areas in energy and environmental fields. In most pervious research, Donnan equilibrium has been applied widely to nanofluidic systems to obtain ionic concentration and electrical potential at channel-reservoir interfaces; however, as well known that Donnan equilibrium is derived from classical thermodynamic theories with equilibrium assumptions. Therefore the applicability of the Donnan equilibrium may be questionable when the transport at nanochannel-reservoir interface is strongly non-equilibrium. In this work, the Poisson-Nernst-Planck model for ion transport is numerically solved to obtain the exact distributions of ionic concentration and electrical potential. The numerical results are quantitatively compared with the Donnan equilibrium predictions. The applicability of Donnan equilibrium is therefore justified by changing channel length, reservoir ionic concentration, surface charge density and channel height. The results indicate that the Donnan equilibrium is not applicable for short nanochannels, large concentration difference and wide openings. A non-dimensional parameter, Q factor, is proposed to measure the non-equilibrium extent and the relation between Q and the working conditions is studied in detail. Copyright © 2015 Elsevier Inc. All rights reserved.
Aerospace Applications of Non-Equilibrium Plasma
Blankson, Isaiah M.
2016-01-01
Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).
Pre-equilibrium (exciton) model and the heavy-ion reactions with cluster emission
Betak, E
2015-01-01
We bring the possibility to include the cluster emission into the statistical pre-equilibrium (exciton) model enlarged for considering also the heavy ion collisions. At this moment, the calculations have been done without treatment of angular momentum variables, but all the approach can be straightforwardly applied to heavy-ion reactions with cluster emission including the angular momentum variables. The direct motivation of this paper is a possibility of producing the superdeformed nuclei, which are easier to be detected in heavy-ion reactions than in those induced by light projectiles (nucleons, deuterons, $\\alpha$-particles).
14 CFR 67.305 - Ear, nose, throat, and equilibrium.
2010-01-01
... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.305..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class airman... by, or that may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium. ...
Experimental determination of thermodynamic equilibrium in biocatalytic transamination
DEFF Research Database (Denmark)
Tufvesson, Pär; Jensen, Jacob Skibsted; Kroutil, Wolfgang
2012-01-01
The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones....... Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore...
The equilibrium response to doubling atmospheric CO2
International Nuclear Information System (INIS)
Mitchell, J.F.B.
1990-01-01
The equilibrium response of climate to increased atmospheric carbon dioxide as simulated by general circulation models is assessed. Changes that are physically plausible are summarized, along with an indication of the confidence attributable to those changes. The main areas of uncertainty are highlighted. They include: equilibrium experiments with mixed-layer oceans focusing on temperature, precipitation, and soil moisture; equilibrium studies with dynamical ocean-atmosphere models; results deduced from equilibrium CO 2 experiments; and priorities for future research to improve atmosphere models
Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.
2007-12-01
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due
Small angle neutron scattering (SANS) under non-equilibrium conditions
International Nuclear Information System (INIS)
Oberthur, R.C.
1984-01-01
The use of small angle neutron scattering (SANS) for the study of systems under non-equilibrium conditions is illustrated by three types of experiments in the field of polymer research: - the relaxation of a system from an initial non-equilibrium state towards equilibrium, - the cyclic or repetitive installation of a series of non-equilibrium states in a system, - the steady non-equilibrium state maintained by a constant dissipation of energy within the system. Characteristic times obtained in these experiments with SANS are compared with the times obtained from quasi-elastic neutron and light scattering, which yield information about the equilibrium dynamics of the system. The limits of SANS applied to non-equilibrium systems for the measurement of relaxation times at different length scales are shown and compared to the limits of quasielastic neutron and light scattering
Energy Technology Data Exchange (ETDEWEB)
Anon.
1984-12-15
From 3-6 September the First International Workshop on Local Equilibrium in Strong Interaction Physics took place in Bad-Honnef at the Physics Centre of the German Physical Society. A number of talks covered the experimental and theoretical investigation of the 'hotspots' effect, both in high energy particle physics and in intermediate energy nuclear physics.
Statistical Analysis of Hubble/WFC3 Transit Spectroscopy of Extrasolar Planets
Fu, Guangwei; Deming, Drake; Knutson, Heather; Madhusudhan, Nikku; Mandell, Avi; Fraine, Jonathan
2018-01-01
Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST/WFC3 transit spectra for 1.1-1.65 micron water vapor absorption, and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-Transmit code. We express the magnitude of the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.
Statistical Analysis of Hubble /WFC3 Transit Spectroscopy of Extrasolar Planets
Energy Technology Data Exchange (ETDEWEB)
Fu, Guangwei; Deming, Drake [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Knutson, Heather [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Madhusudhan, Nikku [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Mandell, Avi [Planetary Systems Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Fraine, Jonathan, E-mail: gfu@astro.umd.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2017-10-01
Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST /WFC3 transit spectra for 1.1–1.65 μ m water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude of the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.
Statistical Analysis of Hubble /WFC3 Transit Spectroscopy of Extrasolar Planets
International Nuclear Information System (INIS)
Fu, Guangwei; Deming, Drake; Knutson, Heather; Madhusudhan, Nikku; Mandell, Avi; Fraine, Jonathan
2017-01-01
Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST /WFC3 transit spectra for 1.1–1.65 μ m water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude of the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.
Equilibrium fluctuation relations for voltage coupling in membrane proteins.
Kim, Ilsoo; Warshel, Arieh
2015-11-01
A general theoretical framework is developed to account for the effects of an external potential on the energetics of membrane proteins. The framework is based on the free energy relation between two (forward/backward) probability densities, which was recently generalized to non-equilibrium processes, culminating in the work-fluctuation theorem. Starting from the probability densities of the conformational states along the "voltage coupling" reaction coordinate, we investigate several interconnected free energy relations between these two conformational states, considering voltage activation of ion channels. The free energy difference between the two conformational states at zero (depolarization) membrane potential (i.e., known as the chemical component of free energy change in ion channels) is shown to be equivalent to the free energy difference between the two "equilibrium" (resting and activated) conformational states along the one-dimensional voltage couplin reaction coordinate. Furthermore, the requirement that the application of linear response approximation to the free energy functionals of voltage coupling should satisfy the general free energy relations, yields a novel closed-form expression for the gating charge in terms of other basic properties of ion channels. This connection is familiar in statistical mechanics, known as the equilibrium fluctuation-response relation. The theory is illustrated by considering the coupling of a unit charge to the external voltage in the two sites near the surface of membrane, representing the activated and resting states. This is done using a coarse-graining (CG) model of membrane proteins, which includes the membrane, the electrolytes and the electrodes. The CG model yields Marcus-type voltage dependent free energy parabolas for the response of the electrostatic environment (electrolytes etc.) to the transition from the initial to the final configuratinal states, leading to equilibrium free energy difference and free
Directory of Open Access Journals (Sweden)
Neti Sri Wardiyani
2010-06-01
Full Text Available Neuronal damage and decreasing aerobic glicolysis process in ischaemic stroke are caused by lowering level of blood glucose. The amount of neuronal intrasitoplasmic glicolytic enolase enzyme, also known as neuron specific enolase, increases in blood circulation because it is not used anymore in damage neuron. So the mechanism failure in blood-brain barrier, as result of neuronal and cell membrane damage, causes NSE diffusion to extracellular and cerebrospinal fluid, then NSE level increases in blood serum and cerebrospinal fluid in acute cerebral infarction. Elevating NSE level is also connected with infarct volume and the extent of brain damage. The aim of this study was to evaluate connection between upgrading NSE serum level in acute atherothrombotic-stroke infarction patients, level of stroke incompatibility, and functional outcome. The method of study was observational analytic with kohort study. Subjects of study were divided into case group consisted of acute atherothrombotic-stroke infarction patients and control group consisted the healthy person. The data was collected in Hasan Sadikin Hospital between February to August 2008. Evaluating patients was performed to get descriptions on NSE serum level, level stroke incompability measuring by NIHSS scoring at the first time entering the hospital, and Barthel index scoring at seventh day of treatment. This study was analyzed by bivariat analysis using Mann Whitney statistic test and Pearson correlation test. There were 43 patients in each group. There was a significantly difference in NSE serum level on case group (mean was 11.41 [5.07] ng/mL in comparison to those on control group (mean was 8.93 [3.03] ng/mL, p=0.019 . There was a significantly correlation between raising NSE serum level on case group and level of stroke incompatibility measuring by NIHSS scoring and also with functional outcome according to Barthel index scoring. The highest accuration value of NSE serum level was 12 ng
Plasma Soliton Turbulence and Statistical Mechanics
International Nuclear Information System (INIS)
Treumann, R.A.; Pottelette, R.
1999-01-01
Collisionless kinetic plasma turbulence is described approximately in terms of a superposition of non-interacting solitary waves. We discuss the relevance of such a description under astrophysical conditions. Several types of solitary waves may be of interest in this relation as generators of turbulence and turbulent transport. A consistent theory of turbulence can be given only in a few particular cases when the description can be reduced to the Korteweg-de Vries equation or some other simple equation like the Kadomtsev-Petviashvili equation. It turns out that the soliton turbulence is usually energetically harder than the ordinary weakly turbulent plasma description. This implies that interaction of particles with such kinds of turbulence can lead to stronger acceleration than in ordinary turbulence. However, the description in our model is only classical and non-relativistic. Transport in solitary turbulence is most important for drift wave turbulence. Such waves form solitary drift wave vortices which may provide cross-field transport. A more general discussion is given on transport. In a model of Levy flight trapping of particles in solitons (or solitary turbulence) one finds that the residence time of particles in the region of turbulence may be described by a generalized Lorentzian probability distribution. It is shown that under collisionless equilibrium conditions far away from thermal equilibrium such distributions are natural equilibrium distributions. A consistent thermodynamic description of such media can be given in terms of a generalized Lorentzian statistical mechanics and thermodynamics. (author)
Real time equilibrium reconstruction for tokamak discharge control
International Nuclear Information System (INIS)
Ferron, J.R.; Walker, M.L.; Lao, L.L.; St John, H.E.; Humphreys, D.A.; Leuer, J.A.
1998-01-01
A practical method for performing a tokamak equilibrium reconstruction in real time for arbitrary time varying discharge shapes and current profiles is described. An approximate solution to the Grad-Shafranov equilibrium relation is found which best fits the diagnostic measurements. Thus, a solution for the spatial distribution of poloidal flux and toroidal current density is available in real time that is consistent with plasma force balance, allowing accurate evaluation of parameters such as discharge shape and safety factor profile. The equilibrium solutions are produced at a rate sufficient for discharge control. This equilibrium reconstruction algorithm has been implemented on the digital plasma control system for the DIII-D tokamak. The first application of real time equilibrium reconstruction to discharge shape control is described. (author)
DEFF Research Database (Denmark)
Regueira Muñiz, Teresa; Liu, Yiqun; Wibowo, Ahmad A.
2017-01-01
/n-butane/n-octane/n-dodecane/n-hexadecane/n-eicosane as model reservoir fluids and measured their phase equilibrium in the temperature range from (283–473) K by using a variable volume cell with full visibility. Their phase envelopes and liquid volume fractions below the saturation pressure have been measured. Four equations of state, including Soave......-Redlich-Kwong (SRK), Peng-Robinson (PR), Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), and Soave-Benedict-Webb-Rubin (Soave-BWR), have been used to predict phase equilibrium of the measured systems. PR and PC-SAFT give better results than others and Soave-BWR gives poor phase envelope predictions...
Jiang, Lingxiang; Yu, Caifang; Deng, Manli; Jin, Changwen; Wang, Yilin; Yan, Yun; Huang, Jianbin
2010-02-18
Cationic surfactant/anionic surfactant/beta-CD ternary aqueous systems provide a platform for the coexistence of the host-guest (beta-CD/surfactant) equilibrium and the biased aggregation (monomeric/aggregated surfactants) equilibrium. We report here that the interplay between the two equilibria dominates the systems as follows. (1) The biased aggregation equilibrium imposes an apparent selectivity on the host-guest equilibrium, namely, beta-CD has to always selectively bind the major surfactant (molar fraction > 0.5) even if binding constants of beta-CD to the pair of surfactants are quite similar. (2) In return, the host-guest equilibrium amplifies the bias of the aggregation equilibrium, that is, the selective binding partly removes the major surfactant from the aggregates and leaves the aggregate composition approaching the electroneutral mixing stoichiometry. (3) This composition variation enhances electrostatic attractions between oppositely charged surfactant head groups, thus resulting in less-curved aggregates. In particular, the present apparent host-guest selectivity is of remarkably high values, and the selectivity stems from the bias of the aggregation equilibrium rather than the difference in binding constants. Moreover, beta-CD is defined as a "stoichiometry booster" for the whole class of cationic/anionic surfactant systems, which provides an additional degree of freedom to directly adjust aggregate compositions of the systems. The stoichiometry boosting of the compositions can in turn affect or even determine microstructures and macroproperties of the systems.
Nonideal plasmas as non-equilibrium media
International Nuclear Information System (INIS)
Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A
2003-01-01
Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations
MHD equilibrium identification on ASDEX-Upgrade
International Nuclear Information System (INIS)
McCarthy, P.J.; Schneider, W.; Lakner, K.; Zehrfeld, H.P.; Buechl, K.; Gernhardt, J.; Gruber, O.; Kallenbach, A.; Lieder, G.; Wunderlich, R.
1992-01-01
A central activity accompanying the ASDEX-Upgrade experiment is the analysis of MHD equilibria. There are two different numerical methods available, both using magnetic measurements which reflect equilibrium states of the plasma. The first method proceeds via a function parameterization (FP) technique, which uses in-vessel magnetic measurements to calculate up to 66 equilibrium parameters. The second method applies an interpretative equilibrium code (DIVA) for a best fit to a different set of magnetic measurements. Cross-checks with the measured particle influxes from the inner heat shield and the divertor region and with visible camera images of the scrape-off layer are made. (author) 3 refs., 3 figs
International Nuclear Information System (INIS)
Gonchar, N.S.
1986-01-01
This paper presents a mathematical method developed for investigating a class of systems of infinite-dimensional integral equations which have application in statistical mechanics. Necessary and sufficient conditions are obtained for the uniqueness and bifurcation of the solution of this class of systems of equations. Problems of equilibrium statistical mechanics are considered on the basis of this method
Suh, Donghyuk; Radak, Brian K.; Chipot, Christophe; Roux, Benoît
2018-01-01
Molecular dynamics (MD) trajectories based on classical equations of motion can be used to sample the configurational space of complex molecular systems. However, brute-force MD often converges slowly due to the ruggedness of the underlying potential energy surface. Several schemes have been proposed to address this problem by effectively smoothing the potential energy surface. However, in order to recover the proper Boltzmann equilibrium probability distribution, these approaches must then rely on statistical reweighting techniques or generate the simulations within a Hamiltonian tempering replica-exchange scheme. The present work puts forth a novel hybrid sampling propagator combining Metropolis-Hastings Monte Carlo (MC) with proposed moves generated by non-equilibrium MD (neMD). This hybrid neMD-MC propagator comprises three elementary elements: (i) an atomic system is dynamically propagated for some period of time using standard equilibrium MD on the correct potential energy surface; (ii) the system is then propagated for a brief period of time during what is referred to as a "boosting phase," via a time-dependent Hamiltonian that is evolved toward the perturbed potential energy surface and then back to the correct potential energy surface; (iii) the resulting configuration at the end of the neMD trajectory is then accepted or rejected according to a Metropolis criterion before returning to step 1. A symmetric two-end momentum reversal prescription is used at the end of the neMD trajectories to guarantee that the hybrid neMD-MC sampling propagator obeys microscopic detailed balance and rigorously yields the equilibrium Boltzmann distribution. The hybrid neMD-MC sampling propagator is designed and implemented to enhance the sampling by relying on the accelerated MD and solute tempering schemes. It is also combined with the adaptive biased force sampling algorithm to examine. Illustrative tests with specific biomolecular systems indicate that the method can yield
Investigation of the statistical distance to reach stationary distributions
International Nuclear Information System (INIS)
Nicholson, S.B.; Kim, Eun-jin
2015-01-01
The thermodynamic length gives a Riemannian metric to a system's phase space. Here we extend the traditional thermodynamic length to the information length (L) out of equilibrium and examine its properties. We utilise L as a useful methodology of analysing non-equilibrium systems without evoking conventional assumptions such as Gaussian statistics, detailed balance, priori-known constraints, or ergodicity and numerically examine how L evolves in time for the logistic map in the chaotic regime depending on initial conditions. To this end, we propose a discrete version of L which is mathematically well defined by taking a set theoretic approach. We identify the areas of phase space where the loss of information of the system takes place most rapidly. In particular, we present an interesting result that the unstable fixed points turn out to most efficiently drive the logistic map towards a stationary distribution through L. - Highlights: • Define a set theoretic version of the discrete thermodynamic length. • These sets allow one to analyse systems having zero probabilities in their evolution. • Numerically analyse the Logistic map using the thermodynamic length. • Show how the unstable fixed points most efficiently lead the system to equilibrium
Chemical equilibrium of glycerol carbonate synthesis from glycerol
International Nuclear Information System (INIS)
Li Jiabo; Wang Tao
2011-01-01
Research highlights: → Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for the preparation of glycerol carbonate from glycerol. → The reaction of glycerol and carbon dioxide is thermodynamically limited. → High temperature and low pressure is favourable to the reaction of glycerol and urea. → Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol and dimethyl carbonate. → For the reaction of glycerol and ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. - Abstract: In this paper, the chemical equilibrium for the glycerol carbonate preparation from glycerol was investigated. The chemical equilibrium constants were calculated for the reactions to produce glycerol carbonate from glycerol. The theoretical calculation was compared with the experimental results for the transesterification of glycerol with dimethyl carbonate. Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for producing glycerol carbonate from glycerol according to the equilibrium constant. Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol with dimethyl carbonate. For the reaction of glycerol with ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. The reaction of glycerol with carbon dioxide is thermodynamically limited. High temperature and low pressure are favourable to the reaction of glycerol and urea.
Analysis of equilibrium and topology of tokamak plasmas
International Nuclear Information System (INIS)
Milligen, B.P. van.
1991-01-01
In a tokamak, the plasma is confined by means of a magnetic field. There exists an equilibrium between outward forces due to the pressure gradient in plasma and inward forces due to the interaction between currents flowing inside the plasma and the magnetic field. The equilibrium magnetic field is characterized by helical field lines that lie on nested toroidal surfaces of constant flux. The equilibrium yields values for global and local plasma parameters (e.g. plasma position, total current, local pressure). Thus, precise knowledge of the equilibrium is essential for plasma control, for the understanding of many phenomena occurring in the plasma (in particular departures from the ideal equilibrium involving current filamentation on the flux surfaces that lead to the formation of islands, i.e. nested helical flux surfaces), and for the interpretation of many different types of measurements (e.g. the translation of line integrated electron density measurements made by laser beams probing the plasma into a local electron density on a flux surface). The problem of determining the equilibrium magnetic field from external magnetic field measurements has been studied extensively in literature. The problem is 'ill-posed', which means that the solution is unstable to small changes in the measurement data, and the solution has to be constrained in order to stabilize it. Various techniques for handling this problem have been suggested in literature. Usually ad-hoc restrictions are imposed on the equilibrium solution in order to stabilize it. More equilibrium solvers are not able to handle very dissimilar measurement data which means information on the equilibrium is lost. The generally do not allow a straightforward error estimate of the obtained results to be made, and they require large amounts of computing time. This problems are addressed in this thesis. (author). 104 refs.; 42 figs.; 6 tabs
Statistical analogues of thermodynamic extremum principles
Ramshaw, John D.
2018-05-01
As shown by Jaynes, the canonical and grand canonical probability distributions of equilibrium statistical mechanics can be simply derived from the principle of maximum entropy, in which the statistical entropy S=- {k}{{B}}{\\sum }i{p}i{log}{p}i is maximised subject to constraints on the mean values of the energy E and/or number of particles N in a system of fixed volume V. The Lagrange multipliers associated with those constraints are then found to be simply related to the temperature T and chemical potential μ. Here we show that the constrained maximisation of S is equivalent to, and can therefore be replaced by, the essentially unconstrained minimisation of the obvious statistical analogues of the Helmholtz free energy F = E ‑ TS and the grand potential J = F ‑ μN. Those minimisations are more easily performed than the maximisation of S because they formally eliminate the constraints on the mean values of E and N and their associated Lagrange multipliers. This procedure significantly simplifies the derivation of the canonical and grand canonical probability distributions, and shows that the well known extremum principles for the various thermodynamic potentials possess natural statistical analogues which are equivalent to the constrained maximisation of S.
Equilibrium Arrival Times to Queues
DEFF Research Database (Denmark)
Breinbjerg, Jesper; Østerdal, Lars Peter
We consider a non-cooperative queueing environment where a finite number of customers independently choose when to arrive at a queueing system that opens at a given point in time and serves customers on a last-come first-serve preemptive-resume (LCFS-PR) basis. Each customer has a service time...... requirement which is identically and independently distributed according to some general probability distribution, and they want to complete service as early as possible while minimizing the time spent in the queue. In this setting, we establish the existence of an arrival time strategy that constitutes...... a symmetric (mixed) Nash equilibrium, and show that there is at most one symmetric equilibrium. We provide a numerical method to compute this equilibrium and demonstrate by a numerical example that the social effciency can be lower than the effciency induced by a similar queueing system that serves customers...
The statistical mechanics of financial markets
Voit, Johannes
2003-01-01
From the reviews of the first edition - "Provides an excellent introduction for physicists interested in the statistical properties of financial markets. Appropriately early in the book the basic financial terms such as shorts, limit orders, puts, calls, and other terms are clearly defined. Examples, often with graphs, augment the reader’s understanding of what may be a plethora of new terms and ideas… [This is] an excellent starting point for the physicist interested in the subject. Some of the book’s strongest features are its careful definitions, its detailed examples, and the connection it establishes to physical systems." PHYSICS TODAY "This book is excellent at illustrating the similarities of financial markets with other non-equilibrium physical systems. [...] In summary, a very good book that offers more than just qualitative comparisons of physics and finance." (www.quantnotes.com) This highly-praised introductory treatment describes parallels between statistical physics and finance - both thos...
Universality in equilibrium and away from it: A personal perspective
International Nuclear Information System (INIS)
Munoz, Miguel A.
2011-01-01
In this talk/paper I discuss the concept of universality in phase transitions and the question of whether universality classes are more robust in equilibrium than away from it. In both of these situations, the main ingredients determining universality are symmetries, conservation laws, the dimension of the space and of the order-parameter and the presence of long-range interactions or quenched disorder. The existence of detailed-balance and fluctuation-dissipation theorems imposes severe constraints on equilibrium systems, allowing to define universality classes in a very robust way; instead, non-equilibrium allows for more variability. Still, quite robust non-equilibrium universality classes have been identified in the last decades. Here, I discuss some examples in which (i) non-equilibrium phase transitions are simply controlled by equilibrium critical points, i.e. non-equilibrium ingredients turn out to be irrelevant in the renormalization group sense and (ii) non-equilibrium situations in which equilibrium seems to come out of the blue, generating an adequate effective description of intrinsically non-equilibrium problems. Afterwards, I shall describe different genuinely non-equilibrium phase transitions in which introducing small, apparently innocuous changes (namely: presence or absence of an underlying lattice, parity conservation in the overall number of particles, existence of an un-accessible vacuum state, deterministic versus stochastic microscopic rules, presence or absence of a Fermionic constraint), the critical behavior is altered, making the case for lack of robustness. However, it will be argued that in all these examples, there is an underlying good reason (in terms of general principles) for universality to be altered. The final conclusions are that: (i) robust universality classes exist both in equilibrium and non-equilibrium; (ii) symmetry and conservation principles are crucial in both, (iii) non-equilibrium allows for more variability (i
Quantum dynamical semigroups and approach to equilibrium
International Nuclear Information System (INIS)
Frigerio, A.
1977-01-01
For a quantum dynamical semigroup possessing a faithful normal stationary state, some conditions are discussed, which ensure the uniqueness of the equilibrium state and/or the approach to equilibrium for arbitrary initial condition. (Auth.)
Computation of Phase Equilibrium and Phase Envelopes
DEFF Research Database (Denmark)
Ritschel, Tobias Kasper Skovborg; Jørgensen, John Bagterp
formulate the involved equations in terms of the fugacity coefficients. We present expressions for the first-order derivatives. Such derivatives are necessary in computationally efficient gradient-based methods for solving the vapor-liquid equilibrium equations and for computing phase envelopes. Finally, we......In this technical report, we describe the computation of phase equilibrium and phase envelopes based on expressions for the fugacity coefficients. We derive those expressions from the residual Gibbs energy. We consider 1) ideal gases and liquids modeled with correlations from the DIPPR database...... and 2) nonideal gases and liquids modeled with cubic equations of state. Next, we derive the equilibrium conditions for an isothermal-isobaric (constant temperature, constant pressure) vapor-liquid equilibrium process (PT flash), and we present a method for the computation of phase envelopes. We...
Stochastic approach to equilibrium and nonequilibrium thermodynamics.
Tomé, Tânia; de Oliveira, Mário J
2015-04-01
We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.
Equilibrium thermodynamics in modified gravitational theories
International Nuclear Information System (INIS)
Bamba, Kazuharu; Geng, C.-Q.; Tsujikawa, Shinji
2010-01-01
We show that it is possible to obtain a picture of equilibrium thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density f(R,φ,X), where R is the Ricci scalar and X is the kinetic energy of a scalar field φ. This comes from a suitable definition of an energy-momentum tensor of the 'dark' component that respects to a local energy conservation in the Jordan frame. In this framework the horizon entropy S corresponding to equilibrium thermodynamics is equal to a quarter of the horizon area A in units of gravitational constant G, as in Einstein gravity. For a flat cosmological background with a decreasing Hubble parameter, S globally increases with time, as it happens for viable f(R) inflation and dark energy models. We also show that the equilibrium description in terms of the horizon entropy S is convenient because it takes into account the contribution of both the horizon entropy S in non-equilibrium thermodynamics and an entropy production term.
Plasma equilibrium and stability in stellarators
International Nuclear Information System (INIS)
Pustovitov, V.D.; Shafranov, V.D.
1987-01-01
A review of theoretical methods of investigating plasma equilibrium and stability in stellarators is given. Principles forming the basis of toroidal plasma equilibrium and its stabilization, and the main results of analytical theory and numerical calculations are presented. Configurations with spiral symmetry and usual stellarators with plane axis and spiral fields are considered in detail. Derivation of scalar two-dimensional equations, describing equilibrium in these systems is given. These equations were used to obtain one-dimensional equations for displacement and ellipticity of magnetic surfaces. The model of weak-elliptic displaced surfaces was used to consider the evolution of plasma equilibrium in stellarators after elevation of its pressure: change of profile of rotational transformation after change of plasma pressure, current generation during its fast heating and its successive damping due to finite plasma conductivity were described. The derivation of equations of small oscillations in the form, suitable for local disturbance investigation is presented. These equations were used to obtain Mercier criteria and ballon model equations. General sufficient conditions of plasma stability in systems with magnetic confinement were derived
HINT computation of LHD equilibrium with zero rotational transform surface
International Nuclear Information System (INIS)
Kanno, Ryutaro; Toi, Kazuo; Watanabe, Kiyomasa; Hayashi, Takaya; Miura, Hideaki; Nakajima, Noriyoshi; Okamoto Masao
2004-01-01
A Large Helical Device equilibrium having a zero rotational transform surface is studied by using the three dimensional MHD equilibrium code, HINT. We find existence of the equilibrium but with formation of the two or three n=0 islands composing a homoclinic-type structure near the center, where n is a toroidal mode number. The LHD equilibrium maintains the structure, when the equilibrium beta increases. (author)
Pre-equilibrium complex particle emission
International Nuclear Information System (INIS)
Bĕták, E.
2002-01-01
Semi-classical (phenomenological) pre-equilibrium emission of clusters of nucleons (complex particles) such as deuterons, tritons, helions and α particles from reactions induced by light projectiles (nucleons to α’s) is addressed. The main attention is given to the hard components in the emission energetic spectra, which play an increasing role at incident energies above 20 MeV, and are currently attributed to a presence of some kind of pre-equilibrium processes. In addition, the mechanisms of cluster reactions show special features such as the competition between pickup and knockout processes and the contributions of several successive steps in the reaction. The main frame used here to illustrate the processes and interplays of the competing mechanisms of pre-equilibrium cluster formation and emission, namely the coalescence, pick-up and knock-out, is the pre-equilibrium exciton model. It obviously contains the process of clusterization itself as its organic part. The most important case of complex particles with the largest amount of experimental data is that of alpha emission, which therefore naturally attracts most of the attention and where the widest range of possible mechanisms is available on the market. The loosely bound ejectiles, on the other side, are usually not able to demonstrate all features of the whole spectrum of contributing mechanisms, but they are nevertheless an important link between the nucleon emission and the cluster one.
Mapping Isobaric Aging onto the Equilibrium Phase Diagram
DEFF Research Database (Denmark)
Niss, Kristine
2017-01-01
The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts...... of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case—challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium...... states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single...
Crema, Enrico R.; Kandler, Anne; Shennan, Stephen
2016-12-01
A long tradition of cultural evolutionary studies has developed a rich repertoire of mathematical models of social learning. Early studies have laid the foundation of more recent endeavours to infer patterns of cultural transmission from observed frequencies of a variety of cultural data, from decorative motifs on potsherds to baby names and musical preferences. While this wide range of applications provides an opportunity for the development of generalisable analytical workflows, archaeological data present new questions and challenges that require further methodological and theoretical discussion. Here we examine the decorative motifs of Neolithic pottery from an archaeological assemblage in Western Germany, and argue that the widely used (and relatively undiscussed) assumption that observed frequencies are the result of a system in equilibrium conditions is unwarranted, and can lead to incorrect conclusions. We analyse our data with a simulation-based inferential framework that can overcome some of the intrinsic limitations in archaeological data, as well as handle both equilibrium conditions and instances where the mode of cultural transmission is time-variant. Results suggest that none of the models examined can produce the observed pattern under equilibrium conditions, and suggest. instead temporal shifts in the patterns of cultural transmission.
Anharmonic effects in the quantum cluster equilibrium method
von Domaros, Michael; Perlt, Eva
2017-03-01
The well-established quantum cluster equilibrium (QCE) model provides a statistical thermodynamic framework to apply high-level ab initio calculations of finite cluster structures to macroscopic liquid phases using the partition function. So far, the harmonic approximation has been applied throughout the calculations. In this article, we apply an important correction in the evaluation of the one-particle partition function and account for anharmonicity. Therefore, we implemented an analytical approximation to the Morse partition function and the derivatives of its logarithm with respect to temperature, which are required for the evaluation of thermodynamic quantities. This anharmonic QCE approach has been applied to liquid hydrogen chloride and cluster distributions, and the molar volume, the volumetric thermal expansion coefficient, and the isobaric heat capacity have been calculated. An improved description for all properties is observed if anharmonic effects are considered.
Quantum gases finite temperature and non-equilibrium dynamics
Szymanska, Marzena; Davis, Matthew; Gardiner, Simon
2013-01-01
The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...
Introduction to modern theoretical physics. Volume II. Quantum theory and statistical physics
International Nuclear Information System (INIS)
Harris, E.G.
1975-01-01
The topics discussed include the history and principles, some solvable problems, and symmetry in quantum mechanics, interference phenomena, approximation methods, some applications of nonrelativistic quantum mechanics, relativistic wave equations, quantum theory of radiation, second quantization, elementary particles and their interactions, thermodynamics, equilibrium statistical mechanics and its applications, the kinetic theory of gases, and collective phenomena
Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs
International Nuclear Information System (INIS)
Ghorui, S; Das, A K
2012-01-01
Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.
Abstract generalized vector quasi-equilibrium problems in noncompact Hadamard manifolds
Directory of Open Access Journals (Sweden)
Haishu Lu
2017-05-01
Full Text Available Abstract This paper deals with the abstract generalized vector quasi-equilibrium problem in noncompact Hadamard manifolds. We prove the existence of solutions to the abstract generalized vector quasi-equilibrium problem under suitable conditions and provide applications to an abstract vector quasi-equilibrium problem, a generalized scalar equilibrium problem, a scalar equilibrium problem, and a perturbed saddle point problem. Finally, as an application of the existence of solutions to the generalized scalar equilibrium problem, we obtain a weakly mixed variational inequality and two mixed variational inequalities. The results presented in this paper unify and generalize many known results in the literature.
Isotopic equilibrium constants of the deuterium exchange between HDO and H2S, H2Se and H2Te
International Nuclear Information System (INIS)
Marx, D.
1959-11-01
We have determined experimentally the equilibrium constant K of each of the following isotope exchanges: SH 2 + OHD ↔ SHD + OH 2 ; SeH 2 + OHD ↔ SeHD + OH 2 ; TeH 2 + OHD ↔ TeHD + OH 2 . In gaseous phase, statistical thermodynamics leads to the expression: K (Z OHD x Z RH 2 )/(Z OH 2 x Z RHD ) x e W/T (R being the elements S, Se or Te). Z, the partition functions, have been calculated and, through our experimental results, the constant W has been determined. Having obtained W, the equilibrium constant K has been calculated for a series of temperatures. (author) [fr
Averaged description of 3D MHD equilibrium
International Nuclear Information System (INIS)
Medvedev, S.Yu.; Drozdov, V.V.; Ivanov, A.A.; Martynov, A.A.; Pashekhonov, Yu.Yu.; Mikhailov, M.I.
2001-01-01
A general approach by S.A.Galkin et al. in 1991 to 2D description of MHD equilibrium and stability in 3D systems was proposed. The method requires a background 3D equilibrium with nested flux surfaces to generate the metric of a Riemannian space in which the background equilibrium is described by the 2D equation of Grad-Shafranov type. The equation can be solved then varying plasma profiles and shape to get approximate 3D equilibria. In the framework of the method both planar axis conventional stellarators and configurations with spatial magnetic axis can be studied. In the present report the formulation and numerical realization of the equilibrium problem for stellarators with planar axis is reviewed. The input background equilibria with nested flux surfaces are taken from vacuum magnetic field approximately described by analytic scalar potential
Equilibrium Constant as Solution to the Open Chemical Systems
Zilbergleyt, B.
2008-01-01
According to contemporary views, equilibrium constant is relevant only to true thermodynamic equilibria in isolated systems with one chemical reaction. The paper presents a novel formula that ties-up equilibrium constant and chemical system composition at any state, isolated or open as well. Extending the logarithmic logistic map of the Discrete Thermodynamics of Chemical Equilibria, this formula maps the system population at isolated equilibrium into the population at any open equilibrium at...
Sum rule approach to the study of statistical decay properties of nuclear giant resonances
International Nuclear Information System (INIS)
Adhikari, S.K.; Hussein, M.S.
1987-03-01
Corrections to the well-known statistical sum rule that relates the summed transmission coefficients on the one hand and 2πΓ C.N. .ρ C.N. On the other, in the context of the statistical decay properties of nuclear giant resonances, are discussed. These corrections arise both from pre-equilibrium processes as well as from the giant resonance itself. It is shown that the compound nucleus average width is reduced as a result of these corrections. (Author) [pt
Mapping Isobaric Aging onto the Equilibrium Phase Diagram.
Niss, Kristine
2017-09-15
The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.
Statistical mechanics of violent relaxation
International Nuclear Information System (INIS)
Shu, F.H.
1978-01-01
We reexamine the foundations of Lynden-Bell's statistical mechanical discussion of violent relaxation in collisionless stellar systems. We argue that Lynden-Bell's formulation in terms of a continuum description introduces unnecessary complications, and we consider a more conventional formulation in terms of particles. We then find the exclusion principle discovered by Lynden-Bell to be quantitatively important only at phase densities where two-body encounters are no longer negligible. Since the edynamical basis for the exclusion principle vanishes in such cases anyway, Lynden-Bell statistics always reduces in practice to Maxwell-Boltzmann statistics when applied to stellar systems. Lynden-Bell also found the equilibrium distribution function generally to be a sum of Maxwellians with velocity dispersions dependent on the phase density at star formation. We show that this difficulty vanishes in the particulate description for an encounterless stellar system as long as stars of different masses are initially well mixed in phase space. Our methods also demonstrate the equivalence between Gibbs's formalism which uses the microcanonical ensemble and Boltzmann's formalism which uses a coarse-grained continuum description. In addition, we clarify the concept of irreversible behavior on a macroscopic scale for an encounterless stellar system. Finally, we comment on the use of unusual macroscopic constraints to simulate the effects of incomplete relaxation
Equilibrium figures in geodesy and geophysics.
Moritz, H.
There is an enormous literature on geodetic equilibrium figures, but the various works have not always been interrelated, also for linguistic reasons (English, French, German, Italian, Russian). The author attempts to systematize the various approaches and to use the standard second-order theory for a study of the deviation of the actual earth and of the equipotential reference ellipsoid from an equilibrium figure.
Directory of Open Access Journals (Sweden)
Klára Plecitá
2012-01-01
Full Text Available This paper focuses on the intra-euro-area imbalances. Therefore the first aim of this paper is to identify euro-area countries exhibiting macroeconomic imbalances. The subsequent aim is to estimate equilibrium real exchange rates for these countries and to compute their degrees of real exchange rate misalignment. The intra-area balance is assessed using the Cluster Analysis and the Principle Component Analysis; on this basis Greece and Ireland are selected as the two euro-area countries with largest imbalances in 2010. Further the medium-run equilibrium exchange rates for Greece and Ireland are estimated applying the Behavioral Equilibrium Exchange Rate (BEER approach popularised by Clark and MacDonald (1998. In addition, the long-run equilibrium exchange rates are estimated using the Permanent Equilibrium Exchange Rate (PEER model. Employing the BEER and PEER approaches on quarterly time series of real effective exchange rates (REER from 1997: Q1 to 2010: Q4 we identify an undervaluation of the Greek and Irish REER around their entrance to the euro area. For the rest of the period analysed their REER is broadly in line with estimated BEER and PEER levels.
Collective doorways and statistical doorways: The decay properties of giant multipole resonances
International Nuclear Information System (INIS)
Dias, H.; Hussein, M.S.; Adhikari, S.K.
1985-01-01
A theoretical framework for the description of the decay of giant multipole resonances is developed. It is shown that the statistical decay of the GMR is not necessarily described by the Hauser-Feschbach theory owing to the existence of a mixing parameter. The contribution of pre-equilibrium emission to the GMR decay is also discussed. (Author) [pt
Can elliptical galaxies be equilibrium systems
Energy Technology Data Exchange (ETDEWEB)
Caimmi, R [Padua Univ. (Italy). Ist. di Astronomia
1980-08-01
This paper deals with the question of whether elliptical galaxies can be considered as equilibrium systems (i.e., the gravitational + centrifugal potential is constant on the external surface). We find that equilibrium models such as Emden-Chandrasekhar polytropes and Roche polytropes with n = 0 can account for the main part of observations relative to the ratio of maximum rotational velocity to central velocity dispersion in elliptical systems. More complex models involving, for example, massive halos could lead to a more complete agreement. Models that are a good fit to the observed data are characterized by an inner component (where most of the mass is concentrated) and a low-density outer component. A comparison is performed between some theoretical density distributions and the density distribution observed by Young et al. (1978) in NGC 4473, but a number of limitations must be adopted. Alternative models, such as triaxial oblate non-equilibrium configurations with coaxial shells, involve a number of problems which are briefly discussed. We conclude that spheroidal oblate models describing elliptical galaxies cannot be ruled out until new analyses relative to more refined theoretical equilibrium models (involving, for example, massive halos) and more detailed observations are performed.
Non-equilibrium Quasi-Chemical Nucleation Model
Gorbachev, Yuriy E.
2018-04-01
Quasi-chemical model, which is widely used for nucleation description, is revised on the basis of recent results in studying of non-equilibrium effects in reacting gas mixtures (Kolesnichenko and Gorbachev in Appl Math Model 34:3778-3790, 2010; Shock Waves 23:635-648, 2013; Shock Waves 27:333-374, 2017). Non-equilibrium effects in chemical reactions are caused by the chemical reactions themselves and therefore these contributions should be taken into account in the corresponding expressions for reaction rates. Corrections to quasi-equilibrium reaction rates are of two types: (a) spatially homogeneous (caused by physical-chemical processes) and (b) spatially inhomogeneous (caused by gas expansion/compression processes and proportional to the velocity divergency). Both of these processes play an important role during the nucleation and are included into the proposed model. The method developed for solving the generalized Boltzmann equation for chemically reactive gases is applied for solving the set of equations of the revised quasi-chemical model. It is shown that non-equilibrium processes lead to essential deviation of the quasi-stationary distribution and therefore the nucleation rate from its traditional form.
Investigating High School Students' Understanding of Chemical Equilibrium Concepts
Karpudewan, Mageswary; Treagust, David F.; Mocerino, Mauro; Won, Mihye; Chandrasegaran, A. L.
2015-01-01
This study investigated the year 12 students' (N = 56) understanding of chemical equilibrium concepts after instruction using two conceptual tests, the "Chemical Equilibrium Conceptual Test 1" ("CECT-1") consisting of nine two-tier multiple-choice items and the "Chemical Equilibrium Conceptual Test 2"…
Intermittent Fermi-Pasta-Ulam Dynamics at Equilibrium
Campbell, David; Danieli, Carlo; Flach, Sergej
The equilibrium value of an observable defines a manifold in the phase space of an ergodic and equipartitioned many-body syste. A typical trajectory pierces that manifold infinitely often as time goes to infinity. We use these piercings to measure both the relaxation time of the lowest frequency eigenmode of the Fermi-Pasta-Ulam chain, as well as the fluctuations of the subsequent dynamics in equilibrium. We show that previously obtained scaling laws for equipartition times are modified at low energy density due to an unexpected slowing down of the relaxation. The dynamics in equilibrium is characterized by a power-law distribution of excursion times far off equilibrium, with diverging variance. The long excursions arise from sticky dynamics close to regular orbits in the phase space. Our method is generalizable to large classes of many-body systems. The authors acknowledge financial support from IBS (Project Code IBS-R024-D1).
Foundations of atmospheric pressure non-equilibrium plasmas
Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny
2017-12-01
Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.
Determination of gross plasma equilibrium from magnetic multipoles
Energy Technology Data Exchange (ETDEWEB)
Kessel, C.E.
1986-05-01
A new approximate technique to determine the gross plasma equilibrium parameters, major radius, minor radius, elongation and triangularity for an up-down symmetric plasma is developed. It is based on a multipole representation of the externally applied poloidal magnetic field, relating specific terms to the equilibrium parameters. The technique shows reasonable agreement with free boundary MHD equilibrium results. The method is useful in dynamic simulation and control studies.
Determination of gross plasma equilibrium from magnetic multipoles
International Nuclear Information System (INIS)
Kessel, C.E.
1986-05-01
A new approximate technique to determine the gross plasma equilibrium parameters, major radius, minor radius, elongation and triangularity for an up-down symmetric plasma is developed. It is based on a multipole representation of the externally applied poloidal magnetic field, relating specific terms to the equilibrium parameters. The technique shows reasonable agreement with free boundary MHD equilibrium results. The method is useful in dynamic simulation and control studies
Statistical mechanics of lattice systems a concrete mathematical introduction
Friedli, Sacha
2017-01-01
This motivating textbook gives a friendly, rigorous introduction to fundamental concepts in equilibrium statistical mechanics, covering a selection of specific models, including the Curie–Weiss and Ising models, the Gaussian free field, O(n) models, and models with Kać interactions. Using classical concepts such as Gibbs measures, pressure, free energy, and entropy, the book exposes the main features of the classical description of large systems in equilibrium, in particular the central problem of phase transitions. It treats such important topics as the Peierls argument, the Dobrushin uniqueness, Mermin–Wagner and Lee–Yang theorems, and develops from scratch such workhorses as correlation inequalities, the cluster expansion, Pirogov–Sinai Theory, and reflection positivity. Written as a self-contained course for advanced undergraduate or beginning graduate students, the detailed explanations, large collection of exercises (with solutions), and appendix of mathematical results and concepts also make i...
Equilibrium fluctuation energy of gyrokinetic plasma
International Nuclear Information System (INIS)
Krommes, J.A.; Lee, W.W.; Oberman, C.
1985-11-01
The thermal equilibrium electric field fluctuation energy of the gyrokinetic model of magnetized plasma is computed, and found to be smaller than the well-known result (k)/8π = 1/2T/[1 + (klambda/sub D/) 2 ] valid for arbitrarily magnetized plasmas. It is shown that, in a certain sense, the equilibrium electric field energy is minimum in the gyrokinetic regime. 13 refs., 2 figs
Incentives in Supply Function Equilibrium
DEFF Research Database (Denmark)
Vetter, Henrik
2014-01-01
The author analyses delegation in homogenous duopoly under the assumption that the firm-managers compete in supply functions. In supply function equilibrium, managers’ decisions are strategic complements. This reverses earlier findings in that the author finds that owners give managers incentives...... to act in an accommodating way. As a result, optimal delegation reduces per-firm output and increases profits to above-Cournot profits. Moreover, in supply function equilibrium the mode of competition is endogenous. This means that the author avoids results that are sensitive with respect to assuming...
Toroidal equilibrium in an iron-core reversed field pinch
International Nuclear Information System (INIS)
Miller, G.
1984-04-01
An analytical theory of toroidal equilibrium in the ZT-40M reversed field pinch is obtained, including effects of iron cores and resistive shell. The iron cores alter the form of the equilibrium condition and cause the equilibrium to be unstable on the shell resistive time scale
The applicability of equilibrium calculations to dichlorosilane CVD
International Nuclear Information System (INIS)
Medernach, J.W.; Ho, P.
1987-01-01
Equilibrium calculations were made for the chlorosilane (Si-H-Cl) system over a wide range of temperatures, pressures and Si/Cl ratios. The Si/Cl ratios are presented as a function of the Cl/H ratio, temperature and pressure. Three-dimensional contour plots of the equilibrium Si/Cl also give a qualitative picture. Comparison of observed and equilibrium deposition rates indicate the range of applicability for the chlorosilane system. Results of this study indicate that equilibrium calculations can serve as a useful guide for silicon deposition from dichlorosilane at temperatures > 1000 0 C and pressures between 625 and 80 Torr. An application related to the silicon-on insulator (SOI) technology is presented
Capability Assessment of the Equilibrium Field System in KTX
International Nuclear Information System (INIS)
Luo Bing; You Wei; Tan Mingsheng; Bai Wei; Mao Wenzhe; Li Hong; Liu Adi; Lan Tao; Xie Jinlin; Liu Wandong; Luo Zhengping; Xiao Bingjia; Guo Yong
2016-01-01
Radial equilibrium of the KTX plasma column is maintained by the vertical field which is produced by the equilibrium field coils. The equilibrium is also affected by the eddy current, which is generated by the coupling of copper shell, plasma and poloidal field coils. An equivalent circuit model is developed to analyze the dynamic performance of equilibrium field coils, without auxiliary power input to equilibrium field coils and passive conductors. Considering the coupling of poloidal field coils, copper shell and plasma, the evolution of spatial distribution of the eddy current density on the copper shell is estimated by finite element to analyze the effect of shell to balance. The simulation results show that the copper shell and equilibrium field coils can provide enough vertical field to balance 1 MA plasma current in phase 1 of a KTX discharge. Auxiliary power supply on the EQ coils is necessary to control the horizontal displacement of KTX due to the finite resistance effect of the shell. (paper)
Procacci, Piero
2016-06-01
In this contribution I critically revise the alchemical reversible approach in the context of the statistical mechanics theory of non-covalent bonding in drug-receptor systems. I show that most of the pitfalls and entanglements for the binding free energy evaluation in computer simulations are rooted in the equilibrium assumption that is implicit in the reversible method. These critical issues can be resolved by using a non-equilibrium variant of the alchemical method in molecular dynamics simulations, relying on the production of many independent trajectories with a continuous dynamical evolution of an externally driven alchemical coordinate, completing the decoupling of the ligand in a matter of a few tens of picoseconds rather than nanoseconds. The absolute binding free energy can be recovered from the annihilation work distributions by applying an unbiased unidirectional free energy estimate, on the assumption that any observed work distribution is given by a mixture of normal distributions, whose components are identical in either direction of the non-equilibrium process, with weights regulated by the Crooks theorem. I finally show that the inherent reliability and accuracy of the unidirectional estimate of the decoupling free energies, based on the production of a few hundreds of non-equilibrium independent sub-nanosecond unrestrained alchemical annihilation processes, is a direct consequence of the funnel-like shape of the free energy surface in molecular recognition. An application of the technique to a real drug-receptor system is presented in the companion paper.
Horta, Rogério Lessa; Horta, Bernardo Lessa; da Costa, Andre Wallace Nery; do Prado, Rogério Ruscitto; Oliveira-Campos, Maryane; Malta, Deborah Carvalho
2014-01-01
This study aimed at describing the prevalence of illicit drug use among 9th grade students in the morning period of public and private schools in Brazil, and assessing associated factors. The Brazilian survey PeNSE (National Adolescent School-based Health Survey) 2012 evaluated a representative sample of 9th grade students in the morning period, in Brazil and its five regions. The use of illicit drugs at least once in life was assessed for the most commonly used drugs, such as marijuana, cocaine, crack, solvent-based glue, general ether-based inhalants, ecstasy and oxy. Data were subjected to descriptive analysis, and Pearson's χ² test and logistic regression was used in the multivariate analysis. The use of illicit drugs at least once in life was reported by 7.3% (95%CI 5.3 - 9.4) of the respondents. Logistic regression was used for multivariate analysis and the evidences suggest that illicit drug use is associated to social conditions of greater consumption power, the use of alcohol and tobacco, behaviors related to socialization, such as having friends or sexual activity, and also the perception of loneliness, loose contact between school and parents and experiences of abuse in the family environment. The outcome was inversely associated with close contact with parents and parental supervision. In addition to the association with the processes of socialization and consumption, the influence of family and school is expressed in a particularly protective manner in different records of direct supervision and care.
Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations
Levine, J. S.; Summers, M. E.; Ewell, M.
2010-01-01
The detection of methane (CH4) in the atmosphere of Mars by Mars Express and Earth-based spectroscopy is very surprising, very puzzling, and very intriguing. On Earth, about 90% of atmospheric ozone is produced by living systems. A major question concerning methane on Mars is its origin - biological or geological. Thermodynamic equilibrium calculations indicated that methane cannot be produced by atmospheric chemical/photochemical reactions. Thermodynamic equilibrium calculations for three gases, methane, ammonia (NH3) and nitrous oxide (N2O) in the Earth s atmosphere are summarized in Table 1. The calculations indicate that these three gases should not exist in the Earth s atmosphere. Yet they do, with methane, ammonia and nitrous oxide enhanced 139, 50 and 12 orders of magnitude above their calculated thermodynamic equilibrium concentration due to the impact of life! Thermodynamic equilibrium calculations have been performed for the same three gases in the atmosphere of Mars based on the assumed composition of the Mars atmosphere shown in Table 2. The calculated thermodynamic equilibrium concentrations of the same three gases in the atmosphere of Mars is shown in Table 3. Clearly, based on thermodynamic equilibrium calculations, methane should not be present in the atmosphere of Mars, but it is in concentrations approaching 30 ppbv from three distinct regions on Mars.
Dabanlı, İsmail; Şen, Zekai
2018-04-01
The statistical climate downscaling model by the Turkish Water Foundation (TWF) is further developed and applied to a set of monthly precipitation records. The model is structured by two phases as spatial (regional) and temporal downscaling of global circulation model (GCM) scenarios. The TWF model takes into consideration the regional dependence function (RDF) for spatial structure and Markov whitening process (MWP) for temporal characteristics of the records to set projections. The impact of climate change on monthly precipitations is studied by downscaling Intergovernmental Panel on Climate Change-Special Report on Emission Scenarios (IPCC-SRES) A2 and B2 emission scenarios from Max Plank Institute (EH40PYC) and Hadley Center (HadCM3). The main purposes are to explain the TWF statistical climate downscaling model procedures and to expose the validation tests, which are rewarded in same specifications as "very good" for all stations except one (Suhut) station in the Akarcay basin that is in the west central part of Turkey. Eventhough, the validation score is just a bit lower at the Suhut station, the results are "satisfactory." It is, therefore, possible to say that the TWF model has reasonably acceptable skill for highly accurate estimation regarding standard deviation ratio (SDR), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS) criteria. Based on the validated model, precipitation predictions are generated from 2011 to 2100 by using 30-year reference observation period (1981-2010). Precipitation arithmetic average and standard deviation have less than 5% error for EH40PYC and HadCM3 SRES (A2 and B2) scenarios.
Vertical field and equilibrium calculation in ETE
International Nuclear Information System (INIS)
Montes, Antonio; Shibata, Carlos Shinya.
1996-01-01
The free-boundary MHD equilibrium code HEQ is used to study the plasma behaviour in the tokamak ETE, with optimized compensations coils and vertical field coils. The changes on the equilibrium parameters for different plasma current values are also investigated. (author). 5 refs., 4 figs., 2 tabs