A finite state projection algorithm for the stationary solution of the chemical master equation
Gupta, Ankit; Mikelson, Jan; Khammash, Mustafa
2017-10-01
The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash [J. Chem. Phys. 124(4), 044104 (2006)], to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantized tensor-train implementation of our sFSP method, problems admitting more than 100 × 106 states can be efficiently solved.
Solution of the stationary state of the PWR MOX/UO-2 core transient benchmark
Energy Technology Data Exchange (ETDEWEB)
Seubert, A.; Langenbuch, S.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS mbH, Forschungsinstitute, D-85748 Garching (Germany)
2006-07-01
The multi-group Discrete Ordinates transport code DORT is applied to solve the stationary state of the OECD/NEA PWR MOX/UO-2 Core Transient Benchmark. Pin cell homogenised cross sections in 16 energy groups and P{sub 1} scattering order have been obtained by fuel assembly burn-up calculations using HELIOS. In this paper, we report on the details of our calculations for this benchmark problem and show our results to be in good agreement with an MCNP Monte Carlo solution with nuclear point data and a multi-group DeCART Method of Characteristics solution. (authors)
Stability of Stationary Solutions of the Multifrequency Radiation Diffusion Equations
Energy Technology Data Exchange (ETDEWEB)
Hald, O H; Shestakov, A I
2004-01-20
A nondimensional model of the multifrequency radiation diffusion equation is derived. A single material, ideal gas, equation of state is assumed. Opacities are proportional to the inverse of the cube of the frequency. Inclusion of stimulated emission implies a Wien spectrum for the radiation source function. It is shown that the solutions are uniformly bounded in time and that stationary solutions are stable. The spatially independent solutions are asymptotically stable, while the spatially dependent solutions of the linearized equations approach zero.
Stationary solutions and Neumann boundary conditions in the Sivashinsky equation.
Denet, Bruno
2006-09-01
New stationary solutions of the (Michelson) Sivashinsky equation of premixed flames are obtained numerically in this paper. Some of these solutions, of the bicoalescent type recently described by Guidi and Marchetti, are stable with Neumann boundary conditions. With these boundary conditions, the time evolution of the Sivashinsky equation in the presence of a moderate white noise is controlled by jumps between stationary solutions.
STABLE STATIONARY STATES OF NON-LOCAL INTERACTION EQUATIONS
FELLNER, KLEMENS
2010-12-01
In this paper, we are interested in the large-time behaviour of a solution to a non-local interaction equation, where a density of particles/individuals evolves subject to an interaction potential and an external potential. It is known that for regular interaction potentials, stable stationary states of these equations are generically finite sums of Dirac masses. For a finite sum of Dirac masses, we give (i) a condition to be a stationary state, (ii) two necessary conditions of linear stability w.r.t. shifts and reallocations of individual Dirac masses, and (iii) show that these linear stability conditions imply local non-linear stability. Finally, we show that for regular repulsive interaction potential Wε converging to a singular repulsive interaction potential W, the Dirac-type stationary states ρ̄ ε approximate weakly a unique stationary state ρ̄ ∈ L∞. We illustrate our results with numerical examples. © 2010 World Scientific Publishing Company.
Instability of stationary states in nonlinear Schroedinger or Klein-Gordon equations
Energy Technology Data Exchange (ETDEWEB)
Berestycki, H.; Cazenave, T. (Universite Pierre et Marie Curie, Paris (France))
1981-11-09
In this note, we prove the instability of stationary states for the Schroedinger equation and for the Klein-Gordon equation. Here, u(x) is a ground state solution of the nonlinear scalar field equation -..delta..u+..omega..u=g(u) in Rsup(N). Indeed, under certain assumptions on g, we show that there exist initial conditions, arbitrarily close to the stationary states, such that the solutions of these equations blow up in finite time.
Self-organized stationary states of tokamaks
Jardin, Stephen
2015-11-01
We report here on a nonlinear mechanism that forms and maintains a self-organized stationary (sawtooth free) state in tokamaks. This process was discovered by way of extensive long-time simulations using the M3D-C1 3D extended MHD code in which new physics diagnostics have been added. It is well known that most high-performance modes of tokamak operation undergo ``sawtooth'' cycles, in which the peaking of the toroidal current density triggers a periodic core instability which redistributes the current density. However, certain modes of operation are known, such as the ``hybrid'' mode in DIII-D, ASDEX-U, JT-60U and JET, and the long-lived modes in NSTX and MAST, which do not experience this cycle of instability. Empirically, it is observed that these modes maintain a non-axisymmetric equilibrium which somehow limits the peaking of the toroidal current density. The physical mechanism responsible for this has not previously been understood, but is often referred to as ``flux-pumping,'' in which poloidal flux is redistributed in order to maintain q0 >1. In this talk, we show that in long-time simulations of inductively driven plasmas, a steady-state magnetic equilibrium may be obtained in which the condition q0 >1 is maintained by a dynamo driven by a stationary marginal core interchange mode. This interchange mode, unstable because of the pressure gradient in the ultra-low shear region in the center region, causes a (1,1) perturbation in both the electrostatic potential and the magnetic field, which nonlinearly cause a (0,0) component in the loop voltage that acts to sustain the configuration. This hybrid mode may be a preferred mode of operation for ITER. We present parameter scans that indicate when this sawtooth-free operation can be expected.
Thermodynamical description of stationary, asymptotically flat solutions with conical singularities
Herdeiro, Carlos; Rebelo, Carmen
2010-01-01
We examine the thermodynamical properties of a number of asymptotically flat, stationary (but not static) solutions having conical singularities, with both connected and non-connected event horizons, using the thermodynamical description recently proposed in arXiv:0912.3386 [gr-qc]. The examples considered are the double-Kerr solution, the black ring rotating in either S^2 or S^1 and the black Saturn, where the balance condition is not imposed for the latter two solutions. We show that not only the Bekenstein-Hawking area law is recovered from the thermodynamical description but also the thermodynamical angular momentum is the ADM angular momentum. We also analyse the thermodynamical stability and show that, for all these solutions, either the isothermal moment of inertia or the specific heat at constant angular momentum is negative, at any point in parameter space. Therefore, all these solutions are thermodynamically unstable in the grand canonical ensemble.
On the Gross–Pitaevskii Equation with Pumping and Decay: Stationary States and Their Stability
Sierra Nunez, Jesus Alfredo
2015-02-11
We investigate the behavior of solutions of the complex Gross–Pitaevskii equation, a model that describes the dynamics of pumped decaying Bose–Einstein condensates. The stationary radially symmetric solutions of the equation are studied, and their linear stability with respect to two-dimensional perturbations is analyzed. Using numerical continuation, we calculate not only the ground state of the system, but also a number of excited states. Accurate numerical integration is employed to study the general nonlinear evolution of the system from the unstable stationary solutions to the formation of stable vortex patterns.
Energy Technology Data Exchange (ETDEWEB)
Xolocostli M, V.; Valle G, E. del [IPN-ESFM, 07738 Mexico D.F. (Mexico); Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: xvicente@hotmail.com
2003-07-01
In this work it is described the development and the application of the NH-FEM schemes, Hybrid Nodal schemes using the Finite Element method in the solution of the neutron transport equation in stationary state and X Y geometry, of which two families of schemes were developed, one of which corresponds to the continuous and the other to the discontinuous ones, inside those first its are had the Bi-Quadratic Bi Q, and to the Bi-cubic BiC, while for the seconds the Discontinuous Bi-lineal DBiL and the Discontinuous Bi-quadratic DBiQ. These schemes were implemented in a program to which was denominated TNHXY, Transport of neutrons with Hybrid Nodal schemes in X Y geometry. One of the immediate applications of the schemes NH-FEM it will be in the analysis of assemblies of nuclear fuel, particularly of the BWR type. The validation of the TNHXY program was made with two test problems or benchmark, already solved by other authors with numerical techniques and to compare results. The first of them consists in an it BWR fuel assemble in an arrangement 7x7 without rod and with control rod providing numerical results. The second is a fuel assemble of mixed oxides (MOX) in an arrangement 10x10. This last problem it is known as the Benchmark problem WPPR of the NEA Data Bank and the results are compared with those of other commercial codes as HELIOS, MCNP-4B and CPM-3. (Author)
Entanglement in stationary nonequilibrium states at high energies
Znidaric, Marko
2011-01-01
In recent years it has been found that quantum systems can posses entanglement in equilibrium thermal states provided temperature is low enough. In the present work we explore a possibility of having entanglement in nonequilibrium stationary states. We show analytically that, in a simple one-dimensional spin chain, there is entanglement even at highest attainable energies; that is, starting from an equilibrium state at infinite temperature, a sufficiently strong driving can induce entanglemen...
Actual Stationary State for Plasma Lens
Zadorozhny, Vladimir F; Parsa, Zohreh
2005-01-01
The electrostatic plasma lens (PL) provides an attractive and unique tool for manipulating high-current heavy ion beams. The fundamental concept of the PL is based on the use of magnetically insulated electrons and equipotentialization of magnetic field lines. Rigorous application of PL is, however, limited. The reason is the estimation behaviour of electrons for complicated magnetic fields runs into severe difficults.We show that there are specific conditions that admit steady-state of a longitudinal motion, and consider a question of it stability. These results are needed to develop an optimized PL with minimal spherical aberation, in party by optimization of the magnetic field conficuration in the low-magnetic-field range.
On the Existence of Solutions for Stationary Mean-Field Games with Congestion
Evangelista, David
2017-09-11
Mean-field games (MFGs) are models of large populations of rational agents who seek to optimize an objective function that takes into account their location and the distribution of the remaining agents. Here, we consider stationary MFGs with congestion and prove the existence of stationary solutions. Because moving in congested areas is difficult, agents prefer to move in non-congested areas. As a consequence, the model becomes singular near the zero density. The existence of stationary solutions was previously obtained for MFGs with quadratic Hamiltonians thanks to a very particular identity. Here, we develop robust estimates that give the existence of a solution for general subquadratic Hamiltonians.
Stationary flow solution for water levels in open channels
Opheusden, van J.H.J.; Molenaar, J.; Beltman, W.H.J.; Adriaanse, P.I.
2010-01-01
We study stationary flow in open discharge channels. A model is derived from basic principles, which is solved numerically for the water level and discharge as a function of position along the channel. The model describes the effect of external inflow from fields adjacent to the channel. Several
Inferring Microscopic Kinetic Rates from Stationary State Distributions.
Dixit, Purushottam D; Dill, Ken A
2014-08-12
We present a principled approach for estimating the matrix of microscopic transition probabilities among states of a Markov process, given only its stationary state population distribution and a single average global kinetic observable. We adapt Maximum Caliber, a variational principle in which the path entropy is maximized over the distribution of all possible trajectories, subject to basic kinetic constraints and some average dynamical observables. We illustrate the method by computing the solvation dynamics of water molecules from molecular dynamics trajectories.
On the eigenvalue-eigenvector method for solution of the stationary discrete matrix Riccati equation
DEFF Research Database (Denmark)
Michelsen, Michael Locht
1979-01-01
The purpose of this correspondence is to point out that certain numerical problems encountered in the solution of the stationary discrete matrix Riccati equation by the eigenvalue-eigenvector method of Vanghan [1] can be avoided by a simple reformulation.......The purpose of this correspondence is to point out that certain numerical problems encountered in the solution of the stationary discrete matrix Riccati equation by the eigenvalue-eigenvector method of Vanghan [1] can be avoided by a simple reformulation....
Entanglement in stationary nonequilibrium states at high energies
Žnidarič, Marko
2012-01-01
In recent years it has been found that quantum systems can posses entanglement in equilibrium thermal states provided temperature is low enough. In the present work we explore a possibility of having entanglement in nonequilibrium stationary states. We show analytically that, in a simple one-dimensional spin chain, there is entanglement even at the highest attainable energies; that is, starting from an equilibrium state at infinite temperature, a sufficiently strong driving can induce entanglement, even in the thermodynamic limit. We also show that dissipative dephasing, on the other hand, destroys entanglement.
A weak energy stationary action principle for quantum state evolution
Parks, A. D.
2003-06-01
It is shown that the actual paths in Hilbert space followed by a finite set of n geq 2 quantum states evolving between initial and final end point configurations are such that an associated weak energy functional defined by Pancharatnam phases and state separation distances in projective Hilbert space determined by the generalized Fubini-Study metric is stationary for all variations of these phases, separations and time which vanish at the end points. Noether's theorem is used to identify two weak energy conservation laws which are shown to be the analogues of the momentum and energy conservation laws of Langrangian mechanics.
A weak energy stationary action principle for quantum state evolution
Energy Technology Data Exchange (ETDEWEB)
Parks, A D [Quantum Processing Group, Systems Research and Technology Department, Naval Surface Warfare Center, Dahlgren, VA 22448 (United States)
2003-06-27
It is shown that the actual paths in Hilbert space followed by a finite set of n {>=} 2 quantum states evolving between initial and final end point configurations are such that an associated weak energy functional defined by Pancharatnam phases and state separation distances in projective Hilbert space determined by the generalized Fubini-Study metric is stationary for all variations of these phases, separations and time which vanish at the end points. Noether's theorem is used to identify two weak energy conservation laws which are shown to be the analogues of the momentum and energy conservation laws of Langrangian mechanics.
Traffic State Estimation Using Connected Vehicles and Stationary Detectors
Directory of Open Access Journals (Sweden)
Ellen F. Grumert
2018-01-01
Full Text Available Real-time traffic state estimation is of importance for efficient traffic management. This is especially the case for traffic management systems that require fast detection of changes in the traffic conditions in order to apply an effective control measure. In this paper, we propose a method for estimating the traffic state and speed and density, by using connected vehicles combined with stationary detectors. The aim is to allow fast and accurate estimation of changes in the traffic conditions. The proposed method does only require information about the speed and the position of connected vehicles and can make use of sparsely located stationary detectors to limit the dependence on the infrastructure equipment. An evaluation of the proposed method is carried out by microscopic traffic simulation. The traffic state estimated using the proposed method is compared to the true simulated traffic state. Further, the density estimates are compared to density estimates from one detector-based method, one combined method, and one connected-vehicle-based method. The results of the study show that the proposed method is a promising alternative for estimating the traffic state in traffic management applications.
Explicit solutions of one-dimensional, first-order, stationary mean-field games with congestion
Gomes, Diogo A.
2017-01-05
Here, we consider one-dimensional first-order stationary mean-field games with congestion. These games arise when crowds face difficulty moving in high-density regions. We look at both monotone decreasing and increasing interactions and construct explicit solutions using the current formulation. We observe new phenomena such as discontinuities, unhappiness traps and the non-existence of solutions.
Stationary bound states of Dirac particles in collapsar's fields
Gorbatenko, M. V.; Neznamov, V. P.
2012-03-01
For a Schwarzschild gravitational field by use of a self-conjugate Hamiltonian with a flat scalar product in a wide interval of gravitational constant stationary non-decaiing in time bound states for spin 1/2 elementary particles have been obtained for a first time. To obtain a discrete energies spectrum a boundary condition was introduced, corresponding to null current density of Dirac partciles near the events horizon. The results obtained could lead to reevaluation of some existing representations of the standart cosmological model, related with the Universe's evolution and with collapsars interactions with encountering media.
Stability of stationary states of non-local equations with singular interaction potentials
Fellner, Klemens
2011-04-01
We study the large-time behaviour of a non-local evolution equation for the density of particles or individuals subject to an external and an interaction potential. In particular, we consider interaction potentials which are singular in the sense that their first derivative is discontinuous at the origin.For locally attractive singular interaction potentials we prove under a linear stability condition local non-linear stability of stationary states consisting of a finite sum of Dirac masses. For singular repulsive interaction potentials we show the stability of stationary states of uniformly bounded solutions under a convexity condition.Finally, we present numerical simulations to illustrate our results. © 2010 Elsevier Ltd.
Liu, Qun; Jiang, Daqing; Hayat, Tasawar; Ahmad, Bashir
2017-09-01
In this paper, we investigate two stochastic SIR epidemic models with higher order perturbation. For the nonautonomous periodic case of the model, by using Has'minskii's theory of periodic solution, we show that the system has at least one nontrivial positive T-periodic solution. For the system disturbed by both the white noise and telephone noise, we establish sufficient conditions for positive recurrence and the existence of ergodic stationary distribution of the positive solution.
Directory of Open Access Journals (Sweden)
Wan-Tong Li
2012-12-01
Full Text Available In the previous article [Y.-X. Wang and W.-T. Li, J. Differential Equations, 251 (2011 1670-1695], the authors have shown that the set of positive stationary solutions of a cross-diffusive Lotka-Volterra cooperative system can form an unbounded fish-hook shaped branch $Gamma_p$. In the present paper, we will show some criteria for the stability of positive stationary solutions on $Gamma_p$. Our results assert that if $d_1/d_2$ is small enough, then unstable positive stationary solutions bifurcate from semitrivial solutions, the stability changes only at every turning point of $Gamma_p$ and no Hopf bifurcation occurs. While as $d_1/d_2$ becomes large, the stability has a drastic change when $mu<0$ in the supercritical case. Original stable positive stationary solutions at certain point may lose their stability, and Hopf bifurcation can occur. These results are very different from those of the spatially homogeneous case.
Directory of Open Access Journals (Sweden)
Hynek Lavička
2013-12-01
Full Text Available In this work, we investigate the Model of Employment, Production and Consumption, as introduced in a series of papers by I. Wright [1–3] from the perspective of statistical physics, and we focus on the presence of equilibrium. The model itself belongs to the class of multi-agent computational models, which aim to explain macro-economic behavior using explicit micro-economic interactions.Based on the mean-field approximation, we form the Fokker-Plank equation(s and then formulate conditions forming the stationary solution, which results in a system of non-linear integral-differential equations. This approximation then allows the presence of non-equilibrium stationary states, where the model is a mixed additive-multiplicative model.
Stationary states and dynamics of superconducting thin films
DEFF Research Database (Denmark)
Ögren, Magnus; Sørensen, Mads Peter; Pedersen, Niels Falsig
The Ginzburg-Landau (GL) theory is a celebrated tool for theoretical modelling of superconductors [1]. We elaborate on different partial differential equations (PDEs) and boundary conditions for GL theory, formulated within the finite element method (FEM) [2]. Examples of PDEs for the calculation...... of stationary states with the GL equation and with the time-dependent GL equation are given. Moreover we study real time evolution with the so called Schrödinger-GL equation [3]. For simplicity we here present numerical data for a twodimensional rectangular geometry, but we emphasize that our FEM formulation...... can handle complex geometries also in a three-dimensional superconducting structure. To include external currents in our modelling we discuss the role of the boundary conditions for the external magnetic field [4]. Finally we show results for the pinning of vortices with controlled impurities....
Free energy for non-equilibrium quasi-stationary states
Allahverdyan, A. E.; Martirosyan, N. H.
2017-03-01
We study a class of non-equilibrium quasi-stationary states for a Markov system interacting with two different thermal baths. We show that the work done under a slow, external change of parameters admits a potential, i.e., the free energy. Three conditions are needed for the existence of free energy in this non-equilibrium system: time-scale separation between variables of the system, partial controllability (external fields couple only with the slow variable), and an effective detailed balance. These conditions are facilitated in the continuous limit for the slow variable. In contrast to its equilibrium counterpart, the non-equilibrium free energy can increase with temperature. One example of this is that entropy reduction by means of external fields (cooling) can be easier (in the sense of the work cost) if it starts from a higher temperature.
On the asymptotic behaviour of 2D stationary Navier-Stokes solutions with symmetry conditions
Decaster, Agathe; Iftimie, Dragoş
2017-10-01
We consider the 2D stationary incompressible Navier-Stokes equations in ℝ2. Under suitable symmetry, smallness and decay at infinity conditions on the forcing we determine the behaviour at infinity of the solutions. Moreover, when the forcing is small, satisfies suitable symmetry conditions and decays at infinity like a vector field homogeneous of degree -3, we show that there exists a unique small solution whose asymptotic behaviour at infinity is homogeneous of degree -1.
Directory of Open Access Journals (Sweden)
Holger Cartarius
2013-01-01
Full Text Available We investigate the Gross-Pitaevskii equation for a Bose-Einstein condensate in a PT symmetric double-well potential by means of the time-dependent variational principle and numerically exact solutions. A one-dimensional and a fully three-dimensional setup are used. Stationary states are determined and the propagation of wave function is investigated using the time-dependent Gross-Pitaevskii equation. Due to the nonlinearity of the Gross-Pitaevskii equation the potential dependson the wave function and its solutions decide whether or not the Hamiltonian itself is PT symmetric. Stationary solutions with real energy eigenvalues fulfilling exact PT symmetry are found as well as PT broken eigenstates with complex energies. The latter describe decaying or growing probability amplitudes and are not true stationary solutions of the time-dependent Gross-Pitaevskii equation. However, they still provide qualitative information about the time evolution of the wave functions.
THE WIGNER–FOKKER–PLANCK EQUATION: STATIONARY STATES AND LARGE TIME BEHAVIOR
ARNOLD, ANTON
2012-11-01
We consider the linear WignerFokkerPlanck equation subject to confining potentials which are smooth perturbations of the harmonic oscillator potential. For a certain class of perturbations we prove that the equation admits a unique stationary solution in a weighted Sobolev space. A key ingredient of the proof is a new result on the existence of spectral gaps for FokkerPlanck type operators in certain weighted L 2-spaces. In addition we show that the steady state corresponds to a positive density matrix operator with unit trace and that the solutions of the time-dependent problem converge towards the steady state with an exponential rate. © 2012 World Scientific Publishing Company.
On the existence of classical solutions for stationary extended mean field games
Gomes, Diogo A.
2014-04-01
In this paper we consider extended stationary mean-field games, that is mean-field games which depend on the velocity field of the players. We prove various a-priori estimates which generalize the results for quasi-variational mean-field games in Gomes et al. (2012). In addition we use adjoint method techniques to obtain higher regularity bounds. Then we establish the existence of smooth solutions under fairly general conditions by applying the continuity method. When applied to standard stationary mean-field games as in Lasry and Lions (2006), Gomes and Sanchez-Morgado (2011) or Gomes et al. (2012) this paper yields various new estimates and regularity properties not available previously. We discuss additionally several examples where the existence of classical solutions can be proved. © 2013 Elsevier Ltd. All rights reserved.
Stationary solutions and self-trapping in discrete quadratic nonlinear systems
DEFF Research Database (Denmark)
Bang, Ole; Christiansen, Peter Leth; Clausen, Carl A. Balslev
1998-01-01
We consider the simplest equations describing coupled quadratic nonlinear (chi((2))) systems, which each consists of a fundamental mode resonantly interacting with its second harmonic. Such discrete equations apply, e.g., to optics, where they can describe arrays of chi((2)) waveguides...... the nonintegrable dimer reduce to the discrete nonlinear Schrodinger (DNLS) equation with two degrees of freedom, which is integrable. We show how the stationary solutions to the two systems correspond to each other and how the self-trapped DNLS solutions gradually develop chaotic dynamics in the chi((2)) system...
Theory of periodic solutions of the stationary Landau-Lifshitz equation
Energy Technology Data Exchange (ETDEWEB)
Bar' yakhtar, V.G.; Leonov, I.A.; Soboleva, T.K.
1987-04-01
In the phenomenological approach, quasi-one-dimensional structures in a magnet of a definite symmetry are described by solutions of the stationary Landau-Lifshitz equation or, equivalently, by the solutions of a variational problem with Lagrangian L whose actual form is determined by the requirement of invariance with respect to the symmetry group of the paramagnetic phase of the given magnet. In the present note, the methods of the variational calculus in the large are used to estimate the number of possible magnetic phases with periodic superstructure corresponding to a given free energy functional of the magnet.
Stationary-state mutagenesis in Escherichia coli: a model
Indian Academy of Sciences (India)
Stationary-phase mutagenesis in nondividing E. coli cells exposed to a nonlethal stress was, a few years ago, claimed to be a likely case of a Lamarckian mechanism capable of producing exclusively useful mutations in a directed manner. After a heated debate over the last decade it now appears to involve a Darwinian ...
Solution-phase synthesis and evaluation of tetraproline chiral stationary phases.
Dai, Zhi; Ye, Guozhong; Pittman, Charles U; Li, Tingyu
2012-04-01
A protocol was developed for the solution-phase synthesis of multigram amounts of two 9-fluorenylmethoxycarbonyl (Fmoc)-protected tetraproline peptides. These tetraproline peptides were then attached to amino derivatized silica gel. The replacement of the Fmoc group with the trimethylacetyl group lead to two tetraproline chiral stationary phases (CSPs). A comparison of the chromatographic behavior of these two solution-phase-synthesized tetraproline CSPs with that prepared by stepwise solid-phase synthesis revealed that all three had similar chromatographic performance for resolving 53 model analytes. This suggests that the solution-phase synthesis of oligoprolines, which allows for the specific benefits of good batch reproducibility, selector homogeneity, and possibly low cost, is a feasible alternative to the solid-phase synthesis of oligoproline CSPs. Copyright © 2012 Wiley Periodicals, Inc.
Numerical Solution of Problem for Non-Stationary Heat Conduction in Multi-Layer Bodies
Directory of Open Access Journals (Sweden)
R. I. Еsman
2007-01-01
Full Text Available A mathematical model for non-stationary heat conduction of multi-layer bodies has been developed. Dirac’s δ-function is used to take into account phase and chemical transformations in one of the wall layers. While formulating a problem non-linear heat conduction equations have been used with due account of dependence of thermal and physical characteristics on temperature. Solution of the problem is realized with the help of methods of a numerical experiment and computer modeling.
Bonetto, F; Daems, D; Lebowitz, J L; Ricci, V
2002-05-01
We study the stationary nonequilibrium states of N-point particles moving under the influence of an electric field E among fixed obstacles (disk) in a two-dimensional torus. The total kinetic energy of the system is kept constant through a Gaussian thermostat that produces a velocity dependent mean field interaction between the particles. The current and the particle distribution functions are obtained numerically and compared for small /E/ with analytic solutions of a Boltzmann-type equation obtained by treating the collisions with the obstacles as random independent scatterings. The agreement is surprisingly good for both small and large N. The latter system in turn agrees with a self-consistent one-particle evolution expected to hold in the N-->infinity limit.
Energy Technology Data Exchange (ETDEWEB)
Silva A, L.; Del Valle G, E., E-mail: evalle@ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)
2012-10-15
This work shows an application of the program COMSOL Multi physics Ver. 4.2a in the solution of the neutron diffusion equations for several energy groups in nuclear reactors whose core is formed by assemblies of hexagonal transversal cut as is the cas of fast reactors. A reference problem of 4 energy groups is described of which takes the cross sections which are processed by means of a program that prepares the definition of the constants utilized in COMSOL for the generic partial differential equations that this uses. The considered solution domain is the sixth part of the core which is applied frontier conditions of reflection and incoming flux zero. The discretization mesh is elaborated in automatic way by COMSOL and the solution method is one of finite elements of Lagrange grade two. The reference problem is known as the Knk with and without control rod which led to propose the calculation of the effective multiplication factor in function of the control rod fraction from a value 0 (completely inserted control rod) until the value 1 (completely extracted control rod). Besides this the reactivity was determined as well as the change of this in function of control rod fraction. The neutrons scalar flux for each energy group with and without control rod is proportioned. The reported results show a behavior similar to the one reported in other works but using the discreet ordinates S{sub 2} approximation. (Author)
Stationary radial solutions for a quasilinear Cahn-Hilliard model in N space dimensions
Directory of Open Access Journals (Sweden)
Peter Takac
2009-04-01
Full Text Available We study the Neumann boundary value problem for stationary radial solutions of a quasilinear Cahn-Hilliard model in a ball $B_R(mathbf{0}$ in $mathbb{R}^N$. We establish new results on the existence, uniqueness, and multiplicity (by "branching" of such solutions. We show striking differences in pattern formation produced by the Cahn-Hilliard model with the p-Laplacian and a $C^{1,alpha}$ potential ($0
Quasi-periodic non-stationary solutions of 3D Euler equations for incompressible flow
Ershkov, Sergey V
2015-01-01
A novel derivation of non-stationary solutions of 3D Euler equations for incompressible inviscid flow is considered here. Such a solution is the product of 2 separated parts: - one consisting of the spatial component and the other being related to the time dependent part. Spatial part of a solution could be determined if we substitute such a solution to the equations of motion (equation of momentum) with the requirement of scale-similarity in regard to the proper component of spatial velocity. So, the time-dependent part of equations of momentum should depend on the time-parameter only. The main result, which should be outlined, is that the governing (time-dependent) ODE-system consist of 2 Riccati-type equations in regard to each other, which has no solution in general case. But we obtain conditions when each component of time-dependent part is proved to be determined by the proper elliptical integral in regard to the time-parameter t, which is a generalization of the class of inverse periodic functions.
Overview of commercialization of stationary fuel cell power plants in the United States
Energy Technology Data Exchange (ETDEWEB)
Hooie, D.T.; Williams, M.C.
1995-07-01
In this paper, DOE`s efforts to assist private sector organizations to develop and commercialize stationary fuel cell power plants in the United States are discussed. The paper also provides a snapshot of the status of stationary power fuel cell development occurring in the US, addressing all fuel cell types. This paper discusses general characteristics, system configurations, and status of test units and demonstration projects. The US DOE, Morgantown Energy Technology Center is the lead center for implementing DOE`s program for fuel cells for stationary power.
Formal Solution of the Fourth Order Killing equations for Stationary Axisymmetric Vacuum Spacetimes
Brink, Jeandrew
2009-01-01
An analytic understanding of the geodesic structure around non-Kerr spacetimes will result in a powerful tool that could make the mapping of spacetime around massive quiescent compact objects possible. To this end, I present an analytic closed form expression for the components of a the fourth order Killing tensor for Stationary Axisymmetric Vacuum (SAV) Spacetimes. It is as yet unclear what subset of SAV spacetimes admit this solution. The solution is written in terms of an integral expression involving the metric functions and two specific Greens functions. A second integral expression has to vanish in order for the solution to be exact. In the event that the second integral does not vanish it is likely that the best fourth order approximation to the invariant has been found. This solution can be viewed as a generalized Carter constant providing an explicit expression for the fourth invariant, in addition to the energy, azimuthal angular momentum and rest mass, associated with geodesic motion in SAV spaceti...
Smirnov, A. M.; Golinskaya, A. D.; Ezhova, K. V.; Kozlova, M. V.; Mantsevich, V. N.; Dneprovskii, V. S.
2017-11-01
Peculiarities of the nonlinear absorption of a colloidal solution of CdSe/ZnS quantum dots with various sizes under resonant stationary excitation of the ground electron-hole (exciton) transition have been revealed by the pump and probe technique. The detected peculiarities of the nonlinear change in absorption are explained by the coexistence and competition of the effects of state filling and charge-induced Stark and temperature long-wavelength shift of the absorption spectra.
Directory of Open Access Journals (Sweden)
Liubov A Dadinova
Full Text Available The structural analyses of four metabolic enzymes that maintain and regulate the stationary growth phase of Escherichia coli have been performed primarily drawing on the results obtained from solution small angle X-ray scattering (SAXS and other structural techniques. The proteins are (i class I fructose-1,6-bisphosphate aldolase (FbaB; (ii inorganic pyrophosphatase (PPase; (iii 5-keto-4-deoxyuronate isomerase (KduI; and (iv glutamate decarboxylase (GadA. The enzyme FbaB, that until now had an unknown structure, is predicted to fold into a TIM-barrel motif that form globular protomers which SAXS experiments show associate into decameric assemblies. In agreement with previously reported crystal structures, PPase forms hexamers in solution that are similar to the previously reported X-ray crystal structure. Both KduI and GadA that are responsible for carbohydrate (pectin metabolism and acid stress responses, respectively, form polydisperse mixtures consisting of different oligomeric states. Overall the SAXS experiments yield additional insights into shape and organization of these metabolic enzymes and further demonstrate the utility of hybrid methods, i.e., solution SAXS combined with X-ray crystallography, bioinformatics and predictive 3D-structural modeling, as tools to enrich structural studies. The results highlight the structural complexity that the protein components of metabolic networks may adopt which cannot be fully captured using individual structural biology techniques.
Yavorskii, N. I.
2017-09-01
Magnetohydrodynamic (MHD) flow of a viscous electrically conducting incompressible fluid between two stationary impermeable disks is considered. A homogeneous electric current density vector normal to the surface is specified on the upper disk, and the lower disk is nonconducting. The exact von Karman solution of the complete system of MHD equations is studied in which the axial velocity and the magnetic field depend only on the axial coordinate. The problem contains two dimensionless parameters: the electric current density on the upper plate Y and the Batchelor number (magnetic Prandtl number). It is assumed that there is no external source that produces an axial magnetic field. The problem is solved for a Batchelor number of 0-2. Fluid flow is caused by the electric current. It is shown that for small values of Y, the fluid velocity vector has only axial and radial components. The velocity of motion increases with increasing Y, and at a critical value of Y, there is a bifurcation of the new steady flow regime with fluid rotation, while the flow without rotation becomes unstable. A feature of the obtained new exact solution is the absence of an axial magnetic field necessary for the occurrence of an azimuthal component of the ponderomotive force, as is the case in the MHD dynamo. A new mechanism for the bifurcation of rotation in MHD flow is found.
Directory of Open Access Journals (Sweden)
Bang-Yen Chen
2012-05-01
Full Text Available This article concerns the over-determined system of partial differential equations $$ Big(frac{k}{f}Big_x+Big(frac{f}{k}Big_y=0, quad frac{f_{y}}{k}=frac{k_x}{f},quad Big(frac{f_y}{k}Big_y+Big(frac{k_x}{f}Big_x=-varepsilon fk,. $$ It was shown in [6, Theorem 8.1] that this system with $varepsilon=0$ admits traveling wave solutions as well as non-traveling wave solutions. In this article we solve completely this system when $varepsilone 0$. Our main result states that this system admits only traveling wave solutions, whenever $varepsilon e 0$.
Stationary Distribution and Thermodynamic Relation in Nonequilibrium Steady States
Komatsu, Teruhisa S.
2010-01-01
We describe our recent attempts toward statistical mechanics and thermodynamics for nonequilibrium steady states (NESS) realized, e.g., in a heat conducting system. Our first result is a simple expression of the probability distribution (of microscopic states) of a NESS. Our second result is a natural extension of the thermodynamic Clausius relation and a definition of an accompanying entropy in NESS. This entropy coincides with the normalization constant appearing in the above mentioned microscopic expression of NESS, and has an expression similar to the Shannon entropy (with a further symmetrization). The NESS entropy proposed here is a clearly defined measurable quantity even in a system with a large degrees of freedom. We numerically measure the NESS entropy in hardsphere fluid systems with a heat current, by observing energy exchange between the system and the heat baths when the temperatures of the baths are changed according to specified protocols.
Dynamics of relaxation to a stationary state for interacting molecular motors
Gomes, Luiza V. F.; Kolomeisky, Anatoly B.
2018-01-01
Motor proteins are active enzymatic molecules that drive a variety of biological processes, including transfer of genetic information, cellular transport, cell motility and muscle contraction. It is known that these biological molecular motors usually perform their cellular tasks by acting collectively, and there are interactions between individual motors that specify the overall collective behavior. One of the fundamental issues related to the collective dynamics of motor proteins is the question if they function at stationary-state conditions. To investigate this problem, we analyze a relaxation to the stationary state for the system of interacting molecular motors. Our approach utilizes a recently developed theoretical framework, which views the collective dynamics of motor proteins as a totally asymmetric simple exclusion process of interacting particles, where interactions are taken into account via a thermodynamically consistent approach. The dynamics of relaxation to the stationary state is analyzed using a domain-wall method that relies on a mean-field description, which takes into account some correlations. It is found that the system quickly relaxes for repulsive interactions, while attractive interactions always slow down reaching the stationary state. It is also predicted that for some range of parameters the fastest relaxation might be achieved for a weak repulsive interaction. Our theoretical predictions are tested with Monte Carlo computer simulations. The implications of our findings for biological systems are briefly discussed.
Some strange numerical solutions of the non-stationary Navier-Stokes equations in pipes
Energy Technology Data Exchange (ETDEWEB)
Rummler, B.
2001-07-01
A general class of boundary-pressure-driven flows of incompressible Newtonian fluids in three-dimensional pipes with known steady laminar realizations is investigated. Considering the laminar velocity as a 3D-vector-function of the cross-section-circle arguments, we fix the scale for the velocity by the L{sub 2}-norm of the laminar velocity. The usual new variables are introduced to get dimension-free Navier-Stokes equations. The characteristic physical and geometrical quantities are subsumed in the energetic Reynolds number Re and a parameter {psi}, which involves the energetic ratio and the directions of the boundary-driven part and the pressure-driven part of the laminar flow. The solution of non-stationary dimension-free Navier-Stokes equations is sought in the form u=u{sub L}+u, where u{sub L} is the scaled laminar velocity and periodical conditions in center-line-direction are prescribed for u. An autonomous system (S) of ordinary differential equations for the time-dependent coefficients of the spatial Stokes eigenfunction is got by application of the Galerkin-method to the dimension-free Navier-Stokes equations for u. The finite-dimensional approximations u{sub N({lambda}}{sub )} of u are defined in the usual way. (orig.)
Dinh, Ngoc Phuoc; Jonsson, Tobias; Irgum, Knut
2013-12-13
Since water associated with the stationary phase surface appears to be the essence of the retention mechanism in hydrophilic interaction chromatography (HILIC), we developed a method to characterize the water-absorbing capabilities of twelve different HILIC stationary phases. Adsorption isotherms for non-modified and monomerically functionalized silica phases adhered to a pattern of monolayer formation followed by multilayer adsorption, whereas water uptake on polymerically functionalized silica stationary phases showed the characteristics of formation and swelling of hydrogels. Water accumulation was affected by adding ammonium acetate as buffer electrolyte and by replacing 5% of the acetonitrile with tertiary solvents capable of hydrogen bonding such as methanol or tetrahydrofuran. The relationship between water uptake and retention mechanism was investigated by studying the correlations between retention factors of neutral analytes and the phase ratios of HILIC columns, calculated either from the surface area (adsorption) or the volume of the water layer enriched from the acetonitrile/water eluent (partitioning). These studies made it evident that adsorption and partitioning actually coexist as retention promoters for neutral solutes in the water concentration regime normally encountered in HILIC. Which factors that dominates is dependent on the nature of the solute, the stationary phase, and the eluting conditions. Copyright © 2013. Published by Elsevier B.V.
Energy Technology Data Exchange (ETDEWEB)
Bruckman, W.
1986-11-15
The inverse scattering method of Belinsky and Zakharov is used to investigate axially symmetric stationary vacuum soliton solutions in the five-dimensional representation of the Brans-Dicke-Jordan theory of gravitation, where the scalar field of the theory is an element of a five-dimensional metric. The resulting equations for the spacetime metric are similar to those of solitons in general relativity, while the scalar field generated is the product of a simple function of the coordinates and an already known scalar field solution. A family of solutions is considered that reduce, in the absence of rotation, to the five-dimensional form of a well-known Weyl-Levi Civita axially symmetric static vacuum solution. With a suitable choice of parameters, this static limit becomes equivalent to the spherically symmetric solution of the Brans-Dicke theory. An exact metric, in which the Kerr-scalar McIntosh solution is a special case, is given explicitly.
Lévy flights and nonhomogenous memory effects: Relaxation to a stationary state
Srokowski, Tomasz
2015-07-01
The non-Markovian stochastic dynamics involving Lévy flights and a potential in the form of a harmonic and nonlinear oscillator is discussed. The subordination technique is applied and the memory effects, which are nonhomogeneous, are taken into account by a position-dependent subordinator. In the nonlinear case, the asymptotic stationary states are found. The relaxation pattern to the stationary state is derived for the quadratic potential: the density decays like a linear combination of the Mittag-Leffler functions. It is demonstrated that in the latter case the density distribution satisfies a fractional Fokker-Planck equation. The densities for the nonlinear oscillator reveal a complex picture, qualitatively dependent on the potential strength, and the relaxation pattern is exponential at large time.
The quasilinear theory in the approach of long-range systems to quasi-stationary states
Campa, Alessandro; Chavanis, Pierre-Henri
2017-05-01
We develop a quasilinear theory of the Vlasov equation in order to describe the approach of systems with long-range interactions to quasi-stationary states. The quasilinear theory is based on the assumption that, although the initial distribution is not Vlasov stable, nevertheless its evolution towards a Vlasov stable stationary state is such that it is always only slightly inhomogeneous. We derive a diffusion equation governing the evolution of the velocity distribution of the system towards a steady state. This steady state is expected to correspond to the space-averaged quasi-stationary distribution function reached by the Vlasov equation as a result of a collisionless relaxation. We compare the prediction of the quasilinear theory to direct numerical simulations of the Hamiltonian mean field model, starting from an unstable spatially homogeneous distribution, either Gaussian or semi-elliptical. In the Gaussian case, we find that the quasilinear theory works reasonably well for weakly unstable initial conditions (i.e. close to the critical energy ε_c=3/4=0.75 ) and that it is able to predict the energy ε_t≃ 0.735 marking the effective out-of-equilibrium phase transition between unmagnetized and magnetized quasi-stationary states found in the numerical simulations. Similarly, the quasilinear theory works well for energies close to the instability threshold of the semi-elliptical case ε^*c =5/8=0.625 , and it predicts an effective out-of-equilibrium transition at εt≃ 0.619 . In both situations, the quasilinear theory works less well at energies lower than the out-of-equilibrium transition, the disagreement with the numerical simulations increasing with decreasing energy. In that case, we observe, in agreement with our previous numerical study (Campa and Chavanis 2013 Eur. Phys. J. B 86 170), that the quasi-stationary states are remarkably well fitted by polytropic distributions (Tsallis distributions) with index n = 2 (Gaussian case) or n
Non-stationary flow solution for water levels in open channels for TOXSWA
Opheusden, van J.H.J.; Molenaar, J.; Beltman, W.H.J.; Adriaanse, P.I.
2011-01-01
We study non-stationary flow in open discharge channels. A model is derived from basic principles, conservation of mass and momentum, which is solved numerically for the cross sectional area and discharge as a function of time and position along the channel. The model describes the effect of
Directory of Open Access Journals (Sweden)
Sami Baraket
2015-07-01
Full Text Available Let $\\Omega$ be a bounded domain in $\\mathbb{R}^4$ with smooth boundary, and let $x_1, x_2, \\dots, x_m $ be points in $\\Omega$. We are concerned with the singular stationary non-homogenous Kuramoto-Sivashinsky equation $$ \\Delta^2 u -\\gamma\\Delta u- \\lambda|\
Energy Technology Data Exchange (ETDEWEB)
Ceolin, C., E-mail: celina.ceolin@gmail.com [Universidade Federal de Santa Maria (UFSM), Frederico Westphalen, RS (Brazil). Centro de Educacao Superior Norte; Schramm, M.; Bodmann, B.E.J.; Vilhena, M.T., E-mail: celina.ceolin@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica
2015-07-01
Recently the stationary neutron diffusion equation in heterogeneous rectangular geometry was solved by the expansion of the scalar fluxes in polynomials in terms of the spatial variables (x; y), considering the two-group energy model. The focus of the present discussion consists in the study of an error analysis of the aforementioned solution. More specifically we show how the spatial subdomain segmentation is related to the degree of the polynomial and the Lipschitz constant. This relation allows to solve the 2-D neutron diffusion problem for second degree polynomials in each subdomain. This solution is exact at the knots where the Lipschitz cone is centered. Moreover, the solution has an analytical representation in each subdomain with supremum and infimum functions that shows the convergence of the solution. We illustrate the analysis with a selection of numerical case studies. (author)
Heat conduction and the nonequilibrium stationary states of stochastic energy exchange processes
Gilbert, Thomas
2017-08-01
I revisit the exactly solvable Kipnis-Marchioro-Presutti model of heat conduction (Kipnis et al 1982 J. Stat. Phys. 27 65) and describe, for one-dimensional systems of arbitrary sizes whose ends are in contact with thermal baths at different temperatures, a systematic characterisation of their non-equilibrium stationary states. These arguments avoid resorting to the analysis of a dual process and yield a straightforward derivation of Fourier’s law, as well as higher-order static correlations, such as the covariant matrix. The transposition of these results to families of gradient models generalising the KMP model is established and specific cases are examined.
Coherent control of quasi-degenerate stationary-like states via multiple resonances.
Luo, Yunrong; Hai, Kuo; Zou, Mingliang; Hai, Wenhua
2017-02-02
We use three bosons held in a depth-tilt combined-modulated double-well to study coherent control of quantum transitions between quasi-degenerate stationary-like states (QDSLSs) with the same quasienergy. Within the high-frequency approximation and for multiple-resonance conditions, we analytically obtain the different QDSLSs including the maximal bipartite entangled states, which enable us to manipulate the transitions between QDSLSs without the observable multiphoton absorption and to simulate a two-qubit system with the considered bosons. The analytical results are confirmed numerically and good agreement is shown. The quantum transitions between QDSLSs can be observed and controlled by adjusting the initial and the final atomic distributions in the currently proposed experimental setup, and possess potential applications in qubit control based on the bipartite entangled states and in engineering quantum dynamics for quantum information processing.
Directory of Open Access Journals (Sweden)
Matthias Sachs
2017-11-01
Full Text Available Langevin dynamics is a versatile stochastic model used in biology, chemistry, engineering, physics and computer science. Traditionally, in thermal equilibrium, one assumes (i the forces are given as the gradient of a potential and (ii a fluctuation-dissipation relation holds between stochastic and dissipative forces; these assumptions ensure that the system samples a prescribed invariant Gibbs-Boltzmann distribution for a specified target temperature. In this article, we relax these assumptions, incorporating variable friction and temperature parameters and allowing nonconservative force fields, for which the form of the stationary state is typically not known a priori. We examine theoretical issues such as stability of the steady state and ergodic properties, as well as practical aspects such as the design of numerical methods for stochastic particle models. Applications to nonequilibrium systems with thermal gradients and active particles are discussed.
Bounded and large radially symmetric solutions for some (p,q-Laplacian stationary systems
Directory of Open Access Journals (Sweden)
Adel Ben Dkhil
2012-05-01
Full Text Available This article concerns radially symmetric positive solutions of second-order quasilinear elliptic systems. In terms of the growth of the variable potential functions, we establish conditions such that the solutions are either bounded or blow up at infinity.
Andrade-Ines, Eduardo; Robutel, Philippe
2018-01-01
We present an analytical formalism to study the secular dynamics of a system consisting of N-2 planets orbiting a binary star in outer orbits. We introduce a canonical coordinate system and expand the disturbing function in terms of canonical elliptic elements, combining both Legendre polynomials and Laplace coefficients, to obtain a general formalism for the secular description of this type of configuration. With a quadratic approximation of the development, we present a simplified analytical solution for the planetary orbits for both the single planet and the two-planet cases. From the two-planet model, we show that the inner planet accelerates the precession rate of the binary pericenter, which, in turn, may enter in resonance with the secular frequency of the outer planet, characterizing a secular resonance. We calculate an analytical expression for the approximate location of this resonance and apply it to known circumbinary systems, where we show that it can occur at relatively close orbits, for example at 2.4 au for the Kepler-38 system. With a more refined model, we analyse the dynamics of this secular resonance and we show that a bifurcation of the corresponding fixed points can affect the long- term evolution and stability of planetary systems. By comparing our results with complete integrations of the exact equations of motion, we verified the accuracy of our analytical model.
Yamaki, Masahiro; Teranishi, Yoshiaki; Nakamura, Hiroki; Lin, Sheng Hsien; Fujimura, Yuichi
2016-01-21
The electron angular momentum is a fundamental quantity of high-symmetry aromatic ring molecules and finds many applications in chemistry such as molecular spectroscopy. The stationary angular momentum or unidirectional rotation of π electrons is generated by the excitation of a degenerated electronic excited state by a circularly-polarized photon. For low-symmetry aromatic ring molecules having non-degenerate states, such as chiral aromatic ring molecules, on the other hand, whether stationary angular momentum can be generated or not is uncertain and has not been clarified so far. We have found by both theoretical treatments and quantum optimal control (QOC) simulations that a stationary angular momentum can be generated even from a low-symmetry aromatic ring molecule. The generation mechanism can be explained in terms of the creation of a dressed-state, and the maximum angular momentum is generated by the dressed state with an equal contribution from the relevant two excited states in a simple three-electronic state model. The dressed state is formed by inducing selective nonresonant transitions between the ground and each excited state by two lasers with the same frequency but having different polarization directions. The selective excitation can be carried out by arranging each photon-polarization vector orthogonal to the electronic transition moment of the other transition. We have successfully analyzed the results of the QOC simulations of (P)-2,2'-biphenol of axial chirality in terms of the analytically determined optimal laser fields. The present findings may open up new types of chemical dynamics and spectroscopy by utilizing strong stationary ring currents and current-induced magnetic fields, which are created at a local site of large compounds such as biomolecules.
Yu, Huapeng; Zhu, Hai; Gao, Dayuan; Yu, Meng; Wu, Wenqi
2015-02-13
The Kalman filter (KF) has always been used to improve north-finding performance under practical conditions. By analyzing the characteristics of the azimuth rotational inertial measurement unit (ARIMU) on a stationary base, a linear state equality constraint for the conventional KF used in the fine north-finding filtering phase is derived. Then, a constrained KF using the state equality constraint is proposed and studied in depth. Estimation behaviors of the concerned navigation errors when implementing the conventional KF scheme and the constrained KF scheme during stationary north-finding are investigated analytically by the stochastic observability approach, which can provide explicit formulations of the navigation errors with influencing variables. Finally, multiple practical experimental tests at a fixed position are done on a postulate system to compare the stationary north-finding performance of the two filtering schemes. In conclusion, this study has successfully extended the utilization of the stochastic observability approach for analytic descriptions of estimation behaviors of the concerned navigation errors, and the constrained KF scheme has demonstrated its superiority over the conventional KF scheme for ARIMU stationary north-finding both theoretically and practically.
Negative meson capture in hydrogen. [Ionization cross sections, perturbed stationary state method
Energy Technology Data Exchange (ETDEWEB)
Baird, T.J.
1977-01-01
The processes of deexcitation and capture of negative mesons and hadrons in atomic hydrogen are investigated. Only slow collisions in which the projectile-atom relative velocity is less than one atomic unit are considered, and the motion of the incident particle is treated classically. For each classical trajectory the probability of ionizing the hydrogen atom is determined, together with the energy spectrum of the emitted electron. Ionization probabilities are calculated using the time-dependent formulation of the perturbed stationary state method. Exact two-center electronic wave functions are used for both bound and continuum states. The total ionization cross section and electron energy spectrum have been calculated for negative muons, kaons and antiprotons at incident relative velocities between 0.04 and 1.0 atomic units. The electron energy spectrum has a sharp peak for electron kinetic energies on the order of 10/sup -3/ Rydbergs. The ionization process thus favors the emission of very slow electrons. The cross section for ionization with capture of the incident particle was calculated for relative kinetic energies greater than 1.0 Rydberg. Since ionization was found to occur with the emission of electrons of nearly zero kinetic energy, the fraction of ionizing collisions which result in capture decreases very rapidly with projectile kinetic energy. The energy distributions of slowed down muons and hadrons were also computed. These distributions were used together with the capture cross section to determine the distribution of kinetic energies at which capture takes place. It was found that most captures occur for kinetic energies slightly less than 1.0 Rydbergs with relatively little capture at thermal energies. The captured particles therefore tend to go into very large and loosely found orbits with binding energies less than 0.1 Rydbergs.
Estimating the turnover number in enzyme kinetic reactions using transient and stationary state data
Directory of Open Access Journals (Sweden)
Sibel Uludag-Demirer
2009-12-01
Full Text Available Substrate and product concentration data obtained by simulating enzyme-substrate reaction rate equations were used to test two proposed kinetic rate constant estimation techniques in this study. In the first technique, the turnover number, k3, was calculated using early transient time domain data, which are difficult to obtain experimentally. The technique used an iterative approach to calculate k3 with a pair of data and the value of k3 could be retrieved with 35% error. The second technique calculated k3 using stationary domain data and the value of k3 could be retrieved with less than 5% error. This second technique also offered internal consistency in the calculation of k3 by calculating k3 both from the intercept and the slope of the linear plot derived in this study. A series of sensitivity analyses was conducted to understand the robustness of the second technique in estimating k3 from simulated data to the changes in the reaction rate constants (k1, k2, and k3 and the initial concentration of enzyme used for simulation. It was found that the second technique generally worked well in the estimation of k3 except for the simulated data for fast substrate conversions such as in the large k3 and [E]0 cases . This latter method, thus, shows promise for the use of late time experimental substrate/product concentration data to obtain k3. Exclusively using late time data avoids the need for difficult and expensive rapid early time measurement techniques for estimating k3. Once a reasonable estimate for k3 is obtained, the initial enzyme value can easily be determined from the maximum velocity constant established from fitting the Michaelis-Menten or Briggs-Haldane equations to substrate and product stationary state domain (late time data. While the first technique can estimate k3 with only one point in the transient domain, it is suggested that the second method generally be favored since it only requires late-time stationary domain data and
Uijlenhoet, R.; Porrà, J.M.; Sempere Torres, D.; Creutin, J.D.
2006-01-01
A stochastic model of the microstructure of rainfall is used to derive explicit expressions for the magnitude of the sampling fluctuations in rainfall properties estimated from raindrop size measurements in stationary rainfall. The model is a marked point process, in which the points represent the
Hydrogen Storage Materials for Mobile and Stationary Applications: Current State of the Art.
Lai, Qiwen; Paskevicius, Mark; Sheppard, Drew A; Buckley, Craig E; Thornton, Aaron W; Hill, Matthew R; Gu, Qinfen; Mao, Jianfeng; Huang, Zhenguo; Liu, Hua Kun; Guo, Zaiping; Banerjee, Amitava; Chakraborty, Sudip; Ahuja, Rajeev; Aguey-Zinsou, Kondo-Francois
2015-09-07
One of the limitations to the widespread use of hydrogen as an energy carrier is its storage in a safe and compact form. Herein, recent developments in effective high-capacity hydrogen storage materials are reviewed, with a special emphasis on light compounds, including those based on organic porous structures, boron, nitrogen, and aluminum. These elements and their related compounds hold the promise of high, reversible, and practical hydrogen storage capacity for mobile applications, including vehicles and portable power equipment, but also for the large scale and distributed storage of energy for stationary applications. Current understanding of the fundamental principles that govern the interaction of hydrogen with these light compounds is summarized, as well as basic strategies to meet practical targets of hydrogen uptake and release. The limitation of these strategies and current understanding is also discussed and new directions proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Energy Technology Data Exchange (ETDEWEB)
Noguera, Norman, E-mail: norman.noguera@ucr.ac.cr [Departamento de Matemática, Universidad de Costa Rica. S.O (Costa Rica); Rózga, Krzysztof, E-mail: krzysztof.rozga@upr.edu [Department of Mathematical Sciences, University of Puerto Rico, Mayagüez, Puerto Rico 00681-5000 (United States)
2015-07-15
In this work, one provides a justification of the condition that is usually imposed on the parameters of the hypergeometric equation, related to the solutions of the stationary Schrödinger equation for the harmonic oscillator in two-dimensional constant curvature spaces, in order to determine the solutions which are square-integrable. One proves that in case of negative curvature, it is a necessary condition of square integrability and in case of positive curvature, a necessary condition of regularity. The proof is based on the analytic continuation formulas for the hypergeometric function. It is observed also that the same is true in case of a slightly more general potential than the one for harmonic oscillator.
Non-Stationary Dark Energy Around a Black Hole
Akhoury, Ratindranath; Saotome, Ryo; Vikman, Alexander
2011-01-01
Numerical simulations of the accretion of test scalar fields with non-standard kinetic terms (of the k-essence type) onto a Schwarzschild black hole are performed. We find a full dynamical solution for the spherical accretion of a Dirac-Born-Infeld type scalar field. The simulations show that the accretion eventually settles down to a well known stationary solution. This particular analytical steady state solution maintains two separate horizons. The standard horizon is for the usual particles propagating with the limiting speed of light, while the other sonic horizon is for the k-essence perturbations propagating with the speed of sound around this accreting background. For the case where the k-essence perturbations propagate superluminally, we show that one can send signals from within a black hole during the approach to the stationary solution. We also find that a ghost condensate model settles down to a stationary solution during the accretion process.
Silva, Felipe O; Hemerly, Elder M; Leite Filho, Waldemar C
2017-02-23
This paper presents the second part of a study aiming at the error state selection in Kalman filters applied to the stationary self-alignment and calibration (SSAC) problem of strapdown inertial navigation systems (SINS). The observability properties of the system are systematically investigated, and the number of unobservable modes is established. Through the analytical manipulation of the full SINS error model, the unobservable modes of the system are determined, and the SSAC error states (except the velocity errors) are proven to be individually unobservable. The estimability of the system is determined through the examination of the major diagonal terms of the covariance matrix and their eigenvalues/eigenvectors. Filter order reduction based on observability analysis is shown to be inadequate, and several misconceptions regarding SSAC observability and estimability deficiencies are removed. As the main contributions of this paper, we demonstrate that, except for the position errors, all error states can be minimally estimated in the SSAC problem and, hence, should not be removed from the filter. Corroborating the conclusions of the first part of this study, a 12-state Kalman filter is found to be the optimal error state selection for SSAC purposes. Results from simulated and experimental tests support the outlined conclusions.
Generation of Werner-like stationary states of two qubits in a thermal reservoir
Energy Technology Data Exchange (ETDEWEB)
Jakobczyk, Lech, E-mail: ljak@ift.uni.wroc.p [Institute of Theoretical Physics, University of Wroclaw, Plac Maxa Borna 9, 50-204 Wroclaw (Poland)
2010-01-14
The dynamics of entanglement between two-level atoms immersed in the common photon reservoir at finite temperature is investigated. It is shown that in the regime of strong correlations there are nontrivial asymptotic states which can be interpreted in terms of thermal generalization of Werner states.
Fusion, collapse, and stationary bound states of incoherently coupled waves in bulk cubic media
DEFF Research Database (Denmark)
Bang, Ole; Bergé, L.; Juul Rasmussen, Jens
1999-01-01
these sufficient conditions numerically and show that only when the equations and the initial conditions are symmetric are they also close to bring necessary conditions. Using Gaussian initial conditions we predict and confirm numerically the power dependent characteristic initial separations that divide the phase...... space into collapsing and diffracting solutions, and further divide each of these regions into subregions of coupled (fusion) and uncoupled dynamics. Finally we illustrate how, close to the threshold of collapse, the waves can cross several times before eventually collapsing or diffracting....
Singh, A.; Fisher, J.; Pai, H.; Villamizar Amaya, S.; Harmon, T. C.; Kaiser, W.
2007-12-01
Spatially distributed hydraulic and water quality property characterization is important to understanding a broad range of river issues including confluence and discharge mixing phenomena, groundwater-surface water exchanges, and flow and temperature distributions in the context of habitat restoration efforts. Such characterization efforts often need to be completed rapidly to avoid complications associated with transient upstream conditions ( e.g., reservoir operational changes, time-variable irrigation drainage). In this work, we test a non-stationary Gaussian Process (GP) model for increasing sampling efficiency during a robotic deployment of velocity (ADV) and electrical conductivity (EC) sensors across a river transect. GP modeling is a common statistical approach for addressing spatially distributed phenomena. We first develop velocity and salinity observations within the mixing zone of the Merced-San Joaquin River confluence robotically in the form of high resolution (114 point) raster scans. We train the GP model by dividing the river cross-section into three sub- regions corresponding to Merced river side (east), mixing zone (center), and San Joaquin River side (west). An information criterion was selected that assigned each observation location a quantitative value in terms of the uncertainty about our prediction of the EC value given the measurement made at that location. We then executed a path-planning algorithm optimizing 16 locations out of the original 114. Using the observations from these 16 locations, and the trained GP model, we predicted the values at the rest of the 98 unobserved locations. EC distributions are compared for the raster- and GP-based data and suggest that the GP modeling strategy is viable for enhancing sampling efficiency in the context of spatially distributed river characteristics.
Energy Technology Data Exchange (ETDEWEB)
Zelazny, R.; Stankiewicz, R.; Galkowski, A.; Potempski, S. [Institute of Atomic Energy, Otwock-Swierk (Poland)
1992-12-31
The existence of poloidal flow transforms the elliptic Grad-Shafranov-Schluter equation into a system of mixed type partial differential equation (EGSS equation) and an algebraic Bernoulli`s equation. The computer program for solving EGSS equations using inverse method and Fourier decomposition has been prepared. The specific test solutions in the first and second ellipticity regions have been found. (author) 3 refs., 16 figs.
Sun, Xiang; Ladanyi, Branka M; Stratt, Richard M
2015-07-23
Experimental studies of solvation dynamics in liquids invariably ask how changing a solute from its electronic ground state to an electronically excited state affects a solution's dynamics. With traditional time-dependent-fluorescence experiments, that means looking for the dynamical consequences of the concomitant change in solute-solvent potential energy. But if one follows the shift in the dynamics through its effects on the macroscopic polarizability, as recent solute-pump/solvent-probe spectra do, there is another effect of the electronic excitation that should be considered: the jump in the solute's own polarizability. We examine the spectroscopic consequences of this solute polarizability change in the classic example of the solvation dye coumarin 153 dissolved in acetonitrile. After demonstrating that standard quantum chemical methods can be used to construct accurate multisite models for the polarizabilities of ground- and excited-state solvation dyes, we show via simulation that this polarizability change acts as a contrast agent, significantly enhancing the observable differences in optical-Kerr spectra between ground- and excited-state solutions. A comparison of our results with experimental solute-pump/solvent-probe spectra supports our interpretation and modeling of this spectroscopy. We predict, in particular, that solute-pump/solvent-probe spectra should be sensitive to changes in both the solvent dynamics near the solute and the electronic-state-dependence of the solute's own rotational dynamics.
Scaling BPS Solutions and pure-Higgs states
Bena, I.; dr Berkooz, M.; de Boer, J.; El-Showk, S.; van den Bleeken, D.
2012-01-01
Depending on the value of the coupling, BPS states of type II string theory compactified on a Calabi-Yau manifold can be described as multicenter supergravity solutions or as BPS states in a quiver gauge theory. While states that spread into the Coulomb-branch states can be mapped one-to-one to
Díaz, J I; Hidalgo, A; Tello, L
2014-10-08
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge-Kutta total variation diminishing for time integration.
Díaz, J. I.; Hidalgo, A.; Tello, L.
2014-01-01
We study a climatologically important interaction of two of the main components of the geophysical system by adding an energy balance model for the averaged atmospheric temperature as dynamic boundary condition to a diagnostic ocean model having an additional spatial dimension. In this work, we give deeper insight than previous papers in the literature, mainly with respect to the 1990 pioneering model by Watts and Morantine. We are taking into consideration the latent heat for the two phase ocean as well as a possible delayed term. Non-uniqueness for the initial boundary value problem, uniqueness under a non-degeneracy condition and the existence of multiple stationary solutions are proved here. These multiplicity results suggest that an S-shaped bifurcation diagram should be expected to occur in this class of models generalizing previous energy balance models. The numerical method applied to the model is based on a finite volume scheme with nonlinear weighted essentially non-oscillatory reconstruction and Runge–Kutta total variation diminishing for time integration. PMID:25294969
Smoluchowski aggregation-fragmentation equations: Fast numerical algorithm for steady-state solution
Stadnichuk, Vladimir; Bodrova, Anna; Brilliantov, Nikolai
2015-01-01
We propose an efficient and fast numerical algorithm of finding a \\emph{stationary} solution of large systems of aggregation-fragmentation equations of Smoluchowski type for concentrations of reacting particles. This method is applicable when the stationary concentrations steeply decreases with increasing aggregate size, which is fulfilled for the most important cases. We show that under rather mild restrictions, imposed on the kernel of the Smoluchowski equation, the following numerical proc...
Excited States in Solution through Polarizable Embedding
DEFF Research Database (Denmark)
Olsen, Jógvan Magnus; Aidas, Kestutis; Kongsted, Jacob
2010-01-01
We present theory and implementation of an advanced quantum mechanics/molecular mechanics (QM/MM) approach using a fully self-consistent polarizable embedding (PE) scheme. It is a polarizable layered model designed for effective yet accurate inclusion of an anisotropic medium in a quantum...... mechanical calculation. The polarizable embedding potential is described by an atomistic representation including terms up to localized octupoles and anisotropic polarizabilities. It is generally applicable to any quantum chemical description but is here implemented for the case of Kohn−Sham density...... functional theory which we denote the PE-DFT method. It has been implemented in combination with time-dependent quantum mechanical linear and nonlinear response techniques, thus allowing for assessment of electronic excitation processes and dynamic ground- and excited-state molecular properties using...
Klevtsova, Yu Yu
2017-07-01
The paper is concerned with a nonlinear system of partial differential equations with parameters which describes the two-layer quasi-solenoidal Lorenz model for a baroclinic atmosphere on a rotating two-dimensional sphere. The right-hand side of the system is perturbed by white noise. A unique stationary measure for the Markov semigroup defined by the solutions of the Cauchy problem for this problem is considered. An estimate for the rate of convergence of the distributions of all solutions in a certain class of this system to the unique stationary measure as t\\to+∞ is proposed. A similar result is obtained for the equation of a barotropic atmosphere and the two-dimensional Navier-Stokes equation. A comparative analysis with some of the available related results is given for the latter. Bibliography: 39 titles.
DEFF Research Database (Denmark)
Micaletti, R. C.; Cakmak, A. S.; Nielsen, Søren R. K.
Differential equations are derived which exactly govern the evolution of the second-order response moments of a single-degree-of-freedom (SDOF) bilinear hysteretic oscillator subject to stationary Gaussian white noise excitation. Then, considering cases for which response stationarity...
Heterogeneous Ferroelectric Solid Solutions Phases and Domain States
Topolov, Vitaly
2012-01-01
The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.
Stabilizing the border steady-state solution of two interacting ...
African Journals Online (AJOL)
In this paper, we have successfully developed a feedback control which has been used to stabilize an unstable steady-state solution (0, 3.3534). This convergence has occurred when the values of the final time are 190, 200, 210 and 220 which corresponds to the scenario when the value of the step length of our simulation ...
Solution of the two identical ion Penning trap final state
Blackburn, W.; Brown, T L; Cozzo, E.; Moyers, B.; Crescimanno, M.
2001-01-01
We have derived a closed form analytic expression for the asymptotic motion of a pair of identical ions in a high precision Penning trap. The analytic solution includes the effects of special relativity and the Coulomb interaction between the ions. The existence and physical relevance of such a final state is supported by a confluence of theoretical, experimental and numerical evidence.
Dewar, R
2003-01-01
Jaynes' information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. First, it is shown that the probability distribution p subGAMMA of the underlying microscopic phase space trajectories GAMMA over a time interval of length tau satisfies p subGAMMA propor to exp(tau sigma subGAMMA/2k sub B) where sigma subGAMMA is the time-averaged rate of entropy production of GAMMA. Three consequences of this result are then derived: (1) the fluctuation theorem, which describes the exponentially declining probability of deviations from the second law of thermodynamics as tau -> infinity; (2) the selection principle of maximum entropy production for non-equilibrium stationary states, empirical support for which has been found in studies of phenomena as diverse as the Earth's climate and crystal growth morphology; and (3) the emergence of self-organized criticality for flux-driven systems in the slowly-driven limit. The explanation of these results on general inf...
Ground state solutions for diffusion system with superlinear nonlinearity
Directory of Open Access Journals (Sweden)
Zhiming Luo
2015-03-01
where $z=(u,v\\colon\\mathbb{R}\\times\\mathbb{R}^{N}\\rightarrow\\mathbb{R}^{2}$, $b\\in C^{1}(\\mathbb{R}\\times\\mathbb{R}^{N}, \\mathbb{R}^{N}$ and $V(x\\in C(\\mathbb{R}^{N},\\mathbb{R}$. Under suitable assumptions on the nonlinearity, we establish the existence of ground state solutions by the generalized Nehari manifold method developed recently by Szulkin and Weth.
Ground state solutions for non-local fractional Schrodinger equations
Directory of Open Access Journals (Sweden)
Yang Pu
2015-08-01
Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.
Energy Technology Data Exchange (ETDEWEB)
WEST,WP; BURRELL,KH; deGRASSIE,JS; DOYLE,EJ; GREENFIELD,CM; LASNIER,CJ; SNYDER,PB; ZENG,L
2003-08-01
OAK-B135 The quiescent H-mode (QH-mode) is an ELM-free and stationary state mode of operation discovered on DIII-D. This mode achieves H-mode levels of confinement and pedestal pressure while maintaining constant density and radiated power. The elimination of edge localized modes (ELMs) and their large divertor loads while maintaining good confinement and good density control is of interest to next generation tokamaks. This paper reports on the correlations found between selected parameters in a QH-mode database developed from several hundred DIII-D counter injected discharges. Time traces of key plasma parameters from a QH-mode discharge are shown. On DIII-D the negative going plasma current (a) indicates that the beam injection direction is counter to the plasma current direction, a common feature of all QH-modes. The D{sub {alpha}} time behavior (c) shows that soon after high powered beam heating (b) is applied, the discharge makes a transition to ELMing H-mode, then the ELMs disappear, indicating the start of the QH period that lasts for the remainder of the high power beam heating (3.5 s). Previously published work showing density and temperature profiles indicates that long-pulse, high-triangularity QH discharges develop an internal transport barrier in combination with the QH edge barrier. These discharges are known as quiescent, double-barrier discharges (QDB). The H-factor (d) and stored energy (c) rise then saturate at a constant level and the measured axial and minimum safety factors remain above 1.0 for the entire QH duration. During QDB operation the performance of the plasma can be very good, with {beta}{sub N}*H{sub 89L} product reaching 7 for > 10 energy confinement times. These discharges show promise that a stationary state can be achieved.
Stationary discrete solitons in a driven dissipative Bose-Hubbard chain
Naether, Uta; Quijandría, Fernando; García-Ripoll, Juan José; Zueco, David
2015-03-01
We demonstrate that stationary localized solutions (discrete solitons) exist in one-dimensional Bose-Hubbard lattices with gain and loss in a semiclassical regime. Stationary solutions, by definition, are robust and do not demand state preparation. Losses, unavoidable in experiments, are not a drawback, but a necessary ingredient for these modes to exist. The semiclassical calculations are complemented with their classical limit and dynamics based on a Gutzwiller ansatz. We argue that circuit quantum electrodynamic architectures are ideal platforms for realizing the physics developed here. Finally, within the input-output formalism, we explain how to experimentally access the different phases, including the solitons, of the chain.
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; Henriksen, Niels Engholm; Billing, G. D.
1989-01-01
, and a simple method is devised to identify those states, which are propagated accurately. This procedure may be used to investigate when the Gaussian wave packet method is appropriate for the simulation of a given process. The Journal of Chemical Physics is copyrighted by The American Institute of Physics....
Electronic states of graphene nanoribbons and analytical solutions
Directory of Open Access Journals (Sweden)
Katsunori Wakabayashi, Ken-ichi Sasaki, Takeshi Nakanishi and Toshiaki Enoki
2010-01-01
Full Text Available Graphene is a one-atom-thick layer of graphite, where low-energy electronic states are described by the massless Dirac fermion. The orientation of the graphene edge determines the energy spectrum of π-electrons. For example, zigzag edges possess localized edge states with energies close to the Fermi level. In this review, we investigate nanoscale effects on the physical properties of graphene nanoribbons and clarify the role of edge boundaries. We also provide analytical solutions for electronic dispersion and the corresponding wavefunction in graphene nanoribbons with their detailed derivation using wave mechanics based on the tight-binding model. The energy band structures of armchair nanoribbons can be obtained by making the transverse wavenumber discrete, in accordance with the edge boundary condition, as in the case of carbon nanotubes. However, zigzag nanoribbons are not analogous to carbon nanotubes, because in zigzag nanoribbons the transverse wavenumber depends not only on the ribbon width but also on the longitudinal wavenumber. The quantization rule of electronic conductance as well as the magnetic instability of edge states due to the electron–electron interaction are briefly discussed.
Crystallization of probucol from solution and the glassy state.
Kawakami, Kohsaku; Ohba, Chie
2017-01-30
Crystallization of probucol (PBL) from both solution and glassy solid state was investigated. In the crystallization study from solution, six solvents and three methods, i.e., evaporation, addition of a poor solvent, and cooling on ice, were used to obtain various crystal forms. In addition to common two crystal forms (forms I and II), two further forms (forms III and cyclohexane-solvate) were found in this study, and their thermodynamic relationships were determined. Forms I and II are likely to be enantiotropically related with thermodynamic transition temperature below 5°C. Isothermal crystallization studies revealed that PBL glass initially crystallized into form III between 25 and 50°C, and then transformed to form I. The isothermal crystallization appears to be a powerful option to find uncommon crystal forms. The crystallization of PBL was identified to be pressure controlled, thus the physical stability of PBL glass is higher than that of typical compounds. Copyright © 2016 Elsevier B.V. All rights reserved.
Bacterial Stationary-Phase Evolution
Directory of Open Access Journals (Sweden)
Ana Butorac
2011-01-01
Full Text Available Metagenomics and advances in molecular biology methods have enhanced knowledge of microbial evolution, metabolism, functions, their interactions with other organisms and their environment. The ability to persist and adapt to changes in their environment is a common lifestyle of 1 % of the known culturable bacteria. Studies in the variety of species have identified an incredible diversity of bacterial lifespan. The holy grail of molecular biology is to understand the integrated genetic and metabolic patterns of prokaryotic organisms like the enteric bacterium Escherichia coli. The usual description of E. coli life cycle comprises four phases: lag, logarithmic, stationary, and death phase, omitting their persistence and evolution during prolonged stationary phase. During prolonged stationary/starvation period, in batch bacterial culture, selected mutants with increased fitness express growth advantage in stationary phase (GASP, which enables them to grow and displace the parent cells as the majority population. The analyses of growth competition of Gram-negative and/or Gram-positive mixed bacterial cultures showed that GASP phenomenon can result in four GASP phenotypes: strong, moderate, weak or abortive. Bacterial stress responses to starvation include functions that can increase genetic variability and produce transient mutator state, which is important for adaptive evolution.
Antoine, Xavier; Levitt, Antoine; Tang, Qinglin
2017-08-01
We propose a preconditioned nonlinear conjugate gradient method coupled with a spectral spatial discretization scheme for computing the ground states (GS) of rotating Bose-Einstein condensates (BEC), modeled by the Gross-Pitaevskii Equation (GPE). We first start by reviewing the classical gradient flow (also known as imaginary time (IMT)) method which considers the problem from the PDE standpoint, leading to numerically solve a dissipative equation. Based on this IMT equation, we analyze the forward Euler (FE), Crank-Nicolson (CN) and the classical backward Euler (BE) schemes for linear problems and recognize classical power iterations, allowing us to derive convergence rates. By considering the alternative point of view of minimization problems, we propose the preconditioned steepest descent (PSD) and conjugate gradient (PCG) methods for the GS computation of the GPE. We investigate the choice of the preconditioner, which plays a key role in the acceleration of the convergence process. The performance of the new algorithms is tested in 1D, 2D and 3D. We conclude that the PCG method outperforms all the previous methods, most particularly for 2D and 3D fast rotating BECs, while being simple to implement.
States leverage telepsychiatry solutions to ease ED crowding, accelerate care.
2015-02-01
Many states are having success turning to telepsychiatry-based solutions to connect mental health patients with needed care while also decompressing crowded EDs. Just one year into a statewide telepsychiatry initiative in North Carolina (NC-STeP), administrators say the approach has saved as much as $7 million, and hospital demand for the service is higher than anticipated. In Texas, mental health emergency centers (MHEC) that use telepsychiatry to connect patients in rural areas with needed psychiatric care are freeing up EDs to focus on medical care. In just 11 months, 91 North Carolina hospitals have at least started the process to engage in NC-STeP. Much of the savings from NC-STeP come from involuntary commitment orders being overturned as a result of the telepsychiatry consults, reducing the need for expensive inpatient care. Implementing NC-STeP has involved multiple hurdles including credentialing difficulties and technical/firewall challenges. The Texas model provides 24/7 availability of psychiatrists via telemedicine through a network of MHECs. In-person staff at the MHECs perform basic screening tests and blood draws so that medical clearance can be achieved without the need for an ED visit in most cases. Funding for the MHECs comes from the state, hospitals in the region, and local governmental authorities that reap savings or benefits from the initiative.
Masalov, Vladimir M.; Vasilyeva, Natalia A.; Manomenova, Vera L.; Zhokhov, Andrei A.; Rudneva, Elena B.; Voloshin, Alexey E.; Emelchenko, Gennadi A.
2017-10-01
The technique and the scheme of the system for growing single crystals, including complex mixed composition, under stationary conditions of supercooling and forced convection of aqueous solution were described. Solubility in water of various compositions of K2CoxNi1-x(SO4)2·6H2O (KCNSH) and the dependence of Co content in the KCNSH crystal of Co concentration in the saline part of aqueous solutions of KCNSH have been measured in the temperature range of 30-70 °C. It was found that the growth sectors {0 0 1} and {1 1 0} differ in Ni and Co contents. The Ni/Co ratio is dependent on the value of solution supersaturation. The optical transmission spectra of crystals grown showed high transmittance in the UV region of the spectrum and the almost complete absorption of light in the visible spectrum. It is concluded that the crystals grown can be used as efficient UV filters.
Steady-State Thermoelastic Analytical Solutions for Insulated Pipelines
Directory of Open Access Journals (Sweden)
M. Fraldi
2016-01-01
Full Text Available A steady-state thermoelastic analytical solution for a multilayer hollow cylinder, composed of an arbitrary number of phases and subject to both radial pressure and temperature gradient, is presented. By assuming each phase to be homogeneous and thermally isotropic and by varying the mechanical and thermal constitutive parameters, a sensitivity analysis has been performed with the aim of finally applying the study to the mechanical behaviour of an industrial pipeline composed of three phases (steel, insulating coating, and polyethylene under the action of the above-mentioned load conditions. By making reference to a classical Hencky-von Mises criterion, the stress profiles along the thickness of the layers have been carried out, also localizing the onset of plasticity as a function of the temperature variations, material properties, and geometrical features characterizing the composite structure of interest. At the end, some numerical results of practical interest in the engineering applications have been specialized to three different insulated coating materials (expanded polyurethane, laminate glass, and syntactic foam, to highlight the cases in which thermal properties and loads can significantly interfere with the mechanical response in pipes, in terms of stresses, in this way suggesting possible strategies for avoiding unexpected failure and supporting the optimal structural design of these systems.
State of the Art: Solution Concepts for Coalitional Games
Directory of Open Access Journals (Sweden)
Simina Branzei
2010-04-01
Full Text Available This paper investigates solution concepts for coalitional games. Several solution concepts are characterized, such as the core, Shapley value, bargaining set, stable set, nucleolus, and kernel. We look at recent developments of succinct representations of coalitional games, such as weighted voting games, coalitional resource games, cooperative boolean games, and marginal contribution nets. Existing solution concepts have prohibitive complexity requirements even for very simple classes of games. We discuss an agenda for finding an equilibrium solution concept that is as appealing as the core, but that is tractable and guaranteed to exist.
Effect of solution saturation state and temperature on diopside dissolution
Directory of Open Access Journals (Sweden)
Carroll Susan A
2007-03-01
Full Text Available Abstract Steady-state dissolution rates of diopside are measured as a function of solution saturation state using a titanium flow-through reactor at pH 7.5 and temperature ranging from 125 to 175°C. Diopside dissolved stoichiometrically under all experimental conditions and rates were not dependent on sample history. At each temperature, rates continuously decreased by two orders of magnitude as equilibrium was approached and did not exhibit a dissolution plateau of constant rates at high degrees of undersaturation. The variation of diopside dissolution rates with solution saturation can be described equally well with a ion exchange model based on transition state theory or pit nucleation model based on crystal growth/dissolution theory from 125 to 175°C. At 175°C, both models over predict dissolution rates by two orders of magnitude indicating that a secondary phase precipitated in the experiments. The ion exchange model assumes the formation of a Si-rich, Mg-deficient precursor complex. Lack of dependence of rates on steady-state aqueous calcium concentration supports the formation of such a complex, which is formed by exchange of protons for magnesium ions at the surface. Fit to the experimental data yields Rate (moldiopsidecm−2s−1=k×10−Ea/2.303RT(aH+2aMg2+n MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaieaacqWFsbGucqWFHbqycqWF0baDcqWFLbqzcqqGGaaicqGGOaakcqWFTbqBcqWFVbWBcqWFSbaBcqWFGaaicqWFKbazcqWFPbqAcqWFVbWBcqWFWbaCcqWFZbWCcqWFPbqAcqWFKbazcqWFLbqzcqWFGaaicqWFJbWycqWFTbqBdaahaaWcbeqaaiabgkHiTiabikdaYaaakiab=bcaGiab=nhaZnaaCaaaleqabaGaeyOeI0IaeGymaedaaOGaeiykaKIaeyypa0Jaem4AaSMaey41aqRaeeymaeJaeeimaaZaaWbaaSqabeaacqGHsislcqWGfbqrdaWgaaadbaGaemyyaegabeaaliabc+caViabikdaYiabc6caUiabioda
Wikberg, Erika; Sparrman, Tobias; Viklund, Camilla; Jonsson, Tobias; Irgum, Knut
2011-09-23
2H NMR has been used as a tool for probing the state of water in hydrophilic stationary phases for liquid chromatography at temperatures between -80 and +4 °C. The fraction of water that remained unfrozen in four different neat silicas with nominal pore sizes between 60 and 300 Å, and in silicas with polymeric sulfobetaine zwitterionic functionalities prepared in different ways, could be determined by measurements of the line widths and temperature-corrected integrals of the 2H signals. The phase transitions detected during thawing made it possible to estimate the amount of non-freezable water in each phase. A distinct difference was seen between the neat and modified silicas tested. For the neat silicas, the relationship between the freezing point depression and their pore size followed the expected Gibbs-Thomson relationship. The polymeric stationary phases were found to contain considerably higher amounts of non-freezable water compared to the neat silica, which is attributed to the structural effect that the sulfobetaine polymers have on the water layer close to the stationary phase surface. The sulfobetaine stationary phases were used alongside the 100 Å silica to separate a number of polar compounds in hydrophilic interaction (HILIC) mode, and the retention characteristics could be explained in terms of the surface water structure, as well as by the porous properties of the stationary phases. This provides solid evidence supporting a partitioning mechanism, or at least of the existence of an immobilized layer of water into which partitioning could be occurring. Copyright © 2011 Elsevier B.V. All rights reserved.
Ground state solutions for asymptotically periodic Schrodinger equations with critical growth
Directory of Open Access Journals (Sweden)
Hui Zhang
2013-10-01
Full Text Available Using the Nehari manifold and the concentration compactness principle, we study the existence of ground state solutions for asymptotically periodic Schrodinger equations with critical growth.
Bondarev, S. L.; Tikhomirov, S. A.; Buganov, O. V.; Knyukshto, V. N.; Raichenok, T. F.
2017-03-01
The spectroscopic and photophysical properties of the biologically important plant antioxidant quercetin in organic solvents, polymer films of polyvinyl alcohol, and a buffer solution at pH 7.0 are studied by stationary luminescence and femtosecond laser spectroscopy at room temperature and 77 K. The large magnitude of the dipole moment of the quercetin molecule in the excited Franck-Condon state μ e FC = 52.8 C m indicates the dipolar nature of quercetin in this excited state. The transient induced absorption spectra S 1→ S n in all solvents are characterized by a short-wave band at λ abs max = 460 nm with exponential decay times in the range of 10.0-20.0 ps. In the entire spectral range at times of >100 ps, no residual induced absorption was observed that could be attributed to the triplet-triplet transitions T 1 → T k in quercetin. In polar solvents, two-band fluorescence was also recorded at room temperature, which is due to the luminescence of the initial enol form of quercetin ( 415 nm) and its keto form with a transferred proton (550 nm). The short-wave band is absent in nonpolar 2-methyltetrahydrofuran (2-MTHF). The spectra of fluorescence and fluorescence excitation exhibit a low dependence on the wavelength of excitation and detection, which may be related to the solvation and conformational changes in the quercetin molecule. Decreasing the temperature of a glassy-like freezing quercetin solution in ethanol and 2-MTHF to 77 K leads to a strong increase in the intensity (by a factor of 100) of both bands. The energy circuits for the proton transfer process are proposed depending on the polarity of the medium. The main channel for the exchange of electronic excitation energy in the quercetin molecule at room temperature is the internal conversion S 1 ⇝ S 0, induced by the state with a proton transfer.
Energy Technology Data Exchange (ETDEWEB)
None
1980-03-01
The first portion of the Conceptual Design Study of Stirling Engines for Stationary Power Application in the 500 to 3000 hp range which was aimed at state-of-the-art stationary Stirling engines for a 1985 hardware demonstration is summarized. The main goals of this effort were to obtain reliable cost data for a stationary Stirling engine capable of meeting future needs for total energy/cogeneration sysems and to establish a pragmatic and conservative base design for a first generation hardware. Starting with an extensive screening effort, 4 engine types, i.e., V-type crank engine, radial engine, swashplate engine, and rhombic drive engine, and 3 heat transport systems, i.e., heat pipe, pressurized gas heat transport loop, and direct gas fired system, were selected. After a preliminary layout cycle, the rhombic drive engine was eliminated due to intolerable maintenance difficulties on the push rod seals. V, radial and swashplate engines were taken through a detailed design/layout cycle, to establish all important design features and reliable engine weights. After comparing engine layouts and analyzing qualitative and quantitative evaluation criteria, the V-crank engine was chosen as the candidate for a 1985 hardware demonstration.
INDUSTRIAL CRYSTALLIZATION AND PRECIPITATION FROM SOLUTIONS: STATE OF THE TECHNIQUE
Directory of Open Access Journals (Sweden)
Giulietti M.
2001-01-01
Full Text Available Crystallization and precipitation from solutions are responsible for 70% of all solid materials produced by the chemical industry. Competing with distillation as a separation and purification technique, their use is widespread. They operate at low temperatures with low energy consumption and yield with high purifications in one single step. Operational conditions largely determine product quality in terms of purity, filterability, flowability and reactivity. Producing a material with the desired quality often requires a sound knowledge of the elementary steps involved in the process: creation of supersaturation, nucleation, crystal growth, aggregation and other secondary processes. Mathematical models coupling these elementary processes to all particles in a crystallizer have been developed to design and optimize crystallizer operation. For precipitation, the spatial distribution of reactants and particles in the reactor is important; thus the tools of computational fluid dynamics are becoming increasingly important. For crystallization of organic chemicals, where incorporation of impurities and crystal shape are critical, molecular modeling has recently appeared as a useful tool. These theoretical developments must be coupled to experimental data specific to each material. Theories and experimental techniques of industrial crystallization and precipitation from solutions are reviewed, and recent developments are highlighted.
Generalization of Carey's equality and a theorem on stationary population.
Srinivasa Rao, Arni S R; Carey, James R
2015-09-01
Carey's Equality pertaining to stationary models is well known. In this paper, we have stated and proved a fundamental theorem related to the formation of this Equality. This theorem will provide an in-depth understanding of the role of each captive subject, and their corresponding follow-up duration in a stationary population. We have demonstrated a numerical example of a captive cohort and the survival pattern of medfly populations. These results can be adopted to understand age-structure and aging process in stationary and non-stationary population models.
On the generation techniques of axially symmetric stationary metrics
Indian Academy of Sciences (India)
General relativity; Einstein's equations; relation between solution generating techniques; soliton technique; method of Gutsunaev–Manko. ... and the soliton technique (for two-soliton solutions) of Belinskii–Zakharov, for generating solutions of axially symmetric stationary space-times in general relativity is discussed.
Taylor series expansions for stationary Markov chains
Heidergott, B.F.; Hordijk, A.
2003-01-01
We study Taylor series expansions of stationary characteristics of general-state-space Markov chains. The elements of the Taylor series are explicitly calculated and a lower bound for the radius of convergence of the Taylor series is established. The analysis provided in this paper applies to the
Photophysics of Nile red in solution. Steady state spectroscopy
Ghoneim, Nagwa
2000-04-01
Spectroscopic properties of Nile red (NR) in organic solvents, binary solvent mixtures have been studied. Remarkable shifts in the emission band positions have been observed as a function of the polarity of the medium. In solvent mixtures, these shifts can be explained by the process of specific solvation known as dielectric enrichment. The displacement of the fluorescence band was also measured as a function of temperature to obtain the thermochromic shifts (15 cm -1 K -1 in methyltetrahydrofuran and 13.8 cm -1 K -1 in butanol). Excited state dipole moments were calculated from these shifts.
OUTSOURCING – IS IT A SOLUTION FOR THE STATE?
Directory of Open Access Journals (Sweden)
Victor-Adrian Troacă
2012-03-01
Full Text Available In terms of scientific research, we consider the need for an attempt to address both scientific and practical efficiency of the state apparatus. The issue of outsourcing seems to be most common in the field of microeconomics, because private firms are willing to maximize profits. On the other hand, the state seeks to minimize social risks in the first place, even though these often lead to improper functioning of the device. Fight for survival in an economic reality located in a changing requires constant adaptation to all those who live this reality. So far only those interested keeping pace with new demands remain in the market On the other hand, macroeconomic policy makers continue to show interest in minimizing "social" costs however would maximize these government spending. The paper will track how outsourcing would ensure a recovery in the national economy, use resources economically, efficiently could lead to a recovery of national economy, to a maximum income and expenses to minimize In other words the economic growth - the desire of any macroeconomic policy decider.
Effect of Aluminum Sulfate on Dispersion State of Sodium Carboxymethylcellulose in Aqueous Solution
National Research Council Canada - National Science Library
Ishii, Daisuke; Tatsumi, Daisuke; Matsumoto, Takayoshi
2013-01-01
Effect of aluminum sulfate, Al 2 (SO 4 ) 3 , on dispersion state of sodium carboxymethylcellulose, NaCMC, in aqueous solution was investigated by rheological measurements and X-ray photoelectron spectroscopy (XPS...
Lunin, Andrei; Grudiev, Alexej
2011-01-01
Analytical solutions are derived for transient and steady state gradient distributions in the travelling wave accelerating structures with arbitrary variation of parameters over the structure length. The results of both the unloaded and beam loaded cases are presented.
Directory of Open Access Journals (Sweden)
Reinhold Steinacker
2016-12-01
Full Text Available In 1906, the Austrian scientist Max Margules published a paper on temperature stratification in resting and non-accelerated moving air. The paper derives conditions for stationary slopes of air mass boundaries and was an important forerunner of frontal theories. Its formulation of relations between changes in density and geostrophic wind across the front is basically a discrete version of the thermal wind balance equation. The paper was highly influential and is still being cited to the present day. This paper accompanies an English translation of Margules’ seminal paper. We conclude here our “Classic Papers” series of the Meteorologische Zeitschrift.
Noncommutative stationary processes
Gohm, Rolf
2004-01-01
Quantum probability and the theory of operator algebras are both concerned with the study of noncommutative dynamics. Focusing on stationary processes with discrete-time parameter, this book presents (without many prerequisites) some basic problems of interest to both fields, on topics including extensions and dilations of completely positive maps, Markov property and adaptedness, endomorphisms of operator algebras and the applications arising from the interplay of these themes. Much of the material is new, but many interesting questions are accessible even to the reader equipped only with basic knowledge of quantum probability and operator algebras.
Stationary processes with pure point diffraction
Lenz, Daniel; Robert V. Moody
2011-01-01
We consider the construction and classification of some new mathematical objects, called ergodic spatial stationary processes, on locally compact Abelian groups, which provide a natural and very general setting for studying diffraction and the famous inverse problems associated with it. In particular we can construct complete families of solutions to the inverse problem from any given pure point measure that is chosen to be the diffraction. In this case these processes can be classified by th...
Iron salts in solid state and in frozen solutions as dosimeters for low irradiation temperatures
Energy Technology Data Exchange (ETDEWEB)
Martinez, T. [Facultad de Quimica UNAM, Ciudad Universitaria, D.F. Mexico (Mexico); Lartigue, J. [Facultad de Quimica UNAM, Ciudad Universitaria, D.F. Mexico (Mexico); Ramos-Bernal, S. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.4510, Ciudad Universitaria, D.F. Mexico (Mexico); Ramos, A. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.4510, Ciudad Universitaria, D.F. Mexico (Mexico); Mosqueira, G.F. [Direccion General de Divulgacion de la Ciencia de la UNAM, A.P. 70-487, C:P, D.F. Mexico 04510 (Mexico); Negron-Mendoza, A. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.4510, Ciudad Universitaria, D.F. Mexico (Mexico)]. E-mail: negron@nuclecu.unam.mx
2005-12-01
The aim of this work is to study the irradiation of iron salts in solid state (heptahydrated ferrous sulfate) and in frozen acid solutions. The study is focused on finding their possible use as dosimeters for low temperature irradiations and high doses. The analysis of the samples was made by UV-visible and Moessbauer spectroscopies. The output signal was linear from 0 to 10 MGy for the solid samples, and 0-600 Gy for the frozen solutions. The obtained data is reproducible and easy to handle. For these reasons, heptahydrate iron sulfate is a suitable dosimeter for low temperature and high irradiation doses, in solid state, and in frozen solution.
Ceramic stationary gas turbine
Energy Technology Data Exchange (ETDEWEB)
Roode, M. van [Solar Turbines Inc., San Diego, CA (United States)
1995-10-01
The performance of current industrial gas turbines is limited by the temperature and strength capabilities of the metallic structural materials in the engine hot section. Because of their superior high-temperature strength and durability, ceramics can be used as structural materials for hot section components (blades, nozzles, combustor liners) in innovative designs at increased turbine firing temperatures. The benefits include the ability to increase the turbine inlet temperature (TIT) to about 1200{degrees}C ({approx}2200{degrees}F) or more with uncooled ceramics. It has been projected that fully optimized stationary gas turbines would have a {approx}20 percent gain in thermal efficiency and {approx}40 percent gain in output power in simple cycle compared to all metal-engines with air-cooled components. Annual fuel savings in cogeneration in the U.S. would be on the order of 0.2 Quad by 2010. Emissions reductions to under 10 ppmv NO{sub x} are also forecast. This paper describes the progress on a three-phase, 6-year program sponsored by the U.S. Department of Energy, Office of Industrial Technologies, to achieve significant performance improvements and emissions reductions in stationary gas turbines by replacing metallic hot section components with ceramic parts. Progress is being reported for the period September 1, 1994, through September 30, 1995.
Perfect fluid cosmological Universes: One equation of state and the most general solution
Das, Anadijiban; Banerjee, Asit; Chakraborty, Subenoy; Pan, Supriya
2018-02-01
Considering a homogeneous and isotropic Universe characterised by the Friedmann-Lemaître-Robertson-Walker line element, in this work, we have prescribed a general formalism for the cosmological solutions when the equation of state of the cosmic substance follows the general structure φ (p, ρ ) = 0, where p, ρ are respectively the pressure and the energy density of the cosmic substance. Using the general formalism we recover some well-known solutions, namely, when the cosmic substance obeys the linear equation of state, a Chaplygin-type equation of state, or a nonlinear equation of state. Thus, the current work offers a new technique to solve the cosmological solutions without any prior relation between p and ρ.
Stability of erythrocyte suspensions layered on stationary and flowing liquids
Omenyi, S. N.; Rhodes, P. H.; Snyder, R. S.
1982-01-01
The apparent stability of erythrocyte suspensions layered on stationary and flowing Ficoll solutions was studied considering the effects of particle concentration, type and size, and the different flow rates of the particle suspensions and chamber liquid. The data from the flowing system were empirically fitted and, when extrapolated to zero chamber liquid flow rate, gave values comparable to the data from the stationary system, thus confirming the validity of the data and our approach to obtain that data.
Millett, Stephen; Mahadevan, Kathya
Battelle is identifying the most likely markets and economic impacts of stationary polymer electrolyte membrane (PEM) fuel cells in the range of 1-250 kW in the U.S. by the year 2015. For this task, Battelle is using the Interactive Future Simulations (IFS™), an analytical modeling and forecasting tool that uses expert judgment, trend analysis, and cross-impact analysis methods to generate most likely future conditions for PEM fuel cell applications, market acceptance, commercial viability, and economic impacts. The cross-impact model contains 28 descriptors including commercial and technological advances in both polymer electrolyte membrane (PEM) fuel cells and fossil fuel technologies, sources of hydrogen, investments, public policy, environmental regulation, value to consumers, commercialization leadership, modes of generation, and the reliability and prices of grid electricity. One likely scenario to the year 2015 is that the PEM fuel cells will be limited to commercial and industrial customers in the range of 50-200 kW with a market size less than US$ 5 billion a year.
Infinite product expansion of the Fokker-Planck equation with steady-state solution.
Martin, R J; Craster, R V; Kearney, M J
2015-07-08
We present an analytical technique for solving Fokker-Planck equations that have a steady-state solution by representing the solution as an infinite product rather than, as usual, an infinite sum. This method has many advantages: automatically ensuring positivity of the resulting approximation, and by design exactly matching both the short- and long-term behaviour. The efficacy of the technique is demonstrated via comparisons with computations of typical examples.
Approximate semi-analytical solutions for the steady-state expansion of a contactor plasma
Camporeale, E.; Hogan, E. A.; MacDonald, E. A.
2015-04-01
We study the steady-state expansion of a collisionless, electrostatic, quasi-neutral plasma plume into vacuum, with a fluid model. We analyze approximate semi-analytical solutions, that can be used in lieu of much more expensive numerical solutions. In particular, we focus on the earlier studies presented in Parks and Katz (1979 American Institute of Aeronautics, Astronautics Conf. vol 1), Korsun and Tverdokhlebova (1997 33rd Joint Prop. Conf. (Seattle, WA) AIAA-97-3065), and Ashkenazy and Fruchtman (2001 27th Int. Electric Propulsion Conf. (Pasadena, CA)). By calculating the error with respect to the numerical solution, we can judge the range of validity for each solution. Moreover, we introduce a generalization of earlier models that has a wider range of applicability, in terms of plasma injection profiles. We conclude by showing a straightforward way to extend the discussed solutions to the case of a plasma plume injected with non-null azimuthal velocity.
Thin viscoelastic disc subjected to radial non-stationary loading
Directory of Open Access Journals (Sweden)
Adámek V.
2010-07-01
Full Text Available The investigation of non-stationary wave phenomena in isotropic viscoelastic solids using analytical approaches is the aim of this paper. Concretely, the problem of a thin homogeneous disc subjected to radial pressure load nonzero on the part of its rim is solved. The external excitation is described by the Heaviside function in time, so the nonstationary state of stress is induced in the disc. Dissipative material behaviour of solid studied is represented by the discrete material model of standard linear viscoelastic solid in the Zener configuration. After the derivation of motion equations final form, the method of integral transforms in combination with the Fourier method is used for finding the problem solution. The solving process results in the derivation of integral transforms of radial and circumferential displacement components. Finally, the type of derived functions singularities and possible methods for their inverse Laplace transform are mentioned.
Large stationary fuel cell systems: Status and dynamic requirements
Bischoff, Manfred
Molten carbonate fuel cell demonstrations to-date, have been able to show the highest fuel-to-electricity conversion efficiencies (>50%) of any stand-alone fuel cell type. The primary developer of this type of fuel cell in United States is Fuel Cell Energy Corporation (FCE), the developer and manufacturer of the Direct FuelCell ™ concept. FCE and MTU CFC Solutions in Germany, a licensee of FCE have demonstrated carbonate fuel cells from 10 kW to 2 MW of electrical output on a variety of fuels. IHI in Japan are also developing carbonate fuel cells for stationary power and have recently successfully demonstrated the technology in Kawagoe, Japan. In Italy, Ansaldo fuel cell have demonstrated a 100 kW carbonate fuel cell in Milan. In Korea, the Ministry of Commerce, Industry and Energy has committed to install 300 fuel cell units, sized 250 kW to 1 MW, for distributed power generation by 2012. Carbonate fuel cell technology is more fuel flexible than lower temperature fuel cell technologies and is well suited for on-site stationary CHP applications as well as to marine, military, and traction applications. The present paper gives an overview about the commercialisation efforts for the molten carbonate fuel cell technology.
Directory of Open Access Journals (Sweden)
Säär Anni
2015-10-01
Full Text Available The fast development of ICTs pose new challenges to the European Union and its Member States. Every EU country has its own policies regarding technology transfer, ownership of state e-services, and the possibilities how the state-owned or licensed e-service could be exported. Taking into account the free movement of goods, the EU has created a platform to cooperate and export IT solutions. However, the lack of preparedness of infrastructures, legislation and stakeholders for cross-border exchanges poses a threat to IT transfer and should be taken into consideration in the EU as well. In the coming decades the number of outsourced ICT solutions, strategically important ICT solutions, public services and critically important information exchange platforms developed on behalf of the states, will grow exponentially. Still, digital development is uneven across the EU, they grow at different speeds and the performance is quite splintered. There are legal provisions which are outdated and therefore impede technological cooperation and export of IT solutions. A Member State may restrict the ICT licensing based on national security and policy reasons and the ownership of intellectual property might pose a threat to technology transfer or further development of the IT solution. There are examples of strategically important export of ICT solutions, the experience at which can be expanded to cover other EU Member States. Strong collaboration would enable mutual learning from past experiences along with the opportunities for better use of technology. Parallels can be drawn with military technology transfers, as the policies and legal framework was first developed and mostly used with them.
A solid state and solution NMR study of the tautomerism in hydroxyquinoline carboxylic acids.
Gudat, Dietrich; Nycz, Jacek E; Polanski, Jaroslaw
2008-01-01
Some hydroxyquinoline carboxylic acids and their conjugate acids and bases were characterized by 13C and 15N NMR spectroscopy in solution and in the solid state. Differences in 13C and, in particular, 15N chemical shift patterns allow to distinguish between individual tautomers and confirm the presence of zwitterionic species in the solid state. Solution NMR spectra in dimethyl sulfoxide (DMSO) show effects resulting as a consequence of dynamic exchange and suggest the presence of an equilibrium mixture of hydroxyquinoline carboxylic acid and zwitterionic hydroxyquinolinium carboxylate tautomers.
R. Haggerty
2013-01-01
In this technical note, a steady-state analytical solution of concentrations of a parent solute reacting to a daughter solute, both of which are undergoing transport and multirate mass transfer, is presented. Although the governing equations are complicated, the resulting solution can be expressed in simple terms. A function of the ratio of concentrations, In (daughter...
Quantum teleportation between stationary macroscopic objects
Energy Technology Data Exchange (ETDEWEB)
Bao, Xiao-Hui; Yuan, Zhen-Sheng; Pan, Jian-Wei [Physikalisches Institut, Universitaet Heidelberg (Germany); Hefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China, Hefei (China); Xu, Xiao-Fan [Physikalisches Institut, Universitaet Heidelberg (Germany); Li, Che-Ming [Physikalisches Institut, Universitaet Heidelberg (Germany); Department of Physics, National Center for Theoretical Sciences, National Cheng Kung University, Tainan (China)
2010-07-01
Quantum teleportation is a process to transfer a quantum state of an object without transferring the state carrier itself. So far, most of the teleportation experiments realized are within the photonic regime. For the teleportation of stationary states, the largest system reported is a single ion. We are now performing an experiment to teleport the state of an macroscopic atomic cloud which consists about 10{sup 6} single atoms. In our experiment two atomic ensembles are utilized. In the first ensemble A we prepare the collective atomic state to be teleported using the quantum feedback technique. The second ensemble B is utilized to generate entanglement between it collective state with a scattered single-photon. Teleportation is realized by converting the atomic state of A to a single-photon and making a Bell state measurement with the scattered single-photon from ensemble B.
Directory of Open Access Journals (Sweden)
Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.
2004-11-01
Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.
Density of low-energy vibrational states in a protein solution
Brill, A. S.; Fiamingo, F. G.; Hampton, D. A.; Levin, P. D.; Thorkildsen, R.
1985-04-01
Electron paramagnetic resonance measurements on the aquo complex of sperm whale skeletal myoglobin in solution at T<4 K show that, at phonon energies around 20 cm-1, the density of vibrational states is that of a three-dimensional system.
High-resolution solution-state NMR of unfractionated plant cell walls
John Ralph; Fachuang Lu; Hoon Kim; Dino Ress; Daniel J. Yelle; Kenneth E. Hammel; Sally A. Ralph; Bernadette Nanayakkara; Armin Wagner; Takuya Akiyama; Paul F. Schatz; Shawn D. Mansfield; Noritsugu Terashima; Wout Boerjan; Bjorn Sundberg; Mattias Hedenstrom
2009-01-01
Detailed structural studies on the plant cell wall have traditionally been difficult. NMR is one of the preeminent structural tools, but obtaining high-resolution solution-state spectra has typically required fractionation and isolation of components of interest. With recent methods for dissolution of, admittedly, finely divided plant cell wall material, the wall can...
Ground state solutions for the nonlinear Schrödinger–Maxwell equations
National Research Council Canada - National Science Library
Azzollini, A; Pomponio, A
2008-01-01
In this paper we study the nonlinear Schrodinger-Maxwell equations {-[DELTA]u+V(x)u+[phi]u=|u|.sup.p-1uin R.sup.3,-[DELTA][phi]=u.sup.2in R.sup.3. If V is a positive constant, we prove the existence of a ground state solution...
The equation of state for solutions of the sunflower oil+isomerhexane system
Safarov, M. M.; Abdukhamidova, Z.
1995-11-01
The article presents the results of an experimental investigation into the density of solutions of the sunflower oil+isomerhexane system (from 23 to 75%) at temperatures of from 293 to 450 K and pressures of from 0.101 to 98.1 MPa. An equation of state is obtained.
Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells.
Kumar, Mulmudi Hemant; Yantara, Natalia; Dharani, Sabba; Graetzel, Michael; Mhaisalkar, Subodh; Boix, Pablo P; Mathews, Nripan
2013-12-07
A ZnO compact layer formed by electrodeposition and ZnO nanorods grown by chemical bath deposition (CBD) allow the processing of low-temperature, solution based and flexible solid state perovskite CH3NH3PbI3 solar cells. Conversion efficiencies of 8.90% were achieved on rigid substrates while the flexible ones yielded 2.62%.
State Space Formulas for a Solution of the Suboptimal Nehari Problem on the Unit Disc
Curtain, Ruth F.; Opmeer, Mark R.
We give state space formulas for a ("central") solution of the suboptimal Nehari problem for functions defined on the unit disc and taking values in the space of bounded operators in separable Hilbert spaces. Instead of assuming exponential stability, we assume a weaker stability concept (the
Energy Technology Data Exchange (ETDEWEB)
Jehle, Stefan [Freie Univ., Berlin (Germany); Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); van Rossum, Barth [Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Stout, Joseph R. [Univ. of Washington, Seattle, WA (United States); Noguchi, Satoshi M. [Univ. of Washington, Seattle, WA (United States); Falber, Katja [Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Rehbein, Kristina [Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Oschkinat, Hartmut [Freie Univ., Berlin (Germany); Leibniz Inst. for Molecular Pharmacology, Berlin (Germany); Klevit, Rachel E. [Univ. of Washington, Seattle, WA (United States); Rajagopal, Ponni [Univ. of Washington, Seattle, WA (United States)
2008-11-14
Atomic-level structural information on αB-Crystallin (αB), a prominent member of the small heat-shock protein family, has been a challenge to obtain due its polydisperse oligomeric nature. We show that magic-angle spinning solid-state NMR can be used to obtain high-resolution information on an ~580-kDa human αB assembled from 175-residue 20-kDa subunits. An ~100-residue α-crystallin domain is common to all small heat-shock proteins, and solution-state NMR was performed on two different α- crystallin domain constructs isolated from αB. In vitro, the chaperone-like activities of full-length αB and the isolated α-crystallin domain are identical. Chemical shifts of the backbone and C^{β }resonances have been obtained for residues 64–162 (α-crystallin domain plus part of the C-terminus) in αB and the isolated α-crystallin domain by solid-state and solution-state NMR, respectively. Both sets of data strongly predict six β-strands in the α-crystallin domain. A majority of residues in the α-crystallin domain have similar chemical shifts in both solid-state and solution-state, indicating similar structures for the domain in its isolated and oligomeric forms. Sites of intersubunit interaction are identified from chemical shift differences that cluster to specific regions of the α-crystallin domain. Multiple signals are observed for the resonances of M68 in the oligomer, identifying the region containing this residue as existing in heterogeneous environments within αB. Evidence for a novel dimerization motif in the human α-crystallin domain is obtained by a comparison of (i) solid-state and solution-state chemical shift data and (ii) ^{1}H–^{15}N heteronuclear single quantum coherence spectra as a function of pH. The isolated α-crystallin domain undergoes a dimer–monomer transition over the pH range 7.5–6.8. This steep pHdependent switch may be important for αB to function optimally (e.g., to preserve the filament integrity
Henry constants in polymer solutions with the van der Waals equation of state
DEFF Research Database (Denmark)
Bithas, Sotiris; Kalospiros, Nikolaos; Kontogeorgis, Georgios
1996-01-01
is a corresponding-states correlation for a dimensionless Henry constant defined based on the van der Waals equation of state. Satisfactory results-often close to the ones from the one-parameter correlation-are obtained for all systems investigated in this work. Compared with literature models that have been applied......The simple der Waals equation of state, as extended to polymer systems, is applied to the correlation and prediction of Henry constants in polymer solutions comprising five polymers and many nonpolar and polar solvents, including supercritical gases. The correlation achieved with one adjustable...
Spin-state-selective methods in solution- and solid-state biomolecular 13C NMR.
Felli, Isabella C; Pierattelli, Roberta
2015-02-01
Spin-state-selective methods to achieve homonuclear decoupling in the direct acquisition dimension of (13)C detected NMR experiments have been one of the key contributors to converting (13)C detected NMR experiments into really useful tools for studying biomolecules. We discuss here in detail the various methods that have been proposed, summarize the large array of new experiments that have been developed and present applications to different kinds of proteins in different aggregation states. Copyright © 2014 Elsevier B.V. All rights reserved.
Stationary Black Holes: Uniqueness and Beyond
Directory of Open Access Journals (Sweden)
Piotr T. Chruściel
2012-05-01
Full Text Available The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.
Stationary Black Holes: Uniqueness and Beyond
Directory of Open Access Journals (Sweden)
Heusler Markus
1998-01-01
Full Text Available The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.
Approximate P3 solution for the semi-infinite medium: steady state and time domain.
Wang, Xichang
2017-09-01
The steady-state solution of the Green's function obtained by the P3 equation in a semi-infinite medium is presented, the proposed solution is a diffusion-based model. Two time-domain solutions are established: one is the solution under extrapolation boundary condition, which we call the optical parameter method, and the other corresponds to the diffusion equation, which we call the double-diffusion coefficient method. The spatial-resolved reflectance and the time-resolved reflectance are calculated. The Monte Carlo simulation is used to verify the P3 equation. The results show that the P3 steady-state equation and the two time-domain equations are in good agreement with the Monte Carlo simulation. In the steady state, when the distance between the detector and the light source is less than several free paths, the P3 equation is more accurate than the diffusion equation. In other cases, the P3 model and the diffusion model have similar results. However, when the absorption coefficient is large, P3 is more accurate. In the time domain, the optical parameter method is more accurate, and the double-diffusion coefficient method is more consistent with the diffusion equation. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Existence of localized solutions for a classical nonlinear Dirac field
Energy Technology Data Exchange (ETDEWEB)
Cazenave, T.; Vazquez, L.
1986-05-01
We prove the existence of stationary states for nonlinear Dirac equations of the form: iota..gamma..sup(..mu..)dsub(..mu..)psi-mpsi+F(anti psipsi)psi=0. We seek solutions which are separable in spherical coordinates and we use a shooting method for solving the associated problem of ordinary differential equations. (orig.).
IMPROVING STATIONARY TOOLS FOR HYDRAULIC UNIT DIAGNOSTICS
Directory of Open Access Journals (Sweden)
I. Pimonov
2015-12-01
Full Text Available An important problem of increasing the efficiency of building machinery due to timely determination of hudrounits technical state at mechanization centers is considered in the given article. Quality indicators of hydraulic actuator operation on the basis of the established connection between the structural and diagnostic parameters of hydrounits are considered. The quantitative connection between the standard and the developed system of hydrounits technical state standards determination is established. Application of this method will significantly simplify diagnosing the elements of a hydraulic actuator at mechanization centers under stationary conditions.
Directory of Open Access Journals (Sweden)
Jingbin Liu
2015-06-01
Full Text Available The rapid advance in mobile communications has made information and services ubiquitously accessible. Location and context information have become essential for the effectiveness of services in the era of mobility. This paper proposes the concept of geo-context that is defined as an integral synthesis of geographical location, human motion state and mobility context. A geo-context computing solution consists of a positioning engine, a motion state recognition engine, and a context inference component. In the geo-context concept, the human motion states and mobility context are associated with the geographical location where they occur. A hybrid geo-context computing solution is implemented that runs on a smartphone, and it utilizes measurements of multiple sensors and signals of opportunity that are available within a smartphone. Pedestrian location and motion states are estimated jointly under the framework of hidden Markov models, and they are used in a reciprocal manner to improve their estimation performance of one another. It is demonstrated that pedestrian location estimation has better accuracy when its motion state is known, and in turn, the performance of motion state recognition can be improved with increasing reliability when the location is given. The geo-context inference is implemented simply with the expert system principle, and more sophisticated approaches will be developed.
Excited states behavior of nucleobases in solution: insights from computational studies.
Improta, Roberto; Barone, Vincenzo
2015-01-01
We review the most significant results obtained in the study of isolated nucleobases in solution by quantum mechanical methods, trying to highlight also the most relevant open issues. We concisely discuss some methodological issues relevant to the study of molecular electronic excited molecular states in condensed phases, focussing on the methods most commonly applied to the study of nucleobases, i.e. continuum models as the Polarizable Continuum Model and explicit solvation models. We analyse how the solvent changes the relative energy of the lowest energy excited states in the Franck-Condon region, their minima and the Conical Intersections among the different states, interpreting the experimental optical spectra, both steady state and time-resolved. Several methods are available for accurately including solvent effects in the Franck-Condon region, and for most of the nucleobases the solvent shift on the different excited states can be considered assessed. The study of the excited state decay, both radiative and non-radiative, in solution still poses instead significant theoretical challenges.
Shen, Aijin; Guo, Zhimou; Cai, Xiaoming; Xue, Xingya; Liang, Xinmiao
2012-03-09
A cysteine-bonded zwitterionic hydrophilic interaction chromatography (HILIC) stationary phase (Click TE-Cys) was prepared based on the "thiol-ene" click chemistry. The Click TE-Cys material was characterized by solid state ¹³C cross polarization/magic-angle spinning (CP/MAS) NMR and elemental analysis. The dynamic evaluation for cytosine, cytidine and orotic acid was performed using Van Deemter plots. The plate height values were no more than 24 μm for the flow rate between 0.5 and 5.4 mm s⁻¹ (0.3-3.5 mL min⁻¹), which proved the excellent separation efficiency of Click TE-Cys stationary phase. The influences of the content of water, concentration of salt and pH of the buffer solution on the retention of model compounds were investigated. The results demonstrated that the separation of polar analytes was dominated by the partitioning mechanism, while the contribution of electrostatic interaction was minor. The thermodynamic characteristic of Click TE-Cys stationary phase was also studied according to van't Hoff plot. An exothermic process for transferring analytes from the mobile phase to the stationary phase was observed and a linear relationship for ln k and 1/T was achieved, indicating no change of retention mechanism within the measured temperature range. Besides, the zwitterionic stationary phase exhibited good stability. Considering the high hydrophilicity of Click TE-Cys stationary phase, the application in the separation of protein tryptic digests was carried out using hydrophilic interaction chromatography-electrospray ionization mass spectrometry (HILIC-ESI-MS). More peaks were adequately resolved on the Click TE-Cys column comparing with that on the TSK Amide-80 column. In addition, the orthogonality between HILIC and RPLC system was investigated utilizing geometric approach. The XTerra MS C₁₈ and Click TE-Cys column displayed great difference in separation selectivity, with the orthogonality reaching 88.0%. On the other hand, the
The optimal solution of a non-convex state-dependent LQR problem and its applications.
Directory of Open Access Journals (Sweden)
Xudan Xu
Full Text Available This paper studies a Non-convex State-dependent Linear Quadratic Regulator (NSLQR problem, in which the control penalty weighting matrix [Formula: see text] in the performance index is state-dependent. A necessary and sufficient condition for the optimal solution is established with a rigorous proof by Euler-Lagrange Equation. It is found that the optimal solution of the NSLQR problem can be obtained by solving a Pseudo-Differential-Riccati-Equation (PDRE simultaneously with the closed-loop system equation. A Comparison Theorem for the PDRE is given to facilitate solution methods for the PDRE. A linear time-variant system is employed as an example in simulation to verify the proposed optimal solution. As a non-trivial application, a goal pursuit process in psychology is modeled as a NSLQR problem and two typical goal pursuit behaviors found in human and animals are reproduced using different control weighting [Formula: see text]. It is found that these two behaviors save control energy and cause less stress over Conventional Control Behavior typified by the LQR control with a constant control weighting [Formula: see text], in situations where only the goal discrepancy at the terminal time is of concern, such as in Marathon races and target hitting missions.
Optical limiting and excited-state absorption in fullerene solutions and doped glasses
Energy Technology Data Exchange (ETDEWEB)
McBranch, D.; Smilowitz, L.; Klimov, V. [and others
1995-09-01
We report the ground state and excited state optical absorption spectra in the visible and near infrared for several substituted fullerenes and higher fullerenes in toluene solutions. Based on these measurements, broadband predictions of the optical limiting performance of these molecules can be deduced. These predictions are then tested at 532 to 700 nm in intensity-dependent transmission measurements. We observe optical limiting in all fullerenes measured; higher fullerenes show the greatest potential for limiting in the near infrared (650-1000 nm), while substituted C{sub 60} shows optimal limiting in the visible (450-700 nm). We observe dramatically reduced limiting for solid forms of C{sub 60} (thin films and C{sub 60}-doped porous glasses), indicating that efficient optical limiting in fullerenes requires true molecular solutions.
Directory of Open Access Journals (Sweden)
Xia Liu
2017-02-01
Full Text Available The discrete nonlinear Schrodinger equation is a nonlinear lattice system that appears in many areas of physics such as nonlinear optics, biomolecular chains and Bose-Einstein condensates. In this article, we consider a class of discrete nonlinear Schrodinger equations with unbounded potentials. We obtain some new sufficient conditions on the multiplicity results of ground state solutions for the equations by using the symmetric mountain pass lemma. Recent results in the literature are greatly improved.
Daniel J. Yelle; John Ralph; Charles R. Frihart
2008-01-01
A recently described plant cell wall dissolution system has been modified to use perdeuterated solvents to allow direct in-NMR-tube dissolution and high-resolution solution-state NMR of the whole cell wall without derivatization. Finely ground cell wall material dissolves in a solvent system containing dimethylsulfoxide-d6 and 1-methylimidazole-d6 in a ratio of 4:1 (v/...
An Efficient Implementation of Non-Linear Limit State Analysis Based on Lower-Bound Solutions
DEFF Research Database (Denmark)
Damkilde, Lars; Schmidt, Lotte Juhl
2005-01-01
Limit State analysis has been used in design for decades e.g. the yield line theory for concrete slabs or slip line solutions in geotechnics. In engineering practice manual methods have been dominating but in recent years the interest in numerical methods has been increasing. In this respect...... it is mandatory to formulate the methods using the well-known finite element concept in order to interface with other types of analysis....
Two-Photon Excitation of Conjugated Molecules in Solution: Spectroscopy and Excited-State Dynamics
Elles, Christopher G.; Houk, Amanda L.; de Wergifosse, Marc; Krylov, Anna
2017-06-01
We examine the two-photon absorption (2PA) spectroscopy and ultrafast excited-state dynamics of several conjugated molecules in solution. By controlling the relative wavelength and polarization of the two photons, the 2PA measurements provide a more sensitive means of probing the electronic structure of a molecule compared with traditional linear absorption spectra. We compare experimental spectra of trans-stilbene, cis-stilbene, and phenanthrene in solution with the calculated spectra of the isolated molecules using EOM-EE-CCSD. The calculated spectra show good agreement with the low-energy region of the experimental spectra (below 6 eV) after suppressing transitions with strong Rydberg character and accounting for solvent and method-dependent shifts of the valence transitions. We also monitor the excited state dynamics following two-photon excitation to high-lying valence states of trans-stilbene up to 6.5 eV. The initially excited states rapidly relax to the lowest singlet excited state and then follow the same reaction path as observed following direct one-photon excitation to the lowest absorption band at 4.0 eV.
Wingfield, Cai; Su, Li; Liu, Xunying; Zhang, Chao; Woodland, Phil; Thwaites, Andrew; Fonteneau, Elisabeth; Marslen-Wilson, William D
2017-09-01
There is widespread interest in the relationship between the neurobiological systems supporting human cognition and emerging computational systems capable of emulating these capacities. Human speech comprehension, poorly understood as a neurobiological process, is an important case in point. Automatic Speech Recognition (ASR) systems with near-human levels of performance are now available, which provide a computationally explicit solution for the recognition of words in continuous speech. This research aims to bridge the gap between speech recognition processes in humans and machines, using novel multivariate techniques to compare incremental 'machine states', generated as the ASR analysis progresses over time, to the incremental 'brain states', measured using combined electro- and magneto-encephalography (EMEG), generated as the same inputs are heard by human listeners. This direct comparison of dynamic human and machine internal states, as they respond to the same incrementally delivered sensory input, revealed a significant correspondence between neural response patterns in human superior temporal cortex and the structural properties of ASR-derived phonetic models. Spatially coherent patches in human temporal cortex responded selectively to individual phonetic features defined on the basis of machine-extracted regularities in the speech to lexicon mapping process. These results demonstrate the feasibility of relating human and ASR solutions to the problem of speech recognition, and suggest the potential for further studies relating complex neural computations in human speech comprehension to the rapidly evolving ASR systems that address the same problem domain.
Four Thermochromic o-Hydroxy Schiff Bases of α-Aminodiphenylmethane: Solution and Solid State Study
Directory of Open Access Journals (Sweden)
Marija Zbačnik
2017-01-01
Full Text Available More than a hundred years after the first studies of the photo- and thermochromism of o-hydroxy Schiff bases (imines, it is still an intriguing topic that fascinates several research groups around the world. The reasons for such behavior are still under investigation, and this work is a part of it. We report the solution-based and mechanochemical synthesis of four o-hydroxy imines derived from α-aminodiphenylmethane. The thermochromic properties were studied for the single crystal and polycrystalline samples of the imines. The supramolecular impact on the keto-enol tautomerism in the solid state was studied using SCXRD and NMR, while NMR spectroscopy was used for the solution state. All four imines are thermochromic, although the color changes of the single crystals are not as strong as of the polycrystalline samples. One of the imines shows negative thermochromism, and that one is in keto-amine tautomeric form, both in the solid state as in solution.
Solution- and adsorbed-state structural ensembles predicted for the statherin-hydroxyapatite system.
Masica, David L; Gray, Jeffrey J
2009-04-22
We have developed a multiscale structure prediction technique to study solution- and adsorbed-state ensembles of biomineralization proteins. The algorithm employs a Metropolis Monte Carlo-plus-minimization strategy that varies all torsional and rigid-body protein degrees of freedom. We applied the technique to fold statherin, starting from a fully extended peptide chain in solution, in the presence of hydroxyapatite (HAp) (001), (010), and (100) monoclinic crystals. Blind (unbiased) predictions capture experimentally observed macroscopic and high-resolution structural features and show minimal statherin structural change upon adsorption. The dominant structural difference between solution and adsorbed states is an experimentally observed folding event in statherin's helical binding domain. Whereas predicted statherin conformers vary slightly at three different HAp crystal faces, geometric and chemical similarities of the surfaces allow structurally promiscuous binding. Finally, we compare blind predictions with those obtained from simulation biased to satisfy all previously published solid-state NMR (ssNMR) distance and angle measurements (acquired from HAp-adsorbed statherin). Atomic clashes in these structures suggest a plausible, alternative interpretation of some ssNMR measurements as intermolecular rather than intramolecular. This work demonstrates that a combination of ssNMR and structure prediction could effectively determine high-resolution protein structures at biomineral interfaces.
Influence of Stationary Crossflow Modulation on Secondary Instability
Choudhari, Meelan M.; Li, Fei; Paredes, Pedro
2016-01-01
A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow involves the breakdown of stationary crossflow vortices via high frequency secondary instability. A majority of the prior research on this secondary instability has focused on crossflow vortices with a single dominant spanwise wavelength. This paper investigates the effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength by a subharmonic stationary mode. Secondary instability of the modulated crossflow pattern is studied using planar, partial-differential-equation based eigenvalue analysis. Computations reveal that weak modulation by the first subharmonic of the input stationary mode leads to mode splitting that is particularly obvious for Y-type secondary modes that are driven by the wall-normal shear of the basic state. Thus, for each Y mode corresponding to the fundamental wavelength of results in unmodulated train of crossflow vortices, the modulated flow supports a pair of secondary modes with somewhat different amplification rates. The mode splitting phenomenon suggests that a more complex stationary modulation such as that induced by natural surface roughness would yield a considerably richer spectrum of secondary instability modes. Even modest levels of subharmonic modulation are shown to have a strong effect on the overall amplification of secondary disturbances, particularly the Z-modes driven by the spanwise shear of the basic state. Preliminary computations related to the nonlinear breakdown of these secondary disturbances provide interesting insights into the process of crossflow transition in the presence of the first subharmonic of the dominant stationary vortex.
Variance-optimal hedging for processes with stationary independent increments
DEFF Research Database (Denmark)
Hubalek, Friedrich; Kallsen, J.; Krawczyk, L.
We determine the variance-optimal hedge when the logarithm of the underlying price follows a process with stationary independent increments in discrete or continuous time. Although the general solution to this problem is known as backward recursion or backward stochastic differential equation, we...
Instabilities of stationary inviscid flow around an airfoil
van Buuren, R.; Kuerten, Johannes G.M.; Geurts, Bernardus J.
1997-01-01
In this paper we numerically solve the stationary inviscid flow around an airfoil. Using the second-order explicit Runge¿Kutta method in combination with the MUSCL scheme and the minmod limiter, we do not obtain a machine accurate solution. This has already been observed in literature and is
Active Control of Stationary Vortices
Nino, Giovanni; Breidenthal, Robert; Bhide, Aditi; Sridhar, Aditya
2016-11-01
A system for active stationary vortex control is presented. The system uses a combination of plasma actuators, pressure sensors and electrical circuits deposited on aerodynamic surfaces using printing electronics methods. Once the pressure sensors sense a change on the intensity or on the position of the stationary vortices, its associated controller activates a set of plasma actuator to return the vortices to their original or intended positions. The forces produced by the actuators act on the secondary flow in the transverse plane, where velocities are much less than in the streamwise direction. As a demonstration case, the active vortex control system is mounted on a flat plate under low speed wind tunnel testing. Here, a set of vortex generators are used to generate the stationary vortices and the plasma actuators are used to move them. Preliminary results from the experiments are presented and compared with theoretical values. Thanks to the USAF AFOSR STTR support under contract # FA9550-15-C-0007.
Yu, Qiong-Wei; Lin, Bo; He, Hai-Bo; Shi, Zhi-Guo; Feng, Yu-Qi
2005-08-12
A novel immobilization method was proposed for the preparation of pyrenebutyric acid-bonded silica (PYB-silica) stationary phases. The pyrene moiety was grafted to silica gel through spacers of aminoalkyl silanes. The HPLC separation of C60, C70 and higher fullerenes on the new pyrenebutyric acid-bonded silica stationary phases was also studied. Based on the temperature effect, the intermolecular interaction between stationary phases and solutes and the retention mechanism were discussed. The results of column loading capacity test demonstrated the potential for the separation of fullerenes in large amounts on the PYB-silica stationary phases.
Field-Deployable Video Cloud Solution
2016-03-01
MEO medium earth orbit MCTSSA Marine Corps Tactical Systems Support Activity MILSATCOM military satellite communications MILSTAR military strategic...Medium Earth Orbit (MEO) satellite solution evaluated within this research proves to be a superior asset when compared to GEO satellite systems... satellites orbit at the exact speed of the earth’s rotation keeping them stationary over a spot on earth. Huckell and Parsons (1999) stated, There is
Solid state and solution conformation of [Ala7]-phalloidin: a synthetic phallotoxin analogue.
Zanotti, G; Falcigno, L; Saviano, M; D'Auria, G; Bruno, B M; Campanile, T; Paolillo, L
2001-04-01
Phallotoxins are toxic compounds produced by poisonous mushroom Amanita phalloides and belong to the class of bicyclic peptides with a transannular thioether bridge. Their intoxication mechanism in the liver involves a specific binding of the toxins to F-actin that, consequently, prevents the depolymerization equilibrium with G-actin. Even though the conformational features of phallotoxins have been worked out in solution, the exact mechanism of interaction with F-actin is still unknown. In this study a toxic phalloidin synthetic derivative, bicyclo(Ala1-D-Thr2-Cys3-cis-4-hydroxy-Pro4-Ala5-2-mercapto-Trp6-Ala7)(S-3-->6) has been synthesized. A substitution at position 7. with an Ala residue replaces the 4,5-dihydroxy-Leu present in the natural phalloidin. This analogue has formed crystals suitable for X-ray analysis, and represents the first case for such a class of compounds. The solid-state structure as well as the solution conformation have been evaluated. NMR techniques have been used to extract interproton distances as restraints in subsequent molecular dynamics calculations. Finally, a direct comparison between structures in solution and in the solid state is presented.
Pazderka, Tomáš; Kopecký, Vladimír
2017-10-01
The Raman spectra of 20 proteinogenic amino acids were recorded in the solution, glass phase (as drop coating deposition Raman (DCDR) samples) and crystalline forms in the wide spectral range of 200-3200 cm- 1. The most apparent spectral differences between the Raman spectra of the crystalline forms, glass phases and aqueous solutions of amino acids were briefly discussed and described in the frame of published works. The possible density dependencies of spectral bands were noted. In some cases, a strong influence of the sample density, as well as of the organization of the water envelope, was observed. The most apparent changes were observed for Ser and Thr. Nevertheless, for the majority of amino acids, the DCDR sample form is an intermediate between the solution and crystalline forms. In contrast, aromatic amino acids have only a small sensitivity to the form of the sample. Our reference set of Raman spectra is useful for revealing discrepancies between the SERS and solid/solution spectra of amino acids. We also found that some previously published Raman spectra of polycrystalline samples resemble glassy state rather than crystalline spectra. Therefore, this reference set of spectra will find application in every branch of Raman spectroscopy where the spectra of biomolecules are collected from coatings.
Hydrodynamics of steady state phloem transport with radial leakage of solute
Cabrita, Paulo; Thorpe, Michael; Huber, Gregor
2013-01-01
Long-distance phloem transport occurs under a pressure gradient generated by the osmotic exchange of water associated with solute exchange in source and sink regions. But these exchanges also occur along the pathway, and yet their physiological role has almost been ignored in mathematical models of phloem transport. Here we present a steady state model for transport phloem which allows solute leakage, based on the Navier-Stokes and convection-diffusion equations which describe fluid motion rigorously. Sieve tube membrane permeability Ps for passive solute exchange (and correspondingly, membrane reflection coefficient) influenced model results strongly, and had to lie in the bottom range of the values reported for plant cells for the results to be realistic. This smaller permeability reflects the efficient specialization of sieve tube elements, minimizing any diffusive solute loss favored by the large concentration difference across the sieve tube membrane. We also found there can be a specific reflection coefficient for which pressure profiles and sap velocities can both be similar to those predicted by the Hagen-Poiseuille equation for a completely impermeable tube. PMID:24409189
Directory of Open Access Journals (Sweden)
A. Zuber
2015-09-01
Full Text Available AbstractThe correlation of thermodynamic properties of nonaqueous electrolyte solutions is relevant to design and operation of many chemical processes, as in fertilizer production and the pharmaceutical industry. In this work, the Q-electrolattice equation of state (EOS is used to model vapor pressure, mean ionic activity coefficient, osmotic coefficient, and liquid density of sixteen methanol and ten ethanol solutions containing single strong 1:1 and 2:1 salts. The Q-electrolattice comprises the lattice-based Mattedi-Tavares-Castier (MTC EOS, the Born term and the explicit MSA term. The model requires two adjustable parameters per ion, namely the ionic diameter and the solvent-ion interaction energy. Predictions of osmotic coefficient at 298.15 K and liquid density at different temperatures are also presented.
Nováková, Lucie; Vlčková, Hana; Petr, Solich
2012-05-15
In this study, the selectivity, retention properties, peak shape and loading capacity for bases were practically evaluated using two UHPLC mixed-mode hybrid CSH stationary phases modified by C18 or Phenyl group. The data were compared with the data obtained on other UHPLC hybrid stationary phases (BEH C18, BEH C8, BEH Phenyl and BEH Shield RP18) at both basic and acidic conditions using conventional HPLC buffers (50mM ammonium formate/acetate) as well as low ionic-strength additives such as, e.g. 0.1-0.01% formic/acetic acid and 1mM solution of ammonium formate/acetate, which are widely used in LC-MS applications. Ten pharmaceutically important compounds encompassing acids, bases and neutral were included into the study. Due to properties of CSH sorbent (which possess positively charged surface besides RP group), much improved peak shapes and weaker retention was obtained for bases even at very low concentration of acidic additives. Such conditions are ideally suited for LC-MS analysis of bases, where typical RP chromatographic separation (retention and good selectivity at basic pH) and LS-MS conditions (efficient ionization at acidic pH) are not in agreement. On the other hand, acids were more strongly retained and for some compounds the peak shape was influenced negatively due to ion-exchange mechanism. Further, the behavior of acidic, basic and neutral solutes is discussed using various additives at both basic and acidic pH for all above stated columns. The robustness of retention times after pH change from basic to acidic was also evaluated. The new CSH stationary phases represent an interesting selectivity tool preferably for separation of basic compounds. Copyright © 2012 Elsevier B.V. All rights reserved.
Solution and solid-state models of peptide CH...O hydrogen bonds.
Baures, Paul W; Beatty, Alicia M; Dhanasekaran, Muthu; Helfrich, Brian A; Pérez-Segarra, Waleska; Desper, John
2002-09-25
Fumaramide derivatives were analyzed in solution by (1)H NMR spectroscopy and in the solid state by X-ray crystallography in order to characterize the formation of CH...O interactions under each condition and to thereby serve as models for these interactions in peptide and protein structure. Solutions of fumaramides at 10 mM in CDCl(3) were titrated with DMSO-d(6), resulting in chemical shifts that moved downfield for the CH groups thought to participate in CH...O=S(CD(3))(2) hydrogen bonds concurrent with NH...O=S(CD(3))(2) hydrogen bonding. In this model, nonparticipating CH groups under the same conditions showed no significant change in chemical shifts between 0.0 and 1.0 M DMSO-d(6) and then moved upfield at higher DMSO-d(6) concentrations. At concentrations above 1.0 M DMSO-d(6), the directed CH...O=S(CD(3))(2) hydrogen bonds provide protection from random DMSO-d(6) contact and prevent the chemical shifts for participating CH groups from moving upfield beyond the original value observed in CDCl(3). X-ray crystal structures identified CH...O=C hydrogen bonds alongside intermolecular NH...O=C hydrogen bonding, a result that supports the solution (1)H NMR spectroscopy results. The solution and solid-state data therefore both provide evidence for the presence of CH...O hydrogen bonds formed concurrent with NH...O hydrogen bonding in these structures. The CH...O=C hydrogen bonds in the X-ray crystal structures are similar to those described for antiparallel beta-sheet structure observed in protein X-ray crystal structures.
Energy Technology Data Exchange (ETDEWEB)
Lee, Ju hyeong; Park, Kwangheon; Kim, Tae hoon; Park, Hyoung gyu; Kim, Jisu [Kyunghee University, Yongin (Korea, Republic of); Song, Hyuk jin [Dongguk University, Gyeongju (Korea, Republic of); Lee, Chan ki; Kang, Do kyu; Jeong, Hyeon jun [UNIST, Ulsan (Korea, Republic of)
2016-10-15
In this experimental study program in Tohoku University, basic experiments were done by the participants. First one is the hydrogen reduction experiment of the mixture of UO{sub 2} and ZrO{sub 2}. Second one is to observe microscopic structure of solid solution of UO{sub 2} and ZrO{sub 2} using SEM/EDX and XRD system, simulated fuel debris. Third one is milking process of {sup 239}Np from {sup 243}Am by solvent extraction using Tri-n-Octylamine (TOA). Last one is solvent extraction in PUREX by the simulated mixed aqueous solution of U, {sup 85}Sr and {sup 239}Np which is represented minor actinide elements included in the spent nuclear fuel. Uranium is separated from aqueous phase to organic phase during solvent extraction procedure using TBP and dodecane. Also, neptunium can be extracted to organic phase as nitric acid concentration change. The extraction behavior of neptunium is different by oxidation state in aqueous phase. The behavior of neptunium is represented as a combined form of these oxidation states in experiment. Therefore, because the oxidation states of neptunium can be controlled by controlling the concentration of nitric acid, the extractability of neptunium can be controlled.
Directory of Open Access Journals (Sweden)
Run-Cang Sun
2013-01-01
Full Text Available The demand for efficient utilization of biomass induces a detailed analysis of the fundamental chemical structures of biomass, especially the complex structures of lignin polymers, which have long been recognized for their negative impact on biorefinery. Traditionally, it has been attempted to reveal the complicated and heterogeneous structure of lignin by a series of chemical analyses, such as thioacidolysis (TA, nitrobenzene oxidation (NBO, and derivatization followed by reductive cleavage (DFRC. Recent advances in nuclear magnetic resonance (NMR technology undoubtedly have made solution-state NMR become the most widely used technique in structural characterization of lignin due to its versatility in illustrating structural features and structural transformations of lignin polymers. As one of the most promising diagnostic tools, NMR provides unambiguous evidence for specific structures as well as quantitative structural information. The recent advances in two-dimensional solution-state NMR techniques for structural analysis of lignin in isolated and whole cell wall states (in situ, as well as their applications are reviewed.
Kunst, Flore K.; Trescher, Maximilian; Bergholtz, Emil J.
2017-08-01
The hallmark of topological phases is their robust boundary signature whose intriguing properties—such as the one-way transport on the chiral edge of a Chern insulator and the sudden disappearance of surface states forming open Fermi arcs on the surfaces of Weyl semimetals—are impossible to realize on the surface alone. Yet, despite the glaring simplicity of noninteracting topological bulk Hamiltonians and their concomitant energy spectrum, the detailed study of the corresponding surface states has essentially been restricted to numerical simulation. In this work, however, we show that exact analytical solutions of both topological and trivial surface states can be obtained for generic tight-binding models on a large class of geometrically frustrated lattices in any dimension without the need for fine-tuning of hopping amplitudes. Our solutions derive from local constraints tantamount to destructive interference between neighboring layer lattices perpendicular to the surface and provide microscopic insights into the structure of the surface states that enable analytical calculation of many desired properties including correlation functions, surface dispersion, Berry curvature, and the system size dependent gap closing, which necessarily occurs when the spatial localization switches surface. This further provides a deepened understanding of the bulk-boundary correspondence. We illustrate our general findings on a large number of examples in two and three spatial dimensions. Notably, we derive exact chiral Chern insulator edge states on the spin-orbit-coupled kagome lattice, and Fermi arcs relevant for recently synthesized slabs of pyrochlore-based Eu2Ir2O7 and Nd2Ir2O7 , which realize an all-in-all-out spin configuration, as well as for spin-ice-like two-in-two-out and one-in-three-out configurations, which are both relevant for Pr2Ir2O7 . Remarkably, each of the pyrochlore examples exhibit clearly resolved Fermi arcs although only the one
Quantum-continuum calculation of the surface states and electrical response of silicon in solution
Campbell, Quinn; Dabo, Ismaila
2017-05-01
A wide range of electrochemical reactions of practical importance occur at the interface between a semiconductor and an electrolyte. We present an embedded density-functional theory method using the recently released self-consistent continuum solvation (SCCS) approach to study these interfaces. In this model, a quantum description of the surface is incorporated into a continuum representation of the bending of the bands within the electrode. The model is applied to understand the electrical response of silicon electrodes in solution, providing microscopic insights into the low-voltage region, where surface states determine the electrification of the semiconductor electrode.
Positive ground state solutions to Schrodinger-Poisson systems with a negative non-local term
Directory of Open Access Journals (Sweden)
Yan-Ping Gao
2015-04-01
Full Text Available In this article, we study the Schrodinger-Poisson system $$\\displaylines{ -\\Delta u+u-\\lambda K(x\\phi(xu=a(x|u|^{p-1}u, \\quad x\\in\\mathbb{R}^3, \\cr -\\Delta\\phi=K(xu^{2},\\quad x\\in\\mathbb{R}^3, }$$ with $p\\in(1,5$. Assume that $a:\\mathbb{R}^3\\to \\mathbb{R^{+}}$ and $K:\\mathbb{R}^3\\to \\mathbb{R^{+}}$ are nonnegative functions and satisfy suitable assumptions, but not requiring any symmetry property on them, we prove the existence of a positive ground state solution resolved by the variational methods.
Synthesis of dental enamel-like hydroxyapatite through solution mediated solid-state conversion.
Zhang, Junling; Jiang, Dongliang; Zhang, Jingxian; Lin, Qingling; Huang, Zhengren
2010-03-02
An ordered dental enamel-like structure of hydroxyapatite (HAp) was achieved through a solution mediated solid-state conversion process with organic phosphate surfactant and gelatin as the mediating agent. Transmission electron microscopy (TEM) tests demonstrated uniform sizes in the obtained apatite nanorods which arranged in parallel to each other along the c-axis and formed organized microarchitectural units over 10 microm in size. The sizes of the synthetic hydroxyapatite nanorods were similar to that observed in enamel from human teeth. The formation and regulation of the orientation and size of HAp nanorods might lead to a better understanding of the biomineralization process for the preparation of high performance biomaterials.
Parallel shooting methods for finding steady state solutions to engine simulation models
DEFF Research Database (Denmark)
Andersen, Stig Kildegård; Thomsen, Per Grove; Carlsen, Henrik
2007-01-01
Parallel single- and multiple shooting methods were tested for finding periodic steady state solutions to a Stirling engine model. The model was used to illustrate features of the methods and possibilities for optimisations. Performance was measured using simulation of an experimental data set...... as test case. A parallel speedup factor of 23 on 33 processors was achieved with multiple shooting. But fast transients at the beginnings of sub intervals caused significant overhead for the multiple shooting methods and limited the best speedup to 3.8 relative to the fastest sequential method: Single...... shooting with reduced dimension of the boundary value problem....
Improved Arbitrary l-STATE Solutions of the HULTHÉN Potential
Qiang, Wen-Chao; Chen, Wen Li; Li, Kai; Zhang, Hua-Ping
We developed a new and simple approximation scheme for centrifugal term. Using the new approximate formula for 1/r2 we derived approximately analytical solutions to the radial Schrödinger equation of the Hulthén potential with arbitrary l-states. Normalized analytical wave-functions are also obtained. Some energy eigenvalues are numerically calculated and compared with those obtained by C. S. Jia et al. and other methods such as the asymptotic iteration, the supersymmetry, the numerical integration methods and a Mathematica program, schroedinger, by W. Lucha and F. F. Schöberl.
Detection of CO2 in solution with a Pt-NiO solid-state sensor.
Yue, Zhao; Niu, Wencheng; Zhang, Wei; Liu, Guohua; Parak, Wolfgang J
2010-08-01
A metal insulator semiconductor field effect transistor (MISFET)-type sensor for the detection of CO(2) dissolved in aqueous solution is presented. This all-solid-state device is based on a Pt-NiO thin film as active sensing material on the top of a gate electrode. The fabrication of the sensor is described and its performance is characterized. In particular the transient characteristics and response curves at different biases V(RS) versus the amount of dissolved CO(2) are presented. The sensor shows a linear response to the logarithm of the concentration of dissolved CO(2) at room temperature. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Ground state solutions for Choquard type equations with a singular potential
Directory of Open Access Journals (Sweden)
Tao Wang
2017-02-01
Full Text Available This article concerns the Choquard type equation $$ -\\Delta u+V(xu=\\Big(\\int_{\\mathbb{R}^N}\\frac{|u(y|^p}{|x-y|^{N-\\alpha}}dy\\Big |u|^{p-2}u,\\quad x\\in \\mathbb{R}^N, $$ where $N\\geq3$, $\\alpha\\in ((N-4_+,N$, $2\\leq p <(N+\\alpha/(N-2$ and V(x is a possibly singular potential and may be unbounded below. Applying a variant of the Lions' concentration-compactness principle, we prove the existence of ground state solution of the above equations.
Wave-Mechanical Properties of Stationary States.
Holden, Alan
This monograph is a review of the quantum mechanical concepts presented in two other monographs, "The Nature of Atoms" and "Bonds Between Atoms," by the same author. It is assumed the reader is familiar with these ideas. The monograph sketches only those aspects of quantum mechanics that are of most direct use in picturing and calculating the…
Stationary black holes with stringy hair
Boos, Jens; Frolov, Valeri P.
2018-01-01
We discuss properties of black holes which are pierced by special configurations of cosmic strings. For static black holes, we consider radial strings in the limit when the number of strings grows to infinity while the tension of each single string tends to zero. In a properly taken limit, the stress-energy tensor of the string distribution is finite. We call such matter stringy matter. We present a solution of the Einstein equations for an electrically charged static black hole with the stringy matter, with and without a cosmological constant. This solution is a warped product of two metrics. One of them is a deformed 2-sphere, whose Gaussian curvature is determined by the energy density of the stringy matter. We discuss the embedding of a corresponding distorted sphere into a three-dimensional Euclidean space and formulate consistency conditions. We also found a relation between the square of the Weyl tensor invariant of the four-dimensional spacetime of the stringy black holes and the energy density of the stringy matter. In the second part of the paper, we discuss test stationary strings in the Kerr geometry and in its Kerr-NUT-(anti-)de Sitter generalizations. Explicit solutions for strings that are regular at the event horizon are obtained. Using these solutions, the stress-energy tensor of the stringy matter in these geometries is calculated. Extraction of the angular momentum from rotating black holes by such strings is also discussed.
Masuda, Yuichi; Nakano, Tomoko; Sugiyama, Midori
2012-05-10
Despite the importance of ultrafast (time scale exceeding 10(-11) s) intramolecular proton transfer (PT) events between electronic ground states in solution, experimental determination of the rates of such reactions has not yet been accomplished because of the limitations of the utilized methods. The objective of this study was to evaluate the PT rates of intramolecular O···H···O hydrogen-bonded systems in solution through the (1)H spin-lattice relaxation times of the hydroxyl protons, induced by the (1)H-(17)O dipolar interactions (T(1dd)(OH)), taking into account the contribution of the OH reorientational motion to T(1dd)(OH). Solutions of the benzoic acid dimer (BA dimer), 1-benzoyl-6-hydroxy-6-phenylfulvene (Fulvene), and dibenzoylmethane (DBM) were chosen as test systems. For Fulvene in CCl(4), the PT time, τ(PT), was deduced to be 7 × 10(-11) s. In the case of the BA dimer in CCl(4), the τ(PT) value was considerably greater than the OH reorientational correlation time, τ(R(OH)) = 4.3 × 10(-11) s. In contrast, the experimental results for DBM in CCl(4) indicated that the proton is located about midway between the two oxygen atoms, that is, the PT potential energy surface is a single well or a double well with a PT barrier near or below the zero-point energy.
All-Solution-Based Aggregation Control in Solid-State Photon Upconverting Organic Model Composites.
Goudarzi, Hossein; Keivanidis, Panagiotis E
2017-01-11
Hitherto, great strides have been made in the development of organic systems that exhibit triplet-triplet annihilation-induced photon-energy upconversion (TTA-UC). Yet, the exact role of intermolecular states in solid-state TTA-UC composites remains elusive. Here we perform a comprehensive spectroscopic study in a series of solution-processable solid-state TTA-UC organic composites with increasing segregated phase content for elucidating the impact of aggregate formation in their TTA-UC properties. Six different states of aggregation are reached in composites of the 9,10-diphenylanthracene (DPA) blue emitter mixed with the (2,3,7,8,12,13,17,18-octaethylporphyrinato)platinum(II) sensitizer (PtOEP) in a fixed nominal ratio (2 wt % PtOEP). Fine-tuning of the PtOEP and DPA phase segregation in these composites is achieved with a low-temperature solution-processing protocol when three different solvents of increasing boiling point are alternatively used and when the binary DPA:PtOEP system is dispersed in the optically inert polystyrene (PS) matrix (PS:DPA:PtOEP). Time-gated (in the nanosecond and microsecond time scales) photoluminescence measurements identify the upper level of PtOEP segregation at which the PtOEP aggregate-based networks favor PtOEP triplet exciton migration toward the PtOEP:DPA interfaces and triplet energy transfer to the DPA triplet manifold. The maximum DPA TTA-UC luminescence intensity is ensured when the bimolecular annihilation constant of PtOEP remains close to γTTA-PtOEP = 1.1 × 10(-13) cm(3) s(-1). Beyond this PtOEP segregation level, the DPA TTA-UC luminescence intensity decreases because of losses caused by the generation of PtOEP delayed fluorescence and DPA phosphorescence in the nanosecond and microsecond time scales, respectively.
Chapter 6. Scaling Up Solutions to State, National and Global Levels
Directory of Open Access Journals (Sweden)
Daniel Kammen
2016-12-01
Full Text Available Scaling-up solutions require learning and adapting lessons between locations and at different scales. To accomplish this, common metrics are vital to building a shared language. For California, this has meant careful financial, cradle-to-grave life-cycle assessment methods leading to carbon accounting in many avenues of government (via the Low Carbon Fuel Standard or the Cap and Trade program. These methods themselves interact, such as the use of carbon accounting for the resources needed to manage water and other key resources; the use of criteria air pollution monitoring to identify environmental injustices; and the use of carbon market revenues to address these inequalities, through investment in best available abatement technologies (BACT and in job creation in disadvantaged communities anticipated in the emerging clean energy sector. Creating interdisciplinary partnerships across the UC Campuses and the National Laboratories to innovate science and technology is critical to scalable carbon neutrality solutions. As an example, we can build coordinated research and development programs across UC and California, with strong partnerships with the Federal government to coordinate and “multiply” resources that accelerate development and deployment. These partnerships should be strongly goal-focused, i.e., they are created to solve specific, large problems, to enable quantitatively measurable outcomes within energy generation, efficiency and CO2 abatement categories. Intersectoral partnerships should be fostered across campuses, laboratories, with state, federal and multi-lateral organizations funding to develop technologies and deploy solutions at scale. Integrated partnerships with industry are required to influence markets, deploy solutions, and create new industries and jobs. Beyond California, we need to establish consortia with industry and foundations to deploy solutions at the regional, state, national, and international scale to
2013-01-01
Background Several papers described the structure of curcumin and some other derivatives in solid and in solution. In the crystal structure of curcumin, the enol H atom is located symmetrically between both oxygen atoms of the enolone fragment with an O···O distance of 2.455 Å, which is characteristic for symmetrical H-bonds. In the solution, the geometry of the enolone fragment is attributed to the inherent disorder of the local environment, which solvates one of the basic sites better than the other, stabilizing one tautomer over the other. In this paper, how the position of methoxy groups in dimethoxy curcuminoids influence the conformation of molecules and how the halogen atoms change it when they are bonded at α-position in keto-enol part of molecules is described. Results Six isomers of dimethoxy curcuminoids were prepared. Conformations in solid state, which were determined by X-ray single crystallography and 1H MAS and 13C CPMAS NMR measurements, depend on the position of methoxy groups in curcuminoid molecules. In solution, a fast equilibrium between both keto-enol forms exists. A theoretical calculation finding shows that the position of methoxy groups changes the energy of HOMO and LUMO. An efficient protocol for the highly regioselective bromination and chlorination leading to α-halogenated product has been developed. All α-halogenated compounds are present mainly in cis keto-enol form. Conclusions The structures in solid state of dimethoxy curcuminoids depend on the position of methoxy groups. The NMR data of crystalline solid samples of 3,4-diOCH3 derivative, XRD measurements and X-ray structures lead us to the conclusion that polymorphism exists in solids. The same conclusion can be done for 3,5-diOCH3 derivative. In solution, dimethoxy curcuminoids are present in the forms that can be described as the coexistence of two equivalent tautomers being in fast equilibrium. The position of methoxy groups has a small influence on the enolic hydrogen
Reynolds, G. H.; Lenel, F. V.; Ansell, G. S.
1971-01-01
The effect of solute additions on the steady-state creep behavior of coarse-grained dispersion-strengthened aluminum alloys was studied. Recrystallized dispersion-strengthened solid solutions were found to have stress and temperature sensitivities quite unlike those observed in single-phase solid solutions having the same composition and grain size. The addition of magnesium or copper to the matrix of a recrystallized dispersion-strengthened aluminum causes a decrease in the steady-state creep rate which is much smaller than that caused by similar amounts of solute in single-phase solid solutions. All alloys exhibited essentially a 4.0 power stress exponent in agreement with the model of Ansell and Weertman. The activation energy for steady-state creep in dispersion-strengthened Al-Mg alloys, as well as the stress dependence, was in agreement with the physical model of dislocation climb over the dispersed particles.
Fractional Parker equation for the transport of cosmic rays: steady-state solutions
Zimbardo, G.; Perri, S.; Effenberger, F.; Fichtner, H.
2017-10-01
Context. The acceleration and transport of energetic particles in astrophysical plasmas can be described by the so-called Parker equation, which is a kinetic equation comprising diffusion terms both in coordinate space and in momentum space. In the past years, it has been found that energetic particle transport in space can be anomalous, for instance, superdiffusive rather than normal diffusive. This requires a revision of the basic transport equation for such circumstances. Aims: Here, we extend the Parker equation to the case of anomalous diffusion by means of fractional derivatives that generalize the usual second-order spatial diffusion operator. Methods: We introduce the left and right Caputo fractional derivatives in space. These derivatives are one of the tools used to describe anomalous transport. We consider the case of steady-state solutions upstream and downstream of a planar shock. Results: We obtain an estimate of the particle acceleration time at shocks in the case of superdiffusion. An analytical solution of the steady-state fractional Parker equation is given by the Mittag-Leffler functions, which correspond to a power-law profile for the energetic particle intensity far upstream of the shock, in agreement with the results obtained from a probabilistic approach to superdiffusion. These functions also correspond to a stretched exponential close upstream of the shock. Conclusions: These results can help to model more precisely the measured fluxes of energetic particles that are accelerated at both interplanetary shocks and supernova remnant shocks.
Yao, M.-S.
1980-01-01
A study of the maintenance of the quasistationary waves forced by topography using a truncated two-level quasigeostrophic spectral model in a zonal channel on a beta-plane is presented. The model's motion contains wavenumbers 0, n, and 2n in the zonal direction, where n is the lowest eddy wavenumber and also the wavenumber of the topography. The study covered the two cases defined by n=2 and n=3; the spectral mode was integrated by initially perturbing the stationary solution of the equations governing the spectral coefficients, and a detailed energetics study was made of the quasiequilibrium state to study the maintenance of the quasistationary waves. The energy conversions required for maintaining these waves when n=3 imply that they are generated mainly by baroclinic stability of the forced waves; this type of baroclinic wave tends to become stationary to draw efficiently on the available energy of the forced wave.
Energy Technology Data Exchange (ETDEWEB)
Montes T, J. L.; Ortiz S, J. J.; Perusquia del C, R.; Castillo M, A., E-mail: joseluis.montes@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2014-10-15
In this paper the simulation of a BWR in order to evaluate the performance of a set of fuel assemblies under stationary state in three dimensions (3-D) is presented. 15 cases selected from a database containing a total of 18225 cases are evaluated. The main selection criteria were based on the results of the design phase of the power cells in two dimensions (2-D) and 3-D initial study. In 2-D studies the parameters that were used to qualify and select the designs were basically the local power peaking factor and neutron multiplication factor of each fuel cell. In the initial 3-D study variables that defined the quality of results, and from which the selection was realized, are the margins to thermal limits of reactor operation and the value of the effective multiplication factor at the end of cycle operation. From the 2-D and 3-D results of the studies described a second 3-D study was realized, where the optimizations of the fuel reload pattern was carried out. The results presented in this paper correspond to this second 3-D study. It was found that the designs of the fuel cell they had a similar behavior to those provided by the fuel supplier of reference BWR. Particularly it noted the impact of reload pattern on the cold shut down margin. An estimate of the operation costs of reference cycle analyzed with each one designed reload batch was also performed. As a result a positive difference (gain) up to 10,347 M/US D was found. (Author)
Long, Christopher J; Purdon, Patrick L; Temereanca, Simona; Desai, Neil U; Hämäläinen, Matti S; Brown, Emery N
2011-06-01
Determining the magnitude and location of neural sources within the brain that are responsible for generating magnetoencephalography (MEG) signals measured on the surface of the head is a challenging problem in functional neuroimaging. The number of potential sources within the brain exceeds by an order of magnitude the number of recording sites. As a consequence, the estimates for the magnitude and location of the neural sources will be ill-conditioned because of the underdetermined nature of the problem. One well-known technique designed to address this imbalance is the minimum norm estimator (MNE). This approach imposes an L(2) regularization constraint that serves to stabilize and condition the source parameter estimates. However, these classes of regularizer are static in time and do not consider the temporal constraints inherent to the biophysics of the MEG experiment. In this paper we propose a dynamic state-space model that accounts for both spatial and temporal correlations within and across candidate intra-cortical sources. In our model, the observation model is derived from the steady-state solution to Maxwell's equations while the latent model representing neural dynamics is given by a random walk process. We show that the Kalman filter (KF) and the Kalman smoother [also known as the fixed-interval smoother (FIS)] may be used to solve the ensuing high-dimensional state-estimation problem. Using a well-known relationship between Bayesian estimation and Kalman filtering, we show that the MNE estimates carry a significant zero bias. Calculating these high-dimensional state estimates is a computationally challenging task that requires High Performance Computing (HPC) resources. To this end, we employ the NSF Teragrid Supercomputing Network to compute the source estimates. We demonstrate improvement in performance of the state-space algorithm relative to MNE in analyses of simulated and actual somatosensory MEG experiments. Our findings establish the
Geometry aware Stationary Subspace Analysis
2016-11-22
JMLR: Workshop and Conference Proceedings 63:430–444, 2016 ACML 2016 Geometry -aware Stationary Subspace Analysis Inbal Horev inbal@ms.k.u-tokyo.ac.jp... geometry of the SPD matrix manifold and the invariance properties of its metrics. Most notably we show that these invariances alleviate the need to...Horev, F. Yger & M. Sugiyama. Geometry -aware SSA many theoretical and practical aspects have been addressed (see Sugiyama and Kawanabe (2012) for an in
Dynamic Stationary Response of Reinforced Plates by the Boundary Element Method
Directory of Open Access Journals (Sweden)
Luiz Carlos Facundo Sanches
2007-01-01
Full Text Available A direct version of the boundary element method (BEM is developed to model the stationary dynamic response of reinforced plate structures, such as reinforced panels in buildings, automobiles, and airplanes. The dynamic stationary fundamental solutions of thin plates and plane stress state are used to transform the governing partial differential equations into boundary integral equations (BIEs. Two sets of uncoupled BIEs are formulated, respectively, for the in-plane state (membrane and for the out-of-plane state (bending. These uncoupled systems are joined to form a macro-element, in which membrane and bending effects are present. The association of these macro-elements is able to simulate thin-walled structures, including reinforced plate structures. In the present formulation, the BIE is discretized by continuous and/or discontinuous linear elements. Four displacement integral equations are written for every boundary node. Modal data, that is, natural frequencies and the corresponding mode shapes of reinforced plates, are obtained from information contained in the frequency response functions (FRFs. A specific example is presented to illustrate the versatility of the proposed methodology. Different configurations of the reinforcements are used to simulate simply supported and clamped boundary conditions for the plate structures. The procedure is validated by comparison with results determined by the finite element method (FEM.
High efficiency stationary hydrogen storage
Energy Technology Data Exchange (ETDEWEB)
Hynek, S.; Fuller, W.; Truslow, S. [Arthur D. Little, Inc., Cambridge, MA (United States)
1995-09-01
Stationary storage of hydrogen permits one to make hydrogen now and use it later. With stationary hydrogen storage, one can use excess electrical generation capacity to power an electrolyzer, and store the resultant hydrogen for later use or transshipment. One can also use stationary hydrogen as a buffer at fueling stations to accommodate non-steady fueling demand, thus permitting the hydrogen supply system (e.g., methane reformer or electrolyzer) to be sized to meet the average, rather than the peak, demand. We at ADL designed, built, and tested a stationary hydrogen storage device that thermally couples a high-temperature metal hydride to a phase change material (PCM). The PCM captures and stores the heat of the hydriding reaction as its own heat of fusion (that is, it melts), and subsequently returns that heat of fusion (by freezing) to facilitate the dehydriding reaction. A key component of this stationary hydrogen storage device is the metal hydride itself. We used nickel-coated magnesium powder (NCMP) - magnesium particles coated with a thin layer of nickel by means of chemical vapor deposition (CVD). Magnesium hydride can store a higher weight fraction of hydrogen than any other practical metal hydride, and it is less expensive than any other metal hydride. We designed and constructed an experimental NCM/PCM reactor out of 310 stainless steel in the form of a shell-and-tube heat exchanger, with the tube side packed with NCMP and the shell side filled with a eutectic mixture of NaCL, KCl, and MgCl{sub 2}. Our experimental results indicate that with proper attention to limiting thermal losses, our overall efficiency will exceed 90% (DOE goal: >75%) and our overall system cost will be only 33% (DOE goal: <50%) of the value of the delivered hydrogen. It appears that NCMP can be used to purify hydrogen streams and store hydrogen at the same time. These prospects make the NCMP/PCM reactor an attractive component in a reformer-based hydrogen fueling station.
Measure-valued differentiation for stationary Markov chains
Heidergott, B.F.; Hordijk, A.; Weisshaupt, H.
2006-01-01
We study general state-space Markov chains that depend on a parameter, say, θ, Sufficient conditions are established for the stationary performance of such a Markov chain to be differentiable with respect to θ. Specifically, we study the case of unbounded performance functions and thereby extend the
Zhao, Wenjie; Chu, Jianxiang; Xie, Fuwei; Duan, Qunpeng; He, Lijun; Zhang, Shusheng
2017-02-17
Pillararene bonded stationary phases for high performance liquid chromatography were prepared using 3-aminopropyltriethoxysilane as coupling reagent. The structure of the new materials was characterized by infrared spectroscopy, elemental analysis and thermogravimetric analysis. The chromatographic performance and retention mechanism of the new stationary phases were evaluated in reversed-phase mode compared with C18 using different solute probes including Tanaka test solutes, polycyclic aromatic hydrocarbons, phenols and aromatic positional isomers. The new stationary phases could provide various interactions for different solutes, such as hydrophobic, hydrogen bonding, π-π and inclusion interactions. The synergistic effects resulting from aromatic rings, oxygen atoms, alkyl linkers and cavities in the new host molecules improved the separation selectivity by multiple retention mechanisms. Such hybrid stationary phases can provide more versatility and have great potential for the analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Analytical Reduced Models for the Non-stationary Diabatic Atmospheric Boundary Layer
Momen, Mostafa; Bou-Zeid, Elie
2017-09-01
Geophysical boundary-layer flows feature complex dynamics that often evolve with time; however, most current knowledge centres on the steady-state problem. In these atmospheric and oceanic boundary layers, the pressure gradient, buoyancy, Coriolis, and frictional forces interact to determine the statistical moments of the flow. The resulting equations for the non-stationary mean variables, even when succinctly closed, remain challenging to handle mathematically. Here, we derive a simpler physical model that reduces these governing unsteady Reynolds-averaged Navier-Stokes partial differential equations into a single first-order ordinary differential equation with non-constant coefficients. The reduced model is straightforward to solve under arbitrary forcing, even when the statistical moments are non-stationary and the viscosity varies in time and space. The model is successfully validated against large-eddy simulation for, (1) time-variable pressure gradients, and (2) linearly time-variable buoyancy. The new model is shown to have a superior performance compared to the classic Blackadar solutions (and later improvements on these solutions), and it covers a much wider range of conditions.
State of the Art in LP-WAN Solutions for Industrial IoT Services
Directory of Open Access Journals (Sweden)
Ramon Sanchez-Iborra
2016-05-01
Full Text Available The emergence of low-cost connected devices is enabling a new wave of sensorization services. These services can be highly leveraged in industrial applications. However, the technologies employed so far for managing this kind of system do not fully cover the strict requirements of industrial networks, especially those regarding energy efficiency. In this article a novel paradigm, called Low-Power Wide Area Networking (LP-WAN, is explored. By means of a cellular-type architecture, LP-WAN–based solutions aim at fulfilling the reliability and efficiency challenges posed by long-term industrial networks. Thus, the most prominent LP-WAN solutions are reviewed, identifying and discussing the pros and cons of each of them. The focus is also on examining the current deployment state of these platforms in Spain. Although LP-WAN systems are at early stages of development, they represent a promising alternative for boosting future industrial IIoT (Industrial Internet of Things networks and services.
A solid-state NMR method for solution of zeolite crystal structures.
Brouwer, Darren H; Darton, Richard J; Morris, Russell E; Levitt, Malcolm H
2005-07-27
Since zeolites are notoriously difficult to prepare as large single crystals, structure determination usually relies on powder X-ray diffraction (XRD). However, structure solution (i.e., deriving an initial structural model) directly from powder XRD data is often very difficult due to the diffraction phase problem and the high degree of overlap between the individual reflections, particularly for materials with the structural complexity of most zeolites. Here, we report a method for structure determination of zeolite crystal structures that combines powder XRD and nuclear magnetic resonance (NMR) spectroscopy in which the crucial step of structure solution is achieved using solid-state (29)Si double-quantum dipolar recoupling NMR, which probes the distance-dependent dipolar interactions between naturally abundant (29)Si nuclei in the zeolite framework. For two purely siliceous zeolite blind test samples, we demonstrate that the NMR data can be combined with the unit cell parameters and space group to solve structural models that refine successfully against the powder XRD data.
Vacuum-drying of maltodextrin aqueous solutions with ethanol in a foamed state
Energy Technology Data Exchange (ETDEWEB)
Kumazawa, E. (Research Inst. of Life Sciences, Snow Brand Milk Products Co., Ltd. (JP)); Ido, K. (Technical Research Inst., Snow Brand Milk Products Co., Ltd. (JP)); Toei, R.; Okazaki, M. (Dept. of Chemical Engineering, Kyoto Univ. (JP))
1990-01-01
This paper reports on an aqueous maltodextrin solution in a foamed state with ethanol as a model aroma component, vacuum-dried with radiative heat. A vacuum chamber was made in which the weight and temperature of the material on a belt were measured during the drying process. While measuring the drying rate, the material temperature and the retention of aroma, the effect of the drying conditions on the aroma retention were experimentally studied. Numerical solutions were obtained during the drying process by solving simultaneously two partial differential equations regarding heat and mass transfer. The drying rate depends on the heating temperature, the belt loading, and the initial total solids. Even when heated at a temperature of 150{degrees}C for 30 minutes, the experimentally measured aroma retention is over 65 percent for initial total solids exceeding 70 percent. A satisfactory agreement between the observed and the simulated values were obtained. This analytical model would appear to be useful for setting optimum drying conditions for practical vacuum dryers.
State of the Art in LP-WAN Solutions for Industrial IoT Services.
Sanchez-Iborra, Ramon; Cano, Maria-Dolores
2016-05-17
The emergence of low-cost connected devices is enabling a new wave of sensorization services. These services can be highly leveraged in industrial applications. However, the technologies employed so far for managing this kind of system do not fully cover the strict requirements of industrial networks, especially those regarding energy efficiency. In this article a novel paradigm, called Low-Power Wide Area Networking (LP-WAN), is explored. By means of a cellular-type architecture, LP-WAN-based solutions aim at fulfilling the reliability and efficiency challenges posed by long-term industrial networks. Thus, the most prominent LP-WAN solutions are reviewed, identifying and discussing the pros and cons of each of them. The focus is also on examining the current deployment state of these platforms in Spain. Although LP-WAN systems are at early stages of development, they represent a promising alternative for boosting future industrial IIoT (Industrial Internet of Things) networks and services.
Fabrication and Performance of All-Solid-State Chloride Sensors in Synthetic Concrete Pore Solutions
Directory of Open Access Journals (Sweden)
Hongwei Deng
2010-11-01
Full Text Available One type of all-solid-state chloride sensor was fabricated using a MnO2 electrode and a Ag/AgCl electrode. The potentiometric response of the sensor to chloride in synthetic concrete pore solutions was systematically studied, and the polarization performance was also evaluated. The results show a good linear relationship between the potential reading of the sensor and the logarithm of chloride activity (concentration ranges from 0.05 to 5.0 M, and the potential value remains stable with increasing immersion time. The existence of K+, Ca2+, Na+ and SO42− ions have little influence on the potentiometric response of the sensor to chloride, but the pH has a significant influence on the potential value of the sensor at low chloride concentration. The potential reading of the sensor increases linearly with the solution temperature over the range from 5 to 45 °C. Meanwhile, an excellent polarization behavior is proven by galvanostatic and potentiodynamic tests. All of the results reveal that the developed sensor has a great potential for monitoring chloride ions in concrete environments.
Investigating the Mechanisms of Amylolysis of Starch Granules by Solution-State NMR
2015-01-01
Starch is a prominent component of the human diet and is hydrolyzed by α-amylase post-ingestion. Probing the mechanism of this process has proven challenging, due to the intrinsic heterogeneity of individual starch granules. By means of solution-state NMR, we demonstrate that flexible polysaccharide chains protruding from the solvent-exposed surfaces of waxy rice starch granules are highly mobile and that during hydrothermal treatment, when the granules swell, the number of flexible residues on the exposed surfaces increases by a factor of 15. Moreover, we show that these flexible chains are the primary substrates for α-amylase, being cleaved in the initial stages of hydrolysis. These findings allow us to conclude that the quantity of flexible α-glucan chains protruding from the granule surface will greatly influence the rate of energy acquisition from digestion of starch. PMID:25815624
Exact solution to the steady-state dynamics of a periodically modulated resonator
Directory of Open Access Journals (Sweden)
Momchil Minkov
2017-07-01
Full Text Available We provide an analytic solution to the coupled-mode equations describing the steady-state of a single periodically modulated optical resonator driven by a monochromatic input. The phenomenology of this system was qualitatively understood only in the adiabatic limit, i.e., for low modulation speed. However, both in and out of this regime, we find highly non-trivial effects for specific parameters of the modulation. For example, we show complete suppression of the transmission even with zero detuning between the input and the static resonator frequency. We also demonstrate the possibility for complete, lossless frequency conversion of the input into the sideband frequencies, as well as for optimizing the transmitted signal towards a given target temporal waveform. The analytic results are validated by first-principle simulations.
Berger, Nadja; Li, Fee; Mallick, Bert; Brüggemann, J Thomas; Sander, Wolfram; Merten, Christian
2017-01-01
A set of cyclic tetrapeptides of the general form cyclo (Boc-Cys-Pro-X-Cys-OMe) with X being L-/D-Ala, L-/D-Val, and L-/D-Trp was synthesized. These peptides serve as model systems for structure elucidation in solution and feature a variety of structural motifs - namely a β-turn with intramolecular hydrogen bonding interactions, cis/trans isomerism, and a disulphide bond. In this work, we performed a comprehensive structural analysis focussing on their β-turn conformational preferences using NMR, VCD, and Raman spectroscopy. Our results provide evidence for a strong influence of a single stereocenter on the structures of the peptides whereas solvent polarity does not significantly affect them. Additionally, the solid state conformational preferences were studied by crystal structure analysis. Overall, a general trend for the conformational preferences of this set of peptides can be concluded from the results of the complementary investigations. © 2016 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Shibib Khalid S.
2017-01-01
Full Text Available The exact analytical solution of axis-symmetry transient temperature and Tresca failure stress in pulsed mode solid-state laser rod is derived using integral transform method. The result obtained from this work is compared with previously published data and good agreement is found. The effect of increasing period is studied, and it is found that at constant pulse width as the period is increased, the allowable pumping power is increased too. Furthermore, the effect of changing pulse width with a constant period is studied, and it is found that as the pulse width is increased, the allowable pumping power is decreased. The effect of duty cycle is studied also and it is found that as duty cycle is increased the allowable pumping power is decreased. This work permits proper selection of pulse width, period and duty cycle to avoid laser rod fracture while obtaining maximum output laser power in the designing of laser system.
Hare, Patrick M.; Crespo-Hernández, Carlos E.; Kohler, Bern
2006-01-01
The femtosecond transient absorption technique was used to study the relaxation of excited electronic states created by absorption of 267-nm light in all of the naturally occurring pyrimidine DNA and RNA bases in aqueous solution. The results reveal a surprising bifurcation of the initial excited-state population in
Stationary nonlinear Schrödinger equation on simplest graphs
Sabirov, K. K.; Sobirov, Z. A.; Babajanov, D.; Matrasulov, D. U.
2013-05-01
We treat the stationary (cubic) nonlinear Schrödinger equation (NLSE) on simplest graphs. The solutions are obtained for primary star graph with the boundary conditions providing vertex matching and flux conservation. Both, repulsive and attractive nonlinearities are considered. It is shown that the method can be extended to the case of arbitrary number of bonds in star graphs and for other simplest topologies.
Guichard, Gilles; Violette, Aude; Chassaing, Gérard; Miclet, Emeric
2008-10-01
Ability of N,N'-linked oligoureas containing proteinogenic side chains to adopt a stable helix conformation in solution has been described recently. NMR as well as circular dichroism (CD) spectroscopies were employed to gain insight into their specific fold. It is herein proposed to extend the structural information available on these peptidomimetics by an advantageous use of a methylene spin state selective NMR experiment. Homodecoupling provided by the pulse scheme made it possible to readily measure conformation-dependent (3)J(HH) constants that are difficult if not impossible to obtain with standard NMR experiments. Adding those couplings to the NMR restraints improved the quality of the structure calculations significantly, as judged by a ca 30% decrease of the root mean square deviation (RMSD) obtained over an ensemble of 20 structures. Moreover, accurate determination of individual (1)J(CH) couplings within each methylene group revealed uniform values throughout the oligourea sequence, with (1)J(CH) systematically slightly larger for the pro-S hydrogen than for the pro-R. As shown in this study, the methylene spin state selective NMR experiment displays a good intrinsic sensitivity and could therefore provide valuable structural information at (13)C natural abundance for peptidomimetic molecules and foldamers bearing diastereotopic methylene protons. Copyright (c) 2008 John Wiley & Sons, Ltd.
Evaluation of the Methods for Response Analysis under Non-Stationary Excitation
Directory of Open Access Journals (Sweden)
R.S. Jangid
1999-01-01
Full Text Available Response of structures to non-stationary ground motion can be obtained either by the evolutionary spectral analysis or by the Markov approach. In certain conditions, a quasi-stationary analysis can also be performed. The first two methods of analysis are difficult to apply for complex situations such as problems involving soil-structure interaction, non-classical damping and primary-secondary structure interaction. The quasi-stationary analysis, on the other hand, provides an easier solution procedure for such cases. Here-in, the effectiveness of the quasi-stationary analysis is examined with the help of the analysis of a single degree-of-freedom (SDOF system under a set of parametric variations. For this purpose, responses of the SDOF system to uniformly modulated non-stationary random ground excitation are obtained by the three methods and they are compared. In addition, the relative computational efforts for different methods are also investigated.
DEFF Research Database (Denmark)
Goncalves, Ana Saraiva; Kontogeorgis, Georgios; Harismiadis, Vassilis I.
1996-01-01
The van der Waals equation of state is used for the correlation and the prediction of the lower critical solution behavior or mixtures including a solvent and a polymer. The equation of state parameters for the polymer are estimated from experimental volumetric data at low pressures. The equation...... of state parameters for the solvent are estimated via the classical Soave method, i.e. using the critical properties and a generalized equation for the energy parameter. When extended to mixtures, the van der Waals one-fluid mixing rules along with the Berthelot combining rule for the molecular cross....... These problems are overcome by using a temperature-dependent interaction parameter, even for small temperature ranges, leading to excellent results. Despite the problems, we have developed an empirical methodology in using the van der Waals equation of state with a single interaction parameter for predicting...
The stability of stationary rotation of a regular vortex polygon.
Kurakin, L. G.; Yudovich, V. I.
2002-09-01
This paper is devoted to the Lord Kelvin's (1878) problem on stability of the stationary rotation of the system of n equal vortices located in the vertices of a regular n-gon. During the last decades this problem again became actual in connection with the investigation of point vortices in liquid helium and electron columns in plasma physics. This regime is described by the explicit solution of the Kirchhoff equations. The corresponding eigenvalue problem for the linearization matrix can be also decided explicitly. This was used in the works of Thomson (1883) and Havelock (1931) to obtain exhaustive results on the linear stability. Kurakin (1994) proved that for n/=8 it is unstable. We also present the general theory of stationary motions of a dynamical system with symmetry group. The definitions of stability and instability are necessary to modify in the specific case of stationary regimes. We do not assume that the system is conservative. Thus, the results can be applied not only to various stationary regimes of an ideal fluid flows but, for instance, also to motions of viscous fluids. (c) 2002 American Institute of Physics.
Stationary Patterns of a Cross-Diffusion Epidemic Model
Directory of Open Access Journals (Sweden)
Yongli Cai
2013-01-01
Full Text Available We investigate the complex dynamics of cross-diffusion SI epidemic model. We first give the conditions of the local and global stability of the nonnegative constant steady states, which indicates that the basic reproduction number determines whether there is an endemic outbreak or not. Furthermore, we prove the existence and nonexistence of the positive nonconstant steady states, which guarantees the existence of the stationary patterns.
Marshak Lectureship Talk: Women in Physics in the Baltic States Region: Problems and Solutions
Satkovskiene, Dalia
2008-03-01
In this contribution the gender equality problem in physics will be discussed on the basis of the results obtained implementing the project ``Baltic States Network: Women in Sciences and High Technology'' (BASNET) initiated by Lithuanian women physicists and financed by European Commission. The main goal of BASNET project was creation of the regional Strategy how to deal with women in sciences problem in the Baltic States. It has some stages and the contribution follows them. The first one was in depth sociological study aiming to find out disincentives and barriers women scientists face in their career and work at science and higher education institutions. Analysis of results revealed wide range of problems concerned with science organization, management and financing common for both counterparts. However it also proved the existence of women discrimination in sciences. As main factors influencing women under-representation in Physics was found: the stereotypes existing in the society where physics is assigned to the masculine area of activity; failings of the science management system, where highest positions are distributed not using the institutionalized objective criteria but by voting, where the correctness of majority solutions is anticipated implicitly. In physics where male scientists are the majority (they also usually compose executive boards, committees etc.) results of such a procedures often are unfavorable for women. The same reasons also influence women ``visibility'' in physicist's community and as the consequence possibility to receive needed recourses for their research as well as appropriate presentation of results obtained. The study revealed also the conservatism of scientific community- reluctance to face existing in the scientific society problems and to start solving them. On the basis of the results obtained as well practice of other countries the common strategy of solving women in physics (sciences) in the Baltic States region was
Energy Technology Data Exchange (ETDEWEB)
Gerlach, Robin [Montana State University
2014-10-31
Background. The use of biological and chemical processes that degrade or immobilize contaminants in subsurface environments is a cornerstone of remediation technology. The enhancement of biological and chemical processes in situ, involves the transport, displacement, distribution and mixing of one or more reactive agents. Biological and chemical reactions all require diffusive transport of solutes to reaction sites at the molecular scale and accordingly, the success of processes at the meter-scale and larger is dictated by the success of phenomena that occur at the micron-scale. However, current understanding of scaling effects on the mixing and delivery of nutrients in biogeochemically dynamic porous media systems is limited, despite the limitations this imposes on the efficiency and effectiveness of the remediation challenges at hand. Objectives. We therefore proposed to experimentally characterize and computationally describe the growth, evolution, and distribution of microbial activity and mineral formation as well as changes in transport processes in porous media that receive two or more reactive amendments. The model system chosen for this project was based on a method for immobilizing 90Sr, which involves stimulating microbial urea hydrolysis with ensuing mineral precipitation (CaCO3), and co-precipitation of Sr. Studies at different laboratory scales were used to visualize and quantitatively describe the spatial relationships between amendment transport and consumption that stimulate the production of biomass and mineral phases that subsequently modify the permeability and heterogeneity of porous media. Biomass growth, activity, and mass deposition in mixing zones was investigated using two-dimensional micro-model flow cells as well as flow cells that could be analyzed using synchrotron-based x-ray tomography. Larger-scale flow-cell experiments were conducted where the spatial distribution of media properties, flow, segregation of biological activity and
Wen, Xiao-Yong; Yan, Zhenya; Malomed, Boris A
2016-12-01
An integrable system of two-component nonlinear Ablowitz-Ladik equations is used to construct complex rogue-wave (RW) solutions in an explicit form. First, the modulational instability of continuous waves is studied in the system. Then, new higher-order discrete two-component RW solutions of the system are found by means of a newly derived discrete version of a generalized Darboux transformation. Finally, the perturbed evolution of these RW states is explored in terms of systematic simulations, which demonstrates that tightly and loosely bound RWs are, respectively, nearly stable and strongly unstable solutions.
Two-particle correlations in the one-dimensional Hubbard model: a ground-state analytical solution
Vallejo, E; Espinosa, J E
2003-01-01
A solution to the extended Hubbard Hamiltonian for the case of two-particles in an infinite one-dimensional lattice is presented, using a real-space mapping method and the Green function technique. This Hamiltonian considers the on-site (U) and the nearest-neighbor (V) interactions. The method is based on mapping the correlated many-body problem onto an equivalent site-impurity tight-binding one in a higher dimensional space. In this new space we obtained the analytical solution for the ground state binding energy. Results are in agreement with the numerical solution obtained previously [1], and with those obtained in the reciprocal space [2]. (Author)
Directory of Open Access Journals (Sweden)
Sergio Raúl Rivera Rodríguez
2004-09-01
Full Text Available The present article reviews the state of the art of optimum capacitor location in distribution systems, provideing guidelines for planners engaged in optimising tension profiles and controlling reagents in distribution networks.Optimising a given solution by exhastive search is studied here; the dimensions of a given problem are determined by evaluating the different possibilities for resolving it and the solution algorithm's computational times and requierements are visualised. An example system (9 node, IEEE is used for illustrating the exhaustive search approach, where it was found that methods used in the literature regarding this topic do not always lead to the optimum solution.
First-order, stationary mean-field games with congestion
Evangelista, David
2017-10-04
Mean-field games (MFGs) are models for large populations of competing rational agents that seek to optimize a suitable functional. In the case of congestion, this functional takes into account the difficulty of moving in high-density areas. Here, we study stationary MFGs with congestion with quadratic or power-like Hamiltonians. First, using explicit examples, we illustrate two main difficulties: the lack of classical solutions and the existence of areas with vanishing density. Our main contribution is a new variational formulation for MFGs with congestion. This formulation was not previously known, and, thanks to it, we prove the existence and uniqueness of solutions. Finally, we consider applications to numerical methods.
Zhao, Kui
2016-07-13
We demonstrate that local and long range orders of poly(3-hexylthiophene) (P3HT) semicrystalline films can be synergistically improved by combining chemical functionalization of the dielectric surface with solution-state disentanglement and pre-aggregation of P3HT in a theta solvent, leading to a very significant enhancement of the field effect carrier mobility. The pre-aggregation and surface functionalization effects combine to enhance the carrier mobility nearly 100-fold as compared with standard film preparation by spin-coating, and nearly 10-fold increase over the benefits of pre-aggregation alone. In situ quartz crystal microbalance with dissipation (QCM-D) experiments reveal enhanced deposition of pre-aggregates on surfaces modified with an alkyl-terminated self-assembled monolayer (SAM) in comparison to un-aggregated polymer chains. Additional investigations reveal the combined pre-aggregation and surface functionalization significantly enhances local order of the conjugated polymer through planarization and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining complementary routes, such as well-known pre-aggregation with substrate chemical functionalization, to enhance the polymer self-assembly and improve its interfacial order with benefits for transport properties.
Directory of Open Access Journals (Sweden)
Dongyuan Liu
2015-01-01
Full Text Available We consider the following state dependent boundary-value problem D0+αy(t-pD0+βg(t,y(σ(t+f(t,y(τ(t=0, 0
Directory of Open Access Journals (Sweden)
Deepak Malhotra
2010-10-01
Full Text Available The paper extends research on fixed-pie perceptions by suggesting that disputants may prefer proposals that are perceived to be equally attractive to both parties (i.e., balanced rather than one-sided, because balanced agreements are seen as more likely to be successfully implemented. We test our predictions using data on Israeli support for the Geneva Accords, an agreement for a two state solution negotiated by unofficial delegations of Israel and the Palestinian Authority in 2003. The results demonstrate that Israelis are more likely to support agreements that are seen favorably by other Israelis, but --- contrary to fixed-pie predictions --- Israeli support for the accords does not diminish simply because a majority of Palestinians favors (rather than opposes the accords. We show that implementation concerns create a demand among Israelis for balance in the degree to which each side favors (or opposes the agreement. The effect of balance is noteworthy in that it creates considerable support for proposals even when a majority of Israelis and Palestinians OPPOSE the deal.
Ronda, Luca; Bruno, Stefano; Faggiano, Serena; Bettati, Stefano; Mozzarelli, Andrea
2008-01-01
The determination of accurate oxygen-binding curves for heme-containing proteins is a demanding task. In fact, great care is required in the (i) preparation of accurate gas mixtures at defined oxygen partial pressures, (ii) precise measurement of changes in protein absorbance, (iii) calculation of the fraction of oxygen-containing sites, and (iv) analysis of the dependence of fractional saturation on oxygen pressure using phenomenological or model-dependent equations. Over the years, methods have been developed for the determination of oxygen-binding curves based either on discrete steps in oxygen partial pressure ("static" method) or on continuous variations ("dynamic" method). This work presents a novel, versatile setup that allows one to determine oxygen-binding curves for heme and nonheme proteins in solution, encapsulated in wet, nanoporous silica gels, in the crystalline state, and for hemoglobin within single red blood cells. The apparatus is composed of a tandem of high-precision gas mixture generators and either an equilibration chamber coupled to a spectrophotometer cuvette or a gas-tight flow cell, placed on the stage of a microspectrophotometer, for immobilized samples down to a few micrometers in size.
Chen, Xiao-Yan; Goff, George S; Scott, Brian L; Janicke, Michael T; Runde, Wolfgang
2013-03-18
As a precursor of carboxyl-functionalized task-specific ionic liquids (TSILs) for f-element separations, (pyrazol-1-yl)acetic acid (L) can be deprotonated as a functionalized pyrazolate anion to coordinate with hard metal cations. However, the coordination chemistry of L with f-elements remains unexplored. We reacted L with lanthanides in aqueous solution at pH = 5 and synthesized four lanthanide complexes of general formula [Ln(L)3(H2O)2]·nH2O (1, Ln = La, n = 2; 2, Ln = Ce, n = 2; 3, Ln = Pr, n = 2; 4, Ln = Nd, n = 1). All complexes were characterized by single crystal X-ray diffraction analysis revealing one-dimensional chain formations. Two distinct crystallographic structures are governed by the different coordination modes of carboxylate groups in L: terminal bidentate and bridging tridentate (1-3); terminal bidentate, bridging bidentate, and tridentate coordination in 4. Comparison of the solid state UV-vis-NIR diffuse reflectance spectra with solution state UV-vis-NIR spectra suggests a different species in solution and solid state. The different coordination in solid state and solution was verified by distinctive (13)C NMR signals of the carboxylate groups in the solid state NMR.
Directory of Open Access Journals (Sweden)
Y. Sajeev
2015-08-01
Full Text Available The equation-of-motion coupled cluster (EOMCC method based on the excited state Hartree-Fock (ESHF solutions is shown to be appropriate for computing the entire ground state potential energy curves of strongly correlated higher-order bonds. The new approach is best illustrated for the homolytic dissociation of higher-order bonds in molecules. The required multireference character of the true ground state wavefunction is introduced through the linear excitation operator of the EOMCC method. Even at the singles and doubles level of cluster excitation truncation, the nonparallelity error of the ground state potential energy curve from the ESHF based EOMCC method is small.
Frank, T. D.; Daffertshofer, A.
1999-10-01
The present study extends the correspondence principle of Martinez et al. that establishes a link between nonlinear Fokker-Planck equations (NLFPEs) and the variational principle approach of the theory of canonical ensembles. By virtue of the extended correspondence principle we reobtain results of Kaniadakis and Quarati for Bose and Fermi systems and find relations similar to those derived by Plastino and Plastino and recently by Borland concerning the entropy of nonextensive thermostatistics introduced in physics by Tsallis. Moreover, we propose NLFPEs related to the Renyi entropy and to the entropy proposed by Sharma and Mittal. The latter comprises Tsallis’ entropy and the Renyi entropy.
Frank, T.D.; Daffertshofer, A.
1999-01-01
The present study extends the correspondence principle of Martinez et al. that establishes a link between nonlinear Fokker-Planck equations (NLFPEs) and the variational principle approach of the theory of canonical ensembles. By virtue of the extended correspondence principle we reobtain results of
Grollman, Arthur
1931-01-01
Data for the depression of vapour pressure are presented for the following aqueous solutions: NaCl (0.03 to 0.1 molar), KCl (0.03 to 0.1 molar), urea (0.05 to 0.5 molar), sucrose (0.05 to 0.10 molar), lactic and succinic acids, creatine, CaCl2 (0.05 molar), and mixtures of these substances with one another and with certain other solutions (gelatin, gum acacia, sea water, LiCl, etc.). The relation of the depression of vapour pressure of a mixed solution to that of solutions of the individual constituents was investigated in order to ascertain to what extent such studies may be used for the determination of the degree of hydration, or of the state of water, in solutions. Organic substances (urea, sucrose, etc.) showed anomalous results which were markedly affected and unpredictable in mixed solutions. They are, therefore, unsuited for the study of water binding. In the case of solutions of inorganic substances—LiCl and CaCl2—the principle of the additive nature of colligative properties is also only approximately true—except perhaps in very dilute solutions. The limitations of the colligative method for determining the degree of hydration have been defined in accord with the above findings. Studies of the vapour pressures of mixtures of gelatin or gum acacia with NaCl or KCl demonstrated that hydration in gelatin is relatively small at pH = 7 and undetectable in gum acacia solutions. The view, therefore, that hydrophilic colloids are strongly hydrated has not been substantiated. The passage from the sol to the gel state also was not accompanied in gelatin or in blood by any appreciable change in the degree of hydration of the hydrophilic colloids present in these substances. PMID:19872614
Energy Technology Data Exchange (ETDEWEB)
Ollila, K. [VTT Chemical Technology, Espoo (Finland)
1996-06-01
The report describes the development and testing of a method for determining uranium oxidation state in aqueous solutions in inert (N{sub 2}) atmosphere. The method included the separation of the tetravalent and hexavalent states by anion-exchange chromatography in HCl medium, followed by analysis of the uranium contents of each of the fractions by ICP-MS. The tests of the study demonstrated the suitability of the method for analysing the oxidation states of uranium at the low concentrations representative for U solubilities in anoxic groundwater. Additionally, the results obtained give some information on the redox state of the aqueous solutions in inert (N{sub 2}) atmosphere. Obviously, the trace oxygen content in the atmosphere of the box is enough to cause slightly oxidizing conditions for uranium in the absence of reducing agents (e.g. H{sub 2}, iron). (10 refs.).
A novel vehicle stationary detection utilizing map matching and IMU sensors.
Amin, Md Syedul; Reaz, Mamun Bin Ibne; Nasir, Salwa Sheikh; Bhuiyan, Mohammad Arif Sobhan; Ali, Mohd Alauddin Mohd
2014-01-01
Precise navigation is a vital need for many modern vehicular applications. The global positioning system (GPS) cannot provide continuous navigation information in urban areas. The widely used inertial navigation system (INS) can provide full vehicle state at high rates. However, the accuracy diverges quickly in low cost microelectromechanical systems (MEMS) based INS due to bias, drift, noise, and other errors. These errors can be corrected in a stationary state. But detecting stationary state is a challenging task. A novel stationary state detection technique from the variation of acceleration, heading, and pitch and roll of an attitude heading reference system (AHRS) built from the inertial measurement unit (IMU) sensors is proposed. Besides, the map matching (MM) algorithm detects the intersections where the vehicle is likely to stop. Combining these two results, the stationary state is detected with a smaller timing window of 3 s. A longer timing window of 5 s is used when the stationary state is detected only from the AHRS. The experimental results show that the stationary state is correctly identified and the position error is reduced to 90% and outperforms previously reported work. The proposed algorithm would help to reduce INS errors and enhance the performance of the navigation system.
A Novel Vehicle Stationary Detection Utilizing Map Matching and IMU Sensors
Directory of Open Access Journals (Sweden)
Md. Syedul Amin
2014-01-01
Full Text Available Precise navigation is a vital need for many modern vehicular applications. The global positioning system (GPS cannot provide continuous navigation information in urban areas. The widely used inertial navigation system (INS can provide full vehicle state at high rates. However, the accuracy diverges quickly in low cost microelectromechanical systems (MEMS based INS due to bias, drift, noise, and other errors. These errors can be corrected in a stationary state. But detecting stationary state is a challenging task. A novel stationary state detection technique from the variation of acceleration, heading, and pitch and roll of an attitude heading reference system (AHRS built from the inertial measurement unit (IMU sensors is proposed. Besides, the map matching (MM algorithm detects the intersections where the vehicle is likely to stop. Combining these two results, the stationary state is detected with a smaller timing window of 3 s. A longer timing window of 5 s is used when the stationary state is detected only from the AHRS. The experimental results show that the stationary state is correctly identified and the position error is reduced to 90% and outperforms previously reported work. The proposed algorithm would help to reduce INS errors and enhance the performance of the navigation system.
Christov, Ivan C
2012-01-01
In classical continuum physics, a wave is a mechanical disturbance. Whether the disturbance is stationary or traveling and whether it is caused by the motion of atoms and molecules or the vibration of a lattice structure, a wave can be understood as a specific type of solution of an appropriate mathematical equation modeling the underlying physics. Typical models consist of partial differential equations that exhibit certain general properties, e.g., hyperbolicity. This, in turn, leads to the possibility of wave solutions. Various analytical techniques (integral transforms, complex variables, reduction to ordinary differential equations, etc.) are available to find wave solutions of linear partial differential equations. Furthermore, linear hyperbolic equations with higher-order derivatives provide the mathematical underpinning of the phenomenon of dispersion, i.e., the dependence of a wave's phase speed on its wavenumber. For systems of nonlinear first-order hyperbolic equations, there also exists a general ...
A simple stationary semi-analytical wake model
DEFF Research Database (Denmark)
Larsen, Gunner Chr.
-uniform mean wind field, although the modelling of the individual stationary wake flow fields includes non-linear terms. The simulation of the individual wake contributions are based on an analytical solution of the thin shear layer approximation of the NS equations. The wake flow fields are assumed...... rotationally symmetric, and the rotor inflow fields are consistently assumed uniform. Expansion of stationary wake fields is believed to be significantly affected by meandering of wake deficits as e.g. described by the Dynamic Wake Meandering model. In the present context, this effect is approximately...... approximately linearly with the downstream distance. The link from a non-uniform wind farm wind field, consisting of linear perturbations on the ambient non-uniform mean wind field, to a fictitious uniform wake generating inflow field is established using two different averaging approaches – a linear and a non-linear...
DEFF Research Database (Denmark)
Koestel, J. K.; Nørgaard, Trine; Loung, N. M.
2013-01-01
, and tracer breakthrough curves (BTCs) at the field scale for the inert solute transport under a steady-state irrigation rate which produced near-saturated conditions. Sixty-five undisturbed soil columns approximately 20 cm in height and diameter were sampled from the loamy topsoil of an agricultural field...... to larger water saturation and the activation of larger macropores. Our study provides further evidence that it should be possible to estimate solute transport properties from soil properties such as soil texture or bulk density. We also demonstrated that estimation approaches established for the column......It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variables...
Modeling of electron cyclotron resonance acceleration in a stationary inhomogeneous magnetic field
Directory of Open Access Journals (Sweden)
Valeri D. Dougar-Jabon
2008-04-01
Full Text Available In this paper, the cyclotron autoresonance acceleration of electrons in a stationary inhomogeneous magnetic field is studied. The trajectory and energy of electrons are found through a numerical solution of the relativistic Newton-Lorentz equation by a finite difference method. The electrons move along a TE_{112} cylinder cavity in a steady-state magnetic field whose axis coincides with the cavity axis. The magnetic field profile is such that it keeps the phase difference between the electric microwave field and the electron velocity vector within the acceleration phase band. The microwaves amplitude of 6 kV/cm is used for numerical calculations. It is shown that an electron with an initial longitudinal energy of 8 keV can be accelerated up to 260 keV by 2.45 GHz microwaves at a distance of 17 cm.
Dynamics of Inhomogeneous Shell Systems Under Non-Stationary Loading (Survey)
Lugovoi, P. Z.; Meish, V. F.
2017-09-01
Experimental works on the determination of dynamics of smooth and stiffened cylindrical shells contacting with a soil medium under various non-stationary loading are reviewed. The results of studying three-layer shells of revolution whose motion equations are obtained within the framework of the hypotheses of the Timoshenko geometrically nonlinear theory are stated. The numerical results for shells with a piecewise or discrete filler enable the analysis of estimation of the influence of geometrical and physical-mechanical parameters of structures on their dynamics and reveal new mechanical effects. Basing on the classical theory of shells and rods, the effect of the discrete arrangement of ribs and coefficients of the Winkler or Pasternak elastic foundation on the normal frequencies and modes of rectangular planar cylindrical and spherical shells is studied. The number and shape of dispersion curves for longitudinal harmonic waves in a stiffened cylindrical shell are determined. The equations of vibrations of ribbed shells of revolution on Winkler or Pasternak elastic foundation are obtained using the geometrically nonlinear theory and the Timoshenko hypotheses. On applying the integral-interpolational method, numerical algorithms are developed and the corresponding non-stationary problems are solved. The special attention is paid to the statement and solution of coupled problems on the dynamical interaction of cylindrical or spherical shells with the soil water-saturated medium of different structure.
Altmayer-Henzien, Amandine; Declerck, Valérie; Merlet, Denis; Baltaze, Jean-Pierre; Farjon, Jonathan; Guillot, Régis; Aitken, David J
2013-06-21
Four model compounds and four dipeptides containing N-aminoazetidinecarboxylic acid (AAzC) and a particular stereoisomer of 2-aminocyclobutanecarboxylic acid (ACBC) were studied to establish their solution state conformational preferences, particularly regarding the ability of AAzC to induce a three-center hydrogen-bonded folding feature known as a "hydrazino turn". On the basis of IR and NMR experiments, supported by molecular modeling, the AAzC residue adopted a trans configuration amenable to the formation of a cyclic eight-membered hydrogen bond conformation in solution, in all cases studied. The implication of the heterocyclic nitrogen atom of AAzC in the trans-like structure was demonstrated via a refined (1)H-(15)N HMBC experiment giving exploitable data at natural (15)N isotopic abundance, providing unprecedented evidence for the solution state hydrazino turn conformation. The predominance of this secondary structural feature depended on the configuration of the neighboring ACBC residue in the dipeptides: while the trans-ACBC derivatives prefer the hydrazino turn, the cis-ACBC derivatives may also populate low-energy 10-membered hydrogen-bonded ring structures. X-ray diffraction analysis of three compounds confirmed the presence of a solid state hydrazino turn in two cases, with geometries similar to those deduced from the solution state studies, but in the third compound, no intramolecular hydrogen-bonding feature was in evidence.
Ray, JoAnn; Murty, Susan A.
This study investigates prevention and treatment programs that deal with rural child sexual abuse in the State of Washington. A survey of 61 rural service providers examined agencies, services provided, problems faced in service delivery, and innovative solutions to those problems. The study compares responses from three types of agencies (mental…
A solution-state NMR approach to elucidating pMDI-wood bonding mechanisms in loblolly pine
Daniel Joseph Yelle
2009-01-01
Solution-state NMR spectroscopy is a powerful tool for unambiguously determining the existence or absence of covalent chemical bonds between wood components and adhesives. Finely ground wood cell wall material dissolves in a solvent system containing DMSO-d6 and NMI-d6, keeping wood component polymers intact and in a near-...
Pressure-volume equation of state for pyrope-almandine solid solutions
Nestola, Fabrizio; Milani, Sula; Angel, Ross J.; Pasqual, Daria; Geiger, Charles A.
2013-04-01
Garnet is a key phase of Earth's upper mantle and one of the most abundant solid inclusions in diamonds. The pyrope component (Mg3Al2Si3O12, Py) of garnet found in diamonds of peridotitic and eclogitic origin can be as high as about 79 and 43%, respectively and the almandine component (Fe3Al2Si3O12, Al) is about 11 and 33%, respectively. Thus such garnets are largely Py-Al-rich solid solutions (Stachel and Harris, 2008). To determine the depth of formation of diamond-inclusion pairs, precise and accurate thermoelastic parameters for both the diamond and the solid inclusion phase are necessary (e.g. Izraeli et al., 1999; Howell et al., 2010; Nestola et al., 2011; Howell et al., 2012). We are presently investigating the pressure-volume equation of state for a series of synthetic garnets along the binary pyrope-almandine by X-ray single-crystal diffraction using a diamond anvil cell up to a maximum of 8 GPa pressure. We have completed measurements on two crystals of composition Fe3Al2Si3O12 and Fe1.20Mg1.80Al2Si3O12. The equation of state coefficients obtained by fitting a third-order Birch-Murnaghan to the pressure-volume data show that an increase in the pyrope component in garnet causes a slight decrease of the isothermal bulk modulus, KT0, by about 3%, whereas the first pressure derivative term does not vary. Applying our results to obtain the pressure of formation of a natural diamond-garnet pair, and assuming a garnet composition close to Fe1.20Mg1.80Al2Si3O12, we obtain a pressure of encapsulation (or formation if garnet and diamond are syngenetic) of garnet in diamond between 6.5 and 7.0 GPa. References Howell, D., Wood, I.G., Dobson, D.P., Jones, A.P., Nasdala, L., Harris, J.W. (2010) Contrib. Mineral. Petrol., 160, 705-717. Howell, D., Wood, I.G., Nestola, F., Nimis, P., Nasdala, L. (2012) Eur. J. Mineral., ,. Izraeli, E.S., Harris, J.W., Navon, O. (1999) Earth Planet Sci. Lett., 173, 351-360. Nestola, F., Nimis, P., Ziberna, L., Longo, M., Marzoli, A
Energy Technology Data Exchange (ETDEWEB)
Rai, R.N., E-mail: rn_rai@yahoo.co.in [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Kant, Shiva; Reddi, R.S.B. [Department of Chemistry, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005 (India); Ganesamoorthy, S. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamilnadu (India); Gupta, P.K. [Laser Materials Development & Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)
2016-01-15
Urea is an attractive material for frequency conversion of high power lasers to UV (for wavelength down to 190 nm), but its usage is hindered due to its hygroscopic nature, though there is no alternative organic NLO crystal which could be transparent up to 190 nm. The hygroscopic character of urea has been modified by making the solid solution (UCNB) of urea (U) and p-chloronitrobenzene (CNB). The formation of the solid solution of CNB in U is explained on the basis of phase diagram, powder XRD, FTIR, elemental analysis and single crystal XRD studies. The solubility of U, CNB and UCNB in ethanol solution is evaluated at different temperatures. Transparent single crystals of UCNB are grown from its saturated solution in ethanol. Optical properties e.g., second harmonic generation (SHG), refractive index and the band gap for UCNB crystal were measured and their values were compared with the parent compounds. Besides modification in hygroscopic nature, UCNB has also shown the higher SHG signal and mechanical hardness in comparison to urea crystal. - Highlights: • The hygroscopic character of urea was modified by making the solid solution • Solid solution formation is support by elemental, powder- and single crystal XRD • Crystal of solid solution has higher SHG signal and mechanical stability. • Refractive index and band gap of solid solution crystal have determined.
Klibanov, M V
2006-01-01
The Lipschitz stability estimate for a coefficient inverse problem for the non-stationary single-speed transport equation with the lateral boundary data is obtained. The method of Carleman estimates is used. Uniqueness of the solution follows.
Pamyatnykh, S E
2005-01-01
The Lipschitz stability estimate for the non-stationary single-speed transport equation with the lateral boundary data is obtained. The method of Carleman estimates is used. Uniqueness of the solution follows.
Stationary solutions for metapopulation Moran models with mutation and selection
Constable, George W. A.; McKane, Alan J.
2015-03-01
We construct an individual-based metapopulation model of population genetics featuring migration, mutation, selection, and genetic drift. In the case of a single "island," the model reduces to the Moran model. Using the diffusion approximation and time-scale separation arguments, an effective one-variable description of the model is developed. The effective description bears similarities to the well-mixed Moran model with effective parameters that depend on the network structure and island sizes, and it is amenable to analysis. Predictions from the reduced theory match the results from stochastic simulations across a range of parameters. The nature of the fast-variable elimination technique we adopt is further studied by applying it to a linear system, where it provides a precise description of the slow dynamics in the limit of large time-scale separation.
Steady-state solution of the PTC thermistor problem using a quadratic spline finite element method
Directory of Open Access Journals (Sweden)
Bahadir A. R.
2002-01-01
Full Text Available The problem of heat transfer in a Positive Temperature Coefficient (PTC thermistor, which may form one element of an electric circuit, is solved numerically by a finite element method. The approach used is based on Galerkin finite element using quadratic splines as shape functions. The resulting system of ordinary differential equations is solved by the finite difference method. Comparison is made with numerical and analytical solutions and the accuracy of the computed solutions indicates that the method is well suited for the solution of the PTC thermistor problem.
Carr, Elliot J.
2017-07-01
Mathematically, it takes an infinite amount of time for the transient solution of a diffusion equation to transition from initial to steady state. Calculating a finite transition time, defined as the time required for the transient solution to transition to within a small prescribed tolerance of the steady-state solution, is much more useful in practice. In this paper, we study estimates of finite transition times that avoid explicit calculation of the transient solution by using the property that the transition to steady state defines a cumulative distribution function when time is treated as a random variable. In total, three approaches are studied: (i) mean action time, (ii) mean plus one standard deviation of action time, and (iii) an approach we derive by approximating the large time asymptotic behavior of the cumulative distribution function. Our approach leads to a simple formula for calculating the finite transition time that depends on the prescribed tolerance δ and the (k -1 )th and k th moments (k ≥1 ) of the distribution. Results comparing exact and approximate finite transition times lead to two key findings. First, although the first two approaches are useful at characterizing the time scale of the transition, they do not provide accurate estimates for diffusion processes. Second, the new approach allows one to calculate finite transition times accurate to effectively any number of significant digits using only the moments with the accuracy increasing as the index k is increased.
Functionality of hearing aids: state-of-the-art and future model-based solutions.
Kollmeier, Birger; Kiessling, Jürgen
2016-12-13
A review about technical and perceptual factors in hearing aid technology, research and development is provided, covering current commercial solutions, underlying models of hearing loss for usage in hearing devices and emerging future technical solutions for hearing aid functionalities. A chain of techniques has provided incremental, but steady increases in user benefit, e.g. in the fields of hearing aid amplification, feedback suppression, dynamic compression, noise reduction and situation adaptation. The models describing the perceptual consequences of sensorineural hearing impairment describe the effects on the acoustical level, the neurosensory level and the cognitive level and provide the framework for compensatory (or even substitutional) functions of hearing aids in terms of the attenuation component, the distortion component and the neural component of the hearing loss. A major factor is the requirement of a strong individualisation of hearing aid solutions calling for an appropriate assessment of the different sensorineural components of a hearing loss, especially with respect to bilateral and binaural hearing aid solutions.
Maheshwari, Chinmay
Cocrystals have drawn a lot of research interest in the last decade due to their potential to favorably alter the physicochemical and biopharmaceutical properties of active pharmaceutical ingredients. This dissertation focuses on the thermodynamic stability and solubility of pharmaceutical cocrystals. Specifically, the objectives are to; (i) investigate the influence of coformer properties such as solubility and ionization characteristics on cocrystal solubility and stability as a function of pH, (ii) to measure the thermodynamic solubility of metastable cocrystals, and study the solubility differences measured by kinetic and equilibrium methods, (iii) investigate the role of surfactants on the solubility and synthesis of cocrystals, (iv) investigate the solid state phase transformation of reactants to cocrystals and the factors that influence the reaction kinetics and, (v) provide models that enable the prediction of cocrystal formation by calculating the free energy of formation for a solid to solid transformation of reactants to cocrystals. Cocrystal solubilities were measured directly when cocrystals were thermodynamically stable, while solubilities were calculated from eutectic concentration measurements when cocrystals were of higher solubility than its components. Cocrystal solubility was highly dependent on coformer solubilities for gabapentin-lactam and lamotrigine cocrystals. It was found that melting point is not a good indicator of cocrystal solubility as solute-solvent interactions quantified by the activity coefficient play a huge role in the observed solubility. Similar to salts, cocrystals also exhibit pHmax, however the salts and cocrystals have different dependencies on the parameters that govern the value of pHmax. It is also shown that cocrystals could provide solubility advantage over salts as lamotrigine-nicotinamide cocrystal hydrate has about 6 fold higher solubility relative to lamotrigine-saccharin salt. In the case of mixtures of solid
Power Control at Grid Connected Converters and Analytical Solution of Steady States
Viktor Valouch; Jiří Škramlík; Zdeněk Muller; Jan Švec; Josef Tlustý
2015-01-01
The paper presents a power control technique at grid connected converters under unbalanced voltage conditions. The current positive and negative sequences during grid voltage sags are controlled to ensure a proper exchange of active and reactive powers without power ripples. An analytical solution in a closed form of the B6 and B4 converters working with an optimized half a period switching symmetry is presented. The analytical solution may be applied for the converters connected to highly un...
Approximate solutions for half-dark solitons in spinor non-equilibrium Polariton condensates
Energy Technology Data Exchange (ETDEWEB)
Pinsker, Florian, E-mail: florian.pinsker@gmail.com
2015-11-15
In this work I generalize and apply an analytical approximation to analyze 1D states of non-equilibrium spinor polariton Bose–Einstein condensates (BEC). Solutions for the condensate wave functions carrying black solitons and half-dark solitons are presented. The derivation is based on the non-conservative Lagrangian formalism for complex Ginzburg–Landau type equations (cGLE), which provides ordinary differential equations for the parameters of the dark soliton solutions in their dynamic environment. Explicit expressions for the stationary dark soliton solution are stated. Subsequently the method is extended to spin sensitive polariton condensates, which yields ordinary differential equations for the parameters of half-dark solitons. Finally a stationary case with explicit expressions for half-dark solitons is presented.
An inversion-relaxation approach for sampling stationary points of spin model Hamiltonians
Hughes, Ciaran; Mehta, Dhagash; Wales, David J.
2014-05-01
Sampling the stationary points of a complicated potential energy landscape is a challenging problem. Here, we introduce a sampling method based on relaxation from stationary points of the highest index of the Hessian matrix. We illustrate how this approach can find all the stationary points for potentials or Hamiltonians bounded from above, which includes a large class of important spin models, and we show that it is far more efficient than previous methods. For potentials unbounded from above, the relaxation part of the method is still efficient in finding minima and transition states, which are usually the primary focus of attention for atomistic systems.
Power Control at Grid Connected Converters and Analytical Solution of Steady States
Directory of Open Access Journals (Sweden)
Viktor Valouch
2015-01-01
Full Text Available The paper presents a power control technique at grid connected converters under unbalanced voltage conditions. The current positive and negative sequences during grid voltage sags are controlled to ensure a proper exchange of active and reactive powers without power ripples. An analytical solution in a closed form of the B6 and B4 converters working with an optimized half a period switching symmetry is presented. The analytical solution may be applied for the converters connected to highly unbalanced grids and for different grid filter topologies.
Caricato, Marco
2012-12-11
The effect of the solvent on the structure of a molecule in an electronic excited state cannot be neglected. However, the computational cost of including explicit solvent molecules around the solute becomes rather onerous when an accurate method such as the equation of motion coupled cluster singles and doubles (EOM-CCSD) is employed. Solvation continuum models like the polarizable continuum model (PCM) provide an efficient alternative to explicit models, since the solvent conformational average is implicit and the solute-solvent mutual polarization is naturally accounted for. In this work, the coupling of EOM-CCSD and PCM in a state specific approach is presented for the evaluation of energy and analytic energy gradients. Also, various approximations are explored to maintain the computational cost comparable to gas phase EOM-CCSD. Numerical examples are used to test the different schemes.
Dong, Xiao-ming; Guo, Jin-bao; Wei, Jie
2010-12-01
A novel nematic liquid crystal compound containing a cinnamoyl moiety (PCPC) and a typically cholesteric liquid crystal cholesteryl cinnamate (CC) were synthesized to explore the mechanism ofcinnamoyl compounds, and the chemical structures of photodimerization were confirmed by Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectral analysis. The photoreaction behaviors of these two cinnamoyl compounds in mesomorphic state and solution were investigated, UV-Vis spectral analysis was used to analyze the photoproduct. The results show that the photochemistry of PCPC in nematic state involves both photodimerization and photoisomerization, while CC shows a complex reaction which can be divided into three parts, and this has enabled us to present new data and interpretations regarding the [2+2] photocycloaddition reaction. Additionally, the results of UV-Vis spectral analysis in solutions strongly suggest that UV-Vis spectral analysis can be used to study the kinetic behaviors of cinnamoyl moiety photoreaction.
Enhancement of optical nonlinearities with stationary light
DEFF Research Database (Denmark)
Iakoupov, Ivan
Stationary light arises in atomic ensembles with certain energy level configurations, when two counter-propagating classical drives (lasers) are applied. Probe light coupled to a different energy level transition than the classical drives can be completely stopped, while still retaining its light...... character. We will be interested in the regime of stationary light, where the probe light still propagates through the atomic ensemble, but extremely slowly. In other words, probe field has a very low group velocity, which increases its interaction time with any optical nonlinearity. The enhancement...... of the effective nonlinear strength by stationary light is then used to propose a two-qubit (controlled-phase) quantum gate for the optical photons, which can in principle work deterministically. Before discussing stationary light and its application, we also analyse the different fidelity measures that could...
Note on reflection symmetry in stationary axisymmetric electrovacuum spacetimes
Energy Technology Data Exchange (ETDEWEB)
Pachon, Leonardo A [Laboratorio de Astronomia y Fisica Teorica (LAFT), Departamento de Fisica, Facultad de Ciencias, La Universidad del Zulia, Maracaibo, 4004 (Venezuela); Sanabria-Gomez, Jose D [Escuela de Fisica, Universidad Industrial de Santander. A.A. 678, Bucaramanga (Colombia)
2006-05-07
Recently, Kordas (1995 Class. Quantum Grav. 12 2037) and Meinel and Neugebauer (1995 Class. Quantum Grav. 12 2045) studied the conditions for reflection symmetry in stationary axisymmetric spacetimes in vacuum. They found that a solution to the Einstein field equations is reflectionally symmetric if their Ernst potential E ({rho} = 0, z) = e(z) on a portion of the positive z-axis extending to infinity satisfies the condition e{sub +}(z)e*{sub +}(-z) = 1. In this note, we formulate analogous conditions for two complex Ernst potentials in electrovacuum. We also present the special case of rational axis potentials. (comments, replies and notes)
Bradshaw, Rebecca; Sykes, Daniel; Natrajan, Louise S.; Taylor, Robin J.; Livens, Francis R.; Faulkner, Stephen
2010-03-01
The photophysical properties of the neptunyl (V) ion in aqueous solution have been studied using time-resolved luminescence spectroscopy. While any f-f transitions in emission are too weak to detect using available technology, the ligand to metal charge transfer state is emissive in the visible part of the spectrum. Both the aquo ion and its complexes with bidentate ligands exhibit biexponential decay kinetics, which can be rationalised by slow exchange on the timescale of the experiment.
Learning in Non-Stationary Environments Methods and Applications
Lughofer, Edwin
2012-01-01
Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences. Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dyna...
Study of multi-site chemical exchange in solution state by NMR: 1D ...
Indian Academy of Sciences (India)
This work demonstrates a simple 1D NMR approach employing multiply selective excitation to study multi-site exchange processes in solution, applying it to systems that exhibit three-site exchange. This approach involves simultaneous excitation of all - or a chosen subset of - the exchanging sites by using an appropriately ...
Oligomerization of hydrophobin SC3 in solution : From soluble state to self-assembly
Wang, Xiaoqin; Graveland-Bikker, Johanna F.; Kruif, Cornelis G. de; Robillard, George T.
2004-01-01
Hydrophobin SC3 is a protein with special self-association properties that differ depending on whether it is in solution, on an air/water interface or on a solid surface. Its self-association on an air/water interface and solid surface have been extensively characterized. The current study focuses
Bound state solutions of Schrödinger equation for Rydberg potential ...
African Journals Online (AJOL)
The arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the Rydberg potential energy function D {1 +ar}exp(ar) has been presented. The energy eigenvalues and the corresponding eigenfunctions are calculated analytically by the use of. Nikiforov-Uvarov (NU) method which is ...
Effect of phase noise on the generation of stationary entanglement in cavity optomechanics
Energy Technology Data Exchange (ETDEWEB)
Abdi, M. [School of Science and Technology, Physics Division, University of Camerino, Camerino (Italy); Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Barzanjeh, Sh. [School of Science and Technology, Physics Division, University of Camerino, Camerino (Italy); Department of Physics, Faculty of Science, University of Isfahan, Hezar Jerib, 81746-73441 Isfahan (Iran, Islamic Republic of); Tombesi, P.; Vitali, D. [School of Science and Technology, Physics Division, University of Camerino, Camerino (Italy); INFN, Sezione di Perugia, Perugia (Italy)
2011-09-15
We study the effect of laser phase noise on the generation of stationary entanglement between an intracavity optical mode and a mechanical resonator in a generic cavity optomechanical system. We show that one can realize robust stationary optomechanical entanglement even in the presence of non-negligible laser phase noise. We also show that the explicit form of the laser phase noise spectrum is relevant, and discuss its effect on both optomechanical entanglement and ground-state cooling of the mechanical resonator.
Dampers for Stationary Labyrinth Seals
El-Aini, Yehia; Mitchell, William; Roberts, Lawrence; Montgomery, Stuart; Davis, Gary
2011-01-01
Vibration dampers have been invented that are incorporated as components within the stationary labyrinth seal assembly. These dampers are intended to supplement other vibration-suppressing features of labyrinth seals in order to reduce the incidence of high-cycle-fatigue failures, which have been known to occur in the severe vibratory environments of jet engines and turbopumps in which labyrinth seals are typically used. A vibration damper of this type includes several leaf springs and/or a number of metallic particles (shot) all held in an annular seal cavity by a retaining ring. The leaf springs are made of a spring steel alloy chosen, in conjunction with design parameters, to maintain sufficient preload to ensure effectiveness of damping at desired operating temperatures. The cavity is vented via a small radial gap between the retaining ring and seal housing. The damping mechanism is complex. In the case of leaf springs, the mechanism is mainly friction in the slippage between the seal housing and individual dampers. In the case of a damper that contains shot, the damping mechanism includes contributions from friction between individual particles, friction between particles and cavity walls, and dissipation of kinetic energy of impact. The basic concept of particle/shot vibration dampers has been published previously; what is new here is the use of such dampers to suppress traveling-wave vibrations in labyrinth seals. Damping effectiveness depends on many parameters, including, but not limited to, coefficient of friction, mode shape, and frequency and amplitude of vibrational modes. In tests, preloads of the order of 6 to 15 lb (2.72 to 6.8 kilograms) per spring damper were demonstrated to provide adequate damping levels. Effectiveness of shot damping of vibrations having amplitudes from 20 to 200 times normal terrestrial gravitational acceleration (196 to 1,960 meters per square second) and frequencies up to 12 kHz was demonstrated for shot sizes from 0.032 to
Stationary Liquid Fuel Fast Reactor
Energy Technology Data Exchange (ETDEWEB)
Yang, Won Sik [Purdue Univ., West Lafayette, IN (United States); Grandy, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Boroski, Andrew [Argonne National Lab. (ANL), Argonne, IL (United States); Krajtl, Lubomir [Argonne National Lab. (ANL), Argonne, IL (United States); Johnson, Terry [Argonne National Lab. (ANL), Argonne, IL (United States)
2015-09-30
For effective burning of hazardous transuranic (TRU) elements of used nuclear fuel, a transformational advanced reactor concept named SLFFR (Stationary Liquid Fuel Fast Reactor) was proposed based on stationary molten metallic fuel. The fuel enters the reactor vessel in a solid form, and then it is heated to molten temperature in a small melting heater. The fuel is contained within a closed, thick container with penetrating coolant channels, and thus it is not mixed with coolant nor flow through the primary heat transfer circuit. The makeup fuel is semi- continuously added to the system, and thus a very small excess reactivity is required. Gaseous fission products are also removed continuously, and a fraction of the fuel is periodically drawn off from the fuel container to a processing facility where non-gaseous mixed fission products and other impurities are removed and then the cleaned fuel is recycled into the fuel container. A reference core design and a preliminary plant system design of a 1000 MWt TRU- burning SLFFR concept were developed using TRU-Ce-Co fuel, Ta-10W fuel container, and sodium coolant. Conservative design approaches were adopted to stay within the current material performance database. Detailed neutronics and thermal-fluidic analyses were performed to develop a reference core design. Region-dependent 33-group cross sections were generated based on the ENDF/B-VII.0 data using the MC2-3 code. Core and fuel cycle analyses were performed in theta-r-z geometries using the DIF3D and REBUS-3 codes. Reactivity coefficients and kinetics parameters were calculated using the VARI3D perturbation theory code. Thermo-fluidic analyses were performed using the ANSYS FLUENT computational fluid dynamics (CFD) code. Figure 0.1 shows a schematic radial layout of the reference 1000 MWt SLFFR core, and Table 0.1 summarizes the main design parameters of SLFFR-1000 loop plant. The fuel container is a 2.5 cm thick cylinder with an inner radius of 87.5 cm. The fuel
Chapter 6. Scaling Up Solutions to State, National and Global Levels
Daniel Kammen; Doug Rotman; Magali Delmas; David Feldman; Mike Mielke; Ramamoorthy Ramesh; Daniel Sperling
2016-01-01
Scaling-up solutions require learning and adapting lessons between locations and at different scales. To accomplish this, common metrics are vital to building a shared language. For California, this has meant careful financial, cradle-to-grave life-cycle assessment methods leading to carbon accounting in many avenues of government (via the Low Carbon Fuel Standard or the Cap and Trade program). These methods themselves interact, such as the use of carbon accounting for the resources needed to...
DEFF Research Database (Denmark)
Köylüoglu, H. U.; Nielsen, Søren R. K.; Cakmak, A. S.
Geometrically non-linear multi-degree-of-freedom (MDOF) systems subject to random excitation are considered. New semi-analytical approximate forward difference equations for the lower order non-stationary statistical moments of the response are derived from the stochastic differential equations...... of motion, and, the accuracy of these equations is numerically investigated. For stationary excitations, the proposed method computes the stationary statistical moments of the response from the solution of non-linear algebraic equations....
Directory of Open Access Journals (Sweden)
J. Vanderborght
1997-01-01
Full Text Available Abstract: Field-scale solute dispersion is determined by water flow heterogeneity which results from spatial variability of soil hydraulic properties and soil moisture state. Measured variabilities of soil hydraulic properties are highly sensitive to the experimental method. Field-scale dispersion derived from leaching experiments in a macroporous loam soil was compared with field-scale dispersion obtained with numerical simulations in heterogeneous random fields. Four types of random fields of hydraulic properties having statistical properties derived from four different types of laboratory measurements were considered. Based on this comparison, the measurement method depicting heterogeneities of hydraulic properties most relevant to field-scale solute transport was identified. For unsaturated flow, the variability of the hydraulic conductivity characteristic measured on a small soil volume was the most relevant parameter. For saturated flow, simulated dispersion underestimated the measured dispersion and it was concluded that heterogeneity of macroscopic hydraulic properties could not represent solute flow heterogeneity under these flow conditions. Field-scale averaged solute concentrations depend both on the detection method and the averaging procedure. Flux-averaged concentrations (relevant to practical applications differ from volume-averaged or resident concentrations (easy to measure, especially when water flow is more heterogeneous. Simulated flux and resident concentrations were subsequently used to test two simple one-dimensional transport models in predicting flux concentrations when they are calibrated on resident concentrations. In the first procedure, solute transport in a heterogeneous soil is represented by a 1-D convection dispersion process. The second procedure was based on the relation between flux and resident concentrations for a stochastic convective process. Better predictions of flux concentrations were obtained using
Scattering state solutions of the Duffin-Kemmer-Petiau equation with the Varshni potential model
Energy Technology Data Exchange (ETDEWEB)
Oluwadare, O.J. [Federal University Oye-Ekiti, Department of Physics, Oye-Ekiti, Ekiti State (Nigeria); Oyewumi, K.J. [Federal University of Technology, Department of Physics, Minna, Niger State (Nigeria)
2017-02-15
The scattering state of the Duffin-Kemmer-Petiau equation with the Varshni potential was studied. The asymptotic wave function, the scattering phase shift and normalization constant were obtained for any J states by dealing with the centrifugal term using a suitable approximation. The analytical properties of the scattering amplitude and the bound state energy were obtained and discussed. Our numerical and graphical results indicate that the scattering phase shift depends largely on total angular momentum J, screening parameter β and potential strengths a and b. (orig.)
Colaiori, Francesca; Castellano, Claudio; Cuskley, Christine F; Loreto, Vittorio; Pugliese, Martina; Tria, Francesca
2015-01-01
Empirical evidence shows that the rate of irregular usage of English verbs exhibits discontinuity as a function of their frequency: the most frequent verbs tend to be totally irregular. We aim to qualitatively understand the origin of this feature by studying simple agent-based models of language dynamics, where each agent adopts an inflectional state for a verb and may change it upon interaction with other agents. At the same time, agents are replaced at some rate by new agents adopting the regular form. In models with only two inflectional states (regular and irregular), we observe that either all verbs regularize irrespective of their frequency, or a continuous transition occurs between a low-frequency state, where the lemma becomes fully regular, and a high-frequency one, where both forms coexist. Introducing a third (mixed) state, wherein agents may use either form, we find that a third, qualitatively different behavior may emerge, namely, a discontinuous transition in frequency. We introduce and solve analytically a very general class of three-state models that allows us to fully understand these behaviors in a unified framework. Realistic sets of interaction rules, including the well-known naming game (NG) model, result in a discontinuous transition, in agreement with recent empirical findings. We also point out that the distinction between speaker and hearer in the interaction has no effect on the collective behavior. The results for the general three-state model, although discussed in terms of language dynamics, are widely applicable.
Jennings, Robert C; Zucchelli, Giuseppe
2014-01-01
We examine ergodicity and configurational entropy for a dilute pigment solution and for a suspension of plant photosystem particles in which both ground and excited state pigments are present. It is concluded that the pigment solution, due to the extreme brevity of the excited state lifetime, is non-ergodic and the configurational entropy approaches zero. Conversely, due to the rapid energy transfer among pigments, each photosystem is ergodic and the configurational entropy is positive. This decreases the free energy of the single photosystem pigment array by a small amount. On the other hand, the suspension of photosystems is non-ergodic and the configurational entropy approaches zero. The overall configurational entropy which, in principle, includes contributions from both the single excited photosystems and the suspension which contains excited photosystems, also approaches zero. Thus the configurational entropy upon photon absorption by either a pigment solution or a suspension of photosystem particles is approximately zero. Copyright © 2014 Elsevier B.V. All rights reserved.
Ab initio QM/MM excited-state molecular dynamics study of coumarin 151 in water solution
Kina, Daisuke; Arora, Pooja; Nakayama, Akira; Noro, Takeshi; Gordon, Mark S.; Taketsugu, Tetsuya
Ab initio molecular dynamics (AIMD) simulations are performed to investigate the excited state dynamics of coumarin 151 (C151) in the gas phase and in water solution at the CASSCF level of theory with segmented DZP basis sets, where in the latter case effective fragment potentials (EFP) are used. The dipole moment of an isolated C151 molecule increases considerably upon electronic vertical excitation, from 5.0 D (S0 state) to 11.1 D (S1 state). Two equilibrium structures have been identified in the S1 state, i.e., a charge-transfer state with a planar amino group and a deformed structure of the six-membered ring with the carbonyl group, and a structure that is similar to the S0 equilibrium structure. In AIMD simulations for an isolated C151 molecule (presumably similar to dynamics in nonpolar solvents), C151 decays from S1 to S0 via a crossing point of the charge-transfer state in some trajectories, while in the AIMD simulations for C151-EFP (including solvent), the S1 and S0 energies show an almost parallel energy variation with structural changes, and no crossing point is observed. This result is in good agreement with the experimental observation.
Directory of Open Access Journals (Sweden)
K. Sudharsan Reddy
2012-01-01
Full Text Available The miscibility of Hydroxypropyl cellulose (HPC/poly(ethylene glycol (PEG blends over an extended range of concentrations in water. The viscosity, ultrasonic velocity, and refractive index of the above blend solutions have been measured at 30°C. The interaction parameters such as and μ proposed by Chee and α proposed by Sun have been obtained using the viscosity data to probe the miscibility of the polymer blends. The values indicated that the blends were miscible when HPC content is more than 40% in the blend. The obtained results have been confirmed by the ultrasonic velocity and refractive index studies. The films of the blends were prepared by solution casting method using water as a solvent. The prepared films have been characterized by analytical techniques such as FTIR, DSC, X-RD, and SEM to probe the miscibility of HPC/PEG blends. The compatibility in the above compositions may be due to the formation of H-bonding between hydroxyl groups of HPC and etheric oxygen atom of PEG molecules.
Ground-state properties of the two-site Hubbard-Holstein model: an exact solution
Energy Technology Data Exchange (ETDEWEB)
Zhang Yuyu; Wang Xiaoguang [Department of Physics, Zhejiang University, Hangzhou 321004 (China); Liu Tao; Wang Kelin [Department of Physics, Southwest University of Science and Technology, Mianyang 621010 (China); Chen Qinghu, E-mail: qhchen@zju.edu.c [Center for Statistical and Theoretical Condensed Matter Physics, Zhejiang Normal University, Jinhua 321004 (China)
2009-10-14
We study the two-site Hubbard-Holstein model by using an extended phonon coherent state. For the nontrivial singlet bipolarons, the double occupancy probability, the fidelity and the entanglement entropy are calculated to characterize the ground-state properties in both two-site and single-site bipolaron-dominated regimes. We use the localized minimum of the fidelity to define a crossover and plot the bipolaron phase diagram, which separates the large and small entanglement region. Furthermore, the relation between the bipolaron entanglement and the correlation functions demonstrates that the large entanglement corresponds to the large magnitude of lattice deformations induced by electrons.
Short, N. M.
1980-01-01
To aid state/local agencies in starting effective programs to apply Landsat and other remote sensing data, NASA's Eastern Regional Remote Sensing Applications Center (ERRSAC) has developed a comprehensive training program as part of its technology transfer mission. Skills in data processing and interpretation are produced through 'hands-on' experience with computer techniques used to conduct practical applications involving state-oriented projects, conducted jointly by agencies and ERRSAC. In time, ERRSAC will shift much of these training activities to universities where future agency personnel can obtain a broader foundation in remote sensing.
Tsuji, Hiroshi; Usuda, Kan; Takahashi, Yuka; Kono, Koichi; Tamaki, Junko
2016-06-07
Because of the declining birthrate in Japan, an increasing number of companies are hiring immigrants to fill the labor shortage. Although research on migrant occupational health has progressed in the United States, this topic has received little attention in Japan. The aim of this study was to elucidate the current situation, challenges, and solutions surrounding the occupational health of immigrant workers in the United States. Data and selected studies were reviewed and analyzed. The results are discussed, and a few anecdotal experiences in the United States are introduced and compared. Possible causes of disparities in immigrant occupational health fell into the following seven categories. (Keywords for each category are shown in parentheses.) (1) Occupation (hazardous job, injury, missed workday, blue-collar worker, low birth weight); (2) Education (academic record, health literacy, training); (3) Culture (culture-specific, community-based); (4) Environment (poor hygiene, regional disparities, environmental change); (5) Access (language, statistics, workers' compensation, health insurance, voluntary restraint); (6) Infection (tuberculosis, human immunodeficiency virus/AIDS, follow-up); and (7) Discrimination (race, assault, harassment). Lack of data on immigrant workers was found to be a common problem. Some businesses and community groups achieved positive results by simultaneously dealing with multiple aforementioned categories. In the United States, the occupational health of immigrant workers has been studied mainly in terms of health disparities. Possible causes of disparities in immigrant occupational health fell into seven categories. Solutions centered on the keywords in each category were inferred. Some businesses and community groups achieved positive results by simultaneously dealing with multiple aforementioned categories. Occupational health professionals have to take each of seven categories into account to improve immigrant occupational health
Richard W. Haynes; Robert C. Szaro; Dennis P. Dykstra
2005-01-01
Ecosystem approaches to sustainable forest management in the Pacific Northwest of the United States and Canada have arisen in response to significant changes that have occurred in these societies over the past century or so (Interagency Ecosystem Management Task Force, 1995). One such change as been rapid population growth along the Pacific Coast, where the mild...
Redding, Sam; Nafziger, Dean
2013-01-01
The purpose of the state education agency (SEA) is to focus the entire education system on helping students become capable in college and career in an increasingly complex world. One of the most vexing problems facing SEAs today is how to meet increasing demands for performance while adjusting to significant resource reductions. Meeting that…
A potential new, stable state of the E-cadherin strand-swapped dimer in solution.
Schumann-Gillett, Alexandra; Mark, Alan E; Deplazes, Evelyne; O'Mara, Megan L
2018-01-01
E-cadherin is a transmembrane glycoprotein that facilitates inter-cellular adhesion in the epithelium. The ectodomain of the native structure is comprised of five repeated immunoglobulin-like domains. All E-cadherin crystal structures show the protein in one of three alternative conformations: a monomer, a strand-swapped trans homodimer and the so-called X-dimer, which is proposed to be a kinetic intermediate to forming the strand-swapped trans homodimer. However, previous studies have indicated that even once the trans strand-swapped dimer is formed, the complex is highly dynamic and the E-cadherin monomers may reorient relative to each other. Here, molecular dynamics simulations have been used to investigate the stability and conformational flexibility of the human E-cadherin trans strand-swapped dimer. In four independent, 100 ns simulations, the dimer moved away from the starting structure and converged to a previously unreported structure, which we call the Y-dimer. The Y-dimer was present for over 90% of the combined simulation time, suggesting that it represents a stable conformation of the E-cadherin dimer in solution. The Y-dimer conformation is stabilised by interactions present in both the trans strand-swapped dimer and X-dimer crystal structures, as well as additional interactions not found in any E-cadherin dimer crystal structures. The Y-dimer represents a previously unreported, stable conformation of the human E-cadherin trans strand-swapped dimer and suggests that the available crystal structures do not fully capture the conformations that the human E-cadherin trans homodimer adopts in solution.
DEFF Research Database (Denmark)
Christensen, Steen; Peters, Günther H.J.; Hansen, Flemming Yssing
2007-01-01
The ‘State Conditions Transferability’ category of IFPSC 2006 tests prediction of binary vapor–liquid isotherms for mixtures of ethanol and the refrigerant HFF-227ea (1,1,1,2,3,3,3-heptafluoropropane). We predict these isotherms using fluctuation solution theory (FST). The method is based......–457] comprise the nearly ideal benzene/methyl acetate system, and the less ideal benzene/ethanol system at ambient temperatures. Both are at low pressures and remote from the pure component critical points. For the IFPSC system, we have used the same method even though predictions are for conditions remote from...
2006-11-30
begins in state k, the initial probability distribution for the CME was written, pi(0) = δik, where δik is the Kronecker delta . Suppose now that the...initial distribution is given not by the Kronecker delta but by a vector with many non-zero elements. For example, suppose that the initial distribution is...pap-pili epigenetic switch,” Proc. FOSBE , pp. 145–148, August 2005. [16] B. Munsky and M. Khammash, “A reduced model solution for the chemical master
Hardin, Brian E.
2011-06-01
Solution processed silver nanowire meshes (Ag NWs) were laminated on top of solid-state dye-sensitized solar cells (ss-DSCs) as a reflective counter electrode. Ag NWs were deposited in <1 min and were less reflective compared to evaporated Ag controls; however, AgNW ss-DSC devices consistently had higher fill factors (0.6 versus 0.69), resulting in comparable power conversion efficiencies (2.7%) compared to thermally evaporated Ag control (2.8%). Laminated Ag NW electrodes enable higher throughput manufacturing and near unity material usage, resulting in a cheaper alternative to thermally evaporated electrodes. © 2011 Elsevier B.V. All rights reserved.
Schrodinger's catapult II: entanglement between stationary and flying fields
Pfaff, W.; Axline, C.; Burkhart, L.; Vool, U.; Reinhold, P.; Frunzio, L.; Jiang, L.; Devoret, M.; Schoelkopf, R.
Entanglement between nodes is an elementary resource in a quantum network. An important step towards its realization is entanglement between stationary and flying states. Here we experimentally demonstrate entanglement generation between a long-lived cavity memory and traveling mode in circuit QED. A large on/off ratio and fast control over a parametric mixing process allow us to realize conversion with tunable magnitude and duration between standing and flying mode. In the case of half-conversion, we observe correlations between the standing and flying state that confirm the generation of entangled states. We show this for both single-photon and multi-photon states, paving the way for error-correctable remote entanglement. Our system could serve as an essential component in a modular architecture for error-protected quantum information processing.
Ravich, Y I
2002-01-01
Results of experimental investigation of the transport phenomena in PbTe and Pb sub 1 sub - sub x Sn sub x Te solid solutions with high contents of In impurity (up to 20 at %) at temperatures up to 400 K have been considered. An analysis of the experimental data has been made on the base of an idea of hopping conductivity via highly localized impurity states creates by indium atoms. The temperature dependences of transport coefficients unusual for the IV-VI-type semiconductors, the change of sing of the thermoelectromotive force at negative Hall coefficient, the positive Nernst-Ettingshausen coefficient are explained. The activation energy of the hoping conductivity, characterizing discrepancy between impurity energy levels the effective wave function radius and the density of localized states as the energy function are found experimentally
Handbook of differential equations stationary partial differential equations
Chipot, Michel
2006-01-01
This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics. Ke
Existence for stationary mean-field games with congestion and quadratic Hamiltonians
Gomes, Diogo A.
2015-09-03
Here, we investigate the existence of solutions to a stationary mean-field game model introduced by J.-M. Lasry and P.-L. Lions. This model features a quadratic Hamiltonian and congestion effects. The fundamental difficulty of potential singular behavior is caused by congestion. Thanks to a new class of a priori bounds, combined with the continuation method, we prove the existence of smooth solutions in arbitrary dimensions. © 2015 Springer Basel
The State of Soil Degradation in Sub-Saharan Africa: Baselines, Trajectories, and Solutions
Directory of Open Access Journals (Sweden)
Katherine Tully
2015-05-01
Full Text Available The primary cause of soil degradation in sub-Saharan Africa (SSA is expansion and intensification of agriculture in efforts to feed its growing population. Effective solutions will support resilient systems, and must cut across agricultural, environmental, and socioeconomic objectives. While many studies compare and contrast the effects of different management practices on soil properties, soil degradation can only be evaluated within a specific temporal and spatial context using multiple indicators. The extent and rate of soil degradation in SSA is still under debate as there are no reliable data, just gross estimates. Nevertheless, certain soils are losing their ability to provide food and essential ecosystem services, and we know that soil fertility depletion is the primary cause. We synthesize data from studies that examined degradation in SSA at broad spatial and temporal scales and quantified multiple soil degradation indicators, and we found clear indications of degradation across multiple indicators. However, different indicators have different trajectories—pH and cation exchange capacity tend to decline linearly, and soil organic carbon and yields non-linearly. Future research should focus on how soil degradation in SSA leads to changes in ecosystem services, and how to manage these soils now and in the future.
Investigation of solutions of state-dependent multi-impulsive boundary value problems
Czech Academy of Sciences Publication Activity Database
Rontó, András; Rachůnková, I.; Rontó, M.; Rachůnek, L.
2017-01-01
Roč. 24, č. 2 (2017), s. 287-312 ISSN 1072-947X R&D Projects: GA ČR(CZ) GA14-06958S Institutional support: RVO:67985840 Keywords : state-dependent multi-impulsive systems * non-linear boundary value problem * parametrization technique Subject RIV: BA - General Mathematics Impact factor: 0.290, year: 2016 https://www.degruyter.com/view/j/gmj.2017.24.issue-2/gmj-2016-0084/gmj-2016-0084. xml
New analytical solution for solving steady-state heat conduction problems with singularities
Directory of Open Access Journals (Sweden)
Laraqi Najib
2013-01-01
Full Text Available A problem of steady-state heat conduction which presents singularities is solved in this paper by using the conformal mapping method. The principle of this method is based on the Schwarz-Christoffel transformation. The considered problem is a semi-infinite medium with two different isothermal surfaces separated by an adiabatic annular disc. We show that the thermal resistance can be determined without solving the governing equations. We determine a simple and exact expression that provides the thermal resistance as a function of the ratio of annular disc radii.
Energy Technology Data Exchange (ETDEWEB)
Soboleva, L.V.
1987-09-01
Models were proposed for the physicochemical state of heterogeneous solutions of the system CsCl-CuCl/sub 2/-H/sub 2/O and the chemistry of the crystallization of solid phases of the system. The interaction of saturated solutions of CsCl and CuCl/sub 2/ is accompanied by the formation of aquachloride copper complexes of different composition and structure and also chloride copper complexes, characteristic of the structure of a growing crystal. The effect of the structural state of the solutions on the crystal growth was studied. By appropriately choosing the optimal conditions for crystal growth from the solubility diagrams, changing the pH of the solutions, and disordering of the structural state of the crystallizing solutions, it is possible to affect the chemistry of the crystallization processes.
Energy Technology Data Exchange (ETDEWEB)
Chénard, Etienne; Sutrisno, Andre; Zhu, Lingyang; Assary, Rajeev S.; Kowalski, Jeffrey A.; Barton, John L.; Bertke, Jeffery A.; Gray, Danielle L.; Brushett, Fikile R.; Curtiss, Larry A.; Moore, Jeffrey S.
2016-03-31
Following the discovery of the redox-active 1,4- bis-BF_{3}-quinoxaline complex, we undertook a structure- activity study with the objective to understand the active nature of the quinoxaline complex. Through systematic synthesis and characterization, we have compared complexes prepared from pyridine and pyrazine derivatives, as heterocyclic core analogues. This paper reports the structural requirements that give rise to the electrochemical features of the 1,4-bis-BF_{3}-quinoxaline adduct. Using solution and solidstate NMR spectroscopy, the role of aromatic ring fusion and nitrogen incorporation in bonding and electronics was elucidated. We establish the boron atom location and its interaction with its environment from 1D and 2D solution NMR, X-ray diffraction analysis, and 11B solid-state NMR experiments. Crystallographic analysis of single crystals helped to correlate the boron geometry with 11B quadrupolar coupling constant (CQ) and asymmetry parameter (ηQ), extracted from 11B solid-state NMR spectra. Additionally, computations based on density functional theory were performed to predict electrochemical behavior of the BF_{3}-heteroaromatic complexes. We then experimentally measured electrochemical potential using cyclic voltammetry and found that the redox potentials and CQ values are similarly affected by electronic changes in the complexes.
Gasanov, S. A.
2012-06-01
Steady-state solutions for the motion of a passively gravitating globular cluster (GC) inside an inhomogeneous, rotating, ellipsoidal elliptical galaxy (EG) are considered. It is assumed that an EG with a halo is comprised of a triaxial ellipsoid consisting of two layers. The first is formed by an inner, uniform ellipsoid representing the luminous part of the galaxy, while the second corresponds to the space between an inner and outer ellipsoid, which is uniformly filled with dark matter. The triaxial ellipsoids are taken to be homothetic and to have a common center; the space between them is called a homeoid. The outer boundary of the homeoid is the boundary of the galaxy halo. The densities of the luminous part of the EG and the homeoid are different. This picture of an EG is in agreement with our current understanding of galactic structure. The motion of the GC occurs outside the luminous part of the EG, but inside the homeoid, which is treated like a perturbing body. Steady-state solutions (libration points) are found for the GC, and its Lyapunov stability determined. The elliptical galaxies NGC 4472 (M49), NGC 4636, and NGC 4374, which contain a large number of GCs, are used as examples. Analysis of these galaxies shows that the exact expression for the potential of the luminous part of the EG must be used to find the libration points and study their stability, rather than an approximate expression for this potential.
An integrated low carbon energy solution to cooking fuel, tailored to Niger state's rural population
Carvell, Aaron; Price-Allison, Andrew; Birch, Calum; Green, Toby; Harijan, Khanji; Maihankuri, Sheidi; Raji, Abdulganiy; Uqaili, Mohammed; Dupont, Valerie
2017-11-01
Niger State (Nigeria) was selected as a case study of renewable, affordable and user friendly clean energy provision in remote areas of developing countries. Niger state has 80% of its 4.5 million population living in rural agrarian areas with low literacy rates, there is a lack of wind thus eliminating wind as widely available potential power source. Based on the assessment of the local large insolation, the type of agricultural, biomass and husbandry resources, this study selected the design of anaerobic digestion units processing mostly animal and human waste, and whose heating and power requirement would be entirely provided by solar photovoltaic/thermal to maintain optimum efficiency of the biogas production. The designs was carried out at the scale of up to 15 household demand (community scale). Volume and therefore the production of biogas maybe increased or decreased in the design considered, and local, low cost resilient material were proposed. The proposed system was costed for a community of 24 people, demonstrating the potential for clean and renewable gas production economically.
Inclusion of Paracetamol into β-cyclodextrin nanocavities in solution and in the solid state
El-Kemary, Maged; Sobhy, Saffaa; El-Daly, Samy; Abdel-Shafi, Ayman
2011-09-01
We report on steady-state UV-visible absorption and emission characteristics of Paracetamol, drug used as antipyretic agent, in water and within cyclodextrins (CDs): β-CD, 2-hydroxypropyl- β-CD (HP- β-CD) and 2,6-dimethyl- β-CD (Me- β-CD). The results reveal that Paracetamol forms a 1:1 inclusion complex with CD. Upon encapsulation, the emission intensity enhances, indicating a confinement effect of the nanocages on the photophysical behavior of the drug. Due to its methyl groups, the Me- β-CD shows the largest effect for the drug. The observed binding constant showing the following trend: Me- β-CD > HP- β-CD > β-CD. The less complexing effectiveness of HP- β-CD is due to the steric effect of the hydroxypropyl-substituents, which can hamper the inclusion of the guest molecules. The solid state inclusion complex was prepared by co-precipitation method and its characterization was investigated by Fourier transform infrared spectroscopy, 1H NMR and X-ray diffractometry. These approaches indicated that Paracetamol was able to form an inclusion complex with CDs, and the inclusion compounds exhibited different spectroscopic features and properties from Paracetamol.
Self-Consistent Solutions for the Scattering State with Two Free Electrons
Hahn, Y. K.; Gau, J. N.; Zerrad, E.
2013-11-01
Wave functions for the scattering states with two free electrons in the field of an ion core are explicitly calculated by the self-consistent, continuum Hartree-Fock (CHF) theory. Typically, such states are associated with the three-body recombination, collisional ionization and photo-double ionization, but have never been directly studied previously. The calculated continuum orbitals are found to be predominantly of the plane-wave forms, as though the system is translation invariant, in the context of many-body HF theory. The symmetry is mildly broken by the presence of the core ion, at about fifteen-percents level, indicating that the orbitals are largely delocalized and the effect of the core potential is an important but minor perturbation. The properties of channel orthogonality and completeness are preserved by the nearly plane wave forms. To test the validity of this finding and the CHF, the continuum orbitals are used to evaluate the amplitudes for the electron impact ionization, and the amputation procedure, that is crucial in the theory, is also critically re-examined.
Energy Technology Data Exchange (ETDEWEB)
Prima, Eka Cahya [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); International Program on Science Education, Universitas Pendidikan Indonesia (Indonesia); Yuliarto, Brian; Suyatman, E-mail: yatman@tf.itb.ac.id [Advanced Functional Material Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia); Dipojono, Hermawan Kresno [Computational Material Design and Quantum Engineering Laboratory, Engineering Physics, Institut Teknologi Bandung (Indonesia)
2015-09-30
The aglycones of anthocyanidin dyes were previously reported to form carbinol pseudobase, cis-chalcone, and trans-chalcone due to the basic levels. The further investigations of ground and excited state properties of the dyes were characterized using density functional theory with PCM(UFF)/B3LYP/6-31+G(d,p) level in the basic solutions. However, to the best of our knowledge, the theoretical investigation of their potential photosensitizers has never been reported before. In this paper, the theoretical photovoltaic properties sensitized by dyes have been successfully investigated including the electron injections, the ground and excited state oxidation potentials, the estimated open circuit voltages, and the light harvesting efficiencies. The results prove that the electronic properties represented by dyes’ LUMO-HOMO levels will affect to the photovoltaic performances. Cis-chalcone dye is the best anthocyanidin aglycone dye with the electron injection spontaneity of −1.208 eV, the theoretical open circuit voltage of 1.781 V, and light harvesting efficiency of 56.55% due to the best HOMO-LUMO levels. Moreover, the ethanol solvent slightly contributes to the better cell performance than the water solvent dye because of the better oxidation potential stabilization in the ground state as well as in the excited state. These results are in good agreement with the known experimental report that the aglycones of anthocyanidin dyes in basic solvent are the high potential photosensitizers for dye-sensitized solar cell.
An experimental stationary quadrotor with variable DOF
Indian Academy of Sciences (India)
It would be wise to extend control studies of air vehicles on a stationary unit or in simula- tion environment because of the ... to decouple different motion axis of the vehicle so that control algorithm effects can be observed. While mechatronic design ..... Quadrotor Unmanned Aerial Vehicle, J. Electric. Eng., 57(1):20–27.
Damping device for a stationary labyrinth seal
El-Aini, Yehia M. (Inventor); Mitchell, William S. (Inventor); Roberts, Lawrence P. (Inventor); Montgomery, Stuart K. (Inventor); Davis, Gary A. (Inventor)
2010-01-01
A stationary labyrinth seal system includes a seal housing having an annular cavity, a plurality of damping devices, and a retaining ring. The damping devices are positioned within the annular cavity and are maintained within the annular cavity by the retaining ring.
New interval forecast for stationary autoregressive models ...
African Journals Online (AJOL)
In this paper, we proposed a new forecasting interval for stationary Autoregressive, AR(p) models using the Akaike information criterion (AIC) function. Ordinarily, the AIC function is used to determine the order of an AR(p) process. In this study however, AIC forecast interval compared favorably with the theoretical forecast ...
Calendar Year 2016 Stationary Source Emissions Inventory
Energy Technology Data Exchange (ETDEWEB)
Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-01-01
The City of Albuquerque (COA) Environmental Health Department Air Quality Program has issued stationary source permits and registrations the Department of Energy/Sandia Field Office for operations at the Sandia National Laboratories/New Mexico. This emission inventory report meets the annual reporting compliance requirements for calendar year (CY) 2016 as required by the COA.
Gillilan, Richard E; Kumar, V S Senthil; O'Neall-Hennessey, Elizabeth; Cohen, Carolyn; Brown, Jerry H
2013-01-01
The overall conformations of regulated myosins or heavy meromyosins from chicken/turkey, scallop, tarantula, limulus, and scorpion sources have been studied by a number of techniques, including electron microscopy, sedimentation, and pulsed electron paramagnetic resonance. These studies have indicated that the binding of regulatory ions changes the conformation of the molecule from a compact shape found in the "off" state of the muscle to extended relationships between the tail and independently mobile heads that predominate in the "on" state. Here we strengthen the argument for the generality of this conformational change by using small angle X-ray scattering on heavy meromyosin from squid. Small angle X-ray scattering allows the protein to be visualized in solution under mild and relatively physiological conditions, and squid differs from the other species studied by at least 500 million years of evolution. Analysis of the data indicates that upon addition of Ca(2+) the radius of gyration increases. Differences in the squid "on" and "off" states are clearly distinguishable as bimodal and unimodal pair distance distribution functions respectively. These observations are consistent with a Ca(2+)-free squid heavy meromyosin that is compact, but which becomes extended when Ca(2+) is bound. Further, the scattering profile derived from the current model of tarantula heavy meromyosin in the "off" state is in excellent agreement with the measured "off" state scattering profile for squid heavy meromyosin. The previous and current studies together provide significant evidence that regulated myosin's compact off-state conformation is an ancient trait, inherited from a common ancestor during divergent evolution.
Modeling of Dielectric Properties of Aqueous Salt Solutions with an Equation of State
DEFF Research Database (Denmark)
Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios; Thomsen, Kaj
2013-01-01
to associating mixtures. Wertheim’s association model as formulated in the statistical associating fluid theory is used to account for hydrogen-bonding molecules and ion–solvent association. Finally, we compare the Debye–Hückel Helmholtz energy obtained using an empirical model with the new physical model......, been ignored in relation to thermodynamic modeling, and authors have either neglected the effect of salts on permittivity or used empirical correlations fitted to the measured static permittivity, leading to an overestimation of the reduction in the thermodynamic static permittivity. We present a new...... methodology for obtaining the static permittivity over wide ranges of temperatures, pressures, and compositions for use within an equation of state for mixed solvents containing salts. The static permittivity is calculated from a new extension of the framework developed by Onsager, Kirkwood, and Fröhlich...
Uniqueness of Smooth Stationary Black Holes in Vacuum: Small Perturbations of the Kerr Spaces
Alexakis, S.; Ionescu, A. D.; Klainerman, S.
2010-10-01
The goal of the paper is to prove a perturbative result, concerning the uniqueness of Kerr solutions, a result which we believe will be useful in the proof of their nonlinear stability. Following the program started in Ionescu and Klainerman (Invent. Math. 175:35-102, 2009), we attempt to remove the analyticity assumption in the the well known Hawking-Carter-Robinson uniqueness result for regular stationary vacuum black holes. Unlike (Ionescu and Klainerman in Invent. Math. 175:35-102, 2009), which was based on a tensorial characterization of the Kerr solutions, due to Mars (Class. Quant. Grav. 16:2507-2523, 1999), we rely here on Hawking’s original strategy, which is to reduce the case of general stationary space-times to that of stationary and axi-symmetric spacetimes for which the Carter-Robinson uniqueness result holds. In this reduction Hawking had to appeal to analyticity. Using a variant of the geometric Carleman estimates developed in Ionescu and Klainerman (Invent. Math. 175:35-102, 2009), in this paper we show how to bypass analyticity in the case when the stationary vacuum space-time is a small perturbation of a given Kerr solution. Our perturbation assumption is expressed as a uniform smallness condition on the Mars-Simon tensor. The starting point of our proof is the new local rigidity theorem established in Alexakis et al. (Hawking’s local rigidity theorem without analyticity. http://arxiv.org/abs/0902.1173v1[gr-qc] , 2009).
Directory of Open Access Journals (Sweden)
Bieda Robert
2016-06-01
Full Text Available This paper describes a method which determines the parameters of an object orientation in 3D space. The rotation angles calculation bases on the signals fusion obtained from the inertial measurement unit (IMU. The IMU measuring system provides information from a linear acceleration sensors (accelerometers, the Earth’s magnetic field sensors (magnetometers and the angular velocity sensors (gyroscopes. Information about the object orientation is presented in the form of direction cosine matrix whose elements are observed in the state vector of the non-stationary Kalman filter. The vector components allow to determine the rotation angles (roll, pitch and yaw associated with the object. The resulting waveforms, for different rotation angles, have no negative attributes associated with the construction and operation of the IMU measuring system. The described solution enables simple, fast and effective implementation of the proposed method in the IMU measuring systems.
Directory of Open Access Journals (Sweden)
Guzmán Juan
2015-07-01
Full Text Available There are a lot of applications of the Thomson ring: levitation of superconductor materials, power interrupters (used as actuator and elimination of electric arcs. Therefore, it is important the numerical modeling of Thomson ring. The aim of this work is to model the stationary levitation of the Thomson ring. This Thomson ring consists of a copper coil with ferromagnetic core and an aluminum ring threaded in the core. The coil is fed by a cosine voltage to ensure that the aluminum ring is in a stationary levitated position. In this situation, the state of the electromagnetic field is stable and can be used the phasor equations of the electromagnetic field. These equations are discretized using the Galerkin method in the Lagrange base space (finite element method, FEM. These equations are solved using the COMSOL software. A methodology is also described (which uses the Newton-Raphson method that obtains the separation between coil and aluminum ring. The numerical solutions of this separation are compared with experimental data. The conclusion is that the magnetic coupling of the aluminum ring on the coil can be neglected if the source voltage is high.
Horváth, Judit; Szalai, István; De Kepper, Patrick
2010-06-01
We present a detailed study of the reaction-diffusion patterns observed in the thiourea-iodate-sulfite (TuIS) reaction, operated in open one-side-fed reactors. Besides spatial bistability and spatio-temporal oscillatory dynamics, this proton autoactivated reaction shows stationary patterns, as a result of two back-to-back Turing bifurcations, in the presence of a low-mobility proton binding agent (sodium polyacrylate). This is the third aqueous solution system to produce stationary patterns and the second to do this through a Turing bifurcation. The stationary pattern forming capacities of the reaction are explored through a systematic design method, which is applicable to other bistable and oscillatory reactions. The spatio-temporal dynamics of this reaction is compared with that of the previous ferrocyanide-iodate-sulfite mixed Landolt system.
Gauge invariant gluon spin operator for spinless nonlinear wave solutions
Lee, Bum-Hoon; Kim, Youngman; Pak, D. G.; Tsukioka, Takuya; Zhang, P. M.
2017-04-01
We consider nonlinear wave type solutions with intrinsic mass scale parameter and zero spin in a pure SU(2) quantum chromodynamics (QCD). A new stationary solution which can be treated as a system of static Wu-Yang monopole dressed in off-diagonal gluon field is proposed. A remarkable feature of such a solution is that it possesses a finite energy density everywhere. All considered nonlinear wave type solutions have common features: presence of the mass scale parameter, nonvanishing projection of the color fields along the propagation direction and zero spin. The last property requires revision of the gauge invariant definition of the spin density operator which is supposed to produce spin one states for the massless vector gluon field. We construct a gauge invariant definition of the classical gluon spin density operator which is unique and Lorentz frame independent.
The LiBH4-LiI Solid Solution as an Electrolyte in an All-Solid-State Battery
DEFF Research Database (Denmark)
Sveinbjörnsson, Dadi Þorsteinn; Christiansen, Ane Sælland; Viskinde, Rasmus
2014-01-01
is compared with a cell with an identical electrode setup but a liquid electrolyte (1 M LiPF6 in EC:DMC). All measurements were carried out at a temperature of 60°C. For the all-solid-state cells, 81% of the theoretical discharge capacity is reached for a discharge rate of 10 μA, but a capacity fade of 1......The charge and discharge performance of an all-solid-state lithium battery with the LiBH4-LiI solid solution as an electrolyte is reported. Lithium titanate (Li4Ti5O12) was used as the positive electrode and lithium metal as the negative electrode. The performance of the all-solid-state cell...... the change in the discharge capacity of the cells and changes in the cell impedance over 200 charge-discharge cycles. This is expectedly due to the possible formation of passivating areas in the cell and/or loss of contact area between the electrolyte and the electrodes....
Directory of Open Access Journals (Sweden)
Gregory D Friedland
2009-05-01
Full Text Available Conformational ensembles are increasingly recognized as a useful representation to describe fundamental relationships between protein structure, dynamics and function. Here we present an ensemble of ubiquitin in solution that is created by sampling conformational space without experimental information using "Backrub" motions inspired by alternative conformations observed in sub-Angstrom resolution crystal structures. Backrub-generated structures are then selected to produce an ensemble that optimizes agreement with nuclear magnetic resonance (NMR Residual Dipolar Couplings (RDCs. Using this ensemble, we probe two proposed relationships between properties of protein ensembles: (i a link between native-state dynamics and the conformational heterogeneity observed in crystal structures, and (ii a relation between dynamics of an individual protein and the conformational variability explored by its natural family. We show that the Backrub motional mechanism can simultaneously explore protein native-state dynamics measured by RDCs, encompass the conformational variability present in ubiquitin complex structures and facilitate sampling of conformational and sequence variability matching those occurring in the ubiquitin protein family. Our results thus support an overall relation between protein dynamics and conformational changes enabling sequence changes in evolution. More practically, the presented method can be applied to improve protein design predictions by accounting for intrinsic native-state dynamics.
EDITORIAL: CAMOP: Quantum Non-Stationary Systems CAMOP: Quantum Non-Stationary Systems
Dodonov, Victor V.; Man'ko, Margarita A.
2010-09-01
Although time-dependent quantum systems have been studied since the very beginning of quantum mechanics, they continue to attract the attention of many researchers, and almost every decade new important discoveries or new fields of application are made. Among the impressive results or by-products of these studies, one should note the discovery of the path integral method in the 1940s, coherent and squeezed states in the 1960-70s, quantum tunneling in Josephson contacts and SQUIDs in the 1960s, the theory of time-dependent quantum invariants in the 1960-70s, different forms of quantum master equations in the 1960-70s, the Zeno effect in the 1970s, the concept of geometric phase in the 1980s, decoherence of macroscopic superpositions in the 1980s, quantum non-demolition measurements in the 1980s, dynamics of particles in quantum traps and cavity QED in the 1980-90s, and time-dependent processes in mesoscopic quantum devices in the 1990s. All these topics continue to be the subject of many publications. Now we are witnessing a new wave of interest in quantum non-stationary systems in different areas, from cosmology (the very first moments of the Universe) and quantum field theory (particle pair creation in ultra-strong fields) to elementary particle physics (neutrino oscillations). A rapid increase in the number of theoretical and experimental works on time-dependent phenomena is also observed in quantum optics, quantum information theory and condensed matter physics. Time-dependent tunneling and time-dependent transport in nano-structures are examples of such phenomena. Another emerging direction of study, stimulated by impressive progress in experimental techniques, is related to attempts to observe the quantum behavior of macroscopic objects, such as mirrors interacting with quantum fields in nano-resonators. Quantum effects manifest themselves in the dynamics of nano-electromechanical systems; they are dominant in the quite new and very promising field of circuit
Gnutzmann, Sven; Waltner, Daniel
2016-12-01
We consider exact and asymptotic solutions of the stationary cubic nonlinear Schrödinger equation on metric graphs. We focus on some basic example graphs. The asymptotic solutions are obtained using the canonical perturbation formalism developed in our earlier paper [S. Gnutzmann and D. Waltner, Phys. Rev. E 93, 032204 (2016)2470-004510.1103/PhysRevE.93.032204]. For closed example graphs (interval, ring, star graph, tadpole graph), we calculate spectral curves and show how the description of spectra reduces to known characteristic functions of linear quantum graphs in the low-intensity limit. Analogously for open examples, we show how nonlinear scattering of stationary waves arises and how it reduces to known linear scattering amplitudes at low intensities. In the short-wavelength asymptotics we discuss how genuine nonlinear effects may be described using the leading order of canonical perturbation theory: bifurcation of spectral curves (and the corresponding solutions) in closed graphs and multistability in open graphs.
Framework for Assessing Biogenic CO2 Emissions from Stationary Sources
This revision of the 2011 report, Accounting Framework for Biogenic CO2 Emissions from Stationary Sources, evaluates biogenic CO2 emissions from stationary sources, including a detailed study of the scientific and technical issues associated with assessing biogenic carbon dioxide...
Roy, Allison H; Wenger, Seth J; Fletcher, Tim D; Walsh, Christopher J; Ladson, Anthony R; Shuster, William D; Thurston, Hale W; Brown, Rebekah R
2008-08-01
In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.
Labram, John G.
2015-02-13
Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.
Directory of Open Access Journals (Sweden)
Tieliang Yang
2016-01-01
Full Text Available This paper presents an analytical study for sound radiation of functionally graded materials (FGM plate based on the three-dimensional theory of elasticity. The FGM plate is a mixture of metal and ceramic, and its material properties are assumed to have smooth and continuous variation in the thickness direction according to a power-law distribution in terms of volume fractions of the constituents. Based on the three-dimensional theory of elasticity and state space method, the governing equations with variable coefficients of the FGM plate are derived. The sound radiation of the vibration plate is calculated with Rayleigh integral. Comparisons of the present results with those of solutions in the available literature are made and good agreements are achieved. Finally, some parametric studies are carried out to investigate the sound radiation properties of FGM plates.
Deactivation processes of the lowest excited state of [UO2(H2O)5]2+ in aqueous solution.
Formosinho, Sebastião J; Burrows, Hugh D; da Graça Miguel, Maria; Azenha, M Emília D G; Saraiva, Isabel M; Ribeiro, A Catarina D N; Khudyakov, Igor V; Gasanov, Rashid G; Bolte, Michèle; Sarakha, Mohamed
2003-05-01
A detailed analysis of the photophysical behaviour of uranyl ion in aqueous solutions at room temperature is given using literature data, together with results of new experimental and theoretical studies to see whether the decay mechanism of the lowest excited state involves physical deactivation by energy transfer or a chemical process through hydrogen atom abstraction. Comparison of the radiative lifetimes determined from quantum yield and lifetime data with that obtained from the Einstein relationship strongly suggests that the emitting state is identical to that observed in the lowest energy absorption band. From study of the experimental rate and that calculated theoretically, from deuterium isotope effects and the activation energy for decay support is given to a deactivation mechanism of hydrogen abstraction involving water clusters to give uranium(v) and hydroxyl radicals. Support for hydroxyl radical formation comes from electron spin resonance spectra observed in the presence of the spin traps 5,5-dimethyl-1-pyrroline N-oxide and tert-butyl-N-phenylnitrone and from literature results on photoinduced uranyl oxygen exchange and photoconductivity. It has previously been suggested that the uranyl emission above pH 1.5 may involve an exciplex between excited uranyl ion and uranium(v). Evidence against this mechanism is given on the basis of quenching of uranyl luminescence by uranium(v), together with other kinetic reasoning. No overall photochemical reaction is observed on excitation of aqueous uranyl solutions, and it is suggested that this is mainly due to reoxidation of UO2+ by hydroxyl radicals in a radical pair. An alternative process involving oxidation by molecular oxygen is analysed experimentally and theoretically, and is suggested to be too slow to be a major reoxidation pathway.
Danish emission inventories for stationary combustion plants
DEFF Research Database (Denmark)
Nielsen, M.; Illerup, J. B.
Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are: SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 12% - the fossil fuel consumption however only by 6%. Despite the increased fuel consumption the emission of several pollutants have decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated....
Danish emission inventories for stationary combustion plants
DEFF Research Database (Denmark)
Nielsen, M.; Illerup, J. B.
Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOX, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins and PAH. Since 1990 the fuel consumption...... in stationary combustion has increased by 14% - the fossil fuel consumption however only by 8%. Despite the increased fuel consumption the emission of several pollutants has decreased due to the improved flue gas cleaning technology, improved burner technology and the change of fuel type used. A considerable...... plants. The emission of PAH increased as a result of the increased combustion of wood in residential boilers and stoves. Uncertainties for the emissions and trends have been estimated...
Relativistic elasticity of stationary fluid branes
DEFF Research Database (Denmark)
Armas, J.; Obers, N.A.
2013-01-01
Fluid mechanics can be formulated on dynamical surfaces of arbitrary codimension embedded in a background space-time. This has been the main object of study of the blackfold approach in which the emphasis has primarily been on stationary fluid configurations. Motivated by this approach we show...... under certain conditions that a given stationary fluid configuration living on a dynamical surface of vanishing thickness and satisfying locally the first law of thermodynamics will behave like an elastic brane when the surface is subject to small deformations. These results, which are independent...... of the number of space-time dimensions and of the fluid arising from a gravitational dual, reveal the (electro)elastic character of (charged) black branes when considering extrinsic perturbations....
Learning Markov models for stationary system behaviors
DEFF Research Database (Denmark)
Chen, Yingke; Mao, Hua; Jaeger, Manfred
2012-01-01
to a single long observation sequence, and in these situations existing automatic learning methods cannot be applied. In this paper, we adapt algorithms for learning variable order Markov chains from a single observation sequence of a target system, so that stationary system properties can be verified using......Establishing an accurate model for formal verification of an existing hardware or software system is often a manual process that is both time consuming and resource demanding. In order to ease the model construction phase, methods have recently been proposed for automatically learning accurate...... the learned model. Experiments demonstrate that system properties (formulated as stationary probabilities of LTL formulas) can be reliably identified using the learned model....
Direct Georeferencing of Stationary LiDAR
Directory of Open Access Journals (Sweden)
Ahmed Mohamed
2009-12-01
Full Text Available Unlike mobile survey systems, stationary survey systems are given very little direct georeferencing attention. Direct Georeferencing is currently being used in several mobile applications, especially in terrestrial and airborne LiDAR systems. Georeferencing of stationary terrestrial LiDAR scanning data, however, is currently performed indirectly through using control points in the scanning site. The indirect georeferencing procedure is often troublesome; the availability of control stations within the scanning range is not always possible. Also, field procedure can be laborious and involve extra equipment and target setups. In addition, the conventional method allows for possible human error due to target information bookkeeping. Additionally, the accuracy of this procedure varies according to the quality of the control used. By adding a dual GPS antenna apparatus to the scanner setup, thereby supplanting the use of multiple ground control points scattered throughout the scanning site, we mitigate not only the problems associated with indirect georeferencing but also induce a more efficient set up procedure while maintaining sufficient precision. In this paper, we describe a new method for determining the 3D absolute orientation of LiDAR point cloud using GPS measurements from two antennae firmly mounted on the optical head of a stationary LiDAR system. In this paper, the general case is derived where the orientation angles are not small; this case completes the theory of stationary LiDAR direct georeferencing. Simulation and real world field experimentation of the prototype implementation suggest a precision of about 0.05 degrees (~1 milli-radian for the three orientation angles.
Characterization of Stationary Distributions of Reflected Diffusions
2014-01-01
11 ∗Partially supported by NSF grants CMMI -1052750 (formerly 0928154), CMMI - 1114608 and ARO grant W911NF-12-1-0222 AMS...his PhD thesis [47]. However, the results of [47] do not apply to reflected diffusions in non-smooth domains in RJ . Kurtz and Stockbridge [29, 30...Duarte, M. (2012). Stationary distribution for spinning reflecting diffusions. PhD Thesis , University of Washington, 2012, WA. [16] Dupuis, P. and
Energy Technology Data Exchange (ETDEWEB)
Xolocostli M, J.V
2002-07-01
The main objective of this work is to solve the neutron transport equation in one and two dimensions (slab geometry and X Y geometry, respectively), with no time dependence, for BWR assemblies using nodal methods. In slab geometry, the nodal methods here used are the polynomial continuous (CMPk) and discontinuous (DMPk) families but only the Linear Continuous (also known as Diamond Difference), the Quadratic Continuous (QC), the Cubic Continuous (CC), the Step Discontinuous (also known as Backward Euler), the Linear Discontinuous (LD) and the Quadratic Discontinuous (QD) were considered. In all these schemes the unknown function, the angular neutron flux, is approximated as a sum of basis functions in terms of Legendre polynomials, associated to the values of the neutron flux in the edges (left, right, or both) and the Legendre moments in the cell, depending on the nodal scheme used. All these schemes were implemented in a computer program developed in previous thesis works and known with the name TNX. This program was modified for the purposes of this work. The program discreetizes the domain of concern in one dimension and determines numerically the angular neutron flux for each point of the discretization when the number of energy groups and regions are known starting from an initial approximation for the angular neutron flux being consistent with the boundary condition imposed for a given problem. Although only problems with two-energy groups were studied the computer program does not have limitations regarding the number of energy groups and the number of regions. The two problems analyzed with the program TNX have practically the same characteristics (fuel and water), with the difference that one of them has a control rod. In the part corresponding to two-dimensional problems, the implemented nodal methods were those designated as hybrids that consider not only the edge and cell Legendre moments, but also the values of the neutron flux in the corner points. In this geometry nodal, continuous and discontinuous schemes were used. For the continuos schemes, only the Bi Quadratic (BiQ) and the Bi Cubic (BiC) were considered. In the case of the discontinuous ones two nodal schemes were considered, namely the Discontinuous Bi Linear (DBiL) and Discontinuous Bi Quadratic (DBiQ). The nodal schemes applied use from 4 up to 16 interpolation parameters per cell. These schemes are-defined for a set D{sub c} of interpolation parameters and a polynomial space S{sub h} corresponding to each one of the nodal schemes considered. All these four nodal hybrid schemes were implemented in a computer program called TNHXY starting from the computer program TNXY developed in previous thesis works. Several subroutines wae added to calculate the average neutron flux for each cell and for each energy group, generating two versions, one for the continuous schemes and one for the discontinuous schemes. For this geometry, two benchmark problems of the ANL-7416 document were analyzed. They are 7x7 BWR fuel assemblies, one without control rod and the other one with control rod. The computer program was also applied to a MOX assembly proposed by the Nuclear Energy Agency and it is considered as a reference problem. The results obtained for the one-dimensional problems using TNX for the effective multiplication factor were compared with the ones obtained with the code ANISN/PC. TNX code shows a faster convergence within four significant figures for the case with no control rod and three significant figures for the case with control rod (using double precision). These results suggest TNX is a very useful tool for this kind of calculations. For X Y geometry, the results obtained with TNHXY were compared with those calculated with the code TWOTRAN. To get these results, several spatial (1x1, 2x2, 4x4 per cell) and angular meshes (S{sub 2}, S{sub 4}, S{sub 6}, and S{sub 8}) were used. The results for the problem with no control rod were practically the same as those obtained with TWOTRAN using the scheme DBiL that is the simplest one. The results for the other three schemes are practically the same, except for differences in the fourth or fifth significant figure. For the MOX assembly, the results obtained for k{sub eff} with TNHXY were compared with the values obtained with the codes HELIOS, MCNP4B/ENDF-VI and CPM-3. The results obtained with TNHXY are comparable with those reported with the other codes. Particularly, when k{sub eff} values obtained with TNHXY are compared with those obtained with MCNP-4B/ENDF-VI the error was less than 0.5%. Finally, the cross sections used in TNHXY were obtained with the code HELIOS. (Author)
Stationary stochastic processes theory and applications
Lindgren, Georg
2012-01-01
Some Probability and Process BackgroundSample space, sample function, and observablesRandom variables and stochastic processesStationary processes and fieldsGaussian processesFour historical landmarksSample Function PropertiesQuadratic mean propertiesSample function continuityDerivatives, tangents, and other characteristicsStochastic integrationAn ergodic resultExercisesSpectral RepresentationsComplex-valued stochastic processesBochner's theorem and the spectral distributionSpectral representation of a stationary processGaussian processesStationary counting processesExercisesLinear Filters - General PropertiesLinear time invariant filtersLinear filters and differential equationsWhite noise in linear systemsLong range dependence, non-integrable spectra, and unstable systemsThe ARMA-familyLinear Filters - Special TopicsThe Hilbert transform and the envelopeThe sampling theoremKarhunen-Loève expansionClassical Ergodic Theory and MixingThe basic ergodic theorem in L2Stationarity and transformationsThe ergodic th...
Quasi-stationary distributions for birth-death processes with killing
Directory of Open Access Journals (Sweden)
Pauline Coolen-Schrijner
2006-01-01
Full Text Available The Karlin-McGregor representation for the transition probabilities of a birth-death process with an absorbing bottom state involves a sequence of orthogonal polynomials and the corresponding measure. This representation can be generalized to a setting in which a transition to the absorbing state (killing is possible from any state rather than just one state. The purpose of this paper is to investigate to what extent properties of birth-death processes, in particular with regard to the existence of quasi-stationary distributions, remain valid in the generalized setting. It turns out that the elegant structure of the theory of quasi-stationarity for birth-death processes remains largely intact as long as killing is possible from only finitely many states. In particular, the existence of a quasi-stationary distribution is ensured in this case if absorption is certain and the state probabilities tend to zero exponentially fast.
DEFF Research Database (Denmark)
Bauer, R.; Danielsen, E.; Hemmingsen, L.
1997-01-01
geometry for cadmium in crystalline CPD derived from X-ray diffraction studies. A single broad distribution of NQIs is observed for CPD in sucrose solutions and 0.1 M NaCl at pH values below 6.5. This NQI (NQI-1') has parameters very close to those for the crystalline state. The enzyme metal site...... are consistent with an intact scissile peptide bond in the enzyme-substrate complex of Bz-Gly-L-Phe and Bz-Gly-Gly-L-Phe. A single nuclear quadrupole interaction (NQI) is observed for the crystalline state of the enzyme between pH 5.7 and pH 9.4. This NQI agrees with calculations based on the metal coordination...... forms of a hydrogen bond between the Glu-270 carboxyl group and the metal-bound water (Glu-270 COO-...(HOH)M reversible arrow Glu-270 COOH ...(OH-)M) being slow on the time scale of a PAC experiment, i.e., slower than 0.5 mu s. We finally suggest that NQI-1' observed at low pH reflects an enzyme species...
Steyn-Ross, M L; Steyn-Ross, D A; Sleigh, J W; Liley, D T
1999-12-01
We present a model for the dynamics of a cerebral cortex in which inputs to neuronal assemblies are treated as random Gaussian fluctuations about a mean value. We incorporate the effect of general anesthetic agents on the cortex as a modulation of the inhibitory neurotransmitter rate constant. Stochastic differential equations are derived for the state variable h(e), the average excitatory soma potential, coherent fluctuations of which are believed to be the source of scalp-measured electroencephalogram (EEG) signals. Using this stochastic approach we derive a stationary (long-time limit) fluctuation spectrum for h(e). The model predicts that there will be three distinct stationary (equilibrium) regimes for cortical activity. In region I ("coma"), corresponding to a strong inhibitory anesthetic effect, h(e) is single valued, large, and negative, so that neuronal firing rates are suppressed. In region II for a zero or small anesthetic effect, h(e) can take on three values, two of which are stable; we label the stable solutions as "active" (enhanced firing) and "quiescent" (suppressed firing). For region III, corresponding to negative anesthetic (i.e., analeptic) effect, h(e) again becomes single valued, but is now small and negative, resulting in strongly elevated firing rates ("seizure"). If we identify region II as associated with the conscious state of the cortex, then the model predicts that there will be a rapid transit between the active-conscious and comatose unconscious states at a critical value of anesthetic concentration, suggesting the existence of phase transitions in the cortex. The low-frequency spectral power in the h(e) signal should increase strongly during the initial stage of anesthesia induction, before collapsing to much lower values after the transition into comatose-unconsciousness. These qualitative predictions are consistent with clinical measurements by Bührer et al. [Anaesthesiology 77, 226 (1992)], MacIver et al. [ibid. 84, 1411 (1996
Berg, Christopher J; LaFountain, Amy M; Prum, Richard O; Frank, Harry A; Tauber, Michael J
2013-11-15
Rhodoxanthin is one of few retro-carotenoids in nature. These chromophores are defined by a pattern of single and double bond alternation that is reversed relative to most carotenoids. Rhodoxanthin is found in the plumage of several families of birds, including fruit doves (Ptilinopus, Columbidae) and the red cotingas (Phoenicircus, Cotingidae). The coloration associated with the rhodoxanthin-containing plumage of these fruit dove and cotinga species ranges from brilliant red to magenta or purple. In the present study, rhodoxanthin is characterized in situ by UV-Vis reflectance and resonance Raman spectroscopy to gain insights into the mechanisms of color-tuning. The spectra are compared with those of the isolated pigment in solution and in thin solid films. Key vibrational signatures are identified for three isomers of rhodoxanthin, primarily in the fingerprint region. Electronic structure (DFT) calculations are employed to describe the normal modes of vibration, and determine characteristic modes of retro-carotenoids. These results are discussed in the context of various mechanisms that change the electronic absorption, including structural distortion of the chromophore or enhanced delocalization of π-electrons in the ground-state. From the spectroscopic evidence, we suggest that the shift in absorption is likely a consequence of perturbations that primarily affect the excited state of the chromophore. Copyright © 2013 Elsevier Inc. All rights reserved.
Patzelt, Heiko; Simon, Bernd; terLaak, Antonius; Kessler, Brigitte; Kühne, Ronald; Schmieder, Peter; Oesterhelt, Dieter; Oschkinat, Hartmut
2002-01-01
The two forms of bacteriorhodopsin present in the dark-adapted state, containing either all-trans or 13-cis,15-syn retinal, were examined by using solution state NMR, and their structures were determined. Comparison of the all-trans and the 13-cis,15-syn forms shows a shift in position of about 0.25 Å within the pocket of the protein. Comparing this to the 13-cis,15-anti chromophore of the catalytic cycle M-intermediate structure, the 13-cis,15-syn form demonstrates a less pronounced up-tilt of the retinal C12—C14 region, while leaving W182 and T178 essentially unchanged. The N—H dipole of the Schiff base orients toward the extracellular side in both forms, however, it reorients toward the intracellular side in the 13-cis,15-anti configuration to form the catalytic M-intermediate. Thus, the change of the N—H dipole is considered primarily responsible for energy storage, conformation changes of the protein, and the deprotonation of the Schiff base. The structural similarity of the all-trans and 13-cis,15-syn forms is taken as strong evidence for the ion dipole dragging model by which proton (hydroxide ion) translocation follows the change of the dipole. PMID:12119389
Gaines, Colin S; York, Darrin M
2016-03-09
We present results from molecular dynamics simulations and free energy calculations of the twister ribozyme at different stages along the reaction path to gain insight into its mechanism. The results, together with recent biochemical experiments, provide support for a mechanism involving general-acid catalysis by a conserved adenine residue in the active site. Although adenine has been previously implicated as a general acid acting through the N1 position in other ribozymes such as the hairpin and VS ribozymes, in the twister ribozyme there may be a twist. Biochemical experiments suggest that general acid catalysis may occur through the N3 position, which has never before been implicated in this role; however, currently, there is a lack of a detailed structural model for the active state of the twister ribozyme in solution that is consistent with these and other experiments. Simulations in a crystalline environment reported here are consistent with X-ray crystallographic data, and suggest that crystal packing contacts trap the RNA in an inactive conformation with U-1 in an extruded state that is incompatible with an in-line attack to the scissile phosphate. Simulations in solution, on the other hand, reveal this region to be dynamic and able to adopt a conformation where U-1 is stacked with G33. In this state, the nucleophile is in line with the scissile phosphate, and the N1 position of G33 and N3 position of A1 are poised to act as a general base and acid, respectively, as supported by mutational experiments. Free energy calculations further predict the electrostatic environment causes a shift of the microscopic pKa at the N3 position of A1 toward neutrality by approximately 5 pKa units. These results offer a unified interpretation of a broad range of currently available experimental data that points to a novel mode of general acid catalysis through the N3 position of an adenine nucleobase, thus expanding the repertoire of known mechanistic strategies employed by
Shirai, Shingoro; Saito, Yoshihiro; Sakurai, Yasuhiro; Ueta, Ikuo; Jinno, Kiyokatsu
2010-01-01
Surface derivatization of Kevlar, poly(p-phenylene terephthalamide), fiber has been studied along with the evaluation of the surface characteristics of the chemically-modified fiber as the stationary phase in packed-capillary gas chromatography (GC). Several experimental parameters in the derivatization reaction have been optimized, and the retention behavior of the surface-derivatized fibrous stationary phase has been investigated using various standard solutes, such as alkanes, alcohols and alkylbenzenes. By introducing aminoethyl functional groups onto the surface of the fibrous material, a specific selectivity for polar solutes has been observed.
Plasma equilibria and stationary flows in axisymmetric systems. Pt. 3
Energy Technology Data Exchange (ETDEWEB)
Zelazny, R.; Stankiewicz, R.; Galkowski, A.; Potempski, S.; Pietak, R.
1990-08-01
The problem of the importance of poloidal flows for the behaviour of plasmas in axisymmetric systems has caused a lot of discussion and controversy during the last 15 years. There is no doubt that the mere existence of poloidal flow transforms the elliptic Grad-Shafranov-Schlueter equation into a system of mixed type partial differential equation and an algebraic multivalued Bernoulli equation. This fact leads to the appearance of Bernoulli branches in the solutions. Then, one can come across three branches of elliptic solutions as well as two branches of hyperbolic solutions with the possible appearance of phenomena connected with ``transsonic`` effects. Problems connected with such a mathematical situation have been extensively discussed in the report with the same title, dated May 1988, which we shall call later Part I of our studies on this subject. The present report, considered as Part III, is devoted to the presentation of results of efforts aimed at constructing programmes which allow us to solve the extended Grad-Shafranov-Schlueter equation (EGSS) (with stationary flows) in a more realistic situation relevant to the JET operating conditions. The main problem is to specify for a wider class of profiles the boundary conditions at the magnetic axis for a system of nonlinear ordinary differential equations ODE, resulting from EGSS equation after application of Fourier transformation techniques and of inverse method approach. The present report elaborates a much more general case and describes the computational framework enabling us to derive those boundary conditions. (author).
Communication: Newton homotopies for sampling stationary points of potential energy landscapes
Mehta, Dhagash; Chen, Tianran; Hauenstein, Jonathan D.; Wales, David J.
2014-09-01
One of the most challenging and frequently arising problems in many areas of science is to find solutions of a system of multivariate nonlinear equations. There are several numerical methods that can find many (or all if the system is small enough) solutions but they all exhibit characteristic problems. Moreover, traditional methods can break down if the system contains singular solutions. Here, we propose an efficient implementation of Newton homotopies, which can sample a large number of the stationary points of complicated many-body potentials. We demonstrate how the procedure works by applying it to the nearest-neighbor ϕ4 model and atomic clusters.
2011-01-01
16. detsembril Tartus toimunud Eesti-Läti koostöökonverentsist võtsid osa ka mõlema riigi peaministrid Andrus Ansip ja Valdis Dombrovskis. Kohal olid ka haridusministrid Jaak Aaviksoo ja Roberts Kilis
Facial Expression Recognition Using Stationary Wavelet Transform Features
Directory of Open Access Journals (Sweden)
Huma Qayyum
2017-01-01
Full Text Available Humans use facial expressions to convey personal feelings. Facial expressions need to be automatically recognized to design control and interactive applications. Feature extraction in an accurate manner is one of the key steps in automatic facial expression recognition system. Current frequency domain facial expression recognition systems have not fully utilized the facial elements and muscle movements for recognition. In this paper, stationary wavelet transform is used to extract features for facial expression recognition due to its good localization characteristics, in both spectral and spatial domains. More specifically a combination of horizontal and vertical subbands of stationary wavelet transform is used as these subbands contain muscle movement information for majority of the facial expressions. Feature dimensionality is further reduced by applying discrete cosine transform on these subbands. The selected features are then passed into feed forward neural network that is trained through back propagation algorithm. An average recognition rate of 98.83% and 96.61% is achieved for JAFFE and CK+ dataset, respectively. An accuracy of 94.28% is achieved for MS-Kinect dataset that is locally recorded. It has been observed that the proposed technique is very promising for facial expression recognition when compared to other state-of-the-art techniques.
Stationary common spatial patterns for brain-computer interfacing
Samek, Wojciech; Vidaurre, Carmen; Müller, Klaus-Robert; Kawanabe, Motoaki
2012-04-01
Classifying motion intentions in brain-computer interfacing (BCI) is a demanding task as the recorded EEG signal is not only noisy and has limited spatial resolution but it is also intrinsically non-stationary. The non-stationarities in the signal may come from many different sources, for instance, electrode artefacts, muscular activity or changes of task involvement, and often deteriorate classification performance. This is mainly because features extracted by standard methods like common spatial patterns (CSP) are not invariant to variations of the signal properties, thus should also change over time. Although many extensions of CSP were proposed to, for example, reduce the sensitivity to noise or incorporate information from other subjects, none of them tackles the non-stationarity problem directly. In this paper, we propose a method which regularizes CSP towards stationary subspaces (sCSP) and show that this increases classification accuracy, especially for subjects who are hardly able to control a BCI. We compare our method with the state-of-the-art approaches on different datasets, show competitive results and analyse the reasons for the improvement.
40 CFR 1039.20 - What requirements from this part apply to excluded stationary engines?
2010-07-01
... name and trademark of another company you choose to designate. (3) State the engine displacement (in... to excluded stationary engines? 1039.20 Section 1039.20 Protection of Environment ENVIRONMENTAL... COMPRESSION-IGNITION ENGINES Overview and Applicability § 1039.20 What requirements from this part apply to...
40 CFR 1048.20 - What requirements from this part apply to excluded stationary engines?
2010-07-01
... of another company you choose to designate. (3) State the engine displacement (in liters) and maximum... to excluded stationary engines? 1048.20 Section 1048.20 Protection of Environment ENVIRONMENTAL...-IGNITION ENGINES Overview and Applicability § 1048.20 What requirements from this part apply to excluded...
Effect of focusing flow on stationary spot machining properties in elastic emission machining.
Takei, Yoshinori; Mimura, Hidekazu
2013-05-16
Ultraprecise optical elements are applied in advanced optical apparatus. Elastic emission machining (EEM) is one of the ultraprecision machining methods used to fabricate shapes with 0.1-nm accuracy. In this study, we proposed and experimentally tested the control of the shape of a stationary spot profile by introducing a focusing-flow state between the nozzle outlet and the workpiece surface in EEM. The simulation results indicate that the focusing-flow nozzle sharpens the distribution of the velocity on the workpiece surface. The results of machining experiments verified those of the simulation. The obtained stationary spot conditions will be useful for surface processing with a high spatial resolution.
Optimal estimation of free energies and stationary densities from multiple biased simulations
Wu, Hao
2013-01-01
When studying high-dimensional dynamical systems such as macromolecules, quantum systems and polymers, a prime concern is the identification of the most probable states and their stationary probabilities or free energies. Often, these systems have metastable regions or phases, prohibiting to estimate the stationary probabilities by direct simulation. Efficient sampling methods such as umbrella sampling, metadynamics and conformational flooding have developed that perform a number of simulations where the system's potential is biased such as to accelerate the rare barrier crossing events. A joint free energy profile or stationary density can then be obtained from these biased simulations with weighted histogram analysis method (WHAM). This approach (a) requires a few essential order parameters to be defined in which the histogram is set up, and (b) assumes that each simulation is in global equilibrium. Both assumptions make the investigation of high-dimensional systems with previously unknown energy landscape ...
Zhao, Yu; Yuan, Sanling; Zhang, Tonghua
2016-08-01
The effect of toxin-producing phytoplankton and environmental stochasticity are interesting problems in marine plankton ecology. In this paper, we develop and analyze a stochastic phytoplankton allelopathy model, which takes both white and colored noises into account. We first prove the existence of the global positive solution of the model. And then by using the stochastic Lyapunov functions, we investigate the positive recurrence and ergodic property of the model, which implies the existence of a stationary distribution of the solution. Moreover, we obtain the mean and variance of the stationary distribution. Our results show that both the two kinds of environmental noises and toxic substances have great impacts on the evolution of the phytoplankton populations. Finally, numerical simulations are carried out to illustrate our theoretical results.
Baud, A; Aymé, L; Gonnet, F; Salard, I; Gohon, Y; Jolivet, P; Brodolin, K; Da Silva, P; Giuliani, A; Sclavi, B; Chardot, T; Mercère, P; Roblin, P; Daniel, R
2017-05-01
Synchrotron X-ray footprinting complements the techniques commonly used to define the structure of molecules such as crystallography, small-angle X-ray scattering and nuclear magnetic resonance. It is remarkably useful in probing the structure and interactions of proteins with lipids, nucleic acids or with other proteins in solution, often better reflecting the in vivo state dynamics. To date, most X-ray footprinting studies have been carried out at the National Synchrotron Light Source, USA, and at the European Synchrotron Radiation Facility in Grenoble, France. This work presents X-ray footprinting of biomolecules performed for the first time at the X-ray Metrology beamline at the SOLEIL synchrotron radiation source. The installation at this beamline of a stopped-flow apparatus for sample delivery, an irradiation capillary and an automatic sample collector enabled the X-ray footprinting study of the structure of the soluble protein factor H (FH) from the human complement system as well as of the lipid-associated hydrophobic protein S3 oleosin from plant seed. Mass spectrometry analysis showed that the structural integrity of both proteins was not affected by the short exposition to the oxygen radicals produced during the irradiation. Irradiated molecules were subsequently analysed using high-resolution mass spectrometry to identify and locate oxidized amino acids. Moreover, the analyses of FH in its free state and in complex with complement C3b protein have allowed us to create a map of reactive solvent-exposed residues on the surface of FH and to observe the changes in oxidation of FH residues upon C3b binding. Studies of the solvent accessibility of the S3 oleosin show that X-ray footprinting offers also a unique approach to studying the structure of proteins embedded within membranes or lipid bodies. All the biomolecular applications reported herein demonstrate that the Metrology beamline at SOLEIL can be successfully used for synchrotron X-ray footprinting of
Energy Technology Data Exchange (ETDEWEB)
Sumner, S.C.J.
1986-01-01
Solid state and solution /sup 13/C NMR have been used to study the conformations of the racemic mixtures and single enantiomers of methadone hydrochloride, alpha and beta methadol hydrochloride, and alpha and beta acetylmethadol hydrochloride. The NMR spectra acquired for the compounds as solids, and in polar and nonpolar solvents are compared, in order to determine the conformation of the molecules in solution. To determine the reliability of assigning solution conformations by comparing solution and solid state chemical shift data, three bond coupling constants measured in solution are compared with those calculated from X-ray data. The conformations of the racemic mixture and plus enantiomer of methadone hydrochloride have been shown to be very similar in the solid state, where minor differences in conformation can be seen by comparing NMR spectra obtained for the solids. Also shown is that the molecules of methadone hydrochloride have conformations in polar and in nonpolar solvents which are very similar to the conformation of the molecules in the solid state.
Thermoelectric Generator for a Stationary Diesel Plant
Anatychuk, L. I.; Rozver, Yu. Yu.; Velichuk, D. D.
2011-05-01
This paper describes the development and testing of a thermoelectric generator (TEG) using the exhaust heat of a 50-kW stationary diesel power plant. The generator consists of six units that represent primary generators for each diesel engine cylinder. Each primary generator comprises five sections with gas heat exchangers, thermoelectric modules, and liquid heat exchangers. The sections were optimized for the exhaust gas operating temperatures. The generator electric power was 2.1 kW at rated power of 2.2 kW, corresponding to 4.4% of the diesel plant electric power.
Stationary stochastic processes for scientists and engineers
Lindgren, Georg; Sandsten, Maria
2013-01-01
""This book is designed for a first course in stationary stochastic processes in science and engineering and does a very good job in introducing many concepts and ideas to students in these fields. … the book has probably been tested in the classroom many times, which also manifests itself in its virtual lack of typos. … Another great feature of the book is that it contains a wealth of worked example from many different fields. These help clarify concepts and theorems and I believe students will appreciate them-I certainly did. … The book is well suited for a one-semester course as it contains
Calladine, James A; Horvath, Raphael; Davies, Andrew J; Wriglesworth, Alisdair; Sun, Xue-Zhong; George, Michael W
2015-05-01
The photochemistry and photophysics of metal carbonyl compounds (W(CO)6, Cp*Rh(CO)2 (Cp* = η(5)-C5Me5), and fac-[Re(CO)3(4,4'-bpy)2Br] [bpy = bipyridine]) have been examined on the nanosecond timescale using a time-resolved infrared spectrometer with an external cavity quantum cascade laser (QCL) as the infrared source. We show the photochemistry of W(CO)6 in alkane solution is easily monitored, and very sensitive measurements are possible with this approach, meaning it can monitor small transients with absorbance changes less than 10(-6) ΔOD. The C-H activation of Cp*Rh(CO)(C6H12) to form Cp*Rh(CO)(C6H11)H occurs within the first few tens of nanoseconds following photolysis, and we demonstrate that kinetics obtained following deconvolution are in excellent agreement with those measured using an ultrafast laser-based spectrometer. We also show that the high flux and tunability of QCLs makes them suited for solid-state and time-resolved measurements.
Image registration using stationary velocity fields parameterized by norm-minimizing Wendland kernel
DEFF Research Database (Denmark)
Pai, Akshay Sadananda Uppinakudru; Sommer, Stefan Horst; Sørensen, Lauge
Interpolating kernels are crucial to solving a stationary velocity field (SVF) based image registration problem. This is because, velocity fields need to be computed in non-integer locations during integration. The regularity in the solution to the SVF registration problem is controlled by the re...... that Wendland SVF based measures separate (Alzheimer's disease v/s normal controls) better than both B-Spline SVFs (pamygdala) and B-Spline freeform deformation (pamygdala and cortical gray matter)....
Minezawa, Noriyuki
2013-06-28
Constructing free energy surfaces for electronically excited states is a first step toward the understanding of photochemical processes in solution. For that purpose, the analytic free energy gradient is derived and implemented for the linear-response time-dependent density functional theory combined with the reference interaction site model self-consistent field method. The proposed method is applied to study (1) the fluorescence spectra of aqueous acetone and (2) the excited-state intramolecular proton transfer reaction of ortho-hydroxybenzaldehyde in an acetonitrile solution.
Shin, Yechul; Kang, Sarah M.; Watanabe, Masahiro
2017-12-01
Previous studies suggest large uncertainties in the stationary wave response under global warming. Here, we investigate how the Arctic climate responds to changes in the latitudinal position of stationary waves, and to high-latitudes surface warming that mimics the effect of Arctic sea ice loss under global warming. To generate stationary waves in an atmospheric model coupled to slab ocean, a series of experiments is performed where the thermal forcing with a zonal wavenumber-2 (with zero zonal-mean) is prescribed at the surface at different latitude bands in the Northern Hemisphere. When the stationary waves are generated in the subtropics, the cooling response dominates over the warming response in the lower troposphere due to cloud radiative effects. Then, the low-level baroclinicity is reduced in the subtropics, which gives rise to a poleward shift of the eddy driven jet, thereby inducing substantial cooling in the northern high latitudes. As the stationary waves are progressively generated at higher latitudes, the zonal-mean climate state gradually becomes more similar to the integration with no stationary waves. These differences in the mean climate affect the Arctic climate response to high-latitudes surface warming. Additional surface heating over the Arctic is imposed to the reference climates in which the stationary waves are located at different latitude bands. When the stationary waves are positioned at lower latitudes, the eddy driven jet is located at higher latitude, closer to the prescribed Arctic heating. As baroclinicity is more effectively perturbed, the jet shifts more equatorward that accompanies a larger reduction in the poleward eddy transport of heat and momentum. A stronger eddy-induced descending motion creates greater warming over the Arctic. Our study calls for a more accurate simulation of the present-day stationary wave pattern to enhance the predictability of the Arctic warming response in a changing climate.
Enhancement of Non-Stationary Speech using Harmonic Chirp Filters
DEFF Research Database (Denmark)
Nørholm, Sidsel Marie; Jensen, Jesper Rindom; Christensen, Mads Græsbøll
2015-01-01
the non-stationarity nature of voiced speech into account via linear constraints. This is facilitated by imposing a harmonic chirp model on the speech signal. As an implicit part of the filter design, the noise statistics are also estimated based on the observed signal and parameters of the harmonic chirp......In this paper, the issue of single channel speech enhancement of non-stationary voiced speech is addressed. The non-stationarity of speech is well known, but state of the art speech enhancement methods assume stationarity within frames of 20–30 ms. We derive optimal distortionless filters that take...... model. Simulations on real speech show that the chirp based filters perform better than their harmonic counterparts. Further, it is seen that the gain of using the chirp model increases when the estimated chirp parameter is big corresponding to periods in the signal where the instantaneous fundamental...
Renormalized stress-energy tensor for stationary black holes
Levi, Adam
2016-01-01
We continue the presentation of the pragmatic mode-sum regularization (PMR) method for computing the renormalized stress-energy tensor (RSET). We show in detail how to employ the $t$-splitting variant of the method, which was first presented for $\\left\\langle\\phi^{2}\\right\\rangle_{ren}$, to compute the RSET in a stationary, asymptotically-flat background. This variant of the PMR method was recently used to compute the RSET for an evaporating spinning black hole. As an example for regularization, we demonstrate here the computation of the RSET for a minimally-coupled, massless scalar field on Schwarzschild background in all three vacuum states. We discuss future work and possible improvements of the regularization schemes in the PMR method.
Stationary configurations of the Standard Model Higgs potential
DEFF Research Database (Denmark)
Iacobellis, Giuseppe; Masina, Isabella
2016-01-01
We study the gauge-independent observables associated with two interesting stationary configurations of the Standard Model Higgs potential (extrapolated to high energy according to the present state of the art, namely the next-to-next-to-leading order): i) the value of the top mass ensuring...... the stability of the SM electroweak minimum and ii) the value of the Higgs potential at a rising inflection point. We examine in detail and reappraise the experimental and theoretical uncertainties which plague their determination, finding that i) the stability of the SM is compatible with the present data...... at the 1.5σ level and ii) despite the large theoretical error plaguing the value of the Higgs potential at a rising inflection point, the application of such a configuration to models of primordial inflation displays a 3σ tension with the recent bounds on the tensor-to-scalar ratio of cosmological...
Directory of Open Access Journals (Sweden)
Alexander N. Kvitko
2017-01-01
Full Text Available An algorithm for constructing a control function that transfers a wide class of stationary nonlinear systems of ordinary differential equations from an initial state to a final state under certain control restrictions is proposed. The algorithm is designed to be convenient for numerical implementation. A constructive criterion of the desired transfer possibility is presented. The problem of an interorbital flight is considered as a test example and it is simulated numerically with the presented method.
Kurasov, V.
1998-01-01
The contradiction between the stationary aproach to the density profile and the avalanche character of the metastable phase consumption is investigated. The exact solution for the metastable phase profile is obtained. The reconsidered value for the special parameter responsible for the hierarchy in the structure of the density profile around the droplet is presented.
Goedbloed, J. P.
2009-01-01
In a preceding paper [J. P. Goedbloed, Phys. Plasmas 16, 122110 (2009)] a new method was developed to compute the magnetohydrodynamic spectrum of waves and instabilities of stationary plasma flows by means of the construction of the solution paths, P-s and P-u, of stable waves and instabilities in
Energy Technology Data Exchange (ETDEWEB)
Gritti, Fabrice [University of Tennessee, Knoxville (UTK); Guiochon, Georges A [ORNL; Mayfield, Kirsty [University of Western Sydney, Australia; Dennis, Gary [University of Western Sydney, Australia; Shalliker, R. Andrew [University of Western Sydney, Australia
2010-01-01
The frontal analysis method was used to measure the adsorption isotherms of phenol, 4-chlorophenol, p-cresol, 4-methoxyphenol and caffeine on a series of columns packed with home-made alkyl-phenyl bonded silica particles. These ligands consist of a phenyl ring tethered to the silica support via a carbon chain of length ranging from 0 to 4 atoms. The adsorption isotherm models that fit best to the data account for solute-solute interactions that are likely caused by p-p interactions occurring between aromatic compounds and the phenyl group of the ligand. These interactions are the dominant factor responsible for the separation of low molecular weight aromatic compounds on these phenyl-type stationary phases. The saturation capacities depend on whether the spacer of the ligands have an even or an odd number of carbon atoms, with the even alkyl chain lengths having a greater saturation capacity than the odd alkyl chain lengths. The trends in the adsorption equilibrium constant are also significantly different for the even and the odd chain length ligands.
Banerjee, Ayan; Jotania, Kanti; Sharma, Ranjan; Rahaman, Mosiur
2014-01-01
Gravitational analyzes in lower dimensions has become a field of active research interest ever since Banados, Teitelboim and Zanelli (BTZ) (Phys. Rev. Lett. 69, 1849, 1992) proved the existence of a black hole solution in (2 + 1) dimensions. The BTZ metric has inspired many investigators to develop and analyze circularly symmetric stellar models which can be matched to the exterior BTZ metric. We have obtained two new classes of solutions for a (2 + 1)-dimensional anisotropic star in anti-de Sitter background space-time which have been obtained by assuming that the equation of state (EOS) describing the material composition of the star could either be linear or non-linear in nature. By matching the interior solution to the BTZ exterior metric with zero spin, we have demonstrated that the solutions provided here are regular and well-behaved at the stellar interior.
Banerjee, Ayan; Rahaman, Farook; Jotania, Kanti; Sharma, Ranjan; Rahaman, Mosiur
2015-02-01
Gravitational analyzes in lower dimensions has become a field of active research interest ever since Bañados, Teitelboim and Zanelli (BTZ) (Phys. Rev. Lett. 69:1849, 1992) proved the existence of a black hole solution in (2+1) dimensions. The BTZ metric has inspired many investigators to develop and analyze circularly symmetric stellar models which can be matched to the exterior BTZ metric. We have obtained two new classes of solutions for a (2+1)-dimensional anisotropic star in anti-de Sitter background space-time which have been obtained by assuming that the equation of state (EOS) describing the material composition of the star could either be linear or non-linear in nature. By matching the interior solution to the BTZ exterior metric with zero spin, we have demonstrated that the solutions provided here are regular and well-behaved at the stellar interior.
Daniel J. Yelle; John Ralph; Charles R. Frihart
2011-01-01
Solution-state NMR provides a powerful tool to observe the presence or absence of covalent bonds between wood and adhesives. Finely ground wood can be dissolved in an NMR compatible solvent system containing dimethylsulfoxide-d6 and N-methylimidazole-d6, in which the wood polymers remain largely intact. High-resolution...
Daniel J. Yelle; John Ralph; Charles R. Frihart
2011-01-01
To better understand adhesive interactions with wood, reactions between model compounds of wood and a model compound of polymeric methylene diphenyl diisocyanate (pMDI) were characterized by solution-state NMR spectroscopy. For comparison, finely ground loblolly pine sapwood, milled-wood lignin and holocellulose from the same wood were isolated and derivatized with...
Stationary-state mutagenesis in Escherichia coli: a model
Indian Academy of Sciences (India)
Ph.D. thesis, University of Mumbai,. Mumbai, India. Massey R. C., Rainey P. B., Sheehan B. J., Keane O. M. and. Dorman C. J. 1999 Environmentally constrained mutation and adaptive evolution in Salmonella. Curr. Biol. 9, 1477--1480. Modrich P. 1991 Mechanisms and biological effects of mismatch repair. Annu. Rev.
Tropical influence on boreal summer mid-latitude stationary waves
Energy Technology Data Exchange (ETDEWEB)
Douville, Herve [Meteo-France/CNRM-GAME, Toulouse (France); CNRM/GMGEC/VDR, Toulouse (France); Bielli, S.; Deque, M.; Tyteca, S.; Voldoire, A. [Meteo-France/CNRM-GAME, Toulouse (France); Cassou, C. [CNRS-Cerfacs, Toulouse (France); Hall, N.M.J. [CNES/LEGOS, Toulouse (France)
2011-11-15
While organized tropical convection is a well-known source of extratropical planetary waves, state-of-the-art climate models still show serious deficiencies in simulating accurately the atmospheric response to tropical sea surface temperature (SST) anomalies and the associated teleconnections. In the present study, the remote influence of the tropical atmospheric circulation is evaluated in ensembles of global boreal summer simulations in which the Arpege-Climat atmospheric General Circulation Model (GCM) is nudged towards 6-h reanalyses. The nudging is applied either in the whole tropical band or in a regional summer monsoon domain. Sensitivity tests to the experimental design are first conducted using prescribed climatological SST. They show that the tropical relaxation does not improve the zonal mean extratropical climatology but does lead to a significantly improved representation of the mid-latitude stationary waves in both hemispheres. Low-pass filtering of the relaxation fields has no major effect on the model response, suggesting that high-frequency tropical variability is not responsible for extratropical biases. Dividing the nudging strength by a factor 10 only decreases the magnitude of the response. Model errors in each monsoon domain contribute to deficiencies in the model's mid-latitude climatology, although an exaggerated large-scale subsidence in the central equatorial Pacific appears as the main source of errors for the representation of stationary waves in the Arpege-Climat model. Case studies are then conducted using either climatological or observed SST. The focus is first on summer 2003 characterized by a strong and persistent anticyclonic anomaly over western Europe. This pattern is more realistic in nudging experiments than in simulations only driven by observed SST, especially when the nudging domain is centred over Central America. Other case studies also show a significant tropical forcing of the summer mid-latitude stationary waves
Energy Technology Data Exchange (ETDEWEB)
None
2015-05-01
In many two-story homes, there are attic spaces above the first-floor of the home that border portions of the second-story conditioned space. These spaces have breaches of the air and thermal boundaries, creating a phenomenon known as wind washing. This can cause attic air above the first-floor space to be driven into the cavity between the first and second floors by wind, thermal buoyancy forces, or mechanical driving forces as well as circulation of hot attic air against the wallboard because of gaps between insulation batts installed on knee walls and the gypsum wallboard. In this project, the U.S. Department of Energy team Building America Partnership for Improved Residential Construction (BA-PIRC) investigated wind washing in 56 homes. The goals were to identify the failure mechanisms that lead to wind washing, characterize the pathways for air and heat to enter the house, and evaluate the seasonal energy savings and peak demand reduction that can result from repairing these wind washing problems. Based on this research, the team developed recommendations for cost-effective retrofit solutions and information that can help avoid these problems in new construction.
Ji, Shunli; Zhang, Feifang; Wu, Shengjie; Yang, Bingcheng; Liang, Xinmiao
2014-11-07
A facile method to prepare a polar stationary phase for hydrophilic interaction chromatography (HILIC) was proposed by coating polyvinyl alcohol onto silica particles (PVA-Sil). A water or organic solvent-insoluble permanent PVA coating on the silica particle surface can be formed simply by dipping silica particles into a hot PVA solution and then settled from this solution, leaving a thin layer of PVA coating and frozen in a freezer. The PVA-Sil shields the silica core from solution erosion to some degree and the pH tolerance range was extended to 9.5 from 8.0 for bare silica. PVA-Sil demonstrated a good hydrophilic property for several kinds of polar compounds and ∼57000 m(-1) of plate count was achieved. This method can also be extended as a universal method to prepare various stationary phases with exchangeable functionalities by doping the desired ingredient in a PVA solution.
Flood frequency analysis of historical flood data under stationary and non-stationary modelling
Machado, M. J.; Botero, B. A.; López, J.; Francés, F.; Díez-Herrero, A.; Benito, G.
2015-06-01
Historical records are an important source of information on extreme and rare floods and fundamental to establish a reliable flood return frequency. The use of long historical records for flood frequency analysis brings in the question of flood stationarity, since climatic and land-use conditions can affect the relevance of past flooding as a predictor of future flooding. In this paper, a detailed 400 yr flood record from the Tagus River in Aranjuez (central Spain) was analysed under stationary and non-stationary flood frequency approaches, to assess their contribution within hazard studies. Historical flood records in Aranjuez were obtained from documents (Proceedings of the City Council, diaries, chronicles, memoirs, etc.), epigraphic marks, and indirect historical sources and reports. The water levels associated with different floods (derived from descriptions or epigraphic marks) were computed into discharge values using a one-dimensional hydraulic model. Secular variations in flood magnitude and frequency, found to respond to climate and environmental drivers, showed a good correlation between high values of historical flood discharges and a negative mode of the North Atlantic Oscillation (NAO) index. Over the systematic gauge record (1913-2008), an abrupt change on flood magnitude was produced in 1957 due to constructions of three major reservoirs in the Tagus headwaters (Bolarque, Entrepeñas and Buendia) controlling 80% of the watershed surface draining to Aranjuez. Two different models were used for the flood frequency analysis: (a) a stationary model estimating statistical distributions incorporating imprecise and categorical data based on maximum likelihood estimators, and (b) a time-varying model based on "generalized additive models for location, scale and shape" (GAMLSS) modelling, which incorporates external covariates related to climate variability (NAO index) and catchment hydrology factors (in this paper a reservoir index; RI). Flood frequency
Danish emission inventories for stationary combustion plants
DEFF Research Database (Denmark)
Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt
Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2007 was 10...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....
Danish emission inventories for stationary combustion plants
DEFF Research Database (Denmark)
Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt
Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, dioxins, HCB and PAH. The CO2 emission in 2008...... incineration plants. The combustion of wood in residential plants has increased considerably in recent years resulting in increased emission of PAH, particulate matter and CO. The emission of NMVOC has increased since 1990 as a result of both the increased combustion of wood in residential plants...... and the increased emission from lean-burn gas engines. The dioxin emission decreased since 1990 due to flue gas cleaning on waste incineration plants. However in recent years the emission has increased as a result of the increased combustion of wood in residential plants....
Danish emission inventories for stationary combustion plants
DEFF Research Database (Denmark)
Nielsen, Malene; Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt
Emission inventories for stationary combustion plants are presented and the methodologies and assumptions used for the inventories are described. The pollutants considered are SO2, NOx, NMVOC, CH4, CO, CO2, N2O, NH3, particulate matter, heavy metals, PCDD/F, HCB and PAH. The CO2 emission in 2011...... of decreased emissions from large power plants and waste incineration plants. The combustion of wood in residential plants has increased considerably until 2007 resulting in increased emission of PAH and particulate matter. The emission of NMVOC has increased since 1990 as a result of both the increased...... combustion of wood in residential plants and the increased emission from lean-burn gas engines. The PCDD/F emission decreased since 1990 due to flue gas cleaning on waste incineration plants....
Extremes of Order Statistics of Stationary Processes
Debicki, Krzysztof; Hashorva, Enkelejd; Ji, Lanpeng; Ling, Chengxiu
2014-01-01
Let $\\{X_i(t),t\\ge0\\}, 1\\le i\\le n$ be independent copies of a stationary process $\\{X(t), t\\ge0\\}$. For given positive constants $u,T$, define the set of $r$th conjunctions $ C_{r,T,u}:= \\{t\\in [0,T]: X_{r:n}(t) > u\\}$ with $X_{r:n}(t)$ the $r$th largest order statistics of $X_1(t), \\ldots , X_n(t), t\\ge 0$. In numerous applications such as brain mapping and digital communication systems, of interest is the approximation of the probability that the set of conjunctions $C_{r,T,u}$ is not empt...
Stationary phases for superheated water chromatography
Saha, S
2002-01-01
This project focused on the comparison of conventional liquid chromatography and superheated water chromatography. It examined the differences in efficiency and retention of a range of different stationary phases. Alkyl aryl ketones and eight aromatic compounds were separated on PBD-zirconia, Xterra RP 18, Luna C sub 1 sub 8 (2) and Oasis HLB columns using conventional LC and superheated water chromatography system. The retention indices were determined in the different eluents. On changing the organic component of the eluent from methanol to acetonitrile to superheated water considerable improvements were found in the peak shapes and column efficiencies on the PBD-zirconia and Oasis HLB columns. PS-DVB, PBD-zirconia and Xterra RP 18 columns have been used in efficiency studies. It was found that simply elevating the column temperature did not increase the efficiency of a separation in superheated water chromatography. The efficiency depended on flow rate, injection volume and also mobile phase preheating sys...
Effective Complexity of Stationary Process Realizations
Directory of Open Access Journals (Sweden)
Arleta Szkoła
2011-06-01
Full Text Available The concept of effective complexity of an object as the minimal description length of its regularities has been initiated by Gell-Mann and Lloyd. The regularities are modeled by means of ensembles, which is the probability distributions on finite binary strings. In our previous paper [1] we propose a definition of effective complexity in precise terms of algorithmic information theory. Here we investigate the effective complexity of binary strings generated by stationary, in general not computable, processes. We show that under not too strong conditions long typical process realizations are effectively simple. Our results become most transparent in the context of coarse effective complexity which is a modification of the original notion of effective complexity that needs less parameters in its definition. A similar modification of the related concept of sophistication has been suggested by Antunes and Fortnow.
Stationary turbine component with laminated skin
James, Allister W [Orlando, FL
2012-08-14
A stationary turbine engine component, such as a turbine vane, includes a internal spar and an external skin. The internal spar is made of a plurality of spar laminates, and the external skin is made of a plurality of skin laminates. The plurality of skin laminates interlockingly engage the plurality of spar laminates such that the external skin is located and held in place. This arrangement allows alternative high temperature materials to be used on turbine engine components in areas where their properties are needed without having to make the entire component out of such material. Thus, the manufacturing difficulties associated with making an entire component of such a material and the attendant high costs are avoided. The skin laminates can be made of advanced generation single crystal superalloys, intermetallics and refractory alloys.
Bound and periodic solutions of the Riccati equation in Banach space
Directory of Open Access Journals (Sweden)
A. Ya. Dorogovtsev
1995-01-01
Full Text Available An abstract, nonlinear, differential equation in Banach space is considered. Conditions are presented for the existence of bounded solutions of this equation with a bounded right side, and also for the existence of stationary (periodic solutions of this equation with a stationary (periodic process in the right side.
Energy Technology Data Exchange (ETDEWEB)
Winckler, N., E-mail: n.winckler@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Rybalchenko, A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Shevelko, V.P. [P.N. Lebedev Physical Institute, 119991 Moscow (Russian Federation); Al-Turany, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); CERN, European Organization for Nuclear Research, 1211 Geneve 23 (Switzerland); Kollegger, T. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institute Jena, D-07743 Jena (Germany); Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität, D-07743 Jena (Germany)
2017-02-01
A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.
Biborski, Andrzej; Kądzielawa, Andrzej P.; Spałek, Józef
2015-12-01
An efficient computational scheme devised for investigations of ground state properties of the electronically correlated systems is presented. As an example, (H2)n chain is considered with the long-range electron-electron interactions taken into account. The implemented procedure covers: (i) single-particle Wannier wave-function basis construction in the correlated state, (ii) microscopic parameters calculation, and (iii) ground state energy optimization. The optimization loop is based on highly effective process-pool solution - specific root-workers approach. The hierarchical, two-level parallelism was applied: both shared (by use of Open Multi-Processing) and distributed (by use of Message Passing Interface) memory models were utilized. We discuss in detail the feature that such approach results in a substantial increase of the calculation speed reaching factor of 300 for the fully parallelized solution. The scheme elaborated in detail reflects the situation in which the most demanding task is the single-particle basis optimization.
Winckler, N; Shevelko, V P; Al-Turany, M; Kollegger, T; Stöhlker, Th
2017-01-01
A detailed description of a recently developed BREIT computer code (Balance Rate Equations of Ion Transportation) for calculating charge-state fractions of ion beams passing through matter is presented. The code is based on the analytical solutions of the differential balance equations for the charge-state fractions as a function of the target thickness and can be used for calculating the ion evolutions in gaseous, solid and plasma targets. The BREIT code is available on-line and requires the charge-changing cross sections and initial conditions in the input file. The eigenvalue decomposition method, applied to obtain the analytical solutions of the rate equations, is described in the paper. Calculations of non-equilibrium and equilibrium charge-state fractions, performed by the BREIT code, are compared with experimental data and results of other codes for ion beams in gaseous and solid targets. Ability and limitations of the BREIT code are discussed in detail.
Directory of Open Access Journals (Sweden)
Shlyakhin Dmitry
2017-01-01
Full Text Available This paper considers axially symmetric goal of thermos–elasticity for a fixed rigid circular multi-layer isotropic plate with non–stationary heat flows on its front faces. The mathematical model is presented in the form of a not self–adjoint system that includes differential motion equations and a linear equation of the thermal-elastic state in a three-dimensional model. A new closed solution in an unconnected setting is built by the method of finite integral transformation. At the same time, a standardization procedure is conducted at each stage of the solution, which allows to implement an appropriate conversion algorithm. The calculated ratios provide an opportunity to perform a qualitative and quantitative analysis of the associated temperature and mechanical fields and also to examine stress–strain behaviour of the multi–layer systems both under the local thermal shock, which is observed, for example, in the interaction with the laser beam and in the case of uneven unsteady surface heating, which is frequent during the operation of protective construction structures.
Remarks on the Double-Kerr Solution : Astrophysics and Relativity
C., HOENSELAERS; Max-Planck-Institut fur Physik und Astrophysik Institut fur Astrophysik
1984-01-01
We argue that two non-extreme black holes with positive Komar masses cannot be in stationary equilibrium. Furthermore we prove that a solution given recently by Tomimatsu contains at least one naked singularity off the axis.
Krakowiak, Joanna; Lundberg, Daniel; Persson, Ingmar
2012-09-17
The coordination chemistry of hydrated and solvated vanadium(III), oxovanadium(IV), and dioxovanadium(V) ions in the oxygen-donor solvents water, dimethyl sulfoxide (DMSO), and N,N'-dimethylpropyleneurea (DMPU) has been studied in solution by extended X-ray absorption fine structure (EXAFS) and large-angle X-ray scattering (LAXS) and in the solid state by single-crystal X-ray diffraction and EXAFS. The hydrated vanadium(III) ion has a regular octahedral configuration with a mean V-O bond distance of 1.99 Å. In the hydrated and DMSO-solvated oxovanadium(IV) ions, vanadium binds strongly to an oxo group at ca. 1.6 Å. The solvent molecule trans to the oxo group is very weakly bound, at ca. 2.2 Å, while the remaining four solvent molecules, with a mean V-O bond distance of 2.0 Å, form a plane slightly below the vanadium atom; the mean O═V-O(perp) bond angle is ca. 98°. In the DMPU-solvated oxovanadium(IV) ion, the space-demanding properties of the DMPU molecule leave no solvent molecule in the trans position to the oxo group, which reduces the coordination number to 5. The O═V-O bond angle is consequently much larger, 107°, and the mean V═O and V-O bond distances decrease to 1.58 and 1.97 Å, respectively. The hydrated and DMSO-solvated dioxovanadium(V) ions display a very distorted octahedral configuration with the oxo groups in the cis position with a mean V═O bond distance of 1.6 Å and a O═V═O bond angle of ca. 105°. The solvent molecules trans to the oxo groups are weakly bound, at ca. 2.2 Å, while the remaining two have bond distances of 2.02 Å. The experimental studies of the coordination chemistry of hydrated and solvated vanadium(III,IV,V) ions are complemented by summarizing previously reported crystal structures to yield a comprehensive description of the coordination chemistry of vanadium with oxygen-donor ligands.
Lee, Chul Won; Chakravorty, Dhruva K; Chang, Feng-Ming James; Reyes-Caballero, Hermes; Ye, Yuzhen; Merz, Kenneth M; Giedroc, David P
2012-03-27
Mycobacterium tuberculosis is an obligate human respiratory pathogen that encodes approximately 10 arsenic repressor (ArsR) family regulatory proteins that allow the organism to respond to a wide range of changes in its immediate microenvironment. How individual ArsR repressors have evolved to respond to selective stimuli is of intrinsic interest. The Ni(II)/Co(II)-specific repressor NmtR and related actinomycete nickel sensors harbor a conserved N-terminal α-NH(2)-Gly2-His3-Gly4 sequence. Here, we present the solution structure of homodimeric apo-NmtR and show that the core of the molecule adopts a typical winged-helix ArsR repressor (α1-α2-α3-αR-β1-β2-α5) "open conformation" that is similar to that of the related zinc sensor Staphylococcus aureus CzrA, but harboring long, flexible N-terminal (residues 2-16) and C-terminal (residues 109-120) extensions. Binding of Ni(II) to the regulatory sites induces strong paramagnetic broadening of the α5 helical region and the extreme N-terminal tail to residue 10. Ratiometric pulse chase amidination mass spectrometry reveals that the rate of amidination of the α-amino group of Gly2 is strongly attenuated in the Ni(II) complex relative to the apo state and noncognate Zn(II) complex. Ni(II) binding also induces dynamic disorder on the microsecond to millisecond time scale of key DNA interacting regions that likely contributes to the negative regulation of DNA binding by Ni(II). Molecular dynamics simulations and quantum chemical calculations reveal that NmtR readily accommodates a distal Ni(II) hexacoordination model involving the α-amine and His3 of the N-terminal region and α5 residues Asp91', His93', His104, and His107, which collectively define a new metal sensing site configuration in ArsR family regulators.
Iterative methods for stationary convection-dominated transport problems
Energy Technology Data Exchange (ETDEWEB)
Bova, S.W.; Carey, G.F. [Univ. of Texas, Austin, TX (United States)
1994-12-31
It is well known that many iterative methods fail when applied to nonlinear systems of convection-dominated transport equations. Most successful methods for obtaining steady-state solutions to such systems rely on time-stepping through an artificial transient, combined with careful construction of artificial dissipation operators. These operators provide control over spurious oscillations which pollute the steady state solutions, and, in the nonlinear case, may become amplified and lead to instability. In the present study, we investigate Taylor Galerkin and SUPG-type methods and compare results for steady-state solutions to the Euler equations of gas dynamics. In particular, we consider the efficiency of different iterative strategies and present results for representative two-dimensional calculations.
A regularized stationary mean-field game
Yang, Xianjin
2016-04-19
In the thesis, we discuss the existence and numerical approximations of solutions of a regularized mean-field game with a low-order regularization. In the first part, we prove a priori estimates and use the continuation method to obtain the existence of a solution with a positive density. Finally, we introduce the monotone flow method and solve the system numerically.
7 CFR 2902.28 - Stationary equipment hydraulic fluids.
2010-01-01
... 7 Agriculture 15 2010-01-01 2010-01-01 false Stationary equipment hydraulic fluids. 2902.28 Section 2902.28 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY... PROCUREMENT Designated Items § 2902.28 Stationary equipment hydraulic fluids. (a) Definition. Fluids...
Managing heterogeneous networks of mobile and stationary sensors
Bürkle, Axel; Solbrig, Peter; Segor, Florian; Bulatov, Dimitri; Wernerus, Peter; Müller, Sven
2011-11-01
Protecting critical infrastructure against intrusion, sabotage or vandalism is a task that requires a comprehensive situation picture. Modern security systems should provide a total solution including sensors, software, hardware, and a "control unit" to ensure complete security. Incorporating unmanned mobile sensors can significantly help to close information gaps and gain an ad hoc picture of areas where no pre-installed supervision infrastructure is available or damaged after an incident. Fraunhofer IOSB has developed the generic ground control station AMFIS which is capable of managing sensor data acquisition with all kinds of unattended stationary sensors, mobile ad hoc sensor networks, and mobile sensor platforms. The system is highly mobile and able to control various mobile platforms such as small UAVs (Unmanned Aerial Vehicles) and UGVs (Unmanned Ground Vehicles). In order to establish a real-time situation picture, also an image exploitation process is used. In this process, video frames from different sources (mainly from small UAVs) are georeferenced by means of a system of image registration methods. Relevant information can be obtained by a motion detection module. Thus, the image exploitation process can accelerate the situation assessment significantly.
Stability of stationary and time-varying nongyrotropic particle distributions
Directory of Open Access Journals (Sweden)
A. L. Brinca
Full Text Available The ubiquity of nongyrotropic particle populations in space plasmas warrants the study of their characteristics, in particular their stability. The unperturbed nongyrotropic distribution functions in homogeneous media without sources and sinks (closed phase space must be rotating and time-varying (TNG, whereas consideration of open phase spaces allows for the occurrence of homogeneous and stationary distributions (SNG. The free energy brought about by the introduction of gyrophase organization in a particle population can destabilize otherwise thoroughly stable magnetoplasmas (or, a fortiori, enhance pre-existing gyrotropic instabilities and feed intense wave growth both in TNG and SNG environments: The nongyrotropic (electron or ion species can originate unstable coupling among the gyrotropic characteristic waves. The stability properties of these two types of homogeneous nongyrotropy shall be contrasted for parallel (with respect to the ambient magnetic field and perpendicular propagation, and their potential role as wave activity sources shall be illustrated resorting to solutions of the appropriate dispersion equations and numerical simulations.
Key words. Space plasma physics (waves and instabilities · Magnetospheric physics (plasma waves and instabilities · Interplanetary physics (plasma waves and turbulence
Molecular Basis of Stationary Phase Survival and Applications
Directory of Open Access Journals (Sweden)
Jananee Jaishankar
2017-10-01
Full Text Available Stationary phase is the stage when growth ceases but cells remain metabolically active. Several physical and molecular changes take place during this stage that makes them interesting to explore. The characteristic proteins synthesized in the stationary phase are indispensable as they confer viability to the bacteria. Detailed knowledge of these proteins and the genes synthesizing them is required to understand the survival in such nutrient deprived conditions. The promoters, which drive the expression of these genes, are called stationary phase promoters. These promoters exhibit increased activity in the stationary phase and less or no activity in the exponential phase. The vectors constructed based on these promoters are ideal for large-scale protein production due to the absence of any external inducers. A number of recombinant protein production systems have been developed using these promoters. This review describes the stationary phase survival of bacteria, the promoters involved, their importance, regulation, and applications.
McNutt, David D.
2017-11-01
We introduce three approaches to generate curvature invariants that transform covariantly under a conformal transformation of a four-dimensional spacetime. For any black hole conformally related to a stationary black hole, we show how a set of conformally covariant invariants can be combined to produce a conformally covariant invariant that detects the event horizon of the conformally related black hole. As an application we consider the rotating dynamical black holes conformally related to the Kerr-Newman-Unti-Tamburino-(anti)-de Sitter spacetimes and construct an invariant that detects the conformal Killing horizon along with a second invariant that detects the conformal stationary limit surface. In addition, we present necessary conditions for a dynamical black hole to be conformally related to a stationary black hole and apply these conditions to the ingoing Kerr-Vaidya and Vaidya black hole solutions to determine if they are conformally related to stationary black holes for particular choices of the mass function. While two of the three approaches cannot be generalized to higher dimensions, we discuss the existence of a conformally covariant invariant that will detect the event horizon for any higher dimensional black hole conformally related to a stationary black hole which admits at least two conformally covariant invariants, including all vacuum spacetimes.
Stationary power fuel cell commercialization status worldwide
Energy Technology Data Exchange (ETDEWEB)
Williams, M.C. [Dept. of Energy, Morgantown, WV (United States)
1996-12-31
Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.
Growth of microalgae in autotrophic stationary systems
Directory of Open Access Journals (Sweden)
Paulo Cunha
2008-06-01
Full Text Available In this paper we evaluate the growth of nine marine microalgae species (Nannochloropsis oculata, Thalassiosira pseudonana, Phaeodactylum tricornutum, Isochrysis galbana, Tetraselmis suecica, Tetraselmis chuii, Chaetoceros muelleri, Thalassiosira fluviatilis and Isochrysis sp. and one freshwater species (Chlorella vulgaris under stationary autotrophy conditions, using erlenmeyers fl asks with 800mL of culture medium exposed to constant light intensities providing a photon flux density of about 150μmol.m-2.s-1 and 25±2oC temperature and constant air flow. The experiment was carried out in a controlled environment considering a block delineating randomized over time with three replicates. The Nannochloropsis oculata showed the highest value of maximum cellular density, but with a longer period of time and a lower growth rate. This was probably due to its tiny cell size, demanding a large number of cells per volume to attain its optimum conditions for light, nutrients, water and atmospheric carbon dioxide. In addition, in spite of showing one of the lowest values of maximum cellular density, Thalassiosira fluviatilis was the species that reached its maximum in a short period of time at the highest growth rate. Chlorella vulgaris was the only freshwater species tested and it showed the poorest performance for all the variables analyzed in the current study.
Stationary intraoral tomosynthesis for dental imaging
Inscoe, Christina R.; Wu, Gongting; Soulioti, Danai E.; Platin, Enrique; Mol, Andre; Gaalaas, Laurence R.; Anderson, Michael R.; Tucker, Andrew W.; Boyce, Sarah; Shan, Jing; Gonzales, Brian; Lu, Jianping; Zhou, Otto
2017-03-01
Despite recent advances in dental radiography, the diagnostic accuracies for some of the most common dental diseases have not improved significantly, and in some cases remain low. Intraoral x-ray is the most commonly used x-ray diagnostic tool in dental clinics. It however suffers from the typical limitations of a 2D imaging modality including structure overlap. Cone-beam computed tomography (CBCT) uses high radiation dose and suffers from image artifacts and relatively low resolution. The purpose of this study is to investigate the feasibility of developing a stationary intraoral tomosynthesis (s-IOT) using spatially distributed carbon nanotube (CNT) x-ray array technology, and to evaluate its diagnostic accuracy compared to conventional 2D intraoral x-ray. A bench-top s-IOT device was constructed using a linear CNT based X-ray source array and a digital intraoral detector. Image reconstruction was performed using an iterative reconstruction algorithm. Studies were performed to optimize the imaging configuration. For evaluation of s-IOT's diagnostic accuracy, images of a dental quality assurance phantom, and extracted human tooth specimens were acquired. Results show s-IOT increases the diagnostic sensitivity for caries compared to intraoral x-ray at a comparable dose level.
Stationary conditions for stochastic differential equations
Adomian, G.; Walker, W. W.
1972-01-01
This is a preliminary study of possible necessary and sufficient conditions to insure stationarity in the solution process for a stochastic differential equation. It indirectly sheds some light on ergodicity properties and shows that the spectral density is generally inadequate as a statistical measure of the solution. Further work is proceeding on a more general theory which gives necessary and sufficient conditions in a form useful for applications.
Hertog, Ekaterina; Iwasawa, Miho
2011-01-01
In this article, the authors argue that to understand the very low incidence of outside-of-marriage childbearing in contemporary Japan one needs to take into account perceptions of all possible solutions to a premarital pregnancy: marriage, abortion, and childbearing outside wedlock. To demonstrate the particular impact of these perceptions in…
D.A. Schipper (David A.); Louis, A.V. (Anthony V.); Dicken, D.S. (Destiny S.); Johnson, K. (Kitsie); R.T. Smolenski (Ryszard); Black, S.M. (Stephen M.); Runyan, R. (Ray); Konhilas, J. (John); Garcia, J.G.N. (Joe G. N.); Z. Khalpey (Zain)
2017-01-01
textabstractLungs donated after cardiac death (DCD) are an underutilized resource for a dwindling donor lung transplant pool. Our study investigates the potential of a novel preservation solution, Somah, to better preserve statically stored DCD lungs, for an extended time period, when compared to
A generic travelling wave solution in dissipative laser cavity
Indian Academy of Sciences (India)
2016-09-09
Sep 9, 2016 ... of solutions have been reported for the generalized. CGLE. In addition to stable stationary solutions, exact periodic and blow-up solutions have been derived using the homogeneous balance principle and Jacobi elliptic function. Peculiar results like periodic kink wave solu- tions, have been reported in ref.
Krzystek, J; Yeagle, Gregory J; Park, Ju-Hyun; Britt, R David; Meisel, Mark W; Brunel, Louis-Claude; Telser, Joshua
2003-07-28
High-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy of a classical coordination complex, Mn(acac)(3) (Hacac = 2,4-pentanedione), has been performed on both solid powder and frozen solution (in CH(2)Cl(2)/toluene, 3:2 v/v) samples. Parallel mode detection X-band EPR spectra exhibiting resolved (55)Mn hyperfine coupling were additionally obtained for frozen solutions. Magnetic susceptibility and field-dependent magnetization measurements were also made on powder samples. Analysis of the entire EPR data set for the frozen solution allowed extraction of the relevant spin Hamiltonian parameters: D = -4.52(2); |E| = 0.25(2) cm(-1); g(iso) = 1.99(1). The somewhat lower quality solid-state HFEPR data and the magnetic measurements confirmed these parameters. These parameters are compared to those for other complexes of Mn(III) and to previous studies on Mn(acac)(3) using X-ray crystallography, solution electronic absorption spectroscopy, and powder magnetic susceptibility. Crystal structures have been reported for Mn(acac)(3) and show tetragonal distortion, as expected for this Jahn-Teller ion (Mn(3+), 3d(4)). However, in one case, the molecule exhibits axial compression and, in another, axial elongation. The current HFEPR studies clearly show the negative sign of D, which corresponds to an axial (tetragonal) elongation in frozen solution. The correspondence among solution and solid-state HFEPR data, solid-state magnetic measurements, and an HFEPR study by others on a related complex indicates that the form of Mn(acac)(3) studied here exhibits axial elongation in all cases. Such tetragonal elongation has been found for Mn(3+) and Cr(2+) complexes with homoleptic pseudooctahedral geometry as well as for Mn(3+) in square pyramidal geometry. This taken together with the results obtained here for Mn(acac)(3) in frozen solution indicates that axial elongation could be considered the "natural" form of Jahn-Teller distortion for octahedral high-spin 3d(4
Li, Lai-Sheng; Da, Shi-Lu; Feng, Yu-Qi; Liu, Min
2004-06-18
A p-tert-butyl-calix[6]-1,4-benzocrown-4-bonded silica gel stationary phase (CR6BS) was first prepared via 3-glycidoxypropyltrimethoxysilane as coupling reagent for high performance liquid chromatography. The structure of the new stationary phase was characterized by diffuse reflectance infrared fourier transform spectroscopy (DRIFT), elemental analysis and thermal analysis. The chromatographic performance of the bonded-stationary phase was evaluated by using neutral, acidic and basic solutes as probes. Meanwhile, comparative study of the new stationary phase with a p-tert-butyl-calix[6]arene-bonded silica gel stationary phase (C6BS, the parent) and ODS was done under the same chromatographic conditions. The results show that the new stationary phase has an excellent reversed-phase property, which is similar to C6BS and ODS. However, the selectivities for some aromatic compounds are different from the parent phase (C6BS) and ODS, especially the latter. In one hand, as hybrid of calixarene and crown ether, CR6BS with the oxygen atoms of ether-bridge can provide the complexation sites for the solutes, lacking of C6BS. On the other hand, the rigid conformation of CR6BS may be responsible to the different performance partially. CR6BS exhibits high selectivity in the separation of alkylated aromatics from their parents as compared with C6BS.
Caricato, Marco
2013-07-28
The calculation of vertical electronic transition energies of molecular systems in solution with accurate quantum mechanical methods requires the use of approximate and yet reliable models to describe the effect of the solvent on the electronic structure of the solute. The polarizable continuum model (PCM) of solvation represents a computationally efficient way to describe this effect, especially when combined with coupled cluster (CC) methods. Two formalisms are available to compute transition energies within the PCM framework: State-Specific (SS) and Linear-Response (LR). The former provides a more complete account of the solute-solvent polarization in the excited states, while the latter is computationally very efficient (i.e., comparable to gas phase) and transition properties are well defined. In this work, I review the theory for the two formalisms within CC theory with a focus on their computational requirements, and present the first implementation of the LR-PCM formalism with the coupled cluster singles and doubles method (CCSD). Transition energies computed with LR- and SS-CCSD-PCM are presented, as well as a comparison between solvation models in the LR approach. The numerical results show that the two formalisms provide different absolute values of transition energy, but similar relative solvatochromic shifts (from nonpolar to polar solvents). The LR formalism may then be used to explore the solvent effect on multiple states and evaluate transition probabilities, while the SS formalism may be used to refine the description of specific states and for the exploration of excited state potential energy surfaces of solvated systems.
CraigMcClung, R.; Lee, Yi-Der; Cardinal, Joseph W.; Guo, Yajun
2012-01-01
The elastic stress intensity factor (SIF, commonly denoted as K) is the foundation of practical fracture mechanics (FM) analysis for aircraft structures. This single parameter describes the first-order effects of stress magnitude and distribution as well as the geometry of both structure/component and crack. Hence, the calculation of K is often the most significant step in fatigue analysis based on FM. This presentation will provide several reflections on the current state-of-the-art in SIF solution methods used for practical aerospace applications, including a brief historical perspective, descriptions of some recent and ongoing advances, and comments on some remaining challenges. Newman and Raju made significant early contributions to practical structural analysis by developing closed-form SIF equations for surface and corner cracks in simplified geometries, often based on empirical fits of finite element (FE) solutions. Those solutions (and others like them) were sometimes revised as new analyses were conducted or limitations discovered. The foundational solutions have exhibited striking longevity, despite the relatively "coarse" FE models employed many decades ago. However, in recent years, the accumulation of different generations of solutions for the same nominal geometry has led to some confusion (which solution is correct?), and steady increases in computational capabilities have facilitated the discovery of inaccuracies in some (not all!) of the legacy solutions. Some examples of problems and solutions are presented and discussed, including the challenge of maintaining consistency with legacy design applications. As computational power has increased, the prospect of calculating large numbers of SIF solutions for specific complex geometries with advanced numerical methods has grown more attractive. Fawaz and Andersson, for example, have been generating literally millions of new SIF solutions for different combinations of multiple cracks under simplified
Energy Technology Data Exchange (ETDEWEB)
Hempling, S.; Elefant, C.; Cory, K.; Porter, K.
2010-01-01
State legislatures and state utility commissions trying to attract renewable energy projects are considering feed-in tariffs, which obligate retail utilities to purchase electricity from renewable producers under standard arrangements specifying prices, terms, and conditions. The use of feed-in tariffs simplifies the purchase process, provides revenue certainty to generators, and reduces the cost of financing generating projects. However, some argue that federal law--including the Public Utility Regulatory Policies Act of 1978 (PURPA) and the Federal Power Act of 1935 (FPA)--constrain state-level feed-in tariffs. This report seeks to reduce the legal uncertainties for states contemplating feed-in tariffs by explaining the constraints imposed by federal statutes. It describes the federal constraints, identifies transaction categories that are free of those constraints, and offers ways for state and federal policymakers to interpret or modify existing law to remove or reduce these constraints. This report proposes ways to revise these federal statutes. It creates a broad working definition of a state-level feed-in tariff. Given this definition, this report concludes there are paths to non-preempted, state-level feed-in tariffs under current federal law.
Underdetermined DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Array.
Wang, Ben; Wang, Wei; Gu, Yujie; Lei, Shujie
2017-03-28
Quasi-stationary signals have been widely found in practical applications, which have time-varying second-order statistics while staying static within local time frames. In this paper, we develop a robust direction-of-arrival (DOA) estimation algorithm for quasi-stationary signals based on the Khatri-Rao (KR) subspace approach. A partly-calibrated array is considered, in which some of the sensors have an inaccurate knowledge of the gain and phase. In detail, we first develop a closed-form solution to estimate the unknown sensor gains and phases. The array is then calibrated using the estimated sensor gains and phases which enables the improved DOA estimation. To reduce the computational complexity, we also proposed a reduced-dimensional method for DOA estimation. The exploitation of the KR subspace approach enables the proposed method to achieve a larger number of degrees-of-freedom, i.e., more sources than sensors can be estimated. The unique identification condition for the proposed method is also derived. Simulation results demonstrate the effectiveness of the proposed underdetermined DOA estimation algorithm for quasi-stationary signals.
Contribution to an effective design method for stationary reaction-diffusion patterns
Szalai, István; Horváth, Judit; De Kepper, Patrick
2015-06-01
The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences.
Contribution to an effective design method for stationary reaction-diffusion patterns
Energy Technology Data Exchange (ETDEWEB)
Szalai, István; Horváth, Judit [Laboratory of Nonlinear Chemical Dynamics, Institute of Chemistry, Eötvös Loránd University, P.O. Box 32, H-1518 Budapest 112 (Hungary); De Kepper, Patrick [Centre de Recherche Paul Pascal, CNRS, University of Bordeaux, 115, Avenue Schweitzer, F-33600 Pessac (France)
2015-06-15
The British mathematician Alan Turing predicted, in his seminal 1952 publication, that stationary reaction-diffusion patterns could spontaneously develop in reacting chemical or biochemical solutions. The first two clear experimental demonstrations of such a phenomenon were not made before the early 1990s when the design of new chemical oscillatory reactions and appropriate open spatial chemical reactors had been invented. Yet, the number of pattern producing reactions had not grown until 2009 when we developed an operational design method, which takes into account the feeding conditions and other specificities of real open spatial reactors. Since then, on the basis of this method, five additional reactions were shown to produce stationary reaction-diffusion patterns. To gain a clearer view on where our methodical approach on the patterning capacity of a reaction stands, numerical studies in conditions that mimic true open spatial reactors were made. In these numerical experiments, we explored the patterning capacity of Rabai's model for pH driven Landolt type reactions as a function of experimentally attainable parameters that control the main time and length scales. Because of the straightforward reversible binding of protons to carboxylate carrying polymer chains, this class of reaction is at the base of the chemistry leading to most of the stationary reaction-diffusion patterns presently observed. We compare our model predictions with experimental observations and comment on agreements and differences.
Monte Carlo code Serpent calculation of the parameters of the stationary nuclear fission wave
Directory of Open Access Journals (Sweden)
V. M. Khotyayintsev
2017-12-01
Full Text Available n this work, propagation of the stationary nuclear fission wave was simulated for series of fixed power values using Monte Carlo code Serpent. The wave moved in the axial direction in 5 m long cylindrical core of fast reactor with pure 238U raw fuel. Stationary wave mode arises some period later after the wave ignition and lasts sufficiently long to determine kef with high enough accuracy. The velocity characteristic of the reactor was determined as the dependence of the wave velocity on the neutron multiplication factor. As we have recently shown within a one-group diffusion description, the velocity characteristic is two-valued due to the effect of concentration mechanisms, while thermal feedback affects it only quantitatively. The shape and parameters of the velocity characteristic critically affect feasibility of the reactor design since stationary wave solutions of the lower branch are unstable and do not correspond to any real waves in self-regulated reactor, like CANDLE. In this work calculations were performed without taking into account thermal feedback. They confirm that theoretical dependence correctly describes the shape of the velocity characteristic calculated using the results of the Serpent modeling.
Self-organising mixture autoregressive model for non-stationary time series modelling.
Ni, He; Yin, Hujun
2008-12-01
Modelling non-stationary time series has been a difficult task for both parametric and nonparametric methods. One promising solution is to combine the flexibility of nonparametric models with the simplicity of parametric models. In this paper, the self-organising mixture autoregressive (SOMAR) network is adopted as a such mixture model. It breaks time series into underlying segments and at the same time fits local linear regressive models to the clusters of segments. In such a way, a global non-stationary time series is represented by a dynamic set of local linear regressive models. Neural gas is used for a more flexible structure of the mixture model. Furthermore, a new similarity measure has been introduced in the self-organising network to better quantify the similarity of time series segments. The network can be used naturally in modelling and forecasting non-stationary time series. Experiments on artificial, benchmark time series (e.g. Mackey-Glass) and real-world data (e.g. numbers of sunspots and Forex rates) are presented and the results show that the proposed SOMAR network is effective and superior to other similar approaches.
Quasi-Stationary Temperature Field of Two-Layer Half-Space with Moving Boundary
Directory of Open Access Journals (Sweden)
P. A. Vlasov
2015-01-01
Full Text Available Due to intensive introduction of mathematical modeling methods into engineering practice, analytical methods for solving problems of heat conduction theory along with computational methods become increasingly important. Despite the well-known limitations of the analytical method applicability, this trend is caused by many reasons. In particular, solutions of the appropriate problems presented in analytically closed form can be used to test the new efficient computational algorithms, to carry out a parametric study of the temperature field of the analyzed system and to explore specific features of its formation, to formulate and solve optimization problems. In addition, these solutions allow us to explore the possibility for simplifying mathematical model with retaining its adequacy to the studied process.The main goal of the conducted research is to provide an analytically closed-form solution to the problem of finding the quasi-stationary temperature field of the system, which is simulated by isotropic half-space with isotropic coating of constant thickness. The outer boundary of this system is exposed to the Gaussian-type heat flux and uniformly moves in parallel with itself.A two-dimensional mathematical model that takes into account the axial symmetry of the studied process has been used. After the transition to a moving coordinate system rigidly associated with a moving boundary the Hankel integral transform of zero order (with respect to the radial variable and the Laplace transform (with respect to the temporal variable were used. Next, the image of the Hankel transform for the stationary temperature field of the system with respect to the moving coordinate system was found using a limit theorem of operational calculus. This allowed representing the required quasi-stationary field in the form of an improper integral of the first kind, which depends on the parameters. This result obtained can be used to conduct a parametric study and solve
Biofuel feedstock production in the United States (US) is an emergent environmental nutrient management issue, whose exploration can benefit from a multi-scale and multimedia systems modeling approach that explicitly addresses diverging stakeholder interests. In the present analy...
Improta, Roberto; Scalmani, Giovanni; Frisch, Michael J; Barone, Vincenzo
2007-08-21
A state specific (SS) model for the inclusion of solvent effects in time dependent density functional theory (TD-DFT) computations of emission energies has been developed and coded in the framework of the so called polarizable continuum model (PCM). The new model allows for a rigorous and effective treatment of dynamical solvent effects in the computation of fluorescence and phosphorescence spectra in solution, and it can be used for studying different relaxation time regimes. SS and conventional linear response (LR) models have been compared by computing the emission energies for different benchmark systems (formaldehyde in water and three coumarin derivatives in ethanol). Special attention is given to the influence of dynamical solvation effects on LR geometry optimizations in solution. The results on formaldehyde point out the complementarity of LR and SS approaches and the advantages of the latter model especially for polar solvents and/or weak transitions. The computed emission energies for coumarin derivatives are very close to their experimental counterparts, pointing out the importance of a proper treatment of nonequilibrium solvent effects on both the excited and the ground state energies. The availability of SS-PCM/TD-DFT models for the study of absorption and emission processes allows for a consistent treatment of a number of different spectroscopic properties in solution.
Choi, Young Eun; Park, Kern Ho; Kim, Dong Hyeon; Oh, Dae Yang; Kwak, Hi Ram; Lee, Young-Gi; Jung, Yoon Seok
2017-06-22
Bulk-type all-solid-state lithium-ion batteries (ASLBs) for large-scale energy-storage applications have emerged as a promising alternative to conventional lithium-ion batteries (LIBs) owing to their superior safety. However, the electrochemical performance of bulk-type ASLBs is critically limited by the low ionic conductivity of solid electrolytes (SEs) and poor ionic contact between the active materials and SEs. Herein, highly conductive (0.14 mS cm-1 ) and dry-air-stable SEs (Li4 SnS4 ) are reported, which are prepared using a scalable aqueous-solution process. An active material (LiCoO2 ) coated by solidified Li4 SnS4 from aqueous solutions results in a significant improvement in the electrochemical performance of ASLBs. Side-effects of the exposure of LiCoO2 to aqueous solutions are minimized by using predissolved Li4 SnS4 solution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Beckstead, Ashley Ann
results to similar observations of viscosity-dependent excited-state decay rates in other molecules. I also consider the relevance of violacein's excited-state properties to the hypothesized sunscreening role of violacein. Overall, the studies presented in this dissertation illustrate how ultrafast spectroscopic techniques can be used to unravel complex biomolecular excited-state dynamics in solution.
Genetics Home Reference: autosomal dominant congenital stationary night blindness
... the rods cannot effectively transmit signals to the brain, leading to a lack of visual perception in low light. Learn more about the genes associated with autosomal dominant congenital stationary night blindness GNAT1 PDE6B RHO Related ...
Non-stationary probabilities for the asymmetric exclusion process on ...
Indian Academy of Sciences (India)
stationary probabilities for the asymmetric exclusion process on a ring. V B Priezzhev. Invited Talks:- Topic 4: Pattern formation in systems out of equilibrium (growth processes, fracture, hydrodynamic instabilities, chemical reactions, granular flows, etc ...
Gyrokinetic modelling of stationary electron and impurity profiles in tokamaks
Skyman, Andreas; Tegnered, Daniel
2014-01-01
Particle transport due to Ion Temperature Gradient/Trapped Electron (ITG/TE) mode turbulence is investigated using the gyrokinetic code GENE. Both a reduced quasilinear (QL) treatment and nonlinear (NL) simulations are performed for typical tokamak parameters corresponding to ITG dominated turbulence. A selfconsistent treatment is used, where the stationary local profiles are calculated corresponding to zero particle flux simultaneously for electrons and trace impurities. The scaling of the stationary profiles with magnetic shear, safety factor, electron-to-ion temperature ratio, collisionality, toroidal sheared rotation, triangularity, and elongation is investigated. In addition, the effect of different main ion mass on the zero flux condition is discussed. The electron density gradient can significantly affect the stationary impurity profile scaling. It is therefore expected, that a selfconsistent treatment will yield results more comparable to experimental results for parameter scans where the stationary b...
Multidimensional stationary probability distribution for interacting active particles
National Research Council Canada - National Science Library
Maggi, Claudio; Marconi, Umberto Marini Bettolo; Gnan, Nicoletta; Di Leonardo, Roberto
2015-01-01
We derive the stationary probability distribution for a non-equilibrium system composed by an arbitrary number of degrees of freedom that are subject to Gaussian colored noise and a conservative potential...
Large Stationary Gravity Waves: A Game Changer for Venus' Science
Navarro, T.; Schubert, G.; Lebonnois, S.
2017-11-01
In 2015, the discovery by the Akatsuki spacecraft of an astonishing, unexpected, 10,000 km long meridional structure at the cloud top, stationary with respect to the surface, calls into question our very basic understanding of Venus.
Local polynomial Whittle estimation covering non-stationary fractional processes
DEFF Research Database (Denmark)
Nielsen, Frank
This paper extends the local polynomial Whittle estimator of Andrews & Sun (2004) to fractionally integrated processes covering stationary and non-stationary regions. We utilize the notion of the extended discrete Fourier transform and periodogram to extend the local polynomial Whittle estimator ...... study illustrates the performance of the proposed estimator compared to the classical local Whittle estimator and the local polynomial Whittle estimator. The empirical justi.cation of the proposed estimator is shown through an analysis of credit spreads....
Geophysics-based method of locating a stationary earth object
Daily, Michael R [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Novak, James L [Albuquerque, NM
2008-05-20
A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.
Stationary Density Variation Produced by a Standing Plasma Wave
DEFF Research Database (Denmark)
Michelsen, Poul; Pécseli, Hans; Juul Rasmussen, Jens
1977-01-01
Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field.......Measurements are presented of a stationary density modulation produced by a standing electron plasma wave. The experimental results are well explained by taking into account the ponderomotive forces on the electrons exerted by the high frequency field....
Hellriegel, Christine; Skogsberg, Urban; Albert, Klaus; Lämmerhofer, Michael; Maier, Norbert M; Lindner, Wolfgang
2004-03-31
The surface chemistry of a chiral stationary phase (CSP) with a (tert-butyl carbamoyl) quinine selector immobilized on thiol-modified silica has been characterized by (1)H HR/MAS NMR and (29)Si CP/MAS NMR spectroscopy. The mostly well-resolved (1)H signals could be assigned to stem from the surface-bound selector and the latter suggested a bi- and trifunctional silane linkage. Suspended-state NMR spectroscopy thus proved a well-characterized surface chemistry as proposed. To study chiral recognition phenomena in the presence of the CSP, (1)H HR/MAS 2D transfer NOESY investigations in methanol-d(4) have been undertaken with various solutes including N-3,5-dinitrobenzoyl derivatives of leucine (DNB-Leu) and N-acetyl phenylalanine (Ac-Phe). Both (R)- and (S)-enantiomers of DNB-Leu and Ac-Phe interacted with the tBuCQN-CSP as indicated by negative cross-peaks in the trNOESY spectra, while the 2D NOESY of the dissolved solutes in absence of the chiral stationary phase showed positive cross-peaks. The intensities of the trNOE cross-peaks were much stronger for the (S)-enantiomers. This stereoselectivity paralleled the experimental chromatographic behavior, where the (S)-enantiomers revealed stronger binding and retention on the tBuCQN-CSP as well. Hence, we were able to correlate the retention behavior to the trNOE NMR spectroscopic data in a qualitative manner.
Xiang, Shao-Hua; Song, Ke-Hui
2013-07-01
We investigate a system of N mutually coupled harmonic oscillators interacting with the same environment and derive the corresponding exact non-Markovian master equation using our introduced approach. We obtain an explicit formula for the covariance matrix of the evolved state by taking a Gaussian state as initial one. With this, we analyze the short-time non-Markovian dynamics of three-mode Gaussian state in high-temperature limit. Our results show that the short-time evolution behavior of bipartite entanglement for 1 × 2 bipartition is similar to that of genuine tripartite entanglement, while the 1 × 1 bipartition entanglement does not. It is also shown that there exists a threshold that makes the initial tri- and bipartite entanglement increase or decrease. For the squeezing degree of the initial state than this critical value, the entanglement is increased with the evolution time; otherwise it is decreased. Finally, we present a physical positivity criterion for the covariance matrix of the evolved state.
Hajipour, Mojtaba; Jajarmi, Amin
2018-02-01
Using the Pontryagin's maximum principle for a time-delayed optimal control problem results in a system of coupled two-point boundary-value problems (BVPs) involving both time-advance and time-delay arguments. The analytical solution of this advance-delay two-point BVP is extremely difficult, if not impossible. This paper provides a discrete general form of the numerical solution for the derived advance-delay system by applying a finite difference θ-method. This method is also implemented for the infinite-time horizon time-delayed optimal control problems by using a piecewise version of the θ-method. A matrix formulation and the error analysis of the suggested technique are provided. The new scheme is accurate, fast and very effective for the optimal control of linear and nonlinear time-delay systems. Various types of finite- and infinite-time horizon problems are included to demonstrate the accuracy, validity and applicability of the new technique.
Arbitrary l-state solutions of the Klein-Gordon equation with the Poeschl-Teller potential
Energy Technology Data Exchange (ETDEWEB)
Kocak, G.; Taskin, F. [Department of Physics, Erciyes University, Kayseri (Turkey)
2010-11-15
Within the framework of the Klein-Gordon equation, the relativistic bound states for the Poeschl-Teller potential are obtained for arbitrary angular momentum quantum numbers by using an approximation for the centrifugal term. The special case for equally scalar and vector Poeschl-Teller potential is studied. The energy eigenvalues are obtained in closed form and the corresponding normalized radial wave functions are expressed in terms of the generalized hypergeometric functions. The s-wave (l=0) case and bound state conditions are also investigated. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Stationary D = 4 black holes in supergravity: The issue of real nilpotent orbits
Energy Technology Data Exchange (ETDEWEB)
Ruggeri, Daniele [Universita di Torino, Dipartimento di Fisica (Italy); INFN, Torino (Italy); Trigiante, Mario [Universita di Torino, Dipartimento di Fisica (Italy); DISAT, Politecnico di Torino (Italy); INFN, Torino (Italy)
2017-05-15
The complete classification of the nilpotent orbits of SO(2,2){sup 2} in the representation (2,2,2,2), achieved in [14], is applied to the study of multi-center, asymptotically flat, extremal black hole solutions to the STU model. These real orbits provide an intrinsic characterization of regular single-center solutions, which is invariant with respect to the action of the global symmetry group SO(4,4), underlying the stationary solutions of the model, and provide stringent regularity constraints on multi-centered solutions. The known almost-BPS and composite non-BPS solutions are revisited in this setting. We systematically provide, for the relevant SO(2,2){sup 2}-nilpotent orbits of the global Noether charge matrix, regular representatives thereof. This analysis unveils a composition law of the orbits according to which those containing regular multi-centered solutions can be obtained as combinations of specific single-center orbits defining the constituent black holes. Some of the SO(2,2){sup 2}-orbits of the total Noether charge matrix are characterized as ''intrinsically singular'' in that they cannot contain any regular solution. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
DEFF Research Database (Denmark)
Ellegaard, Martin Dela; Abildskov, Jens; O’Connell, John P.
2011-01-01
The solubilities of gases in ionic liquids and compressed liquid densities have been successfully described over a wide range of conditions using a reformulated corresponding-states formulation for direct correlation function integrals. In addition, comparisons with experimental data show reliable...... prediction of ionic liquid characteristic properties from simple rules....
Samuel L. Zelinka; Samuel V. Glass; Joseph E. Jakes; Donald S. Stone
2016-01-01
The fiber saturation point (FSP) is an important concept in woodâ moisture relations that differentiates between the states of water in wood and has been discussed in the literature for over 100 years. Despite its importance and extensive study, the exact theoretical definition of the FSP and the operational definition (the correct way to measure the FSP) are still...
van Veggel, F.C.J.M.; van Duynhoven, J.P.M.; van Duynhoven, John P.M.; Harkema, Sybolt; Oude Wolbers, M.P.; Reinhoudt, David
1996-01-01
The solid-state structure of 1·NaClO4 has been determined by X-ray diffraction and shows the Na+ complexed in an approximate hexagonal bipyrimidal fashion. The six ether oxygens form the ground plane, the inner carbonyl group and one of the two outer carbonyl groups occupy the apical positions. The
Energy Technology Data Exchange (ETDEWEB)
Hempling, Scott [National Regulatory Research Inst., Silver Spring, MD (United States); Elefant, Carolyn [Law Offices of Carolyn Elefant, Washington, DC (United States); Cory, Karlynn [National Renewable Energy Lab. (NREL), Golden, CO (United States); Porter, Kevin [Exeter Associates, Inc., Golden, CO (United States)
2010-01-01
This report details how state feed-in tariff (FIT) programs can be legally implemented and how they can comply with federal requirements. The report describes the federal constraints on FIT programs and identifies legal methods that are free of those constrains.
New exact solutions of the non-homogeneous Burgers equation in (1+1) dimensions
Energy Technology Data Exchange (ETDEWEB)
Schulze-Halberg, Axel [Department of Science, University of Colima, Bernal Diaz del Castillo 340, Colima Villas San Sebastian, C P 28045, Colima (Mexico)
2007-04-15
We construct an invertible transformation between the non-homogeneous Burgers equation (NBE) and the stationary Schroedinger equation in (1+1) dimensions. By means of this transformation, each solution of the stationary Schroedinger equation generates a fully time-dependent solution of the NBE. As applications we derive exact solutions of the NBE for general power-law nonhomogeneities, generalizing former results on the linear case.
Chimera states in coupled Kuramoto oscillators with inertia
Energy Technology Data Exchange (ETDEWEB)
Olmi, Simona, E-mail: simona.olmi@fi.isc.cnr.it [CNR - Consiglio Nazionale delle Ricerche - Istituto dei Sistemi Complessi, via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy); INFN Sez. Firenze, via Sansone, 1 - I-50019 Sesto Fiorentino (Italy)
2015-12-15
The dynamics of two symmetrically coupled populations of rotators is studied for different values of the inertia. The system is characterized by different types of solutions, which all coexist with the fully synchronized state. At small inertia, the system is no more chaotic and one observes mainly quasi-periodic chimeras, while the usual (stationary) chimera state is not anymore observable. At large inertia, one observes two different kind of chaotic solutions with broken symmetry: the intermittent chaotic chimera, characterized by a synchronized population and a population displaying a turbulent behaviour, and a second state where the two populations are both chaotic but whose dynamics adhere to two different macroscopic attractors. The intermittent chaotic chimeras are characterized by a finite life-time, whose duration increases as a power-law with the system size and the inertia value. Moreover, the chaotic population exhibits clear intermittent behavior, displaying a laminar phase where the two populations tend to synchronize, and a turbulent phase where the macroscopic motion of one population is definitely erratic. In the thermodynamic limit, these states survive for infinite time and the laminar regimes tends to disappear, thus giving rise to stationary chaotic solutions with broken symmetry contrary to what observed for chaotic chimeras on a ring geometry.
Horn, Adolfo; Fim, Luciana; Bortoluzzi, Adailton J.; Szpoganicz, Bruno; Silva, Marlon de S.; Novak, Miguel A.; Neto, Mario Benassi; Eberlin, Lívia Schiavinato; Catharino, Rodrigo Ramos; Eberlin, Marcos Nogueira; Fernandes, Christiane
2006-09-01
The X-ray molecular structure and, magnetic, and spectroscopic properties, as well as the analysis of the structural behavior in solution of a novel nickel (II) complex [Ni 2(HBPClNOL) 2(OAc)](ClO 4) 1 are reported. Complex 1 was prepared by the reaction between the ligand H 2BPClNOL ( N-(2-hydroxybenzyl)- N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine), [Ni(H 2O) 6](ClO 4) 2 and sodium acetate. Magnetic measurements indicate the presence of a weak antiferromagnetic coupling between the Ni(II) ions in 1, resulting in J = -4.23 cm -1. Mass spectrometric characterization of the complex 1 was also performed via ESI-MS and ESI-MS/MS experiments and reveals that there are at least three different cations in solution, one mononuclear [Ni(H 2BPClNOL)(OAc)] + and two dinuclear [Ni 2(HBPClNOL) 2(OAc)] + and [Ni 2(HBPClNOL) 2(ClO 4)] + cations, as well as likely a fourth one [Ni(HBPClNOL)] +. Potentiometric titration experiments confirm that under acid conditions, the dinuclear unit is broken. However, under neutral/basic pH values the dinuclear unit is stable and shows the presence of two water molecules coordinated to the nickel ions, resulting in the cation [Ni 2(HBPClNOL) 2(H 2O) 2] 2+. This cation shows two protonation/deprotonation equilibriums with p Ka values of 9.68 and at 10.29, which are related to the aquo/hydroxo equilibrium associated with the water molecules coordinated to the metal ions.
DEFF Research Database (Denmark)
Witlicki, Edward H.; Bähring, Steffen; Johnsen, Carsten
2017-01-01
complexation occur via a mechanism of resonance between the 785 nm laser line and the strongly absorbing charge-transfer chromophore arising from the complex between electron-donating TTF-C[4]P and electron-accepting nitroaromatic explosives. The addition of chloride forms the Cl-·TTF-C[4]P complex resetting......The recognition of nitroaromatic explosives by a tetrakis-tetrathiafulvalene-calix[4]pyrrole receptor (TTF-C[4]P) yields a "turn on" and fingerprinting response in the resonance Raman scattering observed in solution and the solid state. Intensity changes in nitro vibrations with analyte...
Directory of Open Access Journals (Sweden)
Suparmi
2014-12-01
Full Text Available The bound state solution of the Dirac equation for generalized PöschlTeller and trigonometric Pöschl-Teller non-central potentials was obtained using SUSY quantum mechanics and the idea of shape invariance potential. The approximate relativistic energy spectrum was expressed in the closed form. The radial and polar wave functions were obtained using raising and lowering of radial and polar operators. The orbital quantum numbers were found from the polar Dirac equation, which was solved using SUSY quantum mechanics and the idea of shape invariance.
Energy Technology Data Exchange (ETDEWEB)
Leoni, Luca; Mele, Andrea; Giannicchi, Ilaria; Mihan, Francesco Yafteh; Dalla Cort, Antonella [Dipartimento di Chimica and IMC-CNR, Universita di Roma La Sapienza (Italy); Puttreddy, Rakesh; Jurcek, Ondrej; Rissanen, Kari [University of Jyvaeskylae, Department of Chemistry, Nanoscience Center (Finland)
2016-12-23
The enhancement of the binding between halide anions and a Lewis acidic uranyl-salophen receptor has been achieved by the introduction of pendant electron-deficient arene units into the receptor skeleton. The association and the occurrence of the elusive anion-π interaction with halide anions (as tetrabutylammonium salts) have been demonstrated in solution and in the solid state, providing unambiguous evidence on the interplay of the concerted interactions responsible for the anion binding. (copyright 2016 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)
Fernández Domene, Ramón Manuel; Blasco-Tamarit, E.; García-García, D.M.; Garcia-Anton, Jose
2015-01-01
The passive behaviour of Alloy 31, a highly-alloyed austenitic stainless steel (UNS N08031), has been investigated in a LiBr heavy brine (700 g/l) at different temperatures using potentiostatic polarisation and Mott-Schottky analysis. Cation vacancies have been found to be the dominant defect in the passive films formed on Alloy 31. An increase in temperature enhanced the generation of cation vacancies at the film/solution interface and raised the steady-state passive current density. The den...
Ten-no, Seiichiro
2013-04-28
We propose a novel quantum Monte Carlo method in configuration space, which stochastically samples the contribution from a large secondary space to the effective Hamiltonian in the energy dependent partitioning of Löwdin. The method treats quasi-degenerate electronic states on a target energy with bond dissociations and electronic excitations avoiding significant amount of the negative sign problem. The performance is tested with small model systems of H4 and N2 at various configurations with quasi-degeneracy.
Chen, Peggy G; Auerbach, David I; Muench, Ulrike; Curry, Leslie A; Bradley, Elizabeth H
2013-11-01
Foreign-educated and foreign-born health workers constitute a sizable and important portion of the US health care workforce. We review the distribution of these workers and their countries of origin, and we summarize the literature concerning their contributions to US health care. We also report on these workers' experiences in the United States and the impact their migration has on their home countries. Finally, we present policy strategies to increase the benefits of health care worker migration to the United States while mitigating its negative effects on the workers' home countries. These strategies include attracting more people with legal permanent residency status into the health workforce, reimbursing home countries for the cost of educating health workers who subsequently migrate to the United States, improving policies to facilitate the entry of direct care workers into the country, advancing efforts to promote and monitor ethical migration and recruitment practices, and encouraging the implementation of programs by US employers to improve the experience of immigrating health workers.
Energy Technology Data Exchange (ETDEWEB)
Gomez T, A. M.; Delfin L, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Del Valle G, E., E-mail: armando.gomez@inin.gob.mx [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN s/n, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)
2012-10-15
Serpent is a code that solves the neutron transport equations using the Monte Carlo method that besides generating reference solutions in stationary state for complex geometry problems, has been specially designed for physical applications of cells, what includes the generation of homogenized cross-sections for several energy groups. In this work a calculation methodology is described using the code Serpent to generate the necessary cross-sections to carry out calculations with the code TNXY, developed in 1993 in the Nuclear Engineering Department of the Instituto Politecnico Nacional (Mexico) by means of an interface programmed in Octave. The computation program TNXY solves the neutron transport equations for several energy groups in stationary state and geometry X Y using the Discreet Ordinates method (S{sub N}). To verify and to validate the methodology the results of TNXY were compared with those calculated by Serpent giving minor differences to 0.55% in the value of the multiplication factor. (Author)
Non-Stationary Two-Dimensional Subband Transformer Filters
Directory of Open Access Journals (Sweden)
V. Čeperković
2013-11-01
Full Text Available State-of-the-art two-dimensional subband transformation based compression methods typically require large memory size and memory bus bandwidth. This paper discloses a novel method for reducing both shortcomings, and even provides compression or decompression from the cache memory. This solution can be implemented either in software or hardware or their combination, as a front stage in either lossless or lossy image encoder or a back stage in either lossless or lossy image decoder.
40 CFR 60.4305 - Does this subpart apply to my stationary combustion turbine?
2010-07-01
... stationary combustion turbine? 60.4305 Section 60.4305 Protection of Environment ENVIRONMENTAL PROTECTION... of Performance for Stationary Combustion Turbines Applicability § 60.4305 Does this subpart apply to my stationary combustion turbine? (a) If you are the owner or operator of a stationary combustion...
Weber, Waldemar; Andersson, Jan T
2014-09-01
The separation properties of six novel stationary phases for gas chromatography, commercially available from Sigma-Aldrich (Supelco) and based on ionic liquids (ILs), were investigated. The linear solvation energy relationship model (LSER) was used to describe the molecular interactions between these stationary phases and 30 solutes. The solutes belong to different groups of compounds, like haloalkanes, alcohols, ketones, aromatics, aliphatics, and others. A good description of different interactions, as described by the LSER model, could be achieved. The calculated values of system constants for the ionic liquid phases were compared with constants of commonly used standard phases like a 5 % phenyl/95 % dimethyl siloxane and a polyethylene glycol phase. The solute descriptors are in good agreement with those found by previous authors who have used the LSER model for 44 different ionic liquids as stationary phase. The experiments were carried out at two temperatures to evaluate the influence on the phase parameters and separation characteristics. The interactions of different functional groups with the IL phases are discussed. These novel IL phases are a promising replacement of or an addition to common polar phases. Based on the evaluated phase properties, several possibilities for applications of these novel phases are shown.
Chung, Janete; Rocha, Antonio A; Tonelli, Renata R; Castilho, Beatriz A; Schenkman, Sergio
2013-04-15
The protein known as eIF5A (eukaryotic initiation factor 5A) has an elusive role in translation. It has a unique and essential hypusine modification at a conserved lysine residue in most eukaryotes. In addition, this protein is modified by phosphorylation with unknown functions. In the present study we show that a phosphorylated state of eIF5A predominates in exponentially growing Trypanosoma cruzi cells, and extensive dephosphorylation occurs in cells in stationary phase. Phosphorylation occurs mainly at Ser(2), as shown in yeast eIF5A. In addition, a novel phosphorylation site was identified at Tyr(21). In exponential cells, T. cruzi eIF5A is partially associated with polysomes, compatible with a proposed function as an elongation factor, and becomes relatively enriched in polysomal fractions in stationary phase. Overexpression of the wild-type eIF5A, or eIF5A with Ser(2) replaced by an aspartate residue, but not by alanine, increases the rate of cell proliferation and protein synthesis. However, the presence of an aspartate residue instead of Ser(2) is toxic for cells reaching the stationary phase, which show a less-pronounced protein synthesis arrest and a decreased amount of eIF5A in dense fractions of sucrose gradients. We conclude that eIF5A phosphorylation and dephosphorylation cycles regulate translation according to the growth conditions.
Energy Technology Data Exchange (ETDEWEB)
Ocampo Mansilla, Hector; Francois Lacouture, Juan Luis; Blanco Lara, Jesus; Cortes Campos, Carlos Cristobal; Esquivias Montoya, Jesus; Esquivel Torres, Jose Luis; Martin del Campo Marquez, Cecilia [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Montes Tadeo, Jose Luis [Instituto Nacional de Investigaciones Nucleares (ININ), Salazar (Mexico); Sanchez Herrera, Luciano; Torres Alvarez, Carlos [Comision Federal de Electricidad (CFE), Mexico, D. F. (Mexico)
1991-12-31
The results are presented of a study requested by Comision Federal de Electricidad (CFE) for the analysis of Cycle 3, of Unit No. 1 of the Laguna Verde Nuclear Power Station (CLNV) and determine the burning effect impact, carried out with the starting tests and the operation of Cycles 1 and 2 on base of the cycle extension known as coastdown. The calculations were realized with the Code Package FMS for fuel managing, using the Code PRESTO-B that analyzes the reactor in detailed form in three dimensions an in stationary state. In the study the schemes of fraction of recharge proposed by General Electric (GE) were analyzed with the effect of cycle extension. The initial design value of 100 assemblies for Cycle 3, GE proposes to increase such fraction from 112 to 120 assemblies. This impacts the cost of the second recharge and the purpose of this investigation is to analyze options with higher fuel enrichment in U-235 to minimize the number of assemblies in this recharge. The analyses effected show that the designs proposed by GE do not fulfill the required energy proposed for the cycle, even using in the recharge only fuel with 3.03% of enrichment. It is proposed, likewise, the fuel enrichment up to 3.25% to satisfy the energy demand with a minimum of assemblies. [Espanol] Se presentan los resultados de un estudio solicitado por la Comision Federal de Electricidad (CFE) para analizar el ciclo 3, de la unidad 1 de la Central Laguna Verde (CLV), y determinar el impacto del efecto de quemado llevado a cabo con las pruebas de arranque y por la operacion de los ciclos 1 y 2 con base en la tecnica de alargamiento del ciclo conocida como coastdown1. Los calculos se realizaron con el paquete de codigos FMS para la administracion de combustible, usando el codigo PRESTO-B que analiza el reactor en forma detallada en tres dimensiones y en estado estacionario. Se analizaron en el estudio los esquemas de fraccion de recarga propuesta por la General Electric (GE) con el efecto de
The real-time state of the aurora -- a research to operations need with a citizen science solution?
Heavner, M.; MacDonald, E.; Case, N.; McCloat, S.
2015-12-01
A prototype citizen science application called Aurorasaurus has been developed and launched in 2014. The goal of this platform is crowdsourcing observations of the aurora in real-time in order to assess global visibility of the aurora for the public. Users can submit observations, verify relevant social media observations, learn about the aurora, and receive location-based alerts based on verified reports, all in near real-time. The size and distribution of the citizen scientist community around the world has tremendous potential both for documenting the visible manifestations of global space weather impacts as well as providing quality control on the reported sightings. Information with high spatial and temporal resolution of the largest, most dynamic and mysterious space weather events is made possible by this solution, and this data can be integrated with other ground and space based measures of auroral activity. We will present initial results during the large geomagnetic events of 2015 and comparison to other measures of auroral activity. Our findings indicate the prototype application can be a valuable tool for real-time aurora knowledge and should be included in discussions of real-time aurora nowcasting needs. We will discuss those needs and assess the feasibility of available systems for meeting them.
Viktorov, V A; Varin, A N; Grinval'd, V M; Maksimov, E P; Fomicheva, N N; Zavalishin, Iu K; Leshchinskiĭ, G M; Razhev, I I; Noskov, S G; Shadiev, B Sh; Rodin, V V; Strelkov, S I; Shukov, O V; Turiaev, A D; Shishkin, S V
2003-01-01
Radical improvements in the physiological features and self-sufficiency of hemodialysis equipment, an essential reduction of the volume of dialyzate contacting with patient's body and elimination of dependence of the equipment operation on the availability of a water-supply network can be ensured by applying a regime of circulation of a relatively small volume (3-5 l) of dialyzate through the regenerating device. The regeneration unit must eliminate the organic products of dialysis from the dialyzate and stabilize the ionic composition of the purified dialyzate according to the preset parameters. Modern methods and technical means for regenerating the used dialyzate are discussed; a regeneration unit, which ensures an electrochemical oxidation (in the used dialyzate) of nitrogen-containing organic metabolites with a subsequent sorption-type additional purification of electrochemically-processed dialyzate, is offered. The regeneration unit is made up of an electrolyser, a sorption-type additional-purification device and a gas utilizer; it eliminates organic metabolites, phosphorus, calcium and potassium from the used dialyzate and stabilizes the pH solution.
Lamar, John E.; Abdol-Hamid, Khaled S.
2009-01-01
In support of the Cranked Arrow Wing Aerodynamic Project International (CAWAPI) with its goal of improving the Technology Readiness Level of flow solvers by comparing results with measured F-16XL-1 flight data, NASA Langley employed the TetrUSS unstructured grid solver, USM3D, to obtain solutions for all seven flight conditions of interest. A newly available solver version that incorporates a number of turbulence models, including the two-equation linear and non-linear k- , was used in this study. As a first test, a choice was made to utilize only a single grid resolution with the solver for the simulation of the different flight conditions. Comparisons are presented with three turbulence models in USM3D, flight data for surface pressure, boundary-layer profiles, and skin-friction distribution, as well as limited predictions from other solvers. A result of these comparisons is that the USM3D solver can be used in an engineering environment to predict vortex-flow physics on a complex configuration at flight Reynolds numbers with a two-equation linear k- turbulence model.
Wen, Zichao; Yan, Zhenya
2017-03-01
We report new matter-wave solutions of the one-dimensional spin-1 Bose-Einstein condensate system by combining global spin-rotation states and similarity transformation. Dynamical behaviors of non-stationary global spin-rotation states derived from the SU(2) spin-rotation symmetry are discussed, which exhibit temporal periodicity. We derive generalized bright-dark mixed solitons and new rogue wave solutions and reveal the relations between Euler angles in spin-rotation symmetry and parameters in ferromagnetic and polar solitons. In the modulated spin-1 Bose-Einstein condensate system, new solutions are derived and graphically illustrated for different types of modulations. Moreover, numerical simulations are performed to investigate the stability of some obtained solutions for chosen parameters.
Krueger, Susan; Khodadadi, Sheila; Clark, Nicholas; McAuley, Arnold; Cristiglio, Viviana; Theyencheri, Narayanan; Curtis, Joseph; Shalaev, Evgenyi
2015-03-01
For effective preservation, proteins are often stored as frozen solutions or in glassy states using a freeze-drying process. However, aggregation is often observed after freeze-thaw or reconstitution of freeze-dried powder and the stability of the protein is no longer assured. In this study, small-angle neutron and X-ray scattering (SANS and SAXS) have been used to investigate changes in protein-protein interaction distances of a model protein/cryoprotectant system of lysozyme/sorbitol/water, under representative pharmaceutical processing conditions. The results demonstrate the utility of SAXS and SANS methods to monitor protein crowding at different stages of freezing and drying. The SANS measurements of solution samples showed at least one protein interaction peak corresponding to an interaction distance of ~ 90 Å. In the frozen state, two protein interaction peaks were observed by SANS with corresponding interaction distances at 40 Å as well as 90 Å. On the other hand, both SAXS and SANS data for freeze-dried samples showed three peaks, suggesting interaction distances ranging from ~ 15 Å to 170 Å. Possible interpretations of these interaction peaks will be discussed, as well as the role of sorbitol as a cryoprotectant during the freezing and drying process.
Moravcová, Dana; Carrasco-Correa, Enrique Javier; Planeta, Josef; Lämmerhofer, Michael; Wiedmer, Susanne K
2015-07-10
In this study a strategy to immobilize phospholipids onto a polymer-based stationary phase is described. Methacrylate-based monoliths in capillary format (150×0.1mm) were modified by soybean phosphatidylcholine through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide coupling to obtain stationary phases suitable to mimic cell surface membranes. The covalent coupling reaction involves the phosphate group in phospholipids; therefore, the described methodology is suitable for all types of phospholipids. Immobilization of soy bean phosphatidylcholine on the monolith was confirmed by attenuated total reflectance Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry of the fatty alcohol profile, generated upon reductive cleavage of the fatty acyl side chains of the phospholipid on the monolith surface with lithium aluminium hydride. The prepared stationary phases were evaluated through studies on the retention of low-molar mass model analytes including neutral, acidic, and basic compounds. Liquid chromatographic studies confirmed predominant hydrophobic interactions between the analytes and the synthesized stationary phase; however, electrostatic interactions contributed to the retention as well. The synthesized columns showed high stability even with fully aqueous mobile phases such as Dulbecco's phosphate-buffered saline solution. Copyright © 2015 Elsevier B.V. All rights reserved.
A stationary cylindrically symmetric spacetime which admits CTCs and its physical interpretation
Ahmed, Faizuddin
2017-11-01
Here we present a stationary cylindrically symmetric spacetime which is free from curvature divergence, and satisfy pure radiation field as matter-energy content with positive constant energy density. The metric admits circular closed timelike curves (CTCs) everywhere outside a finite region and the stability of these curves under small linear perturbations is studied, and found to be linearly stable. The metric is of type N in the Petrov classification scheme, and it has a shearfree geodesic null congruence. The physical interpretation of this solution, based on the study of the equation of the geodesic deviation, will be presented. It is demonstrated that, this solution can be understood as exact transverse gravitational waves with amplitudes Ψ4.
Energy Technology Data Exchange (ETDEWEB)
Patzelt, Heiko [Max-Planck-Institut fuer Biochemie, Am Klopferspitz (Germany); Ulrich, Anne S. [European Molecular Biology Laboratory (Germany); Egbringhoff, Hermann [Max-Planck-Institut fuer Biochemie, Am Klopferspitz (Germany); Duex, Petra; Ashurst, Jennifer; Simon, Bernd; Oschkinat, Hartmut [European Molecular Biology Laboratory (Germany); Oesterhelt, Dieter [Max-Planck-Institut fuer Biochemie, Am Klopferspitz (Germany)
1997-09-15
{sup 1}H NMR signals of the retinal moiety in detergent-solubilized bacteriorhodopsin are assigned, enabling the interpretation of NOEs within the chromophore. To achieve this, a number of differently labelled samples were prepared to test the applicability of the various assignment and distance measurement strategies. In measurements with and without light,{sup 1}H and {sup 13}C chemical shifts of the retinal in the native protein were partially assigned for both the dark- and the light-adapted states. Additionally, samples with residue-specific{sup 1}H amino acids and/or retinal in an otherwise deuterated protein were prepared to measure the distances between either two kinds of amino acids or between individual amino acids and the retinal moiety. With the observation of NOE within the bound retinal and between retinal and its neighbouring aminoacids, an important step towards the elucidation of distance constraints in the binding pocket of the proton pump is made.
Jang, Yunseok; Jo, Jeongdai; Woo, Kyoohee; Lee, Seung-Hyun; Kwon, Sin; Kim, Kwang-Young; Kang, Dongwoo
2017-05-01
We propose a method to fabricate a supercapacitor for smart textiles using silver (Ag) nanoparticle (NP) ink, simple spray patterning systems, and intense pulsed light (IPL) sintering systems. The Ag NP current collectors provided as high conductivity as the metal current collectors. The spray patterning technique is useful for fabricating supercapacitors because it is simple, fast, and cheap. IPL systems reduced the sintering temperature of Ag NPs and prevented thermal damage to the textiles during the Ag NP sintering process. The two-dimensional (2D) all-solid state fabric supercapacitor with an interdigitated configuration, developed here, exhibited a specific capacitance of 25.7 F/g and an energy density of 1.5 Wh/kg at a power density of 64.3 W/kg. These results support the utility of our proposed method in the development of energy textiles.
Energy Technology Data Exchange (ETDEWEB)
Kumar Mahapatra, Ajit, E-mail: mahapatra574@gmail.co [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Sahoo, Prithidipa; Goswami, Shyamaprosad [Department of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711103 (India); Fun, Hoong-Kun [X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia)
2011-01-15
Studies concentrating on hydrogen bonding interactions between 2-amino-4-methylpyrimidine (AMPY) with selected dicarboxylic acids have been investigated in the solid state. Two pyrimidinium-dicarboxylate organic salts with stoichiometry 1:1 [AMPY: maleic acid] and 2:1 [AMPY:D(+)-malic acid] have been prepared and characterized by X-ray crystallographic analysis. Maleic and D(+)-malic acids were found to exhibit unique supramolecular polymeric structures with AMPY involving proton transfer to the specific ring nitrogen of AMPY. As an extension, AMPY has been used to build a receptor structure 1. Receptor 1 shows binding of dicarboxylic acids in CH{sub 3}CN and represents a marginal selectivity with D(+)-malic acid. Binding interactions were investigated by UV-vis and fluorescence studies.
Effect of a solid solution on the steady-state creep behavior of an aluminum matrix composite
Energy Technology Data Exchange (ETDEWEB)
Pandey, A.B.; Mahajan, Y.R. [Defence Metallurgical Research Lab., Hyderabad (India); Mishra, R.S. [Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science
1996-02-01
The effect of an alloying element, 4 wt pct Mg, on the steady-state creep behavior of an Al-10 vol pct SiC{sub p} composite has been studied. The Al-4 wt pct Mg-10 vol pct SiC{sub p} composite has been tested under compression creep in the temperature range 573 to 673 K. The steady-state creep data of the composite show a transition in the creep behavior (regions 1 and 2) depending on the applied stress at 623 and 673 K. The low stress range data (region 1) exhibit a stress exponent of about 7 and an activation energy of 76.5 kJ mol{sup {minus}1}. These values conform to the dislocation-climb-controlled creep model with pipe diffusion as a rate-controlling mechanism. The intermediate stress range data (region 2) exhibit high and variable apparent stress exponents, 18 to 48, and activation energy, 266 kJ mol{sup {minus}1}, at a constant stress, {sigma} = 50 MPa, for creep of this composite. This behavior can be rationalized using a substructure-invariant model with a stress exponent of 8 and an activation energy close to the lattice self-diffusion of aluminum together with a threshold stress. The threshold stress and the creep strength of the Al-Mg-SiC{sub p} composite are compared with those of the Al-Mg-Al{sub 2}O{sub 3f} and 6061 Al-SiC{sub p,w} composites and discussed in terms of the load-transfer mechanism. Magnesium has been found to be very effective in improving the creep resistance of the Al-SiC{sub p} composite.
Non-Stationary Dependence Structures for Spatial Extremes
Huser, Raphaël
2016-03-03
Max-stable processes are natural models for spatial extremes because they provide suitable asymptotic approximations to the distribution of maxima of random fields. In the recent past, several parametric families of stationary max-stable models have been developed, and fitted to various types of data. However, a recurrent problem is the modeling of non-stationarity. In this paper, we develop non-stationary max-stable dependence structures in which covariates can be easily incorporated. Inference is performed using pairwise likelihoods, and its performance is assessed by an extensive simulation study based on a non-stationary locally isotropic extremal t model. Evidence that unknown parameters are well estimated is provided, and estimation of spatial return level curves is discussed. The methodology is demonstrated with temperature maxima recorded over a complex topography. Models are shown to satisfactorily capture extremal dependence.
Discriminative Non-Linear Stationary Subspace Analysis for Video Classification.
Baktashmotlagh, Mahsa; Harandi, Mehrtash; Lovell, Brian C; Salzmann, Mathieu
2014-12-01
Low-dimensional representations are key to the success of many video classification algorithms. However, the commonly-used dimensionality reduction techniques fail to account for the fact that only part of the signal is shared across all the videos in one class. As a consequence, the resulting representations contain instance-specific information, which introduces noise in the classification process. In this paper, we introduce non-linear stationary subspace analysis: a method that overcomes this issue by explicitly separating the stationary parts of the video signal (i.e., the parts shared across all videos in one class), from its non-stationary parts (i.e., the parts specific to individual videos). Our method also encourages the new representation to be discriminative, thus accounting for the underlying classification problem. We demonstrate the effectiveness of our approach on dynamic texture recognition, scene classification and action recognition.
Recent development of ionic liquid stationary phases for liquid chromatography.
Shi, Xianzhe; Qiao, Lizhen; Xu, Guowang
2015-11-13
Based on their particular physicochemical characteristics, ionic liquids have been widely applied in many fields of analytical chemistry. Many types of ionic liquids were immobilized on a support like silica or monolith as stationary phases for liquid chromatography. Moreover, different approaches were developed to bond covalently ionic liquids onto the supporting materials. The obtained ionic liquid stationary phases show multi-mode mechanism including hydrophobic, hydrophilic, hydrogen bond, anion exchange, π-π, and dipole-dipole interactions. Therefore, they could be used in different chromatographic modes including ion-exchange, RPLC, NPLC and HILIC to separate various classes of compounds. This review mainly summarizes the immobilized patterns and types of ionic liquid stationary phases, their retention mechanisms and applications in the recent five years. Copyright © 2015 Elsevier B.V. All rights reserved.
Non-Stationary Internal Tides Observed with Satellite Altimetry
Ray, Richard D.; Zaron, E. D.
2011-01-01
Temporal variability of the internal tide is inferred from a 17-year combined record of Topex/Poseidon and Jason satellite altimeters. A global sampling of along-track sea-surface height wavenumber spectra finds that non-stationary variance is generally 25% or less of the average variance at wavenumbers characteristic of mode-l tidal internal waves. With some exceptions the non-stationary variance does not exceed 0.25 sq cm. The mode-2 signal, where detectable, contains a larger fraction of non-stationary variance, typically 50% or more. Temporal subsetting of the data reveals interannual variability barely significant compared with tidal estimation error from 3-year records. Comparison of summer vs. winter conditions shows only one region of noteworthy seasonal changes, the northern South China Sea. Implications for the anticipated SWOT altimeter mission are briefly discussed.
On Maximal Hard-Core Thinnings of Stationary Particle Processes
Hirsch, Christian; Last, Günter
2017-12-01
The present paper studies existence and distributional uniqueness of subclasses of stationary hard-core particle systems arising as thinnings of stationary particle processes. These subclasses are defined by natural maximality criteria. We investigate two specific criteria, one related to the intensity of the hard-core particle process, the other one being a local optimality criterion on the level of realizations. In fact, the criteria are equivalent under suitable moment conditions. We show that stationary hard-core thinnings satisfying such criteria exist and are frequently distributionally unique. More precisely, distributional uniqueness holds in subcritical and barely supercritical regimes of continuum percolation. Additionally, based on the analysis of a specific example, we argue that fluctuations in grain sizes can play an important role for establishing distributional uniqueness at high intensities. Finally, we provide a family of algorithmically constructible approximations whose volume fractions are arbitrarily close to the maximum.
Inference for local autocorrelations in locally stationary models.
Zhao, Zhibiao
2015-04-01
For non-stationary processes, the time-varying correlation structure provides useful insights into the underlying model dynamics. We study estimation and inferences for local autocorrelation process in locally stationary time series. Our constructed simultaneous confidence band can be used to address important hypothesis testing problems, such as whether the local autocorrelation process is indeed time-varying and whether the local autocorrelation is zero. In particular, our result provides an important generalization of the R function acf() to locally stationary Gaussian processes. Simulation studies and two empirical applications are developed. For the global temperature series, we find that the local autocorrelations are time-varying and have a "V" shape during 1910-1960. For the S&P 500 index, we conclude that the returns satisfy the efficient-market hypothesis whereas the magnitudes of returns show significant local autocorrelations.
Directory of Open Access Journals (Sweden)
Cherry Galatia Ballangan
2002-01-01
Full Text Available Bonus-Malus System is a system in actuary that introduce the premium class (state partition, where the state is influenced by the number of annual claims reported by the policy holder. We could base the determination of the state on the stationary distribution that represent the number of policy holders in any state. Swiss Bonus-Malus System has 22 state. The number of state that involved in this system result in the difficulty of stationary distribution determination. Therefore, the aim of this paper is to study a method to obtain stationary distribution of Swiss Bonus-Malus System by recursive formula, with this recursive formula, the stationary distribution of Swiss Bonus-Malus System can be determined easier. Modification of this system with infinite state result in the changes of recursive formula to obtain the stationary. This changes including the determining of base value of the recursive formula. Abstract in Bahasa Indonesia : Sistem Bonus-Malus merupakan sistem dalam aktuaria yang memperkenalkan pembagian kelas premi (state yang dipengaruhi oleh jumlah klaim yang diajukan oleh pemegang polis tiap tahunnya. Penetapan state dalam sistem ini didasarkan pada pencarian sebaran stasioner yang menyatakan banyaknya pemegang polis dalam tiap state. Sistem Bonus-Malus Swiss (BMS memiliki 22 state. Banyaknya state yang terlibat dalam sistem ini mengakibatkan sulitnya penentuan sebaran stasioner pada sistem BMS tersebut. Karena itu dalam tulisan ini dipelajari suatu metode penentuan sebaran stasioner dari sistem BMS tersebut, yaitu dengan menggunakan formula rekursif. Dengan formula rekursif ini, sebaran stasioner sistem BMS dapat ditentukan dengan mudah. Modifikasi sistem BMS untuk jumlah state yang tak hingga mengakibatkan perubahan pada formula rekursif untuk mencari sebaran stasionernya. Perubahan ini meliputi penetapan nilai awal dari formula rekursif tersebut. Kata kunci: sebaran stasioner, formula rekursif, sistem Monus-Malus Swiss.
Binding of CO and NH3 at a five-coordinate Ru(II) centre in the solid state and in solution.
Ma, Erin S F; Mudalige, Dona C; James, Brian R
2013-10-07
The known five-coordinate, square-pyramidal, green trans-RuCl2(P-N)(PR3) complexes (P-N = o-diphenylphosphino-N,N'-dimethylaniline; R = Ph (1a), p-tolyl), in the solid state at ambient conditions, or in CDCl3 solution at low temperatures, coordinate CO (at 1 atm) to form beige-coloured trans-monocarbonyl derivatives. In the solution reactions at room temperature, the PR3 ligand dissociates and the yellow dicarbonyl complex RuCl2(CO)2(P-N) is formed as a mixture of trans,cis- and cis,cis-isomers. With use of (13)CO, the carbonyls complexes are characterized by variable temperature NMR and IR data, and (for the monocarbonyls) elemental analyses. Similarly, 1a and the dibromo analogue (1b) in the solid state bind NH3 to form the beige trans-monoammine species RuX2(P-N)(PPh3)(NH3), trans-4a (X = Cl) and trans-4b (X = Br), with cis P-atoms. The solution NH3 reactions, however, generate a species, speculatively thought to be the unusual, tight ion-pair, bisammine species [RuX(P-N)(PPh3)(NH3)2···X], 5a (X = Cl) and 5b (X = Br), in which a halide is considered strongly H-bonded to the cis-ammine ligands, although an alternative RuX(P-N)(PPh3)(NH3)2 formulation with a monodentate P-N ligand cannot be ruled out; dissolution in CDCl3 of isolated 5a and 5b, which are characterized by NMR, elemental analysis, and conductivity data, results in a partial, reversible loss of NH3 to form some cis- and trans-4a or -4b, respectively. Treatment of 5a with one mole equivalent of NH4PF6 in acetone solution removes the H-bonded chloride to give [RuCl(P-N)(PPh3)(NH3)2]PF6 (6), and this is converted by thermal loss of NH3 to generate the extremely air-sensitive, five-coordinate, ionic species [RuCl(P-N)(PPh3)(NH3)]PF6 (7). NMR evidence is presented for formation of the tris(ammine) species [Ru(P-N)(PPh3)(NH3)3](PF6)2 (8) via treatment of trans-RuCl2(P-N)(PPh3) with an atmosphere of NH3 in the presence of 2 mole equivalents of NH4PF6.
Uwemedimo, Omolara T; Arora, Gitanjli; Russ, Christiana M
2016-10-01
This paper provides a brief overview of the current landscape of global child health and the impact of social determinants on the world's children. In the United States (US), global child health (GCH) has increasingly been highlighted as a priority area by national organizations, such as the National Academy of Medicine and American Academy of Pediatrics, as well as individual pediatricians committed to ensuring the health of all children regardless of geographic location. Although GCH is commonly used to refer to the health of children outside of the US, here, we highlight the recent call for GCH to also include care of US vulnerable children. Many of the lessons learned from abroad can be applied to pediatrics domestically by addressing social determinants that contribute to health disparities. Using the 'three-delay' framework, effective global health interventions target delays in seeking, accessing, and/or receiving adequate care. In resource-limited, international settings, novel health system strengthening approaches, such as peer groups, community health workers, health vouchers, cultural humility training, and provision of family-centered care, can mitigate barriers to healthcare and improve access to medical services. The creative use of limited resources for pediatric care internationally may offer insight into effective strategies to address health challenges that children face here in the US. The growing number of child health providers with clinical experience in resource-limited, low-income countries can serve as an unforeseen yet formidable resource for improving pediatric care in underserved US communities.
Simulation of dust streaming in toroidal traps: Stationary flows
Energy Technology Data Exchange (ETDEWEB)
Reichstein, Torben; Piel, Alexander [IEAP, Christian-Albrechts-Universitaet, D-24098 Kiel (Germany)
2011-08-15
Molecular-dynamic simulations were performed to study dust motion in a toroidal trap under the influence of the ion drag force driven by a Hall motion of the ions in E x B direction, gravity, inter-particle forces, and friction with the neutral gas. This article is focused on the inhomogeneous stationary streaming motion. Depending on the strength of friction, the spontaneous formation of a stationary shock or a spatial bifurcation into a fast flow and a slow vortex flow is observed. In the quiescent streaming region, the particle flow features a shell structure which undergoes a structural phase transition along the flow direction.
Directory of Open Access Journals (Sweden)
David J. Williams
2003-07-01
Full Text Available Detailed crystal structures and 1H-NMR characteristics of some alkylaminephthalimides, including dendritic polyphthalimides, are reported. These investigations were undertaken in order to obtain a better understanding of the relationship between solid-state supramolecular interactions, their persistence in solution and associated dynamics of magnetically hypersensitive phthalimide aromatic AA'BB'-AA'XX' proton NMR resonances. Some alkylamine phthalimides feature folded molecular geometries, which we attribute to n-ÃÂ€ interactions among proximal amine-phthalimide sites; those alkylamine-phthalimides that have no possibility for such interactions feature fully extended phthalimide functionalities. Accordingly, alkylamine phthalimide compounds with folded solid-state geometries feature solvent and temperature dependent hypersensitive AA'BB'-AA'XX' 1H-NMR line profiles, which we attribute to the n-ÃÂ€ interactions. Luminescence of Eu3+(5D0 and Tb3+(5D4 states show well defined metal ion environments in their complexes with dendritic phthalimides, as well as relatively weak phthalimide-lanthanide(III interactions.
Reliability of valve-regulated lead-acid batteries for stationary applications.
Energy Technology Data Exchange (ETDEWEB)
De Anda, Mindi Farber (Energetics Inc., Washington, DC); Butler, Paul Charles; Miller, Jennifer L (Energetics Inc., Washington, DC); Moseley, Patrick T. (International Lead Zinc Research Organization, Research Triangle Park, NC)
2004-03-01
A survey has been carried out to quantify the performance and life of over 700,000 valve-regulated lead-acid (VRLA) cells, which have been or are being used in stationary applications across the United States. The findings derived from this study have not identified any fundamental flaws of VRLA battery technology. There is evidence that some cell designs are more successful in float duty than others. A significant number of the VRLA cells covered by the survey were found to have provided satisfactory performance.
Adiabatic pumping solutions in global AdS
Carracedo, Pablo; Mas, Javier; Musso, Daniele; Serantes, Alexandre
2017-05-01
We construct a family of very simple stationary solutions to gravity coupled to a massless scalar field in global AdS. They involve a constantly rising source for the scalar field at the boundary and thereby we name them pumping solutions. We construct them numerically in D = 4. They are regular and, generically, have negative mass. We perform a study of linear and nonlinear stability and find both stable and unstable branches. In the latter case, solutions belonging to different sub-branches can either decay to black holes or to limiting cycles. This observation motivates the search for non-stationary exactly timeperiodic solutions which we actually construct. We clarify the role of pumping solutions in the context of quasistatic adiabatic quenches. In D = 3 the pumping solutions can be related to other previously known solutions, like magnetic or translationally-breaking backgrounds. From this we derive an analytic expression.
Energy Technology Data Exchange (ETDEWEB)
Hallaoui, A.; Taoufyq, A. [IM2NP, UMR CNRS 7334, University of Toulon, BP20132, 83957 La Garde (France); LME, Faculty of Sciences, University Ibn Zohr, 80000 Agadir (Morocco); Arab, M. [IM2NP, UMR CNRS 7334, University of Toulon, BP20132, 83957 La Garde (France); Bakiz, B.; Benlhachemi, A.; Bazzi, L. [LME, Faculty of Sciences, University Ibn Zohr, 80000 Agadir (Morocco); Valmalette, J-C.; Villain, S.; Guinneton, F. [IM2NP, UMR CNRS 7334, University of Toulon, BP20132, 83957 La Garde (France); Gavarri, J-R., E-mail: gavarri.jr@univ-tln.fr [IM2NP, UMR CNRS 7334, University of Toulon, BP20132, 83957 La Garde (France)
2016-07-15
Highlights: • The solid solution Sr{sub (1-x)}Pb{sub (x)}MoO{sub 4} is characterized by X-ray diffraction. • Raman spectroscopy confirm that the solid solution is disordered. • Photoluminescence experiments are carried out under X-ray excitation. • Emission bands can be decomposed into four components between 2.1 and 2.9 eV. • The intensities of emission bands reach a maximum for 0.1 < x < 0.4. - Abstract: In this paper, strontium lead molybdate Sr{sub 1-x}Pb{sub x}MoO{sub 4} polycrystalline samples with 0 ≤ x ≤ 1 were prepared by solid state preparation method at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and micro-Raman spectroscopy. Their photoluminescence responses were analyzed under X-ray excitation. Rietveld refinements indicate that all the materials present a scheelite-type tetragonal structure. Micro-Raman spectra confirmed the formation of the solid solution with a specific effect due to Sr-O-Mo and Pb-O-Mo links in the scheelite structure. SEM images showed modifications in the shapes and grain sizes as x increased. Broad photoluminescent emission bands were observed in the energy range 2.1–2.9 eV. The emission bands were decomposed into four gaussian components. The intensities of all components presented a strong maximum in the composition range 0.1 < x < 0.4.
The stationary configuration of the knee.
Kim, Wangdo; Veloso, Antonio P; Vleck, Veronica E; Andrade, Carlos; Kohles, Sean S
2013-01-01
Ligaments and cartilage contact contribute to the mechanical constraints in the knee joints. However, the precise influence of these structural components on joint movement, especially when the joint constraints are computed using inverse dynamics solutions, is not clear. We present a mechanical characterization of the connections between the infinitesimal twist of the tibia and the femur due to restraining forces in the specific tissue components that are engaged and responsible for such motion. These components include the anterior cruciate, posterior cruciate, medial collateral, and lateral collateral ligaments and cartilage contact surfaces in the medial and lateral compartments. Their influence on the bony rotation about the instantaneous screw axis is governed by restraining forces along the constraints explored using the principle of reciprocity. Published kinetic and kinematic joint data (American Society of Mechanical Engineers Grand Challenge Competition to Predict In Vivo Knee Loads) are applied to define knee joint function for verification using an available instrumented knee data set. We found that the line of the ground reaction force (GRF) vector is very close to the axis of the knee joint. It aligns the knee joint with the GRF such that the reaction torques are eliminated. The reaction to the GRF will then be carried by the structural components of the knee instead. The use of this reciprocal system introduces a new dimension of foot loading to the knee axis alignment. This insight shows that locating knee functional axes is equivalent to the static alignment measurement. This method can be used for the optimal design of braces and orthoses for conservative treatment of knee osteoarthritis.
Relative Stability of FE and AFE States in (Na0,5Bi0,5) TiO3-based Solid Solutions
Sobolev, V. L.; Ishchuk, V. M.; Gusakova, L. G.; Kisel, N. G.; Kuzenko, D. V.; Spiridonov, N. A.
2015-03-01
Changes of the relative stability of antiferroelectric (AFE) and ferroelectric (FE) phases in the [(Na0.5Bi0.5)0.80 Ba0.20](Ti1-yBy) O3 system of solid solutions with the B-site ion substitutions have been studied. Ions of zirconium and tin along some ions complexes such as (InNb), (FeNb) and several others were used for substitutions. The increase in the substituent ion content leads to nearly linear variation of the crystal cell size along with changes of the relative stability of the AFE and FE phases according to the tolerance factor variation. Substituent ions with ionic radii larger than the ionic radius of original ion evoke a decrease of the FE-AFE phase transition temperature. The substituent ions with smaller ionic radii have the opposite effect. Our results demonstrate that the size of the substituent ion causes a predominant influence on the relative stability of the FE and AFE states in (Na0.5Bi0.5) TiO3-based solid solutions. Our studies also indicate the way to raise the FE-AFE phase transition temperature.
Solid state chemical model for the solubility behaviour of CaCO/sub 3/-MgCO/sub 3/ solid solutions
Energy Technology Data Exchange (ETDEWEB)
Driessens, F.C.M.; Verbeck, R.M.H.
1981-08-01
Mg-calcite can contain up to about 6 mol-% MgCO/sub 3/, dolomite between 40 and 51%. Solid solutions of CaCO/sub 3/ and MgCO/sub 3/ are unstable between 20 and 30 mol-% MgCO/sub 3/. The thermodynamic stability of dolomite with respect to calcite and magnesite amounts to about -6.8 kJ mol/sup -1/. It is shown that both the thermodynamical properties and the solubility behaviour of these solids can be explained with a solid-state chemical model based on the theory of subregular solid solutions. Evaluations of the parameters of the model resulted in a critical cluster size of about one unit cell for the dolomite structure. The fact that normal sea water is close to equilibrium with both calcite and dolomite means that the concentrations of Ca/sup 2 +/, Mg/sup 2 +/ and CO/sub 3//sup 2 -/ ions in sea water are restricted by fixed solubility relations.
Directory of Open Access Journals (Sweden)
Marta Pérez-Torralba
2013-10-01
Full Text Available Two novel tetrafluorinated 1,5-benzodiazepinones were synthesized and their X-ray structures determined. 6,7,8,9-Tetrafluoro-4-methyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one crystallizes in the monoclinic P21/c space group and 6,7,8,9-tetrafluoro-1,4-dimethyl-1,3-dihydro-2H-1,5-benzodiazepin-2-one in the triclinic P−1 space group. Density functional theory studies at the B3LYP/6-311++G(d,p level were carried out on these compounds and on four non-fluorinated derivatives, allowing to calculate geometries, tautomeric energies and ring-inversion barriers, that were compared with the experimental results obtained by static and dynamic NMR in solution and in solid state.
Energy Technology Data Exchange (ETDEWEB)
Zhidkov, Ivan S.; Kurmaev, Ernst Z.; Kukharenko, Andrey I.; Korotin, Danila M. [M. N. Mikheev Institute of Metal Physics, Russian Academy of Sciences-Ural Branch, S. Kovalevskoi Str. 18, 620990 Yekaterinburg (Russian Federation); Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg (Russian Federation); McLeod, John A., E-mail: jmcleod@suda.edu.cn [Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren' ai Road, Suzhou, 215123, Jiangsu (China); Korotin, Michael A. [M. N. Mikheev Institute of Metal Physics, Russian Academy of Sciences-Ural Branch, S. Kovalevskoi Str. 18, 620990 Yekaterinburg (Russian Federation); Savva, Achilleas; Choulis, Stelios A. [Molecular Electronics and Photonics Research Unit, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, Kitiou Kiprianou Str. 45, 3603 Limassol (Cyprus); Cholakh, Seif O. [Institute of Physics and Technology, Ural Federal University, Mira Str. 19, 620002 Yekaterinburg (Russian Federation)
2016-07-11
We study the low-temperature solution processed TiO{sub x} films and device structures using core level and valence X-ray photoelectron spectroscopy (XPS) and electronic structure calculations. We are able to correlate the fraction of Ti{sup 3+} present as obtained from Ti 2p core level XPS with the intensity of the defect states that appear within the band gap as observed with our valence XPS. Constructing an operating inverted organic photovoltaic (OPV) using the TiO{sub x} film as an electron selective contact may increase the fraction of Ti{sup 3+} present. We provide evidence that the number of charge carriers in TiO{sub x} can be significantly varied and this might influence the performance of inverted OPVs.
Stationary and oscillatory flow through coarse porous media
Van Gent, M.R.A.
1993-01-01
Measurements in a U-tube tunnel were carried out to study flow through coarse granular material. Tests with stationary flow and tests with oscillatory flow were done to study the differences between both. The coefficients from the extended Forchheimer equation, which is supposed to describe
Detection of Multiple Stationary Humans Using UWB MIMO Radar
Directory of Open Access Journals (Sweden)
Fulai Liang
2016-11-01
Full Text Available Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect, detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB multiple-input and multiple-output (MIMO radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR, morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls.
Study of control problems for the stationary MHD equations
Brizitskii, R. V.
2017-10-01
The optimal control problems for the stationary magnetohydrodynamic equations under inhomogeneous mixed boundary conditions for a magnetic field are considered. The role of control in control xs under study is played by normal component of the magnetic field on the part of the boundary. In the capacity of cost fucntionals quadratic tracking–type functionals for a velocity, magnetic field or pressure are taken.
Some superconcentration inequalities for extrema of stationary Gaussian Processes
Tanguy, Kevin
2015-01-01
This note is concerned with concentration inequalities for extrema of stationary Gaussian processes. It provides non-asymptotic tail inequalities which fully reflect the fluctuation rate, and as such improve upon standard Gaussian concentration. The arguments rely on the hypercontractive approach developed by Chatterjee for superconcentration variance bounds. Some statistical illustrations complete the exposition.
Stationary wave patterns in deep water | Doyle | Quaestiones ...
African Journals Online (AJOL)
ship" or an obstacle in a stream, is revisited. The wave patterns are calculated using the results of the method of stationary phase. This allows for an elegant geometrical construction in which the reciprocal polar of the wave normal diagram ...
Cointegration and Econometric Analysis of Non-Stationary Data in ...
African Journals Online (AJOL)
This is in conformity with the philosophy underlying the cointegration theory. Therefore, ignoring cointegration in non-stationary time series variables could lead to misspecification of the underlying process in the determination of corporate income tax in Nigeria. Thus, the study conclude that cointegration is greatly enhanced ...
Stationary space-periodic structures with equal diffusion coefficients
DEFF Research Database (Denmark)
Andresen, Peter Ragnar; Bache, Morten; Mosekilde, Erik
1999-01-01
The paper investigates a chemical reaction-diffusion model in an open flow system. It is shown that such a system may, with particular boundary conditions, exhibit stationary space-periodic structures even in the case of equal diffusion coefficients. This is confirmed through numerical simulations....
Detection of Multiple Stationary Humans Using UWB MIMO Radar.
Liang, Fulai; Qi, Fugui; An, Qiang; Lv, Hao; Chen, Fuming; Li, Zhao; Wang, Jianqi
2016-11-16
Remarkable progress has been achieved in the detection of single stationary human. However, restricted by the mutual interference of multiple humans (e.g., strong sidelobes of the torsos and the shadow effect), detection and localization of the multiple stationary humans remains a huge challenge. In this paper, ultra-wideband (UWB) multiple-input and multiple-output (MIMO) radar is exploited to improve the detection performance of multiple stationary humans for its multiple sight angles and high-resolution two-dimensional imaging capacity. A signal model of the vital sign considering both bi-static angles and attitude angle of the human body is firstly developed, and then a novel detection method is proposed to detect and localize multiple stationary humans. In this method, preprocessing is firstly implemented to improve the signal-to-noise ratio (SNR) of the vital signs, and then a vital-sign-enhanced imaging algorithm is presented to suppress the environmental clutters and mutual affection of multiple humans. Finally, an automatic detection algorithm including constant false alarm rate (CFAR), morphological filtering and clustering is implemented to improve the detection performance of weak human targets affected by heavy clutters and shadow effect. The simulation and experimental results show that the proposed method can get a high-quality image of multiple humans and we can use it to discriminate and localize multiple adjacent human targets behind brick walls.
Accumulation of hns mutations specifically in stationary phase in an ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Genetics; Volume 85; Issue 3. Accumulation of hns mutations specifically in stationary phase in an E. coli strain carrying an impaired rpoS locus. Stuti K. Desai S. Mahadevan. Research Note Volume 85 Issue 3 December 2006 pp 221-224 ...
On the generation techniques of axially symmetric stationary metrics
Indian Academy of Sciences (India)
On the generation techniques of axially symmetric stationary metrics. S CHAUDHURI. Department of Physics, Gushkara Mahavidyalaya, Gushkara, Burdwan 713 128, India. Address for correspondence: Chaudhuri Lane, R.K. Palli, Badamtala, Burdwan 713 101, India. MS received 18 October 2000; revised 1 June 2001.
Bipower variation for Gaussian processes with stationary increments
DEFF Research Database (Denmark)
Barndorff-Nielsen, Ole Eiler; Corcuera, José Manuel; Podolskij, Mark
2009-01-01
Convergence in probability and central limit laws of bipower variation for Gaussian processes with stationary increments and for integrals with respect to such processes are derived. The main tools of the proofs are some recent powerful techniques of Wiener/Itô/Malliavin calculus for establishing...
Energy identity for harmonic maps into standard stationary Lorentzian manifolds
Han, Xiaoli; Zhao, Liang; Zhu, Miaomiao
2017-04-01
For a harmonic map from a closed Riemann surface into a standard stationary Lorentzian manifold, we prove that its Hopf differential is holomorphic. Moreover, we prove that for a sequence of such maps with their energy uniformly bounded, the Lorentzian energy identity holds during the blow-up process.
Accumulation of hns mutations specifically in stationary phase in an ...
Indian Academy of Sciences (India)
ditions for growth such as nutrient deprivation experienced during stationary ... taneous mutants that preexisted in the exponential-phase cul- ture used for plating. The same plates on further incubation. (96 h) gave rise to additional Bgl. + mutants that ... Landini 2004) we made use of an additional rpoS. + con- trol strain that ...
Two Numerical Approaches to Stationary Mean-Field Games
Almulla, Noha
2016-10-04
Here, we consider numerical methods for stationary mean-field games (MFG) and investigate two classes of algorithms. The first one is a gradient-flow method based on the variational characterization of certain MFG. The second one uses monotonicity properties of MFG. We illustrate our methods with various examples, including one-dimensional periodic MFG, congestion problems, and higher-dimensional models.
Ceramic stationary gas turbine development. Final report, Phase 1
Energy Technology Data Exchange (ETDEWEB)
NONE
1994-09-01
This report summarizes work performed by Solar Turbines Inc. and its subcontractors during the period September 25, 1992 through April 30, 1993. The objective of the work is to improve the performance of stationary gas turbines in cogeneration through implementation of selected ceramic components.
Steady State Analysis of Stochastic Systems with Multiple Time Delays
Xu, W.; Sun, C. Y.; Zhang, H. Q.
In this paper, attention is focused on the steady state analysis of a class of nonlinear dynamic systems with multi-delayed feedbacks driven by multiplicative correlated Gaussian white noises. The Fokker-Planck equations for delayed variables are at first derived by Novikov's theorem. Then, under small delay assumption, the approximate stationary solutions are obtained by the probability density approach. As a special case, the effects of multidelay feedbacks and the correlated additive and multiplicative Gaussian white noises on the response of a bistable system are considered. It is shown that the obtained analytical results are in good agreement with experimental results in Monte Carlo simulations.
Thoracic injury metrics with side airbag: Stationary and dynamic occupants
Hallman, Jason J; Yoganandan, N; Pintar, Frank A
2010-01-01
Objective Injury risk from side airbag deployment has been assessed using stationary out-of-position occupant test protocols. However, stationary conditions may not always represent real world environments. Therefore, the objective of the present study was to evaluate the effects of torso side airbag deployment on close-proximity occupants, comparing a stationary test protocol with dynamic sled conditions. Methods Chest compression and viscous metrics were quantified from sled tests utilizing post-mortem human specimens and computational simulations with three boundary conditions: rigid wall, ideal airbag interaction, and close-proximity airbag deployment. PMHS metrics were quantified from chestband contour reconstructions. The parametric effect of ΔV on close-proximity occupant was examined with the computational model. Results PMHS injuries suggested close-proximity occupants may sustain visceral trauma, which was not observed in occupants subjected to rigid wall or ideal airbag boundary conditions. Peak injury metrics were also elevated with close-proximity occupant relative to other boundary conditions. The computational model indicated decreasing influence of airbag on compression metrics with increasing ΔV. Airbag influence on viscous metric was greatest with close-proximity occupant at ΔV = 7.0 m/s, at which the response magnitude was greater than linear summation of metrics resulting from rigid impact and stationary close-proximity interaction. Conclusions These results suggest that stationary close-proximity occupants may not represent the only scenario of side airbag deployment harmful to the thoracoabdominal region. The sensitivity of the viscous metric and implications for visceral trauma are also discussed. PMID:20730691
Heterophase states and domain effects in solid solutions of (1 - x)BiFeO3 - xPbTiO3
Topolov, V. Yu.
2012-05-01
Examples of heterophase states in multiferroic solid solutions of (1 - x)BiFeO3 - xPbTiO3 with the perovskite-type structure are studied taking into account the features of elastic matching of polydomain (twinned) ferroelectric phases near the morphotropic phase boundary and in a wide temperature range. Conditions for the complete stress relief are examined in the heterophase states P4mm-P4mm and P4mm-Cc to interpret variations of the phase content [S. Bhattacharjee et al., Phys. Rev. B 84, 104116 (2011)] [S. Bhattacharjee and D. Pandey, J. Appl. Phys. 110, 084105 (2011)] in (1-x)BiFeO3-xPbTiO3. The key role of some 90° domain types of the low-temperature ferroelectric P4mm phase in the stress relief at the phase coexistence is emphasized. An agreement between the evaluated and experimental data on the volume fraction of the low-temperature P4mm phase in heterophase samples is observed.
Verly, Rodrigo M; de Moraes, Cléria Mendonça; Resende, Jarbas M; Aisenbrey, Christopher; Bemquerer, Marcelo Porto; Piló-Veloso, Dorila; Valente, Ana Paula; Almeida, Fábio C L; Bechinger, Burkhard
2009-03-18
DD K, a peptide first isolated from the skin secretion of the Phyllomedusa distincta frog, has been prepared by solid-phase chemical peptide synthesis and its conformation was studied in trifluoroethanol/water as well as in the presence of sodium dodecyl sulfate and dodecylphosphocholine micelles or small unilamellar vesicles. Multidimensional solution NMR spectroscopy indicates an alpha-helical conformation in membrane environments starting at residue 7 and extending to the C-terminal carboxyamide. Furthermore, DD K has been labeled with (15)N at a single alanine position that is located within the helical core region of the sequence. When reconstituted into oriented phosphatidylcholine membranes the resulting (15)N solid-state NMR spectrum shows a well-defined helix alignment parallel to the membrane surface in excellent agreement with the amphipathic character of DD K. Proton-decoupled (31)P solid-state NMR spectroscopy indicates that the peptide creates a high level of disorder at the level of the phospholipid headgroup suggesting that DD K partitions into the bilayer where it severely disrupts membrane packing.
Stationary and on-board storage systems to enhance energy and cost efficiency of tramways
Ceraolo, M.; Lutzemberger, G.
2014-10-01
Nowadays road transportation contributes in a large amount to the urban pollution and greenhouse gas emissions. One solution in urban environment, also in order to mitigate the effects of traffic jams, is the use of tramways. The most important bonus comes from the inherent reversibility of electric drives: energy can be sent back to the electricity source, while braking the vehicle. This can be done installing some storage device on-board trains, or in one or more points of the supply network. This paper analyses and compares the following variants: Stationary high-power lithium batteries. Stationary supercapacitors. High-power lithium batteries on-board trains. Supercapacitors on-board trains. When the storage system is constituted by a supercapacitor stack, it is mandatory to interpose between it and the line a DC/DC converter. On the contrary, the presence of the converter can be avoided, in case of lithium battery pack. This paper will make an evaluation of all these configurations, in a realistic case study, together with a cost/benefit analysis.
Stationary cuvette: a new approach to obtaining analytical curves by UV-VIS spectrophotometry.
Silva, K G H; Júnior, F H Xavier; Farias, I E G; Silva, A K A; Neto, J A Caldas; Souza, L C A; Santiago, R R; Júnior, F Alexandrino; Júnior, T Nagashima; Soares, L A L; Santos-Magalhães, N S; Egito, E S T
2009-01-01
Investigations in the field of pharmaceutical analysis and quality control of medicines require analytical procedures that achieve suitable performance. An analytical curve is one of the most important steps in the chemical analysis presenting a direct relationship to features such as linearity. This study has the aim of developing a new methodology, the stationary cuvette, to derive analytical curves by spectroscopy for drug analysis. The method consists basically of the use of a cuvette with a path length of 10 cm, containing a constant volume of solvent in which increasing amounts of a stock solution of the sample are added, droplet by droplet. After each addition, the cuvette is stirred and the absorbance is measured. This procedure was compared with the currently used methodology, which requires a labour-intensive dilution process, and possible sources of variation between them were evaluated. The results demonstrated that the proposed technique presented high sensitivity and similar reproducibility compared with the conventional methodology. In addition, a number of advantages were observed, such as user-friendliness, cost-effectiveness, accuracy, precision and robustness. The stationary cuvette approach may be considered to be an appropriate alternative to derive analytical curves for analysing drug content in raw materials and medicines through UV-VIS spectrophotometry.
Bacteriophage T4 Infection of Stationary Phase E. coli: Life after Log from a Phage Perspective
Directory of Open Access Journals (Sweden)
Elizabeth Martin Kutter
2016-09-01
Full Text Available Virtually all studies of phage infections investigate bacteria growing exponentially in rich media. In nature, however, phages largely encounter non-growing cells. Bacteria entering stationary phase often activate well-studied stress defense mechanisms that drastically alter the cell, facilitating its long-term survival. An understanding of phage-host interactions in such conditions is of major importance from both an ecological and therapeutic standpoint. Here, we show that bacteriophage T4 can efficiently bind to, infect and kill E. coli in stationary phase, both in the presence and absence of a functional stationary-phase sigma factor, and explore the response of T4-infected stationary phase cells to the addition of fresh nutrients 5 or 24 hours after that infection. An unexpected new mode of response has been identified. Hibernation mode is a persistent but reversible dormant state in which the infected cells make at least some phage enzymes, but halt phage development until appropriate nutrients become available before producing phage particles. Our evidence indicates that the block in hibernation mode occurs after the middle-mode stage of phage development; host DNA breakdown and the incorporation of the released nucleotides into phage DNA indicate that the enzymes of the nucleotide synthesizing complex, under middle-mode control, have been made and assembled into a functional state. Once fresh glucose and amino acids become available, the standard lytic infection process rapidly resumes and concentrations of up to 1011 progeny phage (an average of about 40 phage per initially-present cell are produced. All evidence is consistent with the hibernation-mode control point lying between middle mode and late mode T4 gene expression. We have also observed a scavenger response, where the infecting phage takes advantage of whatever few nutrients are available to produce small quantities of progeny within 2 to 5 hours after infection. The scavenger
Heat-transfer characteristics of flowing and stationary particle-bed-type fusion-reactor blankets
Energy Technology Data Exchange (ETDEWEB)
Nietert, R.E.
1983-02-01
The following five appendices are included: (1) physical properties of materials, (2) thermal entrance length Nusselt number variations, (3) stationary particle bed temperature variations, (4) falling bed experimental data and calculations, and (5) stationary bed experimental data and calculations. (MOW)
Valeriani, C.; Allen, R.J.; Morelli, M.J.; Frenkel, D.; Wolde, P.R. ten
2007-01-01
We present a method for computing stationary distributions for activated processes in equilibrium and nonequilibrium systems using forward flux sampling. In this method, the stationary distributions are obtained directly from the rate constant calculations for the forward and backward
CSIR Research Space (South Africa)
Ilgner, Hartmut J
2016-06-01
Full Text Available on Multiphase Technology 2016, Banff, Canada 8 – 10 June 2016 Novel instrumentation for online monitoring of stationary beds and their height for settling slurries H J Ilgner ABSTRACT: Novel instrumentation has been developed to detect stationary...
1984-03-01
variational integ,:ral wa xnndas a -. e-thod of determining, whater thie finite-difference technrdiue or thie firnite-ele:.ent technmicue --ave a mrore...boundaries (Dirich- let boundary conditions). Other boundary conditions could produce a change in the integral that is to be extremized. A method of...t (n) HII!.( - , ___ i_(3.38) The difference between successive iterations was used to calculate the percent change in temperature I a")I t (n
Directory of Open Access Journals (Sweden)
S. I. Lazarev
2015-01-01
Full Text Available Retained on a membrane solute in reverse osmosis separation of biological fluids at the surface of the membrane gradually accumulates and forms a boundary layer, where its concentration is higher than in the bulk. Increased concentration of solute in the solution at the membrane surface causes a diffusive flow of solids from the membrane surface into the bulk solution. After some time in the system t is a stationary state. A convective flow of solute to the membrane surface will be balanced by the sum of the fluxes of solute through the membrane and from the membrane surface into the bulk solution, i.e. in the case of concentration polarization is formed an edge of the diffusion layer. It is established that the concentration-polarization in reverse osmosis separation of the aqueous biological fluids biochemical production is influenced by the flow rate of solvent and the mass transfer coefficient. Experimental study allowed to characterize that by using the process of reverse osmosis can effectively divided, clear, and contaravati industrial solutions biochemical industries. Data at a rate of detention allow to evaluate the influence of concentration polarization on the efficiency of the reverse osmosis separation of industrial solutions. As a result of systematization and evaluation of experimental data and dependencies at a rate of detention found that with increasing the concentration, the rate of detention of solutes decreases. Based on the analysis and modification of the proposed equation for theoretical calculation of detention. Theoretical description of the coefficient detention accurately adequately calculated the modified equation N. V. Churaev, B. V. Deryaguin and V. M. Starov. The numerical values of the empirical coefficients, to calculate and predict the odds of arrest for a similar membrane separation processes industrial solutions. Values obtained correlation coefficients. The correlation coefficients specify that the rate of
Wavelet analysis and covariance structure of some classes of non-stationary processes
Guérin, Charles-Antoine
2000-01-01
Processes with stationary n-increments are known to be characterized by the stationarity of their continuous wavelet coefficients. We extend this result to the case of processes with stationary fractional increments and locally stationary processes. Then we give two applications of these properties. First, we derive the explicit covariance structure of processes with stationary n-increments. Second, for fractional Brownian motion, the stationarity of the fractional increments of order greater...
Testing for co-integration in vector autoregressions with non-stationary volatility
DEFF Research Database (Denmark)
Cavaliere, Giuseppe; Rahbek, Anders Christian; Taylor, Robert M.
2010-01-01
Many key macroeconomic and financial variables are characterized by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...... cases. We show that the conventional rank statistics computed as in (Johansen, 1988) and (Johansen, 1991) are potentially unreliable. In particular, their large sample distributions depend on the integrated covariation of the underlying multivariate volatility process which impacts on both the size...... and power of the associated co-integration tests, as we demonstrate numerically. A solution to the identified inference problem is provided by considering wild bootstrap-based implementations of the rank tests. These do not require the practitioner to specify a parametric model for volatility, or to assume...
Testing for Co-integration in Vector Autoregressions with Non-Stationary Volatility
DEFF Research Database (Denmark)
Cavaliere, Guiseppe; Rahbæk, Anders; Taylor, A.M. Robert
Many key macro-economic and financial variables are characterised by permanent changes in unconditional volatility. In this paper we analyse vector autoregressions with non-stationary (unconditional) volatility of a very general form, which includes single and multiple volatility breaks as special...... cases. We show that the conventional rank statistics computed as in Johansen (1988,1991) are potentially unreliable. In particular, their large sample distributions depend on the integrated covariation of the underlying multivariate volatility process which impacts on both the size and power...... of the associated co-integration tests, as we demonstrate numerically. A solution to the identified inference problem is provided by considering wild bootstrap-based implementations of the rank tests. These do not require the practitioner to specify a parametric model for volatility, nor to assume that the pattern...
Stationary ideal flow on a free surface of a given shape
DEFF Research Database (Denmark)
Tophøj, Laust Emil Hjerrild; Bohr, Tomas
2013-01-01
a covariant formulation using Riemannian geometry and we show how to include surface tension and velocity-dependent forces such as the Coriolis force. We write down explicitly the equations for cases where the surface elevation can be written as function of either Cartesian or polar coordinates in the plane......We study the stationary, ideal flow on a free fluid surface with a prescribed shape. It is demonstrated that the flow is governed by a self-contained set of equations for the surface flow field without any reference to the bulk flow. To write down these equations for arbitrary surfaces, we apply...... of orbits with transversal intersections, as well as quasi-periodic and chaotic solutions, show that not all boundary value problems are well-posed. In the particular case of unforced motion the streamlines are geodesic curves and in this case the existence of a nontrivial surface velocity field requires...
Development of a Monte-Carlo based method for calculating the effect of stationary fluctuations
DEFF Research Database (Denmark)
Pettersen, E. E.; Demazire, C.; Jareteg, K.
2015-01-01
This paper deals with the development of a novel method for performing Monte Carlo calculations of the effect, on the neutron flux, of stationary fluctuations in macroscopic cross-sections. The basic principle relies on the formulation of two equivalent problems in the frequency domain: one...... that corresponds to the real part of the neutron balance, and one that corresponds to the imaginary part. The two equivalent problems are in nature similar to two subcritical systems driven by external neutron sources, and can thus be treated as such in a Monte Carlo framework. The definition of these two...... part of the neutron balance plays a significant role and for driving fluctuations leading to neutron sources having the same sign in the two equivalent sub-critical problems. A semi-analytical diffusion-based solution is used to verily the implementation of the method on a test case representative...