WorldWideScience

Sample records for station iss missions

  1. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  2. Lightning Imaging Sensor (LIS) for the International Space Station (ISS): Mission Description and Science Goals

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    In recent years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners have developed and demonstrated space-based lightning observations as an effective remote sensing tool for Earth science research and applications. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) continues to acquire global observations of total (i.e., intracloud and cloud-to-ground) lightning after 17 years on-orbit. However, TRMM is now low on fuel, so this mission will soon be completed. As a follow on to this mission, a space-qualified LIS built as the flight spare for TRMM has been selected for flight as a science mission on the International Space Station (ISS). The ISS LIS will be flown as a hosted payload on the Department of Defense Space Test Program (STP) H5 mission, which has a January 2016 baseline launch date aboard a SpaceX launch vehicle for a 2-4 year or longer mission. The LIS measures the amount, rate, and radiant energy of total lightning over the Earth. More specifically, it measures lightning during both day and night, with storm scale resolution (approx. 4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. It has been found that lightning measured by LIS can be quantitatively related to thunderstorm and other geophysical processes. Therefore, the ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines, including weather, climate, atmospheric chemistry, and lightning physics. A unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational applications over data sparse regions such as the oceans. The ISS platform will also uniquely enable LIS to provide simultaneous and complementary observations

  3. Opals: Mission System Operations Architecture for an Optical Communications Demonstration on the ISS

    Science.gov (United States)

    Abrahamson, Matthew J.; Sindiy, Oleg V.; Oaida, Bogdan V.; Fregoso, Santos; Bowles-Martinez, Jessica N.; Kokorowski, Michael; Wilkerson, Marcus W.; Konyha, Alexander L.

    2014-01-01

    In April of 2014, the Optical PAyload for Lasercomm Science (OPALS) Flight System (FS) launched to the International Space Station (ISS) to demonstrate space-to-ground optical communications. During a planned 90-day baseline mission, the OPALS FS will downlink high quality, short duration videos to the Optical Communications Telescope Laboratory (OCTL) ground station in Wrightwood, California. Interfaces to the ISS payload operations infrastructure have been established to facilitate activity planning, hazardous laser operations, commanding, and telemetry transmission. In addition, internal processes, such as pointing prediction and data processing, satisfy the technical requirements of the mission. The OPALS operations team participates in Operational Readiness Tests (ORTs) with external partners to exercise coordination processes and train for the overall mission. The ORTs have provided valuable insight into operational considerations for the instrument on the ISS.

  4. Psychological Selection of NASA Astronauts for International Space Station Missions

    Science.gov (United States)

    Galarza, Laura

    1999-01-01

    During the upcoming manned International Space Station (ISS) missions, astronauts will encounter the unique conditions of living and working with a multicultural crew in a confined and isolated space environment. The environmental, social, and mission-related challenges of these missions will require crewmembers to emphasize effective teamwork, leadership, group living and self-management to maintain the morale and productivity of the crew. The need for crew members to possess and display skills and behaviors needed for successful adaptability to ISS missions led us to upgrade the tools and procedures we use for astronaut selection. The upgraded tools include personality and biographical data measures. Content and construct-related validation techniques were used to link upgraded selection tools to critical skills needed for ISS missions. The results of these validation efforts showed that various personality and biographical data variables are related to expert and interview ratings of critical ISS skills. Upgraded and planned selection tools better address the critical skills, demands, and working conditions of ISS missions and facilitate the selection of astronauts who will more easily cope and adapt to ISS flights.

  5. Organization, Management and Function of International Space Station (ISS) Multilateral Medical Operations

    Science.gov (United States)

    Duncan, James M.; Bogomolov, V. V.; Castrucci, F.; Koike, Y.; Comtois, J. M.; Sargsyan, A. E.

    2007-01-01

    Long duration crews have inhabited the ISS since November of 2000. The favorable medical outcomes of its missions can be largely attributed to sustained collective efforts of all ISS Partners medical organizations. In-flight medical monitoring and support, although crucial, is just a component of the ISS system of Joint Medical Operations. The goal of this work is to review the principles, design, and function of the multilateral medical support of the ISS Program. The governing documents, which describe the relationships among all ISS partner medical organizations, were evaluated, followed by analysis of the roles, responsibilities, and decision-making processes of the ISS medical boards, panels, and working groups. The degree of integration of the medical support system was evaluated by reviewing the multiple levels of the status reviews and mission assurance activities carried out throughout the last six years. The Integrated Medical Group, consisting of physicians and other essential personnel in the mission control centers represents the front-line medical support of the ISS. Data from their day-to-day activities are presented weekly at the Space Medicine Operations Team (SMOT), where known or potential concerns are addressed by an international group of physicians. A broader status review is conducted monthly to project the state of crew health and medical support for the following month, and to determine measures to return to nominal state. Finally, a comprehensive readiness review is conducted during preparations for each ISS mission. The Multilateral Medical Policy Board (MMPB) issues medical policy decisions and oversees all health and medical matters. The Multilateral Space Medicine Board (MSMB) certifies crewmembers and visitors for training and space flight to the Station, and physicians to practice space medicine for the ISS. The Multilateral Medical Operations Panel (MMOP) develops medical requirements, defines and supervises implementation of

  6. Assembling and supplying the ISS the space shuttle fulfills its mission

    CERN Document Server

    Shayler, David J

    2017-01-01

    The creation and utilization of the International Space Station (ISS) is a milestone in space exploration. But without the Space Shuttle, it would have remained an impossible dream. Assembling and Supplying the ISS is the story of how, between 1998 and 2011, the Shuttle became the platform which enabled the construction and continued operation of the primary scientific research facility in Earth orbit. Fulfilling an objective it had been designed to complete decades before, 37 Shuttle missions carried the majority of the hardware needed to build the ISS and then acted as a ferry and supply train for early resident crews to the station. Building upon the decades of development and experience described in the companion volume Linking the Space Shuttle and Space Stations: Early Docking Technologies from Concept to Implementation, this book explores • a purpose-built hardware processing facility • challenging spacewalking objectives • extensive robotic operations • undocking a unmanned orbiter The experie...

  7. Leadership Challenges in ISS Operations: Lessons Learned from Junior and Senior Mission Control Personnel

    Science.gov (United States)

    Clement, James L.; Ritsher, Jennifer Boyd; Saylor, Stephanie A.; Kanas, Nick

    2006-01-01

    The International Space Station (ISS) is operated by a multi-national, multi-organizational team that is dispersed across multiple locations, time zones, and work schedules. At NASA, both junior and senior mission control personnel have had to find ways to address the leadership challenges inherent in such work, but neither have had systematic training in how to do so. The goals of this study were to examine the major leadership challenges faced by ISS mission control personnel and to highlight the approaches that they have found most effective to surmount them. We pay particular attention to the approaches successfully employed by the senior personnel and to the training needs identified by the junior personnel. We also evaluate the extent to which responses are consistent across the junior and senior samples. Further, we compare the issues identified by our interview survey to those identified by a standardized questionnaire survey of mission control personnel and a contrasting group of space station crewmembers. We studied a sample of 14 senior ISS flight controllers and a contrasting sample of 12 more junior ISS controllers. Data were collected using a semi-structured qualitative interview and content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. To further explore the meaning of the interview findings, we also conducted new analyses of data from a previous questionnaire study of 13 American astronauts, 17 Russian cosmonauts, and 150 U.S. and 36 Russian mission control personnel supporting the ISS or Mir space stations. The interview data showed that the survey respondents had substantial consensus on several leadership challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Interview data from the junior respondents will be presented for the first time at the meeting. The questionnaire data showed that the US mission

  8. GEROS-ISS: GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station

    DEFF Research Database (Denmark)

    Wickert, Jens; Cardellach, Estel; Bandeiras, Jorge

    2016-01-01

    GEROS-ISS stands for GNSS REflectometry, radio occultation, and scatterometry onboard the International Space Station (ISS). It is a scientific experiment, successfully proposed to the European Space Agency in 2011. The experiment as the name indicates will be conducted on the ISS. The main focus...... of GEROS-ISS is the dedicated use of signals from the currently available Global Navigation Satellite Systems (GNSS) in L-band for remote sensing of the Earth with a focus to study climate change. Prime mission objectives are the determination of the altimetric sea surface height of the oceans...

  9. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  10. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for CubeSat Deployments to Minimize Collision Risk

    Science.gov (United States)

    Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph

    2016-01-01

    The Global Precipitation Measurement Mission (GPM) is a joint U.S. and Japan mission to observe global precipitation, extending the Tropical Rainfall Measuring Mission (TRMM), which was launched by H-IIA from Tanegashima in Japan on February 28TH, 2014 directly into its 407km operational orbit. The International Space Station (ISS) is an international human research facility operated jointly by Russia and the USA from NASA's Johnson Space Center (JSC) in Houston Texas. Mission priorities lowered the operating altitude of ISS from 415km to 400km in early 2105, effectively placing both vehicles into the same orbital regime. The ISS has begun a program of deployments of cost effective CubeSats from the ISS that allow testing and validation of new technologies. With a major new asset flying at the same effective altitude as the ISS, CubeSat deployments became a serious threat to GPM and therefore a significant indirect threat to the ISS. This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  11. Radiation dosimetry onboard the International Space Station ISS

    International Nuclear Information System (INIS)

    Berger, Thomas

    2008-01-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as ''operational'' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on ''scientific'' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  12. Would Current International Space Station (ISS) Recycling Life Support Systems Save Mass on a Mars Transit?

    Science.gov (United States)

    Jones, Harry W.

    2017-01-01

    The oxygen and water are recycled on the International Space Station (ISS) to save the cost of launching their mass into orbit. Usually recycling systems are justified by showing that their launch mass would be much lower than the mass of the oxygen or water they produce. Short missions such as Apollo or space shuttle directly provide stored oxygen and water, since the needed total mass of oxygen and water is much less than that of there cycling equipment. Ten year or longer missions such as the ISS or a future moon base easily save mass by recycling while short missions of days or weeks do not. Mars transit and long Mars surface missions have an intermediate duration, typically one to one and a half years. Some of the current ISS recycling systems would save mass if used on a Mars transit but others would not.

  13. Radiation dosimetry onboard the International Space Station ISS

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Thomas [German Aerospace Center - DLR, Inst. of Aerospace Medicine, Radiation Biology, Cologne (Germany)

    2008-07-01

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long duration human space missions. The radiation environment encountered in space differs in nature front that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Therefore the determination and the control of the radiation load on astronauts is a moral obligation of the space faring nations. The requirements for radiation detectors in space are very different to that on earth. Limitations in mass, power consumption and the complex nature of the space radiation environment define and limit the overall construction of radiation detectors. Radiation dosimetry onboard the International Space Station (ISS) is accomplished to one part as 'operational' dosimetry aiming for area monitoring of the radiation environment as well as astronaut surveillance. Another part focuses on 'scientific' dosimetry aiming for a better understanding of the radiation environment and its constitutes. Various research activities for a more detailed quantification of the radiation environment as well as its distribution in and outside the space station have been accomplished in the last years onboard the ISS. The paper will focus on the current radiation detectors onboard the ISS, their results, as well as on future planned activities. (orig.)

  14. Preliminary Analysis of ISS Maintenance History and Implications for Supportability of Future Missions

    Science.gov (United States)

    Watson, Kevin J.; Robbins, William W.

    2004-01-01

    The International Space Station (ISS) enables the study of supportability issues associated with long-duration human spaceflight. The ISS is a large, complex spacecraft that must be maintained by its crew. In contrast to the Space Shuttle Orbiter vehicle, but similar to spacecraft that will be component elements of future missions beyond low-Earth orbit, ISS does not return to the ground for servicing and provisioning of spares is severely constrained by transportation limits. Although significant technical support is provided by ground personnel, all hands-on maintenance tasks are performed by the crew. It is expected that future missions to distant destinations will be further limited by lack of resupply opportunities and will, eventually, become largely independent of ground support. ISS provides an opportunity to begin learning lessons that will enable future missions to be successful. Data accumulated over the first several years of ISS operations have been analyzed to gain a better understanding of maintenance-related workload. This analysis addresses both preventive and corrective maintenance and includes all U.S segment core systems. Systems and tasks that are major contributors to workload are identified. As further experience accrues, lessons will be learned that will influence future system designs so that they require less maintenance and, when maintenance is required, it can be performed more efficiently. By heeding the lessons of ISS it will be possible to identify system designs that should be more robust and point towards advances in both technology and design that will offer the greatest return on investment.

  15. Amateur Radio on the International Space Station (ARISS) - the First Educational Outreach Program on ISS

    Science.gov (United States)

    Conley, C. L.; Bauer, F. H.; Brown, D.; White, R.

    2002-01-01

    More than 40 missions over five years will be required to assemble the International Space Station in orbit. The astronauts and cosmonauts will work hard on these missions, but they plan to take some time off for educational activities with schools. Amateur Radio on the International Space Station represents the first Educational Outreach program that is flying on ISS. NASA's Division of Education is a major supporter and sponsor of this student outreach activity on the International Space Station. This meets NASA's educational mission objective: "To inspire the next generation of explorers...as only NASA can." As the International Space Station takes its place in the heavens, the amateur radio community is doing its part by helping to enrich the experience of those visiting and living on the station as well as the students on Earth. Through ARISS (Amateur Radio on the International Space Station), students on Earth have a once in a lifetime opportunity--to talk to the crew on-board ISS. Using amateur radio equipment set up in their classroom, students get a first-hand feel of what it is like to live and work in space. Each school gets a 10 minute question and answer interview with the on-orbit crew using a ground station located in their classroom or through a remote ground station. The ARISS opportunity has proven itself as a tremendous educational boon to teachers and students. Through ARISS, students learn about orbit dynamics, Doppler shift, radio communications, and working with the press. Since its first flight in 1983, amateur radio has flown on more than two-dozen space shuttle missions. Dozens of astronauts have used the predecessor program called SAREX (The Space Shuttle Amateur Radio Experiment) to talk to thousands of kids in school and to their families on Earth while they were in orbit. The primary goals of the ARISS program are fourfold: 1) educational outreach through crew contacts with schools, 2) random contacts with the amateur radio public, 3

  16. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.

    2016-12-01

    Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) and its Optical Transient Detector (OTD) predecessor that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) spanning a period from May 1995 through April 2015. As an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense (DoD) Space Test Program-Houston 5 (STP-H5) mission. The STP-H5 payload containing LIS is scheduled launch from NASA's Kennedy Space Center to the ISS in November 2016, aboard the SpaceX Cargo Resupply Services-10 (SpaceX-10) mission, installed in the unpressurized "trunk" of the Dragon spacecraft. After the Dragon is berth to ISS Node 2, the payload will be removed from the trunk and robotically installed in a nadir-viewing location on the external truss of the ISS. Following installation on the ISS, the LIS Operations Team will work with the STP-H5 and ISS Operations Teams to power-on LIS and begin instrument checkout and commissioning. Following successful activation, LIS orbital operations will commence, managed from the newly established LIS Payload Operations Control Center (POCC) located at the National Space Science Technology Center (NSSTC) in Huntsville, AL. The well-established and robust processing, archival, and distribution infrastructure used for TRMM was easily adapted to the ISS mission, assuring that lightning

  17. Utilizing the ISS Mission as a Testbed to Develop Cognitive Communications Systems

    Science.gov (United States)

    Jackson, Dan

    2016-01-01

    The ISS provides an excellent opportunity for pioneering artificial intelligence software to meet the challenges of real-time communications (comm) link management. This opportunity empowers the ISS Program to forge a testbed for developing cognitive communications systems for the benefit of the ISS mission, manned Low Earth Orbit (LEO) science programs and future planetary exploration programs. In November, 1998, the Flight Operations Directorate (FOD) started the ISS Antenna Manager (IAM) project to develop a single processor supporting multiple comm satellite tracking for two different antenna systems. Further, the processor was developed to be highly adaptable as it supported the ISS mission through all assembly stages. The ISS mission mandated communications specialists with complete knowledge of when the ISS was about to lose or gain comm link service. The current specialty mandated cognizance of large sun-tracking solar arrays and thermal management panels in addition to the highly-dynamic satellite service schedules and rise/set tables. This mission requirement makes the ISS the ideal communications management analogue for future LEO space station and long-duration planetary exploration missions. Future missions, with their precision-pointed, dynamic, laser-based comm links, require complete autonomy for managing high-data rate communications systems. Development of cognitive communications management systems that permit any crew member or payload science specialist, regardless of experience level, to control communications is one of the greater benefits the ISS can offer new space exploration programs. The IAM project met a new mission requirement never previously levied against US space-born communications systems management: process and display the orientation of large solar arrays and thermal control panels based on real-time joint angle telemetry. However, IAM leaves the actual communications availability assessment to human judgement, which introduces

  18. Exploration-Related Research on the International Space Station: Connecting Science Results to the Design of Future Missions

    Science.gov (United States)

    Rhatigan, Jennifer L.; Robinson, Julie A.; Sawin, Charles F.; Ahlf, Peter R.

    2005-01-01

    In January, 2004, the US President announced a vision for space exploration, and charged NASA with utilizing the International Space Station (ISS) for research and technology targeted at supporting the US space exploration goals. This paper describes: 1) what we have learned from the first four years of research on ISS relative to the exploration mission, 2) the on-going research being conducted in this regard, 3) our current understanding of the major exploration mission risks that the ISS can be used to address, and 4) current progress in realigning NASA s research portfolio for ISS to support exploration missions. Specifically, we discuss the focus of research on solving the perplexing problems of maintaining human health on long-duration missions, and the development of countermeasures to protect humans from the space environment, enabling long duration exploration missions. The interchange between mission design and research needs is dynamic, where design decisions influence the type of research needed, and results of research influence design decisions. The fundamental challenge to science on ISS is completing experiments that answer key questions in time to shape design decisions for future exploration. In this context, exploration-relevant research must do more than be conceptually connected to design decisions-it must become a part of the mission design process.

  19. The International Space Station (ISS) Education Accomplishments and Opportunities

    Science.gov (United States)

    Alleyne, Camille W.; Blue, Regina; Mayo, Susan

    2012-01-01

    The International Space Station (ISS) has the unique ability to capture the imaginations of both students and teachers worldwide and thus stands as an invaluable learning platform for the advancement of proficiency in research and development and education. The presence of humans on board ISS for the past ten years has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM) disciplines which will lead to an increase in quality of teachers, advancements in research and development, an increase in the global reputation for intellectual achievement, and an expanded ability to pursue unchartered avenues towards a brighter future. Over 41 million students around the world have participated in ISS-related activities since the year 2000. Projects such as the Amateur Radio on International Space Station (ARISS) and Earth Knowledge Acquired by Middle School Students (EarthKAM), among others, have allowed for global student, teacher, and public access to space through radio contacts with crewmembers and student image acquisition respectively. . With planned ISS operations at least until 2020, projects like the aforementioned and their accompanying educational materials will be available to enable increased STEM literacy around the world. Since the launch of the first ISS element, a wide range of student experiments and educational activities have been performed by each of the international partner agencies: National Aeronautics and Space Administration (NASA), Canadian Space Agency (CSA), European Space Agency (ESA), Japan Aerospace Exploration Agency (JAXA) and Russian Federal Space Agency (Roscosmos). Additionally, a number of non-participating countries, some under commercial agreements, have also participated in Station-related activities. Many of these programs still continue while others are being developed and added to the station crewmembers tasks

  20. Lightning Imaging Sensor (LIS) on the International Space Station (ISS): Launch, Installation, Activation, and First Results

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Wharton, N. A.; Stewart, M. F.; Ellett, W. T.; Koshak, W. J.; Walker, T. D.

    2017-12-01

    Over two decades, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) provided global observations of tropical lightning for an impressive 17 years before that mission came to a close in April 2015. Now a space-qualified LIS, built as the flight spare for TRMM, has been installed on the International Space Station (ISS) for a minimum two year mission following its SpaceX launch on February 19, 2017. The LIS, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission, was robotically installed in an Earth-viewing position on the outside of the ISS, providing a great opportunity to not only extend the 17-year TRMM LIS record of tropical lightning measurements but also to expand that coverage to higher latitudes missed by the TRMM mission. Since its activation, LIS has continuously observed the amount, rate, and radiant energy lightning within its field-of-view as it orbits the Earth. A major focus of this mission is to better understand the processes which cause lightning, as well as the connections between lightning and subsequent severe weather events. This understanding is a key to improving weather predictions and saving lives and property here in the United States and around the world. The LIS measurements will also help cross-validate observations from the new Geostationary Lightning Mapper (GLM) operating on NOAA's newest weather satellite GOES-16. An especially unique contribution from the ISS platform will be the availability of real-time lightning data, especially valuable for operational forecasting and warning applications over data sparse regions such

  1. The ISS flight of Richard Garriott: a template for medicine and science investigation on future spaceflight participant missions.

    Science.gov (United States)

    Jennings, Richard T; Garriott, Owen K; Bogomolov, Valery V; Pochuev, Vladimir I; Morgun, Valery V; Garriott, Richard A

    2010-02-01

    A total of eight commercial spaceflight participants have launched to the International Space Station (ISS) on Soyuz vehicles. Based on an older mean age compared to career astronauts and an increased prevalence of medical conditions, spaceflight participants have provided the opportunity to learn about the effect of space travel on crewmembers with medical problems. The 12-d Soyuz TMA-13/12 ISS flight of spaceflight participant Richard Garriott included medical factors that required preflight intervention, risk mitigation strategies, and provided the opportunity for medical study on-orbit. Equally important, Mr. Garriott conducted extensive medical, scientific, and educational payload operations during the flight. These included 7 medical experiments and a total of 15 scientific projects such as protein crystal growth, Earth observations/photography, educational projects with schools, and amateur radio. The medical studies included the effect of microgravity on immune function, sleep, bone loss, corneal refractive surgery, low back pain, motion perception, and intraocular pressure. The overall mission success resulted from non-bureaucratic agility in mission planning, cooperation with investigators from NASA, ISS, International Partners, and the Korean Aerospace Research Institute, in-flight support and leadership from a team with spaceflight and Capcom experience, and overall mission support from the ISS program. This article focuses on science opportunities that suborbital and orbital spaceflight participant flights offer and suggests that the science program on Richard Garriott's flight be considered a model for future orbital and suborbital missions. The medical challenges are presented in a companion article.

  2. The GEOFLOW experiment missions in the Fluid Science Laboratory on ISS

    Science.gov (United States)

    Picker, Gerold; Carpy, Rodrigo; Fabritius, Gerd; Dettmann, Jan; Minster, Olivier; Winter, Josef; Ranebo, Hans; Dewandre, Thierry; Castiglione, Luigi; Mazzoni, Stefano; Egbers, Christoph; Futterer, Birgit

    The GEOFLOW I experiment has been successfully performed on the International Space Sta-tion (ISS) in 2008 in the Columbus module in order to study the stability, pattern formation and transition to turbulence in a viscous incompressible fluid layer enclosed in two concentric co-rotating spheres subject to a radial temperature gradient and a radial volumetric force field. The objective of the study is the experimental investigation of large scale astrophysical and geophysical phenomena in spherical geometry stipulated by rotation, thermal convections and radial gravity fields. These systems include earth outer core or mantle convection, differen-tial rotation effects in the sun, atmosphere of gas planets as well as a variety of engineering applications. The GEOFLOW I experimental instrument consists of an experiment insert for operation in the Fluid Science Laboratory, which is part of the Columbus Module of the ISS. It was first launched in February 2008 together with Columbus Module on STS 122, operated periodically for 9 month and returned to ground after 14 month on orbit with STS 119. The primary objective was the experimental modelling of outer earth core convection flow. In order to allow for variations of the characteristic scaling for different physical phenomena, the experiment was designed and qualified for a total of nine flights to the ISS, with ground refurbishment and geometrical or fluid modification after each mission. The second mission of GEOFLOW (II) is currently under preparation in terms of hardware refurbishment and modification, as well as science parameter development in order to allow use of a new experimental model fluid with a strongly temperature dependent viscosity, a adaptation of the experimental thermal parameter range in order to provide a representative model for earth mantle convection. The GEOFLOW II instrument is foreseen to be launched with the second mission of the Eu-ropean Automated Transfer Vehicle (ATV). The flight to ISS

  3. In the footsteps of Columbus European missions to the International Space Station

    CERN Document Server

    O'Sullivan, John

    2016-01-01

    The European Space Agency has a long history of cooperating with NASA in human spaceflight, having developed the Spacelab module for carrying in the payload bay of the Space Shuttle. This book tells of the development of ESA’s Columbus microgravity science laboratory of the International Space Station and the European astronauts who work in it. From the beginning, ESA has been in close collaboration on the ISS, making a significant contribution to the station hardware. Special focus is given to Columbus and Copula as well as station resupply using the ATV. Each mission is also examined individually, creating a comprehensive picture of ESA's crucial involvement over the years. Extensive use of color photographs from NASA and ESA to depict the experiments carried out, the phases of the ISS construction, and the personal stories of the astronauts in space highlights the crucial European work on human spaceflight.

  4. Evaluating the Medical Kit System for the International Space Station(ISS) - A Paradigm Revisited

    Science.gov (United States)

    Hailey, Melinda J.; Urbina, Michelle C.; Hughlett, Jessica L.; Gilmore, Stevan; Locke, James; Reyna, Baraquiel; Smith, Gwyn E.

    2010-01-01

    Medical capabilities aboard the International Space Station (ISS) have been packaged to help astronaut crew medical officers (CMO) mitigate both urgent and non-urgent medical issues during their 6-month expeditions. Two ISS crewmembers are designated as CMOs for each 3-crewmember mission and are typically not physicians. In addition, the ISS may have communication gaps of up to 45 minutes during each orbit, necessitating medical equipment that can be reliably operated autonomously during flight. The retirement of the space shuttle combined with ten years of manned ISS expeditions led the Space Medicine Division at the NASA Johnson Space Center to reassess the current ISS Medical Kit System. This reassessment led to the system being streamlined to meet future logistical considerations with current Russian space vehicles and future NASA/commercial space vehicle systems. Methods The JSC Space Medicine Division coordinated the development of requirements, fabrication of prototypes, and conducted usability testing for the new ISS Medical Kit System in concert with implementing updated versions of the ISS Medical Check List and associated in-flight software applications. The teams constructed a medical kit system with the flexibility for use on the ISS, and resupply on the Russian Progress space vehicle and future NASA/commercial space vehicles. Results Prototype systems were developed, reviewed, and tested for implementation. Completion of Preliminary and Critical Design Reviews resulted in a streamlined ISS Medical Kit System that is being used for training by ISS crews starting with Expedition 27 (June 2011). Conclusions The team will present the process for designing, developing, , implementing, and training with this new ISS Medical Kit System.

  5. Psychosocial interactions during ISS missions

    Science.gov (United States)

    Kanas, N. A.; Salnitskiy, V. P.; Ritsher, J. B.; Gushin, V. I.; Weiss, D. S.; Saylor, S. A.; Kozerenko, O. P.; Marmar, C. R.

    2007-02-01

    Based on anecdotal reports from astronauts and cosmonauts, studies of space analog environments on Earth, and our previous research on the Mir Space Station, a number of psychosocial issues have been identified that can lead to problems during long-duration space expeditions. Several of these issues were studied during a series of missions to the International Space Station. Using a mood and group climate questionnaire that was completed weekly by crewmembers in space and personnel in mission control, we found no evidence to support the presence of predicted decrements in well-being during the second half or in any specific quarter of the missions. The results did support the predicted displacement of negative feelings to outside supervisors among both crew and ground subjects. There were several significant differences in mood and group perceptions between Americans and Russians and between crewmembers and mission control personnel. Crewmembers related cohesion to the support role of their leader, and mission control personnel related cohesion to both the task and support roles of their leader. These findings are discussed with reference to future space missions.

  6. Gene expression variations during Drosophila metamorphosis in space: The GENE experiment in the Spanish cervantes missions to the ISS

    Science.gov (United States)

    Herranz, Raul; Benguria, Alberto; Medina, Javier; Gasset, Gilbert; van Loon, Jack J.; Zaballos, Angel; Marco, Roberto

    2005-08-01

    The ISS expedition 8, a Soyuz Mission, flew to the International Space Station (ISS) to replace the two- member ISS crew during October 2003. During this crew exchanging flight, the Spanish Cervantes Scientific Mission took place. In it some biological experiments were performed among them three proposed by our Team. The third member of the expedition, the Spanish born ESA astronaut Pedro Duque, returned within the Soyuz 7 capsule carrying the experiment containing transport box after almost 11 days in microgravity. In one of the three experiments, the GENE experiment, we intended to determine how microgravity affects the gene expression pattern of Drosophila with one of the current more powerful technologies , a complete Drosophila melanogaster genome microarray (AffymetrixTM, version 1.0). Due to the constrains in the current ISS experiments, we decided to limit our experiment to the organism rebuilding processes that occurs during Drosophila metamorphosis. In addition to the ISS samples, several control experiments have been performed including a 1g Ground control parallel to the ISS flight samples, a Random Position Machine microgravity simulated control and a parallel Hypergravity (10g) experiment. Extracted RNA from the samples was used to test the differences in gene expression during Drosophila development. A preliminary analysis of the results indicates that around five hundred genes change their expression profiles, many of them belonging to particular ontology classification groups.

  7. The SOS-LUX-LAC-FLUORO-Toxicity-test on the International Space Station (ISS).

    Science.gov (United States)

    Rabbow, E; Rettberg, P; Baumstark-Khan, C; Horneck, G

    2003-01-01

    In the 21st century, an increasing number of astronauts will visit the International Space Station (ISS) for prolonged times. Therefore it is of utmost importance to provide necessary basic knowledge concerning risks to their health and their ability to work on the station and during extravehicular activities (EVA) in free space. It is the aim of one experiment of the German project TRIPLE-LUX (to be flown on the ISS) to provide an estimation of health risk resulting from exposure of the astronauts to the radiation in space inside the station as well as during extravehicular activities on one hand, and of exposure of astronauts to unavoidable or as yet unknown ISS-environmental genotoxic substances on the other. The project will (i) provide increased knowledge of the biological action of space radiation and enzymatic repair of DNA damage, (ii) uncover cellular mechanisms of synergistic interaction of microgravity and space radiation and (iii) examine the space craft milieu with highly specific biosensors. For these investigations, the bacterial biosensor SOS-LUX-LAC-FLUORO-Toxicity-test will be used, combining the SOS-LUX-Test invented at DLR Germany (Patent) with the commercially available LAC-FLUORO-Test. The SOS-LUX-Test comprises genetically modified bacteria transformed with the pBR322-derived plasmid pPLS-1. This plasmid carries the promoterless lux operon of Photobacterium leiognathi as a reporter element under control of the DNA-damage dependent SOS promoter of ColD as sensor element. This system reacts to radiation and other agents that induce DNA damages with a dose dependent measurable emission of bioluminescence of the transformed bacteria. The analogous LAC-FLUORO-Test has been developed for the detection of cellular responses to cytotoxins. It is based on the constitutive expression of green fluorescent protein (GFP) mediated by the bacterial protein expression vector pGFPuv (Clontech, Palo Alto, USA). In response to cytotoxic agents, this system

  8. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, Mitzi S.; Murray, Jocelyn D.; Wear, Mary L.; Van Baalen, Mary

    2016-01-01

    Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors.

  9. Leaders in space: Mission commanders and crew on the International Space Station

    Science.gov (United States)

    Brcic, Jelena

    Understanding the relationship between leaders and their subordinates is important for building better interpersonal connections, improving group cohesion and cooperation, and increasing task success. This relationship has been examined in many types of groups but not a great amount of analysis has been applied to spaceflight crews. We specifically investigated differences between mission commanders and flight commanders during missions to the International Space Station (ISS). Astronauts and cosmonauts on the ISS participate in long-duration missions (2 to 6 months in length) in which they live and work in close proximity with their 2 or 3 member crews. The leaders are physically distant from their command centres which may result in delay of instructions or important advice. Therefore, the leaders must be able to make quick, sound decisions with unwavering certainty. Potential complications include that the leaders may not be able to exercise their power fully, since material reward or punishment of any one member affects the whole group, and that the leader's actions (or lack thereof) in this isolated, confined environment could create stress in members. To be effective, the mission commander must be able to prevent or alleviate any group conflict and be able to relate to members on an emotional level. Mission commanders and crew are equal in the competencies of spaceflight; therefore, what are the unique characteristics that enable the commanders to fulfill their role? To highlight the differences between commander and crew, astronaut journals, diaries, pre- flight interviews, NASA oral histories, and letters written to family from space were scored and analyzed for values and coping styles. During pre-flight, mission commanders scored higher than other crew members on the values of Stimulation, Security, Universalism, Conformity, Spirituality, and Benevolence, and more often used Self-Control as a coping style. During the long-duration mission on ISS, mission

  10. International Space Station (ISS) Bacterial Filter Elements (BFEs): Filter Efficiency and Pressure Testing of Returned Units

    Science.gov (United States)

    Green, Robert D.; Agui, Juan H.; Vijayakumar, R.

    2017-01-01

    The air revitalization system aboard the International Space Station (ISS) provides the vital function of maintaining a clean cabin environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of sedimentation due to the microgravity environment in Low Earth Orbit (LEO). The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) media filters deployed at multiple locations in each U.S. Segment module; these filters are referred to as Bacterial Filter Elements, or BFEs. These filters see a replacement interval, as part of maintenance, of 2-5 years dependent on location in the ISS. In this work, we present particulate removal efficiency, pressure drop, and leak test results for a sample set of 8 BFEs returned from the ISS after filter replacement. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS beyond 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  11. Real-Time Risk and Fault Management in the Mission Evaluation Room for the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.; Novack, S.D.

    2003-05-30

    Effective anomaly resolution in the Mission Evaluation Room (MER) of the International Space Station (ISS) requires consideration of risk in the process of identifying faults and developing corrective actions. Risk models such as fault trees from the ISS Probabilistic Risk Assessment (PRA) can be used to support anomaly resolution, but the functionality required goes significantly beyond what the PRA could provide. Methods and tools are needed that can systematically guide the identification of root causes for on-orbit anomalies, and to develop effective corrective actions that address the event and its consequences without undue risk to the crew or the mission. In addition, an overall information management framework is needed so that risk can be systematically incorporated in the process, and effectively communicated across all the disciplines and levels of management within the space station program. The commercial nuclear power industry developed such a decision making framework, known as the critical safety function approach, to guide emergency response following the accident at Three Mile Island in 1979. This report identifies new methods, tools, and decision processes that can be used to enhance anomaly resolution in the ISS Mission Evaluation Room. Current anomaly resolution processes were reviewed to identify requirements for effective real-time risk and fault management. Experience gained in other domains, especially the commercial nuclear power industry, was reviewed to identify applicable methods and tools. Recommendations were developed for next-generation tools to support MER anomaly resolution, and a plan for implementing the recommendations was formulated. The foundation of the proposed tool set will be a ''Mission Success Framework'' designed to integrate and guide the anomaly resolution process, and to facilitate consistent communication across disciplines while focusing on the overriding importance of mission success.

  12. Real-Time Risk and Fault Management in the Mission Evaluation Room of the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    William R. Nelson; Steven D. Novack

    2003-05-01

    Effective anomaly resolution in the Mission Evaluation Room (MER) of the International Space Station (ISS) requires consideration of risk in the process of identifying faults and developing corrective actions. Risk models such as fault trees from the ISS Probablistic Risk Assessment (PRA) can be used to support anomaly resolution, but the functionality required goes significantly beyond what the PRA could provide. Methods and tools are needed that can systematically guide the identification of root causes for on-orbit anomalies, and to develop effective corrective actions that address the event and its consequences without undue risk to the crew or the mission. In addition, an overall information management framework is needed so that risk can be systematically incorporated in the process, and effectively communicated across all the disciplines and levels of management within the space station program. The commercial nuclear power industry developed such a decision making framework, known as the critical safety function approach, to guide emergency response following the accident at Three Mile Island in 1979. This report identifies new methods, tools, and decision processes that can be used to enhance anomaly resolution in the ISS Mission Evaluation Room. Current anomaly resolution processes were reviewed to identify requirements for effective real-time risk and fault management. Experience gained in other domains, especially the commercial nuclear power industry, was reviewed to identify applicable methods and tools. Recommendations were developed for next-generation tools to support MER anomaly resolution, and a plan for implementing the recommendations was formulated. The foundation of the proposed toolset will be a "Mission Success Framework" designed to integrate and guide the anomaly resolution process, and to facilitate consistent communication across disciplines while focusing on the overriding importance of mission success.

  13. Amateur Radio on the International Space Station - the First Operational Payload on the ISS

    Science.gov (United States)

    Bauer, F. H.; McFadin, L.; Steiner, M.; Conley, C. L.

    2002-01-01

    As astronauts and cosmonauts have adapted to life on the International Space Station (ISS), they have found Amateur Radio and its connection to life on Earth to be a constant companion and a substantial psychological boost. Since its first use in November 2000, the first five expedition crews have utilized the amateur radio station in the FGB to talk to thousands of students in schools, to their families on Earth, and to amateur radio operators around the world. Early in the development of ISS, an international organization called ARISS (Amateur Radio on the International Space Station) was formed to coordinate the construction and operation of amateur radio (ham radio) equipment on ISS. ARISS represents a melding of the volunteer teams that have pioneered the development and use of amateur radio equipment on human spaceflight vehicles. The Shuttle/Space Amateur Radio Experiment (SAREX) team enabled Owen Garriott to become the first astronaut ham to use amateur radio from space in 1983. Since then, amateur radio teams in the U.S. (SAREX), Germany, (SAFEX), and Russia (Mirex) have led the development and operation of amateur radio equipment on board NASA's Space Shuttle, Russia's Mir space station, and the International Space Station. The primary goals of the ARISS program are fourfold: 1) educational outreach through crew contacts with schools, 2) random contacts with the Amateur Radio public, 3) scheduled contacts with the astronauts' friends and families and 4) ISS-based communications experimentation. To date, over 65 schools have been selected from around the world for scheduled contacts with the orbiting ISS crew. Ten or more students at each school ask the astronauts questions, and the nature of these contacts embodies the primary goal of the ARISS program, -- to excite student's interest in science, technology and amateur radio. The ARISS team has developed various hardware elements for the ISS amateur radio station. These hardware elements have flown to ISS

  14. Unique Capabilities of the Situational Awareness Sensor Suite for the ISS (SASSI) Mission Concept to Study the Equatorial Ionosphere

    Science.gov (United States)

    Habash Krause, L.; Gilchrist, B. E.; Minow, J. I.; Gallagher, D. L.; Hoegy, W. R.; Coffey, V. N.; Willis, E. M.

    2014-12-01

    We present an overview of a mission concept named Situational Awareness Sensor Suite for the ISS (SASSI) with a special focus here on low-latitude ionospheric plasma turbulence measurements relevant to equatorial spread-F. SASSI is a suite of sensors that improves Space Situational Awareness for the ISS local space environment, as well as unique ionospheric measurements and support active plasma experiments on the ISS. As such, the mission concept has both operational and basic research objectives. We will describe two compelling measurement techniques enabled by SASSI's unique mission architecture. That is, SASSI provides new abilities to 1) measure space plasma potentials in low Earth orbit over ~100 m relative to a common potential, and 2) to investigate multi-scale ionospheric plasma turbulence morphology simultaneously of both ~ 1 cm and ~ 10 m scale lengths. The first measurement technique will aid in the distinction of vertical drifts within equatorial plasma bubbles from the vertical motions of the bulk of the layer due to zonal electric fields. The second will aid in understanding ionospheric plasma turbulence cascading in scale sizes that affect over the horizon radar. During many years of ISS operation, we have conducted effective (but not perfect) human and robotic extravehicular activities within the space plasma environment surrounding the ISS structure. However, because of the complexity of the interaction between the ISS and the space environment, there remain important sources of unpredictable environmental situations that affect operations. Examples of affected systems include EVA safety, solar panel efficiency, and scientific instrument integrity. Models and heuristically-derived best practices are well-suited for routine operations, but when it comes to unusual or anomalous events or situations, there is no substitute for real-time monitoring. SASSI is being designed to deploy and operate a suite of low-cost, medium/high-TRL plasma sensors on

  15. Lessons Learned from ISS Cooperation

    Science.gov (United States)

    Jolly, C.

    2002-01-01

    Forty years of human spaceflight activities are now culminating in the International Space Station program (ISS). The ISS involves fifteen nations, working together to create a permanently occupied orbital facility that will support scientific and potentially, commercial endeavours. The assembly of the ISS is scheduled to be completed later in this decade, after which it will be operated for at least ten years. At the strategic level, such a complex international project is highly dependent on the fifteen Partners' respective internal politics and foreign policies. On the operational level, Partners still have certain difficulties in issuing and agreeing to common technical procedures. As with almost all aspects of International Space Station cooperation, the Partners are going through a constant learning process, where they have to deal with complex political, legal and operational differences. Intergovernmental Agreement and the Memoranda of Understanding, the instruments forming the legal backbone of the International Space Station cooperation, are still lacking a fair number of arrangements that need to be created for completing and operating the Station. The whole endeavour is also a constant learning process at the operational level, as astronauts, cosmonauts, engineers and technicians on the ground with different cultural and educational backgrounds, learn to work together. One recent Space Shuttle mission to the Station showed the importance of standardising even trivial system components such as packaging labels, as it took the astronauts half a day more than planned to correctly unpack the equipment. This paper will provide a synthesis of some of the main lessons learned during the first few years of International Space Station's lifetime. Important political, legal and operational issues will be addressed and combined. This analysis will provide some guidelines and recommendations for future international space projects, such as an international human

  16. Using ISS to develop telescope technology

    Science.gov (United States)

    Saenz-Otero, Alvar; Miller, David W.

    2005-08-01

    Future space telescope missions concepts have introduced new technologies such as precision formation flight, optical metrology, and segmented mirrors. These new technologies require demonstration and validation prior to deployment in final missions such as the James Webb Space Telescope, Terrestrial Planet Finder, and Darwin. Ground based demonstrations do not provide the precision necessary to obtain a high level of confidence in the technology; precursor free flyer space missions suffer from the same problems as the final missions. Therefore, this paper proposes the use of the International Space Station as an intermediate research environment where these technologies can be developed, demonstrated, and validated. The ISS provides special resources, such as human presence, communications, power, and a benign atmosphere which directly reduce the major challenges of space technology maturation: risk, complexity, cost, remote operations, and visibility. Successful design of experiments for use aboard the space station, by enabling iterative research and supporting multiple scientists, can further reduce the effects of these challenges of space technology maturation. This paper presents results of five previous MIT Space Systems Laboratory experiments aboard the Space Shuttle, MIR, and the ISS to illustrate successful technology maturation aboard these facilities.

  17. International Space Station (ISS) Emergency Mask (EM) Development

    Science.gov (United States)

    Toon, Katherine P.; Hahn, Jeffrey; Fowler, Michael; Young, Kevin

    2011-01-01

    The Emergency Mask (EM) is considered a secondary response emergency Personal Protective Equipment (PPE) designed to provide respiratory protection to the International Space Station (ISS) crewmembers in response to a post-fire event or ammonia leak. The EM is planned to be delivered to ISS in 2012 to replace the current air purifying respirator (APR) onboard ISS called the Ammonia Respirator (AR). The EM is a one ]size ]fits ]all model designed to fit any size crewmember, unlike the APR on ISS, and uses either two Fire Cartridges (FCs) or two Commercial Off-the-Shelf (COTS) 3M(Trademark). Ammonia Cartridges (ACs) to provide the crew with a minimum of 8 hours of respiratory protection with appropriate cartridge swap ]out. The EM is designed for a single exposure event, for either post ]fire or ammonia, and is a passive device that cannot help crewmembers who cannot breathe on their own. The EM fs primary and only seal is around the wearer fs neck to prevent a crewmember from inhaling contaminants. During the development of the ISS Emergency Mask, several design challenges were faced that focused around manufacturing a leak free mask. The description of those challenges are broadly discussed but focuses on one key design challenge area: bonding EPDM gasket material to Gore(Registered Trademark) fabric hood.

  18. Innovative Sea Surface Monitoring with GNSS-Reflectometry aboard ISS: Overview and Recent Results from GEROS-ISS

    DEFF Research Database (Denmark)

    Wickert, Jens; Andersen, Ole Baltazar; Bandeiras, J.

    GEROS-ISS (GEROS hereafter) stands for GNSS REflectometry, Radio Occultation and Scatterometry onboard the International Space Station. It is a scientific experiment, proposed to the European Space Agency (ESA)in 2011 for installation aboard the ISS. The main focus of GEROS is the dedicated use o...... of signals from the currently available Global Navigation Satellite Systems (GNSS) for remote sensing of the System Earth with focus to Climate Change characterisation. The GEROS mission idea and the current status are briefly reviewed....

  19. NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data Vb0

    Data.gov (United States)

    National Aeronautics and Space Administration — The NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data were collected by the LIS instrument on the ISS used to detect the...

  20. CALET docked on the ISS

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    On 19 August, with a spectacular launch on board the Japanese H2-B rocket operated by the Japan Aerospace Exploration Agency (JAXA), the CALorimetric Electron Telescope (CALET) left the Tanegashima Space Center to reach the International Space Station five days later.   After berthing with the ISS, CALET was extracted by a robotic arm from the Japanese HTV-5 transfer vehicle and installed on the Japanese Exposure Facility (right) where it will start its first data-taking. (Image: NASA/JAXA.)   CALET is a space mission led by JAXA with the participation of the Italian Space Agency (ASI) and NASA. It is a CERN-recognised experiment and the second high-energy astroparticle experiment to be installed on the International Space Station (ISS) after AMS-02, which has been taking data since 2011. Designed to be a space observatory for long-term observations of cosmic radiation aboard the external platform JEM-EF of the Japanese module (KIBO) on the ISS, CALET aims to identify elect...

  1. An overview of NASA ISS human engineering and habitability: past, present, and future.

    Science.gov (United States)

    Fitts, D; Architecture, B

    2000-09-01

    The International Space Station (ISS) is the first major NASA project to provide human engineering an equal system engineering an equal system engineering status to other disciplines. The incorporation and verification of hundreds of human engineering requirements applied across-the-board to the ISS has provided for a notably more habitable environment to support long duration spaceflight missions than might otherwise have been the case. As the ISS begins to be inhabited and become operational, much work remains in monitoring the effectiveness of the Station's built environment in supporting the range of activities required of a long-duration vehicle. With international partner participation, NASA's ISS Operational Habitability Assessment intends to carry human engineering and habitability considerations into the next phase of the ISS Program with constant attention to opportunities for cost-effective improvements that need to be and can be made to the on-orbit facility. Too, during its operations the ISS must be effectively used as an on-orbit laboratory to promote and expand human engineering/habitability awareness and knowledge to support the international space faring community with the data needed to develop future space vehicles for long-duration missions. As future space mission duration increases, the rise in importance of habitation issues make it imperative that lessons are captured from the experience of human engineering's incorporation into the ISS Program and applied to future NASA programmatic processes.

  2. Lessons learned from the STS-120/ISS 10A robotics operations

    Science.gov (United States)

    Aziz, Sarmad

    2010-01-01

    The STS-120/ISS 10A assembly mission was an unprecedented period during the life of the International Space Stations (ISS). The successful completion of the mission laid the foundation for the launch of the European and Japanese laboratories and continued assembly of the station. Unlike previous missions that concluded when the Space Shuttle undocked from the ISS, the 10A mission required critical assembly operations to continue after the Shuttle's departure to relocate the Harmony module to its permanent location and activate its systems. The end-to-end mission lasted for almost a month and required the execution of seven space walks, over 20 major robotics operations, and countless hours of ground commanding. The Canadian built mobile servicing system (MSS) and its robotics space station remote manipulator system (SSRMS) played a key a role in the success of the assembly operations. The mission presented the ISS robotics flight control team (ROBO) with unique challenges during the pre-mission planning and real-time execution of complex assembly tasks. The mission included the relocation of the P6 truss segment from the Z1 Node to its permanent location on the P5 truss; a three day marathon of highly choreographed sequence of robotics operations and space walks, and the reconfiguration of ISS structure to attach Harmony (Node 2) to the US destiny laboratory module; a six day sequence of complex robotics operations the majority of which was executed after the departure of the shuttle and included an unprecedented amount of ground commanded robotics operations. Of all the robotics operations executed during the mission, none were more challenging than supporting the repair of a torn P6 solar array that was damaged during its deployment; a dramatic space walk that pushed the MSS and the robotics flight control team to new limits and required the real-time planning and execution of an intricate series of operations that spanned two days. This paper will present an

  3. NRT Lightning Imaging Sensor (LIS) on International Space Station (ISS) Provisional Science Data Vp0

    Data.gov (United States)

    National Aeronautics and Space Administration — The International Space Station (ISS) Lightning Imaging Sensor (LIS) datasets were collected by the LIS instrument on the ISS used to detect the distribution and...

  4. Web Design for Space Operations: An Overview of the Challenges and New Technologies Used in Developing and Operating Web-Based Applications in Real-Time Operational Support Onboard the International Space Station, in Astronaut Mission Planning and Mission Control Operations

    Science.gov (United States)

    Khan, Ahmed

    2010-01-01

    The International Space Station (ISS) Operations Planning Team, Mission Control Centre and Mission Automation Support Network (MAS) have all evolved over the years to use commercial web-based technologies to create a configurable electronic infrastructure to manage the complex network of real-time planning, crew scheduling, resource and activity management as well as onboard document and procedure management required to co-ordinate ISS assembly, daily operations and mission support. While these Web technologies are classified as non-critical in nature, their use is part of an essential backbone of daily operations on the ISS and allows the crew to operate the ISS as a functioning science laboratory. The rapid evolution of the internet from 1998 (when ISS assembly began) to today, along with the nature of continuous manned operations in space, have presented a unique challenge in terms of software engineering and system development. In addition, the use of a wide array of competing internet technologies (including commercial technologies such as .NET and JAVA ) and the special requirements of having to support this network, both nationally among various control centres for International Partners (IPs), as well as onboard the station itself, have created special challenges for the MCC Web Tools Development Team, software engineers and flight controllers, who implement and maintain this system. This paper presents an overview of some of these operational challenges, and the evolving nature of the solutions and the future use of COTS based rich internet technologies in manned space flight operations. In particular this paper will focus on the use of Microsoft.s .NET API to develop Web-Based Operational tools, the use of XML based service oriented architectures (SOA) that needed to be customized to support Mission operations, the maintenance of a Microsoft IIS web server onboard the ISS, The OpsLan, functional-oriented Web Design with AJAX

  5. Estimated Probability of Traumatic Abdominal Injury During an International Space Station Mission

    Science.gov (United States)

    Lewandowski, Beth E.; Brooker, John E.; Weavr, Aaron S.; Myers, Jerry G., Jr.; McRae, Michael P.

    2013-01-01

    The Integrated Medical Model (IMM) is a decision support tool that is useful to spaceflight mission planners and medical system designers when assessing risks and optimizing medical systems. The IMM project maintains a database of medical conditions that could occur during a spaceflight. The IMM project is in the process of assigning an incidence rate, the associated functional impairment, and a best and a worst case end state for each condition. The purpose of this work was to develop the IMM Abdominal Injury Module (AIM). The AIM calculates an incidence rate of traumatic abdominal injury per person-year of spaceflight on the International Space Station (ISS). The AIM was built so that the probability of traumatic abdominal injury during one year on ISS could be predicted. This result will be incorporated into the IMM Abdominal Injury Clinical Finding Form and used within the parent IMM model.

  6. ISS Solar Array Management

    Science.gov (United States)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  7. Evolution of International Space Station GN&C System Across ISS Assembly Stages

    Science.gov (United States)

    Lee, Roscoe; Frank, K. D. (Technical Monitor)

    1999-01-01

    The Guidance Navigation and Control (GN&C) system for the International Space Station is initially implemented by the Functional Cargo Block (FGB) which was built by the Khrunichev Space Center under direct contract to Boeing. This element (Stage 1A/R) was launched on 20 November 1998 and is currently operating on-orbit. The components and capabilities of the FGB Motion Control System (MCS) are described. The next ISS element, which has GN&C functionality will be the Service Module (SM) built by Rocket Space Corporation-Energia. This module is scheduled for launch (Stage 1R) in early 2000. Following activation of the SM GN&C system, the FGB MCS is deactivated and no longer used. The components and capabilities of the SM GN&C system are described. When a Progress vehicle is attached to the ISS it can be used for reboost operations, based on commands provided by the Mission Control Center-Moscow. When a data connection is implemented between the SM and the Progress, the SM can command the Progress thrusters for attitude control and reboosts. On Stage 5A, the U.S. GN&C system will become activated when the U.S. Laboratory is de loyed and installed (launch schedule is currently TBD). The U.S. GN&C system provides non-propulsive control capabilities to support micro-gravity operations and minimize the use of propellant for attitude control, and an independent capability for determining the ISS state vector, attitude, attitude rate. and time.. The components and capabilities of the U.S. GN&C system are described and the interactions between the U.S. and Russian Segment GN&C systems are also described.

  8. Two Shuttle crews check equipment at SPACEHAB to be used on ISS Flights

    Science.gov (United States)

    1999-01-01

    At Astrotech in Titusville, Fla., members of two Shuttle crews get a close look at components of a Russian cargo crane, the Strela, to be mounted to the exterior of the Russian station segment on the International Space Station (ISS). At left are STS-96 Mission Specialist Daniel T. Barry and Pilot Rick Douglas Husband. At center, STS-96 Mission Specialist Tamara E. Jernigan gives her attention to a technician with DaimlerChrysler while STS-101 Mission Specialist Edward Tsang Lu looks on. Both missions include the SPACEHAB Double Module, carrying internal and resupply cargo for Station outfitting. For the first time, STS-96 will include an Integrated Cargo Carrier (ICC) that will carry the Strela; the SPACEHAB Oceaneering Space System Box (SHOSS), which is a logistics items carrier; and a U.S.-built crane (ORU Transfer Device, or OTD) that will be stowed on the station for use during future ISS assembly missions. The ICC can carry up to 6,000 lb of unpressurized payload. It was built for SPACEHAB by DaimlerChrysler and RSC Energia of Korolev, Russia. STS-96 is targeted for launch on May 24 from Launch Pad 39B. STS-101 is scheduled to launch in early December 1999.

  9. ISS Logistics Hardware Disposition and Metrics Validation

    Science.gov (United States)

    Rogers, Toneka R.

    2010-01-01

    I was assigned to the Logistics Division of the International Space Station (ISS)/Spacecraft Processing Directorate. The Division consists of eight NASA engineers and specialists that oversee the logistics portion of the Checkout, Assembly, and Payload Processing Services (CAPPS) contract. Boeing, their sub-contractors and the Boeing Prime contract out of Johnson Space Center, provide the Integrated Logistics Support for the ISS activities at Kennedy Space Center. Essentially they ensure that spares are available to support flight hardware processing and the associated ground support equipment (GSE). Boeing maintains a Depot for electrical, mechanical and structural modifications and/or repair capability as required. My assigned task was to learn project management techniques utilized by NASA and its' contractors to provide an efficient and effective logistics support infrastructure to the ISS program. Within the Space Station Processing Facility (SSPF) I was exposed to Logistics support components, such as, the NASA Spacecraft Services Depot (NSSD) capabilities, Mission Processing tools, techniques and Warehouse support issues, required for integrating Space Station elements at the Kennedy Space Center. I also supported the identification of near-term ISS Hardware and Ground Support Equipment (GSE) candidates for excessing/disposition prior to October 2010; and the validation of several Logistics Metrics used by the contractor to measure logistics support effectiveness.

  10. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data Vb0

    Data.gov (United States)

    National Aeronautics and Space Administration — The Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Science Data were collected by the LIS instrument on the ISS used to...

  11. An Onboard ISS Virtual Reality Trainer

    Science.gov (United States)

    Miralles, Evelyn

    2013-01-01

    Prior to the retirement of the Space Shuttle, many exterior repairs on the International Space Station (ISS) were carried out by shuttle astronauts, trained on the ground and flown to the Station to perform these specific repairs. With the retirement of the shuttle, this is no longer an available option. As such, the need for ISS crew members to review scenarios while on flight, either for tasks they already trained for on the ground or for contingency operations has become a very critical issue. NASA astronauts prepare for Extra-Vehicular Activities (EVA) or Spacewalks through numerous training media, such as: self-study, part task training, underwater training in the Neutral Buoyancy Laboratory (NBL), hands-on hardware reviews and training at the Virtual Reality Laboratory (VRLab). In many situations, the time between the last session of a training and an EVA task might be 6 to 8 months. EVA tasks are critical for a mission and as time passes the crew members may lose proficiency on previously trained tasks and their options to refresh or learn a new skill while on flight are limited to reading training materials and watching videos. In addition, there is an increased need for unplanned contingency repairs to fix problems arising as the Station ages. In order to help the ISS crew members maintain EVA proficiency or train for contingency repairs during their mission, the Johnson Space Center's VRLab designed an immersive ISS Virtual Reality Trainer (VRT). The VRT incorporates a unique optical system that makes use of the already successful Dynamic On-board Ubiquitous Graphics (DOUG) software to assist crew members with procedure reviews and contingency EVAs while on board the Station. The need to train and re-train crew members for EVAs and contingency scenarios is crucial and extremely demanding. ISS crew members are now asked to perform EVA tasks for which they have not been trained and potentially have never seen before. The Virtual Reality Trainer (VRT

  12. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    Science.gov (United States)

    Heimann, Timothy; Larsen, Axel M.; Rose, Summer; Sgobba, Tommaso

    2005-01-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998, the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre-existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and International Space Station (ISS). The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper 1 then presents the background of ISS agreements and international treaties that had to be taken into account when establishing the ESA PSRP. The detailed franchising model will be expounded upon, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The resulting ESA PSRP implementation and its success statistics to date will then be addressed. Additionally the paper presents the ongoing developments with the Japan Aerospace Exploration Agency. The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  13. Solar panels for the International Space Station are uncrated and moved in the SSPF

    Science.gov (United States)

    1998-01-01

    In the Space Station Processing Facility, a worker (left) guides the lifting of solar panels for the International Space Station (ISS). The panels are the first set of U.S.-provided solar arrays and batteries for ISS, scheduled to be part of mission STS-97 in December 1999. The mission, fifth in the U.S. flights for construction of ISS, will build and enhance the capabilities of the Space Station. It will deliver the solar panels as well as radiators to provide cooling. The Shuttle will spend 5 days docked to the station, which at that time will be staffed by the first station crew. Two space walks will be conducted to complete assembly operations while the arrays are attached and unfurled. A communications system for voice and telemetry also will be installed.

  14. Non-Quality Controlled Lightning Imaging Sensor (LIS) on International Space Station (ISS) Provisional Science Data Vp0

    Data.gov (United States)

    National Aeronautics and Space Administration — The International Space Station (ISS) Lightning Imaging Sensor (LIS) datasets were collected by the LIS instrument on the ISS used to detect the distribution and...

  15. Development and Certification of Ultrasonic Background Noise Test (UBNT) System for use on the International Space Station (ISS)

    Science.gov (United States)

    Prosser, William H.; Madaras, Eric I.

    2011-01-01

    As a next step in the development and implementation of an on-board leak detection and localization system on the International Space Station (ISS), there is a documented need to obtain measurements of the ultrasonic background noise levels that exist within the ISS. This need is documented in the ISS Integrated Risk Management System (IRMA), Watch Item #4669. To address this, scientists and engineers from the Langley Research Center (LaRC) and the Johnson Space Center (JSC), proposed to the NASA Engineering and Safety Center (NESC) and the ISS Vehicle Office a joint assessment to develop a flight package as a Station Development Test Objective (SDTO) that would perform ultrasonic background noise measurements within the United States (US) controlled ISS structure. This document contains the results of the assessment

  16. Human interactions in space: ISS vs. Shuttle/Mir

    Science.gov (United States)

    Kanas, N. A.; Salnitskiy, V. P.; Ritsher, J. B.; Gushin, V. I.; Weiss, D. S.; Saylor, S. A.; Kozerenko, O. P.; Marmar, C. R.

    2006-07-01

    This paper compares findings from two NASA-funded studies of international long-duration missions to the Mir space station (Shuttle/Mir) and to the International Space Station (ISS). American and Russian crewmembers and mission control personnel participated. Issues examined included changes in mood and group social climate over time, displacement of group tension to outside monitoring personnel, cultural differences, and leadership roles. Findings were based on the completion of a weekly questionnaire that included items from the Profile of Mood States, the Group Environment Scale, and the Work Environment Scale. An examination of issues investigated in both studies revealed much similarity in findings. There was little support for the presence of changes in levels of mood and group climate over time, and no evidence for a "3rd quarter phenomenon". Both studies also provided evidence for the displacement of negative emotions to outside personnel in both crewmembers and mission control personnel. There were similar patterns of differences between Americans and Russians and between crewmembers and mission control personnel. Finally, in both studies, the support role of the leader was related to group cohesion among crewmembers, and both the task and support roles of the leader were related to cohesion among mission control personnel. Thus, in these four areas, the ISS study substantially replicated the findings from the earlier Shuttle/Mir study, suggesting that common psychosocial issues affect people engaged in on-orbit space missions.

  17. Equilibrium Kinetics Studies and Crystallization Aboard the International Space Station (ISS) Using the Protein Crystallization Apparatus for Microgravity (PCAM)

    Science.gov (United States)

    Achari, Aniruddha; Roeber, Dana F.; Barnes, Cindy L.; Kundrot, Craig E.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    Protein Crystallization Apparatus in Microgravity (PCAM) trays have been used in Shuttle missions to crystallize proteins in a microgravity environment. The crystallization experiments are 'sitting drops' similar to that in Cryschem trays, but the reservoir solution is soaked in a wick. From early 2001, crystallization experiments are conducted on the International Space Station using mission durations of months rather than two weeks on previous shuttle missions. Experiments were set up in April 2001 on Flight 6A to characterize the time crystallization experiments will take to reach equilibrium in a microgravity environment using salts, polyethylene glycols and an organic solvent as precipitants. The experiments were set up to gather data for a series of days of activation with different droplet volumes and precipitants. The experimental set up on ISS and results of this study will be presented. These results will help future users of PCAM to choose precipitants to optimize crystallization conditions for their target macromolecules for a particular mission with known mission duration. Changes in crystal morphology and size between the ground and space grown crystals of a protein and a protein -DNA complex flown on the same mission will also be presented.

  18. International Space Station Configuration Analysis and Integration

    Science.gov (United States)

    Anchondo, Rebekah

    2016-01-01

    Ambitious engineering projects, such as NASA's International Space Station (ISS), require dependable modeling, analysis, visualization, and robotics to ensure that complex mission strategies are carried out cost effectively, sustainably, and safely. Learn how Booz Allen Hamilton's Modeling, Analysis, Visualization, and Robotics Integration Center (MAVRIC) team performs engineering analysis of the ISS Configuration based primarily on the use of 3D CAD models. To support mission planning and execution, the team tracks the configuration of ISS and maintains configuration requirements to ensure operational goals are met. The MAVRIC team performs multi-disciplinary integration and trade studies to ensure future configurations meet stakeholder needs.

  19. Using the International Space Station (ISS) Oxygen Generation Assembly (OGA) Is Not Feasible for Mars Transit

    Science.gov (United States)

    Jones, Harry W.

    2016-01-01

    A review of two papers on improving the International Space Station (ISS) Oxygen Generation Assembly (OGA) shows that it would not save substantial mass on a Mars transit. The ISS OGA requires redesign for satisfactory operation, even for the ISS. The planned improvements of the OGA for ISS would not be sufficient to make it suitable for Mars, because Mars transit life support has significantly different requirements than ISS. The OGA for Mars should have lower mass, better reliability and maintainability, greater safety, radiation hardening, and capability for quiescent operation. NASA's methodical, disciplined systems engineering process should be used to develop the appropriate system.

  20. Establishing a Distance Learning Plan for International Space Station (ISS) Interactive Video Education Events (IVEE)

    Science.gov (United States)

    Wallington, Clint

    1999-01-01

    Educational outreach is an integral part of the International Space Station (ISS) mandate. In a few scant years, the International Space Station has already established a tradition of successful, general outreach activities. However, as the number of outreach events increased and began to reach school classrooms, those events came under greater scrutiny by the education community. Some of the ISS electronic field trips, while informative and helpful, did not meet the generally accepted criteria for education events, especially within the context of the classroom. To make classroom outreach events more acceptable to educators, the ISS outreach program must differentiate between communication events (meant to disseminate information to the general public) and education events (designed to facilitate student learning). In contrast to communication events, education events: are directed toward a relatively homogeneous audience who are gathered together for the purpose of learning, have specific performance objectives which the students are expected to master, include a method of assessing student performance, and include a series of structured activities that will help the students to master the desired skill(s). The core of the ISS education events is an interactive videoconference between students and ISS representatives. This interactive videoconference is to be preceded by and followed by classroom activities which help the students aftain the specified learning objectives. Using the interactive videoconference as the centerpiece of the education event lends a special excitement and allows students to ask questions about what they are learning and about the International Space Station and NASA. Whenever possible, the ISS outreach education events should be congruent with national guidelines for student achievement. ISS outreach staff should recognize that there are a number of different groups that will review the events, and that each group has different criteria

  1. Global Precipitation Measurement (GPM) and International Space Station (ISS) Coordination for Cubesat Deployments

    Science.gov (United States)

    Pawloski, James H.; Aviles, Jorge; Myers, Ralph; Parris, Joshua; Corley, Bryan; Hehn, Garrett; Pascucci, Joseph

    2016-01-01

    This paper describes the specific problem of collision threat to GPM and risk to ISS CubeSat deployment and the process that was implemented to keep both missions safe from collision and maximize their project goals.

  2. 76 FR 65752 - International Space Station (ISS) National Laboratory Advisory Committee; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... International and Interagency Relations, (202) 358-0550, National Aeronautics and Space Administration... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-104)] International Space Station (ISS... National Laboratory Advisory Committee is in the public interest in connection with the performance of...

  3. EXPOSE-R2: The Astrobiological ESA Mission on Board of the International Space Station

    Directory of Open Access Journals (Sweden)

    Elke Rabbow

    2017-08-01

    Full Text Available On July 23, 2014, the Progress cargo spacecraft 56P was launched from Baikonur to the International Space Station (ISS, carrying EXPOSE-R2, the third ESA (European Space Agency EXPOSE facility, the second EXPOSE on the outside platform of the Russian Zvezda module, with four international astrobiological experiments into space. More than 600 biological samples of archaea, bacteria (as biofilms and in planktonic form, lichens, fungi, plant seeds, triops eggs, mosses and 150 samples of organic compounds were exposed to the harsh space environment and to parameters similar to those on the Mars surface. Radiation dosimeters distributed over the whole facility complemented the scientific payload. Three extravehicular activities later the chemical samples were returned to Earth on March 2, 2016, with Soyuz 44S, having spent 588 days in space. The biological samples arrived back later, on June 18, 2016, with 45S, after a total duration in space of 531 days. The exposure of the samples to Low Earth Orbit vacuum lasted for 531 days and was divided in two parts: protected against solar irradiation during the first 62 days, followed by exposure to solar radiation during the subsequent 469 days. In parallel to the space mission, a Mission Ground Reference (MGR experiment with a flight identical Hardware and a complete flight identical set of samples was performed at the premises of DLR (German Aerospace Center in Cologne by MUSC (Microgravity User Support Center, according to the mission data either downloaded from the ISS (temperature data, facility status, inner pressure status or provided by RedShift Design and Engineering BVBA, Belgium (calculated ultra violet radiation fluence data. In this paper, the EXPOSE-R2 facility, the experimental samples, mission parameters, environmental parameters, and the overall mission and MGR sequences are described, building the background for the research papers of the individual experiments, their analysis and results.

  4. Spheres: from Ground Development to ISS Operations

    Science.gov (United States)

    Katterhagen, A.

    2016-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES National Lab Facility aboard ISS is managed and operated by NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. SPHERES has served to mature the adaptability of control algorithms of future formation flight missions in microgravity (6 DOF (Degrees of Freedom) / long duration microgravity), demonstrate key close-proximity formation flight and rendezvous and docking maneuvers, understand fault diagnosis and recovery, improve the field of human telerobotic operation and control, and lessons learned on ISS have significant impact on ground robotics, mapping, localization, and sensing in three-dimensions - among several other areas of study.

  5. Quantitative Validation of the Integrated Medical Model (IMM) for ISS Missions

    Science.gov (United States)

    Young, Millennia; Arellano, J.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Goodenow, D. A.; Myers, J. G.

    2016-01-01

    Lifetime Surveillance of Astronaut Health (LSAH) provided observed medical event data on 33 ISS and 111 STS person-missions for use in further improving and validating the Integrated Medical Model (IMM). Using only the crew characteristics from these observed missions, the newest development version, IMM v4.0, will simulate these missions to predict medical events and outcomes. Comparing IMM predictions to the actual observed medical event counts will provide external validation and identify areas of possible improvement. In an effort to improve the power of detecting differences in this validation study, the total over each program ISS and STS will serve as the main quantitative comparison objective, specifically the following parameters: total medical events (TME), probability of loss of crew life (LOCL), and probability of evacuation (EVAC). Scatter plots of observed versus median predicted TMEs (with error bars reflecting the simulation intervals) will graphically display comparisons while linear regression will serve as the statistical test of agreement. Two scatter plots will be analyzed 1) where each point reflects a mission and 2) where each point reflects a condition-specific total number of occurrences. The coefficient of determination (R2) resulting from a linear regression with no intercept bias (intercept fixed at zero) will serve as an overall metric of agreement between IMM and the real world system (RWS). In an effort to identify as many possible discrepancies as possible for further inspection, the -level for all statistical tests comparing IMM predictions to observed data will be set to 0.1. This less stringent criterion, along with the multiple testing being conducted, should detect all perceived differences including many false positive signals resulting from random variation. The results of these analyses will reveal areas of the model requiring adjustment to improve overall IMM output, which will thereby provide better decision support for

  6. Report by the International Space Station (ISS) Management and Cost Evaluation (IMCE) Task Force

    Science.gov (United States)

    Young, A. Thomas; Kellogg, Yvonne (Technical Monitor)

    2001-01-01

    The International Space Station (ISS) Management and Cost Evaluation Task Force (IMCE) was chartered to conduct an independent external review and assessment of the ISS cost, budget, and management. In addition, the Task Force was asked to provide recommendations that could provide maximum benefit to the U.S. taxpayers and the International Partners within the President's budget request. The Task Force has made the following principal findings: (1) The ISS Program's technical achievements to date, as represented by on-orbit capability, are extraordinary; (2) The Existing ISS Program Plan for executing the FY 02-06 budget is not credible; (3) The existing deficiencies in management structure, institutional culture, cost estimating, and program control must be acknowledged and corrected for the Program to move forward in a credible fashion; (4) Additional budget flexibility, from within the Office of Space Flight (OSF) must be provided for a credible core complete program; (5) The research support program is proceeding assuming the budget that was in place before the FY02 budget runout reduction of $1B; (6) There are opportunities to maximize research on the core station program with modest cost impact; (7) The U.S. Core Complete configuration (three person crew) as an end-state will not achieve the unique research potential of the ISS; (8) The cost estimates for the U.S.-funded enhancement options (e.g., permanent seven person crew) are not sufficiently developed to assess credibility. After these findings, the Task Force has formulated several primary recommendations which are published here and include: (1) Major changes must be made in how the ISS program is managed; (2) Additional cost reductions are required within the baseline program; (3) Additional funds must be identified and applied from the Human Space Flight budget; (4) A clearly defined program with a credible end-state, agreed to by all stakeholders, must be developed and implemented.

  7. Early Communication System (ECOMM) for ISS

    Science.gov (United States)

    Gaylor, Kent; Tu, Kwei

    1999-01-01

    The International Space Station (ISS) Early Communications System (ECOMM) was a Johnson Space Center (JSC) Avionic Systems Division (ASD) in-house developed communication system to provide early communications between the ISS and the Mission Control Center-Houston (MCC-H). This system allows for low rate commands (link rate of 6 kbps) to be transmitted through the Tracking and Data Relay Satellite System (TDRSS) from MCC-H to the ISS using TDRSS's S-band Single Access Forward (SSA/) link service. This system also allows for low rate telemetry (link rate of 20.48 kbps) to be transmitted from ISS to MCC-H through the TDRSS using TDRSS's S-band Single Access Return (SSAR) link service. In addition this system supports a JSC developed Onboard Communications Adapter (OCA) that allows for a two-way data exchange of 128 kbps between MCC-H and the ISS through TDRSS. This OCA data can be digital video/audio (two-way videoconference), and/or file transfers, and/or "white board". The key components of the system, the data formats used by the system to insure compatibility with the future ISS S-Band System, as well as how other vehicles may be able to use this system for their needs are discussed in this paper.

  8. Health Management Applications for International Space Station

    Science.gov (United States)

    Alena, Richard; Duncavage, Dan

    2005-01-01

    Traditional mission and vehicle management involves teams of highly trained specialists monitoring vehicle status and crew activities, responding rapidly to any anomalies encountered during operations. These teams work from the Mission Control Center and have access to engineering support teams with specialized expertise in International Space Station (ISS) subsystems. Integrated System Health Management (ISHM) applications can significantly augment these capabilities by providing enhanced monitoring, prognostic and diagnostic tools for critical decision support and mission management. The Intelligent Systems Division of NASA Ames Research Center is developing many prototype applications using model-based reasoning, data mining and simulation, working with Mission Control through the ISHM Testbed and Prototypes Project. This paper will briefly describe information technology that supports current mission management practice, and will extend this to a vision for future mission control workflow incorporating new ISHM applications. It will describe ISHM applications currently under development at NASA and will define technical approaches for implementing our vision of future human exploration mission management incorporating artificial intelligence and distributed web service architectures using specific examples. Several prototypes are under development, each highlighting a different computational approach. The ISStrider application allows in-depth analysis of Caution and Warning (C&W) events by correlating real-time telemetry with the logical fault trees used to define off-nominal events. The application uses live telemetry data and the Livingstone diagnostic inference engine to display the specific parameters and fault trees that generated the C&W event, allowing a flight controller to identify the root cause of the event from thousands of possibilities by simply navigating animated fault tree models on their workstation. SimStation models the functional power flow

  9. International Space Station (ISS) Environmental Control and Life Support (ECLS) System Overview of Events: 2010-2014

    Science.gov (United States)

    Gentry, Gregory J.; Cover, John

    2015-01-01

    Nov 2, 2014 marked the completion of the 14th year of continuous human presence in space on board the International Space Station (ISS). After 42 expedition crews, over 115 assembly & utilization flights, over 180 combined Shuttle/Station, US & Russian Extravehicular Activities (EVAs), the post-Assembly-Complete ISS continues to fly and the engineering teams continue to learn from operating its systems, particularly the life support equipment. Problems with initial launch, assembly and activation of ISS elements have given way to more long term system operating trends. New issues have emerged, some with gestation periods measured in years. Major events and challenges for each U.S. Environmental Control and Life Support (ECLS) subsystem occurring during calendar years 2010 through 2014 are summarily discussed in this paper, along with look-aheads for what might be coming in the future for each U.S. ECLS subsystem.

  10. Microbial Observatory (ISS-MO): Study of BSL-2 bacterial isolates from the International Space Station

    Data.gov (United States)

    National Aeronautics and Space Administration — In an on-going Microbial Observatory experimental investigation on the International Space Station (ISS) multiple bacterial isolates of Biosafety Level 2 (BSL-2)...

  11. Habitability Assessment of International Space Station

    Science.gov (United States)

    Thaxton, Sherry

    2015-01-01

    The purpose of this study is to assess habitability during the International Space Station 1-year mission, and subsequent 6-month missions, in order to better prepare for future long-duration spaceflights to destinations such as Near Earth Asteroid (NEA) and Mars, which will require crewmembers to live and work in a confined spacecraft environment for over a year. Data collected using Space Habitability Observation Reporting Tool (iSHORT), crew-collected videos, questionnaires, and PI conferences will help characterize the current state of habitability for the ISS. These naturalistic techniques provide crewmembers with the opportunity to self-report habitability and human factors observations in near real-time, which is not systematically done during ISS missions at present.

  12. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, W.R.

    1998-09-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation of the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.

  13. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    Science.gov (United States)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  14. Passive Thermal Design Approach for the Space Communications and Navigation (SCaN) Testbed Experiment on the International Space Station (ISS)

    Science.gov (United States)

    Siamidis, John; Yuko, Jim

    2014-01-01

    The Space Communications and Navigation (SCaN) Program Office at NASA Headquarters oversees all of NASAs space communications activities. SCaN manages and directs the ground-based facilities and services provided by the Deep Space Network (DSN), Near Earth Network (NEN), and the Space Network (SN). Through the SCaN Program Office, NASA GRC developed a Software Defined Radio (SDR) testbed experiment (SCaN testbed experiment) for use on the International Space Station (ISS). It is comprised of three different SDR radios, the Jet Propulsion Laboratory (JPL) radio, Harris Corporation radio, and the General Dynamics Corporation radio. The SCaN testbed experiment provides an on-orbit, adaptable, SDR Space Telecommunications Radio System (STRS) - based facility to conduct a suite of experiments to advance the Software Defined Radio, Space Telecommunications Radio Systems (STRS) standards, reduce risk (Technology Readiness Level (TRL) advancement) for candidate Constellation future space flight hardware software, and demonstrate space communication links critical to future NASA exploration missions. The SCaN testbed project provides NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in the laboratory and space environment based on reconfigurable, software defined radio platforms and the STRS Architecture.The SCaN testbed is resident on the P3 Express Logistics Carrier (ELC) on the exterior truss of the International Space Station (ISS). The SCaN testbed payload launched on the Japanese Aerospace Exploration Agency (JAXA) H-II Transfer Vehicle (HTV) and was installed on the ISS P3 ELC located on the inboard RAM P3 site. The daily operations and testing are managed out of NASA GRC in the Telescience Support Center (TSC).

  15. DOSIS & DOSIS 3D: long-term dose monitoring onboard the Columbus Laboratory of the International Space Station (ISS

    Directory of Open Access Journals (Sweden)

    Berger Thomas

    2016-01-01

    Full Text Available The radiation environment encountered in space differs in nature from that on Earth, consisting mostly of highly energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones present on Earth for occupational radiation workers. Since the beginning of the space era, the radiation exposure during space missions has been monitored with various active and passive radiation instruments. Also onboard the International Space Station (ISS, a number of area monitoring devices provide data related to the spatial and temporal variation of the radiation field in and outside the ISS. The aim of the DOSIS (2009–2011 and the DOSIS 3D (2012–ongoing experiments was and is to measure the radiation environment within the European Columbus Laboratory of the ISS. These measurements are, on the one hand, performed with passive radiation detectors mounted at 11 locations within Columbus for the determination of the spatial distribution of the radiation field parameters and, on the other, with two active radiation detectors mounted at a fixed position inside Columbus for the determination of the temporal variation of the radiation field parameters. Data measured with passive radiation detectors showed that the absorbed dose values inside the Columbus Laboratory follow a pattern, based on the local shielding configuration of the radiation detectors, with minimum dose values observed in the year 2010 of 195–270 μGy/day and maximum values observed in the year 2012 with values ranging from 260 to 360 μGy/day. The absorbed dose is modulated by (a the variation in solar activity and (b the changes in ISS altitude.

  16. Context-Sensitive Augmented Reality for Mission Operations, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Current NASA missions to the International Space Station (ISS) are heavily dependent upon ground controllers to assist crew members in performing routine operations...

  17. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS

    Directory of Open Access Journals (Sweden)

    David A. Coil

    2016-03-01

    Full Text Available Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS. Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation. Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  18. International Space Station (ISS) Plasma Contactor Unit (PCU) Utilization Plan Assessment Update

    Science.gov (United States)

    Hernandez-Pellerano, Amri; Iannello, Christopher J.; Garrett, Henry B.; Ging, Andrew T.; Katz, Ira; Keith, R. Lloyd; Minow, Joseph I.; Willis, Emily M.; Schneider, Todd A.; Whittlesey, Edward J.; hide

    2014-01-01

    The International Space Station (ISS) vehicle undergoes spacecraft charging as it interacts with Earth's ionosphere and magnetic field. The interaction can result in a large potential difference developing between the ISS metal chassis and the local ionosphere plasma environment. If an astronaut conducting extravehicular activities (EVA) is exposed to the potential difference, then a possible electrical shock hazard arises. The control of this hazard was addressed by a number of documents within the ISS Program (ISSP) including Catastrophic Safety Hazard for Astronauts on EVA (ISS-EVA-312-4A_revE). The safety hazard identified the risk for an astronaut to experience an electrical shock in the event an arc was generated on an extravehicular mobility unit (EMU) surface. A catastrophic safety hazard, by the ISS requirements, necessitates mitigation by a two-fault tolerant system of hazard controls. Traditionally, the plasma contactor units (PCUs) on the ISS have been used to limit the charging and serve as a "ground strap" between the ISS structure and the surrounding ionospheric plasma. In 2009, a previous NASA Engineering and Safety Center (NESC) team evaluated the PCU utilization plan (NESC Request #07-054-E) with the objective to assess whether leaving PCUs off during non-EVA time periods presented risk to the ISS through assembly completion. For this study, in situ measurements of ISS charging, covering the installation of three of the four photovoltaic arrays, and laboratory testing results provided key data to underpin the assessment. The conclusion stated, "there appears to be no significant risk of damage to critical equipment nor excessive ISS thermal coating damage as a result of eliminating PCU operations during non- EVA times." In 2013, the ISSP was presented with recommendations from Boeing Space Environments for the "Conditional" Marginalization of Plasma Hazard. These recommendations include a plan that would keep the PCUs off during EVAs when the

  19. Advances in Rodent Research Missions on the International Space Station

    Science.gov (United States)

    Choi, S. Y.; Ronca, A.; Leveson-Gower, D.; Gong, C.; Stube, K.; Pletcher, D.; Wigley, C.; Beegle, J.; Globus, R. K.

    2016-01-01

    A research platform for rodent experiment on the ISS is a valuable tool for advancing biomedical research in space. Capabilities offered by the Rodent Research project developed at NASA Ames Research Center can support experiments of much longer duration on the ISS than previous experiments performed on the Space Shuttle. NASAs Rodent Research (RR)-1 mission was completed successfully and achieved a number of objectives, including validation of flight hardware, on-orbit operations, and science capabilities as well as support of a CASIS-sponsored experiment (Novartis) on muscle atrophy. Twenty C57BL6J adult female mice were launched on the Space-X (SpX) 4 Dragon vehicle, and thrived for up to 37 days in microgravity. Daily health checks of the mice were performed during the mission via downlinked video; all flight animals were healthy and displayed normal behavior, and higher levels of physical activity compared to ground controls. Behavioral analysis demonstrated that Flight and Ground Control mice exhibited the same range of behaviors, including eating, drinking, exploratory behavior, self- and allo-grooming, and social interactions indicative of healthy animals. The animals were euthanized on-orbit and select tissues were collected from some of the mice on orbit to assess the long-term sample storage capabilities of the ISS. In general, the data obtained from the flight mice were comparable to those from the three groups of control mice (baseline, vivarium and ground controls, which were housed in flight hardware), showing that the ISS has adequate capability to support long-duration rodent experiments. The team recovered 35 tissues from 40 RR-1 frozen carcasses, yielding 3300 aliquots of tissues to distribute to the scientific community in the U.S., including NASAs GeneLab project and scientists via Space Biology's Biospecimen Sharing Program Ames Life Science Data Archive. Tissues also were distributed to Russian research colleagues at the Institute for

  20. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  1. Interplanetary Transit Simulations Using the International Space Station

    Science.gov (United States)

    Charles, J. B.; Arya, Maneesh

    2010-01-01

    It has been suggested that the International Space Station (ISS) be utilized to simulate the transit portion of long-duration missions to Mars and near-Earth asteroids (NEA). The ISS offers a unique environment for such simulations, providing researchers with a high-fidelity platform to study, enhance, and validate technologies and countermeasures for these long-duration missions. From a space life sciences perspective, two major categories of human research activities have been identified that will harness the various capabilities of the ISS during the proposed simulations. The first category includes studies that require the use of the ISS, typically because of the need for prolonged weightlessness. The ISS is currently the only available platform capable of providing researchers with access to a weightless environment over an extended duration. In addition, the ISS offers high fidelity for other fundamental space environmental factors, such as isolation, distance, and accessibility. The second category includes studies that do not require use of the ISS in the strictest sense, but can exploit its use to maximize their scientific return more efficiently and productively than in ground-based simulations. In addition to conducting Mars and NEA simulations on the ISS, increasing the current increment duration on the ISS from 6 months to a longer duration will provide opportunities for enhanced and focused research relevant to long-duration Mars and NEA missions. Although it is currently believed that increasing the ISS crew increment duration to 9 or even 12 months will pose little additional risk to crewmembers, additional medical monitoring capabilities may be required beyond those currently used for the ISS operations. The use of the ISS to simulate aspects of Mars and NEA missions seems practical, and it is recommended that planning begin soon, in close consultation with all international partners.

  2. International Space Station as a Base Camp for Exploration Beyond Low Earth Orbit

    Science.gov (United States)

    Raftery, Michael; Hoffman, Jeffrey

    2011-01-01

    The idea for using the International Space Station (ISS) as platform for exploration has matured in the past year and the concept continues to gain momentum. ISS provides a robust infrastructure which can be used to test systems and capabilities needed for missions to the Moon, Mars, asteroids and other potential destinations. International cooperation is a critical enabler and ISS has already demonstrated successful management of a large multi-national technical endeavor. Systems and resources needed for expeditions can be aggregated and thoroughly tested at ISS before departure thus providing wide operational flexibility and the best assurance of mission success. A small part of ISS called an Exploration Platform (ISS-EP) can be placed at Earth-Moon Libration point 1 (EML1) providing immediate benefits and flexibility for future exploration missions. We will show how ISS and the ISS-EP can be used to reduce risk and improve the operational flexibility for missions beyond low earth orbit. Life support systems and other technology developed for ISS can be evolved and adapted to the ISS-EP and other exploration spacecraft. New technology, such as electric propulsion and advanced life support systems can be tested and proven at ISS as part of an incremental development program. Commercial companies who are introducing transportation and other services will benefit with opportunities to contribute to the mission since ISS will serve as a focal point for the commercialization of low earth orbit services. Finally, we will show how use of ISS provides immediate benefits to the scientific community because its capabilities are available today and certain critical aspects of exploration missions can be simulated.

  3. Observation planning algorithm of a Japanese space-borne sensor: Hyperspectral Imager SUIte (HISUI) onboard International Space Station (ISS) as platform

    Science.gov (United States)

    Ogawa, Kenta; Konno, Yukiko; Yamamoto, Satoru; Matsunaga, Tsuneo; Tachikawa, Tetsushi; Komoda, Mako

    2017-09-01

    Hyperspectral Imager Suite (HISUI) is a Japanese future space-borne hyperspectral instrument being developed by Ministry of Economy, Trade, and Industry (METI). HISUI will be launched in 2019 or later onboard International Space Station (ISS) as platform. HISUI has 185 spectral band from 0.4 to 2.5 μm with 20 by 30 m spatial resolution with swath of 20 km. Swath is limited as such, however observations in continental scale area are requested in HISUI mission lifetime of three years. Therefore we are developing a scheduling algorithm to generate effective observation plans. HISUI scheduling algorithm is to generate observation plans automatically based on platform orbit, observation area maps (we say DAR; "Data Acquisition Request" in HISUI project), their priorities, and available resources and limitation of HISUI system such as instrument operation time per orbit and data transfer capability. Then next we need to set adequate DAR before start of HISUI observation, because years of observations are needed to cover continental scale wide area that is difficult to change after the mission started. To address these issues, we have developed observation simulator. The simulator's critical inputs are DAR and the ISS's orbit, HISUI limitations in observation minutes per orbit, data storage and past cloud coverage data for term of HISUI observations (3 years). Then the outputs of simulator are coverage map of each day. Areas with cloud free image are accumulated for the term of observation up to three years. We have successfully tested the simulator and tentative DAR and found that it is possible to estimate coverage for each of requests for the mission lifetime.

  4. Development of the ISS EMU Dashboard Software

    Science.gov (United States)

    Bernard, Craig; Hill, Terry R.

    2011-01-01

    The EMU (Extra-Vehicular Mobility Unit) Dashboard was developed at NASA s Johnson Space Center to aid in real-time mission support for the ISS (International Space Station) and Shuttle EMU space suit by time synchronizing down-linked video, space suit data and audio from the mission control audio loops. Once the input streams are synchronized and recorded, the data can be replayed almost instantly and has proven invaluable in understanding in-flight hardware anomalies and playing back information conveyed by the crew to missions control and the back room support. This paper will walk through the development from an engineer s idea brought to life by an intern to real time mission support and how this tool is evolving today and its challenges to support EVAs (Extra-Vehicular Activities) and human exploration in the 21st century.

  5. ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks

    Science.gov (United States)

    Hall, Timothy A.; Clancey, William J.; McDonald, Aaron; Toschlog, Jason; Tucker, Tyson; Khan, Ahmed; Madrid, Steven (Eric)

    2011-01-01

    In 2007 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organizations to find ways to reduce the cost of operations for supporting the International Space Station (ISS) in the Mission Control Center (MCC). Each MOD organization was asked to define and execute projects that would help them attain cost reductions by 2012. The MOD Operations Division Flight Planning Branch responded to this challenge by launching several software automation projects that would allow them to greatly improve console operations and reduce ISS console staffing and intern reduce operating costs. These tasks ranged from improving the management and integration mission plan changes, to automating the uploading and downloading of information to and from the ISS and the associated ground complex tasks that required multiple decision points. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture; as well as engaging a previously TRL 4-5 technology developed by Ames Research Center (ARC) that utilized an intelligent agent-based system to manage and automate file traffic flow, archive data, and generate console logs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the goal of eliminating a second full time ISS console support position by 2012. The team will also reduce one long range planning console position by 2014. When complete, these Flight Planning Branch projects will account for the elimination of 3 console positions and a reduction in staffing of 11 engineering personnel (EP) for ISS.

  6. International Cooperation in the Field of International Space Station (ISS) Payload Safety

    Science.gov (United States)

    Grayson, C.; Sgobba, T.; Larsen, A.; Rose, S.; Heimann, T.; Ciancone, M.; Mulhern, V.

    2005-12-01

    In the frame of the International Space Station (ISS) Program cooperation, in 1998 the European Space Agency (ESA) approached the National Aeronautics and Space Administration (NASA) with the unique concept of a Payload Safety Review Panel (PSRP) "franchise" based at the European Space Technology Center (ESTEC), where the panel would be capable of autonomously reviewing flight hardware for safety. This paper will recount the course of an ambitious idea as it progressed into a fully functional reality. It will show how a panel initially conceived at NASA to serve a national programme has evolved into an international safety cooperation asset. The PSRP established at NASA began reviewing ISS payloads approximately in late 1994 or early 1995 as an expansion of the pre- existing Shuttle Program PSRP. This paper briefly describes the fundamental Shuttle safety process and the establishment of the safety requirements for payloads intending to use the Space Transportation System and ISS. The paper will also offer some historical statistics about the experiments that completed the payload safety process for Shuttle and ISS. The paper then presents the background of ISS agreements and international treaties that had to be considered when establishing the ESA PSRP. The paper will expound upon the detailed franchising model, followed by an outline of the cooperation charter approved by the NASA Associate Administrator, Office of Space Flight, and ESA Director of Manned Spaceflight and Microgravity. The paper will then address the resulting ESA PSRP implementation and its success statistics to date. Additionally, the paper presents ongoing developments with the Japan Aerospace Exploration Agency (JAXA). The discussion will conclude with ideas for future developments, such to achieve a fully integrated international system of payload safety panels for ISS.

  7. Service on demand for ISS users

    Science.gov (United States)

    Hüser, Detlev; Berg, Marco; Körtge, Nicole; Mildner, Wolfgang; Salmen, Frank; Strauch, Karsten

    2002-07-01

    Since the ISS started its operational phase, the need of logistics scenarios and solutions, supporting the utilisation of the station and its facilities, becomes increasingly important. Our contribution to this challenge is a SERVICE On DEMAND for ISS users, which offers a business friendly engineering and logistics support for the resupply of the station. Especially the utilisation by commercial and industrial users is supported and simplified by this service. Our industrial team, consisting of OHB-System and BEOS, provides experience and development support for space dedicated hard- and software elements, their transportation and operation. Furthermore, we operate as the interface between customer and the envisaged space authorities. Due to a variety of tailored service elements and the ongoing servicing, customers can concentrate on their payload content or mission objectives and don't have to deal with space-specific techniques and regulations. The SERVICE On DEMAND includes the following elements: ITR is our in-orbit platform service. ITR is a transport rack, used in the SPACEHAB logistics double module, for active and passive payloads on subrack- and drawer level of different standards. Due to its unique late access and early retrieval capability, ITR increases the flexibility concerning transport capabilities to and from the ISS. RIST is our multi-functional test facility for ISPR-based experiment drawer and locker payloads. The test program concentrates on physical and functional interface and performance testing at the payload developers site prior to the shipment to the integration and launch. The RIST service program comprises consulting, planning and engineering as well. The RIST test suitcase is planned to be available for lease or rent to users, too. AMTSS is an advanced multimedia terminal consulting service for communication with the space station scientific facilities, as part of the user home-base. This unique ISS multimedia kit combines

  8. Atmosphere composition monitor for space station and advanced missions application

    International Nuclear Information System (INIS)

    Wynveen, R.A.; Powell, F.T.

    1987-01-01

    Long-term human occupation of extraterrestrial locations may soon become a reality. The National Aeronautics and Space Administration (NASA) has recently completed the definition and preliminary design of the low earth orbit (LEO) space station. They are now currently moving into the detailed design and fabrication phase of this space station and are also beginning to analyze the requirements of several future missions that have been identified. These missions include, for example, Lunar and Mars sorties, outposts, bases, and settlements. A requirement of both the LEO space station and future missions are environmental control and life support systems (ECLSS), which provide a comfortable environment for humans to live and work. The ECLSS consists of several major systems, including atmosphere revitalization system (ARS), atmosphere pressure and composition control system, temperature and humidity control system, water reclamation system, and waste management system. Each of these major systems is broken down into subsystems, assemblies, units, and instruments. Many requirements and design drivers are different for the ECLSS of the LEO space station and the identified advanced missions (e.g., longer mission duration). This paper discusses one of the ARS assemblies, the atmosphere composition monitor assembly (ACMA), being developed for the LEO space station and addresses differences that will exist for the ACMA of future missions

  9. Deep Space Habitat Configurations Based on International Space Station Systems

    Science.gov (United States)

    Smitherman, David; Russell, Tiffany; Baysinger, Mike; Capizzo, Pete; Fabisinski, Leo; Griffin, Brand; Hornsby, Linda; Maples, Dauphne; Miernik, Janie

    2012-01-01

    A Deep Space Habitat (DSH) is the crew habitation module designed for long duration missions. Although humans have lived in space for many years, there has never been a habitat beyond low-Earth-orbit. As part of the Advanced Exploration Systems (AES) Habitation Project, a study was conducted to develop weightless habitat configurations using systems based on International Space Station (ISS) designs. Two mission sizes are described for a 4-crew 60-day mission, and a 4-crew 500-day mission using standard Node, Lab, and Multi-Purpose Logistics Module (MPLM) sized elements, and ISS derived habitation systems. These durations were selected to explore the lower and upper bound for the exploration missions under consideration including a range of excursions within the Earth-Moon vicinity, near earth asteroids, and Mars orbit. Current methods for sizing the mass and volume for habitats are based on mathematical models that assume the construction of a new single volume habitat. In contrast to that approach, this study explored the use of ISS designs based on existing hardware where available and construction of new hardware based on ISS designs where appropriate. Findings included a very robust design that could be reused if the DSH were assembled and based at the ISS and a transportation system were provided for its return after each mission. Mass estimates were found to be higher than mathematical models due primarily to the use of multiple ISS modules instead of one new large module, but the maturity of the designs using flight qualified systems have potential for improved cost, schedule, and risk benefits.

  10. Understanding the International Space Station Crew Perspective following Long-Duration Missions through Data Analytics & Visualization of Crew Feedback

    Science.gov (United States)

    Bryant, Cody; Meza, David; Schoenstein, Nicole; Schuh, Susan

    2017-01-01

    The International Space Station (ISS) first became a home and research laboratory for NASA and International Partner crewmembers over 16 years ago. Each ISS mission lasts approximately 6 months and consists of three to six crewmembers. After returning to Earth, most crewmembers participate in an extensive series of 30+ debriefs intended to further understand life onboard ISS and allow crews to reflect on their experiences. Examples of debrief data collected include ISS crew feedback about sleep, dining, payload science, scheduling and time planning, health & safety, and maintenance. The Flight Crew Integration (FCI) Operational Habitability (OpsHab) team, based at Johnson Space Center (JSC), is a small group of Human Factors engineers and one stenographer that has worked collaboratively with the NASA Astronaut office and ISS Program to collect, maintain, disseminate and analyze this data. The database provides an exceptional and unique resource for understanding the "crew perspective" on long duration space missions. Data is formatted and categorized to allow for ease of search, reporting, and ultimately trending, in order to understand lessons learned, recurring issues and efficiencies gained over time. Recently, the FCI OpsHab team began collaborating with the NASA JSC Knowledge Management team to provide analytical analysis and visualization of these over 75,000 crew comments in order to better ascertain the crew's perspective on long duration spaceflight and gain insight on changes over time. In this initial phase of study, a text mining framework was used to cluster similar comments and develop measures of similarity useful for identifying relevant topics affecting crew health or performance, locating similar comments when a particular issue or item of operational interest is identified, and providing search capabilities to identify information pertinent to future spaceflight systems and processes for things like procedure development and training. In addition

  11. ISS External Payload Platform - a new opportunity for research in the space environment

    Science.gov (United States)

    Steimle, Christian; Pape, Uwe

    The International Space Station (ISS) is a widely accepted platform for research activities in low Earth orbit. To a wide extent these activities are conducted in the pressurised laboratories of the station and less in the outside environment. Suitable locations outside the ISS are rare, existing facilities fully booked for the coming years. To overcome this limitation, an external payload platform accessible for small size payloads on a commercial basis will be launched to the ISS and installed on the Japanese Experiment Module External Facility (JEM-EF) in the third quarter of 2014 and will be ready to be used by the scientific community on a fully commercial basis. The new External Payload Platform (EPP) and its opportunities and constraints assessed regarding future research activities on-board the ISS. The small size platform is realised in a cooperation between the companies NanoRacks, Astrium North America in the United States, and Airbus Defence and Space in Germany. The hardware allows the fully robotic installation and operation of payloads. In the nominal mission scenario payload items are installed not later than one year after the signature of the contract, stay in operation for 15 weeks, and can be returned to the scientist thereafter. Payload items are transported among the pressurised cargo usually delivered to the station with various supply vehicles. Due to the high frequency of flights and the flexibility of the vehicle manifests the risk of a delay in the payload readiness can be mitigated by delaying to the next flight opportunity which on average is available not more than two months later. The mission is extra-ordinarily fast and of low cost in comparison to traditional research conducted on-board the ISS and can fit into short-term funding cycles available on national and multi-national levels. The size of the payload items is limited by handling constraints on-board the ISS. Therefore, the standard experiment payload size is a multiple of a

  12. STS-102 Astronaut Thomas Views International Space Station Through Shuttle Window

    Science.gov (United States)

    2001-01-01

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  13. How Do Lessons Learned on the International Space Station (ISS) Help Plan Life Support for Mars?

    Science.gov (United States)

    Jones, Harry W.; Hodgson, Edward W.; Gentry, Gregory J.; Kliss, Mark H.

    2016-01-01

    How can our experience in developing and operating the International Space Station (ISS) guide the design, development, and operation of life support for the journey to Mars? The Mars deep space Environmental Control and Life Support System (ECLSS) must incorporate the knowledge and experience gained in developing ECLSS for low Earth orbit, but it must also meet the challenging new requirements of operation in deep space where there is no possibility of emergency resupply or quick crew return. The understanding gained by developing ISS flight hardware and successfully supporting a crew in orbit for many years is uniquely instructive. Different requirements for Mars life support suggest that different decisions may be made in design, testing, and operations planning, but the lessons learned developing the ECLSS for ISS provide valuable guidance.

  14. Cold Stowage: An ISS Project

    Science.gov (United States)

    Hartley, Garen

    2018-01-01

    NASA's vision for humans pursuing deep space flight involves the collection of science in low earth orbit aboard the International Space Station (ISS). As a service to the science community, Johnson Space Center (JSC) has developed hardware and processes to preserve collected science on the ISS and transfer it safely back to the Principal Investigators. This hardware includes an array of freezers, refrigerators, and incubators. The Cold Stowage team is part of the International Space Station (ISS) program. JSC manages the operation, support and integration tasks provided by Jacobs Technology and the University of Alabama Birmingham (UAB). Cold Stowage provides controlled environments to meet temperature requirements during ascent, on-orbit operations and return, in relation to International Space Station Payload Science.

  15. Preparation and Launch of the JEM ISS Elements - A NASA Mission Manager's Perspective

    Science.gov (United States)

    Higginbotham, Scott A.

    2016-01-01

    The pre-flight launch site preparations and launch of the Japanese Experiment Module (JEM) elements of the International Space Station required an intense multi-year, international collaborative effort between US and Japanese personnel at the Kennedy Space Center (KSC). This presentation will provide a brief overview of KSC, a brief overview of the ISS, and a summary of authors experience managing the NASA team responsible that supported and conducted the JEM element operations.

  16. The Logistic Path from the International Space Station to the Moon and Beyond

    Science.gov (United States)

    Watson, J. K.; Dempsey, C. A.; Butina, A. J., Sr.

    2005-01-01

    The period from the loss of the Space Shuttle Columbia in February 2003 to resumption of Space Shuttle flights, planned for May 2005, has presented significant challenges to International Space Station (ISS) maintenance operations. Sharply curtailed upmass capability has forced NASA to revise its support strategy and to undertake maintenance activities that have significantly expanded the envelope of the ISS maintenance concept. This experience has enhanced confidence in the ability to continue to support ISS in the period following the permanent retirement of the Space Shuttle fleet in 2010. Even greater challenges face NASA with the implementation of the Vision for Space Exploration that will introduce extended missions to the Moon beginning in the period of 2015 - 2020 and ultimately see human missions to more distant destinations such as Mars. The experience and capabilities acquired through meeting the maintenance challenges of ISS will serve as the foundation for the maintenance strategy that will be employed in support of these future missions.

  17. International Space Station (ISS) Potable Water Dispenser (PWD) Beverage Adapter (BA) Redesign

    Science.gov (United States)

    Edgerly, Rachel; Benoit, Jace; Shindo, David

    2012-01-01

    The Potable Water Dispenser used on the International Space Station (ISS) interfaces with food and drink packages using the Beverage Adapter and Needle. Unexpected leakage has been seen in this interface. The Beverage Adapter used on ]orbit was returned to the ground for Test, Teardown, and Evaluation. The results of that investigation prompted a redesign of the Beverage Adapter and Needle. The Beverage Adapter materials were changed to be more corrosion resistant, and the Needle was redesigned to preclude leakage. The redesigns have been tested and proven.

  18. Space Radiation Peculiarities in the Extra Vehicular Environment of the International Space Station (ISS)

    Science.gov (United States)

    Dachev, Tsvetan; Bankov, Nikolay; Tomov, Borislav; Matviichuk, Yury; Dimitrov, Plamen

    2013-12-01

    The space weather and the connected with it ionizing radiation were recognized as a one of the main health concern to the International Space Station (ISS) crew. Estimation the effects of radiation on humans in ISS requires at first order accurate knowledge of the accumulated by them absorbed dose rates, which depend of the global space radiation distribution and the local variations generated by the 3D surrounding shielding distribution. The R3DE (Radiation Risks Radiometer-Dosimeter (R3D) for the EXPOSE-E platform on the European Technological Exposure Facility (EuTEF) worked successfully outside of the European Columbus module between February 2008 and September 2009. Very similar instrument named R3DR for the EXPOSE-R platform worked outside Russian Zvezda module of ISS between March 2009 and August 2010. Both are Liulin type, Bulgarian build miniature spectrometers-dosimeters. They accumulated about 5 million measurements of the flux and absorbed dose rate with 10 seconds resolution behind less than 0.41 g cm-2 shielding, which is very similar to the Russian and American space suits [1-3] average shielding. That is why all obtained data can be interpreted as possible doses during Extra Vehicular Activities (EVA) of the cosmonauts and astronauts. The paper first analyses the obtained long-term results in the different radiation environments of: Galactic Cosmic Rays (GCR), inner radiation belt trapped protons in the region of the South Atlantic Anomaly (SAA) and outer radiation belt (ORB) relativistic electrons. The large data base was used for development of an empirical model for calculation of the absorbed dose rates in the extra vehicular environment of ISS at 359 km altitude. The model approximate the averaged in a grid empirical dose rate values to predict the values at required from the user geographical point, station orbit or area in geographic coordinate system. Further in the paper it is presented an intercomparison between predicted by the model dose

  19. ISS Expedition 08 Press Kit

    Data.gov (United States)

    National Aeronautics and Space Administration — Press kit for ISS mission Expedition 08 from 10/2003-04/2004. Press kits contain information about each mission overview, crew, mission timeline, benefits, and media...

  20. ISS Operations Cost Reductions Through Automation of Real-Time Planning Tasks

    Science.gov (United States)

    Hall, Timothy A.

    2011-01-01

    In 2008 the Johnson Space Center s Mission Operations Directorate (MOD) management team challenged their organization to find ways to reduce the costs of International Space station (ISS) console operations in the Mission Control Center (MCC). Each MOD organization was asked to identify projects that would help them attain a goal of a 30% reduction in operating costs by 2012. The MOD Operations and Planning organization responded to this challenge by launching several software automation projects that would allow them to greatly improve ISS console operations and reduce staffing and operating costs. These projects to date have allowed the MOD Operations organization to remove one full time (7 x 24 x 365) ISS console position in 2010; with the plan of eliminating two full time ISS console support positions by 2012. This will account for an overall 10 EP reduction in staffing for the Operations and Planning organization. These automation projects focused on utilizing software to automate many administrative and often repetitive tasks involved with processing ISS planning and daily operations information. This information was exchanged between the ground flight control teams in Houston and around the globe, as well as with the ISS astronaut crew. These tasks ranged from managing mission plan changes from around the globe, to uploading and downloading information to and from the ISS crew, to even more complex tasks that required multiple decision points to process the data, track approvals and deliver it to the correct recipient across network and security boundaries. The software solutions leveraged several different technologies including customized web applications and implementation of industry standard web services architecture between several planning tools; as well as a engaging a previously research level technology (TRL 2-3) developed by Ames Research Center (ARC) that utilized an intelligent agent based system to manage and automate file traffic flow

  1. Analyzing an Aging ISS

    Science.gov (United States)

    Scharf, R.

    2014-01-01

    The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.

  2. In-Flight Water Quality Monitoring on the International Space Station (ISS): Measuring Biocide Concentrations with Colorimetric Solid Phase Extraction (CSPE)

    Science.gov (United States)

    Gazda, Daniel B.; Schultz, John R.; Siperko, Lorraine M.; Porter, Marc D.; Lipert, Robert J.; Flint, Stephanie M.; McCoy, J. Torin

    2011-01-01

    The colorimetric water quality monitoring kit (CWQMK) was delivered to the International Space Station (ISS) on STS-128/17A and was initially deployed in September 2009. The kit was flown as a station development test objective (SDTO) experiment to evaluate the acceptability of colorimetric solid phase extraction (CSPE) technology for routine water quality monitoring on the ISS. During the SDTO experiment, water samples from the U.S. water processor assembly (WPA), the U.S. potable water dispenser (PWD), and the Russian system for dispensing ground-supplied water (SVO-ZV) were collected and analyzed with the CWQMK. Samples from the U.S. segment of the ISS were analyzed for molecular iodine, which is the biocide added to water in the WPA. Samples from the SVOZV system were analyzed for ionic silver, the biocide used on the Russian segment of the ISS. In all, thirteen in-flight analysis sessions were completed as part of the SDTO experiment. This paper provides an overview of the experiment and reports the results obtained with the CWQMK. The forward plan for certifying the CWQMK as operational hardware and expanding the capabilities of the kit are also discussed.

  3. Positioning Space Solar Power (SSP) as the Next Logical Step after the International Space Station (ISS)

    Science.gov (United States)

    Charania, A.

    2002-01-01

    At the end of the first decade of the 21st century, the International Space Station (ISS) will stand as a testament of the engineering capabilities of the international community. The choices for the next logical step for this community remain vast and conflicting: a Mars mission, moon colonization, Space Solar Power (SSP), etc. This examination focuses on positioning SSP as one such candidate for consideration. A marketing roadmap is presented that reveals the potential benefits of SSP to both the space community and the global populace at large. Recognizing that scientific efficiency itself has no constituency large enough to persuade entities to outlay funds for such projects, a holistic approach is taken to positioning SSP. This includes the scientific, engineering, exploratory, economic, political, and development capabilities of the system. SSP can be seen as both space exploration related and a resource project for undeveloped nations. Coupling these two non-traditional areas yields a broader constituency for the project that each one alone could generate. Space exploration is many times seen as irrelevant to the condition of the populace of the planet from which the money comes for such projects. When in this new century, billions of people on the planet still have never made a phone call or even have access to clean water, the origins of this skepticism can be understandable. An area of concern is the problem of not living up to the claims of overeager program marketers. Just as the ISS may never live up to the claims of its advocates in terms of space research, any SSP program must be careful in not promising utopian global solutions to any future energy starved world. Technically, SSP is a very difficult problem, even harder than creating the ISS, yet the promise it can hold for both space exploration and Earth development can lead to a renaissance of the relevance of space to the lives of the citizens of the world.

  4. ISS Asset Tracking Using SAW RFID Technology

    Science.gov (United States)

    Schellhase, Amy; Powers, Annie

    2004-01-01

    A team at the NASA Johnson Space Center (JSC) is undergoing final preparations to test Surface Acoustic Wave (SAW) Radio Frequency Identification (RFID) technology to track assets aboard the International Space Station (ISS). Currently, almost 10,000 U.S. items onboard the ISS are tracked within a database maintained by both the JSC ground teams and crew onboard the ISS. This barcode-based inventory management system has successfully tracked the location of 97% of the items onboard, but its accuracy is dependant on the crew to report hardware movements, taking valuable time away from science and other activities. With the addition of future modules, the volume of inventory to be tracked is expected to increase significantly. The first test of RFID technology on ISS, which will be conducted by the Expedition 16 crew later this year, will evaluate the ability of RFID technology to track consumable items. These consumables, which include office supplies and clothing, are regularly supplied to ISS and can be tagged on the ground. Automation will eliminate line-of-sight auditing requirements, directly saving crew time. This first step in automating an inventory tracking system will pave the way for future uses of RFID for inventory tracking in space. Not only are there immediate benefits for ISS applications, it is a crucial step to ensure efficient logistics support for future vehicles and exploration missions where resupplies are not readily available. Following a successful initial test, the team plans to execute additional tests for new technology, expanded operations concepts, and increased automation.

  5. ISS External Contamination Environment for Space Science Utilization

    Science.gov (United States)

    Soares, Carlos; Mikatarian, Ron; Steagall, Courtney; Huang, Alvin; Koontz, Steven; Worthy, Erica

    2014-01-01

    (1) The International Space Station is the largest and most complex on-orbit platform for space science utilization in low Earth orbit, (2) Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives, (3) Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle, and (4)The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets.

  6. Evolution of Training in NASA's Mission Operations Directorate

    Science.gov (United States)

    Hutt, Jason

    2012-01-01

    NASA s Mission Operations Directorate provides all the mission planning, training, and operations support for NASA's human spaceflight missions including the International Space Station (ISS) and its fleet of supporting vehicles. MOD also develops and maintains the facilities necessary to conduct training and operations for those missions including the Mission Control Center, Space Station Training Facility, Space Vehicle Mockup Facility, and Neutral Buoyancy Laboratory. MOD's overarching approach to human spaceflight training is to "train like you fly." This approach means not only trying to replicate the operational environment in training but also to approach training with the same mindset as real operations. When in training, this means using the same approach for executing operations, responding to off-nominal situations, and conducting yourself in the operations environment in the same manner as you would for the real vehicle.

  7. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Lacey L.; Slack, Kelley; Holland, Albert; Huning, Therese; O'Keefe, William; Sipes, Walter E.

    2010-01-01

    Although the astronaut training flow for the International Space Station (ISS) spans 2 years, each astronaut or cosmonaut often spends most of their training alone. Rarely is it operationally feasible for all six ISS crewmembers to train together, even more unlikely that crewmembers can practice living together before launch. Likewise, ISS Flight Controller training spans 18 months of learning to manage incredibly complex systems remotely in plug-and-play ground teams that have little to no exposure to crewmembers before a mission. How then do all of these people quickly become a team - a team that must respond flexibly yet decisively to a variety of situations? The answer implemented at NASA is Space Flight Resource Management (SFRM), the so-called "soft skills" or team performance skills. Based on Crew Resource Management, SFRM was developed first for shuttle astronauts and focused on managing human errors during time-critical events (Rogers, et al. 2002). Given the nature of life on ISS, the scope of SFRM for ISS broadened to include teamwork during prolonged and routine operations (O'Keefe, 2008). The ISS SFRM model resembles a star with one competency for each point: Communication, Cross-Culture, Teamwork, Decision Making, Team Care, Leadership/Followership, Conflict Management, and Situation Awareness. These eight competencies were developed with international participation by the Human Behavior and Performance Training Working Group. Over the last two years, these competencies have been used to build a multi-modal SFRM training flow for astronaut candidates and flight controllers that integrates team performance skills into the practice of technical skills. Preliminary results show trainee skill increases as the flow progresses; and participants find the training invaluable to performing well and staying healthy during ISS operations. Future development of SFRM training will aim to help support indirect handovers as ISS operations evolve further with the

  8. Post-Flight Back Pain Following International Space Station Missions: Evaluation of Spaceflight Risk Factors

    Science.gov (United States)

    Laughlin, M. S.; Murray, J. D.; Wear, M. L.; Van Baalen, M.

    2016-01-01

    INTRODUCTION Back pain during spaceflight has often been attributed to the lengthening of the spinal column due to the absence of gravity during both short and long-duration missions. Upon landing and re-adaptation to gravity, the spinal column reverts back to its original length thereby causing some individuals to experience pain and muscular spasms, while others experience no ill effects. With International Space Station (ISS) missions, cases of back pain and injury are more common post-flight, but little is known about the potential risk factors. Thus, the purpose of this project was to perform an initial evaluation of reported post-flight back pain and injury cases to relevant spaceflight risk factors in United States astronauts that have completed an ISS mission. METHODS All US astronauts who completed an ISS mission between Expeditions (EXP) 1 and 41 (2000-2015) were included in this evaluation. Forty-five astronauts (36 males and 9 females) completed 50 ISS missions during the study time period, as 5 astronauts completed 2 ISS missions. Researchers queried medical records of the 45 astronauts for occurrences of back pain and injury. A case was defined as any reported event of back pain or injury to the cervical, thoracic, lumbar, sacral, or coccyx spine regions. Data sources for the cases included the Flight Medicine Clinic's electronic medical record; Astronaut Strength, Conditioning and Rehabilitation electronic documentation; the Private Medical Conference tool; and the Space Medicine Operations Team records. Post-flight cases were classified as an early case if reported within 45 days of landing (R + 45) or a late case if reported from R + 46 to R + 365 days after landing (R + 1y). Risk factors in the astronaut population for back pain include age, sex, prior military service, and prior history of back pain. Additionally, spaceflight specific risk factors such as type of landing vehicle and onboard exercise countermeasures were included to evaluate their

  9. Risk Management for the International Space Station

    Science.gov (United States)

    Sebastian, J.; Brezovic, Philip

    2002-01-01

    The International Space Station (ISS) is an extremely complex system, both technically and programmatically. The Space Station must support a wide range of payloads and missions. It must be launched in numerous launch packages and be safely assembled and operated in the harsh environment of space. It is being designed and manufactured by many organizations, including the prime contractor, Boeing, the NASA institutions, and international partners and their contractors. Finally, the ISS has multiple customers, (e.g., the Administration, Congress, users, public, international partners, etc.) with contrasting needs and constraints. It is the ISS Risk Management Office strategy to proactively and systematically manages risks to help ensure ISS Program success. ISS program follows integrated risk management process (both quantitative and qualitative) and is integrated into ISS project management. The process and tools are simple and seamless and permeate to the lowest levels (at a level where effective management can be realized) and follows the continuous risk management methodology. The risk process assesses continually what could go wrong (risks), determine which risks need to be managed, implement strategies to deal with those risks, and measure effectiveness of the implemented strategies. The process integrates all facets of risk including cost, schedule and technical aspects. Support analysis risk tools like PRA are used to support programatic decisions and assist in analyzing risks.

  10. Maintenance, reliability and policies for orbital space station life support systems

    International Nuclear Information System (INIS)

    Russell, James F.; Klaus, David M.

    2007-01-01

    The performance of productive work on space missions is critical to sustaining a human presence on orbital space stations (OSS), the Moon, or Mars. Available time for productive work has potentially been impacted on past OSS missions by underestimating the crew time needed to maintain systems, such as the Environmental Control and Life Support System (ECLSS). To determine the cause of this apparent disconnect between the design and operation of an OSS, documented crew time for maintenance was collected from the three Skylab missions and Increments 4-8 on the International Space Station (ISS), and the data was contrasted to terrestrial facility maintenance norms. The results of the ISS analysis showed that for four operational and seven functional categories, the largest deviation of 60.4% over the design time was caused by three of the four operational categories not being quantitatively included in the design documents. In a cross category analysis, 35.3% of the crew time was found to have been used to repair air and waste handling systems. The air system required additional crew time for maintenance due to a greater than expected failure rate and resultant increased time needed for repairs. Therefore, it appears that the disconnect between the design time and actual operations for ECLSS maintenance on ISS was caused by excluding non-repair activities from the estimates and experiencing greater than expected technology maintenance requirements. Based on these ISS and Skylab analyses, future OSS designs (and possibly lunar and Martian missions as well) should consider 3.0-3.3 h/day for crews of 2 to 3 as a baseline of crew time needed for ECLSS maintenance

  11. Microbial Observatory (ISS-MO): Molecular characterization of Bacillus issensis sp. nov. isolated from various quarters of the International Space Station

    Data.gov (United States)

    National Aeronautics and Space Administration — As part of an ongoing effort to catalogue microbial communities inhabiting the International Space Station (ISS) crew-associated environmental samples were collected...

  12. ISS National Laboratory Education Project: Enhancing and Innovating the ISS as an Educational Venue

    Science.gov (United States)

    Melvin, Leland D.

    2011-01-01

    The vision is to develop the ISS National Laboratory Education Project (ISS NLE) as a national resource for Science, Technology, Engineering and Mathematics (STEM) education, utilizing the unique educational venue of the International Space Station per the NASA Congressional Authorization Act of 2005. The ISS NLE will serve as an educational resource which enables educational activities onboard the ISS and in the classroom. The ISS NLE will be accessible to educators and students from kindergarten to post-doctoral studies, at primary and secondary schools, colleges and universities. Additionally, the ISS NLE will provide ISS-related STEM education opportunities and resources for learners of all ages via informal educational institutions and venues Though U.S. Congressional direction emphasized the involvement of U.S. students, many ISS-based educational activities have international student and educator participation Over 31 million students around the world have participated in several ISS-related education activities.

  13. Space station needs, attributes and architectural options study. Volume 3: Mission requirements

    Science.gov (United States)

    1983-04-01

    User missions that are enabled or enhanced by a manned space station are identified. The mission capability requirements imposed on the space station by these users are delineated. The accommodation facilities, equipment, and functional requirements necessary to achieve these capabilities are identified, and the economic, performance, and social benefits which accrue from the space station are defined.

  14. Aerobic Capacity Following Long Duration International Spaces Station (ISS) Missions: Preliminary Results

    Science.gov (United States)

    Moore, Alan D.; Lee, S.M.C.; Everett, M.E.; Guined, J.R.; Knudsen, P.

    2010-01-01

    Maximum oxygen uptake (VO2max) is reduced immediately following space flights lasting 6%. WRmax also decreased on R+1/2 compared to preflight (Pre: 245+/-69, R+1/2: 210+/-45 W). On R+10, VO2max was 2.86+/-0.62 L(dot)/min, with 2 subjects still demonstrating a loss of > 6% from preflight. WRmax on R+10 was 240+/-49 W. HRmax did not change from pre to post-flight. Conclusions: These preliminary results, from the first 5 of 12 planned subjects of an ongoing ISS study, suggest that the majority of astronauts will experience a decrease in VO2max after long-duration space-flight. Interestingly, the two astronauts with the highest preflight VO2max had the greatest loss on R+1/2, and the astronaut with the lowest preflight VO2max increased by 13%. Thus, maintenance of VO2max may be more difficult in astronauts who have a high aerobic capacity, perhaps requiring more intense in-flight exercise countermeasure prescriptions.

  15. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    Science.gov (United States)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  16. Long-Term International Space Station (ISS) Risk Reduction Activities

    Science.gov (United States)

    Fodroci, M. P.; Gafka, G. K.; Lutomski, M. G.; Maher, J. S.

    2012-01-01

    As the assembly of the ISS nears completion, it is worthwhile to step back and review some of the actions pursued by the Program in recent years to reduce risk and enhance the safety and health of ISS crewmembers, visitors, and space flight participants. While the initial ISS requirements and design were intended to provide the best practicable levels of safety, it is always possible to further reduce risk - given the determination, commitment, and resources to do so. The following is a summary of some of the steps taken by the ISS Program Manager, by our International Partners, by hardware and software designers, by operational specialists, and by safety personnel to continuously enhance the safety of the ISS, and to reduce risk to all crewmembers. While years of work went into the development of ISS requirements, there are many things associated with risk reduction in a Program like the ISS that can only be learned through actual operational experience. These risk reduction activities can be divided into roughly three categories: Areas that were initially noncompliant which have subsequently been brought into compliance or near compliance (i.e., Micrometeoroid and Orbital Debris [MMOD] protection, acoustics) Areas where initial design requirements were eventually considered inadequate and were subsequently augmented (i.e., Toxicity Hazard Level- 4 [THL] materials, emergency procedures, emergency equipment, control of drag-throughs) Areas where risks were initially underestimated, and have subsequently been addressed through additional mitigation (i.e., Extravehicular Activity [EVA] sharp edges, plasma shock hazards) Due to the hard work and cooperation of many parties working together across the span of more than a decade, the ISS is now a safer and healthier environment for our crew, in many cases exceeding the risk reduction targets inherent in the intent of the original design. It will provide a safe and stable platform for utilization and discovery for years

  17. Exercise in space: the European Space Agency approach to in-flight exercise countermeasures for long-duration missions on ISS.

    Science.gov (United States)

    Petersen, Nora; Jaekel, Patrick; Rosenberger, Andre; Weber, Tobias; Scott, Jonathan; Castrucci, Filippo; Lambrecht, Gunda; Ploutz-Snyder, Lori; Damann, Volker; Kozlovskaya, Inessa; Mester, Joachim

    2016-01-01

    To counteract microgravity (µG)-induced adaptation, European Space Agency (ESA) astronauts on long-duration missions (LDMs) to the International Space Station (ISS) perform a daily physical exercise countermeasure program. Since the first ESA crewmember completed an LDM in 2006, the ESA countermeasure program has strived to provide efficient protection against decreases in body mass, muscle strength, bone mass, and aerobic capacity within the operational constraints of the ISS environment and the changing availability of on-board exercise devices. The purpose of this paper is to provide a description of ESA's individualised approach to in-flight exercise countermeasures and an up-to-date picture of how exercise is used to counteract physiological changes resulting from µG-induced adaptation. Changes in the absolute workload for resistive exercise, treadmill running and cycle ergometry throughout ESA's eight LDMs are also presented, and aspects of pre-flight physical preparation and post-flight reconditioning outlined. With the introduction of the advanced resistive exercise device (ARED) in 2009, the relative contribution of resistance exercise to total in-flight exercise increased (33-46 %), whilst treadmill running (42-33 %) and cycle ergometry (26-20 %) decreased. All eight ESA crewmembers increased their in-flight absolute workload during their LDMs for resistance exercise and treadmill running (running speed and vertical loading through the harness), while cycle ergometer workload was unchanged across missions. Increased or unchanged absolute exercise workloads in-flight would appear contradictory to typical post-flight reductions in muscle mass and strength, and cardiovascular capacity following LDMs. However, increased absolute in-flight workloads are not directly linked to changes in exercise capacity as they likely also reflect the planned, conservative loading early in the mission to allow adaption to µG exercise, including personal comfort issues

  18. Simulations of MATROSHKA experiments at ISS using PHITS

    CERN Document Server

    Sihver, L; Puchalska, M; Reitz, G

    2010-01-01

    Concerns about the biological effects of space radiation are increasing rapidly due to the perspective of long-duration manned missions, both in relation to the International Space Station (ISS) and to manned interplanetary missions to Moon and Mars in the future. As a preparation for these long duration space missions it is important to ensure an excellent capability to evaluate the impact of space radiation on human health in order to secure the safety of the astronauts/cosmonauts and minimize their risks. It is therefore necessary to measure the radiation load on the personnel both inside and outside the space vehicles and certify that organ and tissue equivalent doses can be simulated as accurate as possible. In this paper we will present simulations using the three-dimensional Monte Carlo Particle and Heavy Ion Transport code System (PHITS) of long term dose measurements performed with the ESA supported experiment MATROSHKA (MTR), which is an anthropomorphic phantom containing over 6000 radiation detecto...

  19. 3D Printing in Zero-G ISS Technology Demonstration

    Science.gov (United States)

    Johnston, Mallory M.; Werkheiser, Mary J.; Cooper, Kenneth G.; Snyder, Michael P.; Edmunson, Jennifer E.

    2014-01-01

    The National Aeronautics and Space Administration (NASA) has a long term strategy to fabricate components and equipment on-demand for manned missions to the Moon, Mars, and beyond. To support this strategy, NASA and Made in Space, Inc. are developing the 3D Printing In Zero-G payload as a Technology Demonstration for the International Space Station. The 3D Printing In Zero-G experiment will be the first machine to perform 3D printing in space. The greater the distance from Earth and the longer the mission duration, the more difficult resupply becomes; this requires a change from the current spares, maintenance, repair, and hardware design model that has been used on the International Space Station up until now. Given the extension of the ISS Program, which will inevitably result in replacement parts being required, the ISS is an ideal platform to begin changing the current model for resupply and repair to one that is more suitable for all exploration missions. 3D Printing, more formally known as Additive Manufacturing, is the method of building parts/ objects/tools layer-by-layer. The 3D Print experiment will use extrusion-based additive manufacturing, which involves building an object out of plastic deposited by a wire-feed via an extruder head. Parts can be printed from data files loaded on the device at launch, as well as additional files uplinked to the device while on-orbit. The plastic extrusion additive manufacturing process is a low-energy, low-mass solution to many common needs on board the ISS. The 3D Print payload will serve as the ideal first step to proving that process in space. It is unreasonable to expect NASA to launch large blocks of material from which parts or tools can be traditionally machined, and even more unreasonable to fly up specialized manufacturing hardware to perform the entire range of function traditionally machining requires. The technology to produce parts on demand, in space, offers unique design options that are not possible

  20. KSC ISS Logistics Support

    Science.gov (United States)

    Tellado, Joseph

    2014-01-01

    The presentation contains a status of KSC ISS Logistics Operations. It basically presents current top level ISS Logistics tasks being conducted at KSC, current International Partner activities, hardware processing flow focussing on late Stow operations, list of KSC Logistics POC's, and a backup list of Logistics launch site services. This presentation is being given at the annual International Space Station (ISS) Multi-lateral Logistics Maintenance Control Panel meeting to be held in Turin, Italy during the week of May 13-16. The presentatiuon content doesn't contain any potential lessons learned.

  1. Space Flight Resource Management for ISS Operations

    Science.gov (United States)

    Schmidt, Larry; Slack, Kelley; O'Keefe, William; Huning, Therese; Sipes, Walter; Holland, Albert

    2011-01-01

    This slide presentation reviews the International Space Station (ISS) Operations space flight resource management, which was adapted to the ISS from the shuttle processes. It covers crew training and behavior elements.

  2. A Battery Certification Testbed for Small Satellite Missions

    Science.gov (United States)

    Cameron, Zachary; Kulkarni, Chetan S.; Luna, Ali Guarneros; Goebel, Kai; Poll, Scott

    2015-01-01

    A battery pack consisting of standard cylindrical 18650 lithium-ion cells has been chosen for small satellite missions based on previous flight heritage and compliance with NASA battery safety requirements. However, for batteries that transit through the International Space Station (ISS), additional certification tests are required for individual cells as well as the battery packs. In this manuscript, we discuss the development of generalized testbeds for testing and certifying different types of batteries critical to small satellite missions. Test procedures developed and executed for this certification effort include: a detailed physical inspection before and after experiments; electrical cycling characterization at the cell and pack levels; battery-pack overcharge, over-discharge, external short testing; battery-pack vacuum leak and vibration testing. The overall goals of these certification procedures are to conform to requirements set forth by the agency and identify unique safety hazards. The testbeds, procedures, and experimental results are discussed for batteries chosen for small satellite missions to be launched from the ISS.

  3. International Space Station (ISS) External Thermal Control System (ETCS) Loop A Pump Module (PM) Jettison Options Assessment

    Science.gov (United States)

    Murri, Daniel G.; Dwyer Cianciolo, Alicia; Shidner, Jeremy D.; Powell, Richard W.

    2014-01-01

    On December 11, 2013, the International Space Station (ISS) experienced a failure of the External Thermal Control System (ETCS) Loop A Pump Module (PM). To minimize the number of extravehicular activities (EVA) required to replace the PM, jettisoning the faulty pump was evaluated. The objective of this study was to independently evaluate the jettison options considered by the ISS Trajectory Operations Officer (TOPO) and to provide recommendations for safe jettison of the ETCS Loop A PM. The simulation selected to evaluate the TOPO options was the NASA Engineering and Safety Center's (NESC) version of Program to Optimize Simulated Trajectories II (POST2) developed to support another NESC assessment. The objective of the jettison analysis was twofold: (1) to independently verify TOPO posigrade and retrograde jettison results, and (2) to determine jettison guidelines based on additional sensitivity, trade study, and Monte Carlo (MC) analysis that would prevent PM recontact. Recontact in this study designates a propagated PM trajectory that comes within 500 m of the ISS propagated trajectory. An additional simulation using Systems Tool Kit (STK) was run for independent verification of the POST2 simulation results. Ultimately, the ISS Program removed the PM jettison option from consideration. However, prior to the Program decision, the retrograde jettison option remained part of the EVA contingency plan. The jettison analysis presented showed that, in addition to separation velocity/direction and the atmosphere conditions, the key variables in determining the time to recontact the ISS is highly dependent on the ballistic number (BN) difference between the object being jettisoned and the ISS.

  4. Free-Flyer Capture - New Robotic Challenges from the International Space Station

    Science.gov (United States)

    Smith, C.; Seagram, J.

    The Japanese H-II Transfer Vehicle (HTV) will be the first free-flyer to visit the International Space Station (ISS) that will be captured by the Space Station Remote Manipulator System (SSRMS). Experience gained from the free-flyer captures completed previously by the Remote Manipulator System of the Space Shuttle has helped provide a foundation for the operational concept of capturing free-flyers. However, additional complications arise in the concept of free-flyer capture when carried out by the SSRMS from the ISS. Such issues include: ISS manoeuvrability and the difficulty of the ISS to quickly react to collision avoidance; current hardware and architecture design constraints of the SSRMS on-orbit; and HTV retreat and system limitations. This paper will discuss these issues and the numerous challenges they generate in trying to ensure that the safety of the ISS is maintained while trying to also guarantee the successful capture of the HTV; a vehicle containing potentially critical equipment and supplies for the ISS and its crew. As well, this paper will highlight the SSRMS system enhancements and innovative operational solutions that have enhanced the probability of mission success, and have been necessary to meet the failure tolerance and recovery requirements.

  5. International Space Station Sustaining Engineering: A Ground-Based Test Bed for Evaluating Integrated Environmental Control and Life Support System and Internal Thermal Control System Flight Performance

    Science.gov (United States)

    Ray, Charles D.; Perry, Jay L.; Callahan, David M.

    2000-01-01

    As the International Space Station's (ISS) various habitable modules are placed in service on orbit, the need to provide for sustaining engineering becomes increasingly important to ensure the proper function of critical onboard systems. Chief among these are the Environmental Control and Life Support System (ECLSS) and the Internal Thermal Control System (ITCS). Without either, life onboard the ISS would prove difficult or nearly impossible. For this reason, a ground-based ECLSS/ITCS hardware performance simulation capability has been developed at NASA's Marshall Space Flight Center. The ECLSS/ITCS Sustaining Engineering Test Bed will be used to assist the ISS Program in resolving hardware anomalies and performing periodic performance assessments. The ISS flight configuration being simulated by the test bed is described as well as ongoing activities related to its preparation for supporting ISS Mission 5A. Growth options for the test facility are presented whereby the current facility may be upgraded to enhance its capability for supporting future station operation well beyond Mission 5A. Test bed capabilities for demonstrating technology improvements of ECLSS hardware are also described.

  6. International Space Station-Based Electromagnetic Launcher for Space Science Payloads

    Science.gov (United States)

    Jones, Ross M.

    2013-01-01

    A method was developed of lowering the cost of planetary exploration missions by using an electromagnetic propulsion/launcher, rather than a chemical-fueled rocket for propulsion. An electromagnetic launcher (EML) based at the International Space Station (ISS) would be used to launch small science payloads to the Moon and near Earth asteroids (NEAs) for the science and exploration missions. An ISS-based electromagnetic launcher could also inject science payloads into orbits around the Earth and perhaps to Mars. The EML would replace rocket technology for certain missions. The EML is a high-energy system that uses electricity rather than propellant to accelerate payloads to high velocities. The most common type of EML is the rail gun. Other types are possible, e.g., a coil gun, also known as a Gauss gun or mass driver. The EML could also "drop" science payloads into the Earth's upper

  7. Rapid Monitoring of Bacteria and Fungi aboard the International Space Station (ISS)

    Science.gov (United States)

    Gunter, D.; Flores, G.; Effinger, M.; Maule, J.; Wainwright, N.; Steele, A.; Damon, M.; Wells, M.; Williams, S.; Morris, H.; hide

    2009-01-01

    Microorganisms within spacecraft have traditionally been monitored with culture-based techniques. These techniques involve growth of environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies or return of samples to Earth for ground-based analysis. Data obtained over the past 4 decades have enhanced our understanding of the microbial ecology within space stations. However, the approach has been limited by the following factors: i) Many microorganisms (estimated > 95%) in the environment cannot grow on conventional growth media; ii) Significant time lags (3-5 days for incubation and up to several months to return samples to ground); iii) Condensation in contact slides hinders colony counting by crew; and iv) Growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and beta-1, 3-glucan, found in the cell walls of gramnegative bacteria and fungi, respectively. The technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device, known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). LOCADPTS was launched to the ISS in December 2006, and here we present data obtained from Mach 2007 until the present day. These data include a comparative study between LOCADPTS analysis and existing culture-based methods; and an exploratory survey of surface endotoxin and beta-1, 3-glucan throughout the ISS. While a general correlation between LOCAD-PTS and traditional culture-based methods should not be expected, we will suggest new requirements for microbial monitoring based upon culture-independent parameters measured by LOCAD-PTS.

  8. Experiences with Extra-Vehicular Activities in Response to Critical ISS Contingencies

    Science.gov (United States)

    Van Cise, E. A.; Kelly, B. J.; Radigan, J. P.; Cranmer, C. W.

    2016-01-01

    The maturation of the International Space Station (ISS) design from the proposed Space Station Freedom to today's current implementation resulted in external hardware redundancy vulnerabilities in the final design. Failure to compensate for or respond to these vulnerabilities could put the ISS in a posture where it could no longer function as a habitable space station. In the first years of ISS assembly, these responses were to largely be addressed by the continued resupply and Extra-Vehicular Activity (EVA) capabilities of the Space Shuttle. Even prior to the decision to retire the Space Shuttle, it was realized that ISS needed to have its own capability to be able to rapidly repair or replace external hardware without needing to wait for the next cargo resupply mission. As documented in a previous publication, in 2006 development was started to baseline Extra-Vehicular Activity (EVA, or spacewalk) procedures to replace hardware components whose failure would expose some of the ISS vulnerabilities should a second failure occur. This development work laid the groundwork for the onboard crews and the ground operations and engineering teams to be ready to replace any of this failed hardware. In 2010, this development work was put to the test when one of these pieces of hardware failed. This paper will provide a brief summary of the planning and processes established in the original Contingency EVA development phase. It will then review how those plans and processes were implemented in 2010, highlighting what went well as well as where there were deficiencies between theory and reality. This paper will show that the original approach and analyses, though sound, were not as thorough as they should have been in the realm of planning for next worse failures, for documenting Programmatic approval of key assumptions, and not pursuing sufficient engineering analysis prior to the failure of the hardware. The paper will further highlight the changes made to the Contingency

  9. International Space Station (ISS) Oxygen High Pressure Storage Management

    Science.gov (United States)

    Lewis, John R.; Dake, Jason; Cover, John; Leonard, Dan; Bohannon, Carl

    2004-01-01

    High pressure oxygen onboard the ISS provides support for Extra Vehicular Activities (EVA) and contingency metabolic support for the crew. This high pressure 02 is brought to the ISS by the Space Shuttle and is transferred using the Oxygen Recharge Compressor Assembly (ORCA). There are several drivers that must be considered in managing the available high pressure 02 on the ISS. The amount of O2 the Shuttle can fly up is driven by manifest mass limitations, launch slips, and on orbit Shuttle power requirements. The amount of 02 that is used from the ISS high pressure gas tanks (HPGT) is driven by the number of Shuttle docked and undocked EVAs, the type of EVA prebreath protocol that is used and contingency use of O2 for metabolic support. Also, the use of the ORCA must be managed to optimize its life on orbit and assure that it will be available to transfer the planned amount of O2 from the Shuttle. Management of this resource has required long range planning and coordination between Shuttle manifest on orbit plans. To further optimize the situation hardware options have been pursued.

  10. Cultural factors and the international space station

    OpenAIRE

    Ritsher, Jennifer Boyd

    2005-01-01

    The American and Russian/Soviet space programs independently uncovered psychosocial risks inherent in long-duration space missions. Now that these two countries are working together on the International Space Station (ISS), American-Russian cultural differences pose an additional set of risk factors. These may echo cultural differences that have been observed in the general population of the two countries and in space analogue settings, but little is known about how relevant these are to the ...

  11. Definition of technology development missions for early space station satellite servicing, volume 1

    Science.gov (United States)

    1983-01-01

    The testbed role of an early manned space station in the context of a satellite servicing evolutionary development and flight demonstration technology plan which results in a satellite servicing operational capability is defined. A satellite servicing technology development mission (a set of missions) to be performed on an early manned space station is conceptually defined.

  12. Definition of technology development missions for early space stations. Large space structures, phase 2, midterm review

    Science.gov (United States)

    1984-01-01

    The large space structures technology development missions to be performed on an early manned space station was studied and defined and the resources needed and the design implications to an early space station to carry out these large space structures technology development missions were determined. Emphasis is being placed on more detail in mission designs and space station resource requirements.

  13. Definition of technology development missions for early space stations: Large space structures

    Science.gov (United States)

    Gates, R. M.; Reid, G.

    1984-01-01

    The objectives studied are the definition of the tested role of an early Space Station for the construction of large space structures. This is accomplished by defining the LSS technology development missions (TDMs) identified in phase 1. Design and operations trade studies are used to identify the best structural concepts and procedures for each TDMs. Details of the TDM designs are then developed along with their operational requirements. Space Station resources required for each mission, both human and physical, are identified. The costs and development schedules for the TDMs provide an indication of the programs needed to develop these missions.

  14. Gas monitoring onboard ISS using FTIR spectroscopy

    Science.gov (United States)

    Gisi, Michael; Stettner, Armin; Seurig, Roland; Honne, Atle; Witt, Johannes; Rebeyre, Pierre

    2017-06-01

    In the confined, enclosed environment of a spacecraft, the air quality must be monitored continuously in order to safeguard the crew's health. For this reason, OHB builds the ANITA2 (Analysing Interferometer for Ambient Air) technology demonstrator for trace gas monitoring onboard the International Space Station (ISS). The measurement principle of ANITA2 is based on the Fourier Transform Infrared (FTIR) technology with dedicated gas analysis software from the Norwegian partner SINTEF. This combination proved to provide high sensitivity, accuracy and precision for parallel measurements of 33 trace gases simultaneously onboard ISS by the precursor instrument ANITA1. The paper gives a technical overview about the opto-mechanical components of ANITA2, such as the interferometer, the reference Laser, the infrared source and the gas cell design and a quick overview about the gas analysis. ANITA2 is very well suited for measuring gas concentrations specifically but not limited to usage onboard spacecraft, as no consumables are required and measurements are performed autonomously. ANITA2 is a programme under the contract of the European Space Agency, and the air quality monitoring system is a stepping stone into the future, as a precursor system for manned exploration missions.

  15. Cytogenetic effects of ionizing radiation in peripheral lymphocytes of ISS crew members

    Science.gov (United States)

    Johannes, Christian; Goedecke, Wolfgang; Antonopoulos, Alexandra; Obe, Günter; Horstmann, Markus

    High energy radiation is a major risk factor in manned space missions. Astronauts and cosmonauts are exposed to ionising radiations of cosmic and solar origin, while on the Earth's surface people are well protected by the atmosphere and a deflecting magnetic field. There are now data available describing the dose and the quality of ionising radiation on-board of the International Space Station (ISS). The effect of the increased radiation dose on mutation rates of ISS crew members are hard to predict. Therefore, direct measurements of mutation rates are required.The analysis of chromosomal aberrations in peripheral blood lymphocytes is a well established method to measure radiation-induced mutations. We present data of chromosome aberration analyses from lymphocyte metaphase spreads of ISS crew members participating in short term (10-14 days) or long term (6 months) missions. From each subject we received two blood samples. The first sample was drawn about 10 days before launch and a second sample was drawn within 3 days after return from their flights. From lymphocyte cultures metaphase plates were prepared on glass slides. Metaphases were Giemsa stained or hybridised using multicolour FISH probes. All types of chromosome changes were scored in pre-flight and post-flight blood samples and the mutation rates were compared. Results obtained in chromosomal studies on long-term flight crew members showed pronounced inter-individual differences in the response to cosmic radiation exposure. Overall significant elevations of typical radiation induced aberrations, i.e., dicentric chromosomes and reciprocal translocations have been observed in long-term crew members. Our data indicate no elevation of mutation rates due to short-term stays on-board the ISS.

  16. Shuttle and ISS Food Systems Management

    Science.gov (United States)

    Kloeris, Vickie

    2000-01-01

    Russia and the U.S. provide the current International Space Station (ISS) food system. Each country contributes half of the food supply in their respective flight food packaging. All of the packaged flight food is stowed in Russian provided containers, which interface with the Service Module galley. Each country accepts the other's flight worthiness inspections and qualifications. Some of the food for the first ISS crew was launched to ISS inside the Service Module in July of 2000, and STS-106 in September 2000 delivered more food to the ISS. All subsequent food deliveries will be made by Progress, the Russian re-supply vehicle. The U.S. will ship their portion of food to Moscow for loading onto the Progress. Delivery schedules vary, but the goal is to maintain at least a 45-day supply onboard ISS at all times. The shelf life for ISS food must be at least one year, in order to accommodate the long delivery cycle and onboard storage. Preservation techniques utilized in the US food system include dehydration, thermo stabilization, intermediate moisture, and irradiation. Additional fresh fruits and vegetables will be sent with each Progress and Shuttle flights as permitted by volume allotments. There is limited refrigeration available on the Service Module to store fresh fruits and vegetables. Astronauts and cosmonauts eat half U.S. and half Russian food. Menu planning begins 1 year before a planned launch. The flight crews taste food in the U.S. and in Russia and rate the acceptability. A preliminary menu is planned, based on these ratings and the nutritional requirements. The preliminary menu is then evaluated by the crews while training in Russia. Inputs from this evaluation are used to finalize the menu and flight packaging is initiated. Flight food is delivered 6 weeks before launch. The current challenge for the food system is meeting the nutritional requirements, especially no more than 10 mg iron, and 3500 mg sodium. Experience from Shuttle[Mir also indicated

  17. Corporate sponsored education initiatives on board the ISS

    Science.gov (United States)

    Durham, Ian T.; Durham, Alyson S.; Pawelczyk, James A.; Brod, Lawrence B.; Durham, Thomas F.

    1999-01-01

    This paper proposes the creation of a corporate sponsored ``Lecture from Space'' program on board the International Space Station (ISS) with funding coming from a host of new technology and marketing spin-offs. This program would meld existing education initiatives in NASA with new corporate marketing techniques. Astronauts in residence on board the ISS would conduct short ten to fifteen minute live presentations and/or conduct interactive discussions carried out by a teacher in the classroom. This concept is similar to a program already carried out during the Neurolab mission on Shuttle flight STS-90. Building on that concept, the interactive simulcasts would be broadcast over the Internet and linked directly to computers and televisions in classrooms worldwide. In addition to the live broadcasts, educational programs and demonstrations can be recorded in space, and marketed and sold for inclusion in television programs, computer software, and other forms of media. Programs can be distributed directly into classrooms as an additional presentation supplement, as well as over the Internet or through cable and broadcast television, similar to the Canadian Discovery Channel's broadcasts of the Neurolab mission. Successful marketing and advertisement can eventually lead to the creation of an entirely new, privately run cottage industry involving the distribution and sale of educationally related material associated with the ISS that would have the potential to become truly global in scope. By targeting areas of expertise and research interest in microgravity, a large curriculum could be developed using space exploration as a unifying theme. Expansion of this concept could enhance objectives already initiated through the International Space University to include elementary and secondary school students. The ultimate goal would be to stimulate interest in space and space related sciences in today's youth through creative educational marketing initiatives while at the

  18. Leadership and Cultural Challenges in Operating the International Space Station

    Science.gov (United States)

    Clement, J. L.; Ritsher, J. B.; Saylor, S. A.; Kanas, N.

    2006-01-01

    Operating the International Space Station (ISS) involves an indefinite, continuous series of long-duration international missions, and this requires an unprecedented degree of cooperation across multiple sites, organizations, and nations. ISS flight controllers have had to find ways to maintain effective team performance in this challenging new context. The goal of this study was to systematically identify and evaluate the major leadership and cultural challenges faces by ISS flight controllers, and to highlight the approaches that they have found most effective to surmount these challenges. We conducted a qualitative survey using a semi-structured interview. Subjects included 14 senior NASA flight controllers who were chosen on the basis of having had substantial experience working with international partners. Data were content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. To further explore the meaning of the interview findings, we also conducted some new analyses of data from a previous questionnaire study of Russian and American ISS mission control personnel. The interview data showed that respondents had substantial consensus on several leadership and cultural challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Surprisingly few respondents offered strategies for addressing the challenge of working with team members whose native language is not American English. The questionnaire data showed that Americans think it is more important than Russians that mission control personnel speak the same dialect of one shared common language. Although specific to the ISS program, our results are consistent with recent management, cultural, and aerospace research. We aim to use our results to improve training for current and future ISS flight controllers.

  19. Automated ISS Flight Utilities

    Science.gov (United States)

    Offermann, Jan Tuzlic

    2016-01-01

    During my internship at NASA Johnson Space Center, I worked in the Space Radiation Analysis Group (SRAG), where I was tasked with a number of projects focused on the automation of tasks and activities related to the operation of the International Space Station (ISS). As I worked on a number of projects, I have written short sections below to give a description for each, followed by more general remarks on the internship experience. My first project is titled "General Exposure Representation EVADOSE", also known as "GEnEVADOSE". This project involved the design and development of a C++/ ROOT framework focused on radiation exposure for extravehicular activity (EVA) planning for the ISS. The utility helps mission managers plan EVAs by displaying information on the cumulative radiation doses that crew will receive during an EVA as a function of the egress time and duration of the activity. SRAG uses a utility called EVADOSE, employing a model of the space radiation environment in low Earth orbit to predict these doses, as while outside the ISS the astronauts will have less shielding from charged particles such as electrons and protons. However, EVADOSE output is cumbersome to work with, and prior to GEnEVADOSE, querying data and producing graphs of ISS trajectories and cumulative doses versus egress time required manual work in Microsoft Excel. GEnEVADOSE automates all this work, reading in EVADOSE output file(s) along with a plaintext file input by the user providing input parameters. GEnEVADOSE will output a text file containing all the necessary dosimetry for each proposed EVA egress time, for each specified EVADOSE file. It also plots cumulative dose versus egress time and the ISS trajectory, and displays all of this information in an auto-generated presentation made in LaTeX. New features have also been added, such as best-case scenarios (egress times corresponding to the least dose), interpolated curves for trajectories, and the ability to query any time in the

  20. International Space Station External Contamination Environment for Space Science Utilization

    Science.gov (United States)

    Soares, Carlos E.; Mikatarian, Ronald R.; Steagall, Courtney A.; Huang, Alvin Y.; Koontz, Steven; Worthy, Erica

    2014-01-01

    The International Space Station (ISS) is the largest and most complex on-orbit platform for space science utilization in low Earth orbit. Multiple sites for external payloads, with exposure to the associated natural and induced environments, are available to support a variety of space science utilization objectives. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. The ISS has been designed, built and integrated with strict contamination requirements to provide low levels of induced contamination on external payload assets. This paper addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on returned hardware, and contamination forecasting maps being generated to support external payload topology studies and science utilization.

  1. Radiation Measured with Different Dosimeters for ISS-Expedition 18-19/ULF2 on Board International Space Station during Solar Minimum

    Science.gov (United States)

    Zhou, Dazhuang; Gaza, R.; Roed, Y.; Semones, E.; Lee, K.; Steenburgh, R.; Johnson, S.; Flanders, J.; Zapp, N.

    2010-01-01

    Radiation field of particles in low Earth orbit (LEO) is mainly composed of galactic cosmic rays (GCR), solar energetic particles and particles in SAA (South Atlantic Anomaly). GCR are modulated by solar activity, at the period of solar minimum activity, GCR intensity is at maximum and the main contributor for space radiation is GCR. At present for space radiation measurements conducted by JSC (Johnson Space Center) SRAG (Space Radiation Analysis Group), the preferred active dosimeter sensitive to all LET (Linear Energy Transfer) is the tissue equivalent proportional counter (TEPC); the preferred passive dosimeters are thermoluminescence dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) sensitive to low LET as well as CR-39 plastic nuclear track detectors (PNTDs) sensitive to high LET. For the method using passive dosimeters, radiation quantities for all LET can be obtained by combining radiation results measured with TLDs/OSLDs and CR-39 PNTDs. TEPC, TLDs/OSLDs and CR-39 detectors were used to measure the radiation field for the ISS (International Space Station) - Expedition 18-19/ULF2 space mission which was conducted from 15 November 2008 to 31 July 2009 - near the period of the recent solar minimum activity. LET spectra (differential and integral fluence, absorbed dose and dose equivalent) and radiation quantities were measured for positions TEPC, TESS (Temporary Sleeping Station, inside the polyethylene lined sleep station), SM-P 327 and 442 (Service Module - Panel 327 and 442). This paper presents radiation LET spectra measured with TEPC and CR-39 PNTDs and radiation dose measured with TLDs/OSLDs as well as the radiation quantities combined from results measured with passive dosimeters.

  2. The Cloud-Aerosol Transport System (CATS): A New Earth Science Capability for ISS (Invited)

    Science.gov (United States)

    McGill, M. J.; Yorks, J. E.; Scott, S.; Kupchock, A.; Selmer, P.

    2013-12-01

    The Cloud-Aerosol Transport System (CATS) is a lidar remote sensing instrument developed for deployment to the International Space Station (ISS). The CATS lidar will provide range-resolved profile measurements of atmospheric aerosol and cloud distributions and properties. The CATS instrument uses a high repetition rate laser operating at three wavelengths (1064, 532, and 355 nm) to derive properties of cloud/aerosol layers including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The CATS mission was designed to capitalize on the Space Station's unique orbit and facilities to continue existing Earth Science data records, to provide observational data for use in forecast models, and to demonstrate new technologies for use in future missions. The CATS payload will be installed on the Japanese Experiment Module - Exposed Facility (JEM-EF). The payload is designed to operate on-orbit for at least six months, and up to three years. The payload is completed and currently scheduled for a mid-2014 launch. The ISS and, in particular, the JEM-EF, is an exciting new platform for spaceborne Earth observations. The ability to leverage existing aircraft instrument designs coupled with the lower cost possible for ISS external attached payloads permits rapid and cost effective development of spaceborne sensors. The CATS payload is based on existing instrumentation built and operated on the high-altitude NASA ER-2 aircraft. The payload is housed in a 1.5 m x 1 m x 0.8 m volume that attaches to the JEM-EF. The allowed volume limits the maximum size for the collecting telescope to 60 cm diameter. Figure 1 shows a schematic layout of the CATS payload, with the primary instrument components identified. Figure 2 is a photo of the completed payload. CATS payload cut-away view. Completed CATS payload assembly.

  3. International Space Station (ISS) Advanced Recycle Filter Tank Assembly (ARFTA)

    Science.gov (United States)

    Nasrullah, Mohammed K.

    2013-01-01

    The International Space Station (ISS) Recycle Filter Tank Assembly (RFTA) provides the following three primary functions for the Urine Processor Assembly (UPA): volume for concentrating/filtering pretreated urine, filtration of product distillate, and filtration of the Pressure Control and Pump Assembly (PCPA) effluent. The RFTAs, under nominal operations, are to be replaced every 30 days. This poses a significant logistical resupply problem, as well as cost in upmass and new tanks purchase. In addition, it requires significant amount of crew time. To address and resolve these challenges, NASA required Boeing to develop a design which eliminated the logistics and upmass issues and minimize recurring costs. Boeing developed the Advanced Recycle Filter Tank Assembly (ARFTA) that allowed the tanks to be emptied on-orbit into disposable tanks that eliminated the need for bringing the fully loaded tanks to earth for refurbishment and relaunch, thereby eliminating several hundred pounds of upmass and its associated costs. The ARFTA will replace the RFTA by providing the same functionality, but with reduced resupply requirements

  4. Organization and Management of the International Space Station (ISS) Multilateral Medical Operations

    Science.gov (United States)

    Duncan, J. M.; Bogomolov, V. V.; Castrucci, F.; Koike, Y.; Comtois, J. M.; Sargsyan, A. E.

    2007-01-01

    The goal of this work is to review the principles, design, and function of the ISS multilateral medical authority and the medical support system of the ISS Program. Multilateral boards and panels provide operational framework, direct, and supervise the ISS joint medical operational activities. The Integrated Medical Group (IMG) provides front-line medical support of the crews. Results of ongoing activities are reviewed weekly by physician managers. A broader status review is conducted monthly to project the state of crew health and medical support for the following month. All boards, panels, and groups function effectively and without interruptions. Consensus prevails as the primary nature of decisions made by all ISS medical groups, including the ISS medical certification board. The sustained efforts of all partners have resulted in favorable medical outcomes of the initial fourteen long-duration expeditions. The medical support system appears to be mature and ready for further expansion of the roles of all Partners, and for the anticipated increase in the size of ISS crews.

  5. Role of the Space Station in Private Development of Space

    Science.gov (United States)

    Uhran, M. L.

    2002-01-01

    The International Space Station (ISS) is well underway in the assembly process and progressing toward completion. In February 2001, the United States laboratory "Destiny" was successfully deployed and the course of space utilization, for laboratory-based research and development (R&D) purposes, entered a new era - continuous on-orbit operations. By completion, the ISS complex will include pressurized laboratory elements from Europe, Japan, Russia and the U.S., as well as external platforms which can serve as observatories and technology development test beds serviced by a Canadian robotic manipulator. The international vision for a continuously operating, full service R&D complex in the unique environment of low-Earth orbit is becoming increasingly focused. This R&D complex will offer great opportunities for economic return as the basic research program proceeds on a global scale and the competitive advantages of the microgravity and ultravacuum environments are elucidated through empirical studies. In parallel, the ISS offers a new vantage point, both as a source for viewing of Earth and the Cosmos and as the subject of view for a global population that has grown during the dawning of the space age. In this regard, the ISS is both a working laboratory and a powerful symbol for human achievement in science and technology. Each of these aspects bears consideration as we seek to develop the beneficial attributes of space and pursue innovative approaches to expanding this space complex through private investment. Ultimately, the success of the ISS will be measured by the outcome at the end of its design lifetime. Will this incredible complex be de-orbited in a fiery finale, as have previous space platforms? Will another, perhaps still larger, space station be built through global government funding? Will the ISS ownership be transferred to a global, non-government organization for refurbishment and continuation of the mission on a privately financed basis? Steps taken

  6. Development of an In Flight Vision Self-Assessment Questionnaire for Long Duration Space Missions

    Science.gov (United States)

    Byrne, Vicky E.; Gibson, Charles R.; Pierpoline, Katherine M.

    2010-01-01

    OVERVIEW A NASA Flight Medicine optometrist teamed with a human factors specialist to develop an electronic questionnaire for crewmembers to record their visual acuity test scores and perceived vision assessment. It will be implemented on the International Space Station (ISS) and administered as part of a suite of tools for early detection of potential vision changes. The goal of this effort was to rapidly develop a set of questions to help in early detection of visual (e.g. blurred vision) and/or non-visual (e.g. headaches) symptoms by allowing the ISS crewmembers to think about their own current vision during their spaceflight missions. PROCESS An iterative process began with a Space Shuttle one-page paper questionnaire generated by the optometrist that was updated by applying human factors design principles. It was used as a baseline to establish an electronic questionnaire for ISS missions. Additional questions needed for the ISS missions were included and the information was organized to take advantage of the computer-based file format available. Human factors heuristics were applied to the prototype and then they were reviewed by the optometrist and procedures specialists with rapid-turn around updates that lead to the final questionnaire. CONCLUSIONS With about only a month lead time, a usable tool to collect crewmember assessments was developed through this cross-discipline collaboration. With only a little expenditure of energy, the potential payoff is great. ISS crewmembers will complete the questionnaire at 30 days into the mission, 100 days into the mission and 30 days prior to return to Earth. The systematic layout may also facilitate physicians later data extraction for quick interpretation of the data. The data collected along with other measures (e.g. retinal and ultrasound imaging) at regular intervals could potentially lead to early detection and treatment of related vision problems than using the other measures alone.

  7. International Space Station Research for the Next Decade: International Coordination and Research Accomplishments

    Science.gov (United States)

    Thumm, Tracy L.; Robinson, Julie A.; Johnson-Green, Perry; Buckley, Nicole; Karabadzhak, George; Nakamura, Tai; Sorokin, Igor V.; Zell, Martin; Sabbagh, Jean

    2011-01-01

    During 2011, the International Space Station reached an important milestone in the completion of assembly and the shift to the focus on a full and continuous utilization mission in space. The ISS partnership itself has also met a milestone in the coordination and cooperation of utilization activities including research, technology development and education. We plan and track all ISS utilization activities jointly and have structures in place to cooperate on common goals by sharing ISS assets and resources, and extend the impacts and efficiency of utilization activities. The basic utilization areas on the ISS include research, technology development and testing, and education/outreach. Research can be categorized as applied research for future exploration, basic research taking advantage of the microgravity and open space environment, and Industrial R&D / commercial research focused at industrial product development and improvement. Technology development activities range from testing of new spacecraft systems and materials to the use of ISS as an analogue for future exploration missions to destinations beyond Earth orbit. This presentation, made jointly by all ISS international partners, will highlight the ways that international cooperation in all of these areas is achieved, and the overall accomplishments that have come as well as future perspectives from the cooperation. Recently, the partnership has made special efforts to increase the coordination and impact of ISS utilization that has humanitarian benefits. In this context the paper will highlight tentative ISS utilization developments in the areas of Earth remote sensing, medical technology transfer, and education/outreach.

  8. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    Science.gov (United States)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  9. Seven Years of Permanent Running of MELFI-1 on Board the ISS and Utilisation of the Three MELFI Units Refrigeration Pool

    Science.gov (United States)

    Chegancas, Jean; Stephan, Hubertus; Jimenez, Jesus; Campana, Sharon; Hutchison, Susan

    2013-01-01

    The pool of three Minus Eighty Laboratory freezer for ISS (MELFI) units continues providing the scientific community with robust and permanent freezer and refrigeration capabilities for life science experiments on the International Space Station (ISS). Launched in 2006, the first unit will complete, by summer 2013, seven years of continuous operations without intervention on the internal Nitrogen gas cycle, while all necessary hardware and operations were initially planned for preventive maintenance every two years. This unit has demonstrated outstanding performance on orbit and proved the technical decisions made during the development program. Current utilization of MELFI units in the ISS is taking full benefit of the initial specifications, which allows for wide adaptations to cope with the mission scenario imposed by the life extension in orbit. The two other MELFI units, launched respectively in 2008 and 2009, are supporting the first unit providing additional conditioned volume necessary for the science on board, and also for preparing thermal mass used to protect the samples on their way down to earth. The MELFI pool is outfitted with all supporting hardware to allow for extended operation on orbit including preventive and corrective maintenance. The internal components were designed to allow for easy on board maintenance. Spare equipment was installed in the MELFI rack on ISS and specific maintenance means were developed which required crew training before the cold gas cycle could be accessed. The paper will present first how the design choices made for the initial missions are identifying features necessary for extended duration missions, and will then give highlights on the utilization of the MELFI refrigeration pool during the recent years in ISS.

  10. Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions

    Science.gov (United States)

    Du, Brian J.; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick; Younker, Diane R.; Putcha, Lakshmi

    2009-01-01

    Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the

  11. Mission Analysis for LEO Microwave Power-Beaming Station in Orbital Launch of Microwave Lightcraft

    Science.gov (United States)

    Myrabo, L. N.; Dickenson, T.

    2005-01-01

    A detailed mission analysis study has been performed for a 1 km diameter, rechargeable satellite solar power station (SPS) designed to boost 20m diameter, 2400 kg Micr,oWave Lightcraft (MWLC) into low earth orbit (LEO) Positioned in a 476 km daily-repeating oi.bit, the 35 GHz microwave power station is configured like a spinning, thin-film bicycle wheel covered by 30% efficient sola cells on one side and billions of solid state microwave transmitter elements on the other, At the rim of this wheel are two superconducting magnets that can stor,e 2000 G.J of energy from the 320 MW, solar array over a period of several orbits. In preparation for launch, the entire station rotates to coarsely point at the Lightcraft, and then phases up using fine-pointing information sent from a beacon on-board the Lightcraft. Upon demand, the station transmits a 10 gigawatt microwave beam to lift the MWLC from the earth surface into LEO in a flight of several minutes duration. The mission analysis study was comprised of two parts: a) Power station assessment; and b) Analysis of MWLC dynamics during the ascent to orbit including the power-beaming relationships. The power station portion addressed eight critical issues: 1) Drag force vs. station orbital altitude; 2) Solar pressure force on the station; 3) Station orbital lifetime; 4) Feasibility of geo-magnetic re-boost; 5) Beta angle (i..e., sola1 alignment) and power station effective area relationship; 6) Power station percent time in sun vs, mission elapsed time; 7) Station beta angle vs.. charge time; 8) Stresses in station structures.. The launch dynamics portion examined four issues: 1) Ascent mission/trajecto1y profile; 2) MWLC/power-station mission geometry; 3) MWLC thrust angle vs. time; 4) Power station pitch rate during power beaming. Results indicate that approximately 0 58 N of drag force acts upon the station when rotated edge-on to project the minimum frontal area of 5000 sq m. An ion engine or perhaps an electrodynamic

  12. Overview of Pre-Flight Physical Training, In-Flight Exercise Countermeasures and the Post-Flight Reconditioning Program for International Space Station Astronauts

    Science.gov (United States)

    Kerstman, Eric

    2011-01-01

    International Space Station (ISS) astronauts receive supervised physical training pre-flight, utilize exercise countermeasures in-flight, and participate in a structured reconditioning program post-flight. Despite recent advances in exercise hardware and prescribed exercise countermeasures, ISS crewmembers are still found to have variable levels of deconditioning post-flight. This presentation provides an overview of the astronaut medical certification requirements, pre-flight physical training, in-flight exercise countermeasures, and the post-flight reconditioning program. Astronauts must meet medical certification requirements on selection, annually, and prior to ISS missions. In addition, extensive physical fitness testing and standardized medical assessments are performed on long duration crewmembers pre-flight. Limited physical fitness assessments and medical examinations are performed in-flight to develop exercise countermeasure prescriptions, ensure that the crewmembers are physically capable of performing mission tasks, and monitor astronaut health. Upon mission completion, long duration astronauts must re-adapt to the 1 G environment, and be certified as fit to return to space flight training and active duty. A structured, supervised postflight reconditioning program has been developed to prevent injuries, facilitate re-adaptation to the 1 G environment, and subsequently return astronauts to training and space flight. The NASA reconditioning program is implemented by the Astronaut Strength, Conditioning, and Rehabilitation (ASCR) team and supervised by NASA flight surgeons. This program has evolved over the past 10 years of the International Space Station (ISS) program and has been successful in ensuring that long duration astronauts safely re-adapt to the 1 g environment and return to active duty. Lessons learned from this approach to managing deconditioning can be applied to terrestrial medicine and future exploration space flight missions.

  13. Software-Defined Ground Stations - Enhancing Multi-Mission Support, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase 1 proposal to NASA requests $99,055.69 to enhance multiple mission support in ground stations through the use of software defined radios and virtual...

  14. NASA's OCA Mirroring System: An Application of Multiagent Systems in Mission Control

    Science.gov (United States)

    Sierhuis, Maarten; Clancey, William J.; vanHoof, Ron J. J.; Seah, Chin H.; Scott, Michael S.; Nado, Robert A.; Blumenberg, Susan F.; Shafto, Michael G.; Anderson, Brian L.; Bruins, Anthony C.; hide

    2009-01-01

    Orbital Communications Adaptor (OCA) Flight Controllers, in NASA's International Space Station Mission Control Center, use different computer systems to uplink, downlink, mirror, archive, and deliver files to and from the International Space Station (ISS) in real time. The OCA Mirroring System (OCAMS) is a multiagent software system (MAS) that is operational in NASA's Mission Control Center. This paper presents OCAMS and its workings in an operational setting where flight controllers rely on the system 24x7. We also discuss the return on investment, based on a simulation baseline, six months of 24x7 operations at NASA Johnson Space Center in Houston, Texas, and a projection of future capabilities. This paper ends with a discussion of the value of MAS and future planned functionality and capabilities.

  15. Neutron production in a spherical phantom aboard ISS

    International Nuclear Information System (INIS)

    Tasbaz, A.; Machrafi, R.

    2012-01-01

    As part of an ongoing research program on radiation monitoring on International Space Station (ISS) that was established to analyze the radiation exposure levels onboard the ISS using different radiation instruments and a spherical phantom to simulate human body. Monte Carlo transport code was used to simulate the interaction of high energy protons and neutrons with the spherical phantom currently onboard ISS. The phantom has been exposed to individual proton energies and to a spectrum of neutrons. The internal to external neutron flux ratio was calculated and compared to the experimental data, recently, measured on the ISS. (author)

  16. Automating Stowage Operations for the International Space Station

    Science.gov (United States)

    Knight, Russell; Rabideau, Gregg; Mishkin, Andrew; Lee, Young

    2013-01-01

    A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).

  17. External Contamination Control of Attached Payloads on the International Space Station

    Science.gov (United States)

    Soares, Carlos E.; Mikatarian, Ronald R.; Olsen, Randy L.; Huang, Alvin Y.; Steagall, Courtney A.; Schmidl, William D.; Wright, Bruce D.; Koontz, Steven

    2012-01-01

    The International Space Station (ISS) is an on-orbit platform for science utilization in low Earth orbit with multiple sites for external payloads with exposure to the natural and induced environments. Contamination is one of the induced environments that can impact performance, mission success and science utilization on the vehicle. This paper describes the external contamination control requirements and integration process for externally mounted payloads on the ISS. The external contamination control requirements are summarized and a description of the integration and verification process is detailed to guide payload developers in the certification process of attached payloads on the vehicle. A description of the required data certification deliverables covers the characterization of contamination sources. Such characterization includes identification, usage and operational data for each class of contamination source. Classes of external contamination sources covered are vacuum exposed materials, sources of leakage, vacuum venting and thrusters. ISS system level analyses are conducted by the ISS Space Environments Team to certify compliance with external contamination control requirements. This paper also addresses the ISS induced contamination environment at attached payload sites, both at the requirements level as well as measurements made on ISS.

  18. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    Science.gov (United States)

    Schaefer, C.; Coble, C.; Mason, S.; Young, M.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; hide

    2017-01-01

    Carbon dioxide (CO2) levels on board the International Space Station (ISS) have typically averaged 2.3 to 5.3 mmHg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow (CBF). Increased CBF leads to elevated intracranial pressure (ICP), a factor leading to visual disturbances, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve and optical coherence tomography (OCT) provide surrogate measurements of ICP; in-flight measurements of both were implemented as enhanced screening tools for the Visual Impairment/Intracranial Pressure (VIIP) syndrome. This analysis examines the relationships between ambient CO2 levels on ISS, ultrasound and OCT measures of the eye in an effort to understand how CO2 may possibly be associated with VIIP and to inform future analysis of in-flight VIIP data.

  19. Simulation of Mission Phases

    Science.gov (United States)

    Carlstrom, Nicholas Mercury

    2016-01-01

    This position with the Simulation and Graphics Branch (ER7) at Johnson Space Center (JSC) provided an introduction to vehicle hardware, mission planning, and simulation design. ER7 supports engineering analysis and flight crew training by providing high-fidelity, real-time graphical simulations in the Systems Engineering Simulator (SES) lab. The primary project assigned by NASA mentor and SES lab manager, Meghan Daley, was to develop a graphical simulation of the rendezvous, proximity operations, and docking (RPOD) phases of flight. The simulation is to include a generic crew/cargo transportation vehicle and a target object in low-Earth orbit (LEO). Various capsule, winged, and lifting body vehicles as well as historical RPOD methods were evaluated during the project analysis phase. JSC core mission to support the International Space Station (ISS), Commercial Crew Program (CCP), and Human Space Flight (HSF) influenced the project specifications. The simulation is characterized as a 30 meter +V Bar and/or -R Bar approach to the target object's docking station. The ISS was selected as the target object and the international Low Impact Docking System (iLIDS) was selected as the docking mechanism. The location of the target object's docking station corresponds with the RPOD methods identified. The simulation design focuses on Guidance, Navigation, and Control (GNC) system architecture models with station keeping and telemetry data processing capabilities. The optical and inertial sensors, reaction control system thrusters, and the docking mechanism selected were based on CCP vehicle manufacturer's current and proposed technologies. A significant amount of independent study and tutorial completion was required for this project. Multiple primary source materials were accessed using the NASA Technical Report Server (NTRS) and reference textbooks were borrowed from the JSC Main Library and International Space Station Library. The Trick Simulation Environment and User

  20. Mentoring SFRM: A New Approach to International Space Station Flight Control Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2009-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (Operator) to a basic level of effectiveness in 1 year. SFRM training uses a twopronged approach to expediting operator certification: 1) imbed SFRM skills training into all Operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills.

  1. Alternatives to the ISS Plasma Contacting Units

    Science.gov (United States)

    Ferguson, Dale C.

    2002-01-01

    A spacecraft in a high-density equatorial LEO plasma will float negative relative to the ambient plasma. Because of the electron collection of exposed conductors on its solar arrays, it may float negative by up to its array voltage. The floating potential depends on the relative areas of electron and ion collection of the spacecraft. Early estimates of the International Space Station (ISS) potential were about -140 V relative to the surrounding plasma, because of its 160 V solar array string voltage. Because of the possibility of arcing of ISS structures and astronaut EMUs (spacesuits) into the space plasma, Plasma Contacting Units (PCUs) were added to the ISS design, to reduce the highly negative floating potentials by emitting electrons (effectively increasing the ion collecting area). In addition to the now-operating ISS PCUs, safety rules require another independent arc-hazard control method. In this paper, I discuss alternatives to the ISS PCUs for keeping the ISS floating potential at values below the arc-thresholds of ISS and EMU surface materials. Advantages and disadvantages of all of the recline loss will be presented.

  2. Sampling Indoor Aerosols on the International Space Station

    Science.gov (United States)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  3. Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results

    Science.gov (United States)

    Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan

    2002-01-01

    Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.

  4. Using Monte Carlo Simulation To Improve Cargo Mass Estimates For International Space Station Commercial Resupply Flights

    Science.gov (United States)

    2016-12-01

    The Challenges of ISS Resupply .......................................... 23 F. THE IMPORTANCE OF MASS PROPERTIES IN SPACECRAFT AND MISSION DESIGN...Transportation System TBA trundle bearing assembly VLC verification loads cycle xv EXECUTIVE SUMMARY Resupplying the International Space Station...management priorities. This study addresses those challenges by developing Monte Carlo simulations based on over 13 years of as- flownSS resupply

  5. Definition of technology development missions for early space station satellite servicing, volume 2

    Science.gov (United States)

    1983-01-01

    The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.

  6. Microbial Observatory (ISS-MO): Antimicrobial resistance genes

    Data.gov (United States)

    National Aeronautics and Space Administration — The environmental samples were collected with the polyester wipes from eight different locations in the International Space Station (ISS) during two consecutive...

  7. Cultural factors and the International Space Station.

    Science.gov (United States)

    Ritsher, Jennifer Boyd

    2005-06-01

    The American and Russian/Soviet space programs independently uncovered psychosocial risks inherent in long-duration space missions. Now that these two countries are working together on the International Space Station (ISS), American-Russian cultural differences pose an additional set of risk factors. These may echo cultural differences that have been observed in the general population of the two countries and in space analogue settings, but little is known about how relevant these are to the select population of space program personnel. The evidence for the existence of mission-relevant cultural differences is reviewed and includes cultural values, emotional expressivity, personal space norms, and personality characteristics. The review is focused primarily on Russia and the United States, but also includes other ISS partner countries. Cultural differences among space program personnel may have a wide range of effects. Moreover, culture-related strains may increase the probability of distress and impairment. Such factors could affect the individual and interpersonal functioning of both crewmembers and mission control personnel, whose performance is also critical for mission safety and success. Examples from the anecdotal and empirical literature are given to illustrate these points. The use of existing assessment strategies runs the risk of overlooking important early warning signs of behavioral health difficulties. By paying more attention to cultural differences and how they might be manifested, we are more likely to detect problems early while they are still mild and resolvable.

  8. Using ISS Telescopes for Electromagnetic Follow-up of Gravitational Wave Detections of NS-NS and NS-BH Mergers

    Science.gov (United States)

    Camp, J.; Barthelmy, S.; Blackburn, L.; Carpenter, K. G.; Gehrels, N.; Kanner, J.; Marshall, F. E.; Racusin, J. L.; Sakamoto, T.

    2013-01-01

    The International Space Station offers a unique platform for rapid and inexpensive deployment of space telescopes. A scientific opportunity of great potential later this decade is the use of telescopes for the electromagnetic follow-up of ground-based gravitational wave detections of neutron star and black hole mergers. We describe this possibility for OpTIIX, an ISS technology demonstration of a 1.5 m diffraction limited optical telescope assembled in space, and ISS-Lobster, a wide-field imaging X-ray telescope now under study as a potential NASA mission. Both telescopes will be mounted on pointing platforms, allowing rapid positioning to the source of a gravitational wave event. Electromagnetic follow-up rates of several per year appear likely, offering a wealth of complementary science on the mergers of black holes and neutron stars.

  9. Analysis Methodology for Optimal Selection of Ground Station Site in Space Missions

    Science.gov (United States)

    Nieves-Chinchilla, J.; Farjas, M.; Martínez, R.

    2013-12-01

    Optimization of ground station sites is especially important in complex missions that include several small satellites (clusters or constellations) such as the QB50 project, where one ground station would be able to track several spatial vehicles, even simultaneously. In this regard the design of the communication system has to carefully take into account the ground station site and relevant signal phenomena, depending on the frequency band. To propose the optimal location of the ground station, these aspects become even more relevant to establish a trusted communication link due to the ground segment site in urban areas and/or selection of low orbits for the space segment. In addition, updated cartography with high resolution data of the location and its surroundings help to develop recommendations in the design of its location for spatial vehicles tracking and hence to improve effectiveness. The objectives of this analysis methodology are: completion of cartographic information, modelling the obstacles that hinder communication between the ground and space segment and representation in the generated 3D scene of the degree of impairment in the signal/noise of the phenomena that interferes with communication. The integration of new technologies of geographic data capture, such as 3D Laser Scan, determine that increased optimization of the antenna elevation mask, in its AOS and LOS azimuths along the horizon visible, maximizes visibility time with spatial vehicles. Furthermore, from the three-dimensional cloud of points captured, specific information is selected and, using 3D modeling techniques, the 3D scene of the antenna location site and surroundings is generated. The resulting 3D model evidences nearby obstacles related to the cartographic conditions such as mountain formations and buildings, and any additional obstacles that interfere with the operational quality of the antenna (other antennas and electronic devices that emit or receive in the same bandwidth

  10. Protection from Induced Space Environments Effects on the International Space Station

    Science.gov (United States)

    Soares, Carlos; Mikatarian, Ron; Stegall, Courtney; Schmidl, Danny; Huang, Alvin; Olsen, Randy; Koontz, Steven

    2010-01-01

    The International Space Station (ISS) is one of the largest, most complex multinational scientific projects in history and protection from induced space environments effects is critical to its long duration mission as well as to the health of the vehicle and safety of on-orbit operations. This paper discusses some of the unique challenges that were encountered during the design, assembly and operation of the ISS and how they were resolved. Examples are provided to illustrate the issues and the risk mitigation strategies that were developed to resolve these issues. Of particular importance are issues related with the interaction of multiple spacecraft as in the case of ISS and Visiting Vehicles transporting crew, hardware elements, cargo and scientific payloads. These strategies are applicable to the development of future long duration space systems, not only during design, but also during assembly and operation of these systems.

  11. The Columbus-CC—Operating the European laboratory at ISS

    Science.gov (United States)

    Kuch, T.; Sabath, D.

    2008-07-01

    The European ISS Columbus Control Center (Col-CC) joined the club of ISS mission control centers in Moscow, Houston and Huntsville. It took some time to reach that goal. In 1998 the European Space Agency (ESA) awarded the German Aerospace Center DLR to design, develop and implement the Col-CC at its premises in Oberpfaffenhofen, near Munich, Germany. In 2002 a core mission operations team was built up. An integrated team of ESA, industry and control center started to define processes and implemented first operations products and tools. This was accompanied by regular meetings with the international partners in the US and Russia. With intensive training and numerous simulations the team was able to gain experience and is now eagerly waiting for the launch of Columbus. However, thanks to the involvement in some operational activities the Col-CC staff has already been able to gain operational ISS experience. After the inauguration in October 2004 Col-CC supported the Eneide mission in April 2005 when the Italian ESA-Astronaut Roberto Vittori flew onboard a Soyuz to the ISS where he spent 10 days. Another very important milestone was the operations support for ESA's Astrolab mission. The Astrolab mission was of major importance for Europe and particularly for Germany because it implied the first long duration flight of ESA astronaut Thomas Reiter, an astronaut of German nationality. The tasks of Col-CC are described and also the experiences made with the first operational long-term mission which took place from July to December 2006. Meanwhile the Col-CC was able to reach the operational readiness status for the Columbus mission which is set for a launch date later in 2007. Despite the concentration on the challenging Columbus Assembly and Checkout phase emphasis is already laid on the following increments for the European ISS operations. Early 2006 ESA transferred the operational tasks and responsibilities to the hands of the industrial operator. This approach creates

  12. International Space Station Data Collection for Disaster Response

    Science.gov (United States)

    Stefanov, William L.; Evans, Cynthia A.

    2015-01-01

    Remotely sensed data acquired by orbital sensor systems has emerged as a vital tool to identify the extent of damage resulting from a natural disaster, as well as providing near-real time mapping support to response efforts on the ground and humanitarian aid efforts. The International Space Station (ISS) is a unique terrestrial remote sensing platform for acquiring disaster response imagery. Unlike automated remote-sensing platforms it has a human crew; is equipped with both internal and externally-mounted remote sensing instruments; and has an inclined, low-Earth orbit that provides variable views and lighting (day and night) over 95 percent of the inhabited surface of the Earth. As such, it provides a useful complement to autonomous sensor systems in higher altitude polar orbits. NASA remote sensing assets on the station began collecting International Disaster Charter (IDC) response data in May 2012. The initial NASA ISS sensor systems responding to IDC activations included the ISS Agricultural Camera (ISSAC), mounted in the Window Observational Research Facility (WORF); the Crew Earth Observations (CEO) Facility, where the crew collects imagery using off-the-shelf handheld digital cameras; and the Hyperspectral Imager for the Coastal Ocean (HICO), a visible to near-infrared system mounted externally on the Japan Experiment Module Exposed Facility. The ISSAC completed its primary mission in January 2013. It was replaced by the very high resolution ISS SERVIR Environmental Research and Visualization System (ISERV) Pathfinder, a visible-wavelength digital camera, telescope, and pointing system. Since the start of IDC response in 2012 there have been 108 IDC activations; NASA sensor systems have collected data for thirty-two of these events. Of the successful data collections, eight involved two or more ISS sensor systems responding to the same event. Data has also been collected by International Partners in response to natural disasters, most notably JAXA and

  13. Sustaining a Mature Risk Management Process: Ensuring the International Space Station for a Vibrant Future

    Science.gov (United States)

    Raftery, Michael; Carter-Journet, Katrina

    2013-01-01

    The International Space Station (ISS) risk management methodology is an example of a mature and sustainable process. Risk management is a systematic approach used to proactively identify, analyze, plan, track, control, communicate, and document risks to help management make risk-informed decisions that increase the likelihood of achieving program objectives. The ISS has been operating in space for over 14 years and permanently crewed for over 12 years. It is the longest surviving habitable vehicle in low Earth orbit history. Without a mature and proven risk management plan, it would be increasingly difficult to achieve mission success throughout the life of the ISS Program. A successful risk management process must be able to adapt to a dynamic program. As ISS program-level decision processes have evolved, so too has the ISS risk management process continued to innovate, improve, and adapt. Constant adaptation of risk management tools and an ever-improving process is essential to the continued success of the ISS Program. Above all, sustained support from program management is vital to risk management continued effectiveness. Risk management is valued and stressed as an important process by the ISS Program.

  14. AVGS, AR and D for Satellites, ISS, the Moon, Mars and Beyond

    Science.gov (United States)

    Hintze, Geoffrey C.; Cornett, Keith G.; Rahmatipour, Michael H.; Heaton, Andrew F.; Newman, Larry E.; Fleischmann, Kevin D.; Hamby, Byron J.

    2007-01-01

    With the continuous need to rotate crew and re-supply the International Space Station (ISS) and the desire to return humans to the Moon and for the first time, place humans on Mars, NASA must develop a more robust and highly reliable capability to perform Autonomous Rendezvous and Capture (AR&C) because, unlike the Apollo missions, NASA plans to send the entire crew to the Lunar or Martian surface and must be able to dock with the Orion spacecraft upon return. In 1997, NASA developed the Video Guidance Sensor (VGS) which was flown and tested on STS-87 and STS-95. In 2001, NASA designed and built a more enhanced version of the VGS, called the Advanced Video Guidance Sensor (AVGS). The AVGS offered significant technology improvements to the precursor VGS design. This paper will describe the AVGS as it was in the DART mission of 2005 and the Orbital Express mission of 2007. The paper will describe the capabilities and design concepts of the AVGS as it was flown on the DART 2005 Mission and the DARPA Orbital Express Mission slated to fly in 2007. The paper will cover the Flight Software, problems encountered, testing for Orbital Express and where NASA is going in the future.

  15. Ionospheric Remote Sensing using GPS Radio Occultation and Ultraviolet Photometry aboard the ISS

    Science.gov (United States)

    Budzien, S. A.; Powell, S. P.; O'Hanlon, B.; Humphreys, T.; Bishop, R. L.; Stephan, A. W.; Gross, J.; Chakrabarti, S.

    2017-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) experiment launched to the International Space Station (ISS) on February 19, 2017 as part of the Space Test Program Houston #5 payload (STP-H5). After early orbit testing, GROUP-C began routine science operations in late April. GROUP-C includes a high-sensitivity far-ultraviolet photometer measuring horizontal nighttime ionospheric gradients and an advanced software-defined GPS receiver providing ionospheric electron density profiles, scintillation measurements, and lower atmosphere profiles. GROUP-C and a companion experiment, the Limb-Imaging Ionospheric and Thermospheric Extreme-Ultraviolet Spectrograph (LITES), offer a unique capability to study spatial and temporal variability of the thermosphere and ionosphere using multi-sensor approaches, including ionospheric tomography. Data are collected continuously across low- and mid-latitudes as the ISS orbit precesses through all local times every 60 days. The GROUP-C GPS sensor routinely collects dual-frequency GPS occultations, makes targeted raw signal captures of GPS and Galileo occultations, and includes multiple antennas to characterize multipath in the ISS environment. The UV photometer measures the 135.6 nm ionospheric recombination airglow emision along the nightside orbital track. We present the first analysis of ionospheric observations, discuss the challenges and opportunities of remote sensing from the ISS platform, and explore how these new data help address questions regarding the complex and dynamic features of the low and middle latitude ionosphere-thermosphere relevant to the upcoming GOLD and ICON missions.

  16. Habitability research priorities for the International Space Station and beyond.

    Science.gov (United States)

    Whitmore, M; Adolf, J A; Woolford, B J

    2000-09-01

    Advanced technology and the desire to explore space have resulted in increasingly longer manned space missions. Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on the ability of humans to adapt and function in microgravity environments. In addition, studies conducted in analogous environments, such as winter-over expeditions in Antarctica, have complemented the scientific understanding of human performance in LDSF. These findings indicate long duration missions may take a toll on the individual, both physiologically and psychologically, with potential impacts on performance. Significant factors in any manned LDSF are habitability, workload and performance. They are interrelated and influence one another, and therefore necessitate an integrated research approach. An integral part of this approach will be identifying and developing tools not only for assessment of habitability, workload, and performance, but also for prediction of these factors as well. In addition, these tools will be used to identify and provide countermeasures to minimize decrements and maximize mission success. The purpose of this paper is to identify research goals and methods for the International Space Station (ISS) in order to identify critical factors and level of impact on habitability, workload, and performance, and to develop and validate countermeasures. Overall, this approach will provide the groundwork for creating an optimal environment in which to live and work onboard ISS as well as preparing for longer planetary missions.

  17. High spatial resolution infrared camera as ISS external experiment

    Science.gov (United States)

    Eckehard, Lorenz; Frerker, Hap; Fitch, Robert Alan

    High spatial resolution infrared camera as ISS external experiment for monitoring global climate changes uses ISS internal and external resources (eg. data storage). The optical experiment will consist of an infrared camera for monitoring global climate changes from the ISS. This technology was evaluated by the German small satellite mission BIRD and further developed in different ESA projects. Compared to BIRD the presended instrument uses proven sensor advanced technologies (ISS external) and ISS on board processing and storage capabili-ties (internal). The instrument will be equipped with a serial interfaces for TM/TC and several relay commands for the power supply. For data processing and storage a mass memory is re-quired. The access to actual attitude data is highly desired to produce geo referenced maps-if possible by an on board processing.

  18. Thermally-Constrained Fuel-Optimal ISS Maneuvers

    Science.gov (United States)

    Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol

    2015-01-01

    Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.

  19. Definition of technology development missions for early space station, orbit transfer vehicle servicing, volume 2

    Science.gov (United States)

    1983-01-01

    Propellant transfer, storage, and reliquefaction TDM; docking and berthing technology development mission; maintenance technology development mission; OTV/payload integration, space station interface/accommodations; combined TDM conceptual design; programmatic analysis; and TDM equipment usage are discussed.

  20. Research on the International Space Station - An Overview

    Science.gov (United States)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations November 1998 to November 2000 it hosted a few early science experiments months before the first international crew took up residence. Since that time and simultaneous with the complicated task of ISS construction and overcoming impacts from the tragic Columbia accident science returns from the ISS have been growing at a steady pace. As of this writing, over 162 experiments have been operated on the ISS, supporting research for hundreds of ground-based investigators from the U.S. and international partners. This report summarizes the experimental results collected to date. Today, NASA's priorities for research aboard the ISS center on understanding human health during long-duration missions, researching effective countermeasures for long-duration crewmembers, and researching and testing new technologies that can be used for future exploration crews and spacecraft. Through the U.S. National Laboratory designation, the ISS is also a platform available to other government agencies. Research on ISS supports new understandings, methods or applications relevant to life on Earth, such as understanding effective protocols to protect against loss of bone density or better methods for producing stronger metal alloys. Experiment results have already been used in applications as diverse as the manufacture of solar cell and insulation materials for new spacecraft and the verification of complex numerical models for behavior of fluids in fuel tanks. A synoptic publication of these results will be forthcoming in 2009. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities were tripled with the addition of ESA's Columbus and JAXA's Kibo scientific modules joining NASA's Destiny Laboratory. All three

  1. Examination of Communication Delays on Team Performance: Utilizing the International Space Station (ISS) as a Test Bed for Analog Research

    Science.gov (United States)

    Keeton, K. E.; Slack, K, J.; Schmidt, L. L.; Ploutz-Snyder, R.; Baskin, P.; Leveton, L. B.

    2011-01-01

    Operational conjectures about space exploration missions of the future indicate that space crews will need to be more autonomous from mission control and operate independently. This is in part due to the expectation that communication quality between the ground and exploration crews will be more limited and delayed. Because of potential adverse effects on communication quality, both researchers and operational training and engineering experts have suggested that communication delays and the impact these delays have on the quality of communications to the crew will create performance decrements if crews are not given adequate training and tools to support more autonomous operations. This presentation will provide an overview of a research study led by the Behavioral Health and Performance Element (BHP) of the NASA Human Research Program that examines the impact of implementing a communication delay on ISS on individual and team factors and outcomes, including performance and related perceptions of autonomy. The methodological design, data collection efforts, and initial results of this study to date will be discussed . The results will focus on completed missions, DRATS and NEEMO15. Lessons learned from implementing this study within analog environments will also be discussed. One lesson learned is that the complexities of garnishing a successful data collection campaign from these high fidelity analogs requires perseverance and a strong relationship with operational experts. Results of this study will provide a preliminary understanding of the impact of communication delays on individual and team performance as well as an insight into how teams perform and interact in a space-like environment . This will help prepare for implementation of communication delay tests on the ISS, targeted for Increment 35/36.

  2. Space stations systems and utilization

    CERN Document Server

    Messerschmid, Ernst

    1999-01-01

    The design of space stations like the recently launched ISS is a highly complex and interdisciplinary task. This book describes component technologies, system integration, and the potential usage of space stations in general and of the ISS in particular. It so adresses students and engineers in space technology. Ernst Messerschmid holds the chair of space systems at the University of Stuttgart and was one of the first German astronauts.

  3. The International Space Station: A Low-Earth Orbit (LEO) Test Bed for Advancements in Space and Environmental Medicine

    Science.gov (United States)

    Ruttley, Tara M.; Robinson, Julie A.

    2010-01-01

    Ground-based space analog projects such as the NASA Extreme Environment Mission Operations (NEEMO) can be valuable test beds for evaluation of experimental design and hardware feasibility before actually being implemented on orbit. The International Space Station (ISS) is an closed-system laboratory that orbits 240 miles above the Earth, and is the ultimate extreme environment. Its inhabitants spend hours performing research that spans from fluid physics to human physiology, yielding results that have implications for Earth-based improvements in medicine and health, as well as those that will help facilitate the mitigation of risks to the human body associated with exploration-class space missions. ISS health and medical experiments focus on pre-flight and in-flight prevention, in-flight treatment, and postflight recovery of health problems associated with space flight. Such experiments include those on enhanced medical monitoring, bone and muscle loss prevention, cardiovascular health, immunology, radiation and behavior. Lessons learned from ISS experiments may not only be applicable to other extreme environments that face similar capability limitations, but also serve to enhance standards of care for everyday use on Earth.

  4. Evaluation of a Treadmill with Vibration Isolation and Stabilization (TVIS) for Use on the International Space Station

    Science.gov (United States)

    McCrory, Jean L.; Lemmon, David R.; Sommer, H. Joseph; Prout, Brian; Smith, Damon; Korth, Deborah W.; Lucero, Javier; Greenisen, Michael; Moore, Jim

    1999-01-01

    A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 deg, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.

  5. The Mini-EUSO telescope on the ISS

    Energy Technology Data Exchange (ETDEWEB)

    Scotti, Valentina, E-mail: scottiv@na.infn.it; Osteria, Giuseppe

    2017-02-11

    The Mini-EUSO project aims to perform observations of the UV-light night emission from Earth. The UV background produced in atmosphere is a key measurement for any experiment aiming at the observation of Extreme Energy Cosmic Rays (EECR) from space, the most energetic component of the cosmic radiation. The Mini-EUSO instrument will be placed within the International Space Station (ISS) in the Russian Module and measures through a UV transparent window. The instrument comprises a compact telescope with a large field of view, based on an optical system employing two Fresnel lenses for increased light collection. The light is focused onto an array of photo-multipliers and the resulting signal is converted into digital, processed and stored via the electronics subsystems on-board. The instrument is designed and built by the members of the JEM-EUSO collaboration. JEM-EUSO is a wide-angle refractive UV telescope being proposed for attachment to the ISS, which has been designed to address basic problems of fundamental physics and high-energy astrophysics investigating the nature of cosmic rays with energies above 10{sup 20} eV. Mini-EUSO will be able to study beside EECRs a wide range of scientific phenomena including atmospheric physics, strange quark matter and bioluminescence. The mission is approved by the Italian Space Agency and the Russian Space Agency. Scientific, technical and programmatic aspects of this project will be described.

  6. Operations Data Files, driving force behind International Space Station operations

    Science.gov (United States)

    Hoppenbrouwers, Tom; Ferra, Lionel; Markus, Michael; Wolff, Mikael

    2017-09-01

    Almost all tasks performed by the astronauts on-board the International Space Station (ISS) and by ground controllers in Mission Control Centre, from operation and maintenance of station systems to the execution of scientific experiments or high risk visiting vehicles docking manoeuvres, would not be possible without Operations Data Files (ODF). ODFs are the User Manuals of the Space Station and have multiple faces, going from traditional step-by-step procedures, scripts, cue cards, over displays, to software which guides the crew through the execution of certain tasks. Those key operational documents are standardized as they are used on-board the Space Station by an international crew constantly changing every 3 months. Furthermore this harmonization effort is paramount for consistency as the crew moves from one element to another in a matter of seconds, and from one activity to another. On ground, a significant large group of experts from all International Partners drafts, prepares reviews and approves on a daily basis all Operations Data Files, ensuring their timely availability on-board the ISS for all activities. Unavailability of these operational documents will halt the conduct of experiments or cancel milestone events. This paper will give an insight in the ground preparation work for the ODFs (with a focus on ESA ODF processes) and will present an overview on ODF formats and their usage within the ISS environment today and show how vital they are. Furthermore the focus will be on the recently implemented ODF features, which significantly ease the use of this documentation and improve the efficiency of the astronauts performing the tasks. Examples are short video demonstrations, interactive 3D animations, Execute Tailored Procedures (XTP-versions), tablet products, etc.

  7. Innovations for ISS Plug-In Plan (IPiP) Operations

    Science.gov (United States)

    Moore, Kevin D.

    2013-01-01

    Limited resources and increasing requirements will continue to influence decisions on ISS. The ISS Plug-In Plan (IPiP) supports power and data for utilization, systems, and daily operations through the Electrical Power System (EPS) Secondary Power/Data Subsystem. Given the fluid launch schedule, the focus of the Plug-In Plan has evolved to anticipate future requirements by judicious development and delivery of power supplies, power strips, Alternating Current (AC) power inverters, along with innovative deployment strategies. A partnership of ISS Program Office, Engineering Directorate, Mission Operations, and International Partners poses unique solutions with existing on-board equipment and resources.

  8. The ISS as a platform for a fully simulated mars voyage

    Science.gov (United States)

    Narici, Livio; Reitz, Guenther

    2016-07-01

    The ISS can mimic the impact of microgravity, radiation, living and psychological conditions that astronauts will face during a deep space cruise, for example to Mars. This suggests the ISS as the most valuable "analogue" for deep space exploration. NASA has indeed suggested a 'full-up deep space simulation on last available ISS Mission: 6/7 crew for one year duration; full simulation of time delays & autonomous operations'. This idea should be pushed further. It is indeed conceivable to use the ISS as the final "analogue", performing a real 'dry-run' of a deep space mission (such as a mission to Mars), as close as reasonably possible to what will be the real voyage. This Mars ISS dry run (ISS4Mars) would last 500-800 days, mimicking most of the challenges which will be undertaken such as length, isolation, food provision, decision making, time delays, health monitoring diagnostic and therapeutic actions and more: not a collection of "single experiments", but a complete exploration simulation were all the pieces will come together for the first in space simulated Mars voyage. Most of these challenges are the same that those that will be encountered during a Moon voyage, with the most evident exceptions being the duration and the communication delay. At the time of the Mars ISS dry run all the science and technological challenges will have to be mostly solved by dedicated works. These solutions will be synergistically deployed in the dry run which will simulate all the different aspects of the voyage, the trip to Mars, the permanence on the planet and the return to Earth. During the dry run i) There will be no arrivals/departure of spacecrafts; 2) Proper communications delay with ground will be simulated; 3) Decision processes will migrate from Ground to ISS; 4) Permanence on Mars will be simulated. Mars ISS dry run will use just a portion of the ISS which will be totally isolated from the rest of the ISS, leaving to the other ISS portions the task to provide the

  9. NASA ISS Portable Fan Assembly Acoustics

    Science.gov (United States)

    Boone, Andrew; Allen, Christopher S.; Hess, Linda F.

    2018-01-01

    The Portable Fan Assembly (PFA) is a variable speed fan that can be used to provide additional ventilation inside International Space Station (ISS) modules as needed for crew comfort or for enhanced mixing of the ISS atmosphere. This fan can also be configured with a Shuttle era lithium hydroxide (LiOH) canister for CO2 removal in confined areas partially of fully isolated from the primary Environmental Control and Life Support System (ECLSS) on ISS which is responsible for CO2 removal. This report documents noise emission levels of the PFA at various speed settings and configurations. It also documents the acoustic attenuation effects realized when circulating air through the PFA inlet and outlet mufflers and when operating in its CO2 removal configuration (CRK) with a LiOH canister (sorbent bed) installed over the fan outlet.

  10. The ESA SMOS Mission: Validation Activities at the Valencia Anchor Station

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Baeza, E.; Antolin, M. C.; Balling, J.; Belda, F.; Bouzinac, C.; Buil, A.; Cano, A.; Carbo, E.; Delwart, S.; Domenech, C.

    2009-07-01

    Since 2001, the Valencia Anchor Station (VAS) is being used for validation activities in the context of low spatial resolution Earth Observation Missions such as CERES (Clouds and the Earths Radiant Energy System), GERB (Geostationary Earth Radiation Budget), EPS (EUMET Polar System), and is also being prepared for SMOS (Soil Moisture and Ocean Salinity). These missions have in common the low spatial resolution of their respective footprints({approx}50x50 km{sup 2}) and the necessity of a well characterised and instrumented large scale area. (Author) 4 refs.

  11. Improving Safety on the International Space Station: Transitioning to Electronic Emergency Procedure Books on the International Space Station

    Science.gov (United States)

    Carter-Journet, Katrina; Clahoun, Jessica; Morrow, Jason; Duncan, Gary

    2012-01-01

    The National Aeronautics and Space Administration (NASA) originally designed the International Space Station (ISS) to operate until 2015, but have extended operations until at least 2020. As part of this very dynamic Program, there is an effort underway to simplify the certification of Commercial ]of ]the ]Shelf (COTS) hardware. This change in paradigm allows the ISS Program to take advantage of technologically savvy and commercially available hardware, such as the iPad. The iPad, a line of tablet computers designed and marketed by Apple Inc., was chosen to support this endeavor. The iPad is functional, portable, and could be easily accessed in an emergency situation. The iPad Electronic Flight Bag (EFB), currently approved for use in flight by the Federal Aviation Administration (FAA), is a fraction of the cost of a traditional Class 2 EFB. In addition, the iPad fs ability to use electronic aeronautical data in lieu of paper in route charts and approach plates can cut the annual cost of paper data in half for commercial airlines. ISS may be able to benefit from this type of trade since one of the most important factors considered is information management. Emergency procedures onboard the ISS are currently available to the crew in paper form. Updates to the emergency books can either be launched on an upcoming visiting vehicle such as a Russian Soyuz flight or printed using the onboard ISS printer. In both cases, it is costly to update hardcopy procedures. A new operations concept was proposed to allow for the use of a tablet system that would provide a flexible platform to support space station crew operations. The purpose of the system would be to provide the crew the ability to view and maintain operational data, such as emergency procedures while also allowing Mission Control Houston to update the procedures. The ISS Program is currently evaluating the safety risks associated with the use of iPads versus paper. Paper products can contribute to the flammability

  12. ISS Hygiene Activities - Issues and Resolutions

    Science.gov (United States)

    Prokhorov, Kimberlee S.; Feldman, Brienne; Walker, Stephanie; Bruce, Rebekah

    2009-01-01

    Hygiene is something that is usually taken for granted by those of us on the Earth. The ability to perform hygiene satisfactorily during long duration space flight is crucial for the crew's ability to function. Besides preserving the basic health of the crew, crew members have expressed that the ability to clean up on-orbit is vital for mental health. Providing this functionality involves more than supplying hygiene items such as soap and toothpaste. On the International Space Station (ISS), the details on where and how to perform hygiene were left to the crew discretion for the first seventeen increments. Without clear guidance, the methods implemented on-orbit have resulted in some unintended consequences to the ISS environment. This paper will outline the issues encountered regarding hygiene activities on-board the ISS, and the lessons that have been learned in addressing those issues. Additionally, the paper will address the resolutions that have been put into place to protect the ISS environment while providing the crew sufficient means to perform hygiene.

  13. Space Mission Operations Ground Systems Integration Customer Service

    Science.gov (United States)

    Roth, Karl

    2014-01-01

    The facility, which is now the Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center in Huntsville, AL, has provided continuous space mission and related services for the space industry since 1961, from Mercury Redstone through the International Space Station (ISS). Throughout the long history of the facility and mission support teams, the HOSC has developed a stellar customer support and service process. In this era, of cost cutting, and providing more capability and results with fewer resources, space missions are looking for the most efficient way to accomplish their objectives. One of the first services provided by the facility was fax transmission of documents to, then, Cape Canaveral in Florida. The headline in the Marshall Star, the newspaper for the newly formed Marshall Space Flight Center, read "Exact copies of Documents sent to Cape in 4 minutes." The customer was Dr. Wernher von Braun. Currently at the HOSC we are supporting, or have recently supported, missions ranging from simple ISS payloads requiring little more than "bentpipe" telemetry access, to a low cost free-flyer Fast, Affordable, Science and Technology Satellite (FASTSAT), to a full service ISS payload Alpha Magnetic Spectrometer 2 (AMS2) supporting 24/7 operations at three operations centers around the world with an investment of over 2 billion dollars. The HOSC has more need and desire than ever to provide fast and efficient customer service to support these missions. Here we will outline how our customer-centric service approach reduces the cost of providing services, makes it faster and easier than ever for new customers to get started with HOSC services, and show what the future holds for our space mission operations customers. We will discuss our philosophy concerning our responsibility and accessibility to a mission customer as well as how we deal with the following issues: initial contact with a customer, reducing customer cost, changing regulations and security

  14. Overview of the ISS Radiation Environment Observed during the ESA EXPOSE-R2 Mission in 2014-2016

    Science.gov (United States)

    Dachev, T. P.; Bankov, N. G.; Tomov, B. T.; Matviichuk, Yu. N.; Dimitrov, Pl. G.; Häder, D.-P.; Horneck, G.

    2017-11-01

    The radiation risk radiometer-dosimeter (R3D)-R2 solid-state detector performed radiation measurements at the European Space Agency EXPOSE-R2 platform outside of the Russian "Zvezda" module at the International Space Station (ISS) from 24 October 2014 to 11 January 2016. The ISS orbital parameters were average altitude of 415 km and 51.6° inclination. We developed special software and used experimentally obtained formulas to determine the radiation flux-to-dose ratio from the R3DR2 Liulin-type deposited-energy spectrometer. We provide for the first time simultaneous, long-term estimates of radiation dose external to the ISS for four source categories: (i) galactic cosmic ray particles and their secondary products; (ii) protons in the South Atlantic Anomaly region of the inner radiation belt (IRB); (iii) relativistic electrons and/or bremsstrahlung in the outer radiation belt (ORB); and (iv) solar energetic particle (SEP) events. The latter category is new in this study. Additionally, in this study, secondary particles (SP) resulting from energetic particle interaction with the detector and nearby materials are identified. These are observed continuously at high latitudes. The detected SPs are identified using the same sorting requirements as SEP protons. The IRB protons provide the highest consistent hourly dose, while the ORB electrons and SEPs provide the most extreme hourly doses. SEPs were observed 11 times during the study interval. The R3DR2 data support calculation of average equivalent doses. The 30 day and 1 year average equivalent doses are much smaller than the skin and eyes doses recommendations by the National Council on Radiation Protection (Report 132), which provides radiation protection guidance for Low Earth Orbit.

  15. STS-110/Atlantic/ISS 8A Pre-Launch On Orbit-Landing-Crew Egress

    Science.gov (United States)

    2002-01-01

    The crew of STS-110, which consists of Commander Michael Bloomfield, Pilot Stephen Frick, and Mission Specialists Rex Walheim, Ellen Ochoa, Lee Morin, Jerry Ross, and Steven Smith is introduced at the customary pre-flight meal. The narrator provides background information on the astronauts during suit-up. Each crew member is shown in the White Room before boarding Space Shuttle Atlantis, and some display signs to loved ones. Launch footage includes the following replays: Beach Tracker, VAB, Pad B, Tower 1, DLTR-3, Grandstand, Cocoa Beach DOAMS, Playalinda DOAMS, UCS-23, SLF Convoy, OTV-154, OTV-163, OTV-170 (mislabeled), and OTV-171 (mislabeled). After the launch, NASA administrator Sean O'Keefe gives a speech to the Launch Control Center, with political dignitaries present. While on-orbit, Atlantis docks with the International Space Station (ISS), and Canadarm 2 on the ISS lifts the S0 Truss out of the orbiter's payload bay. The video includes highlights of three extravehicular activities (EVAs). In the first, the S0 Truss is fastened to the Destiny Laboratory Module on the ISS. During the third EVA, Walheim and Smith assist in the checkout of the handcart on the S0 Truss. The Atlantis crew is shown gathered together with the Expedition 4 crew of the ISS, and again by itself after undocking. Replays of the landing include: VAB, Tower 1, Mid-field, Runway South End, Runway North End, Tower 2, Playalinda DOAMS, Cocoa Beach DOAMS, and Pilot Point of View (PPOV). After landing, Commander Bloomfield lets each of his crew members give a short speech.

  16. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009-2016

    Science.gov (United States)

    Berger, Thomas; Burmeister, Sönke; Matthiä, Daniel; Przybyla, Bartos; Reitz, Günther; Bilski, Pawel; Hajek, Michael; Sihver, Lembit; Szabo, Julianna; Ambrozova, Iva; Vanhavere, Filip; Gaza, Ramona; Semones, Edward; Yukihara, Eduardo G.; Benton, Eric R.; Uchihori, Yukio; Kodaira, Satoshi; Kitamura, Hisashi; Boehme, Matthias

    2017-03-01

    The natural radiation environment in Low Earth Orbit (LEO) differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR), as well as of protons and electrons trapped in the Earth's radiation belts (Van Allen belts). Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs) might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments "Dose Distribution within the ISS (DOSIS)" (2009-2011) and "Dose Distribution within the ISS 3D (DOSIS 3D)" (2012-onwards) onboard the Columbus Laboratory of the International Space Station (ISS) use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL) and passive radiation detector packages (PDP) and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments' changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016 reached up to 286

  17. Preparation for Pick-and-Eat Food Production on the International Space Station: Flight Definition for the VEG-04 and VEG-05 Missions

    Science.gov (United States)

    Massa, G. D.; Wheeler, R. M.; Romeyn, M. W.; Hummerick, M. E.; Spencer, L. E.; Morrow, R. C.; Mitchell, C. A.; Burgner, S.; Whitmire, A. M.; Young, M. H.; hide

    2018-01-01

    Growth of fresh, nutritious, palatable produce for crew consumption during spaceflight may provide health-promoting, bioavailable nutrients and enhance the dietary experience as we move toward longer-duration missions. Tending plants also may serve as a countermeasure for crew psychological stresses associated with long duration spaceflight. However, requirements to support consistent growth of a variety of high quality, nutritious crops under spaceflight environmental conditions is unknown. This study is exploring the potential to grow plants for food production on the International Space Station (ISS) using the Veggie vegetable production system. Ground testing is underway to compare the impacts of several fertilizer and lighting treatments on growth, quality, and nutritional composition of the leafy green crop mizuna, and the dwarf tomato crop Red Robin when subjected to Veggie ISS environmental conditions. Early testing focused on the leafy crop Tokyo Bekana Chinese cabbage, but ground tests indicated that this plant suffered from stress responses when grown under LEDs and the chronically elevated CO2 levels found on the ISS. Mizuna, a related leafy variety that grows well in the presence of high CO2, and has excellent organoleptic characteristics, was selected as an alternate crop. Tomato crops have been grown using two fertilizer formulations and two pollination techniques, and growth tests using different red:blue lighting environments are underway. Chemical analysis is also being conducted and these data, when coupled with the growth results, will be used to down-select to the two best lighting treatments and best fertilizer treatment for future testing of each crop on the ISS. Additionally, seed-source testing has become important, with mizuna seeds from two different vendors growing very differently. A seed source has been selected, and seed-surface-sanitizing methods have been confirmed for mizuna, but these remain under development for tomato. A crop

  18. Simpler ISS Flight Control Communications and Log Keeping via Social Tools and Techniques

    Science.gov (United States)

    Scott, David W.; Cowart, Hugh; Stevens, Dan

    2012-01-01

    The heart of flight operations control involves a) communicating effectively in real time with other controllers in the room and/or in remote locations and b) tracking significant events, decisions, and rationale to support the next set of decisions, provide a thorough shift handover, and troubleshoot/improve operations. International Space Station (ISS) flight controllers speak with each other via multiple voice circuits or loops, each with a particular purpose and constituency. Controllers monitor and/or respond to several loops concurrently. The primary tracking tools are console logs, typically kept by a single operator and not visible to others in real-time. Information from telemetry, commanding, and planning systems also plays into decision-making. Email is very secondary/tertiary due to timing and archival considerations. Voice communications and log entries supporting ISS operations have increased by orders of magnitude because the number of control centers, flight crew, and payload operations have grown. This paper explores three developmental ground system concepts under development at Johnson Space Center s (JSC) Mission Control Center Houston (MCC-H) and Marshall Space Flight Center s (MSFC) Payload Operations Integration Center (POIC). These concepts could reduce ISS control center voice traffic and console logging yet increase the efficiency and effectiveness of both. The goal of this paper is to kindle further discussion, exploration, and tool development.

  19. Photography of Coral Reefs from ISS

    Science.gov (United States)

    Robinson, Julie A.

    2009-01-01

    This viewgraph presentation reviews the uses of photography from the International Space Station (ISS) in studying Earth's coral reefs. The photographs include reefs in various oceans . The photographs have uses for science in assisting NASA mapping initiatives, distribution worldwide through ReefBase, and by biologist in the field.

  20. International Space Station exhibit

    Science.gov (United States)

    2000-01-01

    The International Space Station (ISS) exhibit in StenniSphere at John C. Stennis Space Center in Hancock County, Miss., gives visitors an up-close look at the largest international peacetime project in history. Step inside a module of the ISS and glimpse how astronauts will live and work in space. Currently, 16 countries contribute resources and hardware to the ISS. When complete, the orbiting research facility will be larger than a football field.

  1. The JEM-EUSO mission: a space observatory to study the origin of Ultra-High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Bertaina, M. [Department of Physics, University of Torino and INFN, Torino (Italy); Parizot, E. [APC, Univ Paris Diderot, CNRS/IN2P3, CEA/Irfu, Obs de Paris, Sorbonne Paris Cité (France)

    2014-11-15

    The Extreme Universe Space Observatory (EUSO) onboard the Japanese Experiment Module (JEM-EUSO) of the International Space Station (ISS) is an innovative space-based mission with the aim of detecting Ultra-High Energy Cosmic Rays (UHECRs) from the ISS, by using the Earth's atmosphere as a calorimeter viewed by a fluorescence telescope. An observatory able to produce an arrival direction map with more than several hundreds events above 5 × 10{sup 19} eV would give important information on the origin of the UHECRs and identify structures in the sky map that contain information about the source density and/or distribution. This is likely to lead to an understanding of the acceleration mechanisms with a high potential for producing discoveries in astrophysics and/or fundamental physics. The scientific motivations of the mission as well as the current development status of the instrument and its performance are reviewed.

  2. The JEM-EUSO mission: a space observatory to study the origin of Ultra-High Energy Cosmic Rays

    International Nuclear Information System (INIS)

    Bertaina, M.; Parizot, E.

    2014-01-01

    The Extreme Universe Space Observatory (EUSO) onboard the Japanese Experiment Module (JEM-EUSO) of the International Space Station (ISS) is an innovative space-based mission with the aim of detecting Ultra-High Energy Cosmic Rays (UHECRs) from the ISS, by using the Earth's atmosphere as a calorimeter viewed by a fluorescence telescope. An observatory able to produce an arrival direction map with more than several hundreds events above 5 × 10 19 eV would give important information on the origin of the UHECRs and identify structures in the sky map that contain information about the source density and/or distribution. This is likely to lead to an understanding of the acceleration mechanisms with a high potential for producing discoveries in astrophysics and/or fundamental physics. The scientific motivations of the mission as well as the current development status of the instrument and its performance are reviewed

  3. ISS Potable Water Quality for Expeditions 26 through 30

    Science.gov (United States)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.; McCoy, J. Torin

    2012-01-01

    International Space Station (ISS) Expeditions 26-30 spanned a 16-month period beginning in November of 2010 wherein the final 3 flights of the Space Shuttle program finished ISS construction and delivered supplies to support the post-shuttle era of station operations. Expedition crews relied on several sources of potable water during this period, including water recovered from urine distillate and humidity condensate by the U.S. water processor, water regenerated from humidity condensate by the Russian water recovery system, and Russian ground-supplied potable water. Potable water samples collected during Expeditions 26-30 were returned on Shuttle flights STS-133 (ULF5), STS-134 (ULF6), and STS-135 (ULF7), as well as Soyuz flights 24-27. The chemical quality of the ISS potable water supplies continued to be verified by the Johnson Space Center s Water and Food Analytical Laboratory (WAFAL) via analyses of returned water samples. This paper presents the chemical analysis results for water samples returned from Expeditions 26-30 and discusses their compliance with ISS potable water standards. The presence or absence of dimethylsilanediol (DMSD) is specifically addressed, since DMSD was identified as the primary cause of the temporary rise and fall in total organic carbon of the U.S. product water that occurred in the summer of 2010.

  4. Contrasting Perspectives Of Junior versus Senior NASA ISS Flight Controllers On Leadership And Cultural Issues

    Science.gov (United States)

    Clement, James L.; Boyd, J. E.; Saylor, S.; Kanas, N.

    2007-01-01

    NASA flight controllers have always worked in a very demanding environment, but the International Space Station (ISS) poses even more challenges than prior missions. A recent NASA/Ames survey by Parke and Orasanu of NASA/Johnson flight controllers uncovered concerns about communications problems between American personnel and their international counterparts. To better understand these problems, we interviewed 14 senior and 12 junior ISS flight controllers at NASA/Johnson about leadership and cultural challenges they face and strategies for addressing these challenges. The qualitative interview data were coded and tabulated. Here we present quantitative analyses testing for differences between junior and senior controllers. Based on nonparametric statistical tests comparing responses across groups, the senior controllers were significantly more aware of the impact of working in dispersed teams, the context of constant change, and the upcoming multilateral challenges, while junior controllers were more aware of language and cultural issues. We consider our findings in light of other studies of controllers and other known differences between senior and junior controllers. For example, the fact that senior controllers had their formative early experience controlling pre-ISS short-duration Shuttle missions seems to have both positive and negative aspects, which are supported by our data. Our findings may also reflect gender differences, but we cannot unconfound this effect in our data because all the senior respondents were males. Many of the junior-senior differences are not only due to elapsed time on the job, but also due to a cohort effect. The findings of this study should be used for training curricula tailored differently for junior and senior controllers.

  5. ISS Contingency Attitude Control Recovery Method for Loss of Automatic Thruster Control

    Science.gov (United States)

    Bedrossian, Nazareth; Bhatt, Sagar; Alaniz, Abran; McCants, Edward; Nguyen, Louis; Chamitoff, Greg

    2008-01-01

    In this paper, the attitude control issues associated with International Space Station (ISS) loss of automatic thruster control capability are discussed and methods for attitude control recovery are presented. This scenario was experienced recently during Shuttle mission STS-117 and ISS Stage 13A in June 2007 when the Russian GN&C computers, which command the ISS thrusters, failed. Without automatic propulsive attitude control, the ISS would not be able to regain attitude control after the Orbiter undocked. The core issues associated with recovering long-term attitude control using CMGs are described as well as the systems engineering analysis to identify recovery options. It is shown that the recovery method can be separated into a procedure for rate damping to a safe harbor gravity gradient stable orientation and a capability to maneuver the vehicle to the necessary initial conditions for long term attitude hold. A manual control option using Soyuz and Progress vehicle thrusters is investigated for rate damping and maneuvers. The issues with implementing such an option are presented and the key issue of closed-loop stability is addressed. A new non-propulsive alternative to thruster control, Zero Propellant Maneuver (ZPM) attitude control method is introduced and its rate damping and maneuver performance evaluated. It is shown that ZPM can meet the tight attitude and rate error tolerances needed for long term attitude control. A combination of manual thruster rate damping to a safe harbor attitude followed by a ZPM to Stage long term attitude control orientation was selected by the Anomaly Resolution Team as the alternate attitude control method for such a contingency.

  6. Realtime Knowledge Management (RKM): From an International Space Station (ISS) Point of View

    Science.gov (United States)

    Robinson, Peter I.; McDermott, William; Alena, Richard L.

    2004-01-01

    We are developing automated methods to provide realtime access to spacecraft domain knowledge relevant a spacecraft's current operational state. The method is based upon analyzing state-transition signatures in the telemetry stream. A key insight is that documentation relevant to a specific failure mode or operational state is related to the structure and function of spacecraft systems. This means that diagnostic dependency and state models can provide a roadmap for effective documentation navigation and presentation. Diagnostic models consume the telemetry and derive a high-level state description of the spacecraft. Each potential spacecraft state description is matched against the predictions of models that were developed from information found in the pages and sections in the relevant International Space Station (ISS) documentation and reference materials. By annotating each model fragment with the domain knowledge sources from which it was derived we can develop a system that automatically selects those documents representing the domain knowledge encapsulated by the models that compute the current spacecraft state. In this manner, when the spacecraft state changes, the relevant documentation context and presentation will also change.

  7. ISS Regenerative Life Support: Challenges and Success in the Quest for Long-Term Habitability in Space

    Science.gov (United States)

    Bazley, Jesse A.

    2011-01-01

    This presentation will discuss the International Space Station s (ISS) Regenerative Environmental Control and Life Support System (ECLSS) operations with discussion of the on-orbit lessons learned, specifically regarding the challenges that have been faced as the system has expanded with a growing ISS crew. Over the 10 year history of the ISS, there have been numerous challenges, failures, and triumphs in the quest to keep the crew alive and comfortable. Successful operation of the ECLSS not only requires maintenance of the hardware, but also management of the station resources in case of hardware failure or missed re-supply. This involves effective communication between the primary International Partners (NASA and Roskosmos) and the secondary partners (JAXA and ESA) in order to keep a reserve of the contingency consumables and allow for re-supply of failed hardware. The ISS ECLSS utilizes consumables storage for contingency usage as well as longer-term regenerative systems, which allow for conservation of the expensive resources brought up by re-supply vehicles. This long-term hardware, and the interactions with software, was a challenge for Systems Engineers when they were designed and require multiple operational workarounds in order to function continuously. On a day-to-day basis, the ECLSS provides big challenges to the on console controllers. Main challenges involve the utilization of the resources that have been brought up by the visiting vehicles prior to undocking, balance of contributions between the International Partners for both systems and resources, and maintaining balance between the many interdependent systems, which includes providing the resources they need when they need it. The current biggest challenge for ECLSS is the Regenerative ECLSS system, which continuously recycles urine and condensate water into drinking water and oxygen. These systems were brought to full functionality on STS-126 (ULF-2) mission. Through system failures and recovery

  8. DOSIS & DOSIS 3D: radiation measurements with the DOSTEL instruments onboard the Columbus Laboratory of the ISS in the years 2009–2016

    Directory of Open Access Journals (Sweden)

    Berger Thomas

    2017-01-01

    Full Text Available The natural radiation environment in Low Earth Orbit (LEO differs significantly in composition and energy from that found on Earth. The space radiation field consists of high energetic protons and heavier ions from Galactic Cosmic Radiation (GCR, as well as of protons and electrons trapped in the Earth’s radiation belts (Van Allen belts. Protons and some heavier particles ejected in occasional Solar Particle Events (SPEs might in addition contribute to the radiation exposure in LEO. All sources of radiation are modulated by the solar cycle. During solar maximum conditions SPEs occur more frequently with higher particle intensities. Since the radiation exposure in LEO exceeds exposure limits for radiation workers on Earth, the radiation exposure in space has been recognized as a main health concern for humans in space missions from the beginning of the space age on. Monitoring of the radiation environment is therefore an inevitable task in human spaceflight. Since mission profiles are always different and each spacecraft provides different shielding distributions, modifying the radiation environment measurements needs to be done for each mission. The experiments “Dose Distribution within the ISS (DOSIS” (2009–2011 and “Dose Distribution within the ISS 3D (DOSIS 3D” (2012–onwards onboard the Columbus Laboratory of the International Space Station (ISS use a detector suite consisting of two silicon detector telescopes (DOSimetry TELescope = DOSTEL and passive radiation detector packages (PDP and are designed for the determination of the temporal and spatial variation of the radiation environment. With the DOSTEL instruments’ changes of the radiation composition and the related exposure levels in dependence of the solar cycle, the altitude of the ISS and the influence of attitude changes of the ISS during Space Shuttle dockings inside the Columbus Laboratory have been monitored. The absorbed doses measured at the end of May 2016

  9. Designing the STS-134 Re-Rendezvous: A Preparation for Future Crewed Rendezvous Missions

    Science.gov (United States)

    Stuit, Timothy D.

    2011-01-01

    In preparation to provide the capability for the Orion spacecraft, also known as the Multi-Purpose Crew Vehicle (MPCV), to rendezvous with the International Space Station (ISS) and future spacecraft, a new suite of relative navigation sensors are in development and were tested on one of the final Space Shuttle missions to ISS. The National Aeronautics and Space Administration (NASA) commissioned a flight test of prototypes of the Orion relative navigation sensors on STS-134, in order to test their performance in the space environment during the nominal rendezvous and docking, as well as a re-rendezvous dedicated to testing the prototype sensors following the undocking of the Space Shuttle orbiter at the end of the mission. Unlike the rendezvous and docking at the beginning of the mission, the re-rendezvous profile replicates the newly designed Orion coelliptic approach trajectory, something never before attempted with the shuttle orbiter. Therefore, there were a number of new parameters that needed to be conceived of, designed, and tested for this rerendezvous to make the flight test successful. Additionally, all of this work had to be integrated with the normal operations of the ISS and shuttle and had to conform to the constraints of the mission and vehicles. The result of this work is a separation and rerendezvous trajectory design that would not only prove the design of the relative navigation sensors for the Orion vehicle, but also would serve as a proof of concept for the Orion rendezvous trajectory itself. This document presents the analysis and decision making process involved in attaining the final STS-134 re-rendezvous design.

  10. Unusual ISS Rate Signature

    Science.gov (United States)

    Laible, Michael R.

    2011-01-01

    On November 23, 2011 International Space Station Guidance, Navigation, and Control reported unusual pitch rate disturbance. These disturbances were an order of magnitude greater than nominal rates. The Loads and Dynamics team was asked to review and analyze current accelerometer data to investigate this disturbance. This paper will cover the investigation process under taken by the Loads and Dynamics group. It will detail the accelerometers used and analysis performed. The analysis included performing Frequency Fourier Transform of the data to identify the mode of interest. This frequency data is then reviewed with modal analysis of the ISS system model. Once this analysis is complete and the disturbance quantified, a forcing function was produced to replicate the disturbance. This allows the Loads and Dynamics team to report the load limit values for the 100's of interfaces on the ISS.

  11. Expert assessments and content analysis of crew communication during ISS missions

    Science.gov (United States)

    Yusupova, Anna

    During the last seven years, we have analyzed the communication patterns between ISS crewmembers and mission control personnel and identified a number of different communication styles between these two groups (Gushin et al, 2005). In this paper, we will report on an external validity check we conducted that compares our findings with those of another study using the same research material. For many years the group of psychologists at the Medical Center of Space Flight Control (TCUMOKO) at the Institute for Biomedical Problems (IBMP) in Moscow has been analyzing audio communication sessions of Russian space crews with the ground-based Mission Control during long-duration spaceflight conditions. We compared week by week texts of the standard weekly monitoring reports made by the TsUP psychological group and audiocommunication of space crews with mission control centers. Expert assessments of the crewmembers' psychological state are made by IBMP psychoneurologists on the basis of daily schedule fulfillment, video and audio materials, and psychophysiological data from board. The second approach was based on the crew-ground communication analysis. For both population of messages we applied two corresponding schemas of content analysis. All statements made in communication sessions and weekly reports were divided into three groups in terms of their communication function (Lomov, 1981): 1) informative function (e.g., demands for information, requests, professional slang); 2) socio-regulatory function (e.g., rational consent or discord, operational complaint, refusal to cooperate); and 3) affective (emotional) function (e.g., encouragement, sympathy, emotional consent or discord). Number of statements of the audiocommunication sessions correlated with corresponding functions (informative, regulatory, affective) of communication in weekly monitioring reports made by experts. Crewmembers verbal behavior expresses its psycho-emotional state which is formulated by expert

  12. Automated Miniaturized Instrument for Space Biology Applications and the Monitoring of the Astronauts Health Onboard the ISS

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kia; Danley, David; Ricco, Antonio J.; Santos, Orlando; Pohorille, Andrew

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. The spacecraft environment subjects the traveler to noise, chemical and microbiological contaminants, increased radiation, and variable gravity forces. As humans prepare for long-duration missions to the International Space Station (ISS) and beyond, effective measures must be developed, verified and implemented to ensure mission success. Limited biomedical quantitative capabilities are currently available onboard the ISS. Therefore, the development of versatile instruments to perform space biological analysis and to monitor astronauts' health is needed. We are developing a fully automated, miniaturized system for measuring gene expression on small spacecraft in order to better understand the influence of the space environment on biological systems. This low-cost, low-power, multi-purpose instrument represents a major scientific and technological advancement by providing data on cellular metabolism and regulation. The current system will support growth of microorganisms, extract and purify the RNA, hybridize it to the array, read the expression levels of a large number of genes by microarray analysis, and transmit the measurements to Earth. The system will help discover how bacteria develop resistance to antibiotics and how pathogenic bacteria sometimes increase their virulence in space, facilitating the development of adequate countermeasures to decrease risks associated with human spaceflight. The current stand-alone technology could be used as an integrated platform onboard the ISS to perform similar genetic analyses on any biological systems from the tree of life. Additionally, with some modification the system could be implemented to perform real-time in-situ microbial monitoring of the ISS environment (air, surface and water samples) and the astronaut's microbiome using 16SrRNA microarray technology. Furthermore, the current system can be enhanced

  13. Evaluation of Electrochemically Generated Potable Water Disinfectants for Use on the International Space Station

    Science.gov (United States)

    Rodriquez, Branelle; Anderson, Molly; Adams, Niklas; Vega, Leticia; Botkin, Douglas

    2013-01-01

    Microbial contamination and subsequent growth in spacecraft water systems are constant concerns for missions involving human crews. The current potable water disinfectant for the International Space Station (ISS) is iodine; however, with the end of the Space Shuttle Program, there is a need to develop redundant biocide systems that do not require regular up-mass dependencies. Throughout the course of a year, four different electrochemical systems were investigated as a possible biocide for potable water on the ISS. Research has indicated that a wide variability exists with regards to efficacy in both concentration and exposure time of these disinfectants; therefore, baseline efficacy values were established. This paper describes a series of tests performed to establish optimal concentrations and exposure times for four disinfectants against single and mixed species planktonic and biofilm bacteria. Results of the testing determined whether these electrochemical disinfection systems are able to produce a sufficient amount of chemical in both concentration and volume to act as a biocide for potable water on the ISS.

  14. Using the Light Microscopy Module (LMM) on the International Space Station (ISS), The Advanced Colloids Experiment (ACE) and MacroMolecular Biophysics (MMB)

    Science.gov (United States)

    Meyer, William; Foster, William M.; Motil, Brian J.; Sicker, Ronald; Abbott-Hearn, Amber; Chao, David; Chiaramonte, Fran; Atherton, Arthur; Beltram, Alexander; Bodzioney, Christopher M.; hide

    2016-01-01

    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2016, if all goes as planned, three experiments will be completed: [1] Advanced Colloids Experiments with Heated base-2 (ACE-H2) and [2] Advanced Colloids Experiments with Temperature control (ACE-T1). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al. and [2] from Chungnam National University, Daejeon, S. Korea: Chang-Soo Lee, et al.

  15. CEO Sites Mission Management System (SMMS)

    Science.gov (United States)

    Trenchard, Mike

    2014-01-01

    Late in fiscal year 2011, the Crew Earth Observations (CEO) team was tasked to upgrade its science site database management tool, which at the time was integrated with the Automated Mission Planning System (AMPS) originally developed for Earth Observations mission planning in the 1980s. Although AMPS had been adapted and was reliably used by CEO for International Space Station (ISS) payload operations support, the database structure was dated, and the compiler required for modifications would not be supported in the Windows 7 64-bit operating system scheduled for implementation the following year. The Sites Mission Management System (SMMS) is now the tool used by CEO to manage a heritage Structured Query Language (SQL) database of more than 2,000 records for Earth science sites. SMMS is a carefully designed and crafted in-house software package with complete and detailed help files available for the user and meticulous internal documentation for future modifications. It was delivered in February 2012 for test and evaluation. Following acceptance, it was implemented for CEO mission operations support in April 2012. The database spans the period from the earliest systematic requests for astronaut photography during the shuttle era to current ISS mission support of the CEO science payload. Besides logging basic image information (site names, locations, broad application categories, and mission requests), the upgraded database management tool now tracks dates of creation, modification, and activation; imagery acquired in response to requests; the status and location of ancillary site information; and affiliations with studies, their sponsors, and collaborators. SMMS was designed to facilitate overall mission planning in terms of site selection and activation and provide the necessary site parameters for the Satellite Tool Kit (STK) Integrated Message Production List Editor (SIMPLE), which is used by CEO operations to perform daily ISS mission planning. The CEO team

  16. Performance Characterization of Loctite (Registered Trademark) 242 and 271 Liquid Locking Compounds (LLCs) as a Secondary Locking Feature for International Space Station (ISS) Fasteners

    Science.gov (United States)

    Dube, Michael J.; Gamwell, Wayne R.

    2011-01-01

    Several International Space Station (ISS) hardware components use Loctite (and other polymer based liquid locking compounds (LLCs)) as a means of meeting the secondary (redundant) locking feature requirement for fasteners. The primary locking method is the fastener preload, with the application of the Loctite compound which when cured is intended to resist preload reduction. The reliability of these compounds has been questioned due to a number of failures during ground testing. The ISS Program Manager requested the NASA Engineering and Safety Center (NESC) to characterize and quantify sensitivities of Loctite being used as a secondary locking feature. The findings and recommendations provided in this investigation apply to the anaerobic LLCs Loctite 242 and 271. No other anaerobic LLCs were evaluated for this investigation. This document contains the findings and recommendations of the NESC investigation

  17. Filter Efficiency and Leak Testing of Returned ISS Bacterial Filter Elements After 2.5 Years of Continuous Operation

    Science.gov (United States)

    Green, Robert D.; Agui, Juan H.; Berger, Gordon M.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    The atmosphere revitalization equipment aboard the International Space Station (ISS) and future deep space exploration vehicles provides the vital functions of maintaining a habitable environment for the crew as well as protecting the hardware from fouling by suspended particulate matter. Providing these functions are challenging in pressurized spacecraft cabins because no outside air ventilation is possible and a larger particulate load is imposed on the filtration system due to lack of sedimentation in reduced gravity conditions. The ISS Environmental Control and Life Support (ECLS) system architecture in the U.S. Segment uses a distributed particulate filtration approach consisting of traditional High-Efficiency Particulate Adsorption (HEPA) filters deployed at multiple locations in each module. These filters are referred to as Bacteria Filter Elements (BFEs). As more experience has been gained with ISS operations, the BFE service life, which was initially one year, has been extended to two to five years, dependent on the location in the U.S. Segment. In previous work we developed a test facility and test protocol for leak testing the ISS BFEs. For this work, we present results of leak testing a sample set of returned BFEs with a service life of 2.5 years, along with particulate removal efficiency and pressure drop measurements. The results can potentially be utilized by the ISS Program to ascertain whether the present replacement interval can be maintained or extended to balance the on-ground filter inventory with extension of the lifetime of ISS to 2024. These results can also provide meaningful guidance for particulate filter designs under consideration for future deep space exploration missions.

  18. Assessment of Utilization of Food Variety on the International Space Station

    Science.gov (United States)

    Cooper, M. R.; Paradis, R.; Zwart, S. R.; Smith, S. M.; Kloeris, V. L.; Douglas, G. L.

    2018-01-01

    Long duration missions will require astronauts to subsist on a closed food system for at least three years. Resupply will not be an option, and the food supply will be older at the time of consumption and more static in variety than previous missions. The space food variety requirements that will both supply nutrition and support continued interest in adequate consumption for a mission of this duration is unknown. Limited food variety of past space programs (Gemini, Apollo, International Space Station) as well as in military operations resulted in monotony, food aversion, and weight loss despite relatively short mission durations of a few days up to several months. In this study, food consumption data from 10 crew members on 3-6-month International Space Station missions was assessed to determine what percentage of the existing food variety was used by crew members, if the food choices correlated to the amount of time in orbit, and whether commonalities in food selections existed across crew members. Complete mission diet logs were recorded on ISS flights from 2008 - 2014, a period in which space food menu variety was consistent, but the food system underwent an extensive reformulation to reduce sodium content. Food consumption data was correlated to the Food on Orbit by Week logs, archived Data Usage Charts, and a food list categorization table using TRIFACTA software and queries in a SQL SERVER 2012 database.

  19. DRAGONS-A Micrometeoroid and Orbital Debris Impact Sensor on the ISS

    Science.gov (United States)

    Liou, J.-C.; Hamilton, J.; Liolios, S.; Anderson, C.; Sadilek, A.; Corsaro, R.; Giovane, F.; Burchell, M.

    2015-01-01

    by the NASA Science Mission Directorate and the NASA Exploration Systems Mission Directorate, then by the NASA JSC Innovative Research and Development Program and the NASA Orbital Debris Program Office. The NASA Orbital Debris Program Office leads the effort with collaboration from the U.S. Naval Academy, Naval Research Laboratory, University of Kent at Canterbury in Great Britain, and Virginia Tech. The project recently reached a major milestone when DRAGONS was approved for a technology demonstration mission by the International Space Station (ISS) Program in October 2014. The plan is to deploy a 1 sq m DRAGONS on the ISS with the detection surface facing the ram-direction for 2 to 3 years. The tentative launch schedule is in early 2017. This mission will collect data on orbital debris in the sub-millimeter size regime to better define the small orbital debris environment at the ISS altitude. The mission will also advance the DRAGONS Technology Readiness Level to 9 and greatly enhance the opportunities to deploy DRAGONS on other spacecraft to high LEO orbits in the future.

  20. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    Science.gov (United States)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the

  1. Crew Transportation System Design Reference Missions

    Science.gov (United States)

    Mango, Edward J.

    2015-01-01

    Contains summaries of potential design reference mission goals for systems to transport humans to andfrom low Earth orbit (LEO) for the Commercial Crew Program. The purpose of this document is to describe Design Reference Missions (DRMs) representative of the end-to-end Crew Transportation System (CTS) framework envisioned to successfully execute commercial crew transportation to orbital destinations. The initial CTS architecture will likely be optimized to support NASA crew and NASA-sponsored crew rotation missions to the ISS, but consideration may be given in this design phase to allow for modifications in order to accomplish other commercial missions in the future. With the exception of NASA’s mission to the ISS, the remaining commercial DRMs are notional. Any decision to design or scar the CTS for these additional non-NASA missions is completely up to the Commercial Provider. As NASA’s mission needs evolve over time, this document will be periodically updated to reflect those needs.

  2. Recent Pharmacology Studies on the International Space Station

    Science.gov (United States)

    Wotring, Virginia

    2014-01-01

    The environment on the International Space Station (ISS) includes a variety of potential stressors including the absence of Earth's gravity, elevated exposure to radiation, confined living and working quarters, a heavy workload, and high public visibility. The effects of this extreme environment on pharmacokinetics, pharmacodynamics, and even on stored medication doses, are not yet understood. Dr. Wotring will discuss recent analyses of medication doses that experienced long duration storage on the ISS and a recent retrospective examination of medication use during long-duration spaceflights. She will also describe new pharmacology experiments that are scheduled for upcoming ISS missions. Dr. Virginia E. Wotring is a Senior Scientist in the Division of Space Life Sciences in the Universities Space Research Association, and Pharmacology Discipline Lead at NASA's Johnson Space Center, Human Heath and Countermeasures Division. She received her doctorate in Pharmacological and Physiological Science from Saint Louis University after earning a B.S. in Chemistry at Florida State University. She has published multiple studies on ligand gated ion channels in the brain and spinal cord. Her research experience includes drug mechanisms of action, drug receptor structure/function relationships and gene & protein expression. She joined USRA (and spaceflight research) in 2009. In 2012, her book reviewing pharmacology in spaceflight was published by Springer: Space Pharmacology, Space Development Series.

  3. ISS Crew Transportation and Services Requirements Document

    Science.gov (United States)

    Bayt, Robert L. (Compiler); Lueders, Kathryn L. (Compiler)

    2016-01-01

    The ISS Crew Transportation and Services Requirements Document (CCT-REQ-1130) contains all technical, safety, and crew health medical requirements that are mandatory for achieving a Crew Transportation System Certification that will allow for International Space Station delivery and return of NASA crew and limited cargo. Previously approved on TN23183.

  4. International Research Results and Accomplishments From the International Space Station

    Science.gov (United States)

    Ruttley, Tara M.; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka; hide

    2016-01-01

    In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a collection of summaries of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/issscience) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It reflects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a way that will impact humanity like no laboratory on Earth. The ISS Program Science Forum will continue to capture and report on these results in the form of journal publications, conference proceedings, and patents. We anticipate that successful ISS research will

  5. International Space Station Science Research Accomplishments During the Assembly Years: An Analysis of Results from 2000-2008

    Science.gov (United States)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy; Thumm, Tracy; Crespo-Richey, Jessica; Baumann, David; Rhatigan, Jennifer

    2009-01-01

    This report summarizes research accomplishments on the International Space Station (ISS) through the first 15 Expeditions. When research programs for early Expeditions were established, five administrative organizations were executing research on ISS: bioastronautics research, fundamental space biology, physical science, space product development, and space flight. The Vision for Space Exploration led to changes in NASA's administrative structures, so we have grouped experiments topically by scientific themes human research for exploration, physical and biological sciences, technology development, observing the Earth, and educating and inspiring the next generation even when these do not correspond to the administrative structure at the time at which they were completed. The research organizations at the time at which the experiments flew are preserved in the appendix of this document. These investigations on the ISS have laid the groundwork for research planning for Expeditions to come. Humans performing scientific investigations on ISS serve as a model for the goals of future Exploration missions. The success of a wide variety of investigations is an important hallmark of early research on ISS. Of the investigations summarized here, some are completed with results released, some are completed with preliminary results, and some remain ongoing.

  6. Satellite Servicing's Autonomous Rendezvous and Docking Testbed on the International Space Station

    Science.gov (United States)

    Naasz, Bo J.; Strube, Matthew; Van Eepoel, John; Barbee, Brent W.; Getzandanner, Kenneth M.

    2011-01-01

    The Space Servicing Capabilities Project (SSCP) at NASA's Goddard Space Flight Center (GSFC) has been tasked with developing systems for servicing space assets. Starting in 2009, the SSCP completed a study documenting potential customers and the business case for servicing, as well as defining several notional missions and required technologies. In 2010, SSCP moved to the implementation stage by completing several ground demonstrations and commencing development of two International Space Station (ISS) payloads-the Robotic Refueling Mission (RRM) and the Dextre Pointing Package (DPP)--to mitigate new technology risks for a robotic mission to service existing assets in geosynchronous orbit. This paper introduces the DPP, scheduled to fly in July of 2012 on the third operational SpaceX Dragon mission, and its Autonomous Rendezvous and Docking (AR&D) instruments. The combination of sensors and advanced avionics provide valuable on-orbit demonstrations of essential technologies for servicing existing vehicles, both cooperative and non-cooperative.

  7. NASA Mission Operations Directorate Preparations for the COTS Visiting Vehicles

    Science.gov (United States)

    Shull, Sarah A.; Peek, Kenneth E.

    2011-01-01

    With the retirement of the Space Shuttle looming, a series of new spacecraft is under development to assist in providing for the growing logistical needs of the International Space Station (ISS). Two of these vehicles are being built under a NASA initiative known as the Commercial Orbital Transportation Services (COTS) program. These visiting vehicles ; Space X s Dragon and Orbital Science Corporation s Cygnus , are to be domestically produced in the United States and designed to add to the capabilities of the Russian Progress and Soyuz workhorses, the European Automated Transfer Vehicle (ATV) and the Japanese H-2 Transfer Vehicle (HTV). Most of what is known about the COTS program has focused on the work of Orbital and SpaceX in designing, building, and testing their respective launch and cargo vehicles. However, there is also a team within the Mission Operations Directorate (MOD) at NASA s Johnson Space Center working with their operational counterparts in these companies to provide operational safety oversight and mission assurance via the development of operational scenarios and products needed for these missions. Ensuring that the operational aspect is addressed for the initial demonstration flights of these vehicles is the topic of this paper. Integrating Dragon and Cygnus into the ISS operational environment has posed a unique challenge to NASA and their partner companies. This is due in part to the short time span of the COTS program, as measured from initial contract award until first launch, as well as other factors that will be explored in the text. Operational scenarios and products developed for each COTS vehicle will be discussed based on the following categories: timelines, on-orbit checkout, ground documentation, crew procedures, software updates and training materials. Also addressed is an outline of the commonalities associated with the operations for each vehicle. It is the intent of the authors to provide their audience with a better

  8. ISS-Lobster: A Proposed Wide-Field X-Ray Telescope on the International Space Station

    Science.gov (United States)

    Camp, Jordan

    2012-01-01

    The Lobster wide-field imaging telescope combines simultaneous high FOV, high sensitivity and good position resolution. These characteristics can open the field of X-Ray time domain astronomy, which will study many interesting transient sources, including tidal disruptions of stars, supernova shock breakouts, and high redshift gamma-ray bursts. Also important will be its use for the X-ray follow-up of gravitational wave detections. I will describe our present effort to propose the Lobster concept for deployment on the International Space Station through a NASA Mission of Opportunity this fall.

  9. ESA strategy for human exploration and the Lunar Lander Mission

    Science.gov (United States)

    Gardini, B.

    As part of ESAs Aurora Exploration programme, the Agency has defined, since 2001, a road map for exploration in which, alongside robotic exploration missions, the International Space Station (ISS) and the Moon play an essential role on the way to other destinations in the Solar System, ultimately to a human mission to Mars in a more distant future. In the frame of the Human Spaceflight programme the first European Lunar Lander Mission, with a launch date on 2018, has been defined, targeting the lunar South Pole region to capitalize on unique illumination conditions and provide the opportunity to carry out scientific investigations in a region of the Moon not explored so far. The Phase B1 industrial study, recently initiated, will consolidate the mission design and prepare the ground for the approval of the full mission development phase at the 2012 ESA Council at Ministerial. This paper describes the mission options which have been investigated in the past Phase A studies and presents the main activities foreseen in the Phase B1 to consolidate the mission design, including a robust bread-boards and technology development programme. In addition, the approach to overcoming the mission's major technical and environmental challenges and the activities to advance the definition of the payload elements will be described.

  10. Integrating Space Flight Resource Management Skills into Technical Lessons for International Space Station Flight Controller Training

    Science.gov (United States)

    Baldwin, Evelyn

    2008-01-01

    The Johnson Space Center s (JSC) International Space Station (ISS) Space Flight Resource Management (SFRM) training program is designed to teach the team skills required to be an effective flight controller. It was adapted from the SFRM training given to Shuttle flight controllers to fit the needs of a "24 hours a day/365 days a year" flight controller. More recently, the length reduction of technical training flows for ISS flight controllers impacted the number of opportunities for fully integrated team scenario based training, where most SFRM training occurred. Thus, the ISS SFRM training program is evolving yet again, using a new approach of teaching and evaluating SFRM alongside of technical materials. Because there are very few models in other industries that have successfully tied team and technical skills together, challenges are arising. Despite this, the Mission Operations Directorate of NASA s JSC is committed to implementing this integrated training approach because of the anticipated benefits.

  11. Development and evaluation of bioregenerative menus for Mars habitat missions

    Science.gov (United States)

    Cooper, Maya R.; Catauro, Patricia; Perchonok, Michele

    2012-12-01

    Two 10-day menus were developed in preparation for a Mars habitat mission. The first was built on the assumption, as in previous menu development efforts for closed ecological systems, that the food system would be vegetarian, whereas the second menu introduced shelf-stable, prepackaged meat and entrée items from the current International Space Station (ISS) food system. Both menus delivered an average of 3000 cal daily but the macronutrient proportions resulted in an excess of carbohydrates and dietary fiber per mission nutritional recommendations. Generally, the individual recipes comprising both menus were deemed acceptable by internal sensory panel (average overall acceptability=7.4). The incorporation of existing ISS entrée items did not have a significant effect on the acceptability of the menus. In a final comparison, the food system upmass, or the amount of food that is shipped from the Earth, increased by 297 kg with the addition of prepackaged entrées to the menu. However, the addition of the shipped massed was counterbalanced by a 864 kg reduction in required crops. A further comparison of the crew time required for meal preparation and farming, food system power requirements, and food processing equipment mass is recommended to definitively distinguish the menus.

  12. International Space Station End-of-Life Probabilistic Risk Assessment

    Science.gov (United States)

    Duncan, Gary W.

    2014-01-01

    The International Space Station (ISS) end-of-life (EOL) cycle is currently scheduled for 2020, although there are ongoing efforts to extend ISS life cycle through 2028. The EOL for the ISS will require deorbiting the ISS. This will be the largest manmade object ever to be de-orbited therefore safely deorbiting the station will be a very complex problem. This process is being planned by NASA and its international partners. Numerous factors will need to be considered to accomplish this such as target corridors, orbits, altitude, drag, maneuvering capabilities etc. The ISS EOL Probabilistic Risk Assessment (PRA) will play a part in this process by estimating the reliability of the hardware supplying the maneuvering capabilities. The PRA will model the probability of failure of the systems supplying and controlling the thrust needed to aid in the de-orbit maneuvering.

  13. Martian Feeling: An Analogue Study to Simulate a Round-Trip to Mars using the International Space Station

    Science.gov (United States)

    Felix, C. V.; Gini, A.

    When talking about human space exploration, Mars missions are always present. It is clear that sooner or later, humanity will take this adventure. Arguably the most important aspect to consider for the success of such an endeavour is the human element. The safety of the crew throughout a Martian mission is a top priority for all space agencies. Therefore, such a mission should not take place until all the risks have been fully understood and mitigated. A mission to Mars presents unique human and technological challenges in terms of isolation, confinement, autonomy, reliance on mission control, communication delays and adaptation to different gravity levels. Analogue environments provide the safest way to simulate these conditions, mitigate the risks and evaluate the effects of long-term space travel on the crew. Martian Feeling is one of nine analogue studies, from the Mars Analogue Path (MAP) report [1], proposed by the TP Analogue group of ISU Masters class 2010. It is an integrated analogue study which simulates the psychological, physiological and operational conditions that an international, six-person, mixed gender crew would experience on a mission to Mars. Set both onboard the International Space Station (ISS) and on Earth, the Martian Feeling study will perform a ``dress rehearsal'' of a mission to Mars. The study proposes to test both human performance and operational procedures in a cost-effective manner. Since Low Earth Orbit (LEO) is more accessible than other space-based locations, an analogue studies in LEO would provide the required level of realism to a simulated transit mission to Mars. The sustained presence of microgravity and other elements of true spaceflight are features of LEO that are neither currently feasible nor possible to study in terrestrial analogue sites. International collaboration, economics, legal and ethical issues were considered when the study was proposed. As an example of international collaboration, the ISS would

  14. Measurement of dose distribution in the spherical phantom onboard the ISS-KIBO module -MATROSHKA-R in KIBO-

    Science.gov (United States)

    Kodaira, Satoshi; Kawashima, Hajime; Kurano, Mieko; Uchihori, Yukio; Nikolaev, Igor; Ambrozova, Iva; Kitamura, Hisashi; Kartsev, Ivan; Tolochek, Raisa; Shurshakov, Vyacheslav

    The measurement of dose equivalent and effective dose during manned space missions on the International Space Station (ISS) is important for evaluating the risk to astronaut health and safety when exposed to space radiation. The dosimetric quantities are constantly changing and strongly depend on the level of solar activity and the various spacecraft- and orbit-dependent parameters such as the shielding distribution in the ISS module, location of the spacecraft within its orbit relative to the Earth, the attitude (orientation) and altitude. Consequently, the continuous monitoring of dosimetric quantities is required to record and evaluate the personal radiation dose for crew members during spaceflight. The dose distributions in the phantom body and on its surface give crucial information to estimate the dose equivalent in the human body and effective dose in manned space mission. We have measured the absorbed dose and dose equivalent rates using passive dosimeters installed in the spherical phantom in Japanese Experiment Module (“KIBO”) of the ISS in the framework of Matroshka-R space experiment. The exposure duration was 114 days from May 21 to September 12, 2012. The phantom consists of tissue-equivalent material covered with a poncho jacket with 32 pockets on its surface and 20 container rods inside of the phantom. The phantom diameter is 35 cm and the mass is 32 kg. The passive dosimeters consisted of a combination of luminescent detectors of Al _{2}O _{3};C OSL and CaSO _{4}:Dy TLD and CR-39 plastic nuclear track detectors. As one of preliminary results, the dose distribution on the phantom surface measured with OSL detectors installed in the jacket pockets is found to be ranging from 340 muGy/day to 260 muGy/day. In this talk, we will present the detail dose distributions, and variations of LET spectra and quality factor obtained outside and inside of the spherical phantom installed in the ISS-KIBO.

  15. International Space Station (ISS) Internal Active Thermal Control System (IATCS) New Biocide Selection, Qualification and Implementation

    Science.gov (United States)

    Wilson, Mark E.; Cole, Harold E.; Rector, Tony; Steele, John; Varsik, Jerry

    2011-01-01

    The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) is primarily responsible for the removal of heat loads from payload and system racks. The IATCS is a water based system which works in conjunction with the EATCS (External ATCS), an ammonia based system, which are interfaced through a heat exchanger to facilitate heat transfer. On-orbit issues associated with the aqueous coolant chemistry began to occur with unexpected increases in CO2 levels in the cabin. This caused an increase in total inorganic carbon (TIC), a reduction in coolant pH, increased corrosion, and precipitation of nickel phosphate. These chemical changes were also accompanied by the growth of heterotrophic bacteria that increased risk to the system and could potentially impact crew health and safety. Studies were conducted to select a biocide to control microbial growth in the system based on requirements for disinfection at low chemical concentration (effectiveness), solubility and stability, material compatibility, low toxicity to humans, compatibility with vehicle environmental control and life support systems (ECLSS), ease of application, rapid on-orbit measurement, and removal capability. Based on these requirements, ortho-phthalaldehyde (OPA), an aromatic dialdehyde compound, was selected for qualification testing. This paper presents the OPA qualification test results, development of hardware and methodology to safely apply OPA to the system, development of a means to remove OPA, development of a rapid colorimetric test for measurement of OPA, and the OPA on-orbit performance for controlling the growth of microorganisms in the ISS IATCS since November 3, 2007.

  16. Space water electrolysis: Space Station through advance missions

    Science.gov (United States)

    Davenport, Ronald J.; Schubert, Franz H.; Grigger, David J.

    1991-01-01

    Static Feed Electrolyzer (SFE) technology can satisfy the need for oxygen (O2) and Hydrogen (H2) in the Space Station Freedom and future advanced missions. The efficiency with which the SFE technology can be used to generate O2 and H2 is one of its major advantages. In fact, the SFE is baselined for the Oxygen Generation Assembly within the Space Station Freedom's Environmental Control and Life Support System (ECLSS). In the conventional SFE process an alkaline electrolyte is contained within the matrix and is sandwiched between two porous electrodes. The electrodes and matrix make up a unitized cell core. The electrolyte provides the necessary path for the transport of water and ions between the electrodes, and forms a barrier to the diffusion of O2 and H2. A hydrophobic, microporous membrane permits water vapor to diffuse from the feed water to the cell core. This membrane separates the liquid feed water from the product H2, and, therefore, avoids direct contact of the electrodes by the feed water. The feed water is also circulated through an external heat exchanger to control the temperature of the cell.

  17. Utilizing ISS Camera Systems for Scientific Analysis of Lightning Characteristics and comparison with ISS-LIS and GLM

    Science.gov (United States)

    Schultz, C. J.; Lang, T. J.; Leake, S.; Runco, M.; Blakeslee, R. J.

    2017-12-01

    Video and still frame images from cameras aboard the International Space Station (ISS) are used to inspire, educate, and provide a unique vantage point from low-Earth orbit that is second to none; however, these cameras have overlooked capabilities for contributing to scientific analysis of the Earth and near-space environment. The goal of this project is to study how georeferenced video/images from available ISS camera systems can be useful for scientific analysis, using lightning properties as a demonstration. Camera images from the crew cameras and high definition video from the Chiba University Meteor Camera were combined with lightning data from the National Lightning Detection Network (NLDN), ISS-Lightning Imaging Sensor (ISS-LIS), the Geostationary Lightning Mapper (GLM) and lightning mapping arrays. These cameras provide significant spatial resolution advantages ( 10 times or better) over ISS-LIS and GLM, but with lower temporal resolution. Therefore, they can serve as a complementarity analysis tool for studying lightning and thunderstorm processes from space. Lightning sensor data, Visible Infrared Imaging Radiometer Suite (VIIRS) derived city light maps, and other geographic databases were combined with the ISS attitude and position data to reverse geolocate each image or frame. An open-source Python toolkit has been developed to assist with this effort. Next, the locations and sizes of all flashes in each frame or image were computed and compared with flash characteristics from all available lightning datasets. This allowed for characterization of cloud features that are below the 4-km and 8-km resolution of ISS-LIS and GLM which may reduce the light that reaches the ISS-LIS or GLM sensor. In the case of video, consecutive frames were overlaid to determine the rate of change of the light escaping cloud top. Characterization of the rate of change in geometry, more generally the radius, of light escaping cloud top was integrated with the NLDN, ISS-LIS and

  18. Evaluation of Crew-Centric Onboard Mission Operations Planning and Execution Tool: Year 2

    Science.gov (United States)

    Hillenius, S.; Marquez, J.; Korth, D.; Rosenbaum, M.; Deliz, Ivy; Kanefsky, Bob; Zheng, Jimin

    2018-01-01

    Currently, mission planning for the International Space Station (ISS) is largely affected by ground operators in mission control. The task of creating a week-long mission plan for ISS crew takes dozens of people multiple days to complete, and is often created far in advance of its execution. As such, re-planning or adapting to changing real-time constraints or emergent issues is similarly taxing. As we design for future mission operations concepts to other planets or areas with limited connectivity to Earth, more of these ground-based tasks will need to be handled autonomously by the crew onboard.There is a need for a highly usable (including low training time) tool that enables efficient self-scheduling and execution within a single package. The ISS Program has identified Playbook as a potential option. It already has high crew acceptance as a plan viewer from previous analogs and can now support a crew self-scheduling assessment on ISS or on another mission. The goals of this work, a collaboration between the Human Research Program and the ISS Program, are to inform the design of systems for more autonomous crew operations and provide a platform for research on crew autonomy for future deep space missions. Our second year of the research effort have included new insights on the crew self-scheduling sessions performed by the crew through use on the HERA (Human Exploration Research Analog) and NEEMO (NASA Extreme Environment Mission Operations) analogs. Use on the NEEMO analog involved two self-scheduling strategies where the crew planned and executed two days of EVAs (Extra-Vehicular Activities). On HERA year two represented the first HERA campaign where we were able to perform research tasks. This involved selected flexible activities that the crew could schedule, mock timelines where the crew completed more complex planning exercises, usability evaluation of the crew self-scheduling features, and more insights into the limit of plan complexity that the crew

  19. Physics Research on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The International Space Station (ISS) is orbiting Earth at an altitude of around 400 km. It has been manned since November 2000 and currently has a permanent crew of six. On-board ISS science is done in a wide field of sciences, from fundamental physics to biology and human physiology. Many of the experiments utilize the unique conditions of weightlessness, but also the views of space and the Earth are exploited. ESA’s (European Space Agency) ELIPS (European Programme Life and Physical sciences in Space) manages some 150 on-going and planned experiments for ISS, which is expected to be utilized at least to 2020. This presentation will give a short introduction to ISS, followed by an overview of the science field within ELIPS and some resent results. The emphasis, however, will be on ISS experiments which are close to the research performed at CERN. Silicon strip detectors like ALTEA are measuring the flux of ions inside the station. ACES (Atomic Clock Ensemble in Space) will provide unprecedented global ti...

  20. Dose characteristics and LET spectra on and inside the spherical phantom onboard of ISS

    International Nuclear Information System (INIS)

    Jadrnickova, I.; Brabcova, K.; Mrazova, Z.; Spurny, F.; Shurshakov, V.A.; Kartsev, I.S.; Tolochek, R.V.

    2010-01-01

    To estimate the radiation risk of spacecraft crew during the mission, it is necessary to measure dose distribution at various compartments, on and inside the human body that can be simulated using various phantoms. Due to some convenient characteristics (especially small weight and dimensions), passive detectors are used to measure dosimetric quantities onboard spacecraft. This contribution deals with the measurement of dosimetric characteristics and spectra of linear energy transfer (LET) onboard the International Space Station (ISS) during two experiments with tissue-equivalent spherical Russian phantom MATROSHKA-R realized in years 2006 and 2008. To obtain LET spectra, total absorbed doses, and dose equivalents, we used combination of plastic nuclear track detectors and thermoluminescence detectors. The detectors were placed at various locations on the surface of the MATROSHKA-R phantom; some detectors were also inserted inside this phantom. The variation of dosimetric quantities obtained during both missions is discussed. The dose characteristics vary with the position of the detectors on or inside the phantom; the absorbed dose and dose equivalent can differ almost twice.

  1. Veggie ISS Validation Test Results and Produce Consumption

    Science.gov (United States)

    Massa, Gioia; Hummerick, Mary; Spencer, LaShelle; Smith, Trent

    2015-01-01

    The Veggie vegetable production system flew to the International Space Station (ISS) in the spring of 2014. The first set of plants, Outredgeous red romaine lettuce, was grown, harvested, frozen, and returned to Earth in October. Ground control and flight plant tissue was sub-sectioned for microbial analysis, anthocyanin antioxidant phenolic analysis, and elemental analysis. Microbial analysis was also performed on samples swabbed on orbit from plants, Veggie bellows, and plant pillow surfaces, on water samples, and on samples of roots, media, and wick material from two returned plant pillows. Microbial levels of plants were comparable to ground controls, with some differences in community composition. The range in aerobic bacterial plate counts between individual plants was much greater in the ground controls than in flight plants. No pathogens were found. Anthocyanin concentrations were the same between ground and flight plants, while antioxidant and phenolic levels were slightly higher in flight plants. Elements varied, but key target elements for astronaut nutrition were similar between ground and flight plants. Aerobic plate counts of the flight plant pillow components were significantly higher than ground controls. Surface swab samples showed low microbial counts, with most below detection limits. Flight plant microbial levels were less than bacterial guidelines set for non-thermostabalized food and near or below those for fungi. These guidelines are not for fresh produce but are the closest approximate standards. Forward work includes the development of standards for space-grown produce. A produce consumption strategy for Veggie on ISS includes pre-flight assessments of all crops to down select candidates, wiping flight-grown plants with sanitizing food wipes, and regular Veggie hardware cleaning and microbial monitoring. Produce then could be consumed by astronauts, however some plant material would be reserved and returned for analysis. Implementation of

  2. Analogs and the BHP Risk Reduction Strategy for Future Spaceflight Missions

    Science.gov (United States)

    Whitmire, Sandra; Leveton, Lauren

    2011-01-01

    In preparation for future exploration missions to distant destinations (e.g., Moon, Near Earth Objects (NEO), and Mars), the NASA Human Research Program s (HRP) Behavioral Health and Performance Element (BHP) conducts and supports research to address four human health risks: Risk of Behavioral Conditions; Risk of Psychiatric Conditions; Risk of Performance Decrements Due to Inadequate Cooperation, Coordination, Communication, and Psychosocial Adaptation within a Team; and Risk of Performance Errors due to Sleep Loss, Fatigue, Circadian Desynchronization, and Work Overload (HRP Science Management Plan, 2008). BHP Research, in collaboration with internal and external research investigators, as well as subject matter experts within NASA operations including flight surgeons, astronauts, and mission planners and others within the Mission Operations Directorate (MOD), identifies knowledge and technology gaps within each Risk. BHP Research subsequently manages and conducts research tasks to address and close the gaps, either through risk assessment and quantification, or the development of countermeasures and monitoring technologies. The resulting deliverables, in many instances, also support current Medical Operations and/or Mission Operations for the International Space Station (ISS).

  3. The International Space Station: Operations and Assembly - Learning From Experiences - Past, Present, and Future

    Science.gov (United States)

    Fuller, Sean; Dillon, William F.

    2006-01-01

    As the Space Shuttle continues flight, construction and assembly of the International Space Station (ISS) carries on as the United States and our International Partners resume the building, and continue to carry on the daily operations, of this impressive and historical Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America s space program, President Bush ratified the United States commitment to completing construction of the ISS by 2010. Since the launch and joining of the first two elements in 1998, the ISS and the partnership have experienced and overcome many challenges to assembly and operations, along with accomplishing many impressive achievements and historical firsts. These experiences and achievements over time have shaped our strategy, planning, and expectations. The continual operation and assembly of ISS leads to new knowledge about the design, development and operation of systems and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration and to generate the data and information that will enable our programs to return to the Moon and continue on to Mars. This paper will provide an overview of the complexity of the ISS Program, including a historical review of the major assembly events and operational milestones of the program, along with the upcoming assembly plans and scheduled missions of the space shuttle flights and ISS Assembly sequence.

  4. Structural Verification of the First Orbital Wonder of the World - The Structural Testing and Analysis of the International Space Station (ISS)

    Science.gov (United States)

    Zipay, John J.; Bernstein, Karen S.; Bruno, Erica E.; Deloo, Phillipe; Patin, Raymond

    2012-01-01

    The International Space Station (ISS) can be considered one of the structural engineering wonders of the world. On par with the World Trade Center, the Colossus of Rhodes, the Statue of Liberty, the Great Pyramids, the Petronas towers and the Burj Khalifa skyscraper of Dubai, the ambition and scope of the ISS structural design, verification and assembly effort is a truly global success story. With its on-orbit life projected to be from its beginning in 1998 to the year 2020 (and perhaps beyond), all of those who participated in its development can consider themselves part of an historic engineering achievement representing all of humanity. The structural design and verification of the ISS could be the subject of many scholarly papers. Several papers have been written on the structural dynamic characterization of the ISS once it was assembled on-orbit [1], but the ground-based activities required to assure structural integrity and structural life of the individual elements from delivery to orbit through assembly and planned on-orbit operations have never been totally summarized. This paper is intended to give the reader an overview of some of the key decisions made during the structural verification planning for the elements of the U.S. On-Orbit Segment (USOS) as well as to summarize the many structural tests and structural analyses that were performed on its major elements. An effort is made for this paper to be summarily comprehensive, but as with all knowledge capture efforts of this kind, there are bound to be errors of omission. Should the reader discover any of these, please feel free to contact the principal author. The ISS (Figure 1) is composed of pre-integrated truss segments and pressurized elements supplied by NASA, the Russian Federal Space Agency (RSA), the European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA). Each of these elements was delivered to orbit by a launch vehicle and connected to one another either robotically or

  5. The ACES mission: scientific objectives and present status

    Science.gov (United States)

    Cacciapuoti, L.; Dimarcq, N.; Salomon, C.

    2017-11-01

    "Atomic Clock Ensemble in Space" (ACES) is a mission in fundamental physics that will operate a new generation of atomic clocks in the microgravity environment of the International Space Station (ISS). The ACES clock signal will combine the medium term frequency stability of a space hydrogen maser (SHM) and the long term stability and accuracy of a frequency standard based on cold cesium atoms (PHARAO). Fractional frequency stability and accuracy of few parts in 1016 will be achieved. The on-board time base distributed on Earth via a microwave link (MWL) will be used to test fundamental laws of physics (Einstein's theories of Special and General Relativity, Standard Model Extension, string theories…) and to develop applications in time and frequency metrology, universal time scales, global positioning and navigation, geodesy and gravimetry. After a general overview on the mission concept and its scientific objectives, the present status of ACES instruments and sub-systems will be discussed.

  6. Second Harmonic Imaging improves Echocardiograph Quality on board the International Space Station

    Science.gov (United States)

    Garcia, Kathleen; Sargsyan, Ashot; Hamilton, Douglas; Martin, David; Ebert, Douglas; Melton, Shannon; Dulchavsky, Scott

    2008-01-01

    Ultrasound (US) capabilities have been part of the Human Research Facility (HRF) on board the International Space Station (ISS) since 2001. The US equipment on board the ISS includes a first-generation Tissue Harmonic Imaging (THI) option. Harmonic imaging (HI) is the second harmonic response of the tissue to the ultrasound beam and produces robust tissue detail and signal. Since this is a first-generation THI, there are inherent limitations in tissue penetration. As a breakthrough technology, HI extensively advanced the field of ultrasound. In cardiac applications, it drastically improves endocardial border detection and has become a common imaging modality. U.S. images were captured and stored as JPEG stills from the ISS video downlink. US images with and without harmonic imaging option were randomized and provided to volunteers without medical education or US skills for identification of endocardial border. The results were processed and analyzed using applicable statistical calculations. The measurements in US images using HI improved measurement consistency and reproducibility among observers when compared to fundamental imaging. HI has been embraced by the imaging community at large as it improves the quality and data validity of US studies, especially in difficult-to-image cases. Even with the limitations of the first generation THI, HI improved the quality and measurability of many of the downlinked images from the ISS and should be an option utilized with cardiac imaging on board the ISS in all future space missions.

  7. Lunar Station: The Next Logical Step in Space Development

    Science.gov (United States)

    Pittman, Robert Bruce; Harper, Lynn; Newfield, Mark; Rasky, Daniel J.

    2014-01-01

    The International Space Station (ISS) is the product of the efforts of sixteen nations over the course of several decades. It is now complete, operational, and has been continuously occupied since November of 20001. Since then the ISS has been carrying out a wide variety of research and technology development experiments, and starting to produce some pleasantly startling results. The ISS has a mass of 420 metric tons, supports a crew of six with a yearly resupply requirement of around 30 metric tons, within a pressurized volume of 916 cubic meters, and a habitable volume of 388 cubic meters. Its solar arrays produce up to 84 kilowatts of power. In the course of developing the ISS, many lessons were learned and much valuable expertise was gained. Where do we go from here? The ISS offers an existence proof of the feasibility of sustained human occupation and operations in space over decades. It also demonstrates the ability of many countries to work collaboratively on a very complex and expensive project in space over an extended period of time to achieve a common goal. By harvesting best practices and lessons learned, the ISS can also serve as a useful model for exploring architectures for beyond low-­- earth-­-orbit (LEO) space development. This paper will explore the concept and feasibility for a Lunar Station. The Station concept can be implemented by either putting the equivalent capability of the ISS down on the surface of the Moon, or by developing the required capabilities through a combination of delivered materials and equipment and in situ resource utilization (ISRU). Scenarios that leverage existing technologies and capabilities as well as capabilities that are under development and are expected to be available within the next 3-­5 years, will be examined. This paper will explore how best practices and expertise gained from developing and operating the ISS and other relevant programs can be applied to effectively developing Lunar Station.

  8. A Decision Support Framework for Feasibility Analysis of International Space Station (ISS) Research Capability Enhancing Options

    Science.gov (United States)

    Ortiz, James N.; Scott,Kelly; Smith, Harold

    2004-01-01

    The assembly and operation of the ISS has generated significant challenges that have ultimately impacted resources available to the program's primary mission: research. To address this, program personnel routinely perform trade-off studies on alternative options to enhance research. The approach, content level of analysis and resulting outputs of these studies vary due to many factors, however, complicating the Program Manager's job of selecting the best option. To address this, the program requested a framework be developed to evaluate multiple research-enhancing options in a thorough, disciplined and repeatable manner, and to identify the best option on the basis of cost, benefit and risk. The resulting framework consisted of a systematic methodology and a decision-support toolset. The framework provides quantifiable and repeatable means for ranking research-enhancing options for the complex and multiple-constraint domain of the space research laboratory. This paper describes the development, verification and validation of this framework and provides observations on its operational use.

  9. A Ground-Based Study on Extruder Standoff Distance for the 3D Printing in Zero Gravity Technology Demonstration Mission

    Science.gov (United States)

    Prater, T. J.; Bean, Q. A.; Werkheiser, N. J.; Beshears, R. D.; Rolin, T. D.; Rabenberg, E. M.; Soohoo, H. A.; Ledbetter, F. E., III; Bell, S. C.

    2017-01-01

    Analysis of phase I specimens produced as part of the 3D printing in zero G technology demonstration mission exhibited some differences in structure and performance for specimens printed onboard the International Space Station (ISS) and specimens produced on the ground with the same printer prior to its launch. This study uses the engineering test unit for the printer, identical to the unit on ISS, to conduct a ground-based investigation of the impact of the distance between the extruder tip and the build tray on material outcomes. This standoff distance was not held constant for the phase I flight prints and is hypothesized to be a major source of the material variability observed in the phase I data set.

  10. Expanding NASA and Roscosmos Scientific Collaboration on the International Space Station

    Science.gov (United States)

    Hasbrook, Pete

    2016-01-01

    The International Space Station (ISS) is a world-class laboratory orbiting in space. NASA and Roscosmos have developed a strong relationship through the ISS Program Partnership, working together and with the other ISS Partners for more than twenty years. Since 2013, based on a framework agreement between the Program Managers, NASA and Roscosmos are building a joint program of collaborative research on ISS. This international collaboration is developed and implemented in phases. Initially, members of the ISS Program Science Forum from NASA and TsNIIMash (representing Roscosmos) identified the first set of NASA experiments that could be implemented in the "near term". The experiments represented the research categories of Technology Demonstration, Microbiology, and Education. Through these experiments, the teams from the "program" and "operations" communities learned to work together to identify collaboration opportunities, establish agreements, and jointly plan and execute the experiments. The first joint scientific activity on ISS occurred in January 2014, and implementation of these joint experiments continues through present ISS operations. NASA and TsNIIMash have proceeded to develop "medium term" collaborations, where scientists join together to improve already-proposed experiments. A major success is the joint One-Year Mission on ISS, with astronaut Scott Kelly and cosmonaut Mikhail Kornienko, who returned from ISS in March, 2016. The teams from the NASA Human Research Program and the RAS Institute for Biomedical Problems built on their considerable experience to design joint experiments, learn to work with each other's protocols and processes, and share medical and research data. New collaborations are being developed between American and Russian scientists in complex fluids, robotics, rodent research and space biology, and additional human research. Collaborations are also being developed in Earth Remote Sensing, where scientists will share data from imaging

  11. NASA flight controllers - Meeting cultural and leadership challenges on the critical path to mission success

    Science.gov (United States)

    Clement, James L., Jr.; Ritsher, Jennifer Boyd

    2006-01-01

    As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.

  12. The JEM-EUSO mission to explore the extreme Universe

    International Nuclear Information System (INIS)

    Kajino, Fumiyoshi

    2010-01-01

    Accommodated on the Japanese Experiment Module (JEM) of the International Space Station (ISS), the Extreme Universe Space Observatory JEM-EUSO will utilize the Earth's atmosphere as a giant detector of the extreme energy cosmic rays; the most energetic particles coming from the Universe. Looking downward the Earth from Space, JEM-EUSO will detect such particles by observing the fluorescence and Cherenkov photons produced during their pass in the atmosphere. The main objective of JEM-EUSO is doing astronomy and astrophysics through the particle channel with extreme energies above several times 10 19 eV with a significant statistics beyond the Greisen-Zatsepin-Kuzmin (GZK) cut-off. Moreover, JEM-EUSO could observe extremely high energy neutrinos. JEM-EUSO has been designed to operate for more than 3 years onboard the ISS orbiting around the Earth every 90 min at an altitude of about 400 km. JAXA has selected JEM-EUSO as one of the mission candidates of the second phase utilization of JEM/EF for the launch in mid 2010s.

  13. Space Weather Monitoring for ISS Geomagnetic Storm Studies

    Science.gov (United States)

    Minow, Joseph I.; Parker, Linda Neergaard

    2013-01-01

    The International Space Station (ISS) space environments community utilizes near real time space weather data to support a variety of ISS engineering and science activities. The team has operated the Floating Potential Measurement Unit (FPMU) suite of plasma instruments (two Langmuir probes, a floating potential probe, and a plasma impedance probe) on ISS since 2006 to obtain in-situ measurements of plasma density and temperature along the ISS orbit and variations in ISS frame potential due to electrostatic current collection from the plasma environment (spacecraft charging) and inductive (vxB) effects from the vehicle motion across the Earth s magnetic field. An ongoing effort is to use FPMU for measuring the ionospheric response to geomagnetic storms at ISS altitudes and investigate auroral charging of the vehicle as it passes through regions of precipitating auroral electrons. This work is challenged by restrictions on FPMU operations that limit observation time to less than about a third of a year. As a result, FPMU campaigns ranging in length from a few days to a few weeks are typically scheduled weeks in advance for ISS engineering and payload science activities. In order to capture geomagnetic storm data under these terms, we monitor near real time space weather data from NASA, NOAA, and ESA sources to determine solar wind disturbance arrival times at Earth likely to be geoeffective (including coronal mass ejections and high speed streams associated with coronal holes) and activate the FPMU ahead of the storm onset. Using this technique we have successfully captured FPMU data during a number of geomagnetic storm periods including periods with ISS auroral charging. This presentation will describe the strategies and challenges in capturing FPMU data during geomagnetic storms, the near real time space weather resources utilized for monitoring the space weather environment, and provide examples of auroral charging data obtained during storm operations.

  14. Adaptive Modeling of the International Space Station Electrical Power System

    Science.gov (United States)

    Thomas, Justin Ray

    2007-01-01

    Software simulations provide NASA engineers the ability to experiment with spacecraft systems in a computer-imitated environment. Engineers currently develop software models that encapsulate spacecraft system behavior. These models can be inaccurate due to invalid assumptions, erroneous operation, or system evolution. Increasing accuracy requires manual calibration and domain-specific knowledge. This thesis presents a method for automatically learning system models without any assumptions regarding system behavior. Data stream mining techniques are applied to learn models for critical portions of the International Space Station (ISS) Electrical Power System (EPS). We also explore a knowledge fusion approach that uses traditional engineered EPS models to supplement the learned models. We observed that these engineered EPS models provide useful background knowledge to reduce predictive error spikes when confronted with making predictions in situations that are quite different from the training scenarios used when learning the model. Evaluations using ISS sensor data and existing EPS models demonstrate the success of the adaptive approach. Our experimental results show that adaptive modeling provides reductions in model error anywhere from 80% to 96% over these existing models. Final discussions include impending use of adaptive modeling technology for ISS mission operations and the need for adaptive modeling in future NASA lunar and Martian exploration.

  15. SEXTANT - Station Explorer for X-ray Timing and Navigation Technology

    Science.gov (United States)

    Mitchell, Jason W.; Hasouneh, Munther Abdel Hamid; Winternitz, Luke M. B.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Arzoumanian, Zaven; Ray, Paul S.; Wood, Kent S.; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission, which is scheduled to launch in late 2016 and will be hosted as an externally attached payload on the International Space Station (ISS) via the ExPRESS Logistics Carrier (ELC). During NICER's 18-month baseline science mission to understand ultra-dense matter though observations of neutron stars in the soft X-ray band, SEXTANT will, for the first-time, demonstrate real-time, on-board X-ray pulsar navigation, which is a significant milestone in the quest to establish a GPS-like navigation capability that will be available throughout our Solar System and beyond. Along with NICER, SEXTANT has proceeded through Phase B, Mission Definition, and received numerous refinements in concept of operation, algorithms, flight software, ground system, and ground test capability. NICER/SEXTANT's Phase B work culminated in NASA's confirmation of NICER to Phase C, Design and Development, in March 2014. Recently, NICER/SEXTANT successfully passed its Critical Design Review and SEXTANT received continuation approval in September 2014. In this paper, we describe the X-ray pulsar navigation concept and provide a brief history of previous work, and then summarize the SEXTANT technology demonstration objective, hardware and software components, and development to date.

  16. Intelligent, Semi-Automated Procedure Aid (ISAPA) for ISS Flight Control, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the Intelligent, Semi-Automated Procedure Aid (ISAPA) intended for use by International Space Station (ISS) ground controllers to increase the...

  17. Weaving Together Space Biology and the Human Research Program: Selecting Crops and Manipulating Plant Physiology to Produce High Quality Food for ISS Astronauts

    Science.gov (United States)

    Massa, Gioia; Hummerick, Mary; Douglas, Grace; Wheeler, Raymond

    2015-01-01

    Researchers from the Human Research Program (HRP) have teamed up with plant biologists at KSC to explore the potential for plant growth and food production on the international space station (ISS) and future exploration missions. KSC Space Biology (SB) brings a history of plant and plant-microbial interaction research for station and for future bioregenerative life support systems. JSC HRP brings expertise in Advanced Food Technology (AFT), Advanced Environmental Health (AEH), and Behavioral Health and Performance (BHP). The Veggie plant growth hardware on the ISS is the platform that first drove these interactions. As we prepared for the VEG-01 validation test of Veggie, we engaged with BHP to explore questions that could be asked of the crew that would contribute both to plant and to behavioral health research. AFT, AEH and BHP stakeholders were engaged immediately after the return of the Veggie flight samples of space-grown lettuce, and this team worked with the JSC human medical offices to gain approvals for crew consumption of the lettuce on ISS. As we progressed with Veggie testing we began performing crop selection studies for Veggie that were initiated through AFT. These studies consisted of testing and down selecting leafy greens, dwarf tomatoes, and dwarf pepper crops based on characteristics of plant growth and nutritional levels evaluated at KSC, and organoleptic quality evaluated at JSCs Sensory Analysis lab. This work has led to a successful collaborative proposal to the International Life Sciences Research Announcement for a jointly funded HRP-SB investigation of the impacts of light quality and fertilizer on salad crop productivity, nutrition, and flavor in Veggie on the ISS. With this work, and potentially with other pending joint projects, we will continue the synergistic research that will advance the space biology knowledge base, help close gaps in the human research roadmap, and enable humans to venture out to Mars and beyond.

  18. Analyzing Power Supply and Demand on the ISS

    Science.gov (United States)

    Thomas, Justin; Pham, Tho; Halyard, Raymond; Conwell, Steve

    2006-01-01

    Station Power and Energy Evaluation Determiner (SPEED) is a Java application program for analyzing the supply and demand aspects of the electrical power system of the International Space Station (ISS). SPEED can be executed on any computer that supports version 1.4 or a subsequent version of the Java Runtime Environment. SPEED includes an analysis module, denoted the Simplified Battery Solar Array Model, which is a simplified engineering model of the ISS primary power system. This simplified model makes it possible to perform analyses quickly. SPEED also includes a user-friendly graphical-interface module, an input file system, a parameter-configuration module, an analysis-configuration-management subsystem, and an output subsystem. SPEED responds to input information on trajectory, shadowing, attitude, and pointing in either a state-of-charge mode or a power-availability mode. In the state-of-charge mode, SPEED calculates battery state-of-charge profiles, given a time-varying power-load profile. In the power-availability mode, SPEED determines the time-varying total available solar array and/or battery power output, given a minimum allowable battery state of charge.

  19. Implementation of ALARA radiation protection on the ISS through polyethylene shielding augmentation of the Service Module Crew Quarters

    Science.gov (United States)

    Shavers, M. R.; Zapp, N.; Barber, R. E.; Wilson, J. W.; Qualls, G.; Toupes, L.; Ramsey, S.; Vinci, V.; Smith, G.; Cucinotta, F. A.

    2004-01-01

    With 5-7 month long duration missions at 51.6° inclination in Low Earth Orbit, the ionizing radiation levels to which International Space Station (ISS) crewmembers are exposed will be the highest planned occupational exposures in the world. Even with the expectation that regulatory dose limits will not be exceeded during a single tour of duty aboard the ISS, the "as low as reasonably achievable" (ALARA) precept requires that radiological risks be minimized when possible through a dose optimization process. Judicious placement of efficient shielding materials in locations where crewmembers sleep, rest, or work is an important means for implementing ALARA for spaceflight. Polyethylene (C nH n) is a relatively inexpensive, stable, and, with a low atomic number, an effective shielding material that has been certified for use aboard the ISS. Several designs for placement of slabs or walls of polyethylene have been evaluated for radiation exposure reduction in the Crew Quarters (CQ) of the Zvezda (Star) Service Module. Optimization of shield designs relies on accurate characterization of the expected primary and secondary particle environment and modeling of the predicted radiobiological responses of critical organs and tissues. Results of the studies shown herein indicate that 20% or more reduction in equivalent dose to the CQ occupant is achievable. These results suggest that shielding design and risk analysis are necessary measures for reducing long-term radiological risks to ISS inhabitants and for meeting legal ALARA requirements. Verification of shield concepts requires results from specific designs to be compared with onboard dosimetry.

  20. CubeSat quantum communications mission

    Energy Technology Data Exchange (ETDEWEB)

    Oi, Daniel K.L. [University of Strathclyde, SUPA Department of Physics, Glasgow (United Kingdom); University of Strathclyde, Strathclyde Space Institute, Glasgow (United Kingdom); Ling, Alex [National University of Singapore, Centre for Quantum Technologies, Singapore (Singapore); National University of Singapore, Dept. of Physics, Singapore (Singapore); Vallone, Giuseppe; Villoresi, Paolo [Universita degli Studi di Padova, Dipartimento di Ingegneria dell' Informazione, Padova (Italy); Greenland, Steve; Kerr, Emma [University of Strathclyde, Advanced Space Concepts Laboratory, Mechanical and Aerospace Engineering, Glasgow (United Kingdom); Macdonald, Malcolm [Technology and Innovation Centre, Scottish Centre of Excellence in Satellite Applications, Glasgow (United Kingdom); Weinfurter, Harald [Ludwig-Maximilians-Universitaet, Department fuer Physik, Munich (Germany); Kuiper, Hans [Delft University of Technology, Space Systems Engineering, Aerospace Engineering, Delft (Netherlands); Charbon, Edoardo [AQUA, EPFL, Lausanne (Switzerland); Delft University of Technology, Delft (Netherlands); Ursin, Rupert [Vienna Austrian Academy of Sciences, Institute for Quantum Optics and Quantum Information, Vienna (Austria)

    2017-12-15

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  1. CubeSat quantum communications mission

    International Nuclear Information System (INIS)

    Oi, Daniel K.L.; Ling, Alex; Vallone, Giuseppe; Villoresi, Paolo; Greenland, Steve; Kerr, Emma; Macdonald, Malcolm; Weinfurter, Harald; Kuiper, Hans; Charbon, Edoardo; Ursin, Rupert

    2017-01-01

    Quantum communication is a prime space technology application and offers near-term possibilities for long-distance quantum key distribution (QKD) and experimental tests of quantum entanglement. However, there exists considerable developmental risks and subsequent costs and time required to raise the technological readiness level of terrestrial quantum technologies and to adapt them for space operations. The small-space revolution is a promising route by which synergistic advances in miniaturization of both satellite systems and quantum technologies can be combined to leap-frog conventional space systems development. Here, we outline a recent proposal to perform orbit-to-ground transmission of entanglement and QKD using a CubeSat platform deployed from the International Space Station (ISS). This ambitious mission exploits advances in nanosatellite attitude determination and control systems (ADCS), miniaturised target acquisition and tracking sensors, compact and robust sources of single and entangled photons, and high-speed classical communications systems, all to be incorporated within a 10 kg 6 litre mass-volume envelope. The CubeSat Quantum Communications Mission (CQuCoM) would be a pathfinder for advanced nanosatellite payloads and operations, and would establish the basis for a constellation of low-Earth orbit trusted-nodes for QKD service provision. (orig.)

  2. What it takes to Fly in Space...Training to be an Astronaut and Daily Operations on ISS

    Science.gov (United States)

    Ham, Michelle

    2009-01-01

    This presentation highlights NASA requirements to become an astronaut, training astronauts must do to fly on the International Space Station (ISS), systems and other training, and day-to-day activities onboard ISS. Additionally, stowage, organization and methods of communication (email, video conferenceing, IP phone) are discussed.

  3. An Overview of the Microgravity Science Glovebox (MSG) Facility and the Research Performed in the MSG on the International Space Station (ISS)

    Science.gov (United States)

    Jordan, Lee P.

    2013-01-01

    The Microgravity Science Glovebox (MSG) is a rack facility aboard the International Space Station (ISS) designed for investigation handling. The MSG was built by the European Space Agency (ESA) which also provides sustaining engineering support for the facility. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, +/- 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. The MSG has been used for over 14500 hours of scientific payload operations. MSG investigations involve research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, plant growth, and life support technology. The MSG facility is operated by the Payloads Operations Integration Center at Marshall Space flight Center. Payloads may also operate remotely from different telescience centers located in the United States and Europe. The investigative Payload Integration Manager (iPIM) is the focal to assist organizations that have payloads operating in the MSG facility. NASA provides an MSG engineering unit for payload developers

  4. Close Range Photogrammetry in Space - Measuring the On-Orbit Clearance between Hardware on the International Space Station

    Science.gov (United States)

    Liddle, Donn

    2017-01-01

    When photogrammetrists read an article entitled "Photogrammetry in Space" they immediately think of terrestrial mapping using satellite imagery. However in the last 19 years the roll of close range photogrammetry in support of the manned space flight program has grown exponentially. Management and engineers have repeatedly entrusted the safety of the vehicles and their crews to the results of photogrammetric analysis. In February 2010, the Node 3 module was attached to the port side Common Berthing Mechanism (CBM) of the International Space Station (ISS). Since this was not the location at which the module was originally designed to be located on the ISS, coolant lines containing liquid ammonia, were installed externally from the US Lab to Node 3 during a spacewalk. During mission preparation I had developed a plan and a set of procedures to have the astronauts acquire stereo imagery of these coolant lines at the conclusion of the spacewalk to enable us to map their as-installed location relative to the rest of the space station. Unfortunately, the actual installation of the coolant lines took longer than expected and in an effort to wrap up the spacewalk on time, the mission director made a real-time call to drop the photography. My efforts to reschedule the photography on a later spacewalk never materialized, so rather than having an as-installed model for the location of coolant lines, the master ISS CAD database continued to display an as-designed model of the coolant lines. Fast forward to the summer of 2015, the ISS program planned to berth a Japanese cargo module to the nadir Common Berthing Mechanism (CBM), immediately adjacent to the Node 3 module. A CAD based clearance analysis revealed a negative four inch clearance between the ammonia lines and a thruster nozzle on the port side of the cargo vehicle. Recognizing that the model of the ammonia line used in the clearance analysis was "as-designed" rather than "as-installed", I was asked to determine the

  5. STS-105/Discovery/ISS 7A.1: Pre-Launch Activities, Launch, Orbit Activities and Landing

    Science.gov (United States)

    2001-01-01

    The crew of Space Shuttle Discovery on STS-105 is introduced at their pre-launch meal and at suit-up. The crew members include Commander Scott Horowitz, Pilot Rick Sturckow, and Mission Specialists Patrick Forrester and Daniel Barry, together with the Expedition 3 crew of the International Space Station (ISS). The Expedition 3 crew includes Commander Frank Culbertson, Soyuz Commander Vladimir Dezhurov, and Flight Engineer Mikhail Tyurin. When the astronauts depart for the launch pad in the Astrovan, their convoy is shown from above. Upon reaching the launch pad, they conduct a walk around of the shuttle, display signs for family members while being inspected in the White Room, and are strapped into their seats onboard Disciovery. The video includes footage of Discovery in the Orbiter Processing Facility, and some of the pre-launch procedures at the Launch Control Center are shown. The angles of launch replays include: TV-1, Beach Tracker, VAB, Pad A, Tower 1, UCS-15, Grandstand, OTV-70, Onboard, IGOR, and UCS-23. The moment of docking between Discovery and the ISS is shown from inside Discovery's cabin. While in orbit, the crew conducted extravehicular activities (EVAs) to attach an experiments container, and install handrails on the Destiny module of the ISS. The video shows the docking and unloading of the Leonardo Multipurpose Logistics Module (MPLM) onto the ISS. The deployment of a satellite from Discovery with the coast of the Gulf of Mexico in the background is shown. Cape Canaveral is also shown from space. Landing replays include VAB, Tower 1, mid-field, South End SLF, North End SLF, Tower 2, Playalinda DOAMS, UCS-23, and Pilot Point of View (PPOV). NASA Administrator Dan Goldin meets the crew upon landing and participates in their walk around of Discovery. The video concludes with a short speech by commander Horowitz.

  6. NASA Glenn Research Center Solar Cell Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Wolford, David S.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies , William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; Mcnatt, Jeremiah S.; hide

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Missions (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  7. Fundamental Space Biology-1: HHR and Incubator for ISS Space Life Sciences

    Science.gov (United States)

    Kirven-Brooks, M.; Fahlen, T.; Sato, K.; Reiss-Bubenheim, D.

    The Space Station Biological Research Project (SSBRP) is developing an Incubator and a Habitat Holding Rack (HHR) to support life science experiments aboard the International Space Station (ISS). The HHR provides for cooling and power needs, and supports data transfer (including telemetry, commanding, video processing, Ethernet), video compression, and data and command storage). The Incubator is a habitat that provides for controlled temperature between +4 C and +45 C and air circulation. It has a set of connector ports for power, analog and digital sensors, and video pass-through to support experiment-unique hardware within the Incubator specimen chamber. The Incubator exchanges air with the ISS cabin. The Fundamental Space Biology-1 (FSB-1) Project will be delivering, the HHR and two Incubators to ISS. The two inaugural experiments to be conducted on ISS using this hardware will investigate the biological effects of the space environment on two model organisms, Saccharomyces cerevisiae (S. cerevisiae; yeast) and Caenorhabditis elegans (C. elegans; nematode). The {M}odel {Y}east {C}ultures {o}n {S}tation (MYCOS) experiment will support examination of the effect of microgravity and cosmic radiation on yeast biology. In the second series of experiments during the same increment, the effects of microgravity and space environment radiation on C. elegans will be examined. The {F}undamental Space Biology {I}ncubator {E}xperiment {R}esearch using {C}. {e}legans (FIERCE) study is designed to support a long duration, multi-generational study of nematodes. FIERCE on-orbit science operations will include video monitoring, sub-culturing and periodic fixation and freezing of samples. For both experiments, investigators will be solicited via an International Space Life Sciences Research Announcement. In the near future, the Centrifuge Accommodation Module will be delivered to ISS, which will house the SSBRP 2.5 m Centrifuge Rotor. The Incubator can be placed onto the Centrifuge

  8. Space station needs, attributes and architectural options. Volume 4, task 2 and 3: Mission implementation and cost

    Science.gov (United States)

    1983-01-01

    An overview of the basic space station infrastructure is presented. A strong case is made for the evolution of the station using the basic Space Transportation System (STS) to achieve a smooth transition and cost effective implementation. The integrated logistics support (ILS) element of the overall station infrastructure is investigated. The need for an orbital transport system capability that is the key to servicing and spacecraft positioning scenarios and associated mission needs is examined. Communication is also an extremely important element and the basic issue of station autonomy versus ground support effects the system and subsystem architecture.

  9. International Space Station Data Collection for Disaster Response

    Science.gov (United States)

    Stefanov, William L.; Evans, Cynthia A..

    2014-01-01

    Directorate and supporting the ISS Program Science Office at NASA's Johnson Space Center, receives notification from the USGS and coordinates targeting and data collection with the NASA ISS sensor teams. If data is collected, it is passed back to the USGS for posting on their Hazards Data Distribution System and made available for download. The ISS International Partners (CSA, ESA, JAXA, Roscosmos/Energia) have their own procedures for independently supporting IDC activations using their assets on ISS, and there is currently no joint coordination with NASA ISS sensor teams. Following completion of ISS assembly, NASA remote sensing assets began collecting IDC response data in May 2012. The initial NASA ISS sensor systems available to respond to IDC activations included the ISS Agricultural Camera (ISSAC), an internal multispectral visible-near infrared wavelength system mounted in the Window Observational Research Facility, or WORF; the Crew Earth Observations (CEO) Facility, where the crew collects imagery through Station windows using off-the-shelf handheld digital visible-wavelength cameras; and the Hyperspectral Imager for the Coastal Oceans (HICO), a visible to near-infrared system mounted externally on the Japan Experiment Module Exposed Facility. The ISSAC completed its primary mission and was removed from the WORF in January 2013. It was replaced by the very high resolution ISS SERVIR Environmental Research and Visualization System (ISERV) Pathfinder, a visible-wavelength digital camera, telescope, and pointing system. Since the start of IDC response by NASA sensors on the ISS in May 2012 and as of this report, there have been eighty IDC activations; NASA sensor systems have collected data for twenty-three of these events. Of the twenty-three successful data collections, five involved 2 or more ISS sensor systems responding to the same event. Data has also been collected by International Partners in response to natural disasters, most notably JAXA and Roscosmos

  10. AMO EXPRESS: A Command and Control Experiment for Crew Autonomy Onboard the International Space Station

    Science.gov (United States)

    Stetson, Howard K.; Haddock, Angie T.; Frank, Jeremy; Cornelius, Randy; Wang, Lui; Garner, Larry

    2015-01-01

    NASA is investigating a range of future human spaceflight missions, including both Mars-distance and Near Earth Object (NEO) targets. Of significant importance for these missions is the balance between crew autonomy and vehicle automation. As distance from Earth results in increasing communication delays, future crews need both the capability and authority to independently make decisions. However, small crews cannot take on all functions performed by ground today, and so vehicles must be more automated to reduce the crew workload for such missions. NASA's Advanced Exploration Systems Program funded Autonomous Mission Operations (AMO) project conducted an autonomous command and control experiment on-board the International Space Station that demonstrated single action intelligent procedures for crew command and control. The target problem was to enable crew initialization of a facility class rack with power and thermal interfaces, and involving core and payload command and telemetry processing, without support from ground controllers. This autonomous operations capability is enabling in scenarios such as initialization of a medical facility to respond to a crew medical emergency, and representative of other spacecraft autonomy challenges. The experiment was conducted using the Expedite the Processing of Experiments for Space Station (EXPRESS) rack 7, which was located in the Port 2 location within the U.S Laboratory onboard the International Space Station (ISS). Activation and deactivation of this facility is time consuming and operationally intensive, requiring coordination of three flight control positions, 47 nominal steps, 57 commands, 276 telemetry checks, and coordination of multiple ISS systems (both core and payload). Utilization of Draper Laboratory's Timeliner software, deployed on-board the ISS within the Command and Control (C&C) computers and the Payload computers, allowed development of the automated procedures specific to ISS without having to certify

  11. Onboard Short Term Plan Viewer

    Science.gov (United States)

    Hall, Tim; LeBlanc, Troy; Ulman, Brian; McDonald, Aaron; Gramm, Paul; Chang, Li-Min; Keerthi, Suman; Kivlovitz, Dov; Hadlock, Jason

    2011-01-01

    Onboard Short Term Plan Viewer (OSTPV) is a computer program for electronic display of mission plans and timelines, both aboard the International Space Station (ISS) and in ISS ground control stations located in several countries. OSTPV was specifically designed both (1) for use within the limited ISS computing environment and (2) to be compatible with computers used in ground control stations. OSTPV supplants a prior system in which, aboard the ISS, timelines were printed on paper and incorporated into files that also contained other paper documents. Hence, the introduction of OSTPV has both reduced the consumption of resources and saved time in updating plans and timelines. OSTPV accepts, as input, the mission timeline output of a legacy, print-oriented, UNIX-based program called "Consolidated Planning System" and converts the timeline information for display in an interactive, dynamic, Windows Web-based graphical user interface that is used by both the ISS crew and ground control teams in real time. OSTPV enables the ISS crew to electronically indicate execution of timeline steps, launch electronic procedures, and efficiently report to ground control teams on the statuses of ISS activities, all by use of laptop computers aboard the ISS.

  12. ISS and Space Environment Interactions in Event of Plasma Contactor Failure

    Science.gov (United States)

    Carruth, M. R., Jr.; Munafo, Paul M. (Technical Monitor)

    2000-01-01

    The International Space Station (ISS), illustrated in Figure 1, will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, and similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur.

  13. Definition of technology development missions for early Space Station satellite servicing. Volume 1: Executive summary

    Science.gov (United States)

    1984-01-01

    The Executive Summary volume 1, includes an overview of both phases of the Definition of Technology Development Missions for Early Space Station Satellite Servicing. The primary purpose of Phase 1 of the Marshall Space Flight Center (MSFC) Satellite Servicing Phase 1 study was to establish requirements for demonstrating the capability of performing satellite servicing activities on a permanently manned Space Station in the early 1990s. The scope of Phase 1 included TDM definition, outlining of servicing objectives, derivation of initial Space Station servicing support requirements, and generation of the associated programmatic schedules and cost. The purpose of phase 2 of the satellite servicing study was to expand and refine the overall understanding of how best to use the manned space station as a test bed for demonstration of satellite servicing capabilities.

  14. Nitrogen Oxygen Recharge System for the International Space Station

    Science.gov (United States)

    Williams, David E.; Dick, Brandon; Cook, Tony; Leonard, Dan

    2009-01-01

    The International Space Station (ISS) requires stores of Oxygen (O2) and Nitrogen (N2) to provide for atmosphere replenishment, direct crew member usage, and payload operations. Currently, supplies of N2/O2 are maintained by transfer from the Space Shuttle. Following Space Shuttle is retirement in 2010, an alternate means of resupplying N2/O2 to the ISS is needed. The National Aeronautics and Space Administration (NASA) has determined that the optimal method of supplying the ISS with O2/N2 is using tanks of high pressure N2/O2 carried to the station by a cargo vehicle capable of docking with the ISS. This paper will outline the architecture of the system selected by NASA and will discuss some of the design challenges associated with this use of high pressure oxygen and nitrogen in the human spaceflight environment.

  15. IMP: Using microsat technology to support engineering research inside of the International Space Station

    Science.gov (United States)

    Carroll, Kieran A.

    2000-01-01

    This paper describes an International Space Station (ISS) experiment-support facility being developed by Dynacon for the Canadian Space Agency (CSA), based on microsatellite technology. The facility is called the ``Intravehicular Maneuverable Platform,'' or IMP. The core of IMP is a small, free-floating platform (or ``bus'') deployed inside one of the pressurized crew modules of ISS. Exchangeable experimental payloads can then be mounted to the IMP bus, in order to carry out engineering development or demonstration tests, or microgravity science experiments: the bus provides these payloads with services typical of a standard satellite bus (power, attitude control, etc.). The IMP facility takes advantage of unique features of the ISS, such as the Shuttle-based logistics system and the continuous availability of crew members, to greatly reduce the expense of carrying out space engineering experiments. Further cost reduction has been made possible by incorporating technology that Dynacon has developed for use in a current microsatellite mission. Numerous potential payloads for IMP have been identified, and the first of these (a flexible satellite control experiment) is under development by Dynacon and the University of Toronto's Institute for Aerospace Studies, for the CSA. .

  16. Improving the Geolocation Algorithm for Sensors Onboard the ISS: Effect of Drift Angle

    Directory of Open Access Journals (Sweden)

    Changyong Dou

    2014-05-01

    Full Text Available The drift angle caused by the Earth’s self-rotation may introduce rotational displacement artifact on the geolocation results of imagery acquired by an Earth observing sensor onboard the International Space Station (ISS. If uncorrected, it would cause a gradual degradation of positional accuracy from the center towards the edges of an image. One correction method to account for the drift angle effect was developed. The drift angle was calculated from the ISS state vectors and positional information of the ground nadir point of the imagery. Tests with images acquired by the International Space Station Agriculture Camera (ISSAC using Google EarthTM as a reference indicated that applying the drift angle correction can reduce the residual geolocation error for the corner points of the ISSAC images from over 1000 to less than 500 m. The improved geolocation accuracy is well within the inherent geolocation uncertainty of up to 800 m, mainly due to imprecise knowledge of the ISS attitude and state parameters required to perform the geolocation algorithm.

  17. Report on ISS Oxygen Production, Resupply, and Partial Pressure Management

    Science.gov (United States)

    Schaezler, Ryan; Ghariani, Ahmed; Leonard, Daniel; Lehman, Daniel

    2011-01-01

    The majority of oxygen used on International Space Station (ISS) is for metabolic support and denitrogenation procedures prior to Extra-Vehicular Activities. Oxygen is supplied by various visiting vehicles such as the Progress and Shuttle in addition to oxygen production capability on both the United States On-Orbit Segment (USOS) and Russian Segment (RS). To maintain a habitable atmosphere the oxygen partial pressure is controlled between upper and lower bounds. The full range of the allowable oxygen partial pressure along with the increased ISS cabin volume is utilized as a buffer allowing days to pass between oxygen production or direct addition of oxygen to the atmosphere from reserves. This paper summarizes amount of oxygen supplied and produced from all of the sources and describes past experience of managing oxygen partial pressure along with the range of management options available to the ISS.

  18. Definition of technology development missions for early Space Station satellite servicing. Volume 2: Technical

    Science.gov (United States)

    Cable, D. A.; Diewald, C. A.; Hills, T. C.; Parmentier, T. J.; Spencer, R. A.; Stone, G. E.

    1984-01-01

    Volume 2 contains the Technical Report of the approach and results of the Phase 2 study. The phase 2 servicing study was initiated in June 1983, and is being reported in this document. The scope of the contract was to: (1) define in detail five selected technology development missions (TDM); (2) conduct a design requirement analysis to refine definitions of satellite servicing requirements at the space station; and (3) develop a technology plan that would identify and schedule prerequisite precursor technology development, associated. STS flight experiments and space station experiments needed to provide onorbit validation of the evolving technology.

  19. ISS Interface Mechanisms and their Heritage

    Science.gov (United States)

    Cook, John G.; Aksamentov, Valery; Hoffman, Thomas; Bruner, Wes

    2011-01-01

    The International Space Station, by nurturing technological development of a variety of pressurized and unpressurized interface mechanisms fosters "competition at the technology level". Such redundancy and diversity allows for the development and testing of mechanisms that might be used for future exploration efforts. The International Space Station, as a test-bed for exploration, has 4 types of pressurized interfaces between elements and 6 unpressurized attachment mechanisms. Lessons learned from the design, test and operations of these mechanisms will help inform the design for a new international standard pressurized docking mechanism for the NASA Docking System. This paper will examine the attachment mechanisms on the ISS and their attributes. It will also look ahead at the new NASA docking system and trace its lineage to heritage mechanisms.

  20. Analysis of Adult Female Mouse (Mus musculus) Group Behavior on the International Space Station (ISS)

    Science.gov (United States)

    Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Globus, R. K.; Ronca, A. E.

    2016-01-01

    As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group

  1. Schedule Optimization of Imaging Missions for Multiple Satellites and Ground Stations Using Genetic Algorithm

    Science.gov (United States)

    Lee, Junghyun; Kim, Heewon; Chung, Hyun; Kim, Haedong; Choi, Sujin; Jung, Okchul; Chung, Daewon; Ko, Kwanghee

    2018-04-01

    In this paper, we propose a method that uses a genetic algorithm for the dynamic schedule optimization of imaging missions for multiple satellites and ground systems. In particular, the visibility conflicts of communication and mission operation using satellite resources (electric power and onboard memory) are integrated in sequence. Resource consumption and restoration are considered in the optimization process. Image acquisition is an essential part of satellite missions and is performed via a series of subtasks such as command uplink, image capturing, image storing, and image downlink. An objective function for optimization is designed to maximize the usability by considering the following components: user-assigned priority, resource consumption, and image-acquisition time. For the simulation, a series of hypothetical imaging missions are allocated to a multi-satellite control system comprising five satellites and three ground stations having S- and X-band antennas. To demonstrate the performance of the proposed method, simulations are performed via three operation modes: general, commercial, and tactical.

  2. Dedicated Slosh Dynamics Experiment on ISS using SPHERES (Advanced Space Operations in CR)

    Data.gov (United States)

    National Aeronautics and Space Administration — At the Kennedy Space Center (KSC) the Launch Services Program is leading an effort to conduct an experiment aboard the International Space Station (ISS) to validate...

  3. Accounting for Epistemic Uncertainty in Mission Supportability Assessment: A Necessary Step in Understanding Risk and Logistics Requirements

    Science.gov (United States)

    Owens, Andrew; De Weck, Olivier L.; Stromgren, Chel; Goodliff, Kandyce; Cirillo, William

    2017-01-01

    Future crewed missions to Mars present a maintenance logistics challenge that is unprecedented in human spaceflight. Mission endurance – defined as the time between resupply opportunities – will be significantly longer than previous missions, and therefore logistics planning horizons are longer and the impact of uncertainty is magnified. Maintenance logistics forecasting typically assumes that component failure rates are deterministically known and uses them to represent aleatory uncertainty, or uncertainty that is inherent to the process being examined. However, failure rates cannot be directly measured; rather, they are estimated based on similarity to other components or statistical analysis of observed failures. As a result, epistemic uncertainty – that is, uncertainty in knowledge of the process – exists in failure rate estimates that must be accounted for. Analyses that neglect epistemic uncertainty tend to significantly underestimate risk. Epistemic uncertainty can be reduced via operational experience; for example, the International Space Station (ISS) failure rate estimates are refined using a Bayesian update process. However, design changes may re-introduce epistemic uncertainty. Thus, there is a tradeoff between changing a design to reduce failure rates and operating a fixed design to reduce uncertainty. This paper examines the impact of epistemic uncertainty on maintenance logistics requirements for future Mars missions, using data from the ISS Environmental Control and Life Support System (ECLS) as a baseline for a case study. Sensitivity analyses are performed to investigate the impact of variations in failure rate estimates and epistemic uncertainty on spares mass. The results of these analyses and their implications for future system design and mission planning are discussed.

  4. Enhanced science capability on the International Space Station

    Science.gov (United States)

    Felice, Ronald R.; Kienlen, Mike

    2002-12-01

    It is inevitable that the International Space Station (ISS) will play a significant role in the conduct of science in space. However, in order to provide this service to a wide and broad community and to perform it cost effectively, alternative concepts must be considered to complement NASA"s Institutional capability. Currently science payload forward and return data services must compete for higher priority ISS infrastructure support requirements. Furthermore, initial astronaut crews will be limited to a single shift. Much of their time and activities will be required to meet their physical needs (exercise, recreation, etc.), station maintenance, and station operations, leaving precious little time to actively conduct science payload operations. ISS construction plans include the provisioning of several truss mounted, space-hardened pallets, both zenith and nadir facing. The ISS pallets will provide a platform to conduct both earth and space sciences. Additionally, the same pallets can be used for life and material sciences, as astronauts could place and retrieve sealed canisters for long-term micro-gravity exposure. Thus the pallets provide great potential for enhancing ISS science return. This significant addition to ISS payload capacity has the potential to exacerbate priorities and service contention factors within the exiting institution. In order to have it all, i.e., more science and less contention, the pallets must be data smart and operate autonomously so that NASA institutional services are not additionally taxed. Specifically, the "Enhanced Science Capability on the International Space Station" concept involves placing data handling and spread spectrum X-band communications capabilities directly on ISS pallets. Spread spectrum techniques are considered as a means of discriminating between different pallets as well as to eliminate RFI. The data and RF systems, similar to that of "free flyers", include a fully functional command and data handling system

  5. Qualitative Validation of the IMM Model for ISS and STS Programs

    Science.gov (United States)

    Kerstman, E.; Walton, M.; Reyes, D.; Boley, L.; Saile, L.; Young, M.; Arellano, J.; Garcia, Y.; Myers, J. G.

    2016-01-01

    To validate and further improve the Integrated Medical Model (IMM), medical event data were obtained from 32 ISS and 122 STS person-missions. Using the crew characteristics from these observed missions, IMM v4.0 was used to forecast medical events and medical resource utilization. The IMM medical condition incidence values were compared to the actual observed medical event incidence values, and the IMM forecasted medical resource utilization was compared to actual observed medical resource utilization. Qualitative comparisons of these parameters were conducted for both the ISS and STS programs. The results of these analyses will provide validation of IMM v4.0 and reveal areas of the model requiring adjustments to improve the overall accuracy of IMM outputs. This validation effort should result in enhanced credibility of the IMM and improved confidence in the use of IMM as a decision support tool for human space flight.

  6. Gravity-Dependent Combustion and Fluids Research - From Drop Towers to Aircraft to the ISS

    Science.gov (United States)

    Urban, David L.; Singh, Bhim S.; Kohl, Fred J.

    2007-01-01

    Driven by the need for knowledge related to the low-gravity environment behavior of fluids in liquid fuels management, thermal control systems and fire safety for spacecraft, NASA embarked on a decades long research program to understand, accommodate and utilize the relevant phenomena. Beginning in the 1950s, and continuing through to today, drop towers and aircraft were used to conduct an ever broadening and increasingly sophisticated suite of experiments designed to elucidate the underlying gravity-dependent physics that drive these processes. But the drop towers and aircraft afford only short time periods of continuous low gravity. Some of the earliest rocket test flights and manned space missions hosted longer duration experiments. The relatively longer duration low-g times available on the space shuttle during the 1980s and 1990s enabled many specialized experiments that provided unique data for a wide range of science and engineering disciplines. Indeed, a number of STS-based Spacelab missions were dedicated solely to basic and applied microgravity research in the biological, life and physical sciences. Between 1980 and 2000, NASA implemented a vigorous Microgravity Science Program wherein combustion science and fluid physics were major components. The current era of space stations from the MIR to the International Space Station have opened up a broad range of opportunities and facilities that are now available to support both applied research for technologies that will help to enable the future exploration missions and for a continuation of the non-exploration basic research that began over fifty years ago. The ISS-based facilities of particular value to the fluid physics and combustion/fire safety communities are the Fluids and Combustion Facility Combustion Integrated Rack and the Fluids Integrated Rack.

  7. Status of the Correlation Process of the V-HAB Simulation with Ground Tests and ISS Telemetry Data

    Science.gov (United States)

    Ploetner, P.; Roth, C.; Zhukov, A.; Czupalla, M.; Anderson, M.; Ewert, M.

    2013-01-01

    The Virtual Habitat (V-HAB) is a dynamic Life Support System (LSS) simulation, created for investigation of future human spaceflight missions. It provides the capability to optimize LSS during early design phases. The focal point of the paper is the correlation and validation of V-HAB against ground test and flight data. In order to utilize V-HAB to design an Environmental Control and Life Support System (ECLSS) it is important to know the accuracy of simulations, strengths and weaknesses. Therefore, simulations of real systems are essential. The modeling of the International Space Station (ISS) ECLSS in terms of single technologies as well as an integrated system and correlation against ground and flight test data is described. The results of the simulations make it possible to prove the approach taken by V-HAB.

  8. Public Participation in Earth Science from the Iss

    Science.gov (United States)

    Willis, K. J.; Runco, S.; Stefanov, W. L.

    2010-12-01

    The Gateway to Astronaut Photography of Earth (GAPE) is an online database (http://eol.jsc.nasa.gov) of terrestrial astronaut photography that enables the public to experience the astronaut’s view from orbit. This database of imagery includes all NASA human-directed missions from the Mercury program of the early 1960’s to the current International Space Station (ISS). To date, the total number of images taken by astronauts is 1,025,333. Of the total, 621,316 images have been “cataloged” (image geographic center points determined and descriptive metadata added). The remaining imagery provides an opportunity for the citizen-scientist to become directly involved with NASA through cataloging of astronaut photography, while simultaneously experiencing the wonder and majesty of our home planet as seen by astronauts on board the ISS every day. We are currently developing a public cataloging interface for the GAPE website. When complete, the citizen-scientist will be able to access a selected subset of astronaut imagery. Each candidate will be required to pass a training tutorial in order to receive certification as a cataloger. The cataloger can then choose from a selection of images with basic metadata that is sorted by difficulty levels. Some guidance will be provided (template/pull down menus) for generation of geographic metadata required from the cataloger for each photograph. Each cataloger will also be able to view other contributions and further edit that metadata if they so choose. After the public inputs their metadata the images will be posted to an internal screening site. Images with similar geographic metadata and centerpoint coordinates from multiple catalogers will be reviewed by NASA JSC Crew Earth Observations (CEO) staff. Once reviewed and verified, the metadata will be entered into the GAPE database with the contributors identified by their chosen usernames as having cataloged the frame.

  9. ISS Habitability Data Collection and Preliminary Findings

    Science.gov (United States)

    Thaxton, Sherry (Principal Investigator); Greene, Maya; Schuh, Susan; Williams, Thomas; Archer, Ronald; Vasser, Katie

    2017-01-01

    Habitability is the relationship between an individual and their surroundings (i.e. the interplay of the person, machines, environment, and mission). The purpose of this study is to assess habitability and human factors on the ISS to better prepare for future long-duration space flights. Scheduled data collection sessions primarily require the use of iSHORT (iPad app) to capture near real-time habitability feedback and analyze vehicle layout and space utilization.

  10. Pick-and-Eat Salad-Crop Productivity, Nutritional Value, and Acceptability to Supplement the ISS Food System

    Science.gov (United States)

    Massa, G. D.; Wheeler, R. M.; Hummerick, M. E.; Morrow, R. C.; Mitchell, C. A.; Whitmire, A. M.; Ploutz-Snyder, R. J.; Douglas, G. L.

    2016-01-01

    The capability to grow nutritious, palatable food for crew consumption during spaceflight has the potential to provide health-promoting, bioavailable nutrients, enhance the dietary experience, and reduce launch mass as we move toward longer-duration missions. However, studies of edible produce during spaceflight have been limited, leaving a significant knowledge gap in the methods required to grow safe, acceptable, nutritious crops for consumption in space. Researchers from Kennedy Space Center, Johnson Space Center, Purdue University and ORBITEC have teamed up to explore the potential for plant growth and food production on the International Space Station (ISS) and future exploration missions. KSC, Purdue, and ORBITEC bring a history of plant and plant-microbial interaction research for ISS and for future bioregenerative life support systems. JSC brings expertise in Advanced Food Technology (AFT), Behavioral Health and Performance (BHP), and statistics. The Veggie vegetable-production system on the ISS offers an opportunity to develop a pick-and-eat fresh vegetable component to the ISS food system as a first step to bioregenerative supplemental food production. We propose growing salad plants in the Veggie unit during spaceflight, focusing on the impact of light quality and fertilizer formulation on crop morphology, edible biomass yield, microbial food safety, organoleptic acceptability, nutritional value, and behavioral health benefits of the fresh produce. The first phase of the project will involve flight tests using leafy greens, with a small Chinese cabbage variety, Tokyo bekana, previously down selected through a series of research tests as a suitable candidate. The second phase will focus on dwarf tomato. Down selection of candidate varieties have been performed, and the dwarf cultivar Red Robin has been selected as the test crop. Four light treatments and three fertilizer treatments will be tested for each crop on the ground, to down select to two light

  11. Utilization of ISS to Develop and Test Operational Concepts and Hardware for Low-Gravity Terrestrial EVA

    Science.gov (United States)

    Gast, Matthew A.

    2010-01-01

    NASA has considerable experience in two areas of Extravehicular Activities (EVA). The first can be defined as microgravity, orbital EVAs. This consists of everything done in low Earth orbit (LEO), from the early, proof of concept EVAs conducted during the Gemini program of the 1960s, to the complex International Space Station (ISS) assembly tasks of the first decade of the 21st century. The second area of expertise is comprised of those EVAs conducted on the lunar surface, under a gravitational force one-sixth that of Earth. This EVA expertise encapsulates two extremes - microgravity and Earthlike gravitation - but is insufficient as humans expand their exploration purview, most notably with respect to spacewalks conducted on very low-gravity bodies, such as near- Earth objects (NEO) and the moons of Mars. The operational and technical challenges of this category of EVA have yet to be significantly examined, and as such, only a small number of operational concepts have been proposed thus far. To ensure mission success, however, EVA techniques must be developed and vetted to allow the selection of operational concepts that can be utilized across an assortment of destinations whose physical characteristics vary. This paper examines the utilization of ISS-based EVAs to test operational concepts and hardware in preparation for a low-gravity terrestrial EVA. While the ISS cannot mimic some of the fundamental challenges of a low-gravity terrestrial EVA - such as rotation rate and surface composition - it may be the most effective test bed available.

  12. Re-Engineering the ISS Payload Operations Control Center During Increased Utilization and Critical Onboard Events

    Science.gov (United States)

    Dudley, Stephanie R. B.; Marsh, Angela L.

    2014-01-01

    With an increase in utilization and hours of payload operations being executed onboard the International Space Station (ISS), upgrading the NASA Marshall Space Flight Center (MSFC) Huntsville Operations Support Center (HOSC) ISS Payload Control Area (PCA) was essential to gaining efficiencies and assurance of current and future payload health and science return. PCA houses the Payload Operations Integration Center (POIC) responsible for the execution of all NASA payloads onboard the ISS. POIC Flight Controllers are responsible for the operation of voice, stowage, command, telemetry, video, power, thermal, and environmental control in support of ISS science experiments. The methodologies and execution of the PCA refurbishment were planned and performed within a four-month period in order to assure uninterrupted operation of ISS payloads and minimal impacts to payload operations teams. To vacate the PCA, three additional HOSC control rooms were reconfigured to handle ISS real-time operations, Backup Control Center (BCC) to Mission Control in Houston, simulations, and testing functions. This involved coordination and cooperation from teams of ISS operations controllers, multiple engineering and design disciplines, management, and construction companies performing an array of activities simultaneously and in sync delivering a final product with no issues that impacted the schedule. For each console operator discipline, studies of Information Technology (IT) tools and equipment layouts, ergonomics, and lines of sight were performed. Infusing some of the latest IT into the project was an essential goal in ensuring future growth and success of the ISS payload science returns. Engineering evaluations led to a state of the art Video Wall implementation and more efficient ethernet cabling distribution providing the latest products and the best solution for the POIC. These engineering innovations led to cost savings for the project. Constraints involved in the management of

  13. The Atmosphere-Space Interactions Monitor (ASIM) Payload Facility on the ISS

    DEFF Research Database (Denmark)

    Reibaldi, Giuseppe; Nasca, Rosario; Neubert, Torsten

    ASIM is a payload facility to be mounted on a Columbus external platform on the International Space Station (ISS). ASIM will study the coupling of thunderstorm processes to the upper atmosphere, ionosphere and radiation belts. ASIM is the most complex Earth Observation payload facility planned fo...

  14. Space Station Engineering and Technology Development. Proceedings of the Panel on Program Performance and Onboard Mission Control

    Science.gov (United States)

    1985-01-01

    An ad-hoc committee was asked to review the following questions relevant to the space station program: (1) onboard maintainability and repair; (2) in-space research and technology program and facility plans; (3) solar thermodynamic research and technology development program planning; (4) program performance (cost estimating, management, and cost avoidance); (5) onboard versus ground-based mission control; and (6) technology development road maps from IOC to the growth station. The objective of these new assignments is to provide NASA with advice on ways and means for improving the content, performance, and/or effectiveness of these elements of the space station program.

  15. Differences in Pre and Post Vascular Patterning of Retinas from ISS Crew Members and HDT Subjects by VESGEN Analysis

    Science.gov (United States)

    Murray, M. C.; Vizzeri, G.; Taibbi, G.; Mason, S. S.; Young, M. H.; Zanello, S. B.; Parsons-Wingerter, P. A.

    2018-01-01

    Accelerated research by NASA [1] has investigated the significant risks for visual and ocular impairments Spaceflight Associated Neuro-Ocular Syndrome /Visual Impairment/Intracranial Pressure (SANS/VIIP) incurred by microgravity spaceflight, especially long-duration missions. Our study investigates the role of blood vessels in the incidence and etiology of SANS/VIIP within the retinas of Astronaut crewmembers pre-and post-flight to the International Space Station (ISS) by NASA's VESsel GENeration Analysis (VESGEN). The response of retinal vessels in crewmembers to microgravity was compared to that of retinal vessels to Head-Down Tilt (HDT) in subjects undergoing 70-Day Bed Rest. The study tests the proposed hypothesis that cephalad fluid shifts missions, resulting in ocular and visual impairments, are necessarily mediated in part by retinal blood vessels, and are therefore accompanied by significant remodeling of retinal vasculature.Vascular patterns in the retinas of crew members and HDTBR subjects extracted from 30° infrared (IR) Heidelberg Spectralis® images collected pre/postflight and pre/post HDTBR, respectively, were analyzed by VESGEN (patent pending). a mature, automated software developed as a research discovery tool for progressive vascular diseases in the retina and other tissues [2]. The weighted, multi-parametric VESGEN analysis generates maps of branching arterial and venous trees and quantification by parameters such as the fractal dimension (Df, a modern measure of vascular space-filling capacity), vessel diameters, and densities of vessel length and number classified into specific branching generations by vascular physiological branching rules [2,3]. The retrospective study approved by NASA’s Institutional Review Board included six HDT subjects (NASA Flight Analogs Research Unit [FARU] Campaign 11; for example, [4]) and eight ISS crewmembers monitored by routine occupational surveillance who provided their study consents to NASA’s Lifetime

  16. Assessment of RFID Read Accuracy for ISS Water Kit

    Science.gov (United States)

    Chu, Andrew

    2011-01-01

    The Space Life Sciences Directorate/Medical Informatics and Health Care Systems Branch (SD4) is assessing the benefits Radio Frequency Identification (RFID) technology for tracking items flown onboard the International Space Station (ISS). As an initial study, the Avionic Systems Division Electromagnetic Systems Branch (EV4) is collaborating with SD4 to affix RFID tags to a water kit supplied by SD4 and studying the read success rate of the tagged items. The tagged water kit inside a Cargo Transfer Bag (CTB) was inventoried using three different RFID technologies, including the Johnson Space Center Building 14 Wireless Habitat Test Bed RFID portal, an RFID hand-held reader being targeted for use on board the ISS, and an RFID enclosure designed and prototyped by EV4.

  17. The International Space Station: A Unique Platform for Remote Sensing of Natural Disasters

    Science.gov (United States)

    Stefanov, William L.; Evans, Cynthia A.

    2014-01-01

    different times of the day and night. This is important for two reasons: 1) certain surface processes (i.e., development of coastal fog banks) occur at times other than local solar noon, making it difficult to collect relevant data from traditional satellite platforms, and 2) it provides opportunities for the ISS to collect data for short-duration events, such as natural disasters, that polar-orbiting satellites may miss due to their orbital dynamics - in essence, the ISS can be "in the right place at the right time" to collect data. An immediate application of ISS remote sensing data collection is that the data can be used to provide information for humanitarian aid after a natural disaster. This activity contributes directly to the station's Benefits to Humanity mission. The International Charter, Space and Major Disasters (also known as the International Disaster Charter, or IDC) is an agreement between agencies of several countries to provide - on a best-effort basis - remotely sensed data related to natural disasters to requesting countries in support of disaster response. In the United States, the lead agency for interaction with the IDC is the United States Geological Survey (USGS); when an IDC request, or activation, is received, the USGS notifies the science teams for NASA instruments with targeting information for data collection. In the case of the ISS, Earth scientists in the JSC ARES Directorate, in association with the ISS Program Science Office, coordinate targeting and data collection with the USGS. If data is collected, it is passed back to the USGS for posting on its Hazards Data Distribution System and made available for download. The ISS was added to the USGS's list of NASA remote sensing assets that could respond to IDC activations in May 2012. Initially, the NASA ISS sensor systems available to respond to IDC activations included the ISS Agricultural Camera (ISSAC), an internal multispectral visible-near infrared wavelength system mounted in the WORF

  18. STS-105 Crew Interview: Scott Horowitz

    Science.gov (United States)

    2001-01-01

    STS-105 Commander Scott Horowitz is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Horowitz discusses the importance of the ISS in the future of human spaceflight.

  19. Design and Development of a CPCI-Based Electronics Package for Space Station Experiments

    Science.gov (United States)

    Kolacz, John S.; Clapper, Randy S.; Wade, Raymond P.

    2006-01-01

    The NASA John H. Glenn Research Center is developing a Compact-PCI (CPCI) based electronics package for controlling space experiment hardware on the International Space Station. Goals of this effort include an easily modified, modular design that allows for changes in experiment requirements. Unique aspects of the experiment package include a flexible circuit used for internal interconnections and a separate enclosure (box in a box) for controlling 1 kW of power for experiment fuel heating requirements. This electronics package was developed as part of the FEANICS (Flow Enclosure Accommodating Novel Investigations in Combustion of Solids) mini-facility which is part of the Fluids and Combustion Facility s Combustion Integrated Rack (CIR). The CIR will be the platform for future microgravity combustion experiments and will reside on the Destiny Module of the International Space Station (ISS). The FEANICS mini-facility will be the primary means for conducting solid fuel combustion experiments in the CIR on ISS. The main focus of many of these solid combustion experiments will be to conduct applied scientific investigations in fire-safety to support NASA s future space missions. A description of the electronics package and the results of functional testing are the subjects of this report. The report concludes that the use of innovative packaging methods combined with readily available COTS hardware can provide a modular electronics package which is easily modified for changing experiment requirements.

  20. Environmental Effects on ISS Materials Aging (1998 to 2008)

    Science.gov (United States)

    Alred, John; Dasgupta, Rajib; Koontz, Steve; Soares, Carlos; Golden, John

    2009-01-01

    The performance of ISS spacecraft materials and systems on prolonged exposure to the low- Earth orbit (LEO) space flight are reported in this paper. In-flight data, flight crew observations, and the results of ground-based test and analysis directly supporting programmatic and operational decision-making are described. The space flight environments definitions (both natural and induced) used for ISS design, material selection, and verification testing are shown, in most cases, to be more severe than the actual flight environment accounting, in part, for the outstanding performance of ISS as a long mission duration spacecraft. No significant ISS material or system failures have been attributed to spacecraft-environments interactions. Nonetheless, ISS materials and systems performance data is contributing to our understanding of spacecraft material interactions with the spaceflight environment so as to reduce cost and risk for future spaceflight projects and programs. Orbital inclination (51.6 deg) and altitude (nominally near 360 km) determine the set of natural environment factors affecting the functional life of materials and systems on ISS. ISS operates in an electrically conducting environment (the F2 region of Earth s ionosphere) with well-defined fluxes of atomic oxygen, other charged and neutral ionospheric plasma species, solar UV, VUV, and x-ray radiation as well as galactic cosmic rays, trapped radiation, and solar cosmic rays. The LEO micrometeoroid and orbital debris environment is an especially important determinant of spacecraft design and operations. The magnitude of several environmental factors varies dramatically with latitude and longitude as ISS orbits the Earth. The high latitude orbital environment also exposes ISS to higher fluences of trapped energetic electrons, auroral electrons, solar cosmic rays, and galactic cosmic rays than would be the case in lower inclination orbits, largely as a result of the overall shape and magnitude of the

  1. Development of an Advanced Recycle Filter Tank Assembly for the ISS Urine Processor Assembly

    Science.gov (United States)

    Link, Dwight E., Jr.; Carter, Donald Layne; Higbie, Scott

    2010-01-01

    Recovering water from urine is a process that is critical to supporting larger crews for extended missions aboard the International Space Station. Urine is collected, preserved, and stored for processing into water and a concentrated brine solution that is highly toxic and must be contained to avoid exposure to the crew. The brine solution is collected in an accumulator tank, called a Recycle Filter Tank Assembly (RFTA) that must be replaced monthly and disposed in order to continue urine processing operations. In order to reduce resupply requirements, a new accumulator tank is being developed that can be emptied on orbit into existing ISS waste tanks. The new tank, called the Advanced Recycle Filter Tank Assembly (ARFTA) is a metal bellows tank that is designed to collect concentrated brine solution and empty by applying pressure to the bellows. This paper discusses the requirements and design of the ARFTA as well as integration into the urine processor assembly.

  2. Expedition 8 Crew Interview: Pedro Duque

    Science.gov (United States)

    2003-01-01

    European Space Agency (ESA) astronaut Pedro Duque is interviewed in preparation for his flight to and eight day stay on the International Space Station (ISS) as part of the Cervantes mission. Duque arrived on the ISS with the Expedition 8 crew onboard a Soyuz TMA-3, the seventh Soyuz flight to the station. He departed from the ISS on a Soyuz TMA-2 with the Expedition 7 crew of the ISS. In the video, Duque answers questions on: the goals of his flight; his life and career path; the Columbus Module, which ESA will contribute to the ISS, the ride onboard a Soyuz, and the importance of the ISS.

  3. ISS EarthKam: Taking Photos of the Earth from Space

    Science.gov (United States)

    Haste, Turtle

    2008-01-01

    NASA is involved in a project involving the International Space Station (ISS) and an Earth-focused camera called EarthKam, where schools, and ultimately students, are allowed to remotely program the EarthKAM to take images. Here the author describes how EarthKam was used to help middle school students learn about biomes and develop their…

  4. Validation of the Pulmonary Function System for Use on the International Space Station

    Science.gov (United States)

    McCleary, Frank A.; Moore, Alan D., Jr.; Hagan, R. Donald

    2007-01-01

    Aerobic deconditioning occurs during long duration space flight despite the use of exercise countermeasures (Convertino, 1996). As a part of International Space Station (ISS) medical operations, periodic tests designed to estimate aerobic capacity are performed to track changes in aerobic fitness and to determine the effectiveness of exercise countermeasures. These tests are performed prior to, during, and after missions of greater than 30 days in duration. Crewmembers selected for missions aboard the ISS perform a graded exercise test on a cycle ergometer approximately 270 days prior to their scheduled launch date in order to measure peak oxygen consumption (VO2PK) and peak heart rate (HRpk). Approximately 30 to 45 days prior to launch, crewmembers perform a submaximal cycle ergometer test at work rates set to elicit 25, 50 and 75% of their pre-flight VO2PK. This test, known as the Periodic Fitness Evaluation (PFE), serves as a baseline measure to which subsequent in-and post-flight exercise tests are compared. While onboard the ISS, crewmembers are normally scheduled to perform the PFE beginning with flight day (FD) 14 and every 30 days thereafter. The PFE is also conducted 5 and 30 days following flight. Using PFE data, aerobic fitness is estimated by quantifying the VO2 vs. HR relationship using linear regression and calculating the VO2 that would occur at the crewmember s previously measured HRpk. Currently, for data collected during flight, this technique assumes that the pre- vs. in-flight oxygen consumption per given cycle workload is similar. However, the validity of this assumption is based upon a sparse amount of data collected during the Skylab era (Michel, et al. 1977). The method of using heart rate and cycle ergometer work rates has been used to estimate aerobic fitness in normal gravity (Astrand and Ryhming, 1954; Lee, 1993). Due to spaceflight induced physiological alterations, such as shifts in extracellular fluid (e.g. plasma) volume, this method

  5. Synchronized Position and Hold Reorient Experimental Satellites - International Space Station (SPHERES-ISS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. (PSI) and the MIT Space Systems Laboratory (MIT-SSL) propose an innovative research program entitled SPHERES-ISS that uses their satellite...

  6. ISS Ammonia Leak Detection Through X-Ray Fluorescence

    Science.gov (United States)

    Camp, Jordan; Barthelmy, Scott; Skinner, Gerry

    2013-01-01

    Ammonia leaks are a significant concern for the International Space Station (ISS). The ISS has external transport lines that direct liquid ammonia to radiator panels where the ammonia is cooled and then brought back to thermal control units. These transport lines and radiator panels are subject to stress from micrometeorites and temperature variations, and have developed small leaks. The ISS can accommodate these leaks at their present rate, but if the rate increased by a factor of ten, it could potentially deplete the ammonia supply and impact the proper functioning of the ISS thermal control system, causing a serious safety risk. A proposed ISS astrophysics instrument, the Lobster X-Ray Monitor, can be used to detect and localize ISS ammonia leaks. Based on the optical design of the eye of its namesake crustacean, the Lobster detector gives simultaneously large field of view and good position resolution. The leak detection principle is that the nitrogen in the leaking ammonia will be ionized by X-rays from the Sun, and then emit its own characteristic Xray signal. The Lobster instrument, nominally facing zenith for its astrophysics observations, can be periodically pointed towards the ISS radiator panels and some sections of the transport lines to detect and localize the characteristic X-rays from the ammonia leaks. Another possibility is to use the ISS robot arm to grab the Lobster instrument and scan it across the transport lines and radiator panels. In this case the leak detection can be made more sensitive by including a focused 100-microampere electron beam to stimulate X-ray emission from the leaking nitrogen. Laboratory studies have shown that either approach can be used to locate ammonia leaks at the level of 0.1 kg/day, a threshold rate of concern for the ISS. The Lobster instrument uses two main components: (1) a microchannel plate optic (also known as a Lobster optic) that focuses the X-rays and directs them to the focal plane, and (2) a CCD (charge

  7. Multiphase Transport in Porous Media: Gas-Liquid Separation Using Capillary Pressure Gradients International Space Station (ISS) Flight Experiment Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Holtsnider, John T.; Dahl, Roger W.; Deeks, Dalton; Javanovic, Goran N.; Parker, James M.; Ehlert, Jim

    2013-01-01

    Advances in the understanding of multiphase flow characteristics under variable gravity conditions will ultimately lead to improved and as of yet unknown process designs for advanced space missions. Such novel processes will be of paramount importance to the success of future manned space exploration as we venture into our solar system and beyond. In addition, because of the ubiquitous nature and vital importance of biological and environmental processes involving airwater mixtures, knowledge gained about fundamental interactions and the governing properties of these mixtures will clearly benefit the quality of life here on our home planet. The techniques addressed in the current research involving multiphase transport in porous media and gas-liquid phase separation using capillary pressure gradients are also a logical candidate for a future International Space Station (ISS) flight experiment. Importantly, the novel and potentially very accurate Lattice-Boltzmann (LB) modeling of multiphase transport in porous media developed in this work offers significantly improved predictions of real world fluid physics phenomena, thereby promoting advanced process designs for both space and terrestrial applications.This 3-year research effort has culminated in the design and testing of a zero-g demonstration prototype. Both the hydrophilic (glass) and hydrophobic (Teflon) media Capillary Pressure Gradient (CPG) cartridges prepared during the second years work were evaluated. Results obtained from ground testing at 1-g were compared to those obtained at reduced gravities spanning Martian (13-g), Lunar (16-g) and zero-g. These comparisons clearly demonstrate the relative strength of the CPG phenomena and the efficacy of its application to meet NASAs unique gas-liquid separation (GLS) requirements in non-terrestrial environments.LB modeling software, developed concurrently with the zero-g test effort, was shown to accurately reproduce observed CPG driven gas-liquid separation

  8. SAGE III on ISS Lessons Learned on Thermal Interface Design

    Science.gov (United States)

    Davis, Warren

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III (SAGE III) instrument - the fifth in a series of instruments developed for monitoring vertical distribution of aerosols, ozone, and other trace gases in the Earth's stratosphere and troposphere - is currently scheduled for delivery to the International Space Station (ISS) via the SpaceX Dragon vehicle in 2016. The Instrument Adapter Module (IAM), one of many SAGE III subsystems, continuously dissipates a considerable amount of thermal energy during mission operations. Although a portion of this energy is transferred via its large radiator surface area, the majority must be conductively transferred to the ExPRESS Payload Adapter (ExPA) to satisfy thermal mitigation requirements. The baseline IAM-ExPA mechanical interface did not afford the thermal conductance necessary to prevent the IAM from overheating in hot on-orbit cases, and high interfacial conductance was difficult to achieve given the large span between mechanical fasteners, less than stringent flatness specifications, and material usage constraints due to strict contamination requirements. This paper will examine the evolution of the IAM-ExPA thermal interface over the course of three design iterations and will include discussion on design challenges, material selection, testing successes and failures, and lessons learned.

  9. Definition of technology development missions for early space stations orbit transfer vehicle serving. Phase 2, task 1: Space station support of operational OTV servicing

    Science.gov (United States)

    1983-01-01

    Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.

  10. International Research Results and Accomplishments From the International Space Station - A New Compilation

    Science.gov (United States)

    Ruttley, Tara; Robinson, Julie A.; Tate-Brown, Judy; Perkins, Nekisha; Cohen, Luchino; Marcil, Isabelle; Heppener, Marc; Hatton, Jason; Tasaki, Kazuyuki; Umemura, Sayaka; hide

    2016-01-01

    In 2016, the International Space Station (ISS) partnership published the first-ever compilation of international ISS research publications resulting from research performed on the ISS through 2011 (Expeditions 0 through 30). International Space Station Research Accomplishments: An Analysis of Results. From 2000-2011 is a collection of over 1,200 journal publications that describe ISS research in the areas of biology and biotechnology; Earth and space science; educational activities and outreach; human research; physical sciences; technology development and demonstration; and, results from ISS operations. This paper will summarize the ISS results publications obtained through 2011 on behalf of the ISS Program Science Forum that is made up of senior science representatives across the international partnership. NASA's ISS Program Science office maintains an online experiment database (www.nasa.gov/iss- science) that tracks and communicates ISS research activities across the entire ISS partnership, and it is continuously updated by cooperation and linking with the results tracking activities of each partner. It captures ISS experiment summaries and results and includes citations to the journals, conference proceedings, and patents as they become available. This content is obtained through extensive and regular journal and patent database searches, and input provided by the ISS international partners ISS scientists themselves. The International Space Station Research Accomplishments: An Analysis of Results From 2000-2011 is a testament to the research that was underway even as the ISS laboratory was being built. It rejects the scientific knowledge gained from ISS research, and how it impact the fields of science in both space and traditional science disciplines on Earth. Now, during a time when utilization is at its busiest, and with extension of the ISS through at least 2024, the ISS partners work together to track the accomplishments and the new knowledge gained in a

  11. Definition of technology development missions for early space station, orbit transfer vehicle servicing. Volume 1: Executive summary

    Science.gov (United States)

    1983-01-01

    Orbital Transfer Vehicle (OTV) servicing study scope, propellant transfer, storage and reliquefaction technology development missions (TDM), docking and berthing TDM, maintenance TDM, OTV/payload integration TDM, combined TDMS design, summary space station accomodations, programmatic analysis, and TDM equipment operational usage are discussed.

  12. Microbiomes of the Dust Particles Collected from the International Space Station and Spacecraft Assembly Facilities

    Data.gov (United States)

    National Aeronautics and Space Administration — The safety of the International Space Station (ISS) crewmembers and maintenance of ISS hardware are the primary rationale for monitoring microorganisms in this...

  13. Status and performance of the CALorimetric Electron Telescope (CALET) on the International Space Station

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O. [University of Florence, IFAC (CNR) and INFN (Italy); Akaike, Y. [ICRR, University of Tokyo (Japan); Asaoka, Y. [Waseda University (Japan); Asano, K. [Tokyo Institute of Technology (Japan); Bagliesi, M.G.; Bigongiari, G. [University of Siena and INFN (Italy); Binns, W.R. [Washington University-St. Louis (United States); Bongi, M. [University of Florence, IFAC (CNR) and INFN (Italy); Buckley, J.H. [Washington University-St. Louis (United States); Cassese, A.; Castellini, G. [University of Florence, IFAC (CNR) and INFN (Italy); Cherry, M.L. [Louisiana State University (United States); Collazuol, G. [University of Padova and INFN (Italy); Ebisawa, K. [JAXA/ISAS (Japan); Di Felice, V. [University of Rome Tor Vergata and INFN (Italy); Fuke, H. [JAXA/ISAS (Japan); Guzik, T.G. [Louisiana State University (United States); Hams, T. [CRESST/NASA/GSFC and University of Maryland (United States); Hasebe, N. [Waseda University (Japan); Hareyama, M. [St. Marianna University School of Medicine (Japan); and others

    2014-11-15

    The CALorimetric Electron Telescope (CALET) space experiment, currently under development by Japan in collaboration with Italy and the United States, will measure the flux of cosmic-ray electrons (including positrons) to 20 TeV, gamma rays to 10 TeV and nuclei with Z=1 to 40 up to 1,000 TeV during a two-year mission on the International Space Station (ISS), extendable to five years. These measurements are essential to search for dark matter signatures, investigate the mechanism of cosmic-ray acceleration and propagation in the Galaxy and discover possible astrophysical sources of high-energy electrons nearby the Earth. The instrument consists of two layers of segmented plastic scintillators for the cosmic-ray charge identification (CHD), a 3 radiation length thick tungsten-scintillating fiber imaging calorimeter (IMC) and a 27 radiation length thick lead-tungstate calorimeter (TASC). CALET has sufficient depth, imaging capabilities and excellent energy resolution to allow for a clear separation between hadrons and electrons and between charged particles and gamma rays. The instrument will be launched to the ISS within 2014 Japanese Fiscal Year (by the end of March 2015) and installed on the Japanese Experiment Module-Exposed Facility (JEM-EF). In this paper, we will review the status and main science goals of the mission and describe the instrument configuration and performance.

  14. Microbial Challenge Testing of Single Liquid Cathode Feed Water Electrolysis Cells for the International Space Station (ISS) Oxygen Generator Assembly (OGA)

    Science.gov (United States)

    Roy, Robert J.; Wilson, Mark E.; Diderich, Greg S.; Steele, John W.

    2011-01-01

    The International Space Station (ISS) Oxygen Generator Assembly (OGA) operational performance may be adversely impacted by microbiological growth and biofilm formation over the electrolysis cell membranes. Biofilms could hinder the transport of water from the bulk fluid stream to the membranes and increase the cell concentration overpotential resulting in higher cell voltages and a shorter cell life. A microbial challenge test was performed on duplicate single liquid-cathode feed water electrolysis cells to evaluate operational performance with increasing levels of a mixture of five bacteria isolated from ISS and Space Shuttle potable water systems. Baseline performance of the single water electrolysis cells was determined for approximately one month with deionized water. Monthly performance was also determined following each inoculation of the feed tank with 100, 1000, 10,000 and 100,000 cells/ml of the mixed suspension of test bacteria. Water samples from the feed tank and recirculating water loops for each cell were periodically analyzed for enumeration and speciation of bacteria and total organic carbon. While initially a concern, this test program has demonstrated that the performance of the electrolysis cell is not adversely impacted by feed water containing the five species of bacteria tested at a concentration measured as high as 1,000,000 colony forming units (CFU)/ml. This paper presents the methodologies used in the conduct of this test program along with the performance test results at each level of bacteria concentration.

  15. Benefits of International Collaboration on the International Space Station

    Science.gov (United States)

    Hasbrook, Pete; Robinson, Julie A.; Brown Tate, Judy; Thumm, Tracy; Cohen, Luchino; Marcil, Isabelle; De Parolis, Lina; Hatton, Jason; Umezawa, Kazuo; Shirakawa, Masaki; hide

    2017-01-01

    The International Space Station is a valuable platform for research in space, but the benefits are limited if research is only conducted by individual countries. Through the efforts of the ISS Program Science Forum, international science working groups, and interagency cooperation, international collaboration on the ISS has expanded as ISS utilization has matured. Members of science teams benefit from working with counterparts in other countries. Scientists and institutions bring years of experience and specialized expertise to collaborative investigations, leading to new perspectives and approaches to scientific challenges. Combining new ideas and historical results brings synergy and improved peer-reviewed scientific methods and results. World-class research facilities can be expensive and logistically complicated, jeopardizing their full utilization. Experiments that would be prohibitively expensive for a single country can be achieved through contributions of resources from two or more countries, such as crew time, up- and downmass, and experiment hardware. Cooperation also avoids duplication of experiments and hardware among agencies. Biomedical experiments can be completed earlier if astronauts or cosmonauts from multiple agencies participate. Countries responding to natural disasters benefit from ISS imagery assets, even if the country has no space agency of its own. Students around the world participate in ISS educational opportunities, and work with students in other countries, through open curriculum packages and through international competitions. Even experiments conducted by a single country can benefit scientists around the world, through specimen sharing programs and publicly accessible "open data" repositories. For ISS data, these repositories include GeneLab and the Physical Science Informatics System. Scientists can conduct new research using ISS data without having to launch and execute their own experiments. Multilateral collections of research

  16. A Human Centred Interior Design of a Habitat Module for the International Space Station

    Science.gov (United States)

    Burattini, C.

    Since the very beginning of Space exploration, the interiors of a space habitat had to meet technological and functional requirements. Space habitats have now to meet completely different requirements related to comfort or at least to liveable environments. In order to reduce psychological drawbacks afflicting the crew during long periods of isolation in an extreme environment, one of the most important criteria is to assure high habitability levels. As a result of the Transhab project cancellation, the International Space Station (ISS) is actually made up of several research laboratories, but it has only one module for housing. This is suitable for short-term missions; middle ­ long stays require new solutions in terms of public and private spaces, as well as personal compartments. A design concept of a module appositely fit for living during middle-long stays aims to provide ISS with a place capable to satisfy habitability requirements. This paper reviews existing Space habitats and crew needs in a confined and extreme environment. The paper then describes the design of a new and human centred approach to habitation module typologies.

  17. SPHERES: From Ground Development to Operations on ISS

    Science.gov (United States)

    Katterhagen, A.

    2015-01-01

    SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) is an internal International Space Station (ISS) Facility that supports multiple investigations for the development of multi-spacecraft and robotic control algorithms. The SPHERES Facility on ISS is managed and operated by the SPHERES National Lab Facility at NASA Ames Research Center (ARC) at Moffett Field California. The SPHERES Facility on ISS consists of three self-contained eight-inch diameter free-floating satellites which perform the various flight algorithms and serve as a platform to support the integration of experimental hardware. To help make science a reality on the ISS, the SPHERES ARC team supports a Guest Scientist Program (GSP). This program allows anyone with new science the possibility to interface with the SPHERES team and hardware. In addition to highlighting the available SPHERES hardware on ISS and on the ground, this presentation will also highlight ground support, facilities, and resources available to guest researchers. Investigations on the ISS evolve through four main phases: Strategic, Tactical, Operations, and Post Operations. The Strategic Phase encompasses early planning beginning with initial contact by the Principle Investigator (PI) and the SPHERES program who may work with the PI to assess what assistance the PI may need. Once the basic parameters are understood, the investigation moves to the Tactical Phase which involves more detailed planning, development, and testing. Depending on the nature of the investigation, the tactical phase may be split into the Lab Tactical Phase or the ISS Tactical Phase due to the difference in requirements for the two destinations. The Operations Phase is when the actual science is performed; this can be either in the lab, or on the ISS. The Post Operations Phase encompasses data analysis and distribution, and generation of summary status and reports. The SPHERES Operations and Engineering teams at ARC is composed of

  18. International Space Station Bacteria Filter Element Service Life Evaluation

    Science.gov (United States)

    Perry, J. L.

    2005-01-01

    The International Space Station (ISS) uses high-efficiency particulate air filters to remove particulate matter from the cabin atmosphere. Known as bacteria filter elements (BFEs), there are 13 elements deployed on board the ISS's U.S. segment in the flight 4R assembly level. The preflight service life prediction of 1 yr for the BFEs is based upon engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS program resources. Testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are provided.

  19. The O/OREOS Mission - Astrobiology in Low Earth Orbit. [Astrobiology in Low Earth Orbit

    Science.gov (United States)

    Ehrenfreund, P.; Ricco, A. J.; Squires, D.; Kitts, C.; Agasid, E.; Bramall, N.; Bryson, K.; Chittenden, J.; Conley, C.; Cook, A.; hide

    2014-01-01

    The O/OREOS (Organism/Organic Exposure to Orbital Stresses) nanosatellite is the first science demonstration spacecraft and flight mission of the NASA Astrobiology Small- Payloads Program (ASP). O/OREOS was launched successfully on November 19, 2010, to a high-inclination (72 deg), 650-km Earth orbit aboard a US Air Force Minotaur IV rocket from Kodiak, Alaska. O/OREOS consists of 3 conjoined cubesat (each 1000 cu cm) modules: (i) a control bus; (ii) the Space Environment Survivability of Living Organisms (SESLO) experiment; and (iii) the Space Environment Viability of Organics (SEVO) experiment. Among the innovative aspects of the O/OREOS mission are a real-time analysis of the photostability of organics and biomarkers and the collection of data on the survival and metabolic activity for microorganisms at 3 times during the 6-month mission. We report on the spacecraft characteristics, payload capabilities, and present operational phase and flight data from the O/OREOS mission. The science and technology rationale of O/OREOS supports NASA0s scientific exploration program by investigating the local space environment as well as space biology relevant to Moon and Mars missions. It also serves as a precursor for experiments on small satellites, the International Space Station (ISS), future free-flyers and lunar surface exposure facilities.

  20. Destiny's Earth Observation Window

    Science.gov (United States)

    2002-01-01

    Astronaut Michael J. Bloomfield, STS-110 mission commander, looks through the Earth observation window in the Destiny laboratory aboard the International Space Station (ISS). The STS-110 mission prepared the ISS for future spacewalks by installing and outfitting the S0 (S-zero) truss and the Mobile Transporter. The 43-foot-long S0 Truss, weighing in at 27,000 pounds, was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the STS-110 mission included the first time the ISS robotic arm was used to maneuver spacewalkers around the Station and marked the first time all spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  1. International Space Station Lithium-Ion Battery

    Science.gov (United States)

    Dalton, Penni J.; Schwanbeck, Eugene; North, Tim; Balcer, Sonia

    2016-01-01

    The International Space Station (ISS) primary Electric Power System (EPS) currently uses Nickel-Hydrogen (Ni-H2) batteries to store electrical energy. The electricity for the space station is generated by its solar arrays, which charge batteries during insolation for subsequent discharge during eclipse. The Ni-H2 batteries are designed to operate at a 35 depth of discharge (DOD) maximum during normal operation in a Low Earth Orbit. Since the oldest of the 48 Ni-H2 battery Orbital Replacement Units (ORUs) has been cycling since September 2006, these batteries are now approaching their end of useful life. In 2010, the ISS Program began the development of Lithium-Ion (Li-Ion) batteries to replace the Ni-H2 batteries and concurrently funded a Li-Ion ORU and cell life testing project. When deployed, they will be the largest Li-Ion batteries ever utilized for a human-rated spacecraft. This paper will include an overview of the ISS Li-Ion battery system architecture, the Li-Ion battery design and development, controls to limit potential hazards from the batteries, and the status of the Li-Ion cell and ORU life cycle testing.

  2. EAC training and medical support for International Space Station astronauts.

    Science.gov (United States)

    Messerschmid, E; Haignere, J P; Damian, K; Damann, V

    2000-11-01

    The operation of the International Space Station (ISS) will be a global multilateral endeavour. Each International Partner will be responsible for the operation of its elements and for providing a crew complement proportional to its share of the overall resources. The preparations of the European Astronaut Centre to furnish training and medical support for the ISS astronauts are described.

  3. A contribution towards establishing more comfortable space weather to cope with increased human space passengers for ISS shuttles

    Science.gov (United States)

    Kalu, A.

    Space Weather is a specialized scienctific descipline in Meteorology which has recently emerged from man's continued research efforts to create a familiar spacecraft environment which is physiologically stable and life sustaining for astronauts and human passengers in distant space travels. As the population of human passengers in space shuttles rapidly increases, corresponding research on sustained micro-climate of spacecrafts is considered necessary and timely. This is because existing information is not meant for a large population in spacecrafts. The paper therefore discusses the role of meteorology (specifically micrometeorology) in relation to internal communication, spacecraft instrumentation and physiologic comfort of astronauts and space passengers (the later may not necessarily be trained astronauts, but merely business men or tourist space travellers for business transactions in the International Space Station (ISS)). It is recognized that me eorology which is a fundamental science amongt multidiscplinary sciences has been found to be vital in space travels and communication. Space weather therefore appears in slightly different format where temperature and humidity changes and variability within the spacecraft exert very significant influences on the efficiency of astronauts and the effectiveness of the various delicate instrument gadgets aimed at reducing the frequency of computer failures and malfunction of other instruments on which safety of the spacecraft depends. Apart from the engineering and technological problems which space scientists must have to overcome when human population in space shuttles increases as we now expect, based on evidence from successful missions to ISS, the maint enace of physiologic comfort state of astronauts, which, as far as scientifically possible, should be as near as possible to their Earth-Atmosphere condition. This is one of the most important and also most difficult conditions to attain. It demands a mor e

  4. International Cooperation of Payload Operations on the International Space Station

    Science.gov (United States)

    Melton, Tina; Onken, Jay

    2003-01-01

    One of the primary goals of the International Space Station (ISS) is to provide an orbiting laboratory to be used to conduct scientific research and commercial products utilizing the unique environment of space. The ISS Program has united multiple nations into a coalition with the objective of developing and outfitting this orbiting laboratory and sharing in the utilization of the resources available. The primary objectives of the real- time integration of ISS payload operations are to ensure safe operations of payloads, to avoid mutual interference between payloads and onboard systems, to monitor the use of integrated station resources and to increase the total effectiveness of ISS. The ISS organizational architecture has provided for the distribution of operations planning and execution functions to the organizations with expertise to perform each function. Each IPP is responsible for the integration and operations of their payloads within their resource allocations and the safety requirements defined by the joint program. Another area of international cooperation is the sharing in the development and on- orbit utilization of unique payload facilities. An example of this cooperation is the Microgravity Science Glovebox. The hardware was developed by ESA and provided to NASA as part of a barter arrangement.

  5. Prospects for Interdisciplinary Science Aboard the International Space Station

    Science.gov (United States)

    Robinson, Julie A.

    2011-01-01

    The assembly of the International Space Station was completed in early 2011, and is now embarking on its first year of the coming decade of use as a laboratory. Two key types of physical science research are enabled by ISS: studies of processes that are normally masked by gravity, and instruments that take advantage of its position as a powerful platform in orbit. The absence of buoyancy-driven convection enables experiments in diverse areas such as fluids near the critical point, Marangoni convection, combustion, and coarsening of metal alloys. The positioning of such a powerful platform in orbit with robotic transfer and instrument support also provides a unique alternative platform for astronomy and physics instruments. Some of the operating or planned instruments related to fundamental physics on the International Space Station include MAXI (Monitoring all-sky X-ray Instrument for ISS), the Alpha Magnetic Spectrometer, CALET (Calorimetric Electron Telescope), and ACES (Atomic Clock Experiment in Space). The presentation will conclude with an overview of pathways for funding different types of experiments from NASA funding to the ISS National Laboratory, and highlights of the streamlining of services to help scientists implement their experiments on ISS.

  6. Viewing ISS Data in Real Time via the Internet

    Science.gov (United States)

    Myers, Gerry; Chamberlain, Jim

    2004-01-01

    EZStream is a computer program that enables authorized users at diverse terrestrial locations to view, in real time, data generated by scientific payloads aboard the International Space Station (ISS). The only computation/communication resource needed for use of EZStream is a computer equipped with standard Web-browser software and a connection to the Internet. EZStream runs in conjunction with the TReK software, described in a prior NASA Tech Briefs article, that coordinates multiple streams of data for the ground communication system of the ISS. EZStream includes server components that interact with TReK within the ISS ground communication system and client components that reside in the users' remote computers. Once an authorized client has logged in, a server component of EZStream pulls the requested data from a TReK application-program interface and sends the data to the client. Future EZStream enhancements will include (1) extensions that enable the server to receive and process arbitrary data streams on its own and (2) a Web-based graphical-user-interface-building subprogram that enables a client who lacks programming expertise to create customized display Web pages.

  7. Seeds-in-space education experiment during the Dutch soyuz mission DELTA

    Science.gov (United States)

    Weterings, Koen; Wamsteker, Jasper; Loon, Jack van

    2007-09-01

    We have used the broad appeal of the universe and space flight to boost interest in science education in The Netherlands via a classroom experiment designated Seeds In Space (SIS). By germinating Rucola seeds in the dark and in the light in ground classrooms and by comparing these results with those obtained in the same experiment performed in the International Space Station (ISS) during the Dutch Soyuz mission DELTA, students could learn about the cues that determine direction of plant growth. This paper describes both the preparations that led up to the SIS experiment as well as the popular and scientific outcome. Within The Netherlands, some 80.000 students participated, representing 15% of the population in the age group of 10-14 years old. In addition, another 80.000 German pupils, a few local schools in the Moscow -Koroljov- area and some in the Dutch Antilles also participated in the SIS experiment. Considering these numbers, it can be concluded that SIS was a very successful educational project and might be considered for future space flight missions.

  8. International Space Station Nickel-Hydrogen Battery On-Orbit Performance

    Science.gov (United States)

    Dalton, Penni; Cohen, Fred

    2002-01-01

    International Space Station (ISS) Electric Power System (EPS) utilizes Nickel-Hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The batteries are designed to operate at a 35 percent depth of discharge (DOD) maximum during normal operation. Thirty-eight individual pressure vessel (IPV) Ni-H2 battery cells are series-connected and packaged in an Orbital Replacement Unit (ORU). Two ORUs are series-connected utilizing a total of 76 cells to form one battery. The ISS is the first application for low earth orbit (LEO) cycling of this quantity of series-connected cells. The P6 (Port) Integrated Equipment Assembly (IEA) containing the initial ISS high-power components was successfully launched on November 30, 2000. The IEA contains 12 Battery Subassembly ORUs (6 batteries) that provide station power during eclipse periods. This paper will discuss the battery performance data after eighteen months of cycling.

  9. Summary Report on Phase I Results from the 3D Printing in Zero G Technology Demonstration Mission, Volume I

    Science.gov (United States)

    Prater, T. J.; Bean, Q. A.; Beshears, R. D.; Rolin, T. D.; Werkheiser, N. J.; Ordonez, E. A.; Ryan, R. M.; Ledbetter, F. E., III

    2016-01-01

    Human space exploration to date has been confined to low-Earth orbit and the Moon. The International Space Station (ISS) provides a unique opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture beyond the Earth/Moon system. The ability to manufacture parts in-space rather than launch them from Earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In September 2014, NASA, in partnership with Made In Space, Inc., launched the 3D Printing in Zero-G technology demonstration mission to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on orbit using fused deposition modeling. This Technical Publication summarizes the results of testing to date of the ground control and flight prints from the first phase of this ISS payload.

  10. Estimating the Need for Medical Intervention due to Sleep Disruption on the International Space Station

    Science.gov (United States)

    Myers, Jerry G.; Lewandowski, Beth E.; Brooker, John E.; Hurst, S. R.; Mallis, Melissa M.; Caldwell, J. Lynn

    2008-01-01

    During ISS and shuttle missions, difficulties with sleep affect more than half of all US crews. Mitigation strategies to help astronauts cope with the challenges of disrupted sleep patterns can negatively impact both mission planning and vehicle design. The methods for addressing known detrimental impacts for some mission scenarios may have a substantial impact on vehicle specific consumable mass or volume or on the mission timeline. As part of the Integrated Medical Model (IMM) task, NASA Glenn Research Center is leading the development of a Monte Carlo based forecasting tool designed to determine the consumables required to address risks related to sleep disruption. The model currently focuses on the International Space Station and uses an algorithm that assembles representative mission schedules and feeds this into a well validated model that predicts relative levels of performance, and need for sleep (SAFTE Model, IBR Inc). Correlation of the resulting output to self-diagnosed needs for hypnotics, stimulants, and other pharmaceutical countermeasures, allows prediction of pharmaceutical use and the uncertainty of the specified prediction. This paper outlines a conceptual model for determining a rate of pharmaceutical utilization that can be used in the IMM model for comparison and optimization of mitigation methods with respect to all other significant medical needs and interventions.

  11. ISS Local Environment Spectrometers (ISLES)

    Science.gov (United States)

    Krause, Linda Habash; Gilchrist, Brian E.

    2014-01-01

    In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.

  12. Delay/Disruption Tolerance Networking (DTN) Implementation and Utilization Options on the International Space Station

    Science.gov (United States)

    Holbrook, Mark; Pitts, Robert Lee; Gifford, Kevin K.; Jenkins, Andrew; Kuzminsky, Sebastian

    2010-01-01

    The International Space Station (ISS) is in an operational configuration and nearing final assembly. With its maturity and diverse payloads onboard, the opportunity exists to extend the orbital lab into a facility to exercise and demonstrate Delay/Disruption Tolerant Networking (DTN). DTN is an end-to-end network service providing communications through environments characterized by intermittent connectivity, variable delays, high bit error rates, asymmetric links and simplex links. The DTN protocols, also known as bundle protocols, provide a store-and-forward capability to accommodate end-to-end network services. Key capabilities of the bundling protocols include: the Ability to cope with intermittent connectivity, the Ability to take advantage of scheduled and opportunistic connectivity (in addition to always up connectivity), Custody Transfer, and end-to-end security. Colorado University at Boulder and the Huntsville Operational Support Center (HOSC) have been developing a DTN capability utilizing the Commercial Generic Bioprocessing Apparatus (CGBA) payload resources onboard the ISS, at the Boulder Payload Operations Center (POC) and at the HOSC. The DTN capability is in parallel with and is designed to augment current capabilities. The architecture consists of DTN endpoint nodes on the ISS and at the Boulder POC, and a DTN node at the HOSC. The DTN network is composed of two implementations; the Interplanetary Overlay Network (ION) and the open source DTN2 implementation. This paper presents the architecture, implementation, and lessons learned. By being able to handle the types of environments described above, the DTN technology will be instrumental in extending networks into deep space to support future missions to other planets and other solar system points of interest. Thus, this paper also discusses how this technology will be applicable to these types of deep space exploration missions.

  13. Investigating the Response and Expansion of Plasma Plumes in a Mesosonic Plasma Using the Situational Awareness Sensor Suite for the ISS (SASSI)

    Science.gov (United States)

    Gilchrist, Brian E.; Hoegy, W. R.; Krause, L. Habash; Minow, J. I.; Coffey, V. N.

    2014-01-01

    To study the complex interactions between the space environment surrounding the International Space Station (ISS) and the ISS space vehicle, we are exploring a specialized suite of plasma sensors, manipulated by the Space Station Remote Manipulator System (SSRMS) to probe the near-ISS mesosonic plasma ionosphere moving past the ISS. It is proposed that SASSI consists of the NASA Marshall Space Flight Center's (MSFC's) Thermal Ion Capped Hemispherical Spectrometer (TICHS), Thermal Electron Capped Hemispherical Spectrometer (TECHS), Charge Analyzer Responsive to Local Oscillations (CARLO), the Collimated PhotoElectron Gun (CPEG), and the University of Michigan Advanced Langmuir Probe (ALP). There are multiple expected applications for SASSI. Here, we will discuss the study of fundamental plasma physics questions associated with how an emitted plasma plume (such as from the ISS Plasma Contactor Unit (PCU)) responds and expands in a mesosonic magnetoplasma as well as emit and collect current. The ISS PCU Xe plasma plume drifts through the ionosphere and across the Earth's magnetic field, resulting in complex dynamics. This is of practical and theoretical interest pertaining to contamination concerns (e.g. energetic ion scattering) and the ability to collect and emit current between the spacecraft and the ambient plasma ionosphere. This impacts, for example, predictions of electrodynamic tether current performance using plasma contactors as well as decisions about placing high-energy electric propulsion thrusters on ISS. We will discuss the required measurements and connection to proposed instruments for this study.

  14. International Space Station Nickel-Hydrogen Battery Start-Up and Initial Performance

    Science.gov (United States)

    Cohen, Fred; Dalton, Penni J.

    2001-01-01

    International Space Station (ISS) Electric Power System (EPS) utilizes Nickel-Hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The batteries are designed to operate at a 35% depth of discharge (DOD) maximum during normal operation. Thirty eight individual pressure vessel (IPV) Ni-H2 battery cells are series-connected and packaged in an Orbital Replacement Unit (ORU). Two ORUs are series-connected utilizing a total of 76 cells, to form one battery. The ISS is the first application for low earth orbit (LEO) cycling of this quantity of series-connected cells. The P6 Integrated Equipment Assembly (IEA) containing the initial ISS high-power components was successfully launched on November 30, 2000. The IEA contains 12 Battery Subassembly ORUs (6 batteries) that provide station power during eclipse periods. This paper will describe the battery hardware configuration, operation, and role in providing power to the main power system of the ISS. We will also discuss initial battery start-up and performance data.

  15. Development and Certification of Station Development Test Objective (SDTO) Experiment # 15012-U, "Near RealTime Water Quality Monitoring Demonstration for ISS Biocides Using Colorimetric Solid Phase Extraction (CSPE)"

    Science.gov (United States)

    Gazda, Daniel B.; Nolan, Daniel J.; Rutz, Jeffrey A.; Shcultz, John R.; Siperko, Lorraine M.; Porter, Marc D,; Lipert, Robert J.; Limardo, Jose G.; McCoy, J. Torin

    2009-01-01

    Scientists and engineers from the Wyle Integrated Science and Engineering Group are working with researchers at the University of Utah and Iowa State University to develop and certify an experimental water quality monitoring kit based on Colorimetric Solid Phase Extraction (CSPE). The kit will be launched as a Station Development Test Objective (SDTO) experiment and evaluated on the International Space Station (ISS) to determine the acceptability of CSPE technology for routine inflight water quality monitoring. Iodine and silver, the biocides used in the US and Russian on-orbit water systems, will serve as test analytes for the technology evaluation. This manuscript provides an overview of the CSPE SDTO experiment and details the development and certification of the experimental water quality monitoring kit. Initial results from reagent and standard solution stability testing and environmental testing performed on the kit hardware are also reported.

  16. TANPOPO: Microbe and micrometeoroid capture experiments on International Space Station.

    Science.gov (United States)

    Yamagishi, Akihiko; Kobayashi, Kensei; Yano, Hajime; Yokobori, Shinichi; Hashimoto, Hirofumi; Kawai, Hideyuki; Yamashita, Masamichi

    There is a long history of the microbe-collection experiments at high altitude. Microbes have been collected using balloons, aircraft and meteorological rockets from 1936 to 1976. Spore forming fungi and Bacilli, and Micrococci have been isolated in these experiments. It is not clear how high do microbes go up. If the microbes might have been present even at higher altitudes, the fact would endorse the possibility of interplanetary migration of life. TANPOPO, dandelion, is the name of a grass whose seeds with floss are spread by the wind. We propose the analyses of interplanetary migration of microbes, organic compounds and meteoroids on Japan Experimental Module (JEM) of the International Space Station (ISS). Ultra low-density aerogel will be used to capture micrometeoroid and debris. Particles captured by aerogel will be used for several analyses after the initial inspection of the gel and tracks. Careful analysis of the tracks in the aerogel will provide the size and velocity dependence of debris flux. The particles will be analyzed for mineralogical, organic and microbiological characteristics. Aerogels are ready for production in Japan. Aerogels and trays are space proven. All the analytical techniques are ready. The Tanpopo mission was accepted as a candidate experiments on Exposed Facility of ISS-JEM.

  17. Quantitative Risk Modeling of Fire on the International Space Station

    Science.gov (United States)

    Castillo, Theresa; Haught, Megan

    2014-01-01

    The International Space Station (ISS) Program has worked to prevent fire events and to mitigate their impacts should they occur. Hardware is designed to reduce sources of ignition, oxygen systems are designed to control leaking, flammable materials are prevented from flying to ISS whenever possible, the crew is trained in fire response, and fire response equipment improvements are sought out and funded. Fire prevention and mitigation are a top ISS Program priority - however, programmatic resources are limited; thus, risk trades are made to ensure an adequate level of safety is maintained onboard the ISS. In support of these risk trades, the ISS Probabilistic Risk Assessment (PRA) team has modeled the likelihood of fire occurring in the ISS pressurized cabin, a phenomenological event that has never before been probabilistically modeled in a microgravity environment. This paper will discuss the genesis of the ISS PRA fire model, its enhancement in collaboration with fire experts, and the results which have informed ISS programmatic decisions and will continue to be used throughout the life of the program.

  18. ISS Expeditions 16 through 20: Chemical Analysis Results for Potable Water

    Science.gov (United States)

    Straub, John E., II; Plumlee, Debrah K.; Schultz, John R.

    2010-01-01

    During the 2-year span from Expedition 16 through Expedition 20, the chemical quality of the potable water onboard the International Space Station (ISS) was verified safe for crew consumption through the return and chemical analysis of archival water samples by the Water and Food Analytical Laboratory (WAFAL) at Johnson Space Center (JSC). Reclaimed cabin humidity condensate and Russian ground-supplied water were the principal sources of potable water for Expeditions 16 through 18. During Expedition 18 the U.S. water processor assembly was delivered, installed, and tested during a 90-day checkout period. Beginning with Expedition 19, U.S. potable water recovered from a combined waste stream of humidity condensate and pretreated urine was also available for ISS crew use. A total of 74 potable water samples were collected using U.S. sampling hardware during Expeditions 16 through 20 and returned on both Shuttle and Soyuz vehicles. The results of JSC chemical analyses of these ISS potable water samples are presented in this paper. Eight potable water samples collected in flight with Russian hardware were also received for analysis, as well as 5 preflight samples of Rodnik potable water delivered to ISS on Russian Progress vehicles 28 to 34. Analytical results for these additional potable water samples are also reported and discussed.

  19. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    Science.gov (United States)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a

  20. Planning in the Continuous Operations Environment of the International Space Station

    Science.gov (United States)

    Maxwell, Theresa; Hagopian, Jeff

    1996-01-01

    The continuous operation planning approach developed for the operations planning of the International Space Station (ISS) is reported on. The approach was designed to be a robust and cost-effective method. It separates ISS planning into two planning functions: long-range planning for a fixed length planning horizon which continually moves forward as ISS operations progress, and short-range planning which takes a small segment of the long-range plan and develops a detailed operations schedule. The continuous approach is compared with the incremental approach, the short and long-range planning functions are described, and the benefits and challenges of implementing a continuous operations planning approach for the ISS are summarized.

  1. Further Analyses of the NASA Glenn Research Center Solar Cell and Photovoltaic Materials Experiment Onboard the International Space Station

    Science.gov (United States)

    Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Piszczor, Michael F.; McNatt, Jeremiah S.

    2016-01-01

    Accurate air mass zero (AM0) measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. The NASA Glenn Research Center (GRC) has flown an experiment designed to measure the electrical performance of several solar cells onboard NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4) on the exterior of the International Space Station (ISS). Four industry and government partners provided advanced PV devices for measurement and orbital environment testing. The experiment was positioned on the exterior of the station for approximately eight months, and was completely self-contained, providing its own power and internal data storage. Several new cell technologies including four-junction (4J) Inverted Metamorphic Multi-Junction (IMM) cells were evaluated and the results will be compared to ground-based measurement methods.

  2. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission

    Science.gov (United States)

    Bilen, Sven G.; Johnson, C. Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael; Stone, Nobie

    2014-01-01

    The PROPEL ("Propulsion using Electrodynamics") flight demonstration mission concept will demonstrate the use of an electrodynamic tether (EDT) for generating thrust, which will allow the propulsion system to overcome the limitations of the rocket equation. The mission concept has been developed by a team of government, industry, and academia partners led by NASA Marshall Space Flight Center (MSFC). PROPEL is being designed for versatility of the EDT system with multiple end users in mind and to be flexible with respect to platform. Previously, we reported on a comprehensive mission design for PROPEL with a mission duration of six months or longer with multiple mission goals including demonstration of significant boost, deboost, inclination change, and drag make-up activities. To explore a range of possible configurations, primarily driven by cost considerations, other mission concept designs have been pursued. In partnership with the NASA's Office of Chief Technologist (OCT) Game Changing Program, NASA MSFC Leadership, and the MSFC Advanced Concepts Office, a mission concept design was developed for a near-term EDT propulsion flight validation mission. The Electrodynamic Tether Propulsion Study (ETPS) defined an EDT propulsion system capable of very large delta-V for use on future missions developed by NASA, DoD, and commercial customers. To demonstrate the feasibility of an ETPS, the study focused on a space demonstration mission concept design with configuration of a pair of tethered satellite busses, one of which is the Japanese H-II Transfer Vehicle (HTV). The HTV would fly its standard ISS resupply mission. When resupply mission is complete, the ISS reconfigures and releases the HTV to perform the EDT experiment at safe orbital altitudes below the ISS. Though the focus of this particular mission concept design addresses a scenario involving the HTV or a similar vehicle, the propulsion system's capability is relevant to a number of applications, as noted above

  3. Space Environment Effects on Materials at Different Positions and Operational Periods of ISS

    Science.gov (United States)

    Kimoto, Yugo; Ichikawa, Shoichi; Miyazaki, Eiji; Matsumoto, Koji; Ishizawa, Junichiro; Shimamura, Hiroyuki; Yamanaka, Riyo; Suzuki, Mineo

    2009-01-01

    A space materials exposure experiment was condcuted on the exterior of the Russian Service Module (SM) of the International Space Station (ISS) using the Micro-Particles Capturer and Space Environment Exposure Device (MPAC&SEED) of the Japan Aerospace Exploration Agency (JAXA). Results reveal artificial environment effects such as sample contamination, attitude change effects on AO fluence, and shading effects of UV on ISS. The sample contamination was coming from ISS components. The particles attributed to micrometeoroids and/or debris captured by MPAC might originate from the ISS solar array. Another MPAC&SEED will be aboard the Exposure Facility of the Japanese Experiment Module, KIBO Exposure Facility (EF) on ISS. The JEM/MPAC&SEED is attached to the Space Environment Data Acquisition Equipment-Attached Payload (SEDA-AP) and is exposed to space. Actually, SEDA-AP is a payload on EF to be launched by Space Shuttle flight 2J/A. In fact, SEDA-AP has space environment monitors such as a high-energy particle monitor, atomic oxygen monitor, and plasma monitor to measure in-situ natural space environment data during JEM/MPAC&SEED exposure. Some exposure samples for JEM/MPAC&SEED are identical to SM/MPAC&SEED samples. Consequently, effects on identical materials at different positions and operation periods of ISS will be evaluated. This report summarizes results from space environment monitoring samples for atomic oxygen analysis on SM/MPAC&SEED, along with experimental plans for JEM/MPAC&SEED.

  4. Relationship Between Carbon Dioxide Levels and Reported Congestion and Headaches on the International Space Station

    Science.gov (United States)

    Cole, Robert; Wear, Mary; Young, Millennia; Cobel, Christopher; Mason, Sara

    2017-01-01

    Congestion is commonly reported during spaceflight, and most crewmembers have reported using medications for congestion during International Space Station (ISS) missions. Although congestion has been attributed to fluid shifts during spaceflight, fluid status reaches equilibrium during the first week after launch while congestion continues to be reported throughout long duration missions. Congestion complaints have anecdotally been reported in relation to ISS CO2 levels; this evaluation was undertaken to determine whether or not an association exists. METHODS: Reported headaches, congestion symptoms, and CO2 levels were obtained for ISS expeditions 2-31, and time-weighted means and single-point maxima were determined for 24-hour (24hr) and 7-day (7d) periods prior to each weekly private medical conference. Multiple imputation addressed missing data, and logistic regression modeled the relationship between probability of reported event of congestion or headache and CO2 levels, adjusted for possible confounding covariates. The first seven days of spaceflight were not included to control for fluid shifts. Data were evaluated to determine the concentration of CO2 required to maintain the risk of congestion below 1% to allow for direct comparison with a previously published evaluation of CO2 concentrations and headache. RESULTS: This study confirmed a previously identified significant association between CO2 and headache and also found a significant association between CO2 and congestion. For each 1-mm Hg increase in CO2, the odds of a crew member reporting congestion doubled. The average 7-day CO2 would need to be maintained below 1.5 mmHg to keep the risk of congestion below 1%. The predicted probability curves of ISS headache and congestion curves appear parallel when plotted against ppCO2 levels with congestion occurring at approximately 1mmHg lower than a headache would be reported. DISCUSSION: While the cause of congestion is multifactorial, this study showed

  5. Laser Spectroscopy Multi-Gas Monitor: Results of Technology Demonstration on ISS

    Science.gov (United States)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2015-01-01

    Tunable diode laser spectroscopy (TDLS) is an up and coming trace and major gas monitoring technology with unmatched selectivity, range and stability. The technology demonstration of the 4 gas Multi-Gas Monitor (MGM), reported at the 2014 ICES conference, operated continuously on the International Space Station (ISS) for nearly a year. The MGM is designed to measure oxygen, carbon dioxide, ammonia and water vapor in ambient cabin air in a low power, relatively compact device. While on board, the MGM experienced a number of challenges, unplanned and planned, including a test of the ammonia channel using a commercial medical ammonia inhalant. Data from the unit was downlinked once per week and compared with other analytical resources on board, notably the Major Constituent Analyzer (MCA), a magnetic sector mass spectrometer. MGM spent the majority of the time installed in the Nanoracks Frame 2 payload facility in front breathing mode (sampling the ambient environment of the Japanese Experiment Module), but was also used to analyze recirculated rack air. The capability of the MGM to be operated in portable mode (via internal rechargeable lithium ion polymer batteries or by plugging into any Express Rack 28VDC connector) was a part of the usability demonstration. Results to date show unprecedented stability and accuracy of the MGM vs. the MCA for oxygen and carbon dioxide. The ammonia challenge (approx. 75 ppm) was successful as well, showing very rapid response time in both directions. Work on an expansion of capability in a next generation MGM has just begun. Combustion products and hydrazine are being added to the measurable target analytes. An 8 to 10 gas monitor (aka Gas Tricorder 1.0) is envisioned for use on ISS, Orion and Exploration missions.

  6. Paving the Way for Small Satellite Access to Orbit: Cyclops' Deployment of SpinSat, the Largest Satellite Ever Deployed from the International Space Station

    Science.gov (United States)

    Hershey, Matthew P.; Newswander, Daniel R.; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2015-01-01

    The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, successfully deployed the largest satellite ever (SpinSat) from the ISS on November 28, 2014. Cyclops, a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense Space Test Program (DoD STP) communities, is a dedicated 10-100 kg class ISS small satellite deployment system. This paper will showcase the successful deployment of SpinSat from the ISS. It will also outline the concept of operations, interfaces, requirements, and processes for satellites to utilize the Cyclops satellite deployment system.

  7. Human Assisted Robotic Vehicle Studies - A conceptual end-to-end mission architecture

    Science.gov (United States)

    Lehner, B. A. E.; Mazzotta, D. G.; Teeney, L.; Spina, F.; Filosa, A.; Pou, A. Canals; Schlechten, J.; Campbell, S.; Soriano, P. López

    2017-11-01

    With current space exploration roadmaps indicating the Moon as a proving ground on the way to human exploration of Mars, it is clear that human-robotic partnerships will play a key role for successful future human space missions. This paper details a conceptual end-to-end architecture for an exploration mission in cis-lunar space with a focus on human-robot interactions, called Human Assisted Robotic Vehicle Studies (HARVeSt). HARVeSt will build on knowledge of plant growth in space gained from experiments on-board the ISS and test the first growth of plants on the Moon. A planned deep space habitat will be utilised as the base of operations for human-robotic elements of the mission. The mission will serve as a technology demonstrator not only for autonomous tele-operations in cis-lunar space but also for key enabling technologies for future human surface missions. The successful approach of the ISS will be built on in this mission with international cooperation. Mission assets such as a modular rover will allow for an extendable mission and to scout and prepare the area for the start of an international Moon Village.

  8. Impact of communication delays to and from the International Space Station on self-reported individual and team behavior and performance: A mixed-methods study

    Science.gov (United States)

    Kintz, Natalie M.; Chou, Chih-Ping; Vessey, William B.; Leveton, Lauren B.; Palinkas, Lawrence A.

    2016-12-01

    Deep space explorations will involve significant delays in communication to and from Earth that will likely impact individual and team outcomes. However, the extent of these impacts and the appropriate countermeasures for their mitigation remain largely unknown. This study utilized the International Space Station (ISS), a high-fidelity analog for deep space, as a research platform to assess the impact of communication delays on individual and team performance, mood, and behavior. Three astronauts on the ISS and 18 mission support personnel performed tasks with and without communication delays (50-s one-way) during a mission lasting 166 days. Self-reported assessments of individual and team performance and mood were obtained after each task. Secondary outcomes included communication quality and task autonomy. Qualitative data from post-mission interviews with astronauts were used to validate and expand on quantitative data, and to elicit recommendations for countermeasures. Crew well-being and communication quality were significantly reduced in communication delay tasks compared to control. Communication delays were also significantly associated with increased individual stress/frustration. Qualitative data suggest communication delays impacted operational outcomes (i.e. task efficiency), teamwork processes (i.e. team/task coordination) and mood (i.e. stress/frustration), particularly when tasks involved high task-related communication demands, either because of poor communication strategies or low crew autonomy. Training, teamwork, and technology-focused countermeasures were identified to mitigate or prevent adverse impacts.

  9. Neutron dose study with bubble detectors aboard the International Space Station as part of the Matroshka-R experiment

    International Nuclear Information System (INIS)

    Machrafi, R.; Garrow, K.; Ing, H.; Smith, M. B.; Andrews, H. R.; Akatov, Yu; Arkhangelsky, V.; Chernykh, I.; Mitrikas, V.; Petrov, V.; Shurshakov, V.; Tomi, L.; Kartsev, I.; Lyagushin, V.

    2009-01-01

    As part of the Matroshka-R experiments, a spherical phantom and space bubble detectors (SBDs) were used on board the International Space Station to characterise the neutron radiation field. Seven experimental sessions with SBDs were carried out during expeditions ISS-13, ISS-14 and ISS-15. The detectors were positioned at various places throughout the Space Station, in order to determine dose variations with location and on/in the phantom in order to establish the relationship between the neutron dose measured externally to the body and the dose received internally. Experimental data on/in the phantom and at different locations are presented. (authors)

  10. Inspiring the Next Generation: The International Space Station Education Accomplishments

    Science.gov (United States)

    Alleyne, Camille W.; Hasbrook, Pete; Knowles, Carolyn; Chicoine, Ruth Ann; Miyagawa, Yayoi; Koyama, Masato; Savage, Nigel; Zell, Martin; Biryukova, Nataliya; Pinchuk, Vladimir; hide

    2014-01-01

    The International Space Station (ISS) has a unique ability to capture the imagination of both students and teachers worldwide. Since 2000, the presence of humans onboard ISS has provided a foundation for numerous educational activities aimed at capturing that interest and motivating study in the sciences, technology, engineering and mathematics (STEM). Over 43 million students around the world have participated in ISS-related educational activities. Projects such as YouTube Space Lab, Sally Ride Earth Knowledge-based Acquired by Middle Schools (EarthKAM), SPHERES (Synchronized Position Hold Engage and Reorient Experimental Satellites) Zero-Robotics, Tomatosphere, and MAI-75 events among others have allowed for global student, teacher and public access to space through student classroom investigations and real-time audio and video contacts with crewmembers. Educational activities are not limited to STEM but encompass all aspects of the human condition. This is well illustrated in the Uchu Renshi project, a chain poem initiated by an astronaut while in space and continued and completed by people on Earth. With ISS operations now extended to 2024, projects like these and their accompanying educational materials are available to more students around the world. From very early on in the program's history, students have been provided with a unique opportunity to get involved and participate in science and engineering projects. Many of these projects support inquiry-based learning that allows students to ask questions, develop hypothesis-derived experiments, obtain supporting evidence and identify solutions or explanations. This approach to learning is well-published as one of the most effective ways to inspire students to pursue careers in scientific and technology fields. Ever since the first space station element was launched, a wide range of student experiments and educational activities have been performed, both individually and collaboratively, by all the

  11. Estimated Probability of a Cervical Spine Injury During an ISS Mission

    Science.gov (United States)

    Brooker, John E.; Weaver, Aaron S.; Myers, Jerry G.

    2013-01-01

    Introduction: The Integrated Medical Model (IMM) utilizes historical data, cohort data, and external simulations as input factors to provide estimates of crew health, resource utilization and mission outcomes. The Cervical Spine Injury Module (CSIM) is an external simulation designed to provide the IMM with parameter estimates for 1) a probability distribution function (PDF) of the incidence rate, 2) the mean incidence rate, and 3) the standard deviation associated with the mean resulting from injury/trauma of the neck. Methods: An injury mechanism based on an idealized low-velocity blunt impact to the superior posterior thorax of an ISS crewmember was used as the simulated mission environment. As a result of this impact, the cervical spine is inertially loaded from the mass of the head producing an extension-flexion motion deforming the soft tissues of the neck. A multibody biomechanical model was developed to estimate the kinematic and dynamic response of the head-neck system from a prescribed acceleration profile. Logistic regression was performed on a dataset containing AIS1 soft tissue neck injuries from rear-end automobile collisions with published Neck Injury Criterion values producing an injury transfer function (ITF). An injury event scenario (IES) was constructed such that crew 1 is moving through a primary or standard translation path transferring large volume equipment impacting stationary crew 2. The incidence rate for this IES was estimated from in-flight data and used to calculate the probability of occurrence. The uncertainty in the model input factors were estimated from representative datasets and expressed in terms of probability distributions. A Monte Carlo Method utilizing simple random sampling was employed to propagate both aleatory and epistemic uncertain factors. Scatterplots and partial correlation coefficients (PCC) were generated to determine input factor sensitivity. CSIM was developed in the SimMechanics/Simulink environment with a

  12. Water Recovery System Design to Accommodate Dormant Periods for Manned Missions

    Science.gov (United States)

    Tabb, David; Carter, Layne

    2015-01-01

    Future manned missions beyond lower Earth orbit may include intermittent periods of extended dormancy. Under the NASA Advanced Exploration System (AES) project, NASA personnel evaluated the viability of the ISS Water Recovery System (WRS) to support such a mission. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper details the results of this evaluation, which include identification of dormancy issues, results of testing performed to assess microbial stability of pretreated urine during dormancy periods, and concepts for updating to the WRS architecture and operational concepts that will enable the ISS WRS to support the dormancy requirement.

  13. Studying Planarian Regeneration Aboard the International Space Station within the Student Space Flight Experimental Program

    Science.gov (United States)

    Vista SSEP Mission 11 Team; Hagstrom, Danielle; Bartee, Christine; Collins, Eva-Maria S.

    2018-05-01

    The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS) showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP) to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  14. Studying Planarian Regeneration Aboard the International Space Station Within the Student Space Flight Experimental Program

    Directory of Open Access Journals (Sweden)

    Vista SSEP Mission 11 Team

    2018-05-01

    Full Text Available The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  15. International Space Station Environmental Control and Life Support System Status: 2009 - 2010

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non -regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2009 and February 2010. The ISS continued permanent crew operations, with the start of Phase 3 of the ISS Assembly Sequence and an increase of the ISS crew size from three to six. Work continues on the last of the Phase 3 pressurized elements.

  16. International Space Station Environmental Control and Life Support System Status: 2014-2015

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2014 and February 2015. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  17. Analysis of High-order Social Interaction of Female Mice on the International Space Station

    Science.gov (United States)

    Lowe, M.; Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Cadena, S.; Stodieck, L.; Globus, R. K.; Ronca, A. E.

    2017-01-01

    Social interactions are adaptive responses to environmental pressures that have evolved to facilitate the success of individual animals and their progeny. Quantifying social behavior in social animals is therefore one method of evaluating an animal's health, wellbeing and their adjustment to changes in their environment. The interaction between environment and animal can influence numerous other physiological and psychological responses that may enhance, deter or shift an animals social paradigm. For this study, we utilized flight video from the Rodent Research Hardware and Operations Validation mission (Rodent Research-1; RR1) on the International Space Station (ISS). Female mice spent 37 days in microgravity on the ISS and video was captured during the final 33 days. In a previous analysis of individual behavior, we also reported an observed spontaneous ambulatory behavior which we termed circling or 'race tracking,' and we anecdotally observed an increase in group organization around this behavior. In this analysis we further examined this behavior, and other social interactions, to determine if (1) animals joining in on this behavior were induced by other cohort members already participating in this circling behavior, (2) rates of joining varied by number already participating.

  18. Training astronauts using three-dimensional visualisations of the International Space Station.

    Science.gov (United States)

    Rycroft, M; Houston, A; Barker, A; Dahlstron, E; Lewis, N; Maris, N; Nelles, D; Bagaoutdinov, R; Bodrikov, G; Borodin, Y; Cheburkov, M; Ivanov, D; Karpunin, P; Katargin, R; Kiselyev, A; Kotlayarevsky, Y; Schetinnikov, A; Tylerov, F

    1999-03-01

    Recent advances in personal computer technology have led to the development of relatively low-cost software to generate high-resolution three-dimensional images. The capability both to rotate and zoom in on these images superposed on appropriate background images enables high-quality movies to be created. These developments have been used to produce realistic simulations of the International Space Station on CD-ROM. This product is described and its potentialities demonstrated. With successive launches, the ISS is gradually built up, and visualised over a rotating Earth against the star background. It is anticipated that this product's capability will be useful when training astronauts to carry out EVAs around the ISS. Simulations inside the ISS are also very realistic. These should prove invaluable when familiarising the ISS crew with their future workplace and home. Operating procedures can be taught and perfected. "What if" scenario models can be explored and this facility should be useful when training the crew to deal with emergency situations which might arise. This CD-ROM product will also be used to make the general public more aware of, and hence enthusiastic about, the International Space Station programme.

  19. A ZigBee-Based Wireless Sensor Network for Continuous Sound and Noise Level Monitoring on the ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The International Space Station (ISS) needs to keep quiet to maintain a healthy and habitable environment in which crewmembers can perform long-term and...

  20. Mentoring SFRM: A New Approach to International Space Station Flight Controller Training

    Science.gov (United States)

    Huning, Therese; Barshi, Immanuel; Schmidt, Lacey

    2008-01-01

    The Mission Operations Directorate (MOD) of the Johnson Space Center is responsible for providing continuous operations support for the International Space Station (ISS). Operations support requires flight controllers who are skilled in team performance as well as the technical operations of the ISS. Space Flight Resource Management (SFRM), a NASA adapted variant of Crew Resource Management (CRM), is the competency model used in the MOD. ISS flight controller certification has evolved to include a balanced focus on development of SFRM and technical expertise. The latest challenge the MOD faces is how to certify an ISS flight controller (operator) to a basic level of effectiveness in 1 year. SFRM training uses a two-pronged approach to expediting operator certification: 1) imbed SFRM skills training into all operator technical training and 2) use senior flight controllers as mentors. This paper focuses on how the MOD uses senior flight controllers as mentors to train SFRM skills. Methods: A mentor works with an operator throughout the training flow. Inserted into the training flow are guided-discussion sessions and on-the-job observation opportunities focusing on specific SFRM skills, including: situational leadership, conflict management, stress management, cross-cultural awareness, self care and team care while on-console, communication, workload management, and situation awareness. The mentor and operator discuss the science and art behind the skills, cultural effects on skills applications, recognition of good and bad skills applications, recognition of how skills application changes subtly in different situations, and individual goals and techniques for improving skills. Discussion: This mentoring program provides an additional means of transferring SFRM knowledge compared to traditional CRM training programs. Our future endeavors in training SFRM skills (as well as other organization s) may benefit from adding team performance skills mentoring. This paper

  1. Cognitive Assessment During Long-Duration Space Flight

    Science.gov (United States)

    Seaton, Kimberly; Kane, R. L.; Sipes, Walter

    2010-01-01

    The Space Flight Cognitive Assessment Tool for Windows (WinSCAT) is a computer-based, self-administered battery of five cognitive assessment tests developed for medical operations at NASA's Johnson Space Center in Houston, Texas. WinSCAT is a medical requirement for U.S. long-duration astronauts and has been implemented with U.S. astronauts from one NASA/Mir mission (NASA-7 mission) and all expeditions to date on the International Space Station (ISS). Its purpose is to provide ISS crew surgeons with an objective clinical tool after an unexpected traumatic event, a medical condition, or the cumulative effects of space flight that could negatively affect an astronaut's cognitive status and threaten mission success. WinSCAT was recently updated to add network capability to support a 6-person crew on the station support computers. Additionally, WinSCAT Version 2.0.28 has increased difficulty of items in Mathematics, increased number of items in Match-to-Sample, incorporates a moving rather than a fixed baseline, and implements stricter interpretation rules. ISS performance data were assessed to compare initial to modified interpretation rules for detecting potential changes in cognitive functioning during space flight. WinSCAT tests are routinely taken monthly during an ISS mission. Performance data from these ISS missions do not indicate significant cognitive decrements due to microgravity/space flight alone but have shown decrements. Applying the newly derived rules to ISS data results in a number of off-nominal performances at various times during and after flight.. Correlation to actual events is needed, but possible explanations for off-nominal performances could include actual physical factors such as toxic exposure, medication effects, or fatigue; emotional factors including stress from the mission or life events; or failure to exert adequate effort on the tests.

  2. Application of combined TLD and CR-39 PNTD method for measurement of total dose and dose equivalent on ISS

    International Nuclear Information System (INIS)

    Benton, E.R.; Deme, S.; Apathy, I.

    2006-01-01

    To date, no single passive detector has been found that measures dose equivalent from ionizing radiation exposure in low-Earth orbit. We have developed the I.S.S. Passive Dosimetry System (P.D.S.), utilizing a combination of TLD in the form of the self-contained Pille TLD system and stacks of CR-39 plastic nuclear track detector (P.N.T.D.) oriented in three mutually orthogonal directions, to measure total dose and dose equivalent aboard the International Space Station (I.S.S.). The Pille TLD system, consisting on an on board reader and a large number of Ca 2 SO 4 :Dy TLD cells, is used to measure absorbed dose. The Pille TLD cells are read out and annealed by the I.S.S. crew on orbit, such that dose information for any time period or condition, e.g. for E.V.A. or following a solar particle event, is immediately available. Near-tissue equivalent CR-39 P.N.T.D. provides Let spectrum, dose, and dose equivalent from charged particles of LET ∞ H 2 O ≥ 10 keV/μm, including the secondaries produced in interactions with high-energy neutrons. Dose information from CR-39 P.N.T.D. is used to correct the absorbed dose component ≥ 10 keV/μm measured in TLD to obtain total dose. Dose equivalent from CR-39 P.N.T.D. is combined with the dose component <10 keV/μm measured in TLD to obtain total dose equivalent. Dose rates ranging from 165 to 250 μGy/day and dose equivalent rates ranging from 340 to 450 μSv/day were measured aboard I.S.S. during the Expedition 2 mission in 2001. Results from the P.D.S. are consistent with those from other passive detectors tested as part of the ground-based I.C.C.H.I.B.A.N. intercomparison of space radiation dosimeters. (authors)

  3. Update on International Space Station Nickel-Hydrogen Battery On-Orbit Performance

    Science.gov (United States)

    Dalton, Penni; Cohen, Fred

    2003-01-01

    International Space Station (ISS) Electric Power System (EPS) utilizes Nickel-Hydrogen (Ni-H2) batteries as part of its power system to store electrical energy. The batteries are charged during insolation and discharged during eclipse. The batteries are designed to operate at a 35% depth of discharge (DOD) maximum during normal operation. Thirty-eight individual pressure vessel (IPV) Ni-H2 battery cells are series-connected and packaged in an Orbital Replacement Unit (ORU). Two ORUs are series-connected utilizing a total of 76 cells, to form one battery. The ISS is the first application for low earth orbit (LEO) cycling of this quantity of series-connected cells. The P6 (Port) Integrated Equipment Assembly (IEA) containing the initial ISS high-power components was successfully launched on November 30, 2000. The IEA contains 12 Battery Subassembly ORUs (6 batteries) that provide station power during eclipse periods. This paper will discuss the battery performance data after two and a half years of cycling.

  4. Chemical Characterization and Identification of Organosilicon Contaminants in ISS Potable Water

    Science.gov (United States)

    Straub, John E., II; Plumlee, Debrah K.; Gazda, Daniel B.

    2016-01-01

    2015 marked the 15th anniversary of continuous human presence on board the International Space Station. During the past year crew members from Expeditions 42-46, including two participating in a one-year mission, continued to rely on reclaimed water as their primary source of potable water. This paper presents and discusses results from chemical analyses performed on ISS water samples returned in 2015. Since the U.S. water processor assembly (WPA) became operational in 2008, there have been 5 instances of organic contaminants breaking through the treatment process. On each occasion, the breakthrough was signaled by an increase in the total organic carbon (TOC) concentration in the product water measured by the onboard TOC analyzer (TOCA). Although the most recent TOC rise in 2015 was not unexpected, it was the first time where dimethylsilanediol (DMSD) was not the primary compound responsible for the increase. Results from ground analysis of a product water sample collected in June of 2015 and returned on Soyuz 41 showed that DMSD only accounted for 10% of the measured TOC. After considerable laboratory investigation, the compound responsible for the majority of the TOC was identified as monomethysilanetriol (MMST). MMST is a low-toxicity compound that is structurally similar to DMSD.

  5. International Space Station Model Correlation Analysis

    Science.gov (United States)

    Laible, Michael R.; Fitzpatrick, Kristin; Hodge, Jennifer; Grygier, Michael

    2018-01-01

    This paper summarizes the on-orbit structural dynamic data and the related modal analysis, model validation and correlation performed for the International Space Station (ISS) configuration ISS Stage ULF7, 2015 Dedicated Thruster Firing (DTF). The objective of this analysis is to validate and correlate the analytical models used to calculate the ISS internal dynamic loads and compare the 2015 DTF with previous tests. During the ISS configurations under consideration, on-orbit dynamic measurements were collected using the three main ISS instrumentation systems; Internal Wireless Instrumentation System (IWIS), External Wireless Instrumentation System (EWIS) and the Structural Dynamic Measurement System (SDMS). The measurements were recorded during several nominal on-orbit DTF tests on August 18, 2015. Experimental modal analyses were performed on the measured data to extract modal parameters including frequency, damping, and mode shape information. Correlation and comparisons between test and analytical frequencies and mode shapes were performed to assess the accuracy of the analytical models for the configurations under consideration. These mode shapes were also compared to earlier tests. Based on the frequency comparisons, the accuracy of the mathematical models is assessed and model refinement recommendations are given. In particular, results of the first fundamental mode will be discussed, nonlinear results will be shown, and accelerometer placement will be assessed.

  6. DSMC Simulations of Disturbance Torque to ISS During Airlock Depressurization

    Science.gov (United States)

    Lumpkin, F. E., III; Stewart, B. S.

    2015-01-01

    The primary attitude control system on the International Space Station (ISS) is part of the United States On-orbit Segment (USOS) and uses Control Moment Gyroscopes (CMG). The secondary system is part of the Russian On orbit Segment (RSOS) and uses a combination of gyroscopes and thrusters. Historically, events with significant disturbances such as the airlock depressurizations associated with extra-vehicular activity (EVA) have been performed using the RSOS attitude control system. This avoids excessive propulsive "de-saturations" of the CMGs. However, transfer of attitude control is labor intensive and requires significant propellant. Predictions employing NASA's DSMC Analysis Code (DAC) of the disturbance torque to the ISS for depressurization of the Pirs airlock on the RSOS will be presented [1]. These predictions were performed to assess the feasibility of using USOS control during these events. The ISS Pirs airlock is vented using a device known as a "T-vent" as shown in the inset in figure 1. By orienting two equal streams of gas in opposite directions, this device is intended to have no propulsive effect. However, disturbance force and torque to the ISS do occur due to plume impingement. The disturbance torque resulting from the Pirs depressurization during EVAs is estimated by using a loosely coupled CFD/DSMC technique [2]. CFD is used to simulate the flow field in the nozzle and the near field plume. DSMC is used to simulate the remaining flow field using the CFD results to create an in flow boundary to the DSMC simulation. Due to the highly continuum nature of flow field near the T-vent, two loosely coupled DSMC domains are employed. An 88.2 cubic meter inner domain contains the Pirs airlock and the T-vent. Inner domain results are used to create an in flow boundary for an outer domain containing the remaining portions of the ISS. Several orientations of the ISS solar arrays and radiators have been investigated to find cases that result in minimal

  7. Astrobee: A New Platform for Free-Flying Robotics on the International Space Station

    Science.gov (United States)

    Smith, Trey; Barlow, Jonathan; Bualat, Maria; Fong, Terrence; Provencher, Christopher; Sanchez, Hugo; Smith, Ernest

    2016-01-01

    The Astrobees are next-generation free-flying robots that will operate in the interior of the International Space Station (ISS). Their primary purpose is to provide a flexible platform for research on zero-g freeflying robotics, with the ability to carry a wide variety of future research payloads and guest science software. They will also serve utility functions: as free-flying cameras to record video of astronaut activities, and as mobile sensor platforms to conduct surveys of the ISS. The Astrobee system includes two robots, a docking station, and a ground data system (GDS). It is developed by the Human Exploration Telerobotics 2 (HET-2) Project, which began in Oct. 2014, and will deliver the Astrobees for launch to ISS in 2017. This paper covers selected aspects of the Astrobee design, focusing on capabilities relevant to potential users of the platform.

  8. International Space Station Centrifuge Rotor Models A Comparison of the Euler-Lagrange and the Bond Graph Modeling Approach

    Science.gov (United States)

    Nguyen, Louis H.; Ramakrishnan, Jayant; Granda, Jose J.

    2006-01-01

    The assembly and operation of the International Space Station (ISS) require extensive testing and engineering analysis to verify that the Space Station system of systems would work together without any adverse interactions. Since the dynamic behavior of an entire Space Station cannot be tested on earth, math models of the Space Station structures and mechanical systems have to be built and integrated in computer simulations and analysis tools to analyze and predict what will happen in space. The ISS Centrifuge Rotor (CR) is one of many mechanical systems that need to be modeled and analyzed to verify the ISS integrated system performance on-orbit. This study investigates using Bond Graph modeling techniques as quick and simplified ways to generate models of the ISS Centrifuge Rotor. This paper outlines the steps used to generate simple and more complex models of the CR using Bond Graph Computer Aided Modeling Program with Graphical Input (CAMP-G). Comparisons of the Bond Graph CR models with those derived from Euler-Lagrange equations in MATLAB and those developed using multibody dynamic simulation at the National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) are presented to demonstrate the usefulness of the Bond Graph modeling approach for aeronautics and space applications.

  9. The Station Manipulator Arm Augmented Reality Trainer, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — One of the most demanding and high-stakes crew tasks aboard the International Space Station (ISS) is the capture of a visiting spacecraft by manual operation of the...

  10. EXPOSE-E: an ESA astrobiology mission 1.5 years in space.

    Science.gov (United States)

    Rabbow, Elke; Rettberg, Petra; Barczyk, Simon; Bohmeier, Maria; Parpart, André; Panitz, Corinna; Horneck, Gerda; von Heise-Rotenburg, Ralf; Hoppenbrouwers, Tom; Willnecker, Rainer; Baglioni, Pietro; Demets, René; Dettmann, Jan; Reitz, Guenther

    2012-05-01

    The multi-user facility EXPOSE-E was designed by the European Space Agency to enable astrobiology research in space (low-Earth orbit). On 7 February 2008, EXPOSE-E was carried to the International Space Station (ISS) on the European Technology Exposure Facility (EuTEF) platform in the cargo bay of Space Shuttle STS-122 Atlantis. The facility was installed at the starboard cone of the Columbus module by extravehicular activity, where it remained in space for 1.5 years. EXPOSE-E was returned to Earth with STS-128 Discovery on 12 September 2009 for subsequent sample analysis. EXPOSE-E provided accommodation in three exposure trays for a variety of astrobiological test samples that were exposed to selected space conditions: either to space vacuum, solar electromagnetic radiation at >110 nm and cosmic radiation (trays 1 and 3) or to simulated martian surface conditions (tray 2). Data on UV radiation, cosmic radiation, and temperature were measured every 10 s and downlinked by telemetry. A parallel mission ground reference (MGR) experiment was performed on ground with a parallel set of hardware and samples under simulated space conditions. EXPOSE-E performed a successful 1.5-year mission in space.

  11. Exploration Mission Particulate Matter Filtration Technology Performance Testing in a Simulated Spacecraft Cabin Ventilation System

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.; Frederick, Kenneth R.; Mccormick, Robert M.

    2017-01-01

    Human deep space exploration missions will require advances in long-life, low maintenance airborne particulate matter filtration technology. As one of the National Aeronautics and Space Administrations (NASA) developments in this area, a prototype of a new regenerable, multi-stage particulate matter filtration technology was tested in an International Space Station (ISS) module simulation facility. As previously reported, the key features of the filter system include inertial and media filtration with regeneration and in-place media replacement techniques. The testing facility can simulate aspects of the cabin environment aboard the ISS and contains flight-like cabin ventilation system components. The filtration technology test article was installed at the inlet of the central ventilation system duct and instrumented to provide performance data under nominal flow conditions. In-place regeneration operations were also evaluated. The real-time data included pressure drop across the filter stages, process air flow rate, ambient pressure, humidity and temperature. In addition, two video cameras positioned at the filtration technology test articles inlet and outlet were used to capture the mechanical performance of the filter media indexing operation under varying air flow rates. Recent test results are presented and future design recommendations are discussed.

  12. A commercial space technology testbed on ISS

    Science.gov (United States)

    Boyle, David R.

    2000-01-01

    There is a significant and growing commercial market for new, more capable communications and remote sensing satellites. Competition in this market strongly motivates satellite manufacturers and spacecraft component developers to test and demonstrate new space hardware in a realistic environment. External attach points on the International Space Station allow it to function uniquely as a space technology testbed to satisfy this market need. However, space industry officials have identified three critical barriers to their commercial use of the ISS: unpredictable access, cost risk, and schedule uncertainty. Appropriate NASA policy initiatives and business/technical assistance for industry from the Commercial Space Center for Engineering can overcome these barriers. .

  13. 3D Printing in Zero G Technology Demonstration Mission: Summary of On-Orbit Operations, Material Testing, and Future Work

    Science.gov (United States)

    Prater, Tracie; Bean, Quincy; Werkheiser, Niki; Ordonez, Erick; Ledbetter, Frank; Ryan, Richard; Newton, Steve

    2016-01-01

    Human space exploration to date has been limited to low Earth orbit and the moon. The International Space Station (ISS), an orbiting laboratory 200 miles above the earth, provides a unique and incredible opportunity for researchers to prove out the technologies that will enable humans to safely live and work in space for longer periods of time and venture farther into the solar system. The ability to manufacture parts in-space rather than launch them from earth represents a fundamental shift in the current risk and logistics paradigm for human spaceflight. In particularly, additive manufacturing (or 3D printing) techniques can potentially be deployed in the space environment to enhance crew safety (by providing an on-demand part replacement capability) and decrease launch mass by reducing the number of spare components that must be launched for missions where cargo resupply is not a near-term option. In September 2014, NASA launched the 3D Printing in Zero G technology demonstration mission to the ISS to explore the potential of additive manufacturing for in-space applications and demonstrate the capability to manufacture parts and tools on-orbit. The printer for this mission was designed and operated by the company Made In Space under a NASA SBIR (Small Business Innovation Research) phase III contract. The overarching objectives of the 3D print mission were to use ISS as a testbed to further maturation of enhancing technologies needed for long duration human exploration missions, introduce new materials and methods to fabricate structure in space, enable cost-effective manufacturing for structures and mechanisms made in low-unit production, and enable physical components to be manufactured in space on long duration missions if necessary. The 3D print unit for fused deposition modeling (FDM) of acrylonitrile butadiene styrene (ABS) was integrated into the ISS Microgravity Science Glovebox (MSG) in November 2014 and phase I printing operations took place from

  14. Industry's Commercial Initiatives on ISS

    Science.gov (United States)

    Shields, C. E.; Kessler, C.; Lavitola, M. S.

    2002-01-01

    For more than ten years, private industry has worked to develop a commercial human space market and to create a sustainable ISS commercial utilization customer base. Before ISS assembly was underway - and long before NASA and the international space agencies began to craft ISS commercial business terms and conditions - industry planted and nurtured the seeds of interest in exploiting human space utilization for commerce. These early initiatives have yielded the impetus and framework for industry approaches to ISS commercial utilization today and for NASA's and the International Partners' planned accommodation of private sector interests and desires on the ISS. This paper chronicles major industry initiatives for commercial ISS utilization, emphasizing successful marketing and business approaches and why these approaches have a higher likelihood of success than others. It provides an overview of individual companies' initiatives, as well as collaborative efforts that cross company lines and country borders; and it assesses the relative success of each. Rather than emphasize negative issues and barriers, this paper characterizes and prioritizes actionable success factors for industry and government to make ISS commercial utilization a sustainable reality.

  15. International Space Station Environmental Control and Life Support System Status: 2011-2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2011-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners activities on them, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028. 1

  16. NICER Mission Overview, Status, and GO opportunities

    Science.gov (United States)

    Gendreau, Keith C.

    2018-01-01

    The Neutron Interior Composition Explorer (NICER) was launched in June 2017 to the International Space Station (ISS) where it is studying the time-domain X-ray sky. NICER consists of a collection of X-ray concentrators, silicon drift detectors, an optical bench, and pointing system that together provide a large collection area in the soft (0.2-12 keV) X-ray bandpass. NICER time-stamps individual X-ray photons to an absolute precision of better than 100 nanoseconds while providing moderate CCD-like energy resolution. Since installation, NICER has observed over 100 celestial targets including neutron stars and other objects. The NICER team accepts target of opportunity (TOO) requests for consideration. In addition, NICER will be demonstrating the use of some millisecond pulsars as navigational beacons. NICER will complete its baseline mission in January 2019 with data beginning to be made public in January 2018. Conditional on the status of its baseline science objectives, NICER will be open to a guest observer program with first round proposals due in mid 2018 for observations beginning in 2019.

  17. A ZigBee-Based Wireless Sensor Network for Continuous Sound and Noise Level Monitoring on the ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Acoustic survey is now performed using hand-held devices once every two months on the international space station (ISS). It takes quite a lot of precious crew time...

  18. The VASIMR[registered trademark] VF-200-1 ISS Experiment as a Laboratory for Astrophysics

    Science.gov (United States)

    Glover Tim W.; Squire, Jared P.; Longmier, Benjamin; Cassady, Leonard; Ilin, Andrew; Carter, Mark; Olsen, Chris S.; McCaskill, Greg; Diaz, Franklin Chang; Girimaji, Sharath; hide

    2010-01-01

    The VASIMR[R] Flight Experiment (VF-200-1) will be tested in space aboard the International Space Station (ISS) in about four years. It will consist of two 100 kW parallel plasma engines with opposite magnetic dipoles, resulting in a near zero-torque magnetic system. Electrical energy will come from ISS at low power level, be stored in batteries and used to fire the engine at 200 kW. The VF-200-1 project will provide a unique opportunity on the ISS National Laboratory for astrophysicists and space physicists to study the dynamic evolution of an expanding and reconnecting plasma loop. Here, we review the status of the project and discuss our current plans for computational modeling and in situ observation of a dynamic plasma loop on an experimental platform in low-Earth orbit. The VF-200-1 project is still in the early stages of development and we welcome new collaborators.

  19. Devices and Methods for Collection and Concentration of Air and Surface Samples for Improved Detection of Microbes onboard ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Protecting the International Space Station (ISS) crew from microbial contaminants is of great importance. Bacterial and fungal contamination of air, surfaces and...

  20. Study of values and interpersonal perception in cosmonauts on board of international space station

    Science.gov (United States)

    Vinokhodova, A. G.; Gushin, V. I.

    2014-01-01

    The increased heterogeneity of International Space Station (ISS) crews' composition (in terms of nationality, profession and gender) together with stressful situations, due to space flight, can have a significant impact on group interaction and cohesion, as well as on communications with Mission Control Center (MCC) and the success of the mission as a whole. Culturally related differences in values, goals, and behavioral norms could influence mutual perception and, thus, cohesive group formation. The purpose of onboard "Interaction-Attitudes" experiment is to study the patterns of small group (space crew) behavior in extended space flight. Onboard studies were performed in the course of ISS Missions 19-30 with participation of twelve Russian crewmembers. Experimental schedule included 3 phases: preflight training and Baseline Data Collection; inflight activities once in two weeks; post-flight measurement. We used Personal Self-Perception and Attitudes (PSPA) software for analyzing subjects' attitudes toward social environment (crewmembers and MCC). It is based on the semantic differential and the repertory grid technique. To study the content of interpersonal perception we used content-analysis with participation of the experts, independently attributing each construct to the 17 semantic categories, which were described in our previous study. The data obtained demonstrated that the system of values and personal attitudes in the majority of participated cosmonauts remained mostly stable under stress-factors of extended space flight. Content-analysis of the important criteria elaborated by the subjects for evaluation of their social environment, showed that the most valuable personal traits for cosmonauts were those that provided the successful fulfillment of professional activity (motivation, intellectual level, knowledge, and self-discipline) and good social relationships (sociability, friendship, and tolerance), as well. Post-flight study of changes in perceptions

  1. Lab-on-a-Chip: From Astrobiology to the International Space Station

    Science.gov (United States)

    Maule, Jake; Wainwright, Nor; Steele, Andrew; Gunter, Dan; Monaco, Lisa A.; Wells, Mark E.; Morris, Heather C.; Boudreaux, Mark E.

    2008-01-01

    The continual and long-term habitation of enclosed environments, such as Antarctic stations, nuclear submarines and space stations, raises unique engineering, medical and operational challenges. There is no easy way out and no easy way to get supplies in. This situation elevates the importance of monitoring technology that can rapidly detect events within the habitat that affect crew safety such as fire, release of toxic chemicals and hazardous microorganisms. Traditional methods to monitor microorganisms on the International Space Station (ISS) have consisted of culturing samples for 3-5 days and eventual sample return to Earth. To augment these culture methods with new, rapid molecular techniques, we developed the Lab-on-a-Chip Application Development - Portable Test System (LOCAD-PTS). The system consists of a hand-held spectrophotometer, a series of interchangeable cartridges and a surface sampling/dilution kit that enables crew to collect samples and detect a range of biological molecules, all within 15 minutes. LOCAD-PTS was launched to the ISS aboard Space Shuttle Discovery in December 2006, where it was operated for the first time during March-May 2007. The surfaces of five separate sites in the US Lab and Node 1 of ISS were analyzed for endotoxin, using cartridges that employ the Limulus Amebocyte Lysate (LAL) assay; results of these tests will be presented. LOCAD-PTS will remain permanently onboard ISS with new cartridges scheduled for launch in February and October of 2008 for the detection of fungi (Beta-glucan) and Gram-positive bacteria (lipoteichoic acid), respectively.

  2. Lightning Observations from the International Space Station (ISS) for Science Research and Operational Applications

    Science.gov (United States)

    Blakeslee, R. J.; Christian, H. J.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M.; Stewart, M. F.; O'Brien, S.; Wilson, T.; hide

    2015-01-01

    There exist several core science applications of LIS lightning observations, that range from weather and climate to atmospheric chemistry and lightning physics due to strong quantitative connections that can be made between lightning and other geophysical processes of interest. The space-base vantage point, such as provided by ISS LIS, still remains an ideal location to obtain total lightning observations on a global basis.

  3. International Space Station Future Correlation Analysis Improvements

    Science.gov (United States)

    Laible, Michael R.; Pinnamaneni, Murthy; Sugavanam, Sujatha; Grygier, Michael

    2018-01-01

    Ongoing modal analyses and model correlation are performed on different configurations of the International Space Station (ISS). These analyses utilize on-orbit dynamic measurements collected using four main ISS instrumentation systems: External Wireless Instrumentation System (EWIS), Internal Wireless Instrumentation System (IWIS), Space Acceleration Measurement System (SAMS), and Structural Dynamic Measurement System (SDMS). Remote Sensor Units (RSUs) are network relay stations that acquire flight data from sensors. Measured data is stored in the Remote Sensor Unit (RSU) until it receives a command to download data via RF to the Network Control Unit (NCU). Since each RSU has its own clock, it is necessary to synchronize measurements before analysis. Imprecise synchronization impacts analysis results. A study was performed to evaluate three different synchronization techniques: (i) measurements visually aligned to analytical time-response data using model comparison, (ii) Frequency Domain Decomposition (FDD), and (iii) lag from cross-correlation to align measurements. This paper presents the results of this study.

  4. High energy radiation fluences in the ISS-USLab: Ion discrimination and particle abundances

    International Nuclear Information System (INIS)

    Zaconte, Veronica; Casolino, Marco; Di Fino, Luca; La Tessa, Chiara; Larosa, Marianna; Narici, Livio; Picozza, Piergiorgio

    2010-01-01

    The ALTEA (Anomalous Long Term Effects on Astronauts) detector was used to characterize the radiation environment inside the USLab of the International Space Station (ISS), where it measured the abundances of ions from Be to Fe. We compare the ALTEA results with Alteino results obtained in the PIRS module of the Russian segment of the ISS, and normalize to the high energy Si abundances given by Simpson. These are the first particle spectral measurements, which include ions up to Fe, performed in the USLab. The small differences observed between those made inside the USLab and the Simpson abundances can be attributed to the transport through the spacecraft hull. However, the low abundance of Fe cannot be attributed to only this process.

  5. Proton irradiation experiment for x-ray charge-coupled devices of the monitor of all-sky x-ray image mission onboard the international space station. 2. Degradation of dark current and identification of electron trap level

    CERN Document Server

    Miyata, E; Kamiyama, D

    2003-01-01

    We have investigated the radiation damage effects on a charge-coupled device (CCD) to be used for the Japanese X-ray mission, the monitor of all-sky X-ray image (MAXI), onboard the international space station (ISS). A temperature dependence of the dark current as a function of incremental dose is studied. We found that the protons having energy of >292 keV seriously increased the dark current of the devices. In order to improve the radiation tolerance of the devices, we have developed various device architectures to minimize the radiation damage in orbit. Among them, nitride oxide enables us to reduce the dark current significantly and therefore we adopted nitride oxide for the flight devices. We also compared the dark current of a device in operation and that out of operation during the proton irradiation. The dark current of the device in operation became twofold that out of operation, and we thus determined that devices would be turned off during the passage of the radiation belt. The temperature dependenc...

  6. STS-100 Crew Interview: Scott Parazynski

    Science.gov (United States)

    2001-01-01

    STS-100 Mission Specialist Scott Parazynski is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Parazynski then discusses his views about space exploration as it becomes an international collaboration.

  7. International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction

    Science.gov (United States)

    Perry, J. L.; von Jouanne, R. G.; Turner, E. H.

    2003-01-01

    The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.

  8. Expanded benefits for humanity from the International Space Station

    Science.gov (United States)

    Rai, Amelia; Robinson, Julie A.; Tate-Brown, Judy; Buckley, Nicole; Zell, Martin; Tasaki, Kazuyuki; Karabadzhak, Georgy; Sorokin, Igor V.; Pignataro, Salvatore

    2016-09-01

    In 2012, the International Space Station (ISS) (Fig. 1) partnership published the updated International Space Station Benefits for Humanity[1], a compilation of stories about the many benefits being realized in the areas of human health, Earth observations and disaster response, and global education. This compilation has recently been revised to include updated statistics on the impacts of the benefits, and new benefits that have developed since the first publication. Two new sections have also been added to the book, economic development of space and innovative technology. This paper will summarize the updates on behalf of the ISS Program Science Forum, made up of senior science representatives across the international partnership. The new section on "Economic Development of Space" highlights case studies from public-private partnerships that are leading to a new economy in low earth orbit (LEO). Businesses provide both transportation to the ISS as well as some research facilities and services. These relationships promote a paradigm shift of government-funded, contractor-provided goods and services to commercially-provided goods purchased by government agencies. Other examples include commercial firms spending research and development dollars to conduct investigations on ISS and commercial service providers selling services directly to ISS users. This section provides examples of ISS as a test bed for new business relationships, and illustrates successful partnerships. The second new section, "Innovative Technology," merges technology demonstration and physical science findings that promise to return Earth benefits through continued research. Robotic refueling concepts for life extensions of costly satellites in geo-synchronous orbit have applications to robotics in industry on Earth. Flame behavior experiments reveal insight into how fuel burns in microgravity leading to the possibility of improving engine efficiency on Earth. Nanostructures and smart fluids are

  9. Expanded Benefits for Humanity from the International Space Station

    Science.gov (United States)

    Rai, Amelia; Robinson, Julie A.; Tate-Brown, Judy; Buckley, Nicole; Zell, Martin; Tasaki, Kazuyuki; Karabadzhak, Georgy; Sorokin, Igor V.; Pignataro, Salvatore

    2016-01-01

    In 2012, the International Space Station (ISS) partnership published the updated International Space Station Benefits for Humanity, 2nd edition, a compilation of stories about the many benefits being realized in the areas of human health, Earth observations and disaster response, and global education. This compilation has recently been revised to include updated statistics on the impacts of the benefits, and new benefits that have developed since the first publication. Two new sections have also been added to the book, economic development of space and innovative technology. This paper will summarize the updates on behalf of the ISS Program Science Forum, made up of senior science representatives across the international partnership. The new section on "Economic Development of Space" highlights case studies from public-private partnerships that are leading to a new economy in low earth orbit (LEO). Businesses provide both transportation to the ISS as well as some research facilities and services. These relationships promote a paradigm shift of government-funded, contractor-provided goods and services to commercially-provided goods purchased by government agencies. Other examples include commercial firms spending research and development dollars to conduct investigations on ISS and commercial service providers selling services directly to ISS users. This section provides examples of ISS as a test bed for new business relationships, and illustrates successful partnerships. The second new section, Innovative Technology, merges technology demonstration and physical science findings that promise to return Earth benefits through continued research. Robotic refueling concepts for life extensions of costly satellites in geo-synchronous orbit have applications to robotics in industry on Earth. Flame behavior experiments reveal insight into how fuel burns in microgravity leading to the possibility of improving engine efficiency on Earth. Nanostructures and smart fluids are

  10. Doses due to extra-vehicular activity on space stations

    Energy Technology Data Exchange (ETDEWEB)

    Deme, S.; Apathy, I.; Feher, I. [KFKI Atomic Energy Research Institute, Budapest (Hungary); Akatov, Y.; Arkhanguelski, V. [Institute of Biomedical Problems, State Scientific Center, Moscow (Russian Federation); Reitz, G. [DLR Institute of Aerospace Medicine, Cologne, Linder Hohe (Germany)

    2006-07-01

    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 {mu}Gy to 10 Gy range, consisting of a set of CaSO{sub 4}:Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment

  11. Doses due to extra-vehicular activity on space stations

    International Nuclear Information System (INIS)

    Deme, S.; Apathy, I.; Feher, I.; Akatov, Y.; Arkhanguelski, V.; Reitz, G.

    2006-01-01

    One of the many risks of long duration space flight is the dose from cosmic radiation, especially during periods of intensive solar activity. At such times, particularly during extra-vehicular activity (E.V.A.), when the astronauts are not protected by the wall of the spacecraft, cosmic radiation is a potentially serious health threat. Accurate dose measurement becomes increasingly important during the assembly of large space objects. Passive integrating detector systems such as thermoluminescent dosimeters (TLDs) are commonly used for dosimetric mapping and personal dosimetry on space vehicles. K.F.K.I. Atomic Energy Research Institute has developed and manufactured a series of thermoluminescent dosimeter systems, called Pille, for measuring cosmic radiation doses in the 3 μGy to 10 Gy range, consisting of a set of CaSO 4 :Dy bulb dosimeters and a small, compact, TLD reader suitable for on-board evaluation of the dosimeters. Such a system offers a solution for E.V.A. dosimetry as well. By means of such a system, highly accurate measurements were carried out on board the Salyut-6, -7 and Mir Space Stations, on the Space Shuttle, and most recently on several segments of the International Space Station (I.S.S.). The Pille system was used to make the first measurements of the radiation exposure of cosmonauts during E.V.A.. Such E.V.A. measurements were carried out twice (on June 12 and 16, 1987) by Y. Romanenko, the commander of the second crew of Mir. During the E.V.A. one of the dosimeters was fixed in a pocket on the outer surface of the left leg of his space-suit; a second dosimeter was located inside the station for reference measurements. The advanced TLD system Pille 96 was used during the Nasa-4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the exposure of two of the astronauts during their E.V.A. activities. The extra doses of two E.V.A. during the Euromir 95 and one E.V.A. during the Nasa4 experiment were

  12. International Space Station Environmental Control and Life Support System Status: 2008 - 2009

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.; Gentry, Gregory J.

    2009-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2008 and February 2009. The ISS continued permanent crew operations, with the continuation of Phase 3 of the ISS Assembly Sequence. Work continues on the last of the Phase 3 pressurized elements and the continued manufacturing and testing of the regenerative ECLS equipment.

  13. International Space Station Environmental Control and Life Support System Status: 2010 - 2011

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2010-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year, covering the period of time between March 2010 and February 2011 and the continued permanent presence of six crew members on ISS. Work continues on the last of the Phase 3 pressurized elements, commercial cargo resupply vehicles, and extension of the ISS service life from 2015 to 2020 or beyond.

  14. ISS Payload Operations: The Need for and Benefit of Responsive Planning

    Science.gov (United States)

    Nahay, Ed; Boster, Mandee

    2000-01-01

    International Space Station (ISS) payload operations are controlled through implementation of a payload operations plan. This plan, which represents the defined approach to payload operations in general, can vary in terms of level of definition. The detailed plan provides the specific sequence and timing of each component of a payload's operations. Such an approach to planning was implemented in the Spacelab program. The responsive plan provides a flexible approach to payload operations through generalization. A responsive approach to planning was implemented in the NASA/Mir Phase 1 program, and was identified as a need during the Skylab program. The current approach to ISS payload operations planning and control tends toward detailed planning, rather than responsive planning. The use of detailed plans provides for the efficient use of limited resources onboard the ISS. It restricts flexibility in payload operations, which is inconsistent with the dynamic nature of the ISS science program, and it restricts crew desires for flexibility and autonomy. Also, detailed planning is manpower intensive. The development and implementation of a responsive plan provides for a more dynamic, more accommodating, and less manpower intensive approach to planning. The science program becomes more dynamic and responsive as the plan provides flexibility to accommodate real-time science accomplishments. Communications limitations and the crew desire for flexibility and autonomy in plan implementation are readily accommodated with responsive planning. Manpower efficiencies are accomplished through a reduction in requirements collection and coordination, plan development, and maintenance. Through examples and assessments, this paper identifies the need to transition from detailed to responsive plans for ISS payload operations. Examples depict specific characteristics of the plans. Assessments identify the following: the means by which responsive plans accommodate the dynamic nature of

  15. Monitoring on board spacecraft by means of passive detectors

    International Nuclear Information System (INIS)

    Ambrozova, I.; Brabcova, K.; Spurny, F.; Shurshakov, V. A.; Kartsev, I. S.; Tolochek, R. V.

    2011-01-01

    To estimate the radiation risk of astronauts during space missions, it is necessary to measure dose characteristics in various compartments of the spacecraft; this knowledge can be further used for estimating the health hazard in planned missions. This contribution presents results obtained during several missions on board the International Space Station (ISS) during 2005-09. A combination of thermoluminescent and plastic nuclear track detectors was used to measure the absorbed dose and dose equivalent. These passive detectors have several advantages, especially small dimensions, which enabled their placement at various locations in different compartments inside the ISS or inside the phantom. Variation of dosimetric quantities with the phase of the solar cycle and the position inside the ISS is discussed. (authors)

  16. The Crew Earth Observations Experiment: Earth System Science from the ISS

    Science.gov (United States)

    Stefanov, William L.; Evans, Cynthia A.; Robinson, Julie A.; Wilkinson, M. Justin

    2007-01-01

    This viewgraph presentation reviews the use of Astronaut Photography (AP) as taken from the International Space Station (ISS) in Earth System Science (ESS). Included are slides showing basic remote sensing theory, data characteristics of astronaut photography, astronaut training and operations, crew Earth observations group, targeting sites and acquisition, cataloging and database, analysis and applications for ESS, image analysis of particular interest urban areas, megafans, deltas, coral reefs. There are examples of the photographs and the analysis.

  17. CIB: An Improved Communication Architecture for Real-Time Monitoring of Aerospace Materials, Instruments, and Sensors on the ISS

    Directory of Open Access Journals (Sweden)

    Michael J. Krasowski

    2013-01-01

    Full Text Available The Communications Interface Board (CIB is an improved communications architecture that was demonstrated on the International Space Station (ISS. ISS communication interfaces allowing for real-time telemetry and health monitoring require a significant amount of development. The CIB simplifies the communications interface to the ISS for real-time health monitoring, telemetry, and control of resident sensors or experiments. With a simpler interface available to the telemetry bus, more sensors or experiments may be flown. The CIB accomplishes this by acting as a bridge between the ISS MIL-STD-1553 low-rate telemetry (LRT bus and the sensors allowing for two-way command and telemetry data transfer. The CIB was designed to be highly reliable and radiation hard for an extended flight in low Earth orbit (LEO and has been proven with over 40 months of flight operation on the outside of ISS supporting two sets of flight experiments. Since the CIB is currently operating in flight on the ISS, recent results of operations will be provided. Additionally, as a vehicle health monitoring enabling technology, an overview and results from two experiments enabled by the CIB will be provided. Future applications for vehicle health monitoring utilizing the CIB architecture will also be discussed.

  18. Space Station Biological Research Project (SSBRP) Cell Culture Unit (CCU) and incubator for International Space Station (ISS) cell culture experiments

    Science.gov (United States)

    Vandendriesche, Donald; Parrish, Joseph; Kirven-Brooks, Melissa; Fahlen, Thomas; Larenas, Patricia; Havens, Cindy; Nakamura, Gail; Sun, Liping; Krebs, Chris; de Luis, Javier; hide

    2004-01-01

    The CCU and Incubator are habitats under development by SSBRP for gravitational biology research on ISS. They will accommodate multiple specimen types and reside in either Habitat Holding Racks, or the Centrifuge Rotor, which provides selectable gravity levels of up to 2 g. The CCU can support multiple Cell Specimen Chambers, CSCs (18, 9 or 6 CSCs; 3, 10 or 30 mL in volume, respectively). CSCs are temperature controlled from 4-39 degrees C, with heat shock to 45 degrees C. CCU provides automated nutrient supply, magnetic stirring, pH/O2 monitoring, gas supply, specimen lighting, and video microscopy. Sixty sample containers holding up to 2 mL each, stored at 4-39 degrees C, are available for automated cell sampling, subculture, and injection of additives and fixatives. CSCs, sample containers, and fresh/spent media bags are crew-replaceable for long-term experiments. The Incubator provides a 4-45 degrees C controlled environment for life science experiments or storage of experimental reagents. Specimen containers and experiment unique equipment are experimenter-provided. The Specimen Chamber exchanges air with ISS cabin and has 18.8 liters of usable volume that can accommodate six trays and the following instrumentation: five relocatable thermometers, two 60 W power outlets, four analog ports, and one each relative humidity sensor, video port, ethernet port and digital input/output port.

  19. Space Station Water Processor Process Pump

    Science.gov (United States)

    Parker, David

    1995-01-01

    This report presents the results of the development program conducted under contract NAS8-38250-12 related to the International Space Station (ISS) Water Processor (WP) Process Pump. The results of the Process Pumps evaluation conducted on this program indicates that further development is required in order to achieve the performance and life requirements for the ISSWP.

  20. Particle Engulfment and Pushing (PEP): Past Micro-Gravity Experiments and Future Experimental Plan on the International Space Station (ISS)

    Science.gov (United States)

    Sen, Subhayu; Stefanescu, Doru M.; Catalina, A. V.; Juretzko, F.; Dhindaw, B. K.; Curreri, P. A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The interaction of an insoluble particle with a growing solid-liquid interface (SLI) has been a subject of investigation for the four decades. For a metallurgist or a material scientist understanding the fundamental physics of such an interaction is relevant for applications that include distribution of reinforcement particles in metal matrix composites, inclusion management in castings, and distribution of Y2Ba1Cu1O5 (211) precipitates (flux pinning sites) in Y1Ba2Cu3O7 (123) superconducting crystals. The same physics is also applicable to other areas including geological applications (frost heaving in soils) and preservation of biological cells. Experimentally this interaction can be quantified in terms of a critical growth velocity, Vcr, of the SLI below which particles are pushed ahead of the advancing interface, and above which the particles are engulfed. Past experimental evidence suggests that this Vcr is an inverse function of the particle radius, R. In order to isolate the fundamental physics that governs such a relationship it is necessary to minimize natural convection at the SLI that is inherent in ground based experiments. Hence for the purpose of producing benchmark data (Vcr vs. R) PEP is a natural candidate for micro-gravity experimentation. Accordingly, experiments with pure Al containing a dispersion of ZrO2 particles and an organic analogue, succinonitrile (SCN) containing polystyrene particles have been performed on the LMS and USMP-4 mission respectively. In this paper we will summarize the experimental data that was obtained during these two micro-gravity missions and show that the results differ compared to terrestrial experiments. We will also discuss the basic elements of our analytical and numerical model and present a comparison of the predictions of these models against micro-gravity experimental data. Finally. we will discuss our future experimental plan that includes the ISS glovebox and MSRRl.

  1. Cost Analysis In A Multi-Mission Operations Environment

    Science.gov (United States)

    Newhouse, M.; Felton, L.; Bornas, N.; Botts, D.; Roth, K.; Ijames, G.; Montgomery, P.

    2014-01-01

    Spacecraft control centers have evolved from dedicated, single-mission or single missiontype support to multi-mission, service-oriented support for operating a variety of mission types. At the same time, available money for projects is shrinking and competition for new missions is increasing. These factors drive the need for an accurate and flexible model to support estimating service costs for new or extended missions; the cost model in turn drives the need for an accurate and efficient approach to service cost analysis. The National Aeronautics and Space Administration (NASA) Huntsville Operations Support Center (HOSC) at Marshall Space Flight Center (MSFC) provides operations services to a variety of customers around the world. HOSC customers range from launch vehicle test flights; to International Space Station (ISS) payloads; to small, short duration missions; and has included long duration flagship missions. The HOSC recently completed a detailed analysis of service costs as part of the development of a complete service cost model. The cost analysis process required the team to address a number of issues. One of the primary issues involves the difficulty of reverse engineering individual mission costs in a highly efficient multimission environment, along with a related issue of the value of detailed metrics or data to the cost model versus the cost of obtaining accurate data. Another concern is the difficulty of balancing costs between missions of different types and size and extrapolating costs to different mission types. The cost analysis also had to address issues relating to providing shared, cloud-like services in a government environment, and then assigning an uncertainty or risk factor to cost estimates that are based on current technology, but will be executed using future technology. Finally the cost analysis needed to consider how to validate the resulting cost models taking into account the non-homogeneous nature of the available cost data and the

  2. Utilization of the Space Vision System as an Augmented Reality System For Mission Operations

    Science.gov (United States)

    Maida, James C.; Bowen, Charles

    2003-01-01

    Augmented reality is a technique whereby computer generated images are superimposed on live images for visual enhancement. Augmented reality can also be characterized as dynamic overlays when computer generated images are registered with moving objects in a live image. This technique has been successfully implemented, with low to medium levels of registration precision, in an NRA funded project entitled, "Improving Human Task Performance with Luminance Images and Dynamic Overlays". Future research is already being planned to also utilize a laboratory-based system where more extensive subject testing can be performed. However successful this might be, the problem will still be whether such a technology can be used with flight hardware. To answer this question, the Canadian Space Vision System (SVS) will be tested as an augmented reality system capable of improving human performance where the operation requires indirect viewing. This system has already been certified for flight and is currently flown on each shuttle mission for station assembly. Successful development and utilization of this system in a ground-based experiment will expand its utilization for on-orbit mission operations. Current research and development regarding the use of augmented reality technology is being simulated using ground-based equipment. This is an appropriate approach for development of symbology (graphics and annotation) optimal for human performance and for development of optimal image registration techniques. It is anticipated that this technology will become more pervasive as it matures. Because we know what and where almost everything is on ISS, this reduces the registration problem and improves the computer model of that reality, making augmented reality an attractive tool, provided we know how to use it. This is the basis for current research in this area. However, there is a missing element to this process. It is the link from this research to the current ISS video system and to

  3. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    Science.gov (United States)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  4. Orbital Hub: a concept for human spaceflight beyond ISS operations

    Science.gov (United States)

    Jahnke, Stephan S.; Maiwald, Volker; Philpot, Claudia; Quantius, Dominik; Romberg, Oliver; Seboldt, Wolfgang; Vrakking, Vincent; Zeidler, Conrad

    2018-04-01

    The International Space Station (ISS) is the greatest endeavour in low-Earth orbit since the beginning of the space age and the culmination of human outposts like Skylab and Mir. While a clear schedule has yet to be drafted, it is expected that ISS will cease operation in the 2020s. What could be the layout for a human outpost in LEO with lessons learnt from ISS? What are the use cases and applications of such an outpost in the future? The System Analysis Space Segment group of the German Aerospace Center investigated these and other questions and developed the Orbital Hub concept. In this paper an overview is presented of how the overall concept has been derived and its properties and layouts are described. Starting with a workshop involving the science community, the scientific requirements have been derived and Strawman payloads have been defined for use in further design activities. These design activities focused on Concurrent Engineering studies, where besides DLR employees participants from the industry and astronauts were involved. The result is an expandable concept that is composed of two main parts, the Base Platform, home for a permanent crew of up to three astronauts, and the Free Flyer, an uncrewed autonomous research platform. This modular approach provides one major advantage: the decoupling of the habitat and payload leading to increased quality of the micro-gravity environment. The former provides an environment for human physiology experiments, while the latter allows science without the perturbations caused by a crew, e.g. material experiments or Earth observation. The Free Flyer is designed to operate for up to 3 months on its own, but can dock with the space station for maintenance and experiment servicing. It also has a hybrid propulsion system, chemical and electrical, for different applications. The hub's design allows launch with just three launches, as the total mass of all the hub parts is about 60,000 kg. The main focus of the design is

  5. International Space Station Medical Projects - Full Services to Mars

    Science.gov (United States)

    Pietrzyk, R. A.; Primeaux, L. L.; Wood, S. J.; Vessay, W. B.; Platts, S. H.

    2018-01-01

    The International Space Station Medical Projects (ISSMP) Element provides planning, integration, and implementation services for HRP research studies for both spaceflight and flight analog research. Through the implementation of these two efforts, ISSMP offers an innovative way of guiding research decisions to meet the unique challenges of understanding the human risks to space exploration. Flight services provided by ISSMP include leading informed consent briefings, developing and validating in-flight crew procedures, providing ISS crew and ground-controller training, real-time experiment monitoring, on-orbit experiment and hardware operations and facilitating data transfer to investigators. For analog studies at the NASA Human Exploration Research Analog (HERA), the ISSMP team provides subject recruitment and screening, science requirements integration, data collection schedules, data sharing agreements, mission scenarios and facilities to support investigators. The ISSMP also serves as the HRP interface to external analog providers including the :envihab bed rest facility (Cologne, Germany), NEK isolation chamber (Moscow, Russia) and the Antarctica research stations. Investigators working in either spaceflight or analog environments requires a coordinated effort between NASA and the investigators. The interdisciplinary nature of both flight and analog research requires investigators to be aware of concurrent research studies and take into account potential confounding factors that may impact their research objectives. Investigators must define clear research requirements, participate in Investigator Working Group meetings, obtain human use approvals, and provide study-specific training, sample and data collection and procedures all while adhering to schedule deadlines. These science requirements define the technical, functional and performance operations to meet the research objectives. The ISSMP maintains an expert team of professionals with the knowledge and

  6. International Space Station Environmental Control and Life Support System Previous Year Status for 2013 - 2014

    Science.gov (United States)

    Williams, David E.; Gentry, Gregory J.

    2015-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the past year and the impacts of the international partners' activities on them, covering the period of time between March 2013 and February 2014. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the commercial crew vehicles, and work to try and extend ISS service life.

  7. Evolution of International Space Station Program Safety Review Processes and Tools

    Science.gov (United States)

    Ratterman, Christian D.; Green, Collin; Guibert, Matt R.; McCracken, Kristle I.; Sang, Anthony C.; Sharpe, Matthew D.; Tollinger, Irene V.

    2013-01-01

    The International Space Station Program at NASA is constantly seeking to improve the processes and systems that support safe space operations. To that end, the ISS Program decided to upgrade their Safety and Hazard data systems with 3 goals: make safety and hazard data more accessible; better support the interconnection of different types of safety data; and increase the efficiency (and compliance) of safety-related processes. These goals are accomplished by moving data into a web-based structured data system that includes strong process support and supports integration with other information systems. Along with the data systems, ISS is evolving its submission requirements and safety process requirements to support the improved model. In contrast to existing operations (where paper processes and electronic file repositories are used for safety data management) the web-based solution provides the program with dramatically faster access to records, the ability to search for and reference specific data within records, reduced workload for hazard updates and approval, and process support including digital signatures and controlled record workflow. In addition, integration with other key data systems provides assistance with assessments of flight readiness, more efficient review and approval of operational controls and better tracking of international safety certifications. This approach will also provide new opportunities to streamline the sharing of data with ISS international partners while maintaining compliance with applicable laws and respecting restrictions on proprietary data. One goal of this paper is to outline the approach taken by the ISS Progrm to determine requirements for the new system and to devise a practical and efficient implementation strategy. From conception through implementation, ISS and NASA partners utilized a user-centered software development approach focused on user research and iterative design methods. The user-centered approach used on

  8. International Space Station Environmental Control and Life Support System Acceptance Testing for Node 1 Temperature and Humidity Control Subsystem

    Science.gov (United States)

    Williams, David E.

    2011-01-01

    The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.The International Space Station (ISS) Node 1 Environmental Control and Life Support (ECLS) System is comprised of five subsystems: Atmosphere Control and Storage (ACS), Atmosphere Revitalization (AR), Fire Detection and Suppression (FDS), Temperature and Humidity Control (THC), and Water Recovery and Management (WRM). This paper will provide a summary of the Node 1 ECLS THC subsystem design and a detailed discussion of the ISS ECLS Acceptance Testing methodology utilized for this subsystem.

  9. Transformation of Air Quality Monitor Data from the International Space Station into Toxicological Effect Groups

    Science.gov (United States)

    James, John T.; Zalesak, Selina M.

    2011-01-01

    The primary reason for monitoring air quality aboard the International Space Station (ISS) is to determine whether air pollutants have collectively reached a concentration where the crew could experience adverse health effects. These effects could be near-real-time (e.g. headache, respiratory irritation) or occur late in the mission or even years later (e.g. cancer, liver toxicity). Secondary purposes for monitoring include discovery that a potentially harmful compound has leaked into the atmosphere or that air revitalization system performance has diminished. Typical ISS atmospheric trace pollutants consist of alcohols, aldehydes, aromatic compounds, halo-carbons, siloxanes, and silanols. Rarely, sulfur-containing compounds and alkanes are found at trace levels. Spacecraft Maximum Allowable Concentrations (SMACs) have been set in cooperation with a subcommittee of the National Research Council Committee on Toxicology. For each compound and time of exposure, the limiting adverse effect(s) has been identified. By factoring the analytical data from the Air Quality Monitor (AQM), which is in use as a prototype instrument aboard the ISS, through the array of compounds and SMACs, the risk of 16 specific adverse effects can be estimated. Within each adverse-effect group, we have used an additive model proportioned to each applicable 180-day SMAC to estimate risk. In the recent past this conversion has been performed using archival data, which can be delayed for months after an air sample is taken because it must be returned to earth for analysis. But with the AQM gathering in situ data each week, NASA is in a position to follow toxic-effect groups and correlate these with any reported crew symptoms. The AQM data are supplemented with data from real-time CO2 instruments aboard the ISS and from archival measurements of formaldehyde, which the AQM cannot detect.

  10. Managing NASA's International Space Station Logistics and Maintenance program

    Science.gov (United States)

    Butina, Anthony J.

    2001-02-01

    The International Space Station will be a permanently manned orbiting vehicle that has no landing gear, no international borders, and no organizational lines-it is one Station that must be supported by one crew, 24 hours a day, 7 days a week, 365 days a year. It flies partially assembled for a number of years before it is finally complete in April of 2006. Space logistics is a new concept that will have wide reaching consequences for both space travel and life on Earth. What is it like to do something that no one has done before? What challenges do you face? What kind of organization do you put together to perform this type of task? How do you optimize your resources to procure what you need? How do you change a paradigm within a space agency? How do you coordinate and manage a one of a kind system with approximately 5,700 Orbital Replaceable Units (ORUs)? How do you plan for preventive and corrective maintenance, when you need to procure spare parts which number into the hundreds of thousands, from 127 major US vendors and 70 major international vendors? How do you transport large sections of ISS hardware around the country? These are some of the topics discussed in this paper. From conception to operation, the ISS requires a unique approach in all aspects of development and operation. Today the dream is coming true; hardware is flying and hardware is failing. The system has been put into place to support the Station and only time will tell if we did it right. This paper discusses some of the experiences of the author after working 12 years on the International Space Station's integrated logistics & maintenance program. From his early days as a contractor supportability engineer and manager, to the NASA manager responsible for the entire ISS Logistics and Maintenance program. .

  11. The International Space Station Research Opportunities and Accomplishments

    Science.gov (United States)

    Alleyne, Camille W.

    2011-01-01

    In 2010, the International Space Station (ISS) construction and assembly was completed to become a world-class scientific research laboratory. We are now in the era of utilization of this unique platform that facilitates ground-breaking research in the microgravity environment. There are opportunities for NASA-funded research; research funded under the auspice of the United States National Laboratory; and research funded by the International Partners - Japan, Europe, Russia and Canada. The ISS facilities offer an opportunity to conduct research in a multitude of disciplines such as biology and biotechnology, physical science, human research, technology demonstration and development; and earth and space science. The ISS is also a unique resource for educational activities that serve to motivate and inspire students to pursue careers in Science, Technology, Engineering and Mathematics. Even though we have just commenced full utilization of the ISS as a science laboratory, early investigations are yielding major results that are leading to such things as vaccine development, improved cancer drug delivery methods and treatment for debilitating diseases, such as Duchenne's Muscular Dystrophy. This paper

  12. Orion Handling Qualities During ISS Rendezvous and Docking

    Science.gov (United States)

    Hart, Jeremy J.; Stephens, J. P.; Spehar, P.; Bilimoria, K.; Foster, C.; Gonzalex, R.; Sullivan, K.; Jackson, B.; Brazzel, J.; Hart, J.

    2011-01-01

    The Orion spacecraft was designed to rendezvous with multiple vehicles in low earth orbit (LEO) and beyond. To perform the required rendezvous and docking task, Orion must provide enough control authority to perform coarse translational maneuvers while maintaining precision to perform the delicate docking corrections. While Orion has autonomous docking capabilities, it is expected that final approach and docking operations with the International Space Station (ISS) will initially be performed in a manual mode. A series of evaluations was conducted by NASA and Lockheed Martin at the Johnson Space Center to determine the handling qualities (HQ) of the Orion spacecraft during different docking and rendezvous conditions using the Cooper-Harper scale. This paper will address the specifics of the handling qualities methodology, vehicle configuration, scenarios flown, data collection tools, and subject ratings and comments. The initial Orion HQ assessment examined Orion docking to the ISS. This scenario demonstrates the Translational Hand Controller (THC) handling qualities of Orion. During this initial assessment, two different scenarios were evaluated. The first was a nominal docking approach to a stable ISS, with Orion initializing with relative position dispersions and a closing rate of approximately 0.1 ft/sec. The second docking scenario was identical to the first, except the attitude motion of the ISS was modeled to simulate a stress case ( 1 degree deadband per axis and 0.01 deg/sec rate deadband per axis). For both scenarios, subjects started each run on final approach at a docking port-to-port range of 20 ft. Subjects used the THC in pulse mode with cues from the docking camera image, window views, and range and range rate data displayed on the Orion display units. As in the actual design, the attitude of the Orion vehicle was held by the automated flight control system at 0.5 degree deadband per axis. Several error sources were modeled including Reaction

  13. 8 years of Solar Spectral Irradiance Observations from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, L.; Bolsée, D.; Meftah, M.; Irbah, A.; Hauchecorne, A.; Bekki, S.; Pereira, N.; Cessateur, G.; Marchand, M.; Thiéblemont, R.; Foujols, T.

    2016-12-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its UV variability, as measured by SOLAR/SOLSPEC. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  14. i-LOVE: ISS-JEM lidar for observation of vegetation environment

    Science.gov (United States)

    Asai, Kazuhiro; Sawada, Haruo; Sugimoto, Nobuo; Mizutani, Kohei; Ishii, Shoken; Nishizawa, Tomoaki; Shimoda, Haruhisa; Honda, Yoshiaki; Kajiwara, Koji; Takao, Gen; Hirata, Yasumasa; Saigusa, Nobuko; Hayashi, Masatomo; Oguma, Hiroyuki; Saito, Hideki; Awaya, Yoshio; Endo, Takahiro; Imai, Tadashi; Murooka, Jumpei; Kobatashi, Takashi; Suzuki, Keiko; Sato, Ryota

    2012-11-01

    It is very important to watch the spatial distribution of vegetation biomass and changes in biomass over time, representing invaluable information to improve present assessments and future projections of the terrestrial carbon cycle. A space lidar is well known as a powerful remote sensing technology for measuring the canopy height accurately. This paper describes the ISS(International Space Station)-JEM(Japanese Experimental Module)-EF(Exposed Facility) borne vegetation lidar using a two dimensional array detector in order to reduce the root mean square error (RMSE) of tree height due to sloped surface.

  15. ISS And Space Environment Interactions Without Operating Plasma Contactor

    Science.gov (United States)

    Carruth, M. R., Jr.; Ferguson, Dale; Suggs,Rob; McCollum, Matt

    2001-01-01

    The International Space Station (ISS) will be the largest, highest power spacecraft placed in orbit. Because of this the design of the electrical power system diverged markedly from previous systems. The solar arrays will operate at 160 V and the power distribution voltage will be 120 V. The structure is grounded to the negative side of the solar arrays so under the right circumstances it is possible to drive the ISS potential very negative. A plasma contactor has been added to the ISS to provide control of the ISS structure potential relative to the ambient plasma. The ISS requirement is that the ISS structure not be greater than 40 V positive or negative of local plasma. What are the ramifications of operating large structures with such high voltage power systems? The application of a plasma contactor on ISS controls the potential between the structure and the local plasma, preventing degrading effects. It is conceivable that there can be situations where the plasma contactor might be non-functional. This might be due to lack of power, the need to turn it off during some of the build-up sequences, the loss of functionality for both plasma contactors before a replacement can be installed, similar circumstances. A study was undertaken to understand how important it is to have the contactor functioning and how long it might be off before unacceptable degradation to ISS could occur. The details of interaction effects on spacecraft have not been addressed until driven by design. This was true for ISS. If the structure is allowed to float highly negative impinging ions can sputter exposed conductors which can degrade the primary surface and also generate contamination due to the sputtered material. Arcing has been known to occur on solar arrays that float negative of the ambient plasma. This can also generate electromagnetic interference and voltage transients. Much of the ISS structure and pressure module surfaces exposed to space is anodized aluminum. The anodization

  16. From CERN to the International Space Station and back

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    In December I flew on the Space Shuttle Discovery to ISS, the International Space Station. The main objectives were to continue building ISS, deliver consumables, spare parts and experiments and for the exchange of one crew member on ISS. During the 8-day stay at ISS, I participated in three space-walks, but also got the opportunity to perform one experiment, ALTEA, related to radiation in space and light flashes seen by many people in space. I will give a quick personal history, from when I was a Fellow at Cern in 1990 and learned that I could apply to become an ESA astronaut, to when I finally boarded a space craft to launch on Dec. 9th 2006. A 17 minute video will tell the story about the flight itself. The second half of the talk will be about research related to radiation in space that I have been involved in since joining ESA in 1992. In particular, about light flashes that were first reported on Apollo-11 in 1969, and the SilEye detectors flown on Mir and ISS to investigate fluxes of charged particles ...

  17. Use of the International Space Station as an Exercise Physiology Lab

    Science.gov (United States)

    Ploutz-Snyder, Lori

    2013-01-01

    The International Space Station (ISS) is now in its prime utilization phase with great opportunity to use the ISS as a lab. With respect to exercise physiology there is considerable research opportunity. Crew members exercise for up to 2 hours per day using a cycle ergometer, treadmill, and advanced resistive exercise device (ARED). There are several ongoing exercise research studies by NASA, ESA and CSA. These include studies related to evaluation of new exercise prescriptions (SPRINT), evaluation of aerobic capacity (VO2max), biomechanics (Treadmill Kinematics), energy expenditure during spaceflight (Energy), evaluation of cartilage (Cartilage), and evaluation of cardiovascular health (Vascular). Examples of how ISS is used for exercise physiology research will be presented.

  18. New results from the
 AMS experiment on the International Space Station

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The Alpha Magnetic Spectrometer, AMS, is a general purpose high energy particle phys- ics detector. It was installed on the International Space Station, ISS, on 19 May 2011 to conduct a unique long duration mission of fundamental physics research in space. Knowledge of the precise rigidity dependence of the proton and helium flux is important in understanding the origin, acceleration, and propagation of cosmic rays. Pre- cise measurements of the proton and of the helium flux in primary cosmic rays with rigidities (momentum/charge) up to the TV scale are presented and the detailed varia- tion with rigidity of the flux spectral indices will be discussed. A precision measurement by AMS of the antiproton flux and antiproton-to-proton ratio in primary cosmic rays in the rigidity range from 1 to 450 GV is presented. This measurement increases the precision of the previous observations and significantly extends their rigidity range. It shows that the antiproton-to-proton ratio remains constant above ∼60 GV. In a...

  19. Numerical Study of Ammonia Leak and Dispersion in the International Space Station

    Science.gov (United States)

    Son, Chang H.

    2012-01-01

    Release of ammonia into the International Space Station (ISS) cabin atmosphere can occur if the water/ammonia barrier breach of the active thermal control system (ATCS) interface heat exchanger (IFHX) happens. After IFHX breach liquid ammonia is introduced into the water-filled internal thermal control system (ITCS) and then to the cabin environment through a ruptured gas trap. Once the liquid water/ammonia mixture exits ITCS, it instantly vaporizes and mixes with the U.S. Laboratory cabin air that results in rapid deterioration of the cabin conditions. The goal of the study is to assess ammonia propagation in the Station after IFHX breach to plan the operation procedure. A Computational Fluid Dynamics (CFD) model for accurate prediction of airflow and ammonia transport within each of the modules in the ISS cabin was developed. CFD data on ammonia content in the cabin aisle way of the ISS and, in particular, in the Russian On- Orbit Segment during the period of 15 minutes after gas trap rupture are presented for four scenarios of rupture response. Localized effects of ammonia dispersion and risk mitigation are discussed.

  20. ISS & Nordea

    DEFF Research Database (Denmark)

    Pedersen, Torben; Petersen, Bent

    2012-01-01

    on the core business of banking. In Denmark, Finland, and Sweden, some services had been outsourced to one of the leaders in the facility management (FM) market, the global service provider ISS. The relationship between Nordea and ISS on the delivery of facility services had a long history, but a new contract......Nordea Bank had emerged as the largest financial group in the Nordic region. As part of its consolidated approach, Nordea’s top management had made the strategic decision to outsource a number of the company’s peripheral activities, such as catering, security, and cleaning, in order to focus...

  1. Visual assessment of the radiation distribution in the ISS Lab module: visualization in the human body

    Science.gov (United States)

    Saganti, P. B.; Zapp, E. N.; Wilson, J. W.; Cucinotta, F. A.

    2001-01-01

    The US Lab module of the International Space Station (ISS) is a primary working area where the crewmembers are expected to spend majority of their time. Because of the directionality of radiation fields caused by the Earth shadow, trapped radiation pitch angle distribution, and inherent variations in the ISS shielding, a model is needed to account for these local variations in the radiation distribution. We present the calculated radiation dose (rem/yr) values for over 3,000 different points in the working area of the Lab module and estimated radiation dose values for over 25,000 different points in the human body for a given ambient radiation environment. These estimated radiation dose values are presented in a three dimensional animated interactive visualization format. Such interactive animated visualization of the radiation distribution can be generated in near real-time to track changes in the radiation environment during the orbit precession of the ISS.

  2. Studying the evolution of the hot universe with the X-ray evolving universe spectroscopy mission - XEUS

    DEFF Research Database (Denmark)

    Parmar, A.N.; Hasinger, G.; Arnaud, M.

    2004-01-01

    Europe is one of the major partners building the International Space Station (ISS) and European industry. together with ESA, is responsible for many station components including the Columbus Orbital Facility. the Automated Transport vehicle. two connecting modules and the European Robotic Arm...

  3. Software Defined GPS Receiver for International Space Station

    Science.gov (United States)

    Duncan, Courtney B.; Robison, David E.; Koelewyn, Cynthia Lee

    2011-01-01

    JPL is providing a software defined radio (SDR) that will fly on the International Space Station (ISS) as part of the CoNNeCT project under NASA's SCaN program. The SDR consists of several modules including a Baseband Processor Module (BPM) and a GPS Module (GPSM). The BPM executes applications (waveforms) consisting of software components for the embedded SPARC processor and logic for two Virtex II Field Programmable Gate Arrays (FPGAs) that operate on data received from the GPSM. GPS waveforms on the SDR are enabled by an L-Band antenna, low noise amplifier (LNA), and the GPSM that performs quadrature downconversion at L1, L2, and L5. The GPS waveform for the JPL SDR will acquire and track L1 C/A, L2C, and L5 GPS signals from a CoNNeCT platform on ISS, providing the best GPS-based positioning of ISS achieved to date, the first use of multiple frequency GPS on ISS, and potentially the first L5 signal tracking from space. The system will also enable various radiometric investigations on ISS such as local multipath or ISS dynamic behavior characterization. In following the software-defined model, this work will create a highly portable GPS software and firmware package that can be adapted to another platform with the necessary processor and FPGA capability. This paper also describes ISS applications for the JPL CoNNeCT SDR GPS waveform, possibilities for future global navigation satellite system (GNSS) tracking development, and the applicability of the waveform components to other space navigation applications.

  4. Exercise Equipment: Neutral Buoyancy

    Data.gov (United States)

    National Aeronautics and Space Administration — Axial skeletal loads coupled with muscle forces maintain bone in the spine and lower extremities during International Space Station (ISS) missions. Current exercise...

  5. Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility

    Science.gov (United States)

    Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer

    2009-01-01

    and difficulties that a migration to cloud-based computing philosophies has uncovered when compared to the legacy Mission Control Center architecture. The team consists of system and software engineers with extensive experience with the MCC infrastructure and software currently used to support the International Space Station (ISS) and Space Shuttle program (SSP).

  6. Onboard cross-calibration of the Pille-ISS Detector System and measurement of radiation shielding effect of the water filled protective curtain in the ISS crew cabin

    International Nuclear Information System (INIS)

    Szántó, P.; Apáthy, I.; Deme, S.; Hirn, A.; Nikolaev, I.V.; Pázmándi, T.; Shurshakov, V.A.; Tolochek, R.V.; Yarmanova, E.N.

    2015-01-01

    As a preparation for long duration space missions it is important to determine and minimize the impact of space radiation on human health. One of the methods to diminish the radiation burden is using an additional local shielding in the places where the crewmembers can stay for longer time. To increase the crew cabin shielding a special protective curtain was designed and delivered to ISS in 2010 containing four layers of hygienic wipes and towels providing an additional shielding thickness of about 8 g/cm"2 water-equivalent matter. The radiation shielding effect of the protective curtain, in terms of absorbed dose, was measured with the thermoluminescent Pille-ISS Detector System. In order to verify the reliability of the Pille system an onboard cross-calibration was also performed. The measurement proved that potentially 25% reduction of the absorbed dose rate in the crew cabin can be achieved, that results in 8% (∼16 μGy/day) decrease of the total absorbed dose to the crew, assuming that they spend 8 h in the crew cabin a day. - Highlights: • The dose level in the ISS Zvezda crew quarters is higher than the average dose level in the module. • A shielding made of hygienic wipes and towels was set up onboard as additional protection. • Onboard cross calibration of the Pille-ISS space dosimeter (TL) system was performed. • The shielding effect of the protective curtain in terms of absorbed dose was measured with the onboard Pille system. • The shielding effect of the protective water curtain is approximately 24 ± 9% in absorbed dose.

  7. Development of Test Protocols for International Space Station Particulate Filters

    Science.gov (United States)

    Vijayakumar, R.; Green, Robert D.; Agui, Juan H.

    2015-01-01

    Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High-Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. The filter element for this system has a non-standard cross-section with a length-to-width ratio (LW) of 6.6. A filter test setup was designed and built to meet industry testing standards. A CFD analysis was performed to initially determine the optimal duct geometry and flow configuration. Both a screen and flow straighter were added to the test duct design to improve flow uniformity and face velocity profiles were subsequently measured to confirm. Flow quality and aerosol mixing assessments show that the duct flow is satisfactory for the intended leak testing. Preliminary leak testing was performed on two different ISS filters, one with known perforations and one with limited use, and results confirmed that the testing methods and photometer instrument are sensitive enough to detect and locate compromised sections of an ISS BFE.Given the engineering constraints in designing spacecraft life support systems, it is anticipated that non-industry standard filters will be required in future designs. This work is focused on developing test protocols for testing the ISS BFE filters, but the methodology is general enough to be extended to other present and future spacecraft filters. These techniques for characterizing the test duct and perform leak testing

  8. Flight Planning and Procedures

    Science.gov (United States)

    Rich, Allison C.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) was founded in 1958 by President Eisenhower as a civilian lead United States federal agency designed to advance the science of space. Over the years, NASA has grown with a vision to "reach for new heights and reveal the unknown for the benefit of humankind" (About NASA). Mercury, Gemini, Apollo, Skylab, and Space Shuttle are just a few of the programs that NASA has led to advance our understanding of the universe. Each of the eleven main NASA space centers located across the United States plays a unique role in accomplishing that vision. Since 1961, Johnson Space Center (JSC) has led the effort for manned spaceflight missions. JSC has a mission to "provide and apply the preeminent capabilities to develop, operate, and integrate human exploration missions spanning commercial, academic, international, and US government partners" (Co-op Orientation). To do that, JSC is currently focused on two main programs, Orion and the International Space Station (ISS). Orion is the exploration vehicle that will take astronauts to Mars; a vessel comparable to the Apollo capsule. The International Space Station (ISS) is a space research facility designed to expand our knowledge of science in microgravity. The first piece of the ISS was launched in November of 1998 and has been in a continuous low earth orbit ever since. Recently, two sub-programs have been developed to resupply the ISS. The Commercial Cargo program is currently flying cargo and payloads to the ISS; the Commercial Crew program will begin flying astronauts to the ISS in a few years.

  9. International Space Station Environmental Control and Life Support System Status for the Prior Year: 2011 - 2012

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J

    2013-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2011 and February 2012. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to at least 2028.

  10. Assessment and Control of Spacecraft Charging Risks on the International Space Station

    Science.gov (United States)

    Koontz, Steve; Valentine, Mark; Keeping, Thomas; Edeen, Marybeth; Spetch, William; Dalton, Penni

    2004-01-01

    The International Space Station (ISS) operates in the F2 region of Earth's ionosphere, orbiting at altitudes ranging from 350 to 450 km at an inclination of 51.6 degrees. The relatively dense, cool F2 ionospheric plasma suppresses surface charging processes much of the time, and the flux of relativistic electrons is low enough to preclude deep dielectric charging processes. The most important spacecraft charging processes in the ISS orbital environment are: 1) ISS electrical power system interactions with the F2 plasma, 2) magnetic induction processes resulting from flight through the geomagnetic field and, 3) charging processes that result from interaction with auroral electrons at high latitude. Recently, the continuing review and evaluation of putative ISS charging hazards required by the ISS Program Office revealed that ISS charging could produce an electrical shock hazard to the ISS crew during extravehicular activity (EVA). ISS charging risks are being evaluated in an ongoing measurement and analysis campaign. The results of ISS charging measurements are combined with a recently developed model of ISS charging (the Plasma Interaction Model) and an exhaustive analysis of historical ionospheric variability data (ISS Ionospheric Specification) to evaluate ISS charging risks using Probabilistic Risk Assessment (PRA) methods. The PRA combines estimates of the frequency of occurrence and severity of the charging hazards with estimates of the reliability of various hazard controls systems, as required by NASA s safety and risk management programs, to enable design and selection of a hazard control approach that minimizes overall programmatic and personnel risk. The PRA provides a quantitative methodology for incorporating the results of the ISS charging measurement and analysis campaigns into the necessary hazard reports, EVA procedures, and ISS flight rules required for operating ISS in a safe and productive manner.

  11. Modular space station, phase B extension. Program operations plan

    Science.gov (United States)

    1971-01-01

    An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.

  12. Nutrition Research: Basis for Station Requirements

    Science.gov (United States)

    Lane, Helen W.; Rice, Barbara; Smith, Scott M.

    2011-01-01

    Prior to the Shuttle program, all understanding of nutritional needs in space came from Skylab metabolic research. Because Shuttle flights were short, most less than 14 days, research focused on major nutritional issues: energy (calories), protein and amino acids, water and electrotypes, with some more general physiology studies that related to iron and calcium. Using stable isotope tracer studies and diet intake records, we found that astronauts typically did not consume adequate calories to meet energy expenditure. To monitor energy and nutrient intake status and provide feedback to the flight surgeon and the astronauts, the International Space Station (ISS) program implemented a weekly food frequency questionnaire and routine body mass measurements. Other Shuttle investigations found that protein turnover was higher during flight, suggesting there was increased protein degradation and probably concurrent increase in protein synthesis, and this occurred even in cases of adequate protein and caloric intake. These results may partially explain some of the loss of leg muscle mass. Fluid and electrolyte flight studies demonstrated that water intake, like energy intake, was lower than required. However, sodium intakes were elevated during flight and likely related to other concerns such as calcium turnover and other health-related issues. NASA is making efforts to have tasty foods with much lower salt levels to reduce sodium intake and to promote fluid intake on orbit. Red blood cell studies conducted on the Shuttle found decreased erythrogenesis and increased serum ferritin levels. Given that the diet is high in iron there may be iron storage health concerns, especially related to the role of iron in oxidative damage, complicated by the stress and radiation. The Shuttle nutrition research lead to new monitoring and research on ISS. These data will be valuable for future NASA and commercial crewed missions.

  13. Ionizing radiation effects on ISS ePTFE jacketed cable assembly

    Science.gov (United States)

    Koontz, S. L.; Golden, J. L.; Lorenz, M. J.; Pedley, M. D.

    2003-09-01

    Polytetrafluoroethylene (PTFE), which is susceptible to embrittlement by ionizing radiation, is used as a primary material in the Mobile Transporter's (MT) Trailing Umbilical System (TUS) cable on the International Space Station (ISS). The TUS cable provides power and data service between the ISS truss and the MT. The TUS cable is normally stowed in an uptake reel and is fed out to follow the MT as it moves along rails on the ISS truss structure. For reliable electrical and mechanical performance, TUS cable polymeric materials must be capable of >3.5% elongation without cracking or breaking. The MT TUS cable operating temperature on ISS is expected to range between -100°C and +130°C. The on-orbit functional life requirement for the MT TUS cable is 10 years. Analysis and testing were performed to verify that the MT TUS cable would be able to meet full-life mechanical and electrical performance requirements, despite progressive embrittlement by the natural ionizing radiation environment. Energetic radiation belt electrons (trapped electrons) are the principal contributor to TUS cable radiation dose. TUS cable specimens were irradiated, in vacuum, with both energetic electrons and gamma rays. Electron beam energy was chosen to minimize charging effects on the non-conductive ePTFE (expanded PTFE) targets. Tensile testing was then performed, over the expected range of operating temperatures, as a function of radiation dose. When compared to the expected in-flight radiation dose/depth profile, atomic oxygen (AO) erosion of the radiation damaged TUS cable jacket surfaces is more rapid than the development of radiation induced embrittlement of the same surfaces. Additionally, the layered construction of the jacket prevents crack growth propagation, leaving the inner layer material compliant with the design elongation requirements. As a result, the TUS cable insulation design was verified to meet performance life requirements.

  14. Space Shuttle Program (SSP) Dual Docked Operations (DDO)

    Science.gov (United States)

    Sills, Joel W., Jr.; Bruno, Erica E.

    2016-01-01

    This document describes the concept definition, studies, and analysis results generated by the Space Shuttle Program (SSP), International Space Station (ISS) Program (ISSP), and Mission Operations Directorate for implementing Dual Docked Operations (DDO) during mated Orbiter/ISS missions. This work was performed over a number of years. Due to the ever increasing visiting vehicle traffic to and from the ISS, it became apparent to both the ISSP and the SSP that there would arise occasions where conflicts between a visiting vehicle docking and/or undocking could overlap with a planned Space Shuttle launch and/or during docked operations. This potential conflict provided the genesis for evaluating risk mitigations to gain maximum flexibility for managing potential visiting vehicle traffic to and from the ISS and to maximize launch and landing opportunities for all visiting vehicles.

  15. Macromolecular Crystallization in Microfluidics for the International Space Station

    Science.gov (United States)

    Monaco, Lisa A.; Spearing, Scott

    2003-01-01

    At NASA's Marshall Space Flight Center, the Iterative Biological Crystallization (IBC) project has begun development on scientific hardware for macromolecular crystallization on the International Space Station (ISS). Currently ISS crystallization research is limited to solution recipes that were prepared on the ground prior to launch. The proposed hardware will conduct solution mixing and dispensing on board the ISS, be fully automated, and have imaging functions via remote commanding from the ground. Utilizing microfluidic technology, IBC will allow for on orbit iterations. The microfluidics LabChip(R) devices that have been developed, along with Caliper Technologies, will greatly benefit researchers by allowing for precise fluid handling of nano/pico liter sized volumes. IBC will maximize the amount of science return by utilizing the microfluidic approach and be a valuable tool to structural biologists investigating medically relevant projects.

  16. On-Orbit Propulsion and Methods of Momentum Management for the International Space Station

    Science.gov (United States)

    Russell, Samuel P.; Spencer, Victor; Metrocavage, Kevin; Swanson, Robert A.; Krajchovich, Mark; Beisner, Matthew; Kamath, Ulhas P.

    2010-01-01

    Since the first documented design of a space station in 1929, it has been a dream of many to sustain a permanent presence in space. Russia and the US spent several decades competing for a sustained human presence in low Earth orbit. In the 1980 s, Russia and the US began to openly collaborate to achieve this goal. This collaboration lead to the current design of the ISS. Continuous improvement of procedures for controlling the ISS have lead to more efficient propellant management over the years. Improved efficiency combined with the steady use of cargo vehicles has kept ISS propellant levels well above their defined thresholds in all categories. The continuing evolution of propellant and momentum management operational strategies demonstrates the capability and flexibility of the ISS propulsion system. The hard work and cooperation of the international partners and the evolving operational strategies have made the ISS safe and successful. The ISS s proven success is the foundation for the future of international cooperation for sustaining life in space.

  17. CO2 on the International Space Station: An Operations Update

    Science.gov (United States)

    Law, Jennifer; Alexander, David

    2016-01-01

    PROBLEM STATEMENT: We describe CO2 symptoms that have been reported recently by crewmembers on the International Space Station and our continuing efforts to control CO2 to lower levels than historically accepted. BACKGROUND: Throughout the International Space Station (ISS) program, anecdotal reports have suggested that crewmembers develop CO2-related symptoms at lower CO2 levels than would be expected terrestrially. Since 2010, operational limits have controlled the 24-hour average CO2 to 4.0 mm Hg, or below as driven by crew symptomatology. In recent years, largely due to increasing awareness by crew and ground team, there have been increased reports of crew symptoms. The aim of this presentation is to discuss recent observations and operational impacts to lower CO2 levels on the ISS. CASE PRESENTATION: Crewmembers are routinely asked about CO2 symptoms in their weekly private medical conferences with their crew surgeons. In recent ISS expeditions, crewmembers have noted symptoms attributable to CO2 starting at 2.3 mmHg. Between 2.3 - 2.7 mm Hg, fatigue and full-headedness have been reported. Between 2.7 - 3.0 mm Hg, there have been self-reports of procedure missed steps or procedures going long. Above 3.0 - 3.4 mm Hg, headaches have been reported. A wide range of inter- and intra-individual variability in sensitivity to CO2 have been noted. OPERATIONAL / CLINICAL RELEVANCE: These preliminary data provide semi-quantitative ranges that have been used to inform a new operational limit of 3.0 mmHg as a compromise between systems capabilities and the recognition that there are human health and performance impacts at recent ISS CO2 levels. Current evidence would suggest that an operational limit between 0.5 and 2.0 mm Hg may maintain health and performance. Future work is needed to establish long-term ISS and future vehicle operational limits.

  18. Differences in Pre and Post Vascular Patterning Within Retinas from ISS Crew Members and Head-Down Tilt (HDT) Subjects by VESGEN Analysis

    Science.gov (United States)

    Murray, M. C.; Vizzeri, G.; Taibbi, G.; Mason, S. S.; Young, M.; Zanello, S. B.; Parsons-Wingerter, P.

    2018-01-01

    Accelerated research by NASA has investigated the significant risks incurred during long-duration missions in microgravity for Space Flight-Associated Neuro-ocular Syndrome (SANS, formerly known as Visual Impairments associated with Increased Intracranial Pressure, VIIP) [1]. For our study, NASA's VESsel GENeration Analysis (VESGEN) was used to investigate the role of retinal blood vessels in the etiology of SANS/VIIP. The response of retinal vessels to microgravity was evaluated in astronaut crew members pre and post flight to the International Space Station (ISS), and compared to the response of retinal vessels in healthy volunteers to 6deg head-down tilt during 70 days of bed rest (HDTBR). For the study, we are testing the hypothesis that long-term cephalad fluid shifts resulting in ocular and visual impairments are necessarily mediated in part by retinal blood vessels, and therefore are accompanied by structural adaptations of the vessels. METHODS: Vascular patterns in the retinas of crew members and HDTBR subjects extracted from 30deg infrared (IR) Heidelberg Spectralis images collected pre/postflight and pre/post HDTBR, respectively, were analyzed by VESGEN (patent pending). VESGEN is a mature, automated software developed as a research discovery tool for progressive vascular diseases in the retina and other tissues. The multi-parametric VESGEN analysis generates maps of branching arterial and venous trees quantified by parameters such as the fractal dimension (Df, a modern measure of vascular space-filling capacity), vessel diameters, and densities of vessel length and number classified into specific branching generations according to vascular physiological branching rules. The retrospective study approved by NASA's Institutional Review Board included the analysis of bilateral retinas in eight ISS crew members monitored by routine occupational surveillance and six HDTBR subjects (NASA FARU Campaign 11, for example). The VESGEN analysis was conducted in a

  19. Life Science on the International Space Station Using the Next Generation of Cargo Vehicles

    Science.gov (United States)

    Robinson, J. A.; Phillion, J. P.; Hart, A. T.; Comella, J.; Edeen, M.; Ruttley, T. M.

    2011-01-01

    With the retirement of the Space Shuttle and the transition of the International Space Station (ISS) from assembly to full laboratory capabilities, the opportunity to perform life science research in space has increased dramatically, while the operational considerations associated with transportation of the experiments has changed dramatically. US researchers have allocations on the European Automated Transfer Vehicle (ATV) and Japanese H-II Transfer Vehicle (HTV). In addition, the International Space Station (ISS) Cargo Resupply Services (CRS) contract will provide consumables and payloads to and from the ISS via the unmanned SpaceX (offers launch and return capabilities) and Orbital (offers only launch capabilities) resupply vehicles. Early requirements drove the capabilities of the vehicle providers; however, many other engineering considerations affect the actual design and operations plans. To better enable the use of the International Space Station as a National Laboratory, ground and on-orbit facility development can augment the vehicle capabilities to better support needs for cell biology, animal research, and conditioned sample return. NASA Life scientists with experience launching research on the space shuttle can find the trades between the capabilities of the many different vehicles to be confusing. In this presentation we will summarize vehicle and associated ground processing capabilities as well as key concepts of operations for different types of life sciences research being launched in the cargo vehicles. We will provide the latest status of vehicle capabilities and support hardware and facilities development being made to enable the broadest implementation of life sciences research on the ISS.

  20. ISS and Shuttle Payload Research Development and Processing

    Science.gov (United States)

    Calhoun, Kyle A.

    2010-01-01

    NASA's ISS and Spacecraft Processing Directorate (UB) is charged with the performance of payload development for research originating through NASA, ISS international partners, and the National Laboratory. The Payload Development sector of the Directorate takes biological research approved for on orbit experimentation from its infancy stage and finds a way to integrate and implement that research into a payload on either a Shuttle sortie or Space Station increment. From solicitation and selection, to definition, to verification, to integration and finally to operations and analysis, Payload Development is there every step of the way. My specific work as an intern this summer has consisted of investigating data received by separate flight and ground control Advanced Biological Research Systems (ABRS) units for Advanced Plant Experiments (APEX) and Cambium research. By correlation and analysis of this data and specific logbook information I have been working to explain changes in environmental conditions on both the flight and ground control unit. I have then, compiled all of that information into a form that can be presentable to the Principal Investigator (PI). This compilation allows that PI scientist to support their findings and add merit to their research. It also allows us, as the Payload Developers, to further inspect the ABRS unit and its performance

  1. Analysis of Space Station Centrifuge Rotor Bearing Systems: A Case Study

    Science.gov (United States)

    Poplawski, Joseph V.; Loewenthal, Stuart H.; Oswald, Fred B.; Zaretsky, Erwin V.; Morales, Wilfredo; Street, Kenneth W., Jr.

    2014-01-01

    A team of NASA bearing and lubrication experts was assembled to assess the risk for the rolling-element bearings used in the International Space Station (ISS) centrifuge rotor (CR) to seize or otherwise fail to survive for the required 10-year life. The CR was designed by the Japan Aerospace Exploration Agency and their subcontractor, NEC Toshiba Space Systems, Ltd. (NTSpace). The NASA team performed a design audit for the most critical rolling-element bearing systems and reviewed the lubricant selected. There is uncertainty regarding the ability of the Braycote 601 grease (Castrol Limited) to reliably provide the 10-year continuous life required without relubrication of the system. The fatigue life of the Rotor Shaft Assembly (RSA) spring loaded face-to-face mount at a 99-percent probability of survival (L1 life) for the ball bearing set was estimated at 700 million hours and the single ball bearing (Row 3) at 58 million hours. These lives satisfy the mission requirements for fatigue. Rolling-element seizure tests on the RSA and fluid slip joint bearings were found unlikely to stop the centrifuge, which can cause damage to the ISS structure. The spin motor encoder duplex angular-contact ball bearings have a hard preload and a large number of small balls have the highest risk of failure. These bearings were not tested for seizure even though they are less tolerant to debris or internal clearance reductions.

  2. Microstructure and Macrosegregation Study of Directionally Solidified Al-7Si Samples Processed Terrestrially and Aboard the International Space Station

    Science.gov (United States)

    Angart, Samuel; Erdman, R. G.; Poirier, David R.; Tewari, S.N.; Grugel, R. N.

    2014-01-01

    This talk reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). The DS-experiments have been carried out under 1-g at Cleveland State University (CSU) and under low-g on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially-processed samples and the ISS-processed samples. We have observed that the primary dendrite arm spacings of two samples grown in the low-g environment of the ISS show good agreement with a dendrite-growth model based on diffusion controlled growth. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosgregation. In order to process DS-samples aboard the ISS, dendritic-seed crystals have to partially remelted in a stationary thermal gradient before the DS is carried out. Microstructural changes and macrosegregation effects during this period are described.

  3. STS-98 Crew Interview: Tom Jones

    Science.gov (United States)

    2001-01-01

    The STS-98 Mission Specialist Tom Jones is seen being interviewed. He answers questions about his inspiration to become an astronaut, his career path, and his training. He gives details on the mission's goals and significance, and the payload and hardware it brings to the International Space Station (ISS). Mr. Jones discusses his role in the mission's spacewalks and activities.

  4. Predictive Modeling of the CDRA 4BMS

    Science.gov (United States)

    Coker, Robert F.; Knox, James C.

    2016-01-01

    As part of NASA's Advanced Exploration Systems (AES) program and the Life Support Systems Project (LSSP), fully predictive models of the Four Bed Molecular Sieve (4BMS) of the Carbon Dioxide Removal Assembly (CDRA) on the International Space Station (ISS) are being developed. This virtual laboratory will be used to help reduce mass, power, and volume requirements for future missions. In this paper we describe current and planned modeling developments in the area of carbon dioxide removal to support future crewed Mars missions as well as the resolution of anomalies observed in the ISS CDRA.

  5. Astronaut Voss Works in the Destiny Laboratory

    Science.gov (United States)

    2001-01-01

    In this photograph, Astronaut James Voss, flight engineer of Expedition Two, performs a task at a work station in the International Space Station (ISS) Destiny Laboratory, or U.S. Laboratory, as Astronaut Scott Horowitz, STS-105 mission commander, floats through the hatchway leading to the Unity node. After spending five months aboard the orbital outpost, the ISS Expedition Two crew was replaced by Expedition Three and returned to Earth aboard the STS-105 Space Shuttle Discovery on August 22, 2001. The Orbiter Discovery was launched from the Kennedy Space Center on August 10, 2001.

  6. STS-102 Expedition 2 Increment and Science Briefing

    Science.gov (United States)

    2001-01-01

    Merri Sanchez, Expedition 2 Increment Manager, John Uri, Increment Scientist, and Lybrease Woodard, Lead Payload Operations Director, give an overview of the upcoming activities and objectives of the Expedition 2's (E2's) mission in this prelaunch press conference. Ms. Sanchez describes the crew rotation of Expedition 1 to E2, the timeline E2 will follow during their stay on the International Space Station (ISS), and the various flights going to the ISS and what each will bring to ISS. Mr. Uri gives details on the on-board experiments that will take place on the ISS in the fields of microgravity research, commercial, earth, life, and space sciences (such as radiation characterization, H-reflex, colloids formation and interaction, protein crystal growth, plant growth, fermentation in microgravity, etc.). He also gives details on the scientific facilities to be used (laboratory racks and equipment such as the human torso facsimile or 'phantom torso'). Ms. Woodard gives an overview of Marshall Flight Center's role in the mission. Computerized simulations show the installation of the Space Station Remote Manipulator System (SSRMS) onto the ISS and the installation of the airlock using SSRMS. Live footage shows the interior of the ISS, including crew living quarters, the Progress Module, and the Destiny Laboratory. The three then answer questions from the press.

  7. International Space Station Instmments Collect Imagery of Natural Disasters

    Science.gov (United States)

    Evans, C. A.; Stefanov, W. L.

    2013-01-01

    A new focus for utilization of the International Space Station (ISS) is conducting basic and applied research that directly benefits Earth's citizenry. In the Earth Sciences, one such activity is collecting remotely sensed imagery of disaster areas and making those data immediately available through the USGS Hazards Data Distribution System, especially in response to activations of the International Charter for Space and Major Disasters (known informally as the "International Disaster Charter", or IDC). The ISS, together with other NASA orbital sensor assets, responds to IDC activations following notification by the USGS. Most of the activations are due to natural hazard events, including large floods, impacts of tropical systems, major fires, and volcanic eruptions and earthquakes. Through the ISS Program Science Office, we coordinate with ISS instrument teams for image acquisition using several imaging systems. As of 1 August 2013, we have successfully contributed imagery data in support of 14 Disaster Charter Activations, including regions in both Haiti and the east coast of the US impacted by Hurricane Sandy; flooding events in Russia, Mozambique, India, Germany and western Africa; and forest fires in Algeria and Ecuador. ISS-based sensors contributing data include the Hyperspectral Imager for the Coastal Ocean (HICO), the ISERV (ISS SERVIR Environmental Research and Visualization System) Pathfinder camera mounted in the US Window Observational Research Facility (WORF), the ISS Agricultural Camera (ISSAC), formerly operating from the WORF, and high resolution handheld camera photography collected by crew members (Crew Earth Observations). When orbital parameters and operations support data collection, ISS-based imagery adds to the resources available to disaster response teams and contributes to the publicdomain record of these events for later analyses.

  8. The ISS 2B PVTCS Ammonia Leak: An Operational History

    Science.gov (United States)

    Vareha, Anthony

    2014-01-01

    In 2006, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B power channel began leaking ammonia at a rate of approximately 1.5lbm/year (out of a starting approximately 53lbm system ammonia mass). Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity during the STS-134 mission. During this mission the system was topped off with ammonia piped over from a separate thermal control system. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. Without these periodic EVAs to refill the 2B coolant system, the channel would eventually leak enough fluid as to risk pump cavitation and system failure, resulting in the loss of the 2B power channel - the most critical of the Space Station's 8 power channels. In mid-2012, the leak rate increased to approximately 5lbm/year. Once discovered, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to a dormant thermal control system not intended to be utilized as anything other than spare components. The purpose of this rerouting of the TCS was to increase system volume and to isolate the photovoltaic radiator, thought to be the likely leak source. This EVA was successfully executed on November 1st, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a totally different radiator than what the system was designed to utilize. Unfortunately, data monitoring over the next several months showed that the isolated radiator was not leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the

  9. Diagnostic Imaging in the Medical Support of the Future Missions to the Moon

    Science.gov (United States)

    Sargsyan, Ashot E.; Jones, Jeffrey A.; Hamilton, Douglas R.; Dulchavsky, Scott A.; Duncan, J. Michael

    2007-01-01

    This viewgraph presentation is a course that reviews the diagnostic imaging techniques available for medical support on the future moon missions. The educational objectives of the course are to: 1) Update the audience on the curreultrasound imaging in space flight; 2) Discuss the unique aspects of conducting ultrasound imaging on ISS, interplanetary transit, ultrasound imaging on ISS, interplanetary transit, and lunar surface operations; and 3) Review preliminary data obtained in simulations of medical imaging in lunar surface operations.

  10. The international space station: An opportunity for industry-sponsored global education

    Science.gov (United States)

    Shields, Cathleen E.

    1999-01-01

    The International Space Station provides an excellent opportunity for industry sponsorship of international space education. As a highly visible worldwide asset, the space station already commands our interest. It has captured the imagination of the world's researchers and connected the world's governments. Once operational, it can also be used to capture the dreams of the world's children and connect the world's industry through education. The space station's global heritage and ownership; its complex engineering, construction, and operation; its flexible research and technology demonstration capability; and its long duration make it the perfect educational platform. These things also make a space station education program attractive to industry. Such a program will give private industry the opportunity to sponsor space-related activities even though a particular industry may not have a research or technology-driven need for space utilization. Sponsors will benefit through public relations and goodwill, educational promotions and advertising, and the sale and marketing of related products. There is money to be made by supporting, fostering, and enabling education in space through the International Space Station. This paper will explore various ISS education program and sponsorship options and benefits, will examine early industry response to such an opportunity, and will make the case for moving forward with an ISS education program as a private sector initiative.

  11. International Space Station Research and Facilities for Life Sciences

    Science.gov (United States)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  12. International Space Station Environmental Control and Life Support System Status for the Prior Year: 2010-2011

    Science.gov (United States)

    Williams, David E.; Dake, Jason R.; Gentry, Gregory J.

    2012-01-01

    The International Space Station (ISS) Environmental Control and Life Support (ECLS) system includes regenerative and non-regenerative technologies that provide the basic life support functions to support the crew, while maintaining a safe and habitable shirtsleeve environment. This paper provides a summary of the U.S. ECLS system activities over the prior year, covering the period of time between March 2010 and February 2011. The ISS continued permanent crew operations including the continuation of six crew members being on ISS. Work continues on the last of the Phase 3 pressurized elements, the commercial cargo resupply vehicles, and work to try and extend ISS service life from 2015 to no later than 2028.

  13. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  14. Development of a Space Station Operations Management System

    Science.gov (United States)

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  15. Vehicle Net Habitable Volume (NHV) and Habitability Assessment

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this study is to assess habitability on the International Space Station (ISS) in order to better prepare for long-duration spaceflight missions of the...

  16. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    Science.gov (United States)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  17. On-Orbit Prospective Echocardiography on International Space Station

    Science.gov (United States)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David; Garcia, Kathleen M.; Melton, Shannon; Feiverson, Alan; Dulchavsky, Scott A.

    2010-01-01

    A number of echocardiographic research projects and experiments have been flown on almost every space vehicle since 1970, but validation of standard methods and the determination of Space Normal cardiac function has not been reported to date. Advanced Diagnostics in Microgravity (ADUM) -remote guided echocardiographic technique provides a novel and effective approach to on-board assessment of cardiac physiology and structure using a just-in-time training algorithm and real-time remote guidance aboard the International Space Station (ISS). The validation of remotely guided echocardiographic techniques provides the procedures and protocols to perform scientific and clinical echocardiography on the ISS and the Moon. The objectives of this study were: 1.To confirm the ability of non-physician astronaut/cosmonaut crewmembers to perform clinically relevant remotely guided echocardiography using the Human Research Facility on board the ISS. 2.To compare the preflight, postflight and in-flight echocardiographic parameters commonly used in clinical medicine.

  18. National Aeronautics and Space Administration Biological Specimen Repository

    Science.gov (United States)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  19. Design, Development and Pre-Flight Testing of the Communications, Navigation, and Networking Reconfigurable Testbed (Connect) to Investigate Software Defined Radio Architecture on the International Space Station

    Science.gov (United States)

    Over, Ann P.; Barrett, Michael J.; Reinhart, Richard C.; Free, James M.; Cikanek, Harry A., III

    2011-01-01

    The Communication Navigation and Networking Reconfigurable Testbed (CoNNeCT) is a NASA-sponsored mission, which will investigate the usage of Software Defined Radios (SDRs) as a multi-function communication system for space missions. A softwaredefined radio system is a communication system in which typical components of the system (e.g., modulators) are incorporated into software. The software-defined capability allows flexibility and experimentation in different modulation, coding and other parameters to understand their effects on performance. This flexibility builds inherent redundancy and flexibility into the system for improved operational efficiency, real-time changes to space missions and enhanced reliability/redundancy. The CoNNeCT Project is a collaboration between industrial radio providers and NASA. The industrial radio providers are providing the SDRs and NASA is designing, building and testing the entire flight system. The flight system will be integrated on the Express Logistics Carrier (ELC) on the International Space Station (ISS) after launch on the H-IIB Transfer Vehicle in 2012. This paper provides an overview of the technology research objectives, payload description, design challenges and pre-flight testing results.

  20. Sensitivity Analysis of the Integrated Medical Model for ISS Programs

    Science.gov (United States)

    Goodenow, D. A.; Myers, J. G.; Arellano, J.; Boley, L.; Garcia, Y.; Saile, L.; Walton, M.; Kerstman, E.; Reyes, D.; Young, M.

    2016-01-01

    Sensitivity analysis estimates the relative contribution of the uncertainty in input values to the uncertainty of model outputs. Partial Rank Correlation Coefficient (PRCC) and Standardized Rank Regression Coefficient (SRRC) are methods of conducting sensitivity analysis on nonlinear simulation models like the Integrated Medical Model (IMM). The PRCC method estimates the sensitivity using partial correlation of the ranks of the generated input values to each generated output value. The partial part is so named because adjustments are made for the linear effects of all the other input values in the calculation of correlation between a particular input and each output. In SRRC, standardized regression-based coefficients measure the sensitivity of each input, adjusted for all the other inputs, on each output. Because the relative ranking of each of the inputs and outputs is used, as opposed to the values themselves, both methods accommodate the nonlinear relationship of the underlying model. As part of the IMM v4.0 validation study, simulations are available that predict 33 person-missions on ISS and 111 person-missions on STS. These simulated data predictions feed the sensitivity analysis procedures. The inputs to the sensitivity procedures include the number occurrences of each of the one hundred IMM medical conditions generated over the simulations and the associated IMM outputs: total quality time lost (QTL), number of evacuations (EVAC), and number of loss of crew lives (LOCL). The IMM team will report the results of using PRCC and SRRC on IMM v4.0 predictions of the ISS and STS missions created as part of the external validation study. Tornado plots will assist in the visualization of the condition-related input sensitivities to each of the main outcomes. The outcomes of this sensitivity analysis will drive review focus by identifying conditions where changes in uncertainty could drive changes in overall model output uncertainty. These efforts are an integral

  1. Comparison of Directionally Solidified Samples Solidified Terrestrially and Aboard the International Space Station

    Science.gov (United States)

    Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.

    2014-01-01

    This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.

  2. Habitat Concepts for Deep Space Exploration

    Science.gov (United States)

    Smitherman, David; Griffin, Brand N.

    2014-01-01

    Future missions under consideration requiring human habitation beyond the International Space Station (ISS) include deep space habitats in the lunar vicinity to support asteroid retrieval missions, human and robotic lunar missions, satellite servicing, and Mars vehicle servicing missions. Habitat designs are also under consideration for missions beyond the Earth-Moon system, including transfers to near-Earth asteroids and Mars orbital destinations. A variety of habitat layouts have been considered, including those derived from the existing ISS designs and those that could be fabricated from the Space Launch System (SLS) propellant tanks. This paper presents a comparison showing several options for asteroid, lunar, and Mars mission habitats using ISS derived and SLS derived modules and identifies some of the advantages and disadvantages inherent in each. Key findings indicate that the larger SLS diameter modules offer built-in compatibility with the launch vehicle, single launch capability without on-orbit assembly, improved radiation protection, lighter structures per unit volume, and sufficient volume to accommodate consumables for long duration missions without resupply. The information provided with the findings includes mass and volume comparison data that should be helpful to future exploration mission planning efforts.

  3. Decline in Aerobic Fitness After Long-Term Stays on the International Space Station

    Science.gov (United States)

    Lynn, Peggy A.; Minard, Charles; Moore, Alan; Babiak-Vazquez, Adriana

    2010-01-01

    U.S. and non-Russian International Partner astronauts who participate in long-term International Space Station (ISS) expeditions perform submaximal cycle exercise tests before, during, and after space flight. The heart rate (HR) and oxygen uptake (VO2) responses to exercise are used to estimate peak VO2 (EVO2pk). Purpose: To determine if the following factors are associated with the preflight-to-post flight change in EVO2pk: gender, age, body weight (BW), number of aerobic exercise sessions/wk- during flight, length of flight, EVO2pk measured before and late during the flight, ISS Expedition number and time between landing and the first post flight test. Methods: Records of 37 ISS astronauts (30 male, BW=81.6 plus or minus 8.6 kg; 7 female BW=66.1 plus or minus 4.9 kg [mean plus or minus SD]), age 46 plus or minus 4 years, were retrospectively examined. Peak HR and VO2 were measured approximately 9 months before flight to establish the test protocol. The submaximal cycle test consisted of three 5-minute stages designed to elicit 25, 50, and 75% of VO2pk. EVO2pk was calculated using linear least-squares extrapolation of average HR and VO2 during the last minute of each stage to predict VO2 at maximal HR. VO2 was not measured during flight and was assumed to not be different from preflight. Testing was performed 45 days before launch, late during flight, and during the week after landing. A random-intercept multivariate model was used to determine which characteristics significantly contributed to post flight EVO2pk. Results: In-flight aerobic exercise averaged 5.4 plus or minus 1.2 sessions/wk. ISS flight duration averaged 163 plus or minus 39 d. Mean EVO2pk values were 3.41 plus or minus 0.64 L (raised dot) per minute before flight, 3.09 plus or minus 0.57 L (raised dot) per minute late in flight, and 3.02 plus or minus 0.65 L (raised dot) per minute after flight. Late- and after-flight values were lower (p less than 0.05) than preflight values and did not differ

  4. Development of an Integrated Countermeasure Device for Long Duration Space Flight and Exploration Missions

    Science.gov (United States)

    Lee, S. M. C.; Streeper, T.; Spiering, B. A.; Loehr, J. A.; Guilliams, M. E.; Bloomberg, J. J.; Mulavara, A. P.; Cavanagh, P. R.; Lang, T.

    2010-01-01

    Musculoskeletal, cardiovascular, and sensorimotor deconditioning have been observed consistently in astronauts and cosmonauts following long-duration spaceflight. Studies in bed rest, a spaceflight analog, have shown that high intensity resistive or aerobic exercise attenuates or prevents musculoskeletal and cardiovascular deconditioning, respectively, but complete protection has not been achieved during spaceflight. Exercise countermeasure hardware used during earlier International Space Station (ISS) missions included a cycle ergometer, a treadmill, and the interim resistive exercise device (iRED). Effectiveness of the countermeasures may have been diminished by limited loading characteristics of the iRED as well as speed restrictions and subject harness discomfort during treadmill exercise. The Advanced Resistive Exercise Device (ARED) and the second generation treadmill were designed to address many of the limitations of their predecessors, and anecdotal reports from ISS crews suggest that their conditioning is better preserved since the new hardware was delivered in 2009. However, several countermeasure devices to protect different physiologic systems will not be practical during exploration missions when the available volume and mass will be severely restricted. The combined countermeasure device (CCD) integrates a suite of hardware into one device intended to prevent spaceflight-induced musculoskeletal, cardiovascular, and sensorimotor deconditioning. The CCD includes pneumatic loading devices with attached cables for resistive exercise, a cycle for aerobic exercise, and a 6 degree of freedom motion platform for balance training. In a proof of concept test, ambulatory untrained subjects increased muscle strength (58%) as well as aerobic capacity (26%) after 12-weeks of exercise training with the CCD (without balance training), improvements comparable to those observed with traditional exercise training. These preliminary results suggest that this CCD can

  5. Cognitive demand of human sensorimotor performance during an extended space mission: a dual-task study.

    Science.gov (United States)

    Bock, Otmar; Weigelt, Cornelia; Bloomberg, Jacob J

    2010-09-01

    Two previous single-case studies found that the dual-task costs of manual tracking plus memory search increased during a space mission, and concluded that sensorimotor deficits during spaceflight may be related to cognitive overload. Since dual-task costs were insensitive to the difficulty of memory search, the authors argued that the overload may reflect stress-related problems of multitasking, rather than a scarcity of specific cognitive resources. Here we expand the available database and compare different types of concurrent task. Three subjects were repeatedly tested before, during, and after an extended mission on the International Space Station (ISS). They performed an unstable tracking task and four reaction-time tasks, both separately and concurrently. Inflight data could only be obtained during later parts of the mission. The tracking error increased from pre- to in flight by a factor of about 2, both under single- and dual-task conditions. The dual-task costs with a reaction-time task requiring rhythm production was 2.4 times higher than with a reaction-time task requiring visuo-spatial transformations, and 8 times higher than with a regular choice reaction-time task. Long-term sensorimotor deficits during spaceflight may reflect not only stress, but also a scarcity of resources related to complex motor programming; possibly those resources are tied up by sensorimotor adaptation to the space environment.

  6. Planned Environmental Microbiology Aspects of Future Lunar and Mars Missions

    Science.gov (United States)

    Ott, C. Mark; Castro, Victoria A.; Pierson, Duane L.

    2006-01-01

    With the establishment of the Constellation Program, NASA has initiated efforts designed similar to the Apollo Program to return to the moon and subsequently travel to Mars. Early lunar sorties will take 4 crewmembers to the moon for 4 to 7 days. Later missions will increase in duration up to 6 months as a lunar habitat is constructed. These missions and vehicle designs are the forerunners of further missions destined for human exploration of Mars. Throughout the planning and design process, lessons learned from the International Space Station (ISS) and past programs will be implemented toward future exploration goals. The standards and requirements for these missions will vary depending on life support systems, mission duration, crew activities, and payloads. From a microbiological perspective, preventative measures will remain the primary techniques to mitigate microbial risk. Thus, most of the effort will focus on stringent preflight monitoring requirements and engineering controls designed into the vehicle, such as HEPA air filters. Due to volume constraints in the CEV, in-flight monitoring will be limited for short-duration missions to the measurement of biocide concentration for water potability. Once long-duration habitation begins on the lunar surface, a more extensive environmental monitoring plan will be initiated. However, limited in-flight volume constraints and the inability to return samples to Earth will increase the need for crew capabilities in determining the nature of contamination problems and method of remediation. In addition, limited shelf life of current monitoring hardware consumables and limited capabilities to dispose of biohazardous trash will drive flight hardware toward non-culture based methodologies, such as hardware that rapidly distinguishes biotic versus abiotic surface contamination. As missions progress to Mars, environmental systems will depend heavily on regeneration of air and water and biological waste remediation and

  7. Education Payload Operation - Demonstrations

    Science.gov (United States)

    Keil, Matthew

    2009-01-01

    Education Payload Operation - Demonstrations (EPO-Demos) are recorded video education demonstrations performed on the International Space Station (ISS) by crewmembers using hardware already onboard the ISS. EPO-Demos are videotaped, edited, and used to enhance existing NASA education resources and programs for educators and students in grades K-12. EPO-Demos are designed to support the NASA mission to inspire the next generation of explorers.

  8. Planning Systems for Distributed Operations

    Science.gov (United States)

    Maxwell, Theresa G.

    2002-01-01

    This viewgraph representation presents an overview of the mission planning process involving distributed operations (such as the International Space Station (ISS)) and the computer hardware and software systems needed to support such an effort. Topics considered include: evolution of distributed planning systems, ISS distributed planning, the Payload Planning System (PPS), future developments in distributed planning systems, Request Oriented Scheduling Engine (ROSE) and Next Generation distributed planning systems.

  9. Diagram of the Water Recovery and Management for the International Space Station

    Science.gov (United States)

    2000-01-01

    This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.

  10. A planetary telescope at the ISS

    Science.gov (United States)

    Korablev, O.; Moroz, V.; Avanesov, G.; Rodin, V.; Bellucci, G.; Vid Machenko, A.; Tejfel, V.

    We present the development of a 40-cm telescope to be deployed at the Russian segment of International Space Station (ISS) dedicated to the observations of planets of Solar system, which primary goal will be tracking climate-related changes and other variable phenomena on planets. The most effective will be the observations of Venus, Mars, Jupiter, Saturn, and comets, while other interesting targets will be certainly considered. This space-based observatory will perform monitoring of Solar System objects on regular basis The observatory includes the 40-cm narrow-field (f:20) telescope at a pointing platform with guidance system assuring pointing accuracy of ~10", and an internal tracking system with an accuracy inferior to 1" during tens of minutes. Four focal plane instruments, a camera, two spectrometers and a spectropolarimeter, will perform imaging and spectral observations in the range from ~200 nm to ~3 μm.

  11. Earth Observation from the International Space Station -Remote Sensing in Schools-

    Science.gov (United States)

    Schultz, Johannes; Rienow, Andreas; Graw, Valerie; Heinemann, Sascha; Selg, Fabian; Menz, Gunter

    2016-04-01

    Since spring 2014, the NASA High Definition Earth Viewing (HDEV) mission at the International Space Station (ISS) is online. HDEV consists of four cameras mounted at ESA's Columbus laboratory and is recording the earth 24/7. The educational project 'Columbus Eye - Live-Imagery from the ISS in Schools' has published a learning portal for earth observation from the ISS (www.columbuseye.uni-bonn.de). Besides a video live stream, the portal contains an archive providing spectacular footage, web-GIS and an observatory with interactive materials for school lessons. Columbus Eye is carried out by the University of Bonn and funded by the German Aerospace Center (DLR) Space Administration. Pupils should be motivated to work with the footage in order to learn about patterns and processes of the coupled human-environment system like volcano eruptions or deforestation. The material is developed on the experiences of the FIS (German abbreviation for "Remote Sensing in Schools") project and its learning portal (http://www.fis.uni-bonn.de). Based on the ISS videos three different teaching material types are developed. The simplest teaching type are provided by worksheets, which have a low degree of interactivity. Alongside a short didactical commentary for teachers is included. Additionally, videos, ancillary information, maps, and instructions for interactive school experiments are provided. The observatory contains the second type of the Columbus Eye teaching materials. It requires a high degree of self-organisation and responsibility of the pupils. Thus, the observatory provides the opportunity for pupils to freely construct their own hypotheses based on a spatial analysis tool similar to those provided by commercial software. The third type are comprehensive learning and teaching modules with a high degree of interactivity, including background information, interactive animations, quizzes and different analysis tools (e.g. change detection, classification, polygon or NDVI

  12. Hyperspectral Remote Sensing of Terrestrial Ecosystem Productivity from ISS

    Science.gov (United States)

    Huemmrich, K. F.; Campbell, P. K. E.; Gao, B. C.; Flanagan, L. B.; Goulden, M.

    2017-12-01

    Data from the Hyperspectral Imager for Coastal Ocean (HICO), mounted on the International Space Station (ISS), were used to develop and test algorithms for remotely retrieving ecosystem productivity. The ISS orbit introduces both limitations and opportunities for observing ecosystem dynamics. Twenty six HICO images were used from four study sites representing different vegetation types: grasslands, shrubland, and forest. Gross ecosystem production (GEP) data from eddy covariance were matched with HICO-derived spectra. Multiple algorithms were successful relating spectral reflectance with GEP, including: Spectral Vegetation Indices (SVI), SVI in a light use efficiency model framework, spectral shape characteristics through spectral derivatives and absorption feature analysis, and statistical models leading to Multiband Hyperspectral Indices (MHI) from stepwise regressions and Partial Least Squares Regression (PLSR). Algorithms were able to achieve r2 better than 0.7 for both GEP at the overpass time and daily GEP. These algorithms were successful using a diverse set of observations combining data from multiple years, multiple times during growing season, different times of day, with different view angles, and different vegetation types. The demonstrated robustness of the algorithms presented in this study over these conditions provides some confidence in mapping spatial patterns of GEP, describing variability within fields as well as the regional patterns based only on spectral reflectance information. The ISS orbit provides periods with multiple observations collected at different times of the day within a period of a few days. Diurnal GEP patterns were estimated comparing the half-hourly average GEP from the flux tower against HICO estimates of GEP (r2=0.87) if morning, midday, and afternoon observations were available for average fluxes in the time period.

  13. State Estimation of International Space Station Centrifuge Rotor With Incomplete Knowledge of Disturbance Inputs

    National Research Council Canada - National Science Library

    Sullivan, Michael J

    2005-01-01

    This thesis develops a state estimation algorithm for the Centrifuge Rotor (CR) system where only relative measurements are available with limited knowledge of both rotor imbalance disturbances and International Space Station (ISS...

  14. STS-110 Extravehicular Activity (EVA)

    Science.gov (United States)

    2002-01-01

    STS-110 mission specialist Lee M.E. Morin carries an affixed 35 mm camera to record work which is being performed on the International Space Station (ISS). Working with astronaut Jerry L. Ross (out of frame), the duo completed the structural attachment of the S0 (s-zero) truss, mating two large tripod legs of the 13 1/2 ton structure to the station's main laboratory during a 7-hour, 30-minute space walk. The STS-110 mission prepared the Station for future space walks by installing and outfitting the 43-foot-long S0 truss and preparing the Mobile Transporter. The S0 Truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. Milestones of the S-110 mission included the first time the ISS robotic arm was used to maneuver space walkers around the Station and marked the first time all space walks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis, STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  15. The Threat of Uncertainty: Why Using Traditional Approaches for Evaluating Spacecraft Reliability are Insufficient for Future Human Mars Missions

    Science.gov (United States)

    Stromgren, Chel; Goodliff, Kandyce; Cirillo, William; Owens, Andrew

    2016-01-01

    Through the Evolvable Mars Campaign (EMC) study, the National Aeronautics and Space Administration (NASA) continues to evaluate potential approaches for sending humans beyond low Earth orbit (LEO). A key aspect of these missions is the strategy that is employed to maintain and repair the spacecraft systems, ensuring that they continue to function and support the crew. Long duration missions beyond LEO present unique and severe maintainability challenges due to a variety of factors, including: limited to no opportunities for resupply, the distance from Earth, mass and volume constraints of spacecraft, high sensitivity of transportation element designs to variation in mass, the lack of abort opportunities to Earth, limited hardware heritage information, and the operation of human-rated systems in a radiation environment with little to no experience. The current approach to maintainability, as implemented on ISS, which includes a large number of spares pre-positioned on ISS, a larger supply sitting on Earth waiting to be flown to ISS, and an on demand delivery of logistics from Earth, is not feasible for future deep space human missions. For missions beyond LEO, significant modifications to the maintainability approach will be required.Through the EMC evaluations, several key findings related to the reliability and safety of the Mars spacecraft have been made. The nature of random and induced failures presents significant issues for deep space missions. Because spare parts cannot be flown as needed for Mars missions, all required spares must be flown with the mission or pre-positioned. These spares must cover all anticipated failure modes and provide a level of overall reliability and safety that is satisfactory for human missions. This will require a large amount of mass and volume be dedicated to storage and transport of spares for the mission. Further, there is, and will continue to be, a significant amount of uncertainty regarding failure rates for spacecraft

  16. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  17. Moon-Mars Analogue Mission (EuroMoonMars 1 at the Mars Desert Research Station)

    Science.gov (United States)

    Lia Schlacht, Irene; Voute, Sara; Irwin, Stacy; Foing, Bernard H.; Stoker, Carol R.; Westenberg, Artemis

    The Mars Desert Research Station (MDRS) is situated in an analogue habitat-based Martian environment, designed for missions to determine the knowledge and equipment necessary for successful future planetary exploration. For this purpose, a crew of six people worked and lived together in a closed-system environment. They performed habitability experiments within the dwelling and conducted Extra-Vehicular Activities (EVAs) for two weeks (20 Feb to 6 Mar 2010) and were guided externally by mission support, called "Earth" within the simulation. Crew 91, an international, mixed-gender, and multidisciplinary group, has completed several studies during the first mission of the EuroMoonMars campaign. The crew is composed of an Italian designer and human factors specialist, a Dutch geologist, an American physicist, and three French aerospace engineering students from Ecole de l'Air, all with ages between 21 and 31. Each crewmember worked on personal research and fulfilled a unique role within the group: commander, executive officer, engineer, health and safety officer, scientist, and journalist. The expedition focused on human factors, performance, communication, health and safety pro-tocols, and EVA procedures. The engineers' projects aimed to improve rover manoeuvrability, far-field communication, and data exchanges between the base and the rover or astronaut. The crew physicist evaluated dust control methods inside and outside the habitat. The geologist tested planetary geological sampling procedures. The crew designer investigated performance and overall habitability in the context of the Mars Habitability Experiment from the Extreme-Design group. During the mission the crew also participated in the Food Study and in the Ethospace study, managed by external groups. The poster will present crew dynamics, scientific results and daily schedule from a Human Factors perspective. Main co-sponsors and collaborators: ILEWG, ESA ESTEC, NASA Ames, Ecole de l'Air, SKOR, Extreme

  18. Materials Test Station

    Data.gov (United States)

    Federal Laboratory Consortium — When completed, the Materials Test Station at the Los Alamos Neutron Science Center will meet mission need. MTS will provide the only fast-reactor-like irradiation...

  19. Nickel-Hydrogen Battery Cell Life Test Program Update for the International Space Station

    Science.gov (United States)

    Miller, Thomas B.

    2000-01-01

    NASA and Boeing North America are responsible for constructing the electrical power system for the International Space Station (ISS), which circles the Earth every 90 minutes in a low Earth orbit (LEO). For approximately 55 minutes of this orbit, the ISS is in sunlight, and for the remaining 35 minutes, the ISS is in the Earth s shadow (eclipse). The electrical power system must not only provide power during the sunlight portion by means of the solar arrays, but also store energy for use during the eclipse. Nickel-hydrogen (Ni/H2) battery cells were selected as the energy storage systems for ISS. Each battery Orbital Replacement Unit (ORU) comprises 38 individual series-connected Ni/H2 battery cells, and there are 48 battery ORU s on the ISS. On the basis of a limited Ni/H2 LEO data base on life and performance characteristics, the NASA Glenn Research Center at Lewis Field commenced testing through two test programs: one in-house and one at the Naval Surface Warfare Center in Crane, Indiana.

  20. Space station accommodations for lunar base elements: A study

    Science.gov (United States)

    Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.

    1987-01-01

    The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.

  1. Maximizing Science Return from Future Rodent Experiments on the International Space Station (ISS): Tissue Preservation

    Science.gov (United States)

    Choi, S. Y.; Lai, S.; Klotz, R.; Popova, Y.; Chakravarty, K.; Beegle, J. E.; Wigley, C. L.; Globus, R. K.

    2014-01-01

    To better understand how mammals adapt to long duration habitation in space, a system for performing rodent experiments on the ISS is under development; Rodent Research-1 is the first flight and will include validation of both on-orbit animal support and tissue preservation. To evaluate plans for on-orbit sample dissection and preservation, we simulated conditions for euthanasia, tissue dissection, and prolonged sample storage on the ISS, and we also developed methods for post-flight dissection and recovery of high quality RNA from multiple tissues following prolonged storage in situ for future science. Mouse livers and spleens were harvested under conditions that simulated nominal, on-orbit euthanasia and dissection operations including storage at -80 C for 4 months. The RNA recovered was of high quality (RNA Integrity Number, RIN(is) greater than 8) and quantity, and the liver enzyme contents and activities (catalase, glutathione reductase, GAPDH) were similar to positive controls, which were collected under standard laboratory conditions. We also assessed the impact of possible delayed on-orbit dissection scenarios (off-nominal) by dissecting and preserving the spleen (RNAlater) and liver (fast-freezing) at various time points post-euthanasia (from 5 min up to 105 min). The RNA recovered was of high quality (spleen, RIN (is) greater than 8; liver, RIN (is) greater than 6) and liver enzyme activities were similar to positive controls at all time points, although an apparent decline in select enzyme activities was evident at the latest time (105 min). Additionally, various tissues were harvested from either intact or partially dissected, frozen carcasses after storage for approximately 2 months; most of the tissues (brain, heart, kidney, eye, adrenal glands and muscle) were of acceptable RNA quality for science return, whereas some tissues (small intestine, bone marrow and bones) were not. These data demonstrate: 1) The protocols developed for future flight

  2. Space station accommodations for life sciences research facilities. Phase 1: Conceptual design and programmatics studies for Missions SAAX0307, SAAX0302 and the transition from SAAX0307 to SAAX0302. Volume 2: Study results

    Science.gov (United States)

    1986-01-01

    Lockheed Missiles and Space Company's conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are presented. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSFR to the FOC LSFR. The IOC and FOC LSFRs correspond to missions SAAX0307 and SAAX0302 of the Space Station Mission Requirements Database, respectively.

  3. The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    Science.gov (United States)

    Kerstman, Eric L.; Minard, Charles; FreiredeCarvalho, Mary H.; Walton, Marlei E.; Myers, Jerry G., Jr.; Saile, Lynn G.; Lopez, Vilma; Butler, Douglas J.; Johnson-Throop, Kathy A.

    2011-01-01

    This slide presentation reviews the Integrated Medical Model (IMM) and its use as a risk assessment and decision support tool for human space flight missions. The IMM is an integrated, quantified, evidence-based decision support tool useful to NASA crew health and mission planners. It is intended to assist in optimizing crew health, safety and mission success within the constraints of the space flight environment for in-flight operations. It uses ISS data to assist in planning for the Exploration Program and it is not intended to assist in post flight research. The IMM was used to update Probability Risk Assessment (PRA) for the purpose of updating forecasts for the conditions requiring evacuation (EVAC) or Loss of Crew Life (LOC) for the ISS. The IMM validation approach includes comparison with actual events and involves both qualitative and quantitaive approaches. The results of these comparisons are reviewed. Another use of the IMM is to optimize the medical kits taking into consideration the specific mission and the crew profile. An example of the use of the IMM to optimize the medical kits is reviewed.

  4. International Space Station Earth Observations Working Group

    Science.gov (United States)

    Stefanov, William L.; Oikawa, Koki

    2015-01-01

    The multilateral Earth Observations Working Group (EOWG) was chartered in May 2012 in order to improve coordination and collaboration of Earth observing payloads, research, and applications on the International Space Station (ISS). The EOWG derives its authority from the ISS Program Science Forum, and a NASA representative serves as a permanent co-chair. A rotating co-chair position can be occupied by any of the international partners, following concurrence by the other partners; a JAXA representative is the current co-chair. Primary functions of the EOWG include, 1) the exchange of information on plans for payloads, from science and application objectives to instrument development, data collection, distribution and research; 2) recognition and facilitation of opportunities for international collaboration in order to optimize benefits from different instruments; and 3) provide a formal ISS Program interface for collection and application of remotely sensed data collected in response to natural disasters through the International Charter, Space and Major Disasters. Recent examples of EOWG activities include coordination of bilateral data sharing protocols between NASA and TsNIIMash for use of crew time and instruments in support of ATV5 reentry imaging activities; discussion of continued use and support of the Nightpod camera mount system by NASA and ESA; and review and revision of international partner contributions on Earth observations to the ISS Program Benefits to Humanity publication.

  5. Short rendezvous missions for advanced Russian human spacecraft

    Science.gov (United States)

    Murtazin, Rafail F.; Budylov, Sergey G.

    2010-10-01

    The two-day stay of crew in a limited inhabited volume of the Soyuz-TMA spacecraft till docking to ISS is one of the most stressful parts of space flight. In this paper a number of possible ways to reduce the duration of the free flight phase are considered. The duration is defined by phasing strategy that is necessary for reduction of the phase angle between the chaser and target spacecraft. Some short phasing strategies could be developed. The use of such strategies creates more comfortable flight conditions for crew thanks to short duration and additionally it allows saving spacecraft's life support resources. The transition from the methods of direct spacecraft rendezvous using one orbit phasing (first flights of " Vostok" and " Soyuz" vehicles) to the currently used methods of two-day rendezvous mission can be observed in the history of Soviet manned space program. For an advanced Russian human rated spacecraft the short phasing strategy is recommended, which can be considered as a combination between the direct and two-day rendezvous missions. The following state of the art technologies are assumed available: onboard accurate navigation; onboard computations of phasing maneuvers; launch vehicle with high accuracy injection orbit, etc. Some operational requirements and constraints for the strategies are briefly discussed. In order to provide acceptable phase angles for possible launch dates the experience of the ISS altitude profile control can be used. As examples of the short phasing strategies, the following rendezvous missions are considered: direct ascent, short mission with the phasing during 3-7 orbits depending on the launch date (nominal or backup). For each option statistical modeling of the rendezvous mission is fulfilled, as well as an admissible phase angle range, accuracy of target state vector and addition fuel consumption coming out of emergency is defined. In this paper an estimation of pros and cons of all options is conducted.

  6. Ivins examines Destiny with the processing team in the SSPF

    Science.gov (United States)

    1999-01-01

    In the Space Station Processing Facility, Marsha Ivins, a mission specialist on the STS-98 crew, inspects the U.S. Laboratory with members of the laboratory's processing team. The laboratory module, considered the centerpiece of the International Space Station (ISS), has been named 'Destiny' in honor of its prominent role in the world's largest science and technology effort. It is planned for launch aboard Space Shuttle Endeavour on the sixth ISS construction flight currently targeted for March 2000. From left to right are Ivins, Danny Whittington (face not visible), Melissa Orozco, Jerry Hopkins, and Suzanne Fase.

  7. The Evolution of the Rendezvous Profile During the Space Shuttle Program

    Science.gov (United States)

    Summa, William R.

    2010-01-01

    The rendezvous and proximity operations approach design techniques for space shuttle missions has changed significantly during the life of the program in response to new requirements that were not part of the original mission design. The flexibility of the shuttle onboard systems design and the mission planning process has allowed the program to meet these requirements. The design of the space shuttle and the shift from docking to grappling with a robotic ann prevented use of legacy Apollo rendezvous techniques. Over the life of the shuttle program the rendezvous profile has evolved due to several factors, including lowering propellant consumption and increasing flexibility in mission planning. Many of the spacecraft that the shuttle rendezvoused with had unique requirements that drove the creation of mission-unique proximity operations. The dockings to the Russian Mir space station and International Space Station (ISS) required further evolution of rendezvous and proximity operations techniques and additional sensors to enhance crew situational awareness. After the Columbia accident, a Rendezvous Pitch Maneuver (RPM) was added to allow tile photography from ISS. Lessons learned from these rendezvous design changes are applicable to future vehicle designs and operations concepts.

  8. Observation of radiation environment in the International Space Station in 2012–March 2013 by Liulin-5 particle telescope

    Directory of Open Access Journals (Sweden)

    Semkova Jordanka

    2014-01-01

    Full Text Available Since June 2007 the Liulin-5 charged particle telescope, located in the spherical tissue-equivalent phantom of the MATROSHKA-R project onboard the International Space Station (ISS, has been making measurements of the local energetic particle radiation environment. From 27 December 2011 to 09 March 2013 measurements were conducted in and outside the phantom located in the MIM1 module of the ISS. In this paper Liulin-5 dose rates, due to galactic cosmic rays and South Atlantic Anomaly trapped protons, measured during that period are presented. Particularly, dose rates and particle fluxes for the radiation characteristics in the phantom during solar energetic particle (SEP events occurring in March and May 2012 are discussed. Liulin-5 SEP observations are compared with other ISS data, GOES proton fluxes as well as with solar energetic particle measurements obtained onboard the Mir space station during previous solar cycles.

  9. Cosmonaut Yury I. Onufrienko in the Russian Zvezda Service Module

    Science.gov (United States)

    2002-01-01

    Cosmonaut Yury I. Onufrienko, Expedition Four mission commander, uses a communication system in the Russian Zvezda Service Module on the International Space Station (ISS). The Zvezda is linked to the Russian-built Functional Cargo Block (FGB) or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  10. GPS and Galileo Developments on Board the International Space Station With the Space Communications and Navigation (SCaN) Testbed

    Science.gov (United States)

    Pozzobon, Oscar; Fantinato, Samuele; Dalla Chiara, Andrea; Gamba, Giovanni; Crisci, Massimo; Giordana, Pietro; Enderle, Werner; Chelmins, David; Sands, Obed S.; Clapper, Carolyn J.; hide

    2016-01-01

    The Space Communications and Navigation (SCaN) is a facility developed by NASA and hosted on board the International Space Station (ISS) on an external truss since 2013.It has the objective of testing navigation and communication experimentations with a Software Defined Radio (SDR) approach, which permits software updates for testing new experimentations.NASA has developed the Space Telecommunications Radio System (STRS) architecture standard for SDRs used in space and ground-based platforms to provide commonality among radio developments to provide enhanced capability. The hardware is equipped with both L band front-end radios and the NASA space network communicates with it using S-band, Ku-band and Ka-band links.In May 2016 Qascom started GARISS (GPS and Galileo Receiver for the ISS), an activity of experimentation in collaboration with ESA and NASA that has the objective to develop and validate the acquisition and processing of combined GPS and Galileo signals on board the ISS SCaN testbed. This paper has the objective to present the mission, and provide preliminary details about the challenges in the design, development and verification of the waveform that will be installed on equipment with limited resources. GARISS is also the first attempt to develop a waveform for the ISS as part of an international collaboration between US and Europe. Although the final mission objective is to target dual frequency processing, initial operations will foresee a single frequency processing. Initial results and trade-off between the two options, as well as the final decision will be presented and discussed. The limited resources on board the SCaN with respect to the challenging requirements to acquire and track contemporaneously two satellite navigation systems, with different modulations and data structure, led to the need to assess the possibility of aiding from ground through the S-band. This option would allow assistance to the space receiver in order to provide

  11. Electrochemical Disinfection Feasibility Assessment Materials Evaluation for the International Space Station

    Science.gov (United States)

    Rodriquez, Branelle; Shindo, David; Montgomery, Eliza

    2013-01-01

    The International Space Station (ISS) Program recognizes the risk of microbial contamination in their potable and non-potable water sources. The end of the Space Shuttle Program limited the ability to send up shock kits of biocides in the event of an outbreak. Currently, the United States Orbital Segment water system relies primarily on iodine to mitigate contamination concerns, which has been successful in remediating the small cases of contamination documented. However, a secondary method of disinfection is a necessary investment for future space flight. Over the past year, NASA Johnson Space Center has investigated the development of electrochemically generated systems for use on the ISS. These systems include: hydrogen peroxide, ozone, sodium hypochlorite, and peracetic acid. To use these biocides on deployed water systems, NASA must understand of the effect these biocides have on current ISS materials prior to proceeding forward with possible on-orbit applications. This paper will discuss the material testing that was conducted to assess the effects of the biocides on current ISS materials.

  12. Development of a Human Behavior and Performance Training Curriculum for ISS Astronauts

    Science.gov (United States)

    VanderArk, Steve; Tomi, Leena; Vassin, Alexander; Inoue, Natsuhiko; Bessone, Lorendana; OConnor, Sharon; Mukai, Chiaki; Coffee, Emily; Sipes, Walter; Salnitskiy, Vyecheslav; hide

    2007-01-01

    The paper will describe the DACUM process and summarize the core competencies that were agreed upon, internationally, as important for ISS astronauts. The paper will further discuss the ongoing work being completed by the subgroup, Human Behaviour and Performance Training Working Group, including defining the competencies and behavioural markers. Finally, an overview of remaining work will be provided, including determining which competencies require formal training and which require no formal training, developing training objectives, sequencing the training, and establishing how to assess training effectiveness. DISCUSSION: Designing a common set of goals for behavioural training has been the desire of the SHBP WG since its inception in 1998. This group, along with training specialists and astronauts, are making great strides toward defining these competencies. The road ahead will be exceedingly challenging as training objectives are defined and a training flow is proposed to the MCOP; with proposed ISS crews increasing to six people in the near future, such enhanced behavioural training may be all the more essential for mission success.

  13. 8 years of Solar Spectral Irradiance Variability Observed from the ISS with the SOLAR/SOLSPEC Instrument

    Science.gov (United States)

    Damé, Luc; Bolsée, David; Meftah, Mustapha; Irbah, Abdenour; Hauchecorne, Alain; Bekki, Slimane; Pereira, Nuno; Cessateur, Marchand; Gäel; , Marion; et al.

    2016-10-01

    Accurate measurements of Solar Spectral Irradiance (SSI) are of primary importance for a better understanding of solar physics and of the impact of solar variability on climate (via Earth's atmospheric photochemistry). The acquisition of a top of atmosphere reference solar spectrum and of its temporal and spectral variability during the unusual solar cycle 24 is of prime interest for these studies. These measurements are performed since April 2008 with the SOLSPEC spectro-radiometer from the far ultraviolet to the infrared (166 nm to 3088 nm). This instrument, developed under a fruitful LATMOS/BIRA-IASB collaboration, is part of the Solar Monitoring Observatory (SOLAR) payload, externally mounted on the Columbus module of the International Space Station (ISS). The SOLAR mission, with its actual 8 years duration, will cover almost the entire solar cycle 24. We present here the in-flight operations and performances of the SOLSPEC instrument, including the engineering corrections, calibrations and improved know-how procedure for aging corrections. Accordingly, a SSI reference spectrum from the UV to the NIR will be presented, together with its variability in the UV, as measured by SOLAR/SOLSPEC for 8 years. Uncertainties on these measurements and comparisons with other instruments will be briefly discussed.

  14. STS-102 Onboard Photograph-The Payload Equipment Restraint System

    Science.gov (United States)

    2001-01-01

    In this Space Shuttle STS-102 mission image, the Payload Equipment Restraint System H-Strap is shown at the left side of the U.S. Laboratory hatch and behind Astronaut James D. Weatherbee, mission specialist. PERS is an integrated modular system of components designed to assist the crew of the International Space Station (ISS) in restraining and carrying necessary payload equipment and tools in a microgravity environment. The Operations Development Group, Flight Projects Directorate at the Marshall Space Flight Center (MSFC), while providing operation support to the ISS Materials Science Research Facility (MSRF), recognized the need for an on-orbit restraint system to facilitate control of lose objects, payloads, and tools. The PERS is the offspring of that need and it helps the ISS crew manage tools and rack components that would otherwise float away in the near-zero gravity environment aboard the Space Station. The system combines Kevlar straps, mesh pockets, Velcro and a variety of cornecting devices into a portable, adjustable system. The system includes the Single Strap, the H-Strap, the Belly Pack, the Laptop Restraint Belt, and the Tool Page Case. The Single Strap and the H-Strap were flown on this mission. The PERS concept was developed by industrial design students at Auburn University and the MSFC Flight Projects Directorate.

  15. Minimum deltaV Burn Planning for the International Space Station Using a Hybrid Optimization Technique, Level 1

    Science.gov (United States)

    Brown, Aaron J.

    2015-01-01

    The International Space Station's (ISS) trajectory is coordinated and executed by the Trajectory Operations and Planning (TOPO) group at NASA's Johnson Space Center. TOPO group personnel routinely generate look-ahead trajectories for the ISS that incorporate translation burns needed to maintain its orbit over the next three to twelve months. The burns are modeled as in-plane, horizontal burns, and must meet operational trajectory constraints imposed by both NASA and the Russian Space Agency. In generating these trajectories, TOPO personnel must determine the number of burns to model, each burn's Time of Ignition (TIG), and magnitude (i.e. deltaV) that meet these constraints. The current process for targeting these burns is manually intensive, and does not take advantage of more modern techniques that can reduce the workload needed to find feasible burn solutions, i.e. solutions that simply meet the constraints, or provide optimal burn solutions that minimize the total DeltaV while simultaneously meeting the constraints. A two-level, hybrid optimization technique is proposed to find both feasible and globally optimal burn solutions for ISS trajectory planning. For optimal solutions, the technique breaks the optimization problem into two distinct sub-problems, one for choosing the optimal number of burns and each burn's optimal TIG, and the other for computing the minimum total deltaV burn solution that satisfies the trajectory constraints. Each of the two aforementioned levels uses a different optimization algorithm to solve one of the sub-problems, giving rise to a hybrid technique. Level 2, or the outer level, uses a genetic algorithm to select the number of burns and each burn's TIG. Level 1, or the inner level, uses the burn TIGs from Level 2 in a sequential quadratic programming (SQP) algorithm to compute a minimum total deltaV burn solution subject to the trajectory constraints. The total deltaV from Level 1 is then used as a fitness function by the genetic

  16. Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS) - Cyclops

    Science.gov (United States)

    Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2013-01-01

    Access to space for satellites in the 50-100 kg class is a challenge for the small satellite community. Rideshare opportunities are limited and costly, and the small sat must adhere to the primary payloads schedule and launch needs. Launching as an auxiliary payload on an Expendable Launch Vehicle presents many technical, environmental, and logistical challenges to the small satellite community. To assist the community in mitigating these challenges and in order to provide the community with greater access to space for 50-100 kg satellites, the NASA International Space Station (ISS) and Engineering communities in collaboration with the Department of Defense (DOD) Space Test Program (STP) is developing a dedicated 50-100 kg class ISS small satellite deployment system. The system, known as Cyclops, will utilize NASA's ISS resupply vehicles to launch small sats to the ISS in a controlled pressurized environment in soft stow bags. The satellites will then be processed through the ISS pressurized environment by the astronaut crew allowing satellite system diagnostics prior to orbit insertion. Orbit insertion is achieved through use of the Japan Aerospace Exploration Agency's Experiment Module Robotic Airlock (JEM Airlock) and one of the ISS Robotic Arms. Cyclops' initial satellite deployment demonstration of DOD STP's SpinSat and UT/TAMU's Lonestar satellites will be toward the end of 2013 or beginning of 2014. Cyclops will be housed on-board the ISS and used throughout its lifetime. The anatomy of Cyclops, its concept of operations for satellite deployment, and its satellite interfaces and requirements will be addressed further in this paper.

  17. Predictions of space radiation fatality risk for exploration missions.

    Science.gov (United States)

    Cucinotta, Francis A; To, Khiet; Cacao, Eliedonna

    2017-05-01

    In this paper we describe revisions to the NASA Space Cancer Risk (NSCR) model focusing on updates to probability distribution functions (PDF) representing the uncertainties in the radiation quality factor (QF) model parameters and the dose and dose-rate reduction effectiveness factor (DDREF). We integrate recent heavy ion data on liver, colorectal, intestinal, lung, and Harderian gland tumors with other data from fission neutron experiments into the model analysis. In an earlier work we introduced distinct QFs for leukemia and solid cancer risk predictions, and here we consider liver cancer risks separately because of the higher RBE's reported in mouse experiments compared to other tumors types, and distinct risk factors for liver cancer for astronauts compared to the U.S. The revised model is used to make predictions of fatal cancer and circulatory disease risks for 1-year deep space and International Space Station (ISS) missions, and a 940 day Mars mission. We analyzed the contribution of the various model parameter uncertainties to the overall uncertainty, which shows that the uncertainties in relative biological effectiveness (RBE) factors at high LET due to statistical uncertainties and differences across tissue types and mouse strains are the dominant uncertainty. NASA's exposure limits are approached or exceeded for each mission scenario considered. Two main conclusions are made: 1) Reducing the current estimate of about a 3-fold uncertainty to a 2-fold or lower uncertainty will require much more expansive animal carcinogenesis studies in order to reduce statistical uncertainties and understand tissue, sex and genetic variations. 2) Alternative model assumptions such as non-targeted effects, increased tumor lethality and decreased latency at high LET, and non-cancer mortality risks from circulatory diseases could significantly increase risk estimates to several times higher than the NASA limits. Copyright © 2017 The Committee on Space Research (COSPAR

  18. Human Mars Surface Mission Nuclear Power Considerations

    Science.gov (United States)

    Rucker, Michelle A.

    2018-01-01

    A key decision facing Mars mission designers is how to power a crewed surface field station. Unlike the solar-powered Mars Exploration Rovers (MER) that could retreat to a very low power state during a Martian dust storm, human Mars surface missions are estimated to need at least 15 kilowatts of electrical (kWe) power simply to maintain critical life support and spacecraft functions. 'Hotel' loads alone for a pressurized crew rover approach two kWe; driving requires another five kWe-well beyond what the Curiosity rover’s Radioisotope Power System (RPS) was designed to deliver. Full operation of a four-crew Mars field station is estimated at about 40 kWe. Clearly, a crewed Mars field station will require a substantial and reliable power source, beyond the scale of robotic mission experience. This paper explores the applications for both fission and RPS nuclear options for Mars.

  19. International Space Station Crew Return Vehicle: X-38. Educational Brief.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…

  20. Improved Atlases of Mimas and Enceladus derived from Cassini-ISS images

    Science.gov (United States)

    Roatsch, T.; Kersten, E.; Matz, K. D.; Bland, M. T.; Becker, T. L.; Patterson, G. W.

    2017-12-01

    The Cassini Imaging Science Subsystem (ISS) took a couple of high-resolution images of the Icy satellites Mimas and Enceladus during the last few years of the Cassini mission. Both satellites were captured over a period of non-targeted flybys: Mimas in 2016 and 2017 in orbits 230, 249, and 259 and Enceladus in 2015 and 2016 in orbits 224, 228, and 250. We used the new Mimas images to improve the existing semi-controlled mosaic of Mimas. A new controlled Enceladus mosaic was published recently [1] and was now updated using the latest Enceladus images. Both new mosaics are the baseline for improved atlases of Mimas in 3 tiles with a scale of 1:1,000,000 and Enceladus in 15 tiles with a scale of 1:500,000. The nomenclature for both satellites was proposed by the Cassini-ISS team and approved by the IAU and was not changed here. Examples of the improved atlases will be shown in this presentation. Reference: [1] Bland, M.T. et. al., A new Enceladus base map and global control network in support of geological mapping, 46th Lunar and Planetary Science Conference (2015) , abstract 2303.